
Hardware-assisted Security:
From Trust Anchors to Meltdown of Trust

Ahmad-Reza Sadeghi

Technische Universität Darmstadt &

Intel Collaborative Research Institute for Collaborative & Resilient Autonomous Systems

Historical Overview: Deployed Systems

Cambridge CAP

1970 1980 1990 2000 2010

Reference monitor

Protection rings

VAX/VMS

Java security
architecture

Hardware-assisted
secure boot

Trusted Platform
Module (TPM)

Late launch/TXT

Computer security
Mobile security
Smart card security

Mobile hardware security architectures

TI M-Shield
ARM
TrustZone

Mobile OS security architectures

Mobile Trusted
Module (MTM)

Simple smart
cards

Java Card platform

TPM 2.0

Intel SGX

GP TEE standards

On-board
Credentials

PUFs

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Deployed HW-Assisted Security Technologies

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Deployed HW-Assisted Security Technologies

Fantastic

Sad

Total Disaster

Very Sad

Complicated?

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Historical Overview: Research

On-board
Credentials
(ObC)

2000 2004 2008 2012 2018

Sanctum

Bastion
AEGIS

Trusted Execution
Security Extensions

HAFIX

ObC

HardBound

TrustLite

TyTAN

SMART

Sancus

SAFE

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

HW-Assisted Security Technologies: Research

Fantastic

Almost Optimistic

Total Disaster

Sad

Complicated?

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

We Need Change of Culture!

Today’s Systems: Attack Surface

Hardware

Software Stack

Operating System

App 1 App 2 App 4App 3

Peripherals CPU I/OHardware

Software
Stack

Memory

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Goal: Self-Contained Security

Operating System

App 1 App 2 App 4App 3

Hardware

Software
Stack

Peripherals CPU I/OMemory

• Isolated
execution

• Platform
integrity

• Secure storage

• Device
identification

• Device
authentication
capabilities

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Intrinsic Security Primitives:
The PUF Myth

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Physically Unclonable Functions (PUFs)

Device Hardware Fingerprint
(unique intrinsic identifier)

Infeasible to predict

Challenge/response behavior is pseudo-random

Inherently Unclonable

Due to unpredictable randomness during manufacturing of tag

≠

Tamper-evident

Tampering with the PUF hardware changes challenge/response behavior

Physically Unclonable Function
(noisy function based on physical properties)

Challenge 𝑐

Response 𝑟

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

2001

2002-2004

2006

2007

2008

SELECTED PUFsOptical PUF
[P.Ravikanth, 2001]

Arbiter PUF & RO-PUF
[Gassend et al., CCS‘02]

Feed-Forward A-PUF
[Lee et al., VLSIC’04]

Coating PUF
[Tuyls et al., CHES’06]

SRAM PUF
[Guajardo et al., CHES’07][Holcomb et al., RFIDSec’07]

Latch PUF
[Su et al., ISSCC‘07]

XOR A-PUF
[Suh et al., DAC’07]

Lightweight PUF
[Majzoobi et al., ICCAD‘08]

Flip-Flop PUF
[Kumar et al., WiSec’08]

Butterfly PUF
[Su et al., HOST‘08]

2010-2011 Glitch PUF
[Anderson et al., ASP-DAC‘10]

2012-2013

2016-now

Bistable Ring PUF
[Chen et al., HOST‘11]

Current-based PUF
[Majzoobi et al., ISCAS‘11]

Flash PUF
[Prabhu et al., ICTTC‘11]

Buskeeper PUF
[Simons et al., HOST‘12]

DRAM PUF
[Rosenblatt et al., SSC‘13]

Bitline PUF
[Holcomb et al., CHES‘14]

MEMS PUF
[Willers et al., CCS‘16]

Row Hammer-PUF
[Schaller et al., HOST‘17]

Memory-based PUFs

Delay-based PUFs

Other PUFs

Processor-based PUF
[Kong et al., DAC’14]

Subthreshold Current PUF
[Kalyanaraman et al., HOST‘13]

Current Mirrors PUF
[Kumar et al., HOST‘14]

Voltage Transfer PUF
[Vijaykumar et al., DATE‘15]

2014-2015

EU UNIQUE
Project

MXPUF
[Nguyen et al., eprint‘17]

Monte Carlo PUF
[Rožić et al., FPT ‘17]

www.unique-project.eu

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Arbiter PUF & RO-PUF
[Gassend et al., CCS‘02]

Feed-Forward A-PUF
[Lee et al., VLSIC’04]

SRAM PUF
[Guajardo et al., CHES’07]

[Holcomb et al., RFIDSec’07]

XOR A-PUF
[Suh et al., DAC’07]

Lightweight PUF
[Majzoobi et al., ICCAD‘08]

Flip-Flop PUF
[Kumar et al., WiSec’08]

DRAM PUF
[Rosenblatt et al., SSC‘13]

Row Hammer-PUF
[Schaller et al., HOST‘17]

The output determined by the faster pathThe output is based on the state of memory
cells after a power cycle

Delay-based PUFsMemory-based PUFs

Power-on /

/

/

1

0

1

/

0

0

0

0

/

0

0

0

/

1

1

1

/

0

1

/

0

0

/

0

0

1

1

0

0

1

1

1

0

PUFs: Main Categories

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Example: Arbiter PUF

Pair of identically designed delay lines

• Ideally both paths have the same delay

• Arbiter determines signal arrives first

• Challenge dependent switches

•Different delay paths by switches

𝑤0
𝑢

𝑤0
𝑙

Switch

𝑤1
𝑢

𝑤1
𝑙

𝒄𝟎 = 0𝒄𝟎 = 1

ResponseImpulse
1

0

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Challenge

Manufacturing variations affect delay lines

• Either of the two paths will be faster

•One bit response at signal arrival

Arbiter

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

How Good are PUFs in Practice?

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Arbiter PUF
[Gassend et al., CC‘04]

SRAM PUF
[Guajardo et al., CHES’07]

[Holcomb et al., RFIDSec’07]

Delay-based PUFsMemory-based PUFs

Modeling Attacks

[Lee et al., VLSIC’04]

Physical Attacks

[Oren et al., CHES’13]
[Helfmeier et al., HOST’13]

Linear Behavior!

XOR A-PUF
[Suh et al., DAC’07]

Modeling Attacks

[Ruhrmair et al., CCS’10]
[Becker, CHES’15]

Add non-linear funcions

Memristor A-PUF
[Suh et al., DAC’15]

Add non-linear components

Physical Attacks
[Merli et al., WESS’11]
[Tajik et al., CHES’14]

[Rührmair et al., CHES’14]

/

/

/

1

0

1

/

0

0

0

0

/

0

0

0

/

1

1

1

/

0

1

/

0

0

/

0

0

1

1

0

0

1

1

1

0

PUF Security in Practice

2004

2008

SELECTED ATTACKS & ANALYSIS
ML-Modeling Attack (A-PUF)

[Lee et al., VLSIC’04]

ML-Modeling Attack (FF A-PUF)
[Majzoobi et al., ITC’08]

2010-2012

ML-Modeling Attack delay-based PUFs
[Ruhrmair et al., CCS’10]

2013

2014

Semi-Invasive EM Attack (RO-PUF)
[Merli et al., WESS’11]

Rémanence Decay SCA (SRAM PUF)
[Oren et al., CHES’13]

Cloning SRAM PUF
[Helfmeier et al., HOST’13]

Semi-Invasive Attack on PUFs
[Nedospasov et al., FDTC’13]

Noise SCA (A-PUF)
[Delvaux et al., HOST’13]

ML-Modeling Attack (Bistable Ring PUF)
[Hesselbarth et al., TRUST’14]

Power&Timing SCA (A-PUF)
[Rührmair et al., CHES’14]

Photon Emission Analysis (A-PUF)
[Tajik et al., CHES’14]

Hybrid Modeling Attacks (Current-based PUF)
[Kumar et al., ICCD’14]

PUFs: Myth, Fact or Busted?
[Katzenbeisser et al., CHES‘12]

Unified Security Model for PUFs
[Armknecht et al., CT-RSA 2016]

Formal Security Model
[Armknecht et al., S&P 2011]

Reliability-based ML-Modeling Attack (XOR A-PUF)
[Becker, CHES’15]

ML-Modeling Attack (Bistable Ring PUF)
[Ganji et al., CHES’16]

ML-Modeling Attack on non-linear PUFs
[Vijaykumar et al., HOST’16]

2015-2018

Hammering RH-PUF
[Zeitouni et al., DAC’18]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Example: Arbiter PUF

ResponseImpulse
1

0

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Challenge

Arbiter

Goal: Recovering the values of the wire delays inside the switch boxes

Modeling Attacks
(Machine Learning)

Physical Attacks
(Semi-invasive/Side-channel)

CRPs ≈ 102 CRPs ≈ 103 - 106

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Arbiter PUF on a Complex Programmable Logic
Device (CPLD): Backside View

Programmable
Logic Blocks

Placement of
an Arbiter PUF
with 8 switches

Upper Path Lower Path

One switch

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

ResponseImpulse

Challenge

1

0

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

ResponseImpulse

Challenge

1

0

1 0 0 0 0 0 0 0

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

ResponseImpulse

Lower path delay
𝑾𝒍 = 𝒕𝟐 − 𝒕𝟎

Upper path delay
𝑾𝒖 = 𝒕𝟏 − 𝒕𝟎

Challenge

1

0

𝒕𝟎

𝒕𝟏

𝒕𝟐

1 0 0 0 0 0 0 0

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

𝒗𝟏

𝒖𝟏

0 0 0 0 0 0 0 0

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

𝒗𝟏

𝒖𝟏

𝒗𝟐

𝒖𝟐

1 0 0 0 0 0 0 0

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

𝒗𝟏

𝒖𝟏

𝒗𝟐

𝒖𝟐

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

Characterize each switch box in the Arbiter PUF by calculating
the delay differences for upper and lower paths

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

𝒗𝟏

𝒖𝟏

𝒗𝟐

𝒖𝟐

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

Characterize each switch box in the Arbiter PUF by calculating
the delay differences for upper and lower paths

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

𝒗𝟏

𝒖𝟏

𝒗𝟐

𝒖𝟐

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

Characterize each switch box in the Arbiter PUF by calculating
the delay differences for upper and lower paths

𝒗𝟏 − 𝒗𝟐 = 𝒘𝟏
𝒖𝟎 − 𝒘𝟎

𝒖𝟎

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

𝒗𝟏

𝒖𝟏

𝒗𝟐

𝒖𝟐

Physical Attacks: Example: [Tajik et al., CHES’14]

Switch Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Response

Impulse

Lower path delay 𝑊𝑙

Upper path delay 𝑊𝑢

Challenge

1

0

Characterize each switch box in the Arbiter PUF by calculating
the delay differences for upper and lower paths

𝒗𝟏 − 𝒗𝟐 = 𝒘𝟏
𝒖𝟎 − 𝒘𝟎

𝒖𝟎

𝒖𝟏 − 𝒖𝟐 = 𝑤1
𝑙0 − 𝑤0

𝑙0

C 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

𝑾𝒖

𝑾𝒍

𝒗𝟏

𝒖𝟏

𝒗𝟐

𝒖𝟐

Beyond CMOS-based PUFs

CMOS-based PUFs exhibit linear behavior => vulnerable to
machine learning

One Solution: Add components with non-linear behavior to
complicate/escape machine learning attacks, e.g.,

Memristors

Memristors ∞

• A resistor that changes it resistance
as voltage is applied

• Applications:
• Oscillators

• Learners (Neural Networks)

• Memories

• PUFs!

• The top (bottom) figure shows
Current-Voltage charcteristics of a
memristor (resistor)

Voltage
C

u
rr

en
t

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

CMOS-based APUF vs. Memristor-based APUF

Arbiter

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Challenge

Response

Impulse
1

0

1

0∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

𝒄𝟎 𝒄𝟏 𝒄𝟕𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔

Challenge

Impulse

Arbiter

Response

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

CMOS-based APUF vs. Memristor-based APUF

CMOS-based
Arbiter PUF:
Voltage at the
upper path

Memristor-based
Arbiter PUF:
Voltage at the
upper path

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Conclusion

• Many PUF designs, no unified security model

• Several successful attacks
• Non-destructive physical attacks

• Modeling attacks

• Designing secure PUFs is challenging?
• What are the costs?

• PUFs based on advanced memory technologies
• E.g., Memristors

Our Current Work:
Framework for Evaluation of

Memristor-based PUFs

Framework for Evaluation of Memristor-based PUFs

PUF Circuit
Generation

Challenge-
Response

Pairs
Generation Analysis of PUF

properties:
Reproducibility,
uniqueness, etc

PUF Description
Spice PUF

circuit CRPs
Secure/Insecure

PUF

Memristor
model

Advanced
Machine
Learning

Integrated Security Devices:
The TPM Promise

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

App 4

I/O

Trusted Computing

Operating System

App 1 App 2 App 3

TPMHardware

Software
Stack

Peripherals CPU Memory

• Authenticated Boot and Attestation

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

App 4

I/O

Trusted Computing

Operating System

App 1 App 2 App 3

TPMHardware

Software
Stack

Peripherals CPU Memory

Operating System

App 4App 1 App 2 App 3

Example: IBM Integrity Measurement Architecture (IMA)

• Authenticated Boot and Attestation

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

App 4

I/O

Trusted Computing

Operating System

App 1 App 2 App 3

TPMHardware

Software
Stack

Peripherals CPU Memory

Runtime attacks
(e.g., Code-reuse Attacks)

• Authenticated Boot and Attestation

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Summary: TPM-based Trusted Computing

• Binary hashes express trustworthiness of code
• Runtime attacks (e.g., code reuse) undermine this assumption

•Unforgeability of measurements
• TPM 1.2 uses deprecated SHA1

• Protection against software attacks only
• Hardware attacks on TPM

TPM assumptions and shortcomings

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Our Current Work:
Control-Flow Attestation

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Memory

Offline: Control-Flow Graph (CFG)
Analysis & Path Measurement

App A

P*x P*2

Online:
Runtime

Validation
Processor

Attestation Engine

HashController

Challenge

P1 P2

LP1

Ongoing Work: Towards Run-time Attestation

• Control Flow Attestation [Davi et al, CCS 2016 & DAC 2017]

Measurement
Database

ProverVerifier

Resilient to memory attacks

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Trusted Execution Environment (TEE)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

ARM TrustZone

Operating System

App 1 App 2 App 4App 3

Hardware

Software
Stack

Peripherals CPU I/OMemory

IMEI: International Mobile Equipment Identifier

Assumptions:
• Apps in Secure World are trustworthy
• Normal World cannot influence Secure World

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

ARM TrustZone

Hardware

Software
Stack

Peripherals CPU I/OMemory

Operating System

App 1 App 2 App 3

Secure World

Tr
u

st
le

t
1

Tr
u

st
le

t
2

Tr
u

st
le

t
3

Operating System

Android
• Full-Disk Encryption (FDE)
• Samsung KNOX

• Secure-I/O, Attestation
• Real-time Kernel

Protection (TIMA)

DRM
• Netflix
• Spotify
• Widevine

• Subsidy Lock
• IMEI Protection

IMEI: International Mobile Equipment Identifier

Assumptions:
• Apps in Secure World are trustworthy
• Normal World cannot influence Secure World

iOS
• Device Encryption
• Touch ID, Apple Pay

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

ARM TrustZone

Hardware

Software
Stack

Peripherals CPU I/OMemory

Operating System

App 1 App 2 App 3

Secure World

Tr
u

st
le

t
1

Tr
u

st
le

t
2

Tr
u

st
le

t
3

Operating System

IMEI: International Mobile Equipment Identifier

Assumptions:
• Apps in Secure World are trustworthy
• Normal World cannot influence Secure World

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

ARM TrustZone

Hardware

Software
Stack

Peripherals CPU I/OMemory

Operating System

App 1 App 2 App 3

Secure World

Tr
u

st
le

t
1

Tr
u

st
le

t
2

Tr
u

st
le

t
3

Operating System

Tr
u

st
le

t
1

Tr
u

st
le

t
2

Tr
u

st
le

t
3

Operating System

IMEI: International Mobile Equipment Identifier

• Reflections on trusting TrustZone
[Dan Rosenberg, BlackHat US, 2014]

• Attacking your Trusted Core
[Di Shen, BlackHat US, 2015]

• Breaking Android Full Disc Encryption
[laginimaineb from Project Zero, 2016]

Assumptions:
• Apps in Secure World are trustworthy
• Normal World cannot influence Secure World

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Summary: ARM TrustZone

•ARM TrustZone – Outdated?
• Deployed for almost two decades

• Trusted computing for vendors and friends only
• No access for app developer

•Many attacks have been shown over the last years

•On the positive side
• Secure I/O

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Our Current Work:
“Arbitrary” Number of TEEs in Normal

World on ARM TZ

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Intel Software Guard Extensions (SGX)

Operating System

App 1 App 2 App 4App 3

Hardware

Software
Stack

Peripherals CPU I/OMemory

Enclave 4Enclave 3Enclave 2Enclave 1

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Intel Software Guard Extensions (SGX)

Operating System

App 1 App 2 App 4App 3

Hardware

Software
Stack

Peripherals CPU I/OMemory

Enclave 4Enclave 3Enclave 2Enclave 1

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Host
Application

Operating System

SGX (Adversary) Model

Application N

NIC DRAMMMUCPU

Attacker
Enclave

Isolation

NIC: Network Interface Controller
MMU: Memory Management Unit Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Host
Application

Host
Application

Operating System

SGX (Adversary) Model

Application N

Operating System

NIC DRAMMMUCPU

Attacker
Enclave

Isolation

Application N

DRAMNIC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

NIC: Network Interface Controller
MMU: Memory Management Unit

Run-time Attacks Inside the Enclave

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi3yr6R1czbAhVPZ1AKHblNB68QjRx6BAgBEAU&url=http://paulistamoving.com/product/small-moving-box/&psig=AOvVaw33owy8TNmEL2R2NYWB5RUe&ust=1528841952383010
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi3yr6R1czbAhVPZ1AKHblNB68QjRx6BAgBEAU&url=http://paulistamoving.com/product/small-moving-box/&psig=AOvVaw33owy8TNmEL2R2NYWB5RUe&ust=1528841952383010

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Source

SGX

SDK

SGX SDK and The Guard’s Dilemma

App

Enclave

Function 0 Function 1

Function 2 Function 3

Compiler

App Code

Untrusted Runtime System (uRTS)

Trusted Runtime System (tRTS)

App-to-Enclave
function call

(ECALL)

[Biondo et al., USENIX Sec. 2018]

App

SGX SDK and The Guard’s Dilemma

Enclave

Function 0 Function 1

Function 2 Function 3

Trusted Runtime System (tRTS)
State

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Biondo et al., USENIX Sec. 2018]

App

SGX SDK and The Guard’s Dilemma

Enclave

Function 0 Function 1

Function 2 Function 3

Trusted Runtime System (tRTS)

Restore State

State

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Biondo et al., USENIX Sec. 2018]

App

SGX SDK and The Guard’s Dilemma

Enclave

Function 0 Function 1

Function 2 Function 3

Trusted Runtime System (tRTS)

Restore State

State

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Biondo et al., USENIX Sec. 2018]

App

SGX SDK and The Guard’s Dilemma

Enclave

Function 0 Function 1

Function 2 Function 3

Trusted Runtime System (tRTS)

Restore State

State

Counterfeit
state

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Biondo et al., USENIX Sec. 2018]

App

SGX SDK and The Guard’s Dilemma

Enclave

Function 0 Function 1

Function 2 Function 3

Trusted Runtime System (tRTS)

Restore State

State

Counterfeit
state

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Biondo et al., USENIX Sec. 2018]

Leakage in Intel’s SGX

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Page Fault Attacks on SGX

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

OS

EPCRAM

EPC: Enclave Page Cache
PT: Page Tables
PF: Page-Fault

Granularity: page 4K, good for big data structures

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Page Fault Attacks on SGX

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

OS

EPCRAM

PTPT

Granularity: page 4K, good for big data structures

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

EPC: Enclave Page Cache
PT: Page Tables
PF: Page-Fault

Page Fault Attacks on SGX

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

OS

EPCRAM

PTPT PF Handler

IR
Q

Granularity: page 4K, good for big data structures

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

EPC: Enclave Page Cache
PT: Page Tables
PF: Page-Fault

Page Fault Attacks on SGX

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

OS

EPCRAM

PTPT PF Handler

IR
Q

Granularity: page 4K, good for big data structures

[Xu et al., IEEE S&P’15]

Original Recovered

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

EPC: Enclave Page Cache
PT: Page Tables
PF: Page-Fault

Page Fault Attacks on SGX

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

OS

EPCRAM

PTPT PF Handler

IR
Q

Granularity: page 4K, good for big data structures

[Xu et al., IEEE S&P’15]

Original Recovered

Single-trace RSA key recovery from RSA key generation
procedure of Intel SGX SSL via controlled-channel attack on

the binary Euclidean algorithm (BEA)

[Weiser et al., AsiaCCS’18]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

EPC: Enclave Page Cache
PT: Page Tables
PF: Page-Fault

Cache Attacks on SGX: Hack in The Box

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

EPCRAM

EPC: Enclave Page Cache

Cache

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache Attacks on SGX: Hack in The Box

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

EPCRAM

EPC: Enclave Page Cache

Cache

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache Attacks on SGX: Hack in The Box

Enclave 1 Enclave 2 App 1 App 2 App 3

CPU

EPCRAM

EPC: Enclave Page Cache

Cache

o
b

se
rv

e

uses

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Side-Channel Attacks Basics:
Prime + Probe

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache-based Side-Channel Attacks
Prime + Probe

cache line 0
cache line 1
cache line 2

cache line 4
cache line 3

cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

t0 t1 t2

for each cline Z

write(Z)

if (keybit[i] == 0)

read(X)

else

read(Y)

For each cline Z

read(Z)

measure_time(read)

Prime Victim Probe

C
ac

h
e

C
o

d
e

cache line 0
cache line 1
cache line 2

cache line 4
cache line 3

cache line 5

cache line 2

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache-based Side-Channel Attacks
Prime + Probe

cache line 0
cache line 1
cache line 2

cache line 4
cache line 3

cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

t0 t1 t2

for each cline Z

write(Z)

if (keybit[i] == 0)

read(X)

else

read(Y)

For each cline Z

read(Z)

measure_time(read)

Prime Victim Probe

C
ac

h
e

C
o

d
e

cache line 2

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache-based Side-Channel Attacks
Prime + Probe

cache line 0
cache line 1
cache line 2

cache line 4
cache line 3

cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

t0 t1 t2

for each cline Z

write(Z)

if (keybit[i] == 0)

read(X)

else

read(Y)

For each cline Z

read(Z)

measure_time(read)

Prime Victim Probe

C
ac

h
e

C
o

d
e

cache line 2

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache-based Side-Channel Attacks
Prime + Probe

cache line 0
cache line 1
cache line 2

cache line 4
cache line 3

cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

t0 t1 t2

for each cline Z

write(Z)

if (keybit[i] == 0)

read(X)

else

read(Y)

For each cline Z

read(Z)

measure_time(read)

Prime Victim Probe

C
ac

h
e

C
o

d
e

cache line 2

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache-based Side-Channel Attacks
Prime + Probe

cache line 0
cache line 1
cache line 2

cache line 4
cache line 3

cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

cache line 0
cache line 1
cache line 2
cache line 3
cache line 4
cache line 5

t0 t1 t2

for each cline Z

write(Z)

if (keybit[i] == 0)

read(X)

else

read(Y)

For each cline Z

read(Z)

measure_time(read)

Prime Victim Probe

C
ac

h
e

C
o

d
e

cache line 2
was used
by victim

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

cl 0

Side-Channel Attacker Challenge: Noise

• “Classical” scenario: unprivileged attacker

• OS* is not collaborating with the attacker
• OS can directly access process memory containing the victim’s secret

• System operates normally, impacting the caches (process scheduling,
context switches, interrupts, etc.)

*OS: Operating System and any other privileged system software

cl 0
cl 1
cl 2

Prime

tk tl tn

cl 0
cl 1
cl 2

cl 0
cl 1
cl 2

Other Process

cl 0
cl 1
cl 2

Victim

cl 2

tm

cl 0
cl 1
cl 2

Probe

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

cl 0

Side-Channel Attacker Challenge: Noise

• “Classical” scenario: unprivileged attacker

• OS* is not collaborating with the attacker
• OS can directly access process memory containing the victim’s secret

• System operates normally, impacting the caches (process scheduling,
context switches, interrupts, etc.)

*OS: Operating System and any other privileged system software

cl 0
cl 1
cl 2

Prime

tk tl tn

cl 0
cl 1
cl 2

Other Process

cl 0
cl 1
cl 2

Victim

cl 2

tm

cl 0
cl 1
cl 2

Probe

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

cl 0

Side-Channel Attacker Challenge: Noise

• “Classical” scenario: unprivileged attacker

• OS* is not collaborating with the attacker
• OS can directly access process memory containing the victim’s secret

• System operates normally, impacting the caches (process scheduling,
context switches, interrupts, etc.)

*OS: Operating System and any other privileged system software

cl 0
cl 1
cl 2

Prime

tk tl tn

cl 0
cl 1
cl 2

Other Process

cl 0
cl 1
cl 2

Victim

cl 2

tm

cl 0
cl 1
cl 2

Probe

cl 0

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

cl 0

Side-Channel Attacker Challenge: Noise

• “Classical” scenario: unprivileged attacker

• OS* is not collaborating with the attacker
• OS can directly access process memory containing the victim’s secret

• System operates normally, impacting the caches (process scheduling,
context switches, interrupts, etc.)

*OS: Operating System and any other privileged system software

cl 0
cl 1
cl 2

Prime

tk tl tn

cl 0
cl 1
cl 2

Other Process

cl 0
cl 1
cl 2

Victim

tm

cl 0
cl 1
cl 2

Probe

cl 0

cl 2

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

cl 0

Side-Channel Attacker Challenge: Noise

• “Classical” scenario: unprivileged attacker

• OS* is not collaborating with the attacker
• OS can directly access process memory containing the victim’s secret

• System operates normally, impacting the caches (process scheduling,
context switches, interrupts, etc.)

*OS: Operating System and any other privileged system software

cl 0
cl 1
cl 2

Prime

tk tl tn

cl 0
cl 1
cl 2

Other Process

cl 0
cl 1
cl 2

Victim

tm

cl 0
cl 1
cl 2

Probe

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

cl 0

Side-Channel Attacker Challenge: Noise

• “Classical” scenario: unprivileged attacker

• OS* is not collaborating with the attacker
• OS can directly access process memory containing the victim’s secret

• System operates normally, impacting the caches (process scheduling,
context switches, interrupts, etc.)

*OS: Operating System and any other privileged system software

cl 0
cl 1
cl 2

Prime

tk tl tn

cl 0
cl 1
cl 2

Other Process

cl 0
cl 1
cl 2

Victim

tm

cl 0
cl 1
cl 2

Probe

cl0 and cl2
were used…

… by the
victim?

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache Attacks on SGX

Enclave 1 Enclave 2 App 2 App 3

CPU

EPCRAM

Level 3

CPU Core
Level 2

Level 1 Branch Pred.
SMTSMT

OS

EPC: Enclave Page Cache
SMT: Simultaneous Multithreading Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Cache Attacks on SGX

Enclave 1 Enclave 2 App 2 App 3

CPU

EPCRAM

Level 3

CPU Core
Level 2

Level 1 Branch Pred.
SMTSMT

OS

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018
EPC: Enclave Page Cache
SMT: Simultaneous Multithreading

Cache Attacks on SGX

Enclave 1 Enclave 2 App 2 App 3

CPU

EPCRAM

Level 3

CPU Core
Level 2

Level 1 Branch Pred.
SMTSMT

OS Use CPU internal caches to infer
control flow

[Lee et al., Usenix Sec’17] &
[arXiv:1611.06952]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018
EPC: Enclave Page Cache
SMT: Simultaneous Multithreading

Cache Attacks on SGX

Enclave 1 Enclave 2 App 2 App 3

CPU

EPCRAM

Level 3

CPU Core
Level 2

Level 1 Branch Pred.
SMTSMT

OS Use CPU internal caches to infer
control flow

[Lee et al., Usenix Sec’17] &
[arXiv:1611.06952]

Use standard prime + probe to
detect key dependent memory

accesses, interrupt enclave
[Moghimi et al., arXiv:1703.06986]

Use prime + probe to extract key
from synchronized victim enclave

[Götzfried et al., EuroSec’17]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018
EPC: Enclave Page Cache
SMT: Simultaneous Multithreading

Cache Attacks on SGX

Enclave 1 Enclave 2 App 2 App 3

CPU

EPCRAM

Level 3

CPU Core
Level 2

Level 1 Branch Pred.
SMTSMT

OS Use CPU internal caches to infer
control flow

[Lee et al., Usenix Sec’17] &
[arXiv:1611.06952]

Use standard prime + probe to
detect key dependent memory

accesses, interrupt enclave
[Moghimi et al., arXiv:1703.06986]

Use prime + probe to extract key
from synchronized victim enclave

[Götzfried et al., EuroSec’17]

A malicious enclave prime + probes
another enclave, evading detection

[Schwarz et al., DIMVA’17 &
arXiv:1702.08719]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018
EPC: Enclave Page Cache
SMT: Simultaneous Multithreading

Cache Attacks on SGX

Enclave 1 Enclave 2 App 2 App 3

CPU

EPCRAM

Level 3

CPU Core
Level 2

Level 1 Branch Pred.
SMTSMT

OS Use CPU internal caches to infer
control flow

[Lee et al., Usenix Sec’17] &
[arXiv:1611.06952]

Use standard prime + probe to
detect key dependent memory

accesses, interrupt enclave
[Moghimi et al., arXiv:1703.06986]

Use prime + probe to extract key
from synchronized victim enclave

[Götzfried et al., EuroSec’17]

A malicious enclave prime + probes
another enclave, evading detection

[Schwarz et al., DIMVA’17 &
arXiv:1702.08719]

Our attack: prime + probe attack from
malicious OS extracting genome data

[Brasser et al., WOOT’17]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018
EPC: Enclave Page Cache
SMT: Simultaneous Multithreading

SGX Side-Channel Attacks Comparison

Attack Type
Observed

Cache
Interrupting

Victim
Cache Eviction
Measurement

Attacker
Code

Attacked
Victim

Lee et al.
Branch

Shadowing
BTB / LBR Yes

Execution
Timing

OS
RSA & SVM

classifier

Moghimi et al.
Prime +
Probe

L1(D) Yes Access timing OS AES

Götzfried et al.
Prime +
Probe

L1(D) No PCM OS AES

Our Attack
Prime +
Probe

L1(D) No PCM OS
RSA &

Genome
Sequencing

Schwarz et al.
Prime +
Probe

L3 No
Counting
Thread

Enclave AES

PCM: Performance Counter Monitor BTB: Branch Target Buffer LBR: Last Branch Record

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1

Core 0 Core n

PCM

P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1

Core 0 Core n

PCM

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1

Core 0 Core n

PCM

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1

Core 0 Core n

PCM

Modified Linux scheduler to exclude one core
(two threads) from assigning task
• Attacker assigns victim enclave to first SMT thread
• Attacker assigns Prime+Probe code to second SMT

thread

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1A
P

IC
Core 0 Core n

HandlerHandler Handler Handler

PCM

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1A
P

IC
Core 0 Core n

Handler Handler

PCM

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1A
P

IC
Core 0 Core n

Handler Handler

PCM

Use kernel sysfs interface to assign interrupts
to other cores
• Timer interrupt (per thread) cannot be reassigned
• Lowered timer frequency to 100Hz (i.e., every 10ms)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1A
P

IC
Core 0 Core n

Handler Handler

PCM

P
ro

b
e

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

[Brasser et al., WOOT’17]Our Attack

SMTSMT

L1

OS

P
ro

ce
ss

1

P
ro

ce
ss

2

V
ic

ti
m

P
ro

ce
ss

n

A
tt

ac
ke

r

P
ro

ce
ss

m

P
ro

ce
ss

m

+1

SMTSMT

L1A
P

IC
Core 0 Core n

Handler Handler

PCM

P
ro

b
e Prime+Probe attack using L1 data cache

• Eviction detection using Performance Counter
Monitor (L1D_REPLACEMENT)

• Anti Side-Channel Interference (ASCI) not effective,
monitoring cache events of attacker possible

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018P
C

M
: P

er
fo

rm
an

ce
 C

o
u

n
te

r
M

o
n

it
o

r
SM

T:
 S

im
u

lt
an

eo
u

s
M

u
lt

it
h

re
ad

in
g

A
P

IC
: A

d
va

n
ce

d
 P

ro
gr

am
m

ab
le

 In
te

rr
u

p
t

C
o

n
tr

o
lle

r

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PCPC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PCPC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PC PC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PCPC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PC

PC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PCPC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PCPC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PC PC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PCPC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Spatial vs. Temporal Resolution

while (i > 0) {
prepare();
x = table[secret];

process(x);
}

prime() {
write_cache();

} wait();

Probe() {
test_evic();

}

Cache AttackerVictim Enclave

PCPC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Our Attack Use-Cases

Extracting 2048-bit RSA
decryption key

Extracting genome sequences

[arXiv:1702.07521]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Genome Sequencing

Encrypted Genome Sequence

Genome Analysis Enclave (e.g. PRIMEX)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Genome Sequencing

Encrypted Genome Sequence

Pre-processing

• Split input into
sub-sequences
(k-mer)

• Store k-mer
positions in
hash-table

Analysis

• Statistical
analysis, e.g.,
to identify
correlation in
the data

Genome Analysis Enclave (e.g. PRIMEX)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Genome Sequencing

Encrypted Genome Sequence

Pre-processing

• Split input into
sub-sequences
(k-mer)

• Store k-mer
positions in
hash-table

Analysis

• Statistical
analysis, e.g.,
to identify
correlation in
the data

Genome Analysis Enclave (e.g. PRIMEX)

Attacker’s goal: Identify k-mer
sequences in the input string, allowing

the identification of individuals

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Genome Sequencing

Pre-processing

• Split input into
sub-sequences
(k-mer)

• Store k-mer
positions in hash-
table

Analysis

• Statistical
analysis, e.g., to
identify
correlation in
the data

Genome Analysis Enclave (e.g. PRIMEX)

ATCGATCGATCG…

Attacker’s goal: Identify k-mer
sequences in the input string,
allowing the identification of

individuals

TTGACCCACTGAATCACGTCTG…

Encrypted Genome Sequence

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Human Genome

• Nucleobases
• Adenine (A)

• Cytosine (C)

• Guanine (G)

• Thymine (T)

• Microsatellite
• Forensic analysis

• Genetic fingerprinting

• Kinship analysis

TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGG
TCACTTGCGGTGCCGTTTTCTTTGTTACCGACGACCG
ACCAGCGACAGCCACCGCGCGCTCACTGCCACCAAAA
GAGTCATATCGATCGATCGATCGATCGATCGATCGAT
CGATCGATCGATCGATCGATCGATCGATCGATCATCA
CAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAA
CGGTCCTAATGCAGTATCCCACCCTCCTTCCATCGAC
GCCAGTCGAATCACGCCGCCAGCCACCGTCCGCCAGC
CGGCCAGAATACCGATGACTCGGCGGTCTCGTGTCGG
TGCCGGCCTCGCAGCCATTGTACTGGCCCTGGCCGCA
GTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTCCG
CCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGT
GGACGTCTCGCCTGCGAACCCAACCACGGGCACGCAG
GTGTTGATCACCCCGTCGATCAACAACTCCGGATCGG
CAAGCGGGTCCGCGCGCGTCAACGAGGTCACGCTGCG
CGGCGACGGTCTCCTCGCAACGGAAGACAGCCTGGGG

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

…

Hash Table

0

Indexer

AG CA G CA T C AG GT A C…

Genome Preprocessing

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

…

Hash Table

0

1

Indexer

AG CA G CA T C AG GT A C…

Genome Preprocessing

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

…

Hash Table

0

1

2

Indexer

AG CA G CA T C AG GT A C…

Genome Preprocessing

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

…

Hash Table

0 3

1

2

Indexer

AG CA G CA T C AG GT A C…

Genome Preprocessing

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

…

Hash Table

0 3

1

2

Indexer

• Hash table access pattern
• Hash table entry 8 bytes

• Cache line size 64 bytes

• Collisions

• Genome unstructured

• Microsatellites structured

AG CA G CA T C AG GT A C…

TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGGTCACTTGC
GGTGCCGTTTTCTTTGTTACCGACGACCGACCAGCGACAGCCACC
GCGCGCTCACTGCCACCAAAAGAGTCATATCGATCGATCGATCGA
TCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGAT
CATCACAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAACGG
TCCTAATGCAGTATCCCACCCTCCTTCCATCGACGCCAGTCGAAT
CACGCCGCCAGCCACCGTCCGCCAGCCGGCCAGAATACCGATGAC
TCGGCGGTCTCGTGTCGGTGCCGGCCTCGCAGCCATTGTACTGGC
CCTGGCCGCAGTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTC
CGCCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGTGGACGT
CTCGCCTGCGAACCCAACCACGGGCACGCAGGTGTTGATCACCCC

Genome Preprocessing

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Microsatellites and Processed k-mers

ATCGATCGATCGATCGATCGATCGATCGATCG

ATCG

TCGA

CGAT

GATC

ATCG

cache line 1

cache

cache line 2

cache line 3

cache line 4

cache line 5

cache line 6

cache line 8

cache line 7

cache line 0

The microsatellite will activate cache lines 2, 4, 5 and 0 repeatedly

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Genome Sequencing Attack Results

Execution Time

Activity in all related cache lines

• Monitor cache lines associated to satellite
• High activity in cache lines reveal occurrence of satellite in input string

A

D

B

C

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

SGX

SGX Side Channels & Defenses

SGX

Leakage Oracle

Caches
• L1, L2, LLC, LBR

Page-Faults

Spectre

Obfuscators

SC-resilient SW-design (e.g., Scatter-and-Gather)

Cache-archichtecture re-design (e.g., Partitioning)

Intel TSX (e.g., T-SGX, Déjà Vu, Cloak)

ORAM / Oblivious Execution

Leakage Oracle

Enclave

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

SGX Specific Side-Channel Defenses Using TSX

• Intel TSX is a hardware mechanism to allow synchronous memory transactions

• TSX is not available on all SGX-enable processors

TSX: Transactional Synchronization Extensions

TSX

T-SGX: Uses TSX to
detect enclave interrupt

[Shih et al., NDSS’17]

Déjà Vu : Uses TSX to
detect enclave slowdown
[Chen et al., AsiaCCS’17]

Cloak: Prime cache before
accessing sensitive data

[Schuster et al., USENIX 2017]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

General Hardware-based Side-Channel Defenses

Cache partitioning / coloringTemporal cache isolation

Randomized cache mappings

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

General Hardware-based Side-Channel Defenses

Cache partitioning / coloringTemporal cache isolation

Randomized cache mappings

Problems

• Ineffective on SMT-
enabled systems

Problems

• Frequency analysis
for randomization
secret

Problems

• Reduces the amount of
cache available to
individual software

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

General Software-only Side-Channel Defenses

Side-channel resilient
software design

Monitoring for attack effects

Oblivious execution / ORAM

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

General Software-only Side-Channel Defenses

Side-channel resilient
software design

Monitoring for attack effects

Oblivious execution / ORAM

Problems

• Not applicable to all
applications

• Manual software
hardening required

Problems

• Requires privileged
entity (not available in
SGX model)

Problems

• Too inefficient, ORAM
metadata needs to be
protected as well

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

While(leak) { add_ORAM_layer(); }
M

em
o

ry
 (

R
A

M
 /

 C
ac

h
e)

En
clave

Process(table)
{

}

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

While(leak) { add_ORAM_layer(); }
M

em
o

ry
 (

R
A

M
 /

 C
ac

h
e)

En
clave

Process(table)
{

}

ORAM

Process(stash)
{

}

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

While(leak) { add_ORAM_layer(); }
M

em
o

ry
 (

R
A

M
 /

 C
ac

h
e)

En
clave

Process(table)
{

}

ORAM

Process(stash)
{

}

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

While(leak) { add_ORAM_layer(); }
M

em
o

ry
 (

R
A

M
 /

 C
ac

h
e)

En
clave

Process(table)
{

}

ORAM

Process(stash)
{

}

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

While(leak) { add_ORAM_layer(); }
M

em
o

ry
 (

R
A

M
 /

 C
ac

h
e)

En
clave

Process(table)
{

}

ORAM

Process(stash)
{

}

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

While(leak) { add_ORAM_layer(); }
M

em
o

ry
 (

R
A

M
 /

 C
ac

h
e)

En
clave

Process(table)
{

}

ORAM

Process(stash)
{

}

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Summary: SGX – All Problems Solved?

• Side channels more drastic than originally thought

• Current add-on defenses not practical or effective

• Academic research solutions mostly not deployed

•Generic software-only side-channel defenses required
• No security expertise of enclave developers (no annotations)
• Hardware extensions/features not available in all SGX CPUs

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Our Current Work:
Generic Software-only Side-Channel

Defenses

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Our Current Work: Software-based Side-Channel
Mitigations

RAM

Sensitive Array

[Brasser et al., DR. SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization, ArXiv]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Our Current Work: Software-based Side-Channel
Mitigations

RAM

Sensitive Array
ORAM Tree

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Brasser et al., DR. SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization, ArXiv]

Our Current Work: Software-based Side-Channel
Mitigations

RAM

Sensitive Array

AES Key

DR. SGX
(Pseudo-random

Permutation)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

[Brasser et al., DR. SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization, ArXiv]

DR.SGX Re-randomization

Initial layout Layout 1 Layout 2

A

B

C

D

E

F

G

H

F

C

G

E

D

H

A

B

G

D

B

E

H

A

F

C

Time

Pe
rm

u
ta

ti
o

n
 π

1

AES-NI

Pe
rm

u
ta

ti
o

n
 π

2

AES-NI

Re-randomization window

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Meltdown and Spectre

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

So, you might have noticed...

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

So, you might have noticed...

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

So, you might have noticed...

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

So, you might have noticed...

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

So, you might have noticed...

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Three Attacks

•CVE-2017-5754 (aka. Meltdown)

• Exploits rogue data-cache loads during speculative execution

•CVE-2017-5753 (aka. Spectre)

• Exploits bounds-check bypasses during speculative execution

•CVE-2017-5715 (aka. Spectre)

• Exploits branch-target injection during speculative execution

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Intel Inside Bug inside
Speculative Execution!

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Speculative Execution? Sounds fishy..
And what is a processor anyways?

Processor:

ADD

READ

WRITE

Input:

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xA

Data:
17
42

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Speculative Execution? Sounds fishy..
And what is a processor anyways?

Processor:

ADD

READ

WRITE

Output:

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xC

Input:

:0xC
:0xD
:0xE
:0xF

Data:
17
42

:0xA
:0xB

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xA

0xC:
0xD:
0xE:
0xF:

Data:
17
42

0xA:
0xB:

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Speculative Execution? Sounds fishy..
And what is a processor anyways?

Processor:

ADD

READ

WRITE

Output:

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xC

Program Counter (PC):

Input:

:0xC
:0xD
:0xE
:0xF

Data:
17
42

:0xA
:0xB

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xA

0xC:
0xD:
0xE:
0xF:

Data:
17
42

0xA:
0xB:

0xC

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Speculative Execution? Sounds fishy..
And what is a processor anyways?

Processor:

ADD

READ

WRITE

Output:

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xC

Program Counter (PC):

Input:

:0xC
:0xD
:0xE
:0xF

Data:
17
42

:0xA
:0xB

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xA

0xC:
0xD:
0xE:
0xF:

Data:
17
42

0xA:
0xB:

0xC

17

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

0xD

Speculative Execution? Sounds fishy..
And what is a processor anyways?

Processor:

ADD

READ

WRITE

Output:

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xC

Program Counter (PC):

Input:

:0xC
:0xD
:0xE
:0xF

Data:
17
42

:0xA
:0xB

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xA

0xC:
0xD:
0xE:
0xF:

Data:
17
42

0xA:
0xB:

17 42

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Speculative Execution? Sounds fishy..
And what is a processor anyways?

Processor:

ADD

READ

WRITE

Output:

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xC

Program Counter (PC):

Input:

:0xC
:0xD
:0xE
:0xF

Data:
17
42

:0xA
:0xB

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xA

0xC:
0xD:
0xE:
0xF:

Data:
17
42

0xA:
0xB:

0xD

17 42

59

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Speculative Execution? Sounds fishy..
And what is a processor anyways?

Processor:

ADD

READ

WRITE

Output:

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xC

Program Counter (PC):

Input:

:0xC
:0xD
:0xE
:0xF

Data:
17
42

:0xA
:0xB

Code:
READ 0xA
READ 0xB

ADD
WRITE 0xA

0xC:
0xD:
0xE:
0xF:

Data:
17
42

0xA:
0xB:

0xE0xF

59

59

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Some operations are SLOOOOOOOW

• Two read operations can easily stall the CPU for more than 100ns

• An integer addition takes two orders of magnitude less time (~1ns)

• So, in the time domain the execution looks like this:

• Processor does NOTHING for 100ns!

READ 0xA READ 0xB ADD …

50ns 50ns 1ns

…

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Optimizing for Performance..
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU)

Instruction Stream:

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Optimizing for Performance..
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU)

MEMORY ACCESS

Instruction Stream:

Why should I wait
for a long time?

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Optimizing for Performance..
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU) ALU

ALU

ALU

Instruction Stream:

What happens if I
just continue..

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Optimizing for Performance..
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU) ALU

ALU

ALU

Instruction Stream:

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

MEMORY ACCESS Looks like we are
ready!

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Optimizing for Performance..
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU) ALU

ALU

ALU

Instruction Stream:

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

MEMORY ACCESS Looks like we are
ready!

Ok, result
looks good.
You can
leave early
today.Commit!

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Optimizing for Performance..
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU) ALU

ALU

ALU

Instruction Stream:

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

MEMORY ACCESS

To Boost Performance Modern Processors Execute Instructions Out-of-Order!
Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

..what if it does not work?
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU)

MEMORY ACCESS

Instruction Stream:

Why should I wait
for a long time?

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

..what if it does not work?
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU) ALU

ALU

ALU

Instruction Stream:

What happens if I
just continue..

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

..what if it does not work?
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU) ALU

ALU

ALU

Instruction Stream:

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

MEMORY ACCESS Maybe nobody
will notice..

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

..what if it does not work?
Out-of-Order Execution:

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU) ALU

ALU

ALU

Instruction Stream:

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

MEMORY ACCESS Maybe nobody
will notice..

Do it in
order,
stupid!

Rollback!

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

..what if it does not work?

SLOW OP
(e.g., Memory Access or Branch)

FAST OP
(e.g., ALU)

Instruction Stream:

FAST OP
(e.g., ALU)

FAST OP
(e.g., ALU)

MEMORY ACCESS

Only correct optimizations are commited!

ALU

ALU

ALU

In Order Execution:

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

Out-of-Order vs. Speculative Execution

• If the instruction that is re-ordered is a branching instruction, the
resulting Out-of-Order stream is called Speculative Execution

CONDITIONAL
BRANCH

…

…

…

…

• Many processors do not optimize this

• Bigger processors invest a lot of work
into optimizing branches!

• Simple optimization:
• Always execute both branches

• only commit the correct one

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

MOV $ebx, [0x8]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

MOV $ebx, [0x8]

TEST $ebx, $ebx

JE Code

MOV 0x70, [0x70+$ebx]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

MOV $ebx, [0x8]

TEST $ebx, $ebx

JE Code

MOV 0x70, [0x70+$ebx]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

MOV $ebx, [0x8]

TEST $ebx, $ebx

JE Code

MOV 0x70, [0x70+$ebx]

1F 20 2A 2B

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

MOV $ebx, [0x8]

TEST $ebx, $ebx

JE Code

MOV 0x70, [0x70+$ebx]

Access
not allowed,
stupid!

1F 20 2A 2B

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

MOV $ebx, [0x8]

TEST $ebx, $ebx

JE Code

MOV 0x70, [0x70+$ebx]

Access
not allowed,
stupid!

1F 20 2A 2B

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

Access
not allowed,
stupid!Rollback!

1F 20 2A 2B

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

OoO-Processor:

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

OS memory is
none of your
business! EXCEPTION

1F 20 2A 2B

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
1F 20 2A 2B

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

[FLUSH+RELOAD]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

What could possibly go wrong?

User Memory:
0A 0B 0C 0D
0E 0F 10 1A
1B 1C 1D 1E
1F 20 2A 2B

:0x70
:0x74
:0x78
:0x7C

Cache:
00 00 00 00
00 00 00 00
00 00 00 00
1F 20 2A 2B

:0x0
:0x4
:0x8
:0xC

Code:
MOV $ebx, [0x8]
TEST $ebx, $ebx

JE Code
MOV 0x70, [0x70+$ebx]

OS Memory:
0A 0B 0C 0D
0E 0F 10 1A
00 00 00 0C
1F 20 2A 2B

0x70:
0x74:
0x78:
0x7C:

• well well what do we have here..
• Memory access happened at 0x7C
• Actually, my start address was 0x70
• The value at 0x8 must have been:

0x7C-0x70 = 0x0C!
[FLUSH+RELOAD]

Summer School on real-world crypto and privacy, Šibenik (Croatia), June 11–15, 2018

