Intro to Microarchitectural Attacks

Thomas Eisenbarth
12.06.2018
Summer School on Real-World Crypto & Privacy
Sibenik, Croatia

UNIVERSITAT ZU LUBECK

STIFTUNGSUNIVERSITAT
SEIT 2015

‘} . s
Q7gn1.5%”

Outline

Timing Attacks

Cache Attacks

Cloud Cache Attacks
Speculative Execution Attacks

Preventing Microarchitectural Attacks

Timing attack on Password

* Password check done symbol by symbol:

def check pwd (input, pwd):
for 1dx 1n range (len (pwd)) :
1f pwd[idx] !=input[idx]:
return false
return true

* Wrong character results in immediate error
message = Timing dependency

* Divide and Conquer approach allows
password recovery in linear time

Timing Attacks

*s RRsssvaret Tinmng Bxanmiple:
time = f(input, secret)
* Applied to crypto implementations

oy Paul Kocher: Diffie-Hellman,
RSA, DSS [Koch96]

* Leakage exists, how to exploit it?
— predict secret dependent timing variations

— timing differences allow piece-wise key recovery
* Prevention: Write constant-time code

[Koch96] Paul C. Kocher: Timing attacks on Implementations of Diffie-Hellman, RSA, DSS and Other Systems - Crypto 96

Microarchitectural Attacks

Microarchitectural Attacks
or how to hide secrets in execution time

Modern CPUs microarchitecture:
“Make the common case fast
Branch Prediction -

Speculative & Out of
Order Execution

Multicore + Multi-
processor System
& Support

Several layers of Caches

Cache lines and line placement

Cache 4-way set assoc. Memory.
SetO Page O
Set 1 Page 1
Set 2
Setm
line size: 64 bytes Page n

Physical Memory Address determines placement in set
Eviction Set: Lines filling one set entirely

Cache Attacks?

o Cache Attacks are old [Hu92]

o Popular Method: Prime+Probe [OSTO6]:

1. Prime memory lines
fill monitored cache set with dummy data: eviction set

2. Wait for some time

3. Probe memory lines
read eviction set data and time read

 Difficult in L3-cache due to virtual addressing:

— Solution: Huge Pages give control of L3$ to spy:
e.g. El Gamal [LY+15] or AES [IES15]

[Hu92] Hu, W.-M. (Digital Equipment Corp., Littleton, MA, USA) Lattice scheduling and covert channels. IEEE Oakland 92

[OST06] DA Osvik, A Shamir, E Tromer Cache attacks and countermeasures: the case of AES. CT-RSA 2006

[LY+15] Liu, F., Yarom, Y., Ge, Q., Heiser, G., & Lee, R. B. (2015). Last-Level Cache Side-Channel Attacks are Practical. (S&P 2015).

[IES15] Irazoqui, G., Eisenbarth, T., & Sunar, B. S$A: A shared cache attack that works across cores and defies VM sandboxing—and 8
Its application to AES. 36th IEEE Symposium on Security and Privacy (S&P 2015)

Prime+Probe Attack: Concept

Steps: (Preparation: Find eviction set)
1. Prime desired memory lines
2. Wait for some time

3. Probe memory lines and measure reload time.
Victim Spy

0.3 T T T T T T T T T
H S ngtruction in cache
Prlvate Ll/Lz CACHE S S 03k —ngtruction in memary
125t ‘| .

4 Clean detection if monitored cache set was accessed
\ J 2 el

0tr

Memory i3

0 . " !
a 0 100 150 Pl il Ja kil 400 450 500

Hardware cycles

How to get Crypto keys?
Modular Exponentiation for RSA

Basic principle: Scan exponent bits from left to right and
square/multiply operand accordingly = Exponent is secret key

Algorithm: Square-and-Multiply

Input: Exponent H, base element x, Modulus N
Output: y = x" mod N
1. Determine binary representation H= (h, h,,, ..., h,),

2. FORi=t-1TOO

4. IFh=1THEN Execution of multiply
- depends on secret

5. y=y *xmodN

10

How to get crypto keys?

Detect key-dependent cache accesses:
* RSA/ElIGamal: Square and Multiply Exponentiation
Occurrence of Square (or MUL) in cache reveals key

1 l Dﬂﬂﬂﬂﬂﬂl o0 EDDE{LED ac D'EEDDDDE DD' ooDoCo0 |EDDD{‘IDD D{I_"IE EDEDDE{E [=laluls] DDD{I_"IED aco ﬂ{hEDDDﬂ DDD{I_"I ==

=2
i
I

=2
=4
I

Square function utilized
[=] [=]
ka e
I I
I |

=
I

oo oo a0 e To I vl oo oo a0 a [l o o els) a o o —
S RMR S RS RMR S RS RMR SRS RMR S RMR S RS RMR S R3S RMRS RS RMR S R S

0z | | | | | | | | | | -
i 10 20 30 40 50 60 70 8O a0 100
Time slot

11
[YF14] Y Yarom, KE Falkner Flush+ Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack, USENIX Security 2014

Target Cipher: AES

AES T-table implementation:

SubBytes
-~ A
& XOR

* T-tables stored in memory/cache

Idea:
Detect T-table accesses in last round

Inclusive caches ensure T-table in LLC

Cloud Cache Attacks

Cache Attacks on Cloud Computing?

* CSPs: many users on shared, homogeneous platforms

* Shared resources = Information Leakage?
— Adversary and victim share full access to L3 cache
— Cross Core: L3 Cache is unified cross-core resource

< . . ;_ »' Guest 051 {Guest OSJ &:‘i:gﬁ}
Dropbox Windows Azure —/ |8 |\

= T O

VMM

NETFLIX Hardware
amazon [

webservices™

14

How to track victim’s data?
Shared Memory

With TPS,duplicate pages are stored once

* When Target VM accesses page
— page copied to cache: copy in shared LLC
— Subsequent Spy VM access also faster!
— Spy can detect Target VMs accesses to known pages

15

Flush+Reload Attack: Concept

Steps:
1. Flush desired memory lines
2. Wait for some time

3. Reload memory lines and measure reload time.

Victim Spy -

—Ingtruction i

I
in cache

— |, ctryction in m

in memory

Private L1/L2 CACHE

S Da_

atr

005
Memory

il

Hardware cycles

i
|

16

Cross-VM Flush+Reload Attacks work if

Are Cross-VM Cache Attacks Realistic?

Server has a shared level of cache

Attacker and the victim are physically co-

located

v
v

VMM implements memory deduplication ?

Products

Support Downloads

Consulting Pa

17

http://kb.vmware.com/kb/2080735

First successful Cache-Attack
in Amazon laaS Cloud

* Full RSA key recovery on EC2: amazon
— Using Prime & Probe, since it works webservices

— Co-location via LLC channel

* Major Crypto Libraries
(openSSL/Libgcrypt) are widely patched

* Most users in cloud use outdated libraries @
— Targets of opportunity instead of targeted attac| RAIN

* How to protect non-cryptographic Code?

[1IGI+16] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar: Cache Attacks Enable Bulk 18
Kev Recovery on the Cloud. CHES 2016

Cross Processor Cache Attacks?

* Cross Processor Data Transfer:
Cache Coherence Protocols use direct links
— faster response and less memory B/W

* Faster Accesses—> Data-dependent accesstime!

LOCAL CPUO CPU 1 LOCAL
H
M EM DRAM Link HT Link M EM

DRAM Link
(SLOW) Cache (FAST) Cache (SLOW)

HT Link HT Link E
I (FAST) (FAST) I o]
LOCAL | tsiow) CPU 2 piets CPU 3 "siow | LOCAL |
(sLow) (sLow) |
H
MEM MEM
Cache Cache = o 4 - =

[IES15] G Irazoqui and T Eisenbarth and B Sunar Cross Processor Cache Attacks AsiaCCS 2016

19

Cache Attacks on ARM

* First Attacks: timing attacks (low resolution)

* ARMageddon[LGS+16]: First successful Hi-Res Attack

— Clever cache access strategies to handle replacement policies 2
essential for success

— Finds alternative timers and Evict strategies

— Demonstrates Prime+Probe and
Flush/Evict+Reload attacks

* Key strokes 400

Access time

* TrustZone 200 Tap Tap Tap Swipe Swipe Swipe
* ARM Performance feature
makes Prime&Probe 0 2 4 6 8
slightly harder [GRZ+17] Time in seconds

[LGS+16] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard: ARMageddon: Cache Attacks on Mobile Devices USENIX Security 2016
[GRZ+17] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, T. Eisenbarth AutoLock: Why Cache Attacks on ARM Are Harder Than You
Think. USENIX Security 2017

Cache Attacks on Intel SGX

Intel Software Guard Extensions (SGX)

* Trusted Execution Environment

* Enclave: Hardware protected user-level software module
— Loaded by the user program
— Mapped by the Operating System
— Authenticated and Encrypted by CPU

- Protects against system
level adversary

- “no protection against
access pattern leakages”

rvisor

Hardware

22

New Attacker Model:

Attacker gets full control
over OS

Side Channel Attacks on SGX

OS initiated attacks are powerful: —
* Page Accesses [XCP15, vVBWK+17] |
* Branch Shadowing [LSG+17] g

* Cache Attacks
— Classic [GESM17, BMD+17]
— Enclave to Enclave [SWG+17]

Recovered

[XCP15] Yuanzhong Xu, Weidong Cui, Marcus Peinado. Controlled-channel attacks: Deterministic side channels for untrusted operating systems. IEEE S&P, 2015.
[VBWK+17] J. Van Bulck, N. Weichbrodt, R. Kapitza et al. Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution. Usenix
Security 17.

[LSG+17] Sangho Lee, Ming-Wei Shih, Prasun Gera, et al. Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing. Usenix Security 17.
[GESM17] Gotzfried, J., Eckert, M., Schinzel, S., Miiller, T.: Cache Attacks on Intel SGX. EUROSEC 17

[BMD+17] Ferdinand Brasser,, Urs Miiller, Alexandra Dmitrienko et al. Software Grand Exposure: SGX Cache Attacks Are Practical. WOOT 17

ISWG+171 Schwarz. M.. Weiser. S.. Gruss. D.. Maurice. C.. Mangcard. S: Malware auard extension: Usinag SGX to conceal cache attacks. DIMVA 2017

CacheZoom:
High Resolution Cache Attack on SGX

Full control over OS:

b k Attacker icti Other Other
* Prime+Probe Attac task Task 0 Task 1
Ihl

* |solate Cores: Same-
Core L1C Monitoring

* CPU Frea. fixed

* Interrupted Execution:
Full Cache image every few instructions

Sample Target: AES
» All table-based implementations vulnerable
» Even Cache-warming (table prefetch) ineffective

24
[MIE17] Moghimi, A. , Irazoqui, G., Eisenbarth, CacheZoom: How SGX Amplifies The Power of Cache Attacks CHES 2017

AES Trace

CacheZoom

e sseegyle
uu seetege
: o ¢ ooe3ss
e
. m rT)
. .0
[[] L m -
»
»
.
.
*
.
L]
suge,
[T
ssasone
[T
L7 1 1
.
«
aa
[221]
see we
LA L)
sese

LLLLLLLL L LGP LI L L g (gL UL LI LI UL L

(1)
Ty}
.
[}
[
s 8 gu,
ssssnse
® &

” e w
*8
a8

-
L]
L

(T

L 444
LL L AN]

Mw [}
TEe
oD =5
oo
& o
¥ a
Y
e = 7]
[}
.l
»
Y .
oo
s00
'y
00e* B .,

L 1] O.”..“mmnl

*
L

28m

ey

204

Fi g

283

g

R L R Y R PP T Y S PR R R R A RN LR AR E R AN AN RESER I garpom-un TeNTaN

ELITINREYS

x1at

Measurement

25

Meltdown & Spectre

Cache Speculation Side Channels

Speculative Execution
— Loads data without security checks
— Rolls back state before committing
— Cache state influenced, but never rolled back!

Process executes...

Idea: 1. read privileged info

2. leak via cache access pattern

27

MeltDown:
Exploiting Out-of-Order Execution

Uses out-of-order execution to leak
kernel space memory

* Exceptions prevent access to kernel
space (supervisor bit set on kernel page)

* Exceptions checked before commit
=>» after data is read/spec. processed

Idea: use out-of-order execution to leak
privileged data before exception check
1. Read bit from Kernel Space
2. Access [address + bit<<6]

MeltDown: Reading Privileged Memory

Process 1. Process 2:
Read and leak sensitive data Read and store leakage
1. Read sensitive bit 1. Flush [addr + x]
2. Access [addr + bit] 2. Wait
3. (recover from exception) 3. Reload [addr + X]
4. (write out result)

Kernel Space User Space
010011 010011

mmg 2ddr + 0<<6

Process 1 | Process 2
addr + 1<<6

29

SPECTRE: Speculative Execution Attack

Tricks victim code to leak sensitive data in its memory
space

Victim code contains code gadget that
— Reads sensitive data speculatively
— |leaks data through execution trace

Attacker activates gadget '»,
— Either through poisoned input

— Or by creating new false (speculative)
execution path through training BTB

Attacker reads data from cache trace

30

MeltDown / Spectre: Summary

First time register contents are leaked by
microarchitectural attack

Meltdown mostly fixed
— switch to kernel mode becomes slow

Spectre: not clear, fences help, but can be
avoided? = Exploit base for years to come?

CERT recommends:

The underlying vulnerability is primarily caused by CPU architecture design choice
requires replacing vulnerable CPU hardware.

Preventing
Cache Attacks

Cache Attack Prevention

Write unexploitable Code

* Constant execution time

* Secret-independent execution flow

* Secret-independent memory accesses

Intra Cache Line Leakages

Least 12 address bits (physical = virtual) LSB

* |dea: Cache attackers

get cache line granularity : :
(64 byte on | ntel) Cache line reveals 6 bits MemlJam reveals 10 bits

* Used in some “constant-time” implementations and in
code verification tools

Counterexamples:

* CacheBleed [YGH16]: Exploits L1C Banking
(not in 6th and 7th Gen Intel=> not applicable to SGX)

* MemJam[MES18]: Exploits False Dependency Checks
works in all modern Intel CPUs—2> applicable to SGX

[YGH16] Y. Yarom, D. Genkin, and N. Heninger: CacheBleed: A Timing Attack on OpenSSL Constant Time RSA, CHES 2016 and JCEN 2017
[MES17] Moghimi, A., Eisenbarth, T. and Sunar, B., MemJam: A False Dependency Attack against Constant Time Crypto 34
Implementations in SGX; accepted at CT-RSA 2018 https://arxiv.org/abs/1711.08002

Detecting Vulnerable Code

* Static Analysis
— CacheAudit [DKMR15]
* Dynamic Analysis
— LLVM Level [ABB+16]
— Symbolic Execution [WWP+17]

— PIN Trace [ZHS17]
— Actual execution on machine [IGK+17]

[DKMR15] Doychey, G., K6pf, B., Mauborgne, L. and Reineke, J.: Cacheaudit: A tool for the static analysis of cache side channels. ACM TISSEC,
18(1), 2015

[ABB+16] Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F. and Emmi, M. Verifying Constant-Time Implementations. USENIX Security 2016
[WWP+17] Wang, S., Wang, P,, Liu, X., Zhang, D. and Wu, D., CacheD: Identifying Cache-Based Timing Channels in Production Software. USENIX
Security 2017

[ZHS17] A. Zankl, J.Heyszl, and G. Sigl.: Automated Detection of Instruction Cache Leaks in RSA Software Implementations. In CARDIS 2016
[IGK+17] G. Irazoqui, X. Guo, H. Khattri, A. Kanuparthi, T. Eisenbarth, B. Sunar: Did we learn from LLC Side Channel Attacks? A Cache Leakage
Detection Tool for Crypto Libraries arXiv: https://arxiv.org/abs/1709.01552

Cache Leakage Free Code Verification

* Ensure there are no secret dependent branches/memory
accesses in final code
* Our approach:
1. Detect secret dependent branches/accesses through taint analysis
2. Obtain cache traces of those instructions/variables
3. Check for Mutual Information with sensitive values

Secret

J

% Cachetrace [>
Application Mutual |:>
Process N Information
Instruction |:> @

trace

36

Finding leakages in Cryptographic Code

Analyzed RSA, ECC and AES
of major crypto libraries:

50% of the
implementations leaked

information (2016)

We notified and help fixing
these vulnerabilities

WolIlfSSL

CVE 2016-7438,7439,7440

Intel IPP
CVE 2016-8100

Bouncy Castle

Cryptographic Primitive Library Outcome
OpenSSL (T-table) Leaks
OpenSSL (5-box) No leak
WolfSSL Leaks
IPP (v1)! No leak
AES IPP (v2)' No leak
LibreSSL (5-box) No leak
NSS Leaks
Libgerypt No leak
Bouncy Castle Leaks
MbedTLS Leaks
OpenSSL (Sliding W) Leaks
OpenSSL (Fixed W) No leak
WolfSSL (Montgomery L) Leaks
WolfSSL (Sliding W) Leaks
RSA rr Leaks
LibreSSL No leak
NSS No leak
Libgerypt No leak
Bouncy Castle (Sliding W) Leaks
MbedTLS (Sliding W) Leaks
OpenSSL (WNAF) Leaks
WolfSSL (Montgomery L) Leaks
WolfSSL (Sliding W) Leaks
Irp! No leak
ECC LibreSSL Leaks
NSS No leak
Libgerypt No leak
Bouncy Castle (Fixed W) Leaks
MbedTLS (Fixed W) No leak

CVE 2016-10003323

[IGK+17] G. Irazoqui, X. Guo, H. Khattri, A. Kanuparthi, T. Eisenbarth, B. Sunar: Did we learn from LLC Side Channel Attacks? A Cache

Leakage Detection Tool for Crypto Libraries arXiv: https://arxiv.org/abs/1709.01552

Conclusion

* Cache Attacks are powerful
— Very effective on TEEs such as SGX with OS control

— Stll fully functional in Cloud and standalone
systems

— A great tool to spread speculative results

* Constant time code still best defense
— But no longer sufficient, thanks to SPECTRE

.

. Thank You!

vernam.wpi.edu

its.uni-luebeck.de

	Slide 1
	Outline
	Timing attack on Password
	Timing Attacks
	Slide 5
	Slide 6
	Cache lines and line placement
	Cache Attacks?
	Slide 9
	How to get Crypto keys? Modular Exponentiation for RSA
	How to get crypto keys?
	Target Cipher: AES
	Slide 13
	Cache Attacks on Cloud Computing?
	How to track victim’s data? Shared Memory
	Slide 16
	Are Cross-VM Cache Attacks Realistic?
	First successful Cache-Attack in Amazon IaaS Cloud
	Cross Processor Cache Attacks?
	Cache Attacks on ARM
	Slide 21
	Intel Software Guard Extensions (SGX)
	Side Channel Attacks on SGX
	CacheZoom: High Resolution Cache Attack on SGX
	CacheZoom: AES Trace
	Slide 26
	Cache Speculation Side Channels
	MeltDown: Exploiting Out-of-Order Execution
	MeltDown: Reading Privileged Memory
	SPECTRE: Speculative Execution Attack
	MeltDown / Spectre: Summary
	Slide 32
	Cache Attack Prevention
	Intra Cache Line Leakages
	Detecting Vulnerable Code
	Cache Leakage Free Code Verification
	Finding leakages in Cryptographic Code
	Conclusion
	Slide 39

