Introduction to
Public-Key Cryptography

Nadia Heninger

University of Pennsylvania

June 11, 2018

“We stand today on the brink of a
revolution in cryptography.”
— Diffie and Hellman, 1976

New Directions in Cryptography
Invited Paper
WHITFIELD DIFFIE anp MARTIN E. HELLMAN, MEMEER, IEEE

Symmetric cryptography

AESk(m)

A 4

* Toy protocol for illustration purposes only; not secure.

Public key crypto idea # 1: Key exchange

Solving key distribution without trusted third parties

Key Exchange

AESk(m)

(N
7

k = KDF(kex) k = KDF(kex)

* Toy protocol for illustration purposes only; not secure.

Textbook Diffie-Hellman

[Diffie Hellman 1976]

Public Parameters

G a cyclic group (e.g. I, or an elliptic curve)

g group generator

Key Exchange

a

g

gb

A 4

Finite-Field Diffie-Hellman

Public Parameters
p a prime
q a subgroup order; g | (p — 1)

g a generator of multiplicative group of order g € I},

Key Exchange

g2 mod p

+

gP mod p

™~ e

g mod p 2% mod p

The Discrete Log Problem

Problem: Given g? mod p, compute a.
» Solving this problem permits attacker to compute shared key
by computing a and raising (g?)?.

» Discrete log is in NP and coNP — not NP-complete (unless
P=NP or similar).

» Shor's algorithm solves discrete log with a quantum computer
in polynomial time.

The Computational Diffie-Hellman problem

Problem: Given g2 mod p, g? mod p, compute g2 mod p.

» Exactly problem of computing shared key from public
information.
» Reduces to discrete log in some cases:
» “Diffie-Hellman is as strong as discrete log for certain primes”
[den Boer 1988] “both problems are (probabilistically)
polynomial-time equivalent if the totient of p — 1 has only
small prime factors”
» “Towards the equivalence of breaking the Diffie-Hellman
protocol and computing discrete logarithms” [Maurer 1994] “if
...an elliptic curve with smooth order can be construted
efficiently, then ... [the discrete log] can be reduced efficiently
to breakingthe Diffie-Hellman protocol”

» Computational Diffie-Hellman Assumption: No efficient
algorithm to solve this problem.

Decisional Diffie-Hellman problem

Problem: Given g? mod p, g? mod p, distinguish g?® mod p from
random.

» Decisional Diffie-Hellman Assumption: No efficient algorithm
has better than negligible advantage.

» Required for most security proofs.

Selecting parameters for finite-field Diffie-Hellman

For 128-bit security:

» Choose > 256-bit q.
» Pollard rho/Baby step-giant step algorithm: O(,/q)

Selecting parameters for finite-field Diffie-Hellman

For 128-bit security:
» Choose > 256-bit q.
» Pollard rho/Baby step-giant step algorithm: O(,/q)

» Choose prime group order q.
» (Pohlig-Hellman algorithm: as secure as largest factor of g.)

Selecting parameters for finite-field Diffie-Hellman

For 128-bit security:
» Choose > 256-bit q.
» Pollard rho/Baby step-giant step algorithm: O(,/q)

» Choose prime group order q.
» (Pohlig-Hellman algorithm: as secure as largest factor of g.)

» Choose > 256-bit exponents a, b.
» Pollard lambda algorithm: O(1/a)

Selecting parameters for finite-field Diffie-Hellman

For 128-bit security:
» Choose > 256-bit q.
» Pollard rho/Baby step-giant step algorithm: O(,/q)

» Choose prime group order q.
» (Pohlig-Hellman algorithm: as secure as largest factor of g.)

» Choose > 256-bit exponents a, b.
» Pollard lambda algorithm: O(1/a)

» Choose > 2048-bit prime modulus p.
> Number field sieve algorithm: O(exp(1.92In p*/3(In In p)?/3))

Selecting parameters for finite-field Diffie-Hellman

For 128-bit security:

» Choose > 256-bit q.
» Pollard rho/Baby step-giant step algorithm: O(,/q)

» Choose prime group order q.
» (Pohlig-Hellman algorithm: as secure as largest factor of g.)

» Choose > 256-bit exponents a, b.
» Pollard lambda algorithm: O(1/a)

» Choose > 2048-bit prime modulus p.
> Number field sieve algorithm: O(exp(1.92In p*/3(In In p)?/3))

» Choose nothing-up-my-sleeve p (e.g. digits of 7, e)
> Special number field sieve: O(exp(1.53In p*/3(InIn p)?/3))

Real-world finite field DH implementation choices

>

| 2

>

1024-bit primes remain common in practice.
Many standardized, hard-coded primes.

1024-bit primes baked into SSH, IPsec, but have been
deprecated by some implementations.

NIST recommends working within smaller order subgroup
(e.g. 160 bits for 1024-bit prime)

Many implementations use short exponents (e.g. 256 bits)

DDH often false in practice: many implementations generate
full group mod p.

Support for FF-DH has dropped rapidly in TLS in favor of
ECDH.

My personal recommendation

» Don’t use prime-field Diffie-Hellman at all.
» Too many implementation vulnerabilities.

» ECDH is more secure (classically) as far as we know.

Elliptic-Curve Diffie-Hellman

Public Parameters

£ an elliptic curve

g a group generator

8ga

T’ gb %

Selecting parameters for elliptic-curve Diffie-Hellman

For 128-bit security:

» Choose a 256-bit curve.
» (ECDH keys are shorter because fewer strong attacks.)

> See Craig's talk later today!

Real-world implementation choices for ECDH
» ECDH rapidly becoming more common than FF-DH.

» NIST p256 most common curve.

Post-quantum Diffie-Hellman

» Promising Candidate: Supersingular Isogeny Diffie-Hellman

See Craig's talk on Friday for more!

» Diffie-Hellman from lattices: situation is complex.

See Douglas's talk later today for more!

|dea # 2: Key encapsulation/public-key encryption

Solving key distribution without trusted third parties

c = KEM(kK)

AESk(m)

7

k = DEC(c)

* Toy protocol for illustration purposes only; not secure.

A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman*

Textbook RSA Encryption

[Rivest Shamir Adleman 1977]

Public Key Private Key
N = pg modulus p,q primes
e encryption exponent d decryption exponent

(d=e"'mod (p—1)(g—1))

public key = (N, e)

A

ciphertext = message® mod N

N
4

/

message = ciphertext? mod N

Factoring

Problem: Given N, compute its prime factors.

» Computationally equivalent to computing private key d.

» Factoring is in NP and coNP — not NP-complete (unless
P=NP or similar).

» Shor’s algorithm factors integers on a quantum computer in
polynomial time.

eth roots mod N

Problem: Given N, e, and ¢, compute x such that x¢ = ¢ mod N.
» Equivalent to decrypting an RSA-encrypted ciphertext.

> Not known whether it reduces to factoring:

> “Breaking RSA may not be equivalent to factoring” [Boneh
Venkatesan 1998]
“an algebraic reduction from factoring to breaking
low-exponent RSA can be converted into an efficient factoring
algorithm”

> “Breaking RSA generically is equivalent to factoring”
[Aggarwal Maurer 2009]
“a generic ring algorithm for breaking RSA in Zy can be
converted into an algorithm for factoring”

» “RSA assumption”: This problem is hard.

A garden of attacks on textbook RSA

Unpadded RSA encryption is homomorphic under multiplication.
Let's have some fun!

Attack: Malleability

Given a ciphertext ¢ = Enc(m) = m® mod N, attacker can forge
ciphertext Enc(ma) = ca® mod N for any a.

Attack: Chosen ciphertext attack

Given a ciphertext ¢ = Enc(m) for unknown m, attacker asks for
Dec(ca® mod N) = d and computes m = da—! mod N.

So in practice always use padding on messages.

RSA PKCS #1 v1.5 padding

m = 00 02 [random padding string] 00 [data]

» Encrypter pads message, then encrypts padded message using
RSA public key.

» Decrypter decrypts using RSA private key, strips off padding
to recover original data.

Q: What happens if a decrypter decrypts a message and the
padding isn't in correct format?

A: Throw an error?

RSA PKCS #1 v1.5 padding

m = 00 02 [random padding string] 00 [datal]
» Encrypter pads message, then encrypts padded message using
RSA public key.
» Decrypter decrypts using RSA private key, strips off padding

to recover original data.

Q: What happens if a decrypter decrypts a message and the
padding isn't in correct format?

A: Fhrew-an-errer?— Bleichenbacher padding oracle attack.

OAEP and variants are CCA-secure padding, but nobody uses
them.

Selecting parameters for RSA encryption

» Choose > 2048-bit modulus N.
> Number field sieve factoring: O(exp(1.92In p*/3(InIn p)?/3))

» Choose e > 65537.
» Avoids Coppersmith-type small exponent attacks.

» If you can, use Shoup RSA-KEM or similar.
» Send r® mod N, derive k = KDF(r).

My personal recommendation:
» Just don’t use RSA.
» (ECDH is probably better for key agreement.)

Real-world implementation choices for RSA

> Most of the internet has moved to at least 2048-bit keys.

» Nearly everyone uses e = 65537. Almost nobody uses e > 32
bits.

» RSA key exchange supported by default for TLS.
» PKCS#1vl.5 is universally used.

» Padding oracle protection: if padding error, generate random
secret and continue handshake with random secret.

» Many implementations use “safe” primes (p — 1 = 2q) or
have special form (p — 1 = hq) for prime q.

Other PKE/KEM systems

» ElGamal: Public-key encryption from discrete log.
» Weirdly only used by PGP.

» Post-Quantum KEMs:
> Ring-LWE, etc.
» See Douglas's talk later today.

|dea #3: Digital Signatures

Solving the authentication problem.

a

g

W

gb

AN

s = Sign(g?, g°)

AN

AESk(m)

0 2

k = KDF(g?") k = KDF(g*")
Verify(s)

* Toy protocol for illustration purposes only; not secure.

Textbook RSA Signatures

[Rivest Shamir Adleman 1977]

Public Key Private Key
N = pg modulus p,q primes
e encryption exponent d decryption exponent

(d = e mod (p— 1)(q - 1))

public key = (N, e)

W

signature = message mod N

N
?

/

message = signature® mod N‘

eth roots mod N

Problem: Given N, e, and ¢, compute x such that x* = ¢ mod N.

» Equivalent to selective forgery of RSA signatures.

Attacking textbook RSA signatures

Attack: Signature forgery

1. Attacker wants Sign(x).

2. Attacker computes z = xy€ mod N for some y.

3. Attacker asks signer for s = Sign(z) = z¢ mod N.
4. Attacker computes Sign(x) = sy~! mod N.

Countermeasures:
> Always use padding with RSA.
» Hash-and-sign paradigm.

Positive viewpoint:

» Signature blinding.

RSA PKCS #1 v1.5 signature padding

m = 00 01 [FF FF FF ... FF FF] 00 [data H(m)]

» Signer hashes and pads message, then signs padded message
using RSA private key.

> Verifier verifies using RSA public key, strips off padding to
recover hash of message.

Q: What happens if a decrypter doesn’t correctly check padding
length?

RSA PKCS #1 v1.5 signature padding

m = 00 01 [FF FF FF ... FF FF] 00 [data H(m)]

» Signer hashes and pads message, then signs padded message
using RSA private key.

> Verifier verifies using RSA public key, strips off padding to
recover hash of message.

Q: What happens if a decrypter doesn’t correctly check padding
length?

A: Bleichenbacher low exponent signature forgery attack.

Setting parameters for RSA signatures

» Same guidance as RSA encryption.

> Use ECDSA instead.

Real-world implementation choices for RSA signatures

» RSA remains default signature scheme for most protocols.

» Some highly important keys remain 1024-bit. (DNSSEC root
was 1024 bits until 2016, long-lived TLS certs, etc.)

» Nearly everyone uses exponent e = 65537.

» PKCS#1v.1.5 padding used everywhere.

v

Same RSA keys used for encryption and signatures in TLS.

FIPS PUB 186-3

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Digital Signature Standard (DSS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

DSA (Digital Signature Algorithm)

Public Key

p prime

g prime, divides (p — 1)

g generator of subgroup of
order g mod p

y =g*modp

Verify
up = H(m)s™! mod q
U =rs 1 mod g
r g"y"2 mod p mod ¢

Private Key

X private key

Sign
Generate random k.
r = g* mod p mod g
s = k=Y (H(m) + xr) mod g

DSA Security Assumptions

Discrete Log

» Breaking DSA is equivalent to computing discrete logs in the
random oracle model. [Pointcheval, Vaudenay 96]

A garden of attacks on DSA nonces

Public Key Private Key
p,q,g domain parameters X private key
y =g modp

Signature: (r,s;)
r=g* mod p mod g
s1 =k Y(H(m1) + xr) mod q

» DSA nonce known — easily compute private key.

A garden of attacks on DSA nonces

Public Key Private Key
p,q,g domain parameters X private key
y =g modp
Signature: (r,s;) Signature: (r,s,)
r=g“mod p mod q r = g“ mod p mod g
s1 =k Y(H(m1) + xr) mod q sp =k 1(H(m5) + xr) mod q

» DSA nonce known — easily compute private key.
s1 — s =k Y(H(my) — H(m)) mod ¢

» DSA nonce reused — easily compute nonce.

A garden of attacks on DSA nonces

Public Key Private Key
p,q,g domain parameters X private key
y =g modp
Signature: (r,s;) Signature: (r,s,)
r =g* mod p mod g r=g" mod p mod g
s1 =k Y(H(m1) + xr) mod q sp =k 1(H(m5) + xr) mod q

» DSA nonce known — easily compute private key.
» DSA nonce reused — easily compute nonce.

» Biased DSA nonces — compute nonces. (Hidden number
problem and variants.)

Setting parameters for (EC)DSA

» Same security considerations as Diffie-Hellman.

» Prefer ECDSA over DSA for classical adversaries.

P> Generate k deterministically.
> RFC 6979: k = HMAC,(m)

Real-world implementation choices for (EC)DSA.

» FF-DSA widely supported in SSH, but not other protocols
(TLS or IPsec).

» ECDSA is rapidly becoming more common.
» NIST p256 most common curve.

» Nonce generation remains a common source of
implementation vulnerabilities.

Post-quantum signatures

Many candidates:
» Hash-based signatures.
P Lattice-based signatures.
> ...

Future cryptographic best practices TBD.

See Douglas's talk later today.

TLS cipher suite statistics from the ICSI notary

SSL Ciphersuites [last 30 days]

" ECDHE_RSA_AES_128_GCM_SHA256

I ECDHE_RSA_AES_256_GCM_SHA384

" ECDHE_ECDSA_AES_128_GCM_SHA256

[other

I ECDHE_RSA_AES_256_CBC_SHA384

I ECDHE_ECDSA_AES_256_GCM_SHA384
unknown-4865

I RSA_AES_256_CBC_SHA

Il RSA_AES_128_GCM_SHA256
ECDHE_RSA_AES_256_CBC_SHA

[0 RSA_AES_128_CBC_SHA

I ECDHE_RSA_AES_128_CBC_SHA256

"] RSA_AES_256_GCM_SHA384

"7 ECDHE_RSA_AES_128_CBC_SHA

Summary of Public Key Algorithms in Practice

Old and Current Future

busted practice hotness

Key exchange FF-DH ECDH SIDH
Key encapsulation RSA Ring-LWE
Signatures RSA ECDSA Hashes? Lattices?

