Introduction to Symmetric Cryptography

María Naya-Plasencia Inria, France

Summer School on real-world crypto and privacy Šibenik, Croatia - June 11 2018

Outline

- Introduction
- One Time pad Stream Ciphers
- Block Ciphers Operation Modes
- Hash function
- Symmetric Cryptanalysis: Foundation of Trust
- Differential (and Linear) Cryptanalysis
- New Directions

Symmetric Cryptography

Cryptography

 Cryptography: hiding/protecting information against malicious adversaries.

Main aims:

Confidentiality \Rightarrow usually with the help of a key Authentication Integrity

. . .

Cryptography - Encryption

Symmetric encryption and Asymmetric encryption

Symmetric Cryptography

Asymmetric Cryptography

Without needing a previous meeting:

Asymmetric vs Symmetric Cryptography

Asymmetric:

- Advantage: No need of key exchange.
- Disadvantage: Computationally costly.

Symmetric:

- Disadvantage: Need of key exchange.
- Advantage: Performant, adapted to constrained environments.

⇒ Use asymmetric for key exchange, and next use symmetric!!.

Security of Encryption Algorithms

Asymmetric (e.g. RSA) (no key exchange/computationally costly)

Security based on well-known hard mathematical problems (e.g. factorization).

Symmetric (e.g. AES) (key exchange needed/efficient)

Ideal security defined by generic attacks.

Need of continuous security evaluation (cryptanalysis).

Generic Attacks on Ciphers

Security provided by an ideal cipher defined by the best generic attack: exhaustive search for the key in $2^{|K|}$.

- Recovering the key from a secure cipher must be infeasible:
 - \Rightarrow typical key sizes |K| = 128 to 256 bits.

Cryptanalysis

In general:

A primitive is considered secure as long as no attack better than generic attacks on it is found.

Cryptanalysis: looking for these other attacks.

(we will see more about this later)

One Time Pad & Stream Ciphers

One Time Pad

lackbox One Time Pad: provides perfect secrecy. With a completly random key K

 \Rightarrow all C are equally likely, but needs a secret key as long as the message!!

OTP with shorter keys?

Solution:

From a shorter secret seed k, generate a "long" sequence (keystream) indistinguishable from random if we don't have the seed k

Stream Ciphers

In practice: the keystream is obtained from pseudo-random generators.

Additive stream cipher:

Stream Ciphers

Initialisation, transition, extraction:

Keystream

Ex: Combination generators

where each x_i has period T_i .

eSTREAM project

After Nessie's failure:

- Launched by European network ECRYPT 2005-08
- Conception of new dedicated stream ciphers
- 37 submitted algorithms
- ▶ 8 in final portfolio, only 6 unbroken now...

Seems difficult - how could it be easier? ⇒ Block ciphers

Ex. Trivium (eSTREAM portfolio)

80 bit key and IV, 288 bit state [DC-P'06].

Block Ciphers

Block ciphers

Message decomposed into blocks, each transformed by the same function E_K .

 E_K is composed of a round transform repeated through several similar rounds.

Block ciphers - Two main families

Feistel constructions:

- SPN constructions: transform the whole state:
 - Substitution layer (S-boxes, non-linear)
 - Permutation layer typically \oplus and/or rotations.
 - Subkey addition.

Block ciphers

Key schedule: generates subkeys for each round from the secret key.

A block cipher is a family of permutations parametrized by the key.

What to do when:

- Longer messages than a block?
- Several messages?
- ⇒ Operation modes

Operation Modes: ECB

Problem: equal Ptxts generate equal Ctxts

Operation Modes: CBC [EMST'76]

Proven secure if the block cipher is secure and if the key is changed after $\ll 2^{n/2}$ encryptions.

Interlude: birthday paradox

Birthday Paradox

In a room with 23 people, there is a 50% chance of having two colliding dates of birthday".

Intuitive explanation:

23 people
$$\Rightarrow \frac{23 \times 22}{2}$$
 pairs.

With $2^{n/2}$ elements we can build about 2^n pairs (so we have a good chance of finding a collision).

Back to modes

CBC: Careful with Recommendations

Sweet-32 attack [BL'16], based on finding a collision in the internal state:

For ciphers of 64 bits, we can find a collision in about 2^{32} encrypted blocks, and recover the plaintext.

Possible because the security recommendations were not respected.

Operation Modes: CTR[DH' 79]

Proven secure if the block cipher is secure and if the key is changed after $\ll 2^{n/2}$ encryptions (missing difference attack otherwise [LS18]).

AES

AES Competition and Winner

Launched by NIST to find a succesor of DES 97-00. 15 submissions, 1 winner: Rijndael [Daemen-Rijmen 97]

AES:

- SPN cipher.
- ightharpoonup 10/12/14 rounds for 128/192/256-bit keys.
- Block of 128 bits.

AES Round Function

Authenticated Encryption

AE

In order to provide confidentiality and authenticity:

Authenticated encryption:

Caesar competition finished this year.

See next talk by Thomas Shrimpton

Hash Functions

Cryptographic Hash Functions

$$\mathcal{H}: \{0,1\}^* \to \{0,1\}^{\ell_h}$$

- Given a message of arbitrary length returns a short 'random-looking' value of fixed length.
- Many applications: MAC's (authentification), digital signatures, integrity check of executables, pseudorandom generation...

Cryptographic Hash Functions

"Here we introduce any message that we want to hash. We will then obtain a fingerprint of the message, a random looking value that will identify it. In this case, 256 bits."

H is easy to compute

"A4F567BCA61234FA 987DF45F6C7A3B22 BA5BCD6784857DBF 46F5D4A8CD327345"

Hash Functions applications

Autentication:

Hash Functions applications

Digital signature:

Hash Functions applications

Verifying the integrity:

Security requirements of hash functions

- Collision resistance
 - Finding two messages \mathcal{M} and \mathcal{M}' so that $\mathcal{H}(\mathcal{M})=\mathcal{H}(\mathcal{M}')$ must be "hard".
- Second preimage resistance Given a message \mathcal{M} and $\mathcal{H}(\mathcal{M})$, finding another
 - message \mathcal{M}' so that $\mathcal{H}(\mathcal{M}) = \mathcal{H}(\mathcal{M}')$ must be "hard".
- Preimage resistance
 - Given a hash \mathcal{H} , finding a message \mathcal{M} so that $\mathcal{H}(\mathcal{M})=\mathcal{H}$ must be "hard".

Security requirements of hash functions?

A strict definition of "hard":

- Collision resistance
 - Generic attack needs $2^{\ell_h/2}$ hash function calls \Rightarrow any attack requires at least as many hash function calls as the generic attack.
- Second preimage resistance and preimage resistance
 - Generic attack needs 2^{ℓ_h} hash function calls \Rightarrow any attack requires at least as many hash function calls as the generic attack.

Why Preimage Resistance? Example

Why Collision Resistance? Example

Why 2nd Preimage Resistance? Example

Iterative Hashing

► Difficulty to create algorithms with an arbitrary length input: concept of iterative hashing.

- ► The message is split into blocks. Typically, an iterative hash function can be defined by:
 - a compression function, that takes a chaining value and a message block and generates a new chaining value. an construction, that defines how to iterate the applications of the compression function.

Padding the message

- Cut the message in blocks of fixed length.
- ► If the length of the message is not a multiple of the size of the block?
 - we can not just complete it with zeroes:
 - 00010 and 0001000 can produce a collision.

Ex. of sound padding: Add '1' in the end, next add '0's until completing the block.

Strengthened padding: includes the message length.

Construction: Merkle-Damgård [MD'79]

- ightharpoonup Apply iteratively a compression function f
- ightharpoonup Collision-resistance proof: if f is collision resistant, then the hash function is collision resistant.

Construction: Sponge [Bertoni et al. 08]

- \blacktriangleright Based on a permutation P.
- Sponge proof of indifferentiability: if P is a random permutation, then the hash function is indifferentiable from a random oracle.

SHA-3 Competition

A NIST competition for looking for a hash standard replacement of SHA-1.

From 2008 to 2012.

▶ 64 initial submissions

▶ 1 winner: KECCAK

Keccak [Bertoni et al. 08]

- |State| = 1600 bits
- |M| = 1024 bits (256) or 512 bits(512).

Keccak: Internal Permutation

24 rounds of θ , ρ , π , χ , ι :

Images from http://keccak.noekeon.org/Keccak-reference-3.0.pdf

Cryptanalysis

Cryptanalysis: Foundation of Confidence

Any attack better than the generic one is considered a "break".

- Proofs on symmetric primitives need to make unrealistic assumptions.
- We are often left with an empirical measure of the security: cryptanalysis.

Cryptanalysis

Studies the security of cryptographic primitives.

AKA: Trying to break the primitives, to find attacks:

Empirical measure of security.

Cryptanalysis and Confidence

Security by knowledge and not by obscurity \rightarrow only good way to go.

Primitives are known to the general public \Rightarrow their best existing cryptanalysis should also be known,

implying a great need for public cryptanalysis (the nice guys).

Current scenario

- Competitions (AES, SHA-3, eSTREAM, CAESAR).
- New needs: lightweight, FHE-friendly, easy-masking.
 - ⇒ Many good proposals/candidates.

► How to choose?

How to be ahead of possible weaknesses?

How to keep on trusting the chosen ones?

Cryptanalysis: Foundation of Confidence

When can we consider a primitive as secure?

- A primitive is secure as far as no attack on it is known.
- The more we analyze a primitive without finding any weaknesses, the more reliable it is.

Design new attacks + improvement of existing ones:

- essential to keep on trusting the primitives,
- or to stop using the insecure ones!

What can an attacker do?

We can consider the attacker to have access to:

- Known Ciphertexts (KPA)
- Known Plaintexts (KCA)
- Chosen Plaintexts (CPA)
- Chosen Ciphertexts (CCA)
- Adaptative-Chosen Plaintexts...(ACPA)

In general: we expect the primitives to resist attacks in the strongest possible non trivial setting.

On weakened versions

If no attack is found on a given cipher, what can we say about its robustness, security margin?

The security of a cipher is not a 1-bit information:

- Round-reduced attacks.
- Analysis of components.
- \Rightarrow determine and adapt the security margin.

Ex.: Advanced Encryption Standart

Winner: AES-128, 10 rounds.

- ▶ 1998: best internal attack: 6 rounds.
- 2001: new attack on 7 rounds.
- 2001 to 2018: more than 30 new attacks, improving complexity.
- ▶ 2018: best known attack is still on 7 rounds. Best complexity: 2^{97} data, 2^{99} time and 2^{98} memory [DFJ12].

"The hard problem here is to break AES" (Anne Canteaut)

On high complexities

When considering large keys, sometimes attacks breaking the ciphers might have a very high complexity far from practical $e.g..\ 2^{120}$ for a key of 128 bits.

Still dangerous because:

- Weak properties not expected by the designers.
- Experience shows us that attacks only get better.
- Other existing ciphers without the "ugly" properties.

On very high complexities

Attack complexity reduced by one or two bits regarding generic attack:

When determining the security margin: find the highest number of rounds reached.

Security redefinition when a new generic attack is found (e.g. accelerated key search with bicliques [BKR 12]).

On weaker scenarios

Key recovery, state recovery, plaintext recovery vs ...

Distinguishers are dangerous: *e.g.* to decide between only two possible plaintexts.

Related-keys might be dangerous, depending on the use of the cipher (if used in hash functions, these properties should be known).

On weaker scenarios

Collision, preimage, second-preimage vs ...

Distinguishers, compression function collisions, semi-free start collisions... (might invalidate proof assumptions).

In general, most of the cases might be seen as non-expected "ugly" properties. Better to consider other existing ciphers without the "ugly" properties.

Cryptanalysis Warnings

Recommendations should be respected. For example:

- ▶ Flame [2012]: collisions on MD5[WFL2004].
- ► Attaque sur TLS[ABP..13]: Bias of RC4[FMS01].
- ► Sloth[BL16]: collisions on MD5[WLF2004].

Problems that were predicted !!

Differential Cryptanalysis

Differential Cryptanalysis [BS'90]

Given an input difference between two plaintexts, some output differences occur more often than others.

Differential: input and output difference $(\Delta X, \Delta Y)$. Differential probability:

$$P_{X,K}[E_K(X) \oplus E_K(X+\Delta X)=\Delta Y]$$
 (vs 2^{-n}).

Chosen Plaintext Attacks. Provides a distinguisher.

Differential paths

- ▶ Differential path = configuration of differences in the internal state through rounds.
- Each differential path has a probability of being verified.
- ► Easier to compute a priori: hypothesis of stochastic equivalence: consider the rounds independent: compute the differential probability of a path by multiplying the probability of each round.
- The S-box DDT provides, for all α and β : $DDT[\alpha,\beta] = \#\{x|S(x+\alpha)+S(x)=\beta\}$
- ▶ DP of linear layer is 1.

Differential path: example

Differential Cryptanalysis [BS'90]

Probability of differential: sum of all the differential paths. Hard to determine. Try to approximate by the highest probability ones...

Many hypothesis: actually, rounds are not independent, for some keys it (not always) behaves like a random key...

⇒ Importance of implementing attacks (or reduced-round attacks) in order to verify theoretical assumptions.

Last round attacks: key recovery

R-round differential $(\Delta X, \Delta Y)$ of high probability ψ

attack R+n rounds of the cipher.

- 1. Find many pairs with input difference ΔX .
- 2. Encrypt each of them for R + n rounds of the cipher.

If the **partial decryption** of the last n rounds leads to a difference ΔY frequently enough, then the key bits involved are the correct ones with **high probability**.

Differential Cryptanalysis

Many improvements, related techniques:

- Truncated differentials
- Neutral bits
- Conditional differentials
- Impossible differentials
- Rebound attacks...

Linear Cryptanalysis

Linear cryptanalysis [MY'92]

- ► The dual of differential cryptanalysis:
- Exploit the existence of (highly) biased affine relations between some plaintext and ciphertext bits.

This bias can be used to mount a distinguisher or even to recover some keybits.

Linear cryptanalysis [MY'92]

This expression

$$\bigoplus_{i \in S_p} P_i \oplus \bigoplus_{j \in S_K} K_j = \bigoplus_{k \in S_C} C_k$$

is verified with high bias $2^{-\varepsilon}$:

$$Pb = \frac{1}{2}(1 \pm 2^{-\varepsilon}),$$

with about $2^{2\varepsilon}$ data we can detect the bias. Known plaintext attacks.

Improvements Linear cryptanalysis

Big number of (very) technical improvements.

► Many variants: last-round, multiple, multidimensional, zero correlation,...

We are always looking at how to improve the complexities, how to reach more rounds...

Important/Future Directions

Important/Future Directions

Permutation-based primitives (sponge family)

► Lightweight primitives ⇒ new NIST competition

► New needs: FHE, masking...

Post-quantum security?

Conclusion

Conclusion

Many new needs/ scenarios

Cyptanalysis: new techniques, improvements, families.
 A never ending task.

- Better safe than sorry!
- ► To be continued on Friday with Lightweight Primitives and Cryptanalysis.