
D
eg

ioa
nni

 &
 G

ra
sso

Pra
ctica

l C
loud

 N
a

tive Security w
ith Fa

lco
Pra

ctica
l C

loud
 N

a
tive Security w

ith Fa
lco

Practical Cloud
Native Security
 with Falco
Risk and Threat Detection for Containers,
Kubernetes, and Cloud

Loris Degioanni
& Leonardo Grasso

WEB OP S

“Kubernetes and cloud
native are evolving
how software is written
and run. Security is no
exception, and must be
approached in a way
that follows modern
paradigms and best
practices. This book
will teach you how to
do that in a practical,
hands-on way.”

—Joe Beda
cofounder of Kubernetes and coauthor

of Kubernetes: Up and Running

“Do you run cloud native
applications? Care
about security? (You
should!) This book
gives you a mix of
architectural knowledge
and practical skills and
is a great read for both
novice and expert.”

—Arun Gupta
Vice President and General Manager,

Open Ecosystem, Intel

Practical Cloud Native Security with Falco

US $59.99	 CAN $74.99
ISBN: 978-1-098-11857-0

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

As more and more organizations migrate their applications to
the cloud, cloud native computing has become the dominant
way to approach software development and execution.
Protecting modern, cloud native applications from threats
requires the ability to defend them at runtime, when they’re
most vulnerable to attacks.

This practical guide introduces you to Falco, the open source
standard for continuous risk and threat detection across
Kubernetes, containers, and the cloud. Falco creator Loris
Degioanni and core maintainer Leonardo Grasso bring you up
to speed on threat detection and show you how to get Falco
up and running, plus advanced topics such as deploying Falco
in production and writing your own security rules.

You’ll learn how to:
•	 Leverage runtime security in cloud native environments
•	 Detect configuration changes and unexpected behavior in

the cloud
•	 Protect containers, Kubernetes, and cloud applications

using Falco
•	 Run, deploy, and customize Falco
•	 Deploy, configure, and maintain Falco in a production

environment
•	 Improve your compliance

Loris Degioanni is the CTO and founder of Sysdig. He’s also the
creator of sysdig, the popular open source troubleshooting tool,
and the CNCF runtime security tool Falco. Loris was an original
contributor to Wireshark, the open source network analyzer.

Leonardo Grasso is an open source software engineer at Sysdig and
a core maintainer of The Falco Project, with a passion for software
design and long professional experience in R&D.

D
eg

ioa
nni

 &
 G

ra
sso

Pra
ctica

l C
loud

 N
a

tive Security w
ith Fa

lco
Pra

ctica
l C

loud
 N

a
tive Security w

ith Fa
lco

Loris Degioanni and Leonardo Grasso

Practical Cloud Native Security
with Falco

Risk and Threat Detection for Containers,
Kubernetes, and Cloud

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11857-0

[LSI]

Practical Cloud Native Security with Falco
by Loris Degioanni and Leonardo Grasso

Copyright © 2022 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Sarah Grey
Production Editor: Gregory Hyman
Copyeditor: Rachel Head
Proofreader: Kim Wimpsett

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

August 2022: First Edition

Revision History for the First Edition
2022-08-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098118570 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Cloud Native Security with
Falco, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Sysdig. See our statement of editorial independ‐
ence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098118570
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. xi

Part I. The Basics

1. Introducing Falco. 3
Falco in a Nutshell 3

Sensors 4
Data Sources 4
Rules 5
Data Enrichment 6
Output Channels 6
Containers and More 7

Falco’s Design Principles 7
Specialized for Runtime 7
Suitable for Production 7
Intent-Free Instrumentation 8
Optimized to Run at the Edge 8
Avoids Moving and Storing a Ton of Data 8
Scalable 8
Truthful 9
Robust Defaults, Richly Extensible 9
Simple 9

What You Can Do with Falco 10
What You Cannot Do with Falco 10
Background and History 10

Network Packets: BPF, libpcap, tcpdump, and Wireshark 11
Snort and Packet-Based Runtime Security 11

iii

The Network Packets Crisis 12
System Calls as a Data Source: sysdig 12
Falco 13

2. Getting Started with Falco on Your Local Machine. 15
Running Falco on Your Local Machine 15

Downloading and Installing the Binary Package 16
Installing the Driver 16
Starting Falco 17

Generating Events 18
Interpreting Falco’s Output 21
Customizing Your Falco Instance 23

Rules Files 23
Output Channels 23

Conclusion 25

Part II. The Architecture of Falco

3. Understanding Falco’s Architecture. 29
Falco and the Falco Libraries: A Data-Flow View 31
Drivers 32
Plugins 33
libscap 34

Managing Data Sources 34
Supporting Trace Files 34
Collecting System State 36

libsinsp 37
State Engine 37
Event Parsing 38
Filtering 38
Output Formatting 39
One More Thing About libsinsp 39

Rule Engine 39
Conclusion 40

4. Data Sources. 41
System Calls 41

Examples 43
Observing System Calls 43

Capturing System Calls 47
Accuracy 49

iv | Table of Contents

Performance 49
Scalability 49
So What About Stability and Security? 50
Kernel-Level Instrumentation Approaches 50

The Falco Drivers 53
Which Driver Should You Use? 55
Capturing System Calls Within Containers 55

Running the Falco Drivers 56
Kernel Module 56
eBPF Probe 57
Using Falco in Environments Where Kernel Access Is Not Available: pdig 57
Running Falco with pdig 58

Falco Plugins 58
Plugin Architecture Concepts 59
How Falco Uses Plugins 60

Conclusion 61

5. Data Enrichment. 63
Understanding Data Enrichment for Syscalls 63

Operating System Metadata 65
Container Metadata 67
Kubernetes Metadata 69

Data Enrichment with Plugins 73
Conclusion 73

6. Fields and Filters. 75
What Is a Filter? 75
Filtering Syntax Reference 76

Relational Operators 77
Logical Operators 78
Strings and Quoting 78

Fields 78
Argument Fields Versus Enrichment Fields 78
Mandatory Fields Versus Optional Fields 80
Field Types 80

Using Fields and Filters 82
Fields and Filters in Falco 82
Fields and Filters in sysdig 83

Falco’s Most Useful Fields 84
General 85
Processes 85
File Descriptors 86

Table of Contents | v

Users and Groups 87
Containers 87
Kubernetes 88
CloudTrail 88
Kubernetes Audit Logs 89

Conclusion 90

7. Falco Rules. 91
Introducing Falco Rules Files 91
Anatomy of a Falco Rules File 93

Rules 93
Macros 95
Lists 96
Rule Tagging 96
Declaring the Expected Engine Version 98

Replacing, Appending to, and Disabling Rules 98
Replacing Macros, Lists, and Rules 99
Appending to Macros, Lists, and Rules 100
Disabling Rules 100

Conclusion 101

8. The Output Framework. 103
Falco’s Output Architecture 103
Output Formatting 105
Output Channels 106

Standard Output 108
Syslog Output 108
File Output 108
Program Output 109
HTTP Output 109
gRPC Output 110
Other Logging Options 112

Conclusion 113

Part III. Running Falco in Production

9. Installing Falco. 117
Choosing Your Setup 117
Installing Directly on the Host 118

Using a Package Manager 119
Without Using a Package Manager 122

vi | Table of Contents

Managing the Driver 122
Running Falco in a Container 123

Syscall Instrumentation Scenario 124
Plugin Scenario 127

Deploying to a Kubernetes Cluster 127
Using Helm 128
Using Manifests 129

Conclusion 130

10. Configuring and Running Falco. 131
Configuring Falco 131
Differences Among Installation Methods 132

Host Installation 132
Containers 132
Kubernetes Deployments 133

Command-Line Options and Environment Variables 133
Configuration Settings 134
Instrumentation Settings (Syscalls Only) 134
Data Enrichment Settings (Syscalls Only) 136
Ruleset Settings 137
Output Settings 137
Other Settings for Debugging and Troubleshooting 138

Configuration File 139
Ruleset 140

Loading Rules Files 140
Tuning the Ruleset 141

Using Plugins 142
Changing the Configuration 143
Conclusion 144

11. Using Falco for Cloud Security. 145
Why Falco for AWS Security? 145
Falco’s Architecture and AWS Security 146

Detection Examples 147
Configuring and Running Falco for CloudTrail Security 148

Receiving Log Files Through an SQS Queue 148
Reading Events from an S3 Bucket or the Local Filesystem 152

Extending Falco’s AWS Ruleset 153
What About Other Clouds? 154
Conclusion 154

Table of Contents | vii

12. Consuming Falco Events. 155
Working with Falco Outputs 155

falco-exporter 156
Falcosidekick 157

Observability and Analysis 160
Getting Notified 161
Responding to Threats 161
Conclusion 163

Part IV. Extending Falco

13. Writing Falco Rules. 167
Customizing the Default Falco Rules 167
Writing New Falco Rules 168

Our Rule Development Method 168
Things to Keep in Mind When Writing Rules 174

Priorities 174
Noise 175
Performance 176
Tagging 178

Conclusion 178

14. Falco Development. 179
Working with the Codebase 180

The falcosecurity/falco Repository 180
The falcosecurity/libs Repository 181
Building Falco from Source 181

Extending Falco Using the gRPC API 182
Extending Falco with Plugins 184

Preparing a Plugin in Go 185
Plugin State and Initialization 185
Adding Event Sourcing Capability 187
Adding Field Extraction Capability 189
Finalizing the Plugin 190
Building a Plugin Written in Go 191
Using Plugins While Developing 191

Conclusion 192

15. How to Contribute. 193
What Does It Mean to Contribute to Falco? 193
Where Should I Start? 194

viii | Table of Contents

Contributing to Falcosecurity Projects 194
Issues 194
Pull Requests 195

Conclusion 197

Index. 199

Table of Contents | ix

Preface

The advent of modern computing stacks is radically changing how we think about
security. In the old data center days, security practitioners thought of software appli‐
cations as medieval castles: securing them involved building big walls with small,
well-guarded openings. Modern cloud-based software looks more like a bustling
modern city: people move freely inside it and across its limits to consume and
provide services and buy, sell, build, and fix things.

As today’s urban planners know, big walls and guarded entrances alone are not
enough to secure a city. A better approach involves widespread, granular visibility: a
network of security cameras, for example, plus the ability to view their footage and
react to any threats they capture in real time.

This book is about security for modern applications, using the open source tool that
the industry has embraced as the “security camera” for the cloud native stack: Falco.
Falco is a cloud native runtime security project designed to protect software that runs
in the cloud by detecting unexpected behavior, intrusions, and data theft in real time.
It’s the de facto threat detection engine for Kubernetes and for cloud infrastructure,
deployed by countless users, from single-machine test environments to some of the
biggest computing environments on the planet. We’ll teach you how you can protect
applications as they run by detecting threats and misconfigurations in workloads and
in the cloud infrastructure where they operate.

We have a very practical goal in this book: giving you the knowledge you need to
successfully deploy runtime security in your environment, regardless of its scale,
using Falco. By the time you’ve finished reading the book, you will have a solid
understanding of how Falco works: you’ll be able to install it in any environment,
tune its performance, customize it for your needs, collect and interpret its data, and
even extend it.

xi

Who Is This Book For?
We wrote this book primarily for security operators and architects who want to
implement runtime security and threat detection in production in their modern
computing environments. However, we’ve designed it to be approachable even for
readers with limited or no experience in the field. For that reason, we only require
that you have familiarity with the most important cloud computing services, with
containers, and with Kubernetes.

We’ll also cover more advanced topics like deployment at scale, optimization, and
rule writing that even expert users will find useful. So, even if you are familiar with
runtime security, and perhaps are already using Falco, this book will help you step
up your game. The latter part of the book requires basic knowledge of programming
languages like Go. Developers who want to extend or customize Falco will find much
value here. Finally, we’ve geared the last chapter of the book toward those who are
considering becoming Falco contributors—we hope we’ll inspire you to join them!

Overview
The book is divided into four parts, organized in order of increasing complexity, with
each successive part building on the previous one. To help you get oriented, let’s take
a look at the content of each part.

Part I: The Basics
Part I is about what Falco is and does. Here, we will teach you the fundamental
concepts behind Falco and guide you through your first local deployment:

• Chapter 1, “Introducing Falco”, gives an overview of what Falco is, including a•
high-level view of its functionality and an introductory description of each of its
components. The chapter includes a brief history of Falco and a look at the tools
that inspired it.

• Chapter 2, “Getting Started with Falco on Your Local Machine”, guides you•
through the process of installing a single Falco instance on your local Linux box.
The chapter includes instructions on how to run Falco and generate your first
notification output.

Part II: The Architecture of Falco
Part II will teach you about the intricacies of Falco’s architecture and inner workings:

• Chapter 3, “Understanding Falco’s Architecture”, dives into the details of Falco•
sensors, how data collection happens, and what components are involved in

xii | Preface

processing it. The architectural understanding you will gain from this chapter is
the base for the rest of the book.

• Chapter 4, “Data Sources”, is about understanding the two main data sources you•
can use in Falco: system calls and plugins. We explain what the data produced
by these sources is, how it is collected, and how Falco’s collection stack compares
with alternative approaches.

• Chapter 5, “Data Enrichment”, covers techniques Falco uses to enrich the data•
it collects. Enrichment consists of adding layers of contextual information to the
collected data; for example, container IDs, Kubernetes labels, or cloud provider
tags. This chapter explains how to configure Falco to collect enrichment meta‐
data and how to customize it to add your own metadata.

• Chapter 6, “Fields and Filters”, covers one of the most important concepts in•
Falco—the filtering engine—and the fields at its base. The chapter is structured as
a reference for the language syntax (including operators) and the fields.

• Chapter 7, “Falco Rules”, introduces rules and their syntax, including constructs•
like lists and macros that you will use routinely when customizing Falco.

• Chapter 8, “The Output Framework”, describes the mechanism Falco uses to•
deliver notifications to output channels and the channels available in Falco, and
teaches you how to configure and use them.

Part III: Running Falco in Production
Part III is the reference manual for the serious Falco user. This part of the book will
teach you everything you need to know to deploy, configure, run, and tune Falco in
any environment:

• Chapter 9, “Installing Falco”, presents approaches to installing Falco in produc‐•
tion environments, with detailed instructions.

• Chapter 10, “Configuring and Running Falco”, covers how Falco’s configuration•
system works. This chapter will help you understand and use Falco settings,
including command-line options, environment variables, the configuration file,
and rules files.

• Chapter 11, “Using Falco for Cloud Security”, offers a general overview of•
cloud security, then goes into the specifics of AWS threat detection using Falco’s
CloudTrail plugin. It takes a practical approach and includes clear and complete
instructions for setting up cloud security in your environment using Falco.

• Chapter 12, “Consuming Falco Events”, focuses on what you can do with Falco’s•
detections. It covers tools that help you work with Falco outputs, like falco-
explorer and Falcosidekick, and helps you understand which Falco events are
useful to observe and analyze as well as how to process them.

Preface | xiii

Part IV: Extending Falco
Part IV is a reference for developers, covering methods for extending Falco:

• Chapter 13, “Writing Falco Rules”, is about customizing and extending Falco’s•
detections. You will learn how to write new rules and tune existing rules for
your needs. In addition to the basics of rule writing, the chapter covers advanced
topics like noise reduction, performance optimization, and tagging.

• Chapter 14, “Falco Development”, is about working with Falco’s source code. It•
begins with an overview of the code base, then dives into two important ways of
extending Falco: using the gRPC API and the plugins framework. You will find
several examples that you can use as the basis for your coding adventures.

• Chapter 15, “How to Contribute”, talks about the Falco community and shows•
you how to contribute to it. It’s ideal reading if, after staying with us for the whole
book, you are as excited as we are about Falco!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for command-line input and program listings, as well as within paragraphs
to refer to commands and program elements such as variable or function names,
data types, and environment variables.

Constant width bold

Shows commands or other text that should be typed literally by the user. Also
used occasionally in program listings to highlight text of interest.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xiv | Preface

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Code examples from Chapter 14 are available for download at https://oreil.ly/
practical-cloud-native-security-falco-code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Practical Cloud Native Security with
Falco, by Loris Degioanni and Leonardo Grasso (O’Reilly). Copyright 2022 O’Reilly
Media, Inc., 978-1-098-11857-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technology and business train‐
ing, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning

Preface | xv

https://oreil.ly/practical-cloud-native-security-falco-code
https://oreil.ly/practical-cloud-native-security-falco-code
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/practical-cloud-native-security-
falco.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

Acknowledgments
We would like to start by thanking, from the bottom of our hearts, the Falco commu‐
nity: the maintainers who spend countless hours running and growing the project
with incredible passion; the contributors, big and small, who make Falco better every
day; the adopters and champions who give Falco a chance and provide valuable
feedback. Falco, clearly, is the product of your love and talent, and it will be an honor
for us if this book can showcase your incredible work.

Thanks also to the Cloud Native Computing Foundation, for providing a good home
for Falco and supporting its growth.

We would like to thank as well the people who helped us and supported us while
writing this book: in particular, our project manager, Tammy Yue, and our O’Reilly
editor, Sarah Grey. You have been not only very professional and helpful, but also
extremely gracious, constructive, and patient. Working with you has been a true
pleasure.

xvi | Preface

http://oreilly.com/
https://oreil.ly/practical-cloud-native-security-falco
https://oreil.ly/practical-cloud-native-security-falco
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

Finally, this book would not have been possible without the support of Sysdig, the
company where we both work. We truly appreciate working for an organization that
not only understands but actively supports open source and that embraces our belief
that the future of security is open.

Leonardo
One day, while I was talking to Loris, he proposed that we should write a book
together. So as I’m here, I have to thank him first. Working on this idea with him was
one of the most challenging but, at the same time, fun things I’ve done in my life.
Shall we do it again? As a first-time author, writing this book has been an incredible
new adventure for me that wouldn’t have been possible without the help and love of
my family. So, I would like to thank my shining and beloved Ada, who has always
supported me and has given me our little Michelangelo. I also want to thank our little
boy for waiting in his mommy’s belly until right after his daddy completed writing
this book. Together with Ma~ (read “Matilde,” our little kitten who purred next to me
while I was writing), they have accompanied me with patience and joy during this
journey.

Last but not least, I also have to thank my parents, sister, and uncles with all my heart.
They have always believed in me, sustained me, and helped me whenever needed. I
couldn’t make it through without them, seriously.

Loris
I would like to thank my wife Stacey, the love of my life, for her patience and
undeterred support for what I do. Thank you for not letting me starve, drown, or
generally injure myself during the production of this book.

I also want to thank my three kids, Josephine, Vincenzo, and August, for bringing
happiness to every minute of my life, including the time spent working on this
publication. Your frequent questions and interruptions made writing this book more
challenging but also much more pleasant. I’m looking forward to reading the books
that you will publish when you grow up.

I would like to thank my parents for supporting me at (and before) the beginning of
my career. I wouldn’t be writing this preface today without the seeds that you planted
many years ago and watered with love and generosity.

This book would have not been possible without my coauthor, Leo. The two of us had
to spend a lot of time together to produce this work, and every minute with him was
pleasant, constructive, and fun. Leo, I’m looking forward to spending time with you
on more fun and ambitious projects in the future.

Preface | xvii

PART I

The Basics

CHAPTER 1

Introducing Falco

The goal of this first chapter of the book is to explain what Falco is. Don’t worry,
we’ll take it easy! We will first look at what Falco does, including a high-level view
of its functionality and an introductory description of each of its components. We’ll
explore the design principles that inspired Falco and still guide its development today.
We’ll then discuss what you can do with Falco, what is outside its domain, and what
you can better accomplish with other tools. Finally, we’ll provide some historical
context to put things into perspective.

Falco in a Nutshell
At the highest level, Falco is pretty straightforward: you deploy it by installing multi‐
ple sensors across a distributed infrastructure. Each sensor collects data (from the
local machine or by talking to some API), runs a set of rules against it, and notifies
you if something bad happens. Figure 1-1 shows a simplified diagram of how it
works.

Figure 1-1. Falco’s high-level architecture

3

You can think of Falco like a network of security cameras for your infrastructure:
you place the sensors in key locations, they observe what’s going on, and they ping
you if they detect harmful behavior. With Falco, bad behavior is defined by a set of
rules that the community created and maintains for you and that you can customize
or extend for your needs. The alerts generated by your fleet of Falco sensors can
theoretically stay in the local machine, but in practice they are typically exported to
a centralized collector. For centralized alert collection, you can use a general-purpose
security information and event management (SIEM) tool or a specialized tool like
Falcosidekick. (We’ll cover alert collection extensively in Chapter 12.)

Now let’s dig a little deeper into the Falco architecture and explore its main compo‐
nents, starting with the sensors.

Sensors
Figure 1-2 shows how Falco sensors work.

Figure 1-2. Falco sensor architecture

The sensor consists of an engine that has two inputs: a data source and a set of rules.
The sensor applies the rules to each event coming from the data source. When a rule
matches an event, an output message is produced. Very straightforward, right?

Data Sources
Each sensor is able to collect input data from a number of sources. Originally, Falco
was designed to exclusively operate on system calls, which to date remain one of its
most important data sources. We’ll cover system calls in detail in Chapters 3 and 4,
but for now you can think of them as what a running program uses to interface
with its external world. Opening or closing a file, establishing or receiving a network
connection, reading and writing data to and from the disk or the network, executing
commands, and communicating with other processes using pipes or other types of
interprocess communication are all examples of system call usage.

Falco collects system calls by instrumenting the kernel of the Linux operating system
(OS). It can do this in two different ways: deploying a kernel module (i.e., a piece
of executable code that can be installed in the operating system kernel to extend the
kernel’s functionality) or using a technology called eBPF, which allows running of

4 | Chapter 1: Introducing Falco

scripts that safely perform actions inside the OS. We’ll talk extensively about kernel
modules and eBPF in Chapter 4.

Tapping into this data gives Falco incredible visibility into everything that is happen‐
ing in your infrastructure. Here are some examples of things Falco can detect for you:

• Privilege escalations•
• Access to sensitive data•
• Ownership and mode changes•
• Unexpected network connections or socket mutations•
• Unwanted program execution•
• Data exfiltration•
• Compliance violations•

Falco has also been extended to tap into other data sources besides system calls (we’ll
show you examples throughout the book). For example, Falco can monitor your
cloud logs in real time and notify you when something bad happens in your cloud
infrastructure. Here are some more examples of things it can detect for you:

• When a user logs in without multifactor authentication•
• When a cloud service configuration is modified•
• When somebody accesses one or more sensitive files in an Amazon Web Services•

(AWS) S3 bucket

New data sources are added to Falco frequently, so we recommend checking the
website and Slack channel to keep up with what’s new.

Rules
Rules tell the Falco engine what to do with the data coming from the sources. They
allow the user to define policies in a compact and readable format. Falco comes
preloaded with a comprehensive set of rules that cover host, container, Kubernetes,
and cloud security, and you can easily create your own rules to customize it. We’ll
spend a lot of time on rules, in particular in Chapters 7 and 13; by the time you’re
done reading this book, you’ll be a total master at them. Here’s an example to whet
your appetite:

- rule: shell_in_container
 desc: shell opened inside a container
 condition: spawned_process and container.id != host and proc.name = bash
 output: shell in a container (user=%user.name container_id=%container.id)
 Source: syscall
 priority: WARNING

Falco in a Nutshell | 5

https://falco.org
https://oreil.ly/Y4bUt

This rule detects when a bash shell is started inside a container, which is normally not
a good thing in an immutable container-based infrastructure. The core entries in a
rule are the condition, which tells Falco what to look at, and the output, which is what
Falco will tell you when the condition triggers. As you can see, both the condition
and the output act on fields, one of the core concepts in Falco. The condition is a
Boolean expression that combines checks of fields against values (essentially, a filter).
The output is a combination of text and field names, whose values will be printed out
in the notification. Its syntax is similar to that of a print statement in a programming
language.

Does this remind you of networking tools like tcpdump or Wireshark? Good eye:
they were a big inspiration for Falco.

Data Enrichment
Rich data sources and a flexible rule engine help make Falco a powerful runtime
security tool. On top of that, metadata from a disparate set of providers enriches its
detections.

When Falco tells you that something has happened—for example, that a system file
has been modified—you typically need more information to understand the cause
and the scope of the issue. Which process did this? Did it happen in a container? If so,
what were the container and image names? What was the service/namespace where
this happened? Was it in production or in dev? Was this a change made by root?

Falco’s data enrichment engine helps answer all of these questions by building up the
environment state, including running processes and threads, the files they have open,
the containers and Kubernetes objects they run in, etc. All of this state is accessible to
Falco’s rules and outputs. For example, you can easily scope a rule so that it triggers
only in production or in a specific service.

Output Channels
Every time a rule is triggered, the corresponding engine emits an output notification.
In the simplest possible configuration, the engine writes the notification to standard
output (which, as you can imagine, usually isn’t very useful). Fortunately, Falco offers
sophisticated ways to route outputs and direct them to a bunch of places, including
log collection tools, cloud storage services like S3, and communication tools like
Slack and email. Its ecosystem includes a fantastic project called Falcosidekick, specif‐
ically designed to connect Falco to the world and make output collection effortless
(see Chapter 12 for more on this).

6 | Chapter 1: Introducing Falco

Containers and More
Falco was designed for the modern world of cloud native applications, so it has
excellent out-of-the-box support for containers, Kubernetes, and the cloud. Since this
book is about cloud native security, we will mostly focus on that, but keep in mind
that Falco is not limited to containers and Kubernetes running in the cloud. You can
absolutely use it as a host security tool, and many of its preloaded rules can help you
secure your fleet of Linux servers. Falco also has good support for network detection,
allowing you to inspect the activity of connections, IP addresses, ports, clients, and
servers and receive alerts when they show unwanted or unexpected/atypical behavior.

Falco’s Design Principles
Now that you understand what Falco does, let’s talk about why it is the way it
is. When you’re developing a piece of software of non-negligible complexity, it’s
important to focus on the right use cases and prioritize the most important goals.
Sometimes that means accepting trade-offs. Falco is no exception. Its development
has been guided by a core set of principles. In this section we will explore why
they were chosen and how each of them affects Falco’s architecture and feature set.
Understanding these principles will allow you to judge whether Falco is a good fit for
your use cases and help you get the most out of it.

Specialized for Runtime
The Falco engine is designed to detect threats while your services and applications
are running. When it detects unwanted behavior, Falco should alert you instantly (at
most in a matter of seconds) so you’re informed (and can react!) right away, not after
minutes or hours have passed.

This design principle manifests in three important architectural choices. First, the
Falco engine is engineered as a streaming engine, able to process data quickly as it
arrives rather than storing it and acting on it later. Second, it’s designed to evaluate
each event independently, not to generate alerts based on a sequence of events; this
means correlating different events, even if feasible, is not a primary goal and is in
fact discouraged. Third, Falco evaluates rules as close as possible to the data source. If
possible, it avoids transporting information before processing it and favors deploying
richer engines on the endpoints.

Suitable for Production
You should be able to deploy Falco in any environment, including production envi‐
ronments where stability and low overhead are of paramount importance. It should
not crash your apps and should strive to slow them down as little as possible.

Falco’s Design Principles | 7

This design principle affects the data collection architecture, particularly when Falco
runs on endpoints that have many processes or containers. Falco’s drivers (the kernel
module and eBPF probe) have undergone many iterations and years of testing to
guarantee their performance and stability. Collecting data by tapping into the ker‐
nel of the operating system, as opposed to instrumenting the monitored processes/
containers, guarantees that your applications won’t crash because of bugs in Falco.

The Falco engine is written in C++ and employs many expedients to reduce resource
consumption. For example, it avoids processing system calls that read or write disk
or network data. In some ways this is a limitation, because it prevents users from
creating rules that inspect the content of payloads, but it also ensures that CPU and
memory consumption stay low, which is more important.

Intent-Free Instrumentation
Falco is designed to observe application behavior without requiring users to recom‐
pile applications, install libraries, or rebuild containers with monitoring hooks. This
is very important in modern containerized environments, where applying changes
to every component would require an unrealistic amount of work. It also guarantees
that Falco sees every process and container, no matter where it comes from, who runs
it, or how long it’s been around.

Optimized to Run at the Edge
Compared to other policy engines (for example, OPA), Falco has been explicitly
designed with a distributed, multisensor architecture in mind. Its sensors are
designed to be lightweight, efficient, and portable, and to operate in diverse environ‐
ments. It can be deployed on a physical host, in a virtual machine, or as a container.
The Falco binary is built for multiple platforms, including ARM.

Avoids Moving and Storing a Ton of Data
Most currently marketed threat detection products are based on sending large num‐
bers of events to a centralized SIEM tool and then performing analytics on top of
the collected data. Falco is designed around a very different principle: stay as close
as possible to the endpoint, perform detections in place, and only ship alerts to a
centralized collector. This approach results in a solution that is a bit less capable at
performing complex analytics, but is simple to operate, much more cost-effective,
and scales very well horizontally.

Scalable
Speaking of scale, another important design goal underlying Falco is that it should
be able to scale to support the biggest infrastructures in the world. If you can run it,

8 | Chapter 1: Introducing Falco

Falco should be able to secure it. As we’ve just described, keeping limited state and
avoiding centralized storage are important elements of this. Edge computing is an
important element too, since distributing rule evaluation is the only approach to scale
a tool like Falco in a truly horizontal way.

Another key part of scalability is endpoint instrumentation. Falco’s data collection
stack doesn’t use techniques like sidecars, library linking, or process instrumentation.
The reason is that the resource utilization of all of these techniques grows with the
number of containers, libraries, or processes to monitor. Busy machines have many
containers, libraries, and processes—too many for these techniques to work—but
they have only one operating system kernel. Capturing system calls in the kernel
means that you need only one Falco sensor per machine, no matter how big the
machine is. This makes it possible to run Falco on big hosts with a lot of activity.

Truthful
One other benefit of using system calls as a data source? System calls never lie. Falco
is hard to evade because the mechanism it uses to collect data is very difficult to
disable or circumvent. If you try to evade or get around it, you will leave traces that
Falco can capture.

Robust Defaults, Richly Extensible
Another key design goal was minimizing the time it takes to extract value from Falco.
You should be able to do this by just installing it; you shouldn’t need to customize it
unless you have advanced requirements.

Whenever the need for customization does arise, though, Falco offers flexibility. For
example, you can create new rules through a rich and expressive syntax, develop and
deploy new data sources that expand the scope of detections, and integrate Falco with
your desired notification and event collection tools.

Simple
Simplicity is the last design choice underpinning Falco, but it’s also one of the most
important ones. The Falco rule syntax is designed to be compact, easy to read, and
simple to learn. Whenever possible, a Falco rule condition should fit in a single line.
Anyone, not only experts, should be able to write a new rule or modify an existing
one. It’s OK if this reduces the expressiveness of the syntax: Falco is in the business
of delivering an efficient security rule engine, not a full-fledged domain-specific
language. There are better tools for that.

Simplicity is also evident in the processes for extending Falco to alert on new data
sources and integrating it with a new cloud service or type of container, which is a
matter of writing a plugin in any language, including Go, C, and C++. Falco loads

Falco’s Design Principles | 9

these plugins easily, and you can use them to add support for new data sources or
new fields to use in rules.

What You Can Do with Falco
Falco shines at detecting threats, intrusions, and data theft at runtime and in real
time. It works well with legacy infrastructures but excels at supporting containers,
Kubernetes, and cloud infrastructures. It secures both workloads (processes, contain‐
ers, services) and infrastructure (hosts, VMs, network, cloud infrastructure and serv‐
ices). It is designed to be lightweight, efficient, and scalable and to be used in both
development and production. It can detect many classes of threats, but should you
need more, you can customize it. It also has a thriving community that supports it
and keeps enhancing it.

What You Cannot Do with Falco
No single tool can solve all your problems. Knowing what you cannot do with Falco
is as important as knowing where to use it. As with any tool, there are trade-offs.
First, Falco is not a general-purpose policy language: it doesn’t offer the expressive‐
ness of a full programming language and cannot perform correlation across different
engines. Its rule engine, instead, is designed to apply relatively stateless rules at
high frequency in many places around your infrastructure. If you are looking for a
powerful centralized policy language, we suggest you take a look at OPA.

Second, Falco is not designed to store the data it collects in a centralized repository
so that you can perform analytics on it. Rule validation is performed at the endpoint,
and only the alerts are sent to a centralized location. If your focus is advanced
analytics and big data querying, we recommend that you use one of the many log
collection tools available on the market.

Finally, for efficiency reasons, Falco does not inspect network payloads. Therefore, it’s
not the right tool to implement layer 7 (L7) security policies. A traditional network-
based intrusion detection system (IDS) or L7 firewall is a better choice for such a use
case.

Background and History
The authors of this book have been part of some of Falco’s history, and this final
section presents our memories and perspectives. If you are interested only in opera‐
tionalizing Falco, feel free to skip the rest of this chapter. However, we believe that
knowing where Falco comes from can give you useful context for its architecture that
will ultimately help you use it better. Plus, it’s a fun story!

10 | Chapter 1: Introducing Falco

https://oreil.ly/nXYQI

Network Packets: BPF, libpcap, tcpdump, and Wireshark
During the height of the late-1990s internet boom, computer networks were explod‐
ing in popularity. So was the need to observe, troubleshoot, and secure them.
Unfortunately, many operators couldn’t afford the network visibility tools available at
that time, which were all commercially offered and very expensive. As a consequence,
a lot of people were fumbling around in the dark.

Soon, teams around the world started working on solutions to this problem. Some
involved extending existing operating systems to add packet capture functionality:
in other words, making it possible to convert an off-the-shelf computer workstation
into a device that could sit on a network and collect all the packets sent or received
by other workstations. One such solution, Berkeley Packet Filter (BPF), developed by
Steven McCanne and Van Jacobson at the University of California at Berkeley, was
designed to extend the BSD operating system kernel. If you use Linux, you might be
familiar with eBPF, a virtual machine that can be used to safely execute arbitrary code
in the Linux kernel (the e stands for extended). eBPF is one of the hottest modern
features of the Linux kernel. It’s evolved into an extremely powerful and flexible
technology after many years of improvements, but it started as a little programmable
packet capture and filtering module for BSD Unix.

BPF came with a library called libpcap that any program could use to capture raw
network packets. Its availability triggered a proliferation of networking and security
tools. The first tool based on libpcap was a command-line network analyzer called
tcpdump, which is still part of virtually any Unix distribution. In 1998, however,
a GUI-based open source protocol analyzer called Ethereal (renamed Wireshark in
2006) was launched. It became, and still is, the industry standard for packet analysis.

What tcpdump, Wireshark, and many other popular networking tools have in com‐
mon is the ability to access a data source that is rich, accurate, and trustworthy and
can be collected in a noninvasive way: raw network packets. Keep this concept in
mind as you continue reading!

Snort and Packet-Based Runtime Security
Introspection tools like tcpdump and Wireshark were the natural early applications of
the BPF packet capture stack. However, people soon started getting creative in their
use cases for packets. For example, in 1998, Martin Roesch released an open source
network intrusion detection tool called Snort. Snort is a rule engine that processes
packets captured from the network. It has a large set of rules that can detect threats
and unwanted activity by looking at packets, the protocols they contain, and the
payloads they carry. It inspired the creation of similar tools such as Suricata and Zeek.

What makes tools like Snort powerful is their ability to validate the security of
networks and applications while applications are running. This is important because it

Background and History | 11

provides real-time protection, and the focus on runtime behavior makes it possible to
detect threats based on vulnerabilities that have not yet been disclosed.

The Network Packets Crisis
You’ve just seen what made network packets popular as a data source for visibility,
security, and troubleshooting. Applications based on them spawned several successful
industries. However, trends arose that eroded packets’ usefulness as a source of truth:

• Collecting packets in a comprehensive way became more and more complicated,•
especially in environments like the cloud, where access to routers and network
infrastructure is limited.

• Encryption and network virtualization made it more challenging to extract val‐•
uable information.

• The rise of containers and orchestrators like Kubernetes made infrastructures•
more elastic. At the same time, it became more complicated to reliably collect
network data.

These issues started becoming clear in the early 2010s, with the popularity of cloud
computing and containers. Once again, an exciting new ecosystem was unfolding, but
no one quite knew how to troubleshoot and secure it.

System Calls as a Data Source: sysdig
That’s where your authors come in. We released an open source tool called sysdig,
which we were inspired to build by a set of questions: What is the best way to provide
visibility for modern cloud native applications? Can we apply workflows built on top
of packet capture to this new world? What is the best data source?

sysdig originally focused on collecting system calls from the kernel of the operating
system. System calls are a rich data source—even richer than packets—because they
don’t exclusively focus on network data: they include file I/O, command execution,
interprocess communication, and more. They are a better data source for cloud native
environments than packets, because they can be collected from the kernel for both
containers and cloud instances. Plus, collecting them is easy, efficient, and minimally
invasive.

sysdig was initially composed of three separate components:

• A kernel capture probe (available in two flavors, kernel module and eBPF)•
• A set of libraries to facilitate the development of capture programs•
• A command-line tool with decoding and filtering capabilities•

12 | Chapter 1: Introducing Falco

In other words, it was porting the BPF stack to system calls. sysdig was engineered
to support the most popular network packet workflows: trace files, easy filtering,
scriptability, and so on. From the beginning, we also included native integrations
with Kubernetes and other orchestrators, with the goal of making them useful in
modern environments. sysdig immediately became very popular with the community,
validating the technical approach.

Falco
So what would be the next logical step? You guessed it: a Snort-like tool for system
calls! A flexible rule engine on top of the sysdig libraries, we thought, would be
a powerful tool to detect anomalous behavior and intrusions in modern apps relia‐
bly and efficiently—essentially the Snort approach but applied to system calls and
designed to work in the cloud.

So, that’s how Falco was born. The first (rather simple) version was released at the
end of 2016 and included most of the important components, such as the rule engine.
Falco’s rule engine was inspired by Snort’s but designed to operate on a much richer
and more generic dataset and was plugged into the sysdig libraries. It shipped with
a relatively small but useful set of rules. This initial version of Falco was largely a
single-machine tool, with no ability to be deployed in a distributed way. We released
it as open source because we saw a broad community need for it and, of course,
because we love open source!

Expanding into Kubernetes
As the tool evolved and the community embraced it, Falco’s developers expanded it
into new domains of applicability. For example, in 2018 we added Kubernetes audit
logs as a data source. This feature lets Falco tap into the stream of events produced by
the audit log and detect misconfigurations and threats as they happen.

Creating this feature required us to improve the engine, which made Falco more
flexible and better suited to a broader range of use cases.

Joining the Cloud Native Computing Foundation
In 2018 Sysdig contributed Falco to the Cloud Native Computing Foundation
(CNCF) as a sandbox project. The CNCF is the home of many important projects at
the foundation of modern cloud computing, such as Kubernetes, Prometheus, Envoy,
and OPA. For our team, making Falco part of the CNCF was a way to evolve it into a
truly community-driven effort, to make sure it would be flawlessly integrated with the
rest of the cloud native stack, and to guarantee long-term support for it. In 2021 this
effort was expanded by the contribution of the sysdig kernel module, eBPF probe,
and libraries to the CNCF, as a subproject in the Falco organization. The full Falco
stack is now in the hands of a neutral and caring community.

Background and History | 13

Plugins and the cloud
As years passed and Falco matured, a couple of things became clear. First, its sophisti‐
cated engine, efficient nature, and ease of deployment make it suitable for much more
than system call–based runtime security. Second, as software becomes more and
more distributed and complex, runtime security is paramount to immediately detect‐
ing threats, both expected and unexpected. Finally, we believe that the world needs a
consistent, standardized way to approach runtime security. In particular, there is great
demand for a solution that can protect workloads (processes, containers, services,
applications) and infrastructure (hosts, networks, cloud services) in a converged way.

As a consequence, the next step in the evolution of Falco was adding modularity,
flexibility, and support for many more data sources spanning different domains. For
example, in 2021 a new plugin infrastructure was added that allows Falco to tap
into data sources like cloud provider logs to detect misconfigurations, unauthorized
access, data theft, and much more.

A long journey
Falco’s story stretches across more than two decades and links many people, inven‐
tions, and projects that at first glance don’t appear related. In our opinion, this
story exemplifies why open source is so cool: becoming a contributor lets you learn
from the smart people who came before you, build on top of their innovations, and
connect communities in creative ways.

14 | Chapter 1: Introducing Falco

CHAPTER 2

Getting Started with Falco
on Your Local Machine

Now that you’re acquainted with the possibilities that Falco offers, what better way
to familiarize yourself with it than to try it? In this chapter, you will discover how
easy it is to install and run Falco on a local machine. We’ll walk you through the
process step-by-step, introducing and analyzing the core concepts and functions. We
will generate an event that Falco will detect for us by simulating a malicious action,
and show you how to read Falco’s notification output. We’ll finish the chapter by
presenting some manageable approaches to customizing your installation.

Running Falco on Your Local Machine
Although Falco is not a typical application, installing and running it on a local
machine is quite simple—all you need is a Linux host or a virtual machine and a
terminal. There are two components to install: the user space program (named falco)
and a driver. The driver is needed to collect system calls, which are one possible
data source for Falco. For simplicity, we will focus only on system call capture in this
chapter.

You will learn more about the available drivers and why we need
them to instrument the system in Chapter 3 and explore alternative
data sources in Chapter 4. For the moment, you only need to know
that the default driver, which is implemented as a Linux kernel
module, is enough to collect system calls and start using Falco.

Several methods are available to install these components, as you will see in Chap‐
ter 8. However, in this chapter we’ve opted to use the binary package. It works with

15

almost any Linux distribution and has no automation: you can touch its components
with your hands. The binary package includes the falco program, the falco-driver-
loader script (a utility to help you install the driver), and many other required files.
You can download this package from the official website of The Falco Project, where
you’ll also find comprehensive information about installing it. So, let’s get to it!

Downloading and Installing the Binary Package
Falco’s binary package is distributed as a single tarball compressed with GNU zip
(gzip). The tarball file is named falco-<x.y.z>-<arch>.tar.gz, where <x.y.z> is the
version of a Falco release and <arch> is the intended architecture (e.g., x86_64) for
the package.

All the available packages are listed on Falco’s “Download” page. You can grab the
URL of the binary package and download it locally, for example using curl:

$ curl -L -O \
 https://download.falco.org/packages/bin/x86_64/falco-0.32.0-x86_64.tar.gz

After downloading the tarball, uncompressing and untarring it is quite simple:

$ tar -xvf falco-0.32.0-x86_64.tar.gz

The tarball content, which you’ve just extracted, is intended to be copied directly to
the local filesystem’s root (i.e., /), without any special installation procedure. To copy
it, run this command as root:

$ sudo cp -R falco-0.32.0-x86_64/* /

Now you’re ready to install the driver.

Installing the Driver
System calls are Falco’s default data source. To instrument the Linux kernel and
collect these system calls, it needs a driver: either a Linux kernel module or an eBPF
probe. The driver needs to be built for the specific version and configuration of
the kernel on which Falco will run. Fortunately, The Falco Project provides literally
thousands of prebuilt drivers for the vast majority of the most common Linux
distributions, with various kernel versions available for download. If a prebuilt driver
for your distribution and kernel version is not yet available, the files you installed in
the previous section include the source code of both the kernel module and the eBPF
probe, so it is also possible to build the driver locally.

This might sound like a lot, but the falco-driver-loader script you’ve just installed can
do all these steps. All you need to do before using the script is install a few necessary
dependencies:

16 | Chapter 2: Getting Started with Falco on Your Local Machine

https://falco.org
https://oreil.ly/Hx6Dy

1 Falco needs to run with root privileges to operate the driver that in turn collects system calls. However,
alternative approaches are possible. For example, you can learn from Falco’s “Running” page how to run Falco
in a container with the principle of least privilege.

• Dynamic Kernel Module Support (dkms)•
• GNU make•
• The Linux kernel headers•

Depending on the package manager you’re using, the actual package names can vary;
however, they aren’t difficult to find. Once you’ve installed these packages, you’re
ready to run the falco-driver-loader script as root. If everything goes well, the script
output should look something like this:

$ sudo falco-driver-loader
* Running falco-driver-loader for: falco version=0.32.0, driver version=39ae...
* Running falco-driver-loader with: driver=module, compile=yes, download=yes
...
* Looking for a falco module locally (kernel 5.18.1-arch1-1)
* Trying to download a prebuilt falco module from https://download.falco.org/...
curl: (22) The requested URL returned error: 404
Unable to find a prebuilt falco module
* Trying to dkms install falco module with GCC /usr/bin/gcc

This output contains some useful information. The first line reports the versions of
Falco and the driver that are being installed. The subsequent line tells us that the
script will try to download a prebuilt driver so it can install a kernel module. If the
prebuilt driver is not available, Falco will try to build it locally. The rest of the output
shows the process of building and installing the module via DKMS, and finally that
the module has been installed and loaded.

Starting Falco
To start Falco, you just have to run it as root:1

$ sudo falco
Mon Jun 6 16:08:29 2022: Falco version 0.32.0 (driver version 39ae7d404967...
Mon Jun 6 16:08:29 2022: Falco initialized with configuration file /etc/fa...
Mon Jun 6 16:08:29 2022: Loading rules from file /etc/falco/falco_rules.yaml:
Mon Jun 6 16:08:29 2022: Loading rules from file /etc/falco/falco_rules.loc...
Mon Jun 6 16:08:29 2022: Starting internal webserver, listening on port 8765

Note the configuration and rules files’ paths. We’ll look at these in more detail in
Chapters 9 and 13. Finally, in the last line, we can see that a web server has been
started; this is done because Falco exposes a health check endpoint that you can use to
test that it’s up and running.

Running Falco on Your Local Machine | 17

https://oreil.ly/6VD67

In this chapter, to get you used to it, we have simply run Falco as
an interactive shell process; therefore, a simple Ctrl-C is enough to
end the process. Throughout the book, we will show you different
and more sophisticated ways to install and run it.

Once Falco prints this startup information, it is ready to issue a notification whenever
a condition in the loaded ruleset is met. Right now, you probably won’t see any
notifications (assuming nothing malicious is running on your system). In the next
section, we will generate a suspicious event.

Generating Events
There are millions of ways to generate events. In the case of system calls, in reality,
many events happen continuously as soon as processes are running. However, to
see Falco in action, we must focus on events that can trigger an alert. As you’ll
recall, Falco comes preloaded with an out-of-the-box set of rules that cover the most
common security scenarios. It uses rules to express unwanted behaviors, so we need
to pick a rule as our target and then trigger it by simulating a malicious action within
our system.

In the course of the book, and particularly in Chapter 13, you will learn about the
complete anatomy of a rule, how to interpret and write a condition using Falco’s
rule syntax, and which fields are supported in the conditions and outputs. For the
moment, let’s briefly recall what a rule is and explain its structure by considering a
real example:

- rule: Write below binary dir
 desc: an attempt to write to any file below a set of binary directories
 condition: >
 bin_dir and evt.dir = < and open_write
 output: >
 File below a known binary directory opened for writing
 (user=%user.name user_loginuid=%user.lo command=%proc.cmdline
 file=%fd.name parent=%proc.pname pcmdline=%proc.pcmdline
 gparent=%proc.aname[2] container_id=%container.id
 image=%container.image.repository)
 priority: ERROR
 source: syscall

A rule declaration is a YAML object with several keys. The first key, rule, uniquely
identifies the rule within a ruleset (one or more YAML files containing rule defini‐
tions). The second key, desc, allows the rule’s author to briefly describe what the
rule will detect. The condition key, arguably the most important one, allows express‐
ing a security assertion using some straightforward syntax. Various Boolean and
comparison operators can be combined with fields (which hold the collected data) to

18 | Chapter 2: Getting Started with Falco on Your Local Machine

filter only relevant events. In this example rule, evt.dir is a field used for filtering.
Supported fields and filters are covered in more detail in Chapter 6.

As long as the condition is false, nothing will happen. The assertion is met when the
condition is true, and then an alert will be fired immediately. The alert will contain
an informative message, as defined by the rule’s author using the output key of the
rule declaration. The value of the priority key will be reported too. The content of
an alert is covered in more detail in the next section.

The condition’s syntax can also make use of a few more constructs, like list and
macro, that can be defined in the ruleset alongside rules. As the name suggests, a
list is a list of items that can be reused across different rules. Similarly, macros are
reusable pieces of conditions. For completeness, here are the two macros (bin_dir
and open_write) utilized in the condition key of the Write below binary dir rule:

- macro: bin_dir
 condition: fd.directory in (/bin, /sbin, /usr/bin, /usr/sbin)

- macro: open_write
 condition: >
 evt.type in (open,openat,openat2)
 and evt.is_open_write=true
 and fd.typechar='f'
 and fd.num>=0

At runtime, when rules are loaded, macros expand. Consequently, we can imagine the
final rule condition will be similar to:

 evt.type in (open,openat,openat2)
 and evt.is_open_write=true
 and fd.typechar='f'
 and fd.num>=0
 and evt.dir = <
 and fd.directory in (/bin, /sbin, /usr/bin, /usr/sbin)

Conditions make extensive use of fields. In this example, you can easily recognize
which parts of the condition are fields (evt.type, evt.is_open_write, fd.typechar,
evt.dir, fd.num, and fd.directory) since they are followed by a comparison opera‐
tor (e.g., =, >=, in). Field names contain a dot (.) because fields with a similar context
are grouped together in classes. The part before the dot represents the class (for
example, evt and fd are classes).

Although you might not thoroughly understand the condition’s syntax yet, you don’t
need to at the moment. All you need to know is that creating a file (which implies
opening a file for writing) under one of the directories listed within the condition
(like /bin) should be enough to trigger the rule’s condition. Let’s try it.

Generating Events | 19

First, start Falco with our target rule loaded. The Write below binary dir rule is
included in /etc/falco/falco_rules.yaml, which is loaded by default when starting Falco,
so you don’t need to copy it manually. Just open a terminal and run:

$ sudo falco

Second, trigger the rule by creating a file in the /bin directory. A straightforward way
to do this is by opening another terminal window and typing:

$ sudo touch /bin/surprise

Now, if you return to the first terminal with Falco running, you should find a line in
the log (that is, an alert emitted by Falco) that looks like the following:

16:52:09.350818073: Error File below a known binary directory opened for writing
 (user=root user_loginuid=1000 command=touch /bin/surprise file=/bin/surprise
 parent=sudo pcmdline=sudo touch /bin/surprise gparent=zsh container_id=host
 image=<NA>)

Falco caught us! Fortunately, that’s exactly what we wanted to happen. (We’ll look at
this output in more detail in the next section.)

Rules let us tell Falco which security policies we want to observe (expressed by
the condition key) and which information we want to receive (specified by the
output key) if a policy has been violated. Falco emits an alert (outputs a line of text)
whenever an event meets the condition defined by a rule, so if you run the same
command again, a new alert will fire.

After trying out this example, why not test some other rules by yourself? To facilitate
this, the Falcosecurity organization offers a tool called event-generator. It’s a simple
command-line tool that does not require any special installation steps. You can
download the latest release and uncompress it wherever you prefer. It comes with a
collection of events that match many of the rules included in the default Falco ruleset.
For example, to generate an event that meets the condition expressed by the Read
sensitive file untrusted rule, you can type the following in a terminal window:

$./event-generator run syscall.ReadSensitiveFileUntrusted

Be aware that this tool might alter your system. For example, since
the tool’s purpose is to reproduce real malicious behavior, some
actions modify files and directories such as /bin, /etc, and /dev.
Make sure you fully understand the purpose of this tool and its
options before using it. As the online documentation recommends,
running event-generator in a container is safer.

20 | Chapter 2: Getting Started with Falco on Your Local Machine

https://oreil.ly/CZGpM
https://oreil.ly/dL8gV

Interpreting Falco’s Output
Let’s take a closer look at the alert notification our experiment produced to see what
important information it contains:

16:52:09.350818073: Error File below a known binary directory opened for writing
 (user=root user_loginuid=1000 command=touch /bin/surprise file=/bin/surprise
 parent=sudo pcmdline=sudo touch /bin/surprise gparent=zsh container_id=host
 image=<NA>)

This apparently complex line is actually composed of only three main elements
separated by whitespace: a timestamp, severity level, and message. Let’s examine each
of these:

Timestamp
Intuitively, the first element is the timestamp (followed by a colon:
16:52:09.350818073:). That’s when the event was generated. By default, it’s
displayed in the local time zone and includes nanoseconds. You can, if you
like, configure Falco to display times in ISO 8601 format, including the date,
nanoseconds, and timezone offset (in UTC).

Severity
The second element indicates the severity (e.g., Error) of the alert, as specified by
the priority key in the rule. It can assume one of the following values (ordered
from the most to the least severe): Emergency, Alert, Critical, Error, Warning,
Notice, Informational, or Debug. Falco allows us to filter out those alerts that
are not important to us and thus reduce the noisiness of the output by specifying
the minimum severity level we want to get alerts about. The default is debug,
meaning all severity levels are included by default, but we can change this by
altering the value of the priority parameter in the /etc/falco/falco.yaml configu‐
ration file. For example, if we change the value of this parameter to notice, then
we will not receive alerts about rules with priority equal to INFORMATIONAL or
DEBUG.

Message
The last and the most essential element is the message. This is a string produced
according to the format specified by the output key. Its peculiarity lies in using
placeholders, which the Falco engine replaces with the event data, as we will see
in a moment.

Normally, the output key of a rule begins with a brief text description to facilitate
identifying the type of problem (e.g., File below a known binary directory
opened for writing). Then it includes some placeholders (e.g., %user.name),
which will be populated with actual values (e.g., root) when outputted. You can
easily recognize placeholders since they start with a % symbol followed by one of

Interpreting Falco’s Output | 21

the event’s supported fields. These fields can be used in both the condition key
and the output key of a Falco rule.

The beauty of this feature is that you can have a different output format for each
security policy. This immediately gives you the most relevant information related to
the violation, without having to navigate hundreds of fields.

Although this textual format likely includes all the information you need and is suit‐
able for consumption by many other programs, it’s not the only option for output—
you can instruct Falco to output notifications in JSON format by simply changing a
configuration parameter. The JSON output format has the advantage of being easily
parsable by consumers. When enabled, Falco will emit as output a JSON line for
each alert that will look like the following, which we’ve pretty-printed to improve
readability:

{
 "output": "11:55:33.844042146: Error File below a known binary directory...",
 "priority": "Error",
 "rule": "Write below binary dir",
 "time": "2021-09-13T09:55:33.844042146Z",
 "output_fields": {
 "container.id": "host",
 "container.image.repository": null,
 "evt.time": 1631526933844042146,
 "fd.name": "/bin/surprise",
 "proc.aname[2]": "zsh",
 "proc.cmdline": "touch /bin/surprise",
 "proc.pcmdline": "sudo touch /bin/surprise",
 "proc.pname": "sudo",
 "user.loginuid": 1000,
 "user.name": "root"
 }
}

This output format reports the same text message as before. Additionally, each piece
of information is separated into distinct JSON properties. You may also have noticed
some extra data: for example, the rule identifier is present this time ("rule": "Write
below binary dir").

To try it right now, when starting Falco, simply pass the following flag as a command-
line argument to override the default configuration:

$ sudo falco -o json_output=true

Alternatively, you can edit /etc/falco/falco.yaml and set json_output to true. This will
enable the JSON format every time Falco starts, without the flag.

22 | Chapter 2: Getting Started with Falco on Your Local Machine

Customizing Your Falco Instance
When you start Falco, it loads several files. In particular, it first loads the main (and
only) configuration file, as the startup log shows:

Falco initialized with configuration file /etc/falco/falco.yaml

Falco looks for its configuration file at /etc/falco/falco.yaml, by default. That’s where
the provided configuration file is installed. If desired, you can specify another
configuration file path using the -c command-line argument when running Falco.
Whatever file location you prefer, the configuration must be a YAML file mainly
containing a collection of key/value pairs. Let’s take a look at some of the available
configuration options.

Rules Files
One of the most essential options, and the first you’ll find in the provided configura‐
tion file, is the list of rules files to be loaded:

rules_file:
 - /etc/falco/falco_rules.yaml
 - /etc/falco/falco_rules.local.yaml
 - /etc/falco/rules.d

Despite the naming (for backward compatibility), rules_file allows you to specify
multiple entries, each of which can be either a rules file or a directory containing
rules files. If the entry is a file, Falco reads it directly. In the case of a directory, Falco
will read every file in that directory.

The order matters here. The files are loaded in the presented order (files within a
directory are loaded in alphabetical order). Users can customize predefined rules
by simply overriding them in files that appear later in the list. For example, say
you want to turn off the Write below binary dir rule, which is included in /etc/falco/
falco_rules.yaml. All you need to do is edit /etc/falco/falco_rules.local.yaml (which
appears below that file in the list and is intended to add local overrides) and write:

- rule: Write below binary dir
 enabled: false

Output Channels
There is a group of options that control Falco’s available output channels, allowing
you to specify where the security notifications should go. Furthermore, you can
enable more than one simultaneously. You can easily recognize them within the
configuration file (/etc/falco/falco.yaml) since their keys are suffixed with _output.

Customizing Your Falco Instance | 23

By default, the only two enabled output channels are stdout_output, which instructs
Falco to send alert messages to the standard output, and syslog_output, which sends
them to the system logging daemon. Their configurations are:

stdout_output:
 enabled: true

syslog_output:
 enabled: true

Falco provides several other advanced built-in output channels. For example:

file_output:
 enabled: false
 keep_alive: false
 filename: ./events.txt

When file_output is enabled, Falco will also write its alerts to the file specified by
the subkey filename.

Other output channels allow you to consume alerts in sophisticated ways and inte‐
grate with third parties. For instance, if you want to pass the Falco output to a local
program, you can use:

program_output:
 enabled: false
 keep_alive: false
 program: mail -s "Falco Notification" someone@example.com

Once you enable this, Falco will execute the program for each alert and write its
content to the program’s standard output. You can set the program subkey to any
valid shell command, so this is an excellent opportunity to show off your favorite
one-liners.

If you simply need to integrate with a webhook, a more convenient option is to use
the http_output output channel:

http_output:
 enabled: false
 url: http://some.url

A simple HTTP POST request will be sent to the specified url for each alert. That
makes it really easy to connect Falco to other tools, like Falcosidekick, which will
forward alerts to Slack, Teams, Discord, Elasticsearch, and many other destinations.

Last but not least, Falco comes with a gRPC API and a corresponding output,
grpc_output. Enabling the gRPC API and gRPC output channel allows you to con‐
nect Falco to falco-exporter, which, in turn, will export metrics to Prometheus.

24 | Chapter 2: Getting Started with Falco on Your Local Machine

Falcosidekick and falco-exporter are open source projects you can
find under the Falcosecurity GitHub organization. In Chapter 12,
you will meet these tools again and learn how to work with
outputs.

Conclusion
This chapter showed you how to install and run Falco on your local machine as a
playground. You saw some simple ways to generate events and learned how to decode
the output. We then looked at how to use the configuration file to customize Falco’s
behavior. Loading and extending rules are the primary ways to instruct Falco on
what to protect. Likewise, configuring the output channels empowers us to consume
notifications in ways that meet our needs.

Armed with this knowledge, you can start experimenting with Falco confidently. The
rest of this book will expand on you’ve learned here and eventually help you master
Falco completely.

Conclusion | 25

https://oreil.ly/CF0Bk

PART II

The Architecture of Falco

CHAPTER 3

Understanding Falco’s Architecture

Welcome to Part II of the book! In Part I, you learned what Falco is and what it does.
You also took a high-level look at its architecture, installed it on your machine, and
took it for a spin. Now it’s time to step up your game!

In this part of the book (Chapters 3 through 8), we’ll get into the inner workings
of Falco. You will learn about its architecture in more detail, including its main com‐
ponents and how data flows across them. We’ll show you how Falco interfaces with
the kernel of the operating system and with the cloud logs to collect data, and how
this data is enriched with context and metadata. Chapter 6 will then introduce you to
the important topic of fields and filters, while Chapter 7 will get you more familiar
with Falco rules. We’ll conclude Part II by talking about the outputs framework, a key
piece of Falco.

Do you really need to learn about the internals of Falco in order to operate it? The
answer, as it is so often in life, is “it depends.” If your goal is simply to deploy Falco
in its default configuration and show your boss that it’s up and working, then you’re
probably fine skipping this part of the book. However, doing so will make some
things hard, and others impossible. For example, in Parts III and IV we’ll cover:

• Interpreting Falco’s output•
• Determining if an alert could be a false positive•
• Fine-tuning Falco to privilege accuracy over noise•
• Precisely adapting Falco to your environment•
• Customizing and extending Falco•

All of these tasks require you to truly understand the core concepts behind Falco and
its architecture, and that’s what we’ll help you accomplish here.

29

True security is never trivial. It requires an investment that goes beyond a superficial
understanding. But that investment is typically paid back in spades, because it can
make the difference in whether your software gets compromised and your company
ends up in the news for all the wrong reasons.

Assuming we’ve convinced you, let’s get started. Figure 3-1 depicts the main compo‐
nents of a typical Falco sensor deployment.

Figure 3-1. The high-level architecture of a typical Falco sensor deployment

The architecture depicted in Figure 3-1 reflects the components as they are organized
at the code level in the Falcosecurity organization on GitHub. At this level of granu‐
larity, the main components are:

Falco libraries
The Falco libraries, or “libs,” are responsible for collecting the data the sensor will
process. They also manage state and provide multiple layers of enrichment for
the collected data.

Plugins
The plugins extend the sensor with additional data sources. For example, plugins
make it possible for Falco to use AWS CloudTrail and Kubernetes audit logs as
data sources.

Falco
This is the main sensor executable, including the rule engine.

Falcosidekick
Falcosidekick is responsible for routing the notifications and connecting the
sensor to the external world.

30 | Chapter 3: Understanding Falco’s Architecture

https://oreil.ly/ClRJj
https://oreil.ly/6CbQH
https://oreil.ly/9Jyi8
https://oreil.ly/2IQkj
https://oreil.ly/lmOie

Of the components in Figure 3-1, Falco and the Falco libs are required and always
installed, while Falcosidekick and the plugins are optional; you can install them based
on your deployment strategy and needs.

Falco and the Falco Libraries: A Data-Flow View
Let’s take the two most important of the components we just described, the Falco
libraries and Falco, and explore their data flows and critical modules.

As Figure 3-2 shows, system calls are one of the core sources of data. These are
captured in the kernel of the operating system by one of Falco’s two drivers: the kernel
module and the eBPF (extended Berkeley Packet Filter) probe.

Figure 3-2. Sensor data flow and main modules

The collected system calls flow into the first of the Falco core libraries, libscap, which
can also receive data from the plugins and exposes a common interface to the upper
layers. Data is then passed to the other key library, libsinsp, to be parsed and enriched.
Next, the data is fed to the rule engine for evaluation. Falco receives the output
of the rule engine and emits the resulting notifications, which can optionally go to
Falcosidekick.

Pretty straightforward, right? Figure 3-3 gives further details about what each of these
modules does, and in the following sections we’ll explore them in more depth.

Falco and the Falco Libraries: A Data-Flow View | 31

Figure 3-3. Key roles of the sensor’s main modules

Drivers
System calls are Falco’s original data source, and to this day they remain the most
important. Collecting system calls is at the core of Falco’s ability to trace the behavior
of processes, containers, and users in a very granular way and with high efficiency.
Reliable and efficient system call collection needs to be performed from inside the
kernel of the operating system, so it requires a driver that runs inside the OS itself. As
mentioned in the previous section, Falco offers two such drivers: the kernel module
and the eBPF probe.

These two components offer identical functionality and are deployed in a mutually
exclusive way: if you deploy the kernel module, you can’t run the eBPF probe, and
vice versa. So what distinguishes them?

The kernel module works with any version of the Linux kernel, including older ones.
Also, it requires somewhat fewer resources to run, so you should use it when you care
about Falco having the smallest possible overhead.

The eBPF probe, on the other hand, runs only on more recent versions of Linux,
starting at kernel 4.11. Its advantage is that it’s safer, because its code is strictly
validated by the operating system before it is executed. This means that even if it
contains a bug, it is (in theory) guaranteed not to crash your machine. Compared
to the kernel module, it is also much better protected from security flaws that could
compromise the machine where you run it. Therefore, in most cases, the eBPF probe

32 | Chapter 3: Understanding Falco’s Architecture

is the option you should go with. Note also that some environments—in particular,
cloud-based managed containerized environments—prevent kernel modules from
being loaded in the operating system kernel. In such environments, the eBPF probe is
your only option.

Both the kernel module and the eBPF probe are entrusted with a set of very impor‐
tant tasks:

Capturing system calls
The driver’s first responsibility is capturing system calls. This happens through
a kernel facility called tracepoints and is heavily optimized to minimize the
performance impact on the monitored applications.

System call packing
The driver then encodes the system call information into a transfer buffer, using
a format that the rest of the Falco stack can parse easily and efficiently.

Zero-copy data transfer
Finally, the driver is responsible for efficiently transferring this data from the
kernel to the user level, where libscap will receive it. We should really call this
efficiently not transferring the data, since both the kernel module and the eBPF
probe are designed around a zero-copy architecture that maps the data buffers
into user-level memory so that libscap can access the original data without need‐
ing to copy or transfer it.

In Chapter 4 you will learn all you need to know about drivers, including their
architecture, functionality, and usage scenarios.

Plugins
Plugins are a way to add additional data sources to Falco simply and without the
need to rebuild it. Plugins implement an interface that feeds events into Falco, similar
to what the kernel module and eBPF probe do. However, plugins are not limited to
capturing system calls: they can feed Falco any kind of data, including logs and API
events.

Falco has several powerful plugins that extend its scope. For example, the CloudTrail
plugin ingests JSON logs from AWS CloudTrail and allows Falco to alert you when
something dangerous happens in your cloud infrastructure. Plugins can be written in
any language, but there are Go and C++ software development kits (SDKs) available
that make it easier to write them in those languages. We will talk more about plugins
in Chapters 4 and 11.

Plugins | 33

https://oreil.ly/tEYsq

libscap
The name libscap stands for “library for system capture,” a clear hint about its
purpose. libscap is the gateway through which the input data passes before getting
into the Falco processing pipeline. Let’s take a look at the main things libscap does
for us.

Managing Data Sources
The libscap library contains the logic to control both the kernel module and the eBPF
probe, including loading them, starting and stopping captures, and reading the data
they produce. It also includes the logic to load, manage, and run plugins.

libscap is designed to export a generic capture source abstraction to the upper layers
of the stack. This means that no matter how you collect data (kernel module, eBPF
probe, a plugin), programs that use libscap will have a consistent way to enumerate
and control data sources, start and stop captures, and receive captured events, and
you won’t have to worry about the nuances of interfacing with these disparate input
sources.

Supporting Trace Files
Another extremely important piece of functionality in libscap is support for trace
files. If you’ve ever created or opened a PCAP file with Wireshark or tcpdump, we’re
sure you understand how useful (and powerful!) the concept of trace files is. If not,
allow us to explain.

In addition to capturing and decoding network traffic, protocol analyzers (like Wire‐
shark and tcpdump) let you “dump” the captured network packets into a trace file.
The trace file contains a copy of each packet so that later you can open it to analyze
the activity of that network segment. You can also share it with other people or filter
its contents to isolate relevant information.

Trace files are often referred to as PCAP files, a name that originates from the .pcap
file format used to encode the data inside them (an open, standardized format
understood by every networking tool in the universe). This enables an endless list of
the capture now, analyze later workflows that are critical in computer networks.

Many Falco users don’t realize that Falco supports trace files using the .pcap format.
This feature is extremely powerful and should definitely be part of your arsenal as
you gain more experience. For example, trace files are invaluable when it comes to
writing new rules.

34 | Chapter 3: Understanding Falco’s Architecture

We’ll talk extensively about how to leverage trace files, for example in Chapters 4
and 13, but for now let’s whet your appetite by teaching you how to create a trace
file and have Falco read it, in two simple steps. To do that, we need to introduce a
command-line tool called sysdig. You’ll learn more about sysdig in Chapter 4, but for
the moment we’ll just use it as a simple trace file generator.

Step 1: Create the trace file
Install sysdig on your Linux host by following the installation instructions. After
finishing the installation, run the following on your command line, which instructs
sysdig to capture all of the system calls generated by the host and write them to a file
called testfile.scap:

$ sudo sysdig -w testfile.scap

Wait a few seconds to make sure your machine is working on it, then press Ctrl-C to
stop sysdig.

Now you have a snapshot of a few seconds’ worth of your host’s activity. Let’s take a
look at what it contains:

$ sysdig -r testfile.scap
1 17:41:13.628568857 0 prlcp (4358) < write res=0 data=.N;.n...
2 17:41:13.628573305 0 prlcp (4358) > write fd=6(<p>pipe:[43606]) size=1
3 17:41:13.628588359 0 prlcp (4358) < write res=1 data=.
4 17:41:13.609136030 3 gmain (2935) < poll res=0 fds=
5 17:41:13.609146818 3 gmain (2935) > write fd=4(<e>) size=8
6 17:41:13.609149203 3 gmain (2935) < write res=8 data=........
7 17:41:13.609151765 3 gmain (2935) > read fd=7(<i>) size=4096
8 17:41:13.609153301 3 gmain (2935) < read res=-11(EAGAIN) data=
9 17:41:13.626956525 0 Xorg (3214) < epoll_wait res=1
10 17:41:13.626964759 0 Xorg (3214) > setitimer
11 17:41:13.626966955 0 Xorg (3214) < setitimer
12 17:41:13.626969972 0 Xorg (3214) > recvmsg fd=42(<u>@/tmp/.X11-unix/X0)
13 17:41:13.626976118 0 Xorg (3214) < recvmsg res=28 size=28 data=....E..... ...
14 17:41:13.626992585 0 Xorg (3214) > writev fd=42(<u>@/tmp/.X11-unix/X0) size=32
15 17:41:13.627013409 0 Xorg (3214) < writev res=32 data=...7E.............. ...

...

We’ll go through the format of this output in detail later, but you can probably tell
that this is a bunch of background input/output (I/O) activity performed by system
tools like Xorg, gmain, and prlcp, which are running on this machine while it’s idle.

Step 2: Process the trace file with Falco
Think of the trace file as taking us back in time: you took a snapshot of your host
at a specific point in time, and now you can trace the system calls generated on the
host around that time, observing every process in detail. Processing the trace file with

libscap | 35

https://oreil.ly/Rmkxr

Falco is easy and lets you see quickly if any security violations happened during that
time. Here’s a sample of its output:

$ falco -e testfile.scap
Wed Sep 29 18:04:00 2021: Falco version 0.30.0
Wed Sep 29 18:04:00 2021: Falco initialized with configuration file /etc/falco
/falco.yaml
Wed Sep 29 18:04:00 2021: Loading rules from file /etc/falco/falco_rules.yaml:
Wed Sep 29 18:04:00 2021: Reading system call events from file: testfile.scap
Events detected: 0
Rule counts by severity:
Triggered rules by rule name:
Syscall event drop monitoring:
 - event drop detected: 0 occurrences
 - num times actions taken: 0

Fortunately, it looks like we’re safe. This consistent, back-in-time way of running
Falco is useful when writing or unit-testing rules. We’ll talk more about it when we
deep dive into rules in Chapter 13.

Collecting System State
System state collection is an important task that’s specifically related to capturing
system calls. The kernel module and the eBPF probe produce raw system calls, which
lack some important context Falco needs.

Let’s take a look at an example. A very common system call is read, which, as the
name implies, reads a buffer of data from a file descriptor. Here is the prototype of
read:

ssize_t read(int fd, void *buf, size_t count);

It has three inputs: the numeric file descriptor identifier, a buffer to fill, and the buffer
size. It returns the amount of data that was written in the buffer.

A file descriptor is like the ID of an object inside the operating system kernel: it can
indicate a file, a network connection (specifically, a socket), the endpoint of a pipe, a
mutex (used for process synchronization), a timer, or several other types of objects.

Knowing the file descriptor number is not very useful when crafting a Falco rule. As
users, we prefer to think about a file or directory name, or maybe a connection’s IP
addresses and ports, than a file descriptor number. libscap helps us do that. When
Falco starts, libscap fetches a bunch of data from a diverse set of sources within
the operating system (for example, the /proc Linux filesystem). It uses this data to
construct a set of tables that can be used to resolve cryptic numbers—file descriptors,
process IDs, and so forth—into logical entities and their details, which are much
easier for humans to use.

36 | Chapter 3: Understanding Falco’s Architecture

This functionality is part of why Falco’s syntax is so much more expressive and usable
than that of most comparable tools. One theme that you will be hearing often in this
book is that granular data is useless without context. This gives you a hint of what that
means. Next we’ll dive into the other important Falco library: libsinsp.

libsinsp
libsinsp stands for “library for system inspection.” This library taps into the stream of
data libscap produces, enriches it, and provides a number of higher-level primitives to
work with it. Let’s start by exploring its most important functionality, the state engine.

State Engine
As we noted in the previous section, when Falco starts, libscap constructs a set of
tables to convert low-level identifiers, like file descriptor numbers, into high-level,
actionable information, like IP addresses and filenames. This is great, but what if a
program opens a file after Falco starts? For example, a very common system call in
Unix is open, which takes two input arguments, the filename and some flags, and
returns a file descriptor identifying the newly opened file:

int open(const char *pathname, int flags);

In practice, open, like many other system calls, creates a new file descriptor, effectively
changing the state of the process that called it. If a process invokes open after Falco
has been launched, its new file descriptor will not be part of the state table, and Falco
won’t know what to do with that descriptor. However, consider this: open is a system
call. More generally, system calls are always used to create, destroy, or modify file
descriptors. Recall, too, that the Falco libs capture all system calls from every process.

libsinsp, in particular, has logic to inspect every state-changing system call and, based
on the system call arguments, update the state tables. In other words, it tracks the
activity of the whole machine to keep the state in sync with the underlying operating
system. Further, it does so in a way that accurately supports containers. libsinsp
keeps this constantly updated information in a hierarchical structure. This structure
(Figure 3-4) starts with a process table, each entry of which contains a file descriptor
table, among other information.

These accurate, constantly updated state tables are at the core of Falco’s data enrich‐
ment, which in turn is a key building block of the rule engine.

libsinsp | 37

Figure 3-4. The libsinsp state hierarchy

Event Parsing
The state engine requires a substantial amount of logic to understand system calls
and parse their arguments. This is what libsinsp’s event parser does. State tracking
leverages event parsing, but it’s used for other purposes as well. For example, it
extracts useful arguments from system calls or other data sources, making them
available to the rule engine. It also collates and reconstructs buffers that can be spread
across multiple collected messages, making it easier to decode their content from
Falco rules.

Filtering
Filtering is one of the most important concepts in Falco, and it’s fully implemented
in libsinsp. A filter is a Boolean expression that ties together multiple checks, each
of which compares a filter field with a constant value. The importance of filters is
obvious when we look at rules. (Indeed, it’s so important that we dedicate all of
Chapter 6 to it.) Let’s take the simple rule shown here:

- rule: shell_in_container
 desc: shell opened inside a container
 condition: container.id != host and proc.name = bash
 output: shell in a container (user=%user.name container_id=%container.id)
 priority: WARNING

38 | Chapter 3: Understanding Falco’s Architecture

The condition section of the rule is a libsinsp filter. The condition in our example
checks that the container ID is not host and that the name of the process is bash.
Every captured system call that meets both criteria will trigger the rule.

libsinsp is responsible for defining and implementing system call–related filter fields.
It also contains the engine that evaluates filters and tells us if the rule should trigger,
so it’s not an exaggeration to say that libsinsp is the heart of Falco.

Output Formatting
If we take another look at the example rule, we can see that the output section makes
use of a syntax similar to that of the condition section:

 output: shell in a container (user=%user.name container_id=%container.id)

Output is what Falco prints when the rule triggers—and yes, you can use filter
fields in this section (the same fields that you can use in the condition section) by
prepending the % character to the field names. libsinsp has logic to resolve these fields
and create the final output string. What’s nice is that if you become an expert at
writing condition filters, you will also have mastered output strings!

One More Thing About libsinsp
By now you can probably see that a lot of Falco’s logic is in libsinsp. That’s deliberate.
Falco’s developers recognized the value (and elegance) of its data collection stack
and realized it could be the base for many other tools. That’s precisely why libsinsp
exists. It sits on top of the powerful Falco collection stack (which includes the drivers,
plugins, and libscap) and adds the most important pieces of the Falco logic in a
way that makes them reusable. What’s more, libsinsp includes all you need to collect
security and forensics data from containers, virtual machines, Linux hosts, and cloud
infrastructure. It’s stable, efficient, and well documented.

Several other open source and commercial tools have been built on top of libsinsp. If
you would like to write one, or if you are just curious and want to learn more, we
recommend you start at the falcosecurity/libs repository.

Rule Engine
The Falco rule engine is the component you interact with when you run Falco. Here
are some of the things that the rule engine is responsible for:

• Loading Falco rules files•
• Parsing the rules in a file•
• Applying local customizations (such as appends and overrides) to rules based on•

local rules files

Rule Engine | 39

https://oreil.ly/Cp2Nt

• Using libsinsp to compile the condition and output of each rule•
• Performing the appropriate action, including emitting the output, when a rule•

triggers

Thanks to the power of libscap and libsinsp, the rule engine is simple and relatively
independent from the rest of the stack.

Conclusion
Now you know what’s inside Falco and how its components relate to each other—
you’re well on your way to mastering it! In the next chapters we’ll dive deeper into
some of the components and concepts that this chapter introduced.

40 | Chapter 3: Understanding Falco’s Architecture

CHAPTER 4

Data Sources

In this chapter we’ll take a deep dive into the kernel of the operating system and
Falco’s data collection stack. You’ll learn how Falco captures the different types of
events that feed its rule engine, how its data collection process compares to alternative
approaches, and why it was built the way it is. You’ll get to understand the details well
enough that you will be able to pick and deploy the right drivers and plugins for your
needs by the end of this chapter.

The first order of business is understanding what data sources you can use in Falco.
Falco’s data sources can be grouped into two main families: system calls and plugins.
System calls are Falco’s original data source. They come from the kernel of the
operating system and offer visibility into the activities of processes, containers, virtual
machines, and hosts. Falco uses them to protect workloads and applications. The
second family of data sources, plugins, is relatively new: support was added in 2022.
Plugins connect various types of inputs to Falco, such as cloud logs and APIs.

Falco previously supported Kubernetes audit logs as a third, separate source type;
starting from Falco 0.32, however, this data source has been reimplemented as a
plugin, so we won’t cover it in this chapter.

System Calls
As we’ve stated several times already, system calls are a key source of data for Falco
and one of the ingredients that make it unique. But what exactly is a system call? Let’s
start with a high-level definition, courtesy of Wikipedia:

In computing, a system call (commonly abbreviated to syscall) is the programmatic
way in which a computer program requests a service from the kernel of the operat‐
ing system on which it is executed. This may include hardware-related services (for
example, accessing a hard disk drive or accessing the device’s camera), creation and

41

https://oreil.ly/pbS0B

execution of new processes, and communication with integral kernel services such as
process scheduling.

Let’s unpack this. At the highest level of abstraction, a computer consists of a bunch
of hardware that runs a bunch of software. In modern computing, however, it’s
extremely unusual for a program to run directly on the hardware. Instead, in the vast
majority of cases, programs run on top of an operating system. Falco’s drivers focus
specifically on the operating system powering the cloud and the modern data center:
Linux.

An operating system is a piece of software designed to conduct and support the
execution of other software. Among many other things, the OS takes care of:

• Scheduling processes•
• Managing memory•
• Mediating hardware access•
• Implementing network connectivity•
• Handling concurrency•

Clearly, the vast majority of this functionality needs to be exposed to the programs
that are running on top of the OS, so that they can do something useful. And clearly,
the best way for a piece of software to expose functionality is to offer an application
programming interface (API): a set of functions that client programs can call. This is
what system calls almost are: APIs to interact with the operating system.

Wait, why almost?

Well, the operating system is a unique piece of software, and you can’t just call it
like you would a library. The OS runs in a separate execution mode, called privileged
mode, that’s isolated from user mode, which is the context used for executing regular
processes (that is, running programs). This separation makes calling the OS more
complicated. With some CPUs, you invoke a system call by triggering an interrupt.
With most modern CPUs, however, you need to use a specific CPU instruction. If we
exclude this additional level of complexity, it is fair to say that system calls are APIs
to access operating system functionality. There are lots of them, each with their own
input arguments and return value.

Every program, with no exceptions, makes extensive and constant use of the system
call interface for anything that is not pure computation: reading input, generating
output, accessing the disk, communicating on the network, running a new program,
and so on. This means, as you can imagine, that observing system calls gives a very
detailed picture of what each process does.

Operating system developers have long treated the system call interface as a stable
API. This means that you can expect it to stay the same even if, inside, the kernel

42 | Chapter 4: Data Sources

changes dramatically. This is important because it guarantees consistency across
time and execution environments, making the system call API an ideal choice for
collecting reliable security signals. Falco rules, for example, can reference specific
system calls and assume that using them will work on any Linux distribution.

Examples
Linux offers many system calls—more than 300 of them. Going over all of them
would be next to impossible and very boring, so we’ll spare you that. However, we do
want to give you an idea of the kinds of system calls that are available.

Table 4-1 includes some of the system call categories that are most relevant for a secu‐
rity tool like Falco. For each category, the table includes examples of representative
system calls. You can find more information on each by entering man 2 X, where X is
the system call name, in a Linux terminal or in your browser’s search bar.

Table 4-1. Noteworthy system call categories

Category Examples
File I/O open, creat, close, read, write, ioctl, link, unlink, chdir, chmod, stat,

seek, mount, rename, mkdir, rmdir
Network socket, bind, connect, listen, accept, sendto, recvfrom, getsockopt,

setsockopt, shutdown
Interprocess
communication

pipe, futex, inotify_add_watch, eventfd, semop, semget, semctl, msgctl

Process management clone, execve, fork, nice, kill, prctl, exit, setrlimit, setpriority,
capset

Memory management brk, mmap, mprotect, mlock, madvise
User management setuid, getuid, setgid, getgid
System sethostname, setdomainname, reboot, syslog, uname, swapoff,

init_module, delete_module

If you are interested in taking a look at the full list of Linux system
calls, type man syscalls into a Linux terminal or a search engine.
This will show the official Linux manual page, which includes a
comprehensive list of system calls with hyperlinks to take a deeper
look at many of them. In addition, software engineer Filippo Val‐
sorda offers a nicely organized and searchable list on his personal
home page.

Observing System Calls
Given how crucial system calls are for Falco and for runtime security in general,
it’s important that you learn how to capture, observe, and interpret them. This is a

System Calls | 43

https://oreil.ly/P12lw

valuable skill that you will find useful in many situations. We’re going to show you
two different tools you can use for this purpose: strace and sysdig.

strace
strace is a tool that you can expect to find on pretty much every machine running a
Unix-compatible operating system. In its simplest form, you use it to run a program,
and it will print every system call issued by the program to standard error. In other
words, add strace to the beginning of an arbitrary command line and you will see all
of the system calls that command line generates:

$ strace echo hello world
execve("/bin/echo", ["echo", "hello", "world"], 0x7ffc87eed490 /* 32 vars */) = 0
brk(NULL) = 0x558ba22bf000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=121726, ...}) = 0
mmap(NULL, 121726, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f289009c000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\20\35\2\0\0\0\0\0" ...
fstat(3, {st_mode=S_IFREG|0755, st_size=2030928, ...}) = 0
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) ...
mmap(NULL, 4131552, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) ...
mprotect(0x7f288fc87000, 2097152, PROT_NONE) = 0
mmap(0x7f288fe87000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED| ...
mmap(0x7f288fe8d000, 15072, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED| ...
close(3) = 0
arch_prctl(ARCH_SET_FS, 0x7f289009b540) = 0
mprotect(0x7f288fe87000, 16384, PROT_READ) = 0
mprotect(0x558ba2028000, 4096, PROT_READ) = 0
mprotect(0x7f28900ba000, 4096, PROT_READ) = 0
munmap(0x7f289009c000, 121726) = 0
brk(NULL) = 0x558ba22bf000
brk(0x558ba22e0000) = 0x558ba22e0000
openat(AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=3004224, ...}) = 0
mmap(NULL, 3004224, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f288f7c2000
close(3) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 2), ...}) = 0
write(1, "hello world\n", 12hello world
) = 12
close(1) = 0
close(2) = 0
exit_group(0) = ?
+++ exited with 0 +++

Note how strace’s output mimics C syntax and looks like a stream of function
invocations, with the addition of the return value after the = symbol at the end of each

44 | Chapter 4: Data Sources

line. For example, take a look at the write syscall (in bold) that outputs the “hello
world” string to standard output (file descriptor 1). It returns the value 12, which is
the number of bytes that have been successfully written. Note how the string “hello
world” is printed to standard output before the write system call returns and strace
prints its return value on the screen.

A second way to use strace is pointing it to a running process by specifying the
process ID (PID) on the command line:

$ sudo strace -p`pidof vi`
strace: Process 16472 attached
select(1, [0], [], [0], NULL) = 1 (in [0])
read(0, "\r", 250) = 1
select(1, [0], [], [0], {tv_sec=0, tv_usec=0}) = 0 (Timeout)
select(1, [0], [], [0], {tv_sec=0, tv_usec=0}) = 0 (Timeout)
write(1, "\7", 1) = 1
select(1, [0], [], [0], {tv_sec=4, tv_usec=0}) = 0 (Timeout)
select(1, [0], [], [0], NULL
^C
strace: Process 16472 detached
<detached ...>

strace has some pros and some cons. It’s broadly supported, so either it’s already
available or it’s an easy package install away. It’s also simple to use and ideal when you
need to inspect a single process, which makes it perfect for debugging use cases.

As for disadvantages, strace instruments individual processes, which makes it unsuit‐
able for inspecting the activity of the whole system or when you don’t have a specific
process to start from. Further, strace is based on ptrace for system call collection,
which makes it very slow and unsuitable for use in production environments. You
should expect a process to slow down substantially (sometimes by orders of magni‐
tude) when you attach strace to it.

sysdig
We introduced sysdig in Chapter 3’s discussion of trace files. sysdig is more sophisti‐
cated than strace and includes several advanced features. While this can make it a bit
harder to use, the good news is that sysdig shares Falco’s data model, output format,
and filtering syntax—so you can use a lot of what you learn about Falco in sysdig, and
vice versa.

The first thing to keep in mind is that you don’t point sysdig to an individual process
like you do with strace. Instead, you just run it and it will capture every system call
invoked on the machine, inside or outside containers:

$ sudo sysdig
1 17:41:13.628568857 0 prlcp (4358) < write res=0 data=.N;.n...
2 17:41:13.628573305 0 prlcp (4358) > write fd=6(<p>pipe:[43606]) size=1
4 17:41:13.609136030 3 gmain (2935) < poll res=0 fds=

System Calls | 45

5 17:41:13.609146818 3 gmain (2935) > write fd=4(<e>) size=8
6 17:41:13.609149203 3 gmain (2935) < write res=8 data=........
9 17:41:13.626956525 0 Xorg (3214) < epoll_wait res=1
10 17:41:13.626964759 0 Xorg (3214) > setitimer
11 17:41:13.626966955 0 Xorg (3214) < setitimer

Usually this is too noisy and not very useful, so you can restrict what sysdig shows
you by using filters. sysdig accepts the same filtering syntax as Falco (which, inciden‐
tally, makes it a great tool to test and troubleshoot Falco rules). Here’s an example
where we restrict sysdig to capturing system calls for processes named “cat”:

$ sudo sysdig proc.name=cat & cat /etc/hosts
47190 14:40:39.913809700 12 cat (377163.377163) < execve res=0 exe=cat
args=/etc/hosts. tid=377163(cat) pid=377163(cat) ptid=5860(zsh) cwd=
fdlimit=1024 pgft_maj=0 pgft_min=60 vm_size=424 vm_rss=4 vm_swap=0 comm=cat
cgroups=cpuset=/user.slice.cpu=/user.slice.cpuacct=/.io=/user.slice.memory=
/user.slic... env=SYSTEMD_EXEC_PID=3558.GJS_DEBUG_TOPICS=JS ERROR;JS
LOG.SESSION_MANAGER=local/... tty=34817 pgid=377163(cat) loginuid=1000 flags=0
47194 14:40:39.913846153 12 cat (377163.377163) > brk addr=0
47196 14:40:39.913846951 12 cat (377163.377163) < brk res=55956998C000
vm_size=424 vm_rss=4 vm_swap=0
47205 14:40:39.913880404 12 cat (377163.377163) > arch_prctl
47206 14:40:39.913880871 12 cat (377163.377163) < arch_prctl
47207 14:40:39.913896493 12 cat (377163.377163) > access mode=4(R_OK)
47208 14:40:39.913900922 12 cat (377163.377163) < access res=-2(ENOENT)
name=/etc/ld.so.preload
47209 14:40:39.913903872 12 cat (377163.377163) > openat dirfd=-100(AT_FDCWD)
name=/etc/ld.so.cache flags=4097(O_RDONLY|O_CLOEXEC) mode=0
47210 14:40:39.913914652 12 cat (377163.377163) < openat
fd=3(<f>/etc/ld.so.cache) dirfd=-100(AT_FDCWD) name=/etc/ld.so.cache
flags=4097(O_RDONLY|O_CLOEXEC) mode=0 dev=803

This output requires a little more explanation than strace’s. The fields sysdig prints
are:

• Incremental event number•
• Event timestamp•
• CPU ID•
• Command name•
• Process ID and thread ID (TID), separated by a dot•
• Event direction (> means enter, while < means exit)•
• Event type (for our purposes, this is the system call name)•
• System call arguments•

Unlike strace, sysdig prints two lines for each system call: the enter line is generated
when the system call starts and the exit line is printed when the system call returns.

46 | Chapter 4: Data Sources

This approach works well if you need to identify how long a system call took to run
or pinpoint a process that is stuck in a system call.

Also note that, by default, sysdig prints thread IDs in addition to process IDs. Threads
are the core execution unit for the operating system and thus for sysdig as well.
Multiple threads can exist within the same process or command and share resources,
such as memory. The TID is the basic identifier to follow when tracking execution
activity in your machine. You do that by just looking at the TID number, or by
filtering out the noise with a command line like this one:

$ sysdig thread.tid=1234

which will preserve the execution flow only for thread 1234.

Threads live inside processes, which are identified by a process ID. A lot of the
processes running on an average Linux box are single-threaded, and in that case
thread.tid is the same as proc.pid. Filtering by proc.pid is useful to observe how
threads interact with each other inside a process.

Trace files
As you learned in Chapter 3, you can instruct sysdig to save the system calls it
captures to a trace file, like so:

$ sudo sysdig -w testfile.scap

You will likely want to use a filter to keep the file size under control. For example:

$ sudo sysdig -w testfile.scap proc.name=cat

You can also use filters when reading trace files:

$ sysdig -r testfile.scap proc.name=cat

sysdig’s filters are important enough that we will devote a full chapter (Chapter 6) to
them.

We recommend you play with sysdig and explore the activity of common programs
in Linux. This will be helpful later, when creating or interpreting Falco rules.

Capturing System Calls
All right, system calls are cool and we need to capture them. So what’s the best way to
do it?

Earlier in this chapter, we described how system calls involve transitioning the execu‐
tion flow from a running process to the kernel of the operating system. Intuitively,
and as shown in Figure 4-1, there are two places where system calls can be captured:
in the running process or the operating system kernel.

Capturing System Calls | 47

1 Run man 2 ptrace for more information on this.

Figure 4-1. System call capture options

Capturing system calls in a running process typically involves modifying either the
process or some of its libraries with some kind of instrumentation. The fact that most
programs in Linux use the C standard library, also known as glibc, to execute system
calls makes instrumenting it quite appealing. As a consequence, there are abundant
tools and frameworks to modify glibc (and other system libraries) for instrumentation
purposes. These techniques can be static, changing the library’s source code and
recompiling it, or dynamic, finding its location in the address space of the target
process and inserting hooks in it.

Another method to capture system calls without instrumenting the
OS kernel involves using the operating system’s debugging facili‐
ties. For example, strace uses a facility called ptrace,1 which is at the
base of tools like the GNU debugger (gdb).

The second option involves intercepting the system call execution after it has transi‐
tioned to the operating system. This requires running some code in the OS kernel
itself. It tends to be more delicate and riskier, because running code in the kernel
requires elevated privileges. Anything running in the kernel has potential control of
the machine, its processes, its users, and its hardware. Therefore, a bug in anything
that runs inside the kernel can cause major security risks, data corruption, or, in some
cases, even a machine crash. This is why many security tools pick instrumentation
option 1 and capture system calls at the user level, inside the process.

Falco does the opposite: it sits squarely on the kernel instrumentation side. The
rationale behind this choice can be summarized in three words: accuracy, perfor‐
mance, and scalability. Let’s explore each in turn.

48 | Chapter 4: Data Sources

Accuracy
User-level instrumentation techniques—in particular, those that work at the glibc
level—have a couple of major problems. First, a motivated attacker can evade them
by, well, not using glibc! You don’t have to use a library to issue system calls, and
attackers can easily craft a simple sequence of CPU instructions instead, completely
bypassing the glibc instrumentation. Not good.

Even worse, there are major categories of software that just don’t load glibc at all. For
example, statically linked C programs, very common in containers, import glibc func‐
tions at compile time and embed them in their executables. With these programs, you
don’t have the option to replace or modify the library. The same goes for programs
written in Go, which has its own statically linked system call interface library.

Kernel-level capture doesn’t suffer from these limitations. It supports any language,
any stack, and any framework, because system call collection happens at a level below
all of the libraries and abstraction layers. This means that kernel-level instrumenta‐
tion is much harder for attackers to evade.

Performance
Some user-level capture techniques, such as using ptrace, have significant overhead
because they generate a high number of context switches. Every single system call
needs to be uniquely delivered to a separate process, which requires the execution to
ping-pong between processes. This is very, very slow, to the point that it becomes an
impediment to using such techniques in production, where such a substantial impact
on the instrumented processes is not acceptable.

It’s true that glibc-based capture can be more efficient, but it still introduces high
overhead for basic operations like timestamping events. Kernel-level capture, by
contrast, requires zero context switches and can collect all of the necessary context,
like timestamps, from within the kernel. This makes it much faster than any other
technique, and thus the most suitable for production.

Scalability
As the name implies, process-level capture requires “doing something” for every
single process. What that something is can vary, but it still introduces an overhead
that is proportional to the number of observed processes. That’s not the case with
kernel-level instrumentation. Take a look at Figure 4-2.

If you insert kernel instrumentation in the right place, it is possible to have one single
instrumentation point (labeled 2 in Figure 4-2), no matter how many processes are
running. This ensures not only maximum efficiency but also the certainty that you
will never miss anything, because no process escapes kernel-level capture.

Capturing System Calls | 49

Figure 4-2. System call capture scalability, process-level versus kernel

So What About Stability and Security?
We mentioned that kernel-level instrumentation is more delicate, because a bug can
cause serious problems. You might wonder, “Am I taking additional risk by choosing
a tool like Falco, which is based on kernel instrumentation, instead of a product based
on user-level instrumentation?”

Not really. First of all, kernel-level instrumentation benefits from well-documented,
stable hooking interfaces, while approaches like glibc-based capture are less clean and
intrinsically riskier. They cannot crash the machine, but they can absolutely crash
the instrumented process, with results that are typically bad. In addition to that,
technologies like eBPF greatly reduce the risk involved in running code in the kernel,
making kernel-level instrumentation viable even for risk-averse users.

Kernel-Level Instrumentation Approaches
We hope we’ve convinced you that, whenever it’s available, kernel instrumentation
is the way to go for runtime security. The question now becomes, what is the best
mechanism to implement it? Among the different available approaches, two are
relevant for a tool like Falco: kernel modules or eBPF probes. Let’s take a look at each
of these approaches.

Kernel modules
Loadable kernel modules are pieces of code that can be loaded into the kernel at
runtime. Historically, modules have been heavily used in Linux (and many other
operating systems) to make the kernel extensible, efficient, and smaller.

Kernel modules extend the kernel’s functionality without the need to reboot the
system. They are typically used to implement device drivers, network protocols, and
filesystems. Kernel modules are written in C and are compiled for the specific kernel
inside which they will run. In other words, it’s not possible to compile a module

50 | Chapter 4: Data Sources

on one machine and then use it on another one (unless they have exactly the same
kernel). Kernel modules can also be unloaded when the user doesn’t need them
anymore, to save memory.

Linux has supported kernel modules for a very long time, so they work even with
very old versions of Linux. They also have extensive access to the kernel, which
means there are very few restrictions on what they can do. That makes them a great
choice to collect the detailed information required by a runtime security tool like
Falco. Since they are written in C, kernel modules are also very efficient and therefore
a great option when performance is important.

If you want to see the list of modules that are loaded in your Linux box, use this
command:

$ sudo lsmod

eBPF
As mentioned in Chapter 1, eBPF is the “next generation” of the Berkeley Packet
Filter (BPF). BPF was designed in 1992 for network packet filtering with BSD oper‐
ating systems, and it is still used today by tools like Wireshark. BPF’s innovation
was the ability to execute arbitrary code in the kernel of the operating system. Since
such code has more or less unlimited privileges on the machine, however, this is
potentially risky and must be done with care.

Figure 4-3 shows how BPF safely runs arbitrary packet filters in the kernel.

Figure 4-3. BPF filter deployment steps

Capturing System Calls | 51

Let’s take a look at the steps depicted here:

1. The user inputs a filter in a program like Wireshark (e.g., port 80).1.
2. The filter is fed to a compiler, which converts it into bytecode for a virtual2.

machine. This is conceptually similar to compiling a Java program, but both the
program and the virtual machine (VM) instruction set are much simpler when
using BPF. Here, for example, is what our port 80 filter becomes after being
compiled:

(000) ldh [12]
(001) jeq #0x86dd jt 2 jf 10
(002) ldb [20]
(003) jeq #0x84 jt 6 jf 4
(004) jeq #0x6 jt 6 jf 5
(005) jeq #0x11 jt 6 jf 23
(006) ldh [54]
(007) jeq #0x50 jt 22 jf 8
(008) ldh [56]
(009) jeq #0x50 jt 22 jf 23
(010) jeq #0x800 jt 11 jf 23
(011) ldb [23]
(012) jeq #0x84 jt 15 jf 13
(013) jeq #0x6 jt 15 jf 14
(014) jeq #0x11 jt 15 jf 23
(015) ldh [20]
(016) jset #0x1fff jt 23 jf 17
(017) ldxb 4*([14]&0xf)
(018) ldh [x + 14]
(019) jeq #0x50 jt 22 jf 20
(020) ldh [x + 16]
(021) jeq #0x50 jt 22 jf 23
(022) ret #262144
(023) ret #0

3. To prevent a compiled filter from doing damage, it is analyzed by a verifier before3.
being injected into the kernel. The verifier examines the bytecode and determines
if the filter has dangerous attributes (for example, infinite loops that would cause
the filter to never return, consuming a lot of kernel CPU).

4. If the filter code is not safe, the verifier rejects it, returns an error to the user, and4.
stops the loading process. If the verifier is happy, the bytecode is delivered to the
virtual machine, which runs it against every incoming packet.

eBPF is a more recent (and much more capable) version of BPF, added to Linux
in 2014 and first included with kernel version 3.18. eBPF takes BPF’s concepts to
new levels, delivering more efficiency and taking advantage of newer hardware.

52 | Chapter 4: Data Sources

Most importantly, with hooks throughout the kernel, eBPF enables use cases that
go beyond simple packet filtering, such as tracing, performance analysis, debugging,
and security. It’s essentially a general-purpose code execution VM that guarantees the
programs it runs won’t cause damage.

Here are some of the improvements that eBPF introduces over classic BPF:

• A more advanced instruction set, which means eBPF can run much more sophis‐•
ticated programs.

• A just-in-time (JIT) compiler. While classic BPF was interpreted, eBPF programs,•
after being validated, are converted into native CPU instructions. This means
they run much faster, at close to native CPU speeds.

• The ability to write real C programs instead of just simple packet filters.•
• A mature set of libraries that let you control eBPF from languages like Go.•
• The ability to run subprograms and helper functions.•
• Safe access to several kernel objects. eBPF programs can safely “peek” into kernel•

structures to collect information and context, which are gold for tools like Falco.
• The concept of maps, memory areas that can be used to exchange data with the•

user level efficiently and easily.
• A much more sophisticated verifier, which lets eBPF programs do more while•

preserving their safety.
• The ability to run in many more places in the kernel than the network stack,•

using facilities like tracepoints, kprobes, uprobes, Linux Security Modules hooks,
and Userland Statically Defined Tracing (USDT).

eBPF is evolving quickly and is rapidly becoming the standard way to extend the
Linux kernel. eBPF scripts are flexible and safe and run extremely fast, making them
perfect for capturing runtime activity.

The Falco Drivers
Falco offers two different driver implementations that implement both the
approaches we just described: a kernel module and an eBPF probe. The two imple‐
mentations have the same functionality and are interchangeable when using Falco.
Therefore, we can describe how they work without focusing on a specific one.

The high-level capture flow is shown in Figure 4-4.

The Falco Drivers | 53

2 For more information, see the article “Using the Linux Kernel Tracepoints” by Mathieu Desnoyer.

Figure 4-4. The driver’s capture flow

The approach used by the Falco drivers to capture a system call involves three main
steps, labeled in the figure:

1. A kernel facility called a tracepoint intercepts the execution of the system call.1.
The tracepoint makes it possible to insert a hook at a specific place in the
operating system kernel so that a callback function will be called every time
kernel execution reaches that point.2 The Falco drivers install two tracepoints for
system calls: one where system calls enter the kernel, and another one where they
exit the kernel and give control back to the caller process.

2. While in the tracepoint callback, the driver “packs” the system call arguments2.
into a shared memory buffer. During this phase, the system call is also time‐
stamped and additional context is collected from the operating system (for exam‐
ple, the thread ID, or the connection details for some socket syscalls). This phase
needs to be super-efficient, because the system call cannot be executed until the
driver’s tracepoint callback returns.

3. The shared buffer now contains the system call data, and Falco can access it3.
directly through libscap (introduced in Chapter 3). No data is copied during this
phase, which minimizes CPU utilization while optimizing cache coherency.

There are a few things to keep in mind with regard to system call capture in Falco.
The first one is that the way system calls are packed in the buffer is flexible and
doesn’t necessarily reflect the arguments of the original calls. In some cases, the driver
skips unneeded arguments to maximize performance. In other cases, the driver adds

54 | Chapter 4: Data Sources

https://oreil.ly/5ulP5

fields that contain state, useful context, or additional information. For example, a
clone event in Falco contains many fields that add information about the newly
created process, like the environment variables.

The second thing to keep in mind is that, even if system calls are by far the most
important sources of data that the drivers capture, they are not the only ones. Using
tracepoints, the drivers hook into other places in the kernel, like the scheduler, to
capture context switches and signal deliveries. Take a look at this command:

$ sysdig evt.type=switch

This line of code displays events captured through the context switch tracepoint.

Which Driver Should You Use?
If you’re not sure which driver you should use, here are some simple guidelines:

• Use the kernel module when you have an I/O-intensive workload and you care•
about keeping the instrumentation overhead as low as possible. The kernel mod‐
ule has lower overhead than the eBPF probe, and on machines that generate a
high number of system calls it will have less of a performance impact on running
processes. It’s not easy to estimate how much better the kernel module will
perform, since this depends on how many system calls a process is making, but
expect the difference to be noticeable with disk- or network-intensive workloads
that generate many system calls every second.

• You should also use the kernel module when you need to support a kernel older•
than Linux version 4.12.

• Use the eBPF probe in all other situations.•

That’s it!

Capturing System Calls Within Containers
The beauty of tracepoint-based kernel-level capture is that it sees everything that
runs in a machine, inside or outside a container. Nothing escapes it. It is also easy to
deploy, with no need to run anything inside the monitored containers, and it doesn’t
require sidecars.

Figure 4-5 shows how you deploy Falco in a containerized environment, with a
simplified diagram of a machine running three containers (labeled 1, 2, and 3) based
on different container runtimes.

The Falco Drivers | 55

Figure 4-5. Deploying Falco in a containerized environment

In such a scenario, Falco is typically installed as a container. Orchestrators like Kuber‐
netes make it easy to deploy Falco on every host, with facilities like DaemonSets and
Helm charts.

When the Falco container starts, it installs the driver in the operating system. Once
installed, the driver can see the system calls of any process in any container, with no
further user action required, because all of these system calls go through the same
tracepoint. Advanced logic in the driver can attribute each captured system call to its
container so that Falco always knows which container has generated a system call.
Falco also fetches metadata from the container runtime, making it easy to create rules
that rely on container labels, image names, and other metadata. (Falco includes a
further level of enrichment based on Kubernetes metadata, which we’ll discuss in the
next chapter.)

Running the Falco Drivers
Now that you have an idea of how they work, let’s take a look at how to deploy
and use the two Falco drivers on a local machine. (If you want to install Falco in
production environments, see Chapters 9 and 10.)

Kernel Module
Falco, by default, runs using the kernel module, so no additional steps are required
if you want to use that as your driver. Just run Falco, and it will pick up the kernel
module. If you want to unload the kernel module and load a different version, for
example because you have built your own customized module, use the following
commands:

$ sudo rmmod falco
$ sudo insmod path/to/your/module/falco.ko

56 | Chapter 4: Data Sources

eBPF Probe
To enable eBPF support in Falco, you need to set the FALCO_BPF_PROBE environment
variable. If you set it to an empty value (FALCO_BPF_PROBE=""), Falco will load the
eBPF probe from ~/.falco/falco-bpf.o. Otherwise, you can explicitly point to the path
where the eBPF probe resides:

export FALCO_BPF_PROBE="path/to/your/ebpf/probe/falco-bpf.o"

After setting the environment variable, just run Falco normally and it will use the
eBPF probe.

To ensure that Falco’s eBPF probe (and any other eBPF program)
runs with the best performance, make sure that your kernel has
CONFIG_BPF_JIT enabled and that net.core.bpf_jit_enable is set
to 1. This enables the BPF JIT compiler in the kernel, substantially
speeding up the execution of eBPF programs.

Using Falco in Environments Where Kernel Access
Is Not Available: pdig
Kernel instrumentation, whenever possible, is always the way to go. But what if
you want to run Falco in environments where access to the kernel is not allowed?
This is common in managed container environments, like AWS Fargate. In such
environments, installing a kernel module is not an option because the cloud provider
blocks it.

For these situations, the Falco developers have implemented a user-level instrumen‐
tation driver called pdig. It is built on top of ptrace, so it uses the same approach
as strace. Like strace, pdig can operate in two ways: it can run a program that you
specify on the command line, or it can attach to a running process. Either way, pdig
instruments the process and its children in a way that produces a Falco-compatible
stream of events.

Note that pdig, like strace, requires you to enable CAP_SYS_PTRACE for the container
runtime. Make sure you launch your container with this capability, or pdig will fail.

The eBPF probe and kernel module work at the global host level, whereas pdig works
at the process level. This can make container instrumentation more challenging.
Fortunately, pdig can track the children of an instrumented process. This means
that running the entrypoint of a container with pdig will allow you to capture every
system call generated by any process for that container.

Running the Falco Drivers | 57

https://oreil.ly/amRqP

The biggest limitation of pdig is performance. ptrace is versatile, but it introduces
substantial overhead on the instrumented processes. pdig employs several tricks to
reduce this overhead, but it’s still substantially slower than the kernel-level Falco
drivers.

Running Falco with pdig
You run pdig with the path (and arguments, if any) of the process you want to trace,
much as you would with strace. Here’s an example:

$ pdig [-a] curl https://example.com/

The -a option enables the full filter, which provides a richer set of instrumented
system calls. You probably don’t want to use this option with Falco, for performance
reasons.

You can also attach to a running process with the -p option:

$ pdig [-a] -p 1234

To observe any effect, you will need to have Falco running in a separate process. Use
the -u command-line flag:

$ falco -u

This will enable user-space instrumentation.

Falco Plugins
In addition to system calls, Falco can collect and process many other types of data,
such as application logs and cloud activity streams. Let’s round out this chapter by
exploring the mechanism at the base of this functionality: Falco’s plugins framework.

Plugins are a modular, flexible way to extend Falco ingestion. Anyone can use them
to add a new source of data, local or remote, to Falco. Figure 4-6 indicates where
plugins sit in the Falco capture stack: they are inputs for libscap and act as alternatives
to the drivers that are used when capturing system calls.

Plugins are implemented as shared libraries that conform to a documented API.
They allow you to add new event sources that you can then evaluate using filtering
expressions and Falco rules. They also let you define new fields that can extract
information from events.

58 | Chapter 4: Data Sources

Figure 4-6. Falco plugins

Plugin Architecture Concepts
Plugins are dynamic shared libraries (.so files in Unix, .dll files in Windows) that
export C calling convention functions. Falco dynamically loads these libraries and
calls the exported functions. Plugins are versioned using semantic versioning to
minimize regressions and compatibility issues. They can be written in any language,
as long as they export the required functions. Go is the preferred language for writing
plugins, followed by C/C++.

Plugins include two main pieces of functionality, also called capabilities:

Event sourcing
This capability is used to implement a new event source. An event source can
“open” and “close” a stream of events and can return an event to libscap via a next
method. In other words, it’s used to feed new “stuff ” to Falco.

Field extraction
Field extraction focuses on producing fields from events generated by other
plugins or by the core libraries. Fields, you’ll recall, are the basic components of
Falco rules, so exposing new fields is equivalent to expanding the applicability of
Falco rules to new domains. An example is JSON parsing, where a plugin might
be able to extract fields from arbitrary JSON payloads. You’ll learn more about
fields in Chapter 6.

An individual plugin can offer the event sourcing capability, field extraction capabil‐
ity, or both at the same time. Capabilities are exported by implementing certain
functions in the plugin API interface.

Falco Plugins | 59

3 Note that the Falco developers are working on removing this limitation. As a consequence, in the future Falco
will be able to receive data from multiple plugins at the same time or to capture system calls and at the same
time use plugins.

4 A dynamic library is loaded using dlopen/dlsym in Unix, or LoadLibrary/GetProcAddress in Windows.

To make it easier to write plugins, there are Go and C++ SDKs that handle the details
of memory management and type conversion. They provide a streamlined way to
implement plugins without having to deal with all the details of lower-level functions
that make up the plugin API.

The libraries will do everything possible to validate data that comes from the plugins,
to protect Falco and other consumers from corrupted data. However, for perfor‐
mance reasons plugins are trusted, and because they run in the same thread and
address space as Falco, they could crash the program. Falco assumes that you, as a
user, are in control and will make sure only plugins you have vetted are loaded or
packaged.

How Falco Uses Plugins
Falco loads plugins based on the configuration in falco.yaml. As of summer 2022,
when this book went to press, if a source plugin is loaded, the only events processed
are from that plugin, and system call capture is disabled. Also, a running Falco
instance can use only one plugin. If, on a single machine, you want Falco to collect
data from multiple plugins or from plugins and drivers, you will need to run multiple
Falco instances and use a different source for each of them.3

Falco configures plugins via the plugins property in falco.yaml. Here’s an example:

plugins:
 - name: cloudtrail
 library_path: libcloudtrail.so
 init_config: "..."
 open_params: "..."

load_plugins: [cloudtrail]

The plugins property in falco.yaml defines the set of plugins that Falco can load, and
the load_plugins property controls which plugins load when Falco starts.

The mechanics of loading a plugin are implemented in libscap and leverage the
dynamic library functionality of the operating system.4 The plugin loading code also
ensures that:

• The plugin is valid (i.e., it exports the set of expected symbols).•
• The plugin’s API version number is compatible with the plugin framework.•

60 | Chapter 4: Data Sources

https://oreil.ly/ylcdv
https://oreil.ly/0c2CH

• Only one source plugin is loaded at a time for a given event source.•
• If a mix of source and extractor plugins is loaded for a given event source, the•

exported fields have unique names that don’t overlap across plugins.

An up-to-date list of available Falco plugins can be found in the plugins repository
under the Falcosecurity GitHub organization. As of this writing, the Falcosecurity
organization officially maintains plugins for CloudTrail, GitHub, Okta, Kubernetes
audit logs, and JSON. In addition to these, there are third-party plugins available for
seccomp and Docker.

If you are interested in writing your own plugins, you will find everything you need
to know in Chapter 14. If you’re impatient and just want to get to the code, you can
find the source code for all the currently available plugins in the plugins repo.

Conclusion
Congratulations on making it to the end of a rich chapter packed with a lot of
information! What you learned here is at the core of understanding and operating
Falco. It also constitutes a solid architectural foundation that will be useful every time
you need to run or deploy a security tool on Linux.

Next, you’re going to learn about how context is added to the captured data to make
Falco even more powerful.

Conclusion | 61

https://oreil.ly/g495C

CHAPTER 5

Data Enrichment

Falco’s architecture allows you to capture events from different data sources, as you’ve
learned. This process delivers raw data, which can be very rich but isn’t very useful for
runtime security unless paired with the right context. That’s why Falco first extracts
and then enriches the raw data with contextual information, so that the rule author
can comfortably use it. Typically, we refer to this information as the event metadata.
Getting metadata can be a complex task, and getting it efficiently is even more
complex.

You’ve already seen that the system-state collection capabilities in libscap and the
state engine implemented by libsinsp (discussed in Chapter 3) are central to this
activity, but there’s much more to discover. In this chapter, we’ll delve into the design
aspects of the Falco stack to help you better understand how data enrichment works.
In particular, we will show you libsinsp’s efficient layered approach to obtaining
system, container, and Kubernetes metadata for system call (syscall) events. This is
what enables you to access the information you need relating to different contexts
(depending on your use case), such as a container’s ID or the name of a Pod where
a suspicious event occurred. Finally, we’ll show you how plugins, Falco’s other main
data source, can implement their own data enrichment mechanisms, opening up
infinite possibilities.

Understanding Data Enrichment for Syscalls
Understanding how data enrichment works will help you to fully understand Falco’s
mechanics. Moreover, although data enrichment usually works out of the box, each
context Falco supports has its own implementation and may need a specific configu‐
ration. Knowing the implementation details will help you troubleshoot and fine-tune
Falco.

63

Data enrichment in Falco refers to the process of providing the rule engine with event
metadata obtained by decoding the raw data or collecting it from complementary
sources. You can then use this metadata as fields in both rule conditions and output
formatting. Falco organizes the collected metadata in a set of field classes, so you
can easily recognize which context they belong to. (You can find the complete list of
supported fields in Chapter 6 or, if you have a Falco installation at your fingertips, by
typing falco --list.)

One of the most significant examples of data enrichment is when using system calls
as a data source, which you learned about in Chapter 4. Since syscalls are essential
to every application, they occur in just about every context. Information directly
provided by a syscall would not be useful without context, however, so it therefore
becomes critical to collect and connect the surrounding information.

Table 5-1 shows the different categories of metadata that Falco collects for syscalls,
and the field classes associated with each data enrichment layer.

Table 5-1. Contextual metadata for system calls

Context Metadata Field classes
Operating system Processes and threads

File descriptors
Users and groups
Network interfaces

proc, thread, fd, fdlist, user, group

Container ID and name
Type
Image name
Privileged
Mount points
Health checks

container

Kubernetes Namespace
Pod
ReplicationController
Service
ReplicaSet
Deployment

k8s

The enrichment process happens in user space and involves several components of
Falco’s stack. Most importantly, the metadata must be immediately available every
time the rule engine requests it. Collecting it from other complementary sources on
the fly would thus not be feasible, as attempting to do so would risk blocking the rule
engine and the entire flow of incoming events.

For that reason, data enrichment involves two distinct phases. The first initializes
a local state by collecting in bulk the data that is present when Falco starts, and
the second continuously updates the local state while Falco runs. Having a local

64 | Chapter 5: Data Enrichment

1 In older Falco versions, the Kubernetes audit log was a built-in data source. From Falco 0.32, this data source
has been refactored out as a plugin.

state allows Falco to extract metadata immediately. This design is shared among all
implementation layers, as you will discover in the following sections.

Kubernetes Support and the Kubernetes Audit Log Data Source
In the Falco documentation, you will find mention of both Kubernetes support and
Kubernetes Audit Events support. You might think enabling Kubernetes support
implies adding support for Kubernetes audit logs as a data source, but they’re actually
two distinct features.

Kubernetes support only concerns Falco’s ability to enrich an event originating from a
syscall with Kubernetes metadata. In rules, that metadata is available through the k8s
field class. That’s what we’ll talk about in this chapter.

On the other hand, the Kubernetes audit log is an independent data source,1 provid‐
ing events that do not originate from a syscall. You can quickly identify rules that
use this data source because they include source: k8s_audit. To use the Kubernetes
audit log as a data source, you must enable support for audit logging in Kubernetes
and use Falco’s k8saudit plugin; Kubernetes then directly feeds Falco with events,
sending them via a webhook. The Kubernetes audit log data source already provides
all the necessary context data along with the originating event, and therefore no
specific enrichment mechanism is needed. The metadata is accessible through the ka
field class.

You can enable the two features (support for Kubernetes and for the audit log as a
data source) separately, since they are not dependent on each other.

Operating System Metadata
As you learned in Chapter 3, libscap and libsinsp work together to provide all the
necessary infrastructure to create and update contextual information in a hierarchical
structure composed of several state tables (see Figure 3-4 if you need a refresher).
Those tables include information about:

• Processes and threads•
• File descriptors•
• Users and groups•
• Network interfaces•

Understanding Data Enrichment for Syscalls | 65

https://oreil.ly/f565p
https://oreil.ly/p7OsC

At a high level, the mechanism for collecting system information is relatively simple.
At start time, one of libscap’s tasks is to scan the process information pseudo-filesystem,
or procfs, which provides a user-space interface to the Linux kernel data structures
and contains most of the information to initialize the state tables. It also collects
system information (not available in /proc) using functions provided by the standard
C library, which in turn obtains the data from the underlying operating system
(for example, getpwent and getgrent for users and groups lists, respectively, and
getifaddrs for the network interfaces list). At this point, the initialization phase is
complete.

libscap and libsinsp rely on the host’s procfs to access the host’s
system information. That happens by default when Falco runs on
the host since it can directly access the host’s /proc. However, when
Falco runs in a container, the /proc inside the container refers to a
different namespace. In such a situation, you can configure libscap
via the HOST_ROOT environment variable to read from an alternative
path. If you set HOST_ROOT, libscap will use its value as a base path
when looking for system paths. For example, when running Falco
in a container, the usual approach is to mount the host’s /proc
to /host/proc inside the container and set HOST_ROOT to /host. With
this setup, libscap will read from /host/proc, and thus it will use the
information provided by the host’s procfs.

Afterward, libsinsp comes into play with its state engine (see Figure 5-1). It updates
the tables by inspecting the constantly captured stream of syscalls provided by the
driver, which runs in kernel space. After the initialization phase, Falco will not need
to make any syscalls or tap into the system to obtain updates from the Linux kernel.
This approach has the double benefit of not creating noise in the system and having a
low impact on performance. Furthermore, this technique enables libsinsp to discover
system changes with low latency, allowing Falco to function as a streaming engine
(one of its most important design goals).

The last important thing to note is that libsinsp updates the state tables before
dispatching the event to the rule engine. This ensures that when the conditions or
output require metadata, it will always be available and consistent. You can then find
the system metadata grouped in the set of field classes you saw in Table 5-1: proc,
thread, fd, fdlist, user, and group.

This set of information represents the basic metadata that enables a rule author
to make a syscall event usable. Think about it: how would you use a numeric file
descriptor in a rule? A filename is much better!

66 | Chapter 5: Data Enrichment

https://oreil.ly/xso1E

2 The Container Runtime Interface (CRI) is a plugin interface introduced by Kubernetes that enables the
kubelet to use any container runtimes implementing the CRI.

Figure 5-1. System state collection before (1) and after (2) the initialization phase

The system information (i.e., the state tables) produced by this data enrichment layer
is also essential for collecting contextual information at the container level. We’ll look
at that next.

Container Metadata
Additional fundamental contextual information resides in the container runtime
layer. A container runtime is a software component that can run containers on a host
operating system. It is commonly responsible for managing container images and the
lifecycles of containers running on your system. It is also responsible for managing a
set of information related to each running container and providing that information
to other applications.

Because Falco is a cloud native runtime security tool, it needs to be able to deal
with container information. To achieve this goal, libsinsp works with the most
commonly used container runtime environments, including Docker, Podman, and
CRI-compatible2 runtimes like containerd and CRI-O.

When libsinsp finds a running container runtime on the host, the container metadata
enrichment functionality works out of the box in almost all cases. For example,

Understanding Data Enrichment for Syscalls | 67

https://oreil.ly/fiCGp

libsinsp tries to use Docker’s Unix socket at /var/run/docker.sock; if this exists, libsinsp
automatically connects to it and starts grabbing container metadata. libsinsp does the
same for Podman and containerd. For other CRI-compatible runtimes, you will need
to pass the socket path to Falco using the --cri command-line flag (for CRI-O, for
example, you would pass /var/run/crio/crio.sock).

If the HOST_ROOT environment variable is set, libsinsp will use its
value as the base path when looking for those Unix sockets. For
example, when running Falco in a container, it’s common to set
HOST_ROOT=/host and mount /var/run/docker.sock to /host/var/run/
docker.sock inside the container.

Regardless of which container runtime you are using, at initialization libsinsp requests
a list of all running containers, which it uses to initialize an internal cache. At
the same time, libsinsp updates the state table of running processes and threads,
associating each of them with its respective container ID, if any.

libsinsp handles subsequent updates by using the syscalls stream coming from the
driver (similar to what it does for system information). Since container information is
always associated with a process, libsinsp tracks all new processes and threads. When
it detects one, it looks up the corresponding container ID in the internal cache. If the
container ID is not in the cache, libsinsp queries the container runtime to gather the
missing data.

Dealing with Missing Metadata
The process of querying the container runtime happens asynchronously to avoid
blocking the stream of events. In some environments, this operation is not fast
enough to be completed asynchronously, so attempting it leads to empty container
metadata fields. For CRI-compatible runtimes, Falco provides an option to disable
asynchronous metadata fetching:

--disable-cri-async

Although you won’t generally need to use this, it can be helpful if you need to wait
for all the container metadata to be fetched before moving to the next input event so
that no metadata is lost. However, you might see a performance penalty depending
on the number of containers and the frequency with which they are created, started,
and stopped. Disabling asynchronous fetching can be helpful when debugging or in
systems with a very low syscall rate. In other circumstances, performance may be
significantly degraded.

Ultimately, each syscall-generated event that occurs in a container has a process or
thread ID that maps to a container ID and, consequently, to the container metadata

68 | Chapter 5: Data Enrichment

(as shown in Figure 5-2). So, when the rule engine requires this metadata, libsinsp
looks it up from the state tables and returns system information along with the
container metadata. You will find the available container metadata grouped in the
field class container, which can be used in both conditions and output formatting.

Figure 5-2. Container info in the libsinsp state hierarchy

Note that the field container.id can contain either the container ID or the special
value host. This special value indicates that the event did not happen inside a
container. The condition container.id != host is a common way to express a rule
that applies only in the context of a container.

In the final data enrichment layer, Falco collects the Kubernetes metadata associated
with system calls. We’ll look at how this works next.

Kubernetes Metadata
Kubernetes, the flagship project of the Cloud Native Computing Foundation, is an
open source platform for managing workloads and services. It has introduced many
new concepts that make it easier to manage and scale clusters and is the most popular
container orchestration system today.

One of the essential features of Kubernetes is encapsulating your applications in
objects called Pods, which contain one or more containers. Pods are ephemeral
objects that you can quickly deploy and easily replicate. Services in Kubernetes are an
abstraction that allows you to expose a set of Pods as a single network service. Finally,
Kubernetes lets you arrange those and many other objects into namespaces, which are
objects that allow partitioning of a single cluster into multiple virtual clusters.

Understanding Data Enrichment for Syscalls | 69

While these concepts greatly facilitate managing and automating clusters, they also
introduce a set of contextual information about how and where your application is
running. Awareness of this information is essential, since knowing that something
has happened in your Kubernetes cluster is of little use if you don’t know where it
happened (for example, in which namespace or Pod). Falco collects information such
as the container image name, Pod name, namespace, labels, annotations, and exposed
service names so it can offer as accurate a view as possible of your deployments and
applications. This is important for runtime alerting and protection of your infrastruc‐
ture, because you’re typically much more interested in what service or deployment is
showing a strange behavior than in getting a container ID or some other hard-to-link
piece of information. As a cloud native tool, Falco can readily obtain this metadata
and attach it to the event.

Similar to the operating system and container metadata collection mechanisms you
saw in the previous sections, this feature allows Falco to enrich syscall events by
adding Kubernetes metadata. For full Kubernetes support, you must opt in by passing
two command-line options to Falco:

--k8s-api (or just -k)
This enables Kubernetes support by connecting to the API server specified as an
argument (e.g., http://admin:password@127.0.0.1:8080).

--k8s-api-cert (or just -K)
This provides certificate materials to authenticate the user and (optionally) verify
the Kubernetes API server’s identity.

Further details are provided in Chapter 10.

When Falco is running in a Pod, Kubernetes injects that informa‐
tion in the container, so you just need to set:

-k https://$(KUBERNETES_SERVICE_HOST)
-K /var/run/secrets/kubernetes.io/serviceaccount/token

Most installation methods use this strategy to fetch those values
automatically.

Once Kubernetes support is configured, libsinsp will get all the necessary data from
Kubernetes to create and maintain a local copy of the state of the cluster. However,
unlike the other enrichment mechanisms that get metadata locally from the host,
libsinsp has to connect to the Kubernetes API server (usually a remote endpoint) to
get cluster information. Because of this difference, the implementation design needs
to take performance and scalability concerns into account.

70 | Chapter 5: Data Enrichment

3 The Downward API allows containers to consume information about themselves or the cluster without
using the Kubernetes API server. Among other things, it allows exposing the current node name through an
environment variable that can be then used in Falco command-line arguments.

A typical Falco deployment (pictured in Figure 5-3) runs one Falco sensor on every
node in the cluster. At startup, each sensor connects to the API server to collect the
cluster data and build the initial state locally. From then on, each sensor will use the
Kubernetes watch API to periodically update the local state.

Figure 5-3. A Falco deployment using a DaemonSet to ensure that all nodes run a copy
of a Pod

Since Falco sensors are distributed in the cluster (one per node) and grab data
from the API server—and because collecting some resource types from Kubernetes
may result in huge responses that severely impact both the API server and Falco—
libsinsp has mechanisms to avoid congestion. First, it waits for a short time between
downloading each chunk. Falco allows you to fine-tune that wait time, along with
several other parameters, by changing a value in /etc/falco/falco.yaml.

More importantly, it’s possible to request only the relevant metadata for the targeted
node from the API server. This is helpful because Falco’s architecture is distributed,
so each sensor needs data only from the node on which the event occurred. This
optimization is fundamental if you want to scale Falco on a cluster with thousands of
nodes. To enable it, add the --k8s-node flag to the Falco command-line arguments,
passing the current node name as the value. You can usually obtain this name easily
from the Kubernetes Downward API.3

If you don’t include the --k8s-node flag, libsinsp will still be able to get the data
from Kubernetes, but each Falco sensor will have to request the whole cluster’s data.
This can introduce a performance penalty on large clusters, so we strongly discourage
it. (You will learn more about running Falco on a production Kubernetes cluster in
Part III.)

Understanding Data Enrichment for Syscalls | 71

https://oreil.ly/g0hCZ
https://oreil.ly/WTTGU
https://oreil.ly/F1Dnv

An Alternative Way to Acquire Kubernetes Metadata
Although the method described in this section is the recommended way to obtain
Kubernetes metadata, there’s another, leaner working mode worth mentioning. libs‐
insp is smart enough to get a subset of the metadata even without connecting to the
Kubernetes API server. That’s possible because the kubelet annotates some metadata
directly on the container: specifically the ID, name, namespace, and labels of the Pod
(which are usually the most relevant context information). Since libsinsp retrieves
those annotations using the container runtime API, it also tries to use them when
possible and falls back to the Kubernetes API server when the missing data is needed.
This strategy is always enabled, so you won’t need to configure it.

You can think of this as an optimization, but also as a feature. If the immediately
available metadata is enough for your use case (for example, if you’re using a custom
ruleset that doesn’t need the complete set of Kubernetes metadata), you don’t have
to enable full support for Kubernetes. If you don’t, you will still get the ID, name,
namespace, and labels of the Pod.

When Kubernetes metadata is available, you will find it grouped in the k8s field class.
Many of the Falco default rules include k8s fields in their conditions. Falco, when
used with the -pk command-line option, automatically appends the most crucial
Kubernetes metadata to the output of all notifications, as you can see in the following
example, which we’ve pretty-printed to improve readability (more on this in “Output
Settings” on page 137):

15:29:40.515013896: Notice System user ran an interactive command
(user=bin user_loginuid=-1 command=login container_id=46c99eea62a8
image=docker.io/library/nginx)
k8s.ns=default k8s.pod=my-app-84d64cb8fb-zmxgz
container=46c99eea62a8

This output is the result of the complex mechanism you’ve just learned about that
allows you to obtain accurate and contextualized information to immediately identify
what event has just occurred, and where.

So far, we’ve only discussed Falco’s data enrichment process for system calls. Although
that’s likely to be the most relevant information for most users, you should know that
Falco also offers custom enrichment mechanisms. We’ll take a quick look at how to
implement those next.

72 | Chapter 5: Data Enrichment

https://oreil.ly/sUOMa

Data Enrichment with Plugins
Plugins can extend Falco by adding new data sources and defining new fields to
describe how to use these new events. As you’ll recall from Chapter 4, a plugin that
offers the field extraction capability works on events provided by other plugins or
core libraries. While it might not seem obvious yet, a plugin with this capability has
everything it takes to provide a custom data-enrichment mechanism. First, it can
receive data from any data source. Second, it can define new fields. Fundamentally, it
allows the plugin author to implement logic to return the values of those fields, thus
potentially providing additional metadata. This opens the door to the possibility of
implementing custom data enrichment.

When such a plugin runs, libsinsp calls the plugin function for field extraction for
each incoming event. The function receives the raw payload of the event and the
list of fields the rule engine needs. The plugin API interface does not impose any
other constraints to make the extraction process work. Although data enrichment is
possible in the flow just described, the plugin author will still have to consider all
the implications of the use case; for example, the plugin will need to manage the
local state and subsequent updates. Extracting fields and enriching the event is thus
entirely up to the plugin author. The APIs merely provide the essential tools.

Chapter 14 shows you how to implement a plugin. If you’re interested in doing that,
however, our advice is to read the next chapter about fields and filters first, so you
have a more complete picture of how extracting data works.

Conclusion
This chapter illustrated how Falco works internally to provide a rich set of metadata.
Falco makes this metadata available as fields you can use in rules’ conditions. Read
on to discover how to use fields to filter only those events that are really pertinent to
your needs.

Data Enrichment with Plugins | 73

CHAPTER 6

Fields and Filters

It’s finally time to take all the theory you learned in the previous chapters and start
putting it into practice. In this chapter you will learn about Falco filters: what they
are, how they work, and how to use them.

Filters are at the core of Falco. They are also a powerful investigation instrument that
can be used in several other tools, such as sysdig. As a consequence, we expect that
you will come back and consult this chapter often, even after finishing the book—so
we’ve structured it to be used as a reference. For example, it contains tables with all
of the operators and data types the filtering language provides, designed for quick
consultation, as well as a well-documented list of Falco’s most useful fields. This
chapter’s contents will be handy pretty much every time you write a Falco rule, so
make sure to bookmark it!

What Is a Filter?
Let’s start with a semiformal definition:

A filter in Falco is a condition containing a sequence of comparisons that are connec‐
ted by Boolean operators. Each of the comparisons evaluates a field, which is extracted
from an input event, against a constant, using a relational operator. Comparisons in
filters are evaluated left to right, but parentheses can be used to define precedence. A
filter is applied to an input event and returns a Boolean result indicating if the event
matches the filter.

Ouch. That description is extremely dry and somewhat complicated. But if we
unpack it, with the aid of some examples, you’ll see it’s not too bad. Let’s start with the
first sentence:

A filter in Falco is a condition containing a sequence of comparisons that are connec‐
ted by Boolean operators.

75

This just means that a filter looks like this:

A = B and not C != D

In other words, if you can write an if condition in any programming language, the
filter syntax will look very familiar. Here’s the next sentence:

Each of the comparisons evaluates a field, which is extracted from an input event,
against a constant, using a relational operator.

This tells us that Falco’s filtering syntax is based on the concept of fields, which we will
describe in detail later in this chapter. Field names have a dotted syntax and appear
on the left side of each comparison. On the right side is a constant value that will be
compared against the field. Here’s an example:

proc.name = emacs or proc.pid != 1234

Moving on:

Comparisons in filters are evaluated left to right, but parentheses can be used to define
precedence.

This means you can organize your filter using parentheses. For example:

proc.name = emacs or (proc.name = vi and container.name=redis)

Again, this works exactly the same as using parentheses inside a logical expression in
your favorite programming language. Now for the final sentence:

A filter is applied to an input event and returns a Boolean result indicating if the event
matches the filter.

When you specify a filter in a Falco rule, the filter is applied to every input event. For
example, if you’re using one of Falco’s drivers, filters are applied to every system call.
The filter evaluates the system call and returns a Boolean value: true or false. true
means that the event satisfies the filter (we say that the filter matches the event), while
false means that the filter rejects, or drops, the event. For example, this filter:

proc.name = emacs or proc.name = vi

matches (returns true for) every system call generated by processes called emacs
or vi.

That’s essentially all you need to know at a high level. Now let’s dive into the details.

Filtering Syntax Reference
From a syntactical point of view, as we mentioned, writing a Falco filter is very
similar to writing an if condition in any programming language, so if you have basic
programming experience, you shouldn’t expect any major surprises. However, there

76 | Chapter 6: Fields and Filters

are some areas that are specific to the type of matching you do in Falco. This section
takes a look at the syntax in detail, giving you the full picture.

Relational Operators
Table 6-1 provides a reference of all of the available relational operators, including an
example for each of them.

Table 6-1. Falco’s relational operators

Operator Description Example
=, != General equality/inequality operators. Can be used with all

types of fields.
proc.name = emacs

<=, <, >=, > Numeric comparison operators. Can be used with numeric
fields only.

evt.buflen > 100

contains Can be used with string fields only. Performs a case-sensitive
string search for the given constant inside the field value, and
returns true if the field value contains the constant.

fd.filename contains passwd

icontains Like contains, but case-insensitive. user.name icontains john

bcontains Like contains, but allows you to perform checks on binary
buffers.

evt.buf bcontains DEADBEEF

startswith Can be used with string fields only. Returns true if the given
constant matches the beginning of the field value.

fd.directory startswith

"/etc"

bstartswith Like startswith, but allows you to perform checks on
binary buffers.

evt.buf bstartswith

DEADBEEF

endswith Can be used with string fields only. Returns true if the given
constant matches the end of the field value.

fd.filename endswidth

".key"

in Compares the field value to multiple constants and returns
true if one or more of those constants equals the field value.
Can be used with all fields, including numeric fields and string
fields.

proc.name in (vi, emacs)

intersects Returns true when a field with multiple values includes at
least one value that matches one of the provided constants.

ka.req.pod.volumes.host

path intersects (/proc,

/var/run/docker.sock)

pmatch Returns true if one of the constants is a prefix of the field
value.
Note: pmatch can be used as an alternative to the in
operator, and performs better with large sets of constants
because it is implemented internally as a trie instead of
multiple comparisons.

fd.name pmatch (/var/run,

/etc, /lib, /usr/lib)

fd.name = /var/run/docker

succeeds because /var/run is a prefix
of /var/run/docker.
fd.name = /boot does not succeed
because no constant is a prefix of /boot.
fd.name = /var does not succeed
because no constant is a prefix of /var.

exists Returns true if the given field exists for the input event. evt.res exists

Filtering Syntax Reference | 77

Operator Description Example
glob Matches the given string against the field value according to

Unix shell wildcard patterns.
For more details, enter man 7 glob in your terminal.

fd.name glob

'/home/*/.ssh/*'

Logical Operators
The logical operators that you can use in Falco filters are straightforward and don’t
include any surprises. Table 6-2 lists them and provides examples.

Table 6-2. Falco’s logical operators

Operator Example
and proc.name = emacs and proc.cmdline contains myfile.txt

or proc.name = emacs or proc.name = vi

not not proc.name = emacs

Strings and Quoting
String constants can be specified without quotation marks:

proc.name = emacs

Quotes can, however, be used to enclose strings that include spaces or special charac‐
ters. Both single quotes and double quotes are accepted. For example:

proc.name = "my process" or proc.name = 'my process'

This means you can include quotes in strings:

evt.buffer contains '"'

Fields
As you can see, Falco filters are not very complicated. However, they are extremely
flexible and powerful. This power comes from the fields you can use in filtering
conditions. Falco gives you access to a variety of fields, each of which exposes a
property of the input events that Falco captures. Since fields are so important, let’s
take a look at how they work and how they are organized. Then we’ll discuss which
ones to use and when.

Argument Fields Versus Enrichment Fields
Fields expose properties of input events as typed values. A field, for example, can be a
string, like the process name, or a number, like the process ID.

At the highest level, Falco offers two categories of fields. The first category includes
the fields that are obtained by dissecting input events. System call arguments, like the

78 | Chapter 6: Fields and Filters

filename for an open system call or the buffer argument for a read system call, are
examples of such fields. You access these fields with the following syntax, where X is
the name of the argument you want to access:

evt.arg.X

or, where N is the position of the argument:

evt.arg[N]

For example:

evt.arg.name = /etc/passwd
evt.arg[1] = /etc/passwd

To find out which arguments a specific event type supports, sysdig is your friend. The
output line for an event in sysdig will show you all of its arguments and their names.

The second category consists of fields that derive from the enrichment process
that libsinsp performs while capturing system calls and other events, described in
Chapter 5. Falco exports many fields that expose the content of libsinsp’s thread and
file descriptor tables, adding rich context about the events received from the drivers.

To help you understand how this works, let’s take the proc.cwd field as an example.
For each system call that Falco captures, this field contains the current working
directory of the process that issued the system call. This is handy if you want to
capture all of the system calls generated by processes that are currently running inside
a specific directory; for example:

proc.cwd = /tmp

The working directory of the process is not part of the system call, so exposing this
field requires tracking the working directory of a process and attaching it to every
system call that the process generates. This, in turn, involves four steps:

1. Collect the working directory when a process starts, and store it in the process’s1.
entry in the thread table.

2. Keep track of when the process changes its working directory (by intercepting2.
and parsing the chdir system call), and update the thread table entry accordingly.

3. Resolve the thread ID of every system call to identify the corresponding thread3.
table entry.

4. Return the thread table entry’s cwd value.4.

libsinsp does all of this, which means that the proc.cwd field is available for every
system call, not only for directory-related ones like chdir. It’s impressive how much
hard work Falco does to expose this field to you!

Fields | 79

Enrichment-based filtering is powerful because it allows you to filter system calls
(and any other events) based on properties that are not included with the syscalls
themselves, but are of great use for security policies. For example, the following filter
allows you to capture the system calls that read from or write to /etc/passwd:

evt.is_io=true and fd.name=/etc/passwd

It works even if these system calls originally don’t contain any information about the
filename (they operate on file descriptors). The hundreds of enrichment-based fields
available out of the box are the main reason why Falco is so powerful and versatile.

Mandatory Fields Versus Optional Fields
Some fields exist for every input event, and you will be guaranteed to find them
regardless of the event type or family. Examples of such fields are evt.ts, evt.dir,
and evt.type.

However, most fields are optional and only present in some input event types. Typi‐
cally, you don’t have to worry about this, as fields that don’t exist will just evaluate to
false without generating an error. For example, the following check will evaluate
to false for all events that don’t have an argument called name:

evt.arg.name contains /etc

In some cases, though, you might want to explicitly check if a field exists. One
reason would be to resolve ambiguities like whether the filter evt.arg.name != /etc
returns true or false for events that don’t have an argument called name. You can
answer questions like this by using the exists relational operator:

evt.arg.name exists and evt.arg.name != /etc

Field Types
Fields have types, which are used to validate values and ensure the syntactic correct‐
ness of filters. Take the following filter:

proc.pid = hello

Falco and sysdig will reject this with the following error:

filter error at position 16: hello is not a valid number

This happens because the proc.pid field is of type INT64, so its value must be an
integer. The typing system also allows Falco to improve the rendering of some fields
by understanding the meaning behind them. For example, evt.arg.res is of type
ERRNO, which by default is a number. However, when possible, Falco will resolve
it into an error code string (such as EAGAIN), which improves the readability and
usability of the field.

80 | Chapter 6: Fields and Filters

When we looked at relational operators, we noted how some are very similar to the
ones in most programming languages, while others are unique to Falco filters. The
same is true for field types. Table 6-3 lists the types you may encounter in Falco filter
fields.

Table 6-3. Field types

Type Description
INT8, INT16,
INT32, INT64,
UINT8, UINT16,
UINT32, UINT64,
DOUBLE

Numeric types, like in your favorite programming language.

CHARBUF A printable buffer of characters.

BYTEBUF A raw buffer of bytes not suitable for printing.

ERRNO An INT64 value that, when possible, is resolved to an error code.
FD An INT64 value that, when possible, is resolved to the value of the file descriptor. For example, for a

file this gets resolved to the filename; for a socket it gets resolved to the TCP connection tuple.
PID An INT64 value that, when possible, is resolved to the process name.
FSPATH A string containing a relative or absolute filesystem path.

SYSCALLID A 16-bit system call ID. When possible, the value gets resolved to the system call name.

SIGTYPE An 8-bit signal number that, when possible, gets resolved to the signal name (e.g., SIGCHLD).
RELTIME A relative time, with nanosecond precision, rendered as a human-readable string.

ABSTIME An absolute time interval.

PORT A TCP/UDP port. When possible, this gets resolved to a protocol name.

L4PROTO A 1-byte IP protocol type. When possible, this gets resolved to a L4 protocol name (TCP, UDP).

BOOL A Boolean value.

IPV4ADDR An IPv4 address.

DYNAMIC An indication that the field type can vary depending on the context. Used for generic fields like
evt.rawarg.

FLAGS8,
FLAGS16,
FLAGS32

A flags word (i.e., a set of flags encoded as a number using binary encoding) that, when possible,
is converted into a readable string (e.g., O_RDONLY|O_CLOEXEC). The resolution into the string is
dependent on the context, as events can register their own flag values. So, for example, flags for an
lseek system call event will be converted into values like SEEK_END, SEEK_CUR, and SEEK_SET,
while sockopt flags will be converted into SOL_SOCKET, SOL_TCP, and so on.

UID A Unix user ID, resolved to a username when possible.

GID A Unix group ID, resolved to a group name when possible.

IPADDR An IPv4 or IPv6 address.

IPNET An IPv4 or IPv6 network.

MODE A 32-bit bitmask to represent file modes.

How do you find out the type of a field you want to use? The best way is to invoke
Falco with the --list and -v options:

Fields | 81

$ falco --list -v

This will print the full list of fields, including type information for each entry in the
list.

Using Fields and Filters
Now that you’ve learned about filters and fields, let’s take a look at how you can use
them in practice. We’ll focus on Falco and sysdig.

Fields and Filters in Falco
Fields and filters are at the core of Falco rules. Fields are used to express rules’
conditions and are part of both conditions and outputs. To demonstrate how, we’ll
craft our own rule.

Let’s say we would like Falco to notify us every time there is an attempt to change
the permissions of a file and make it executable by another user. When that happens,
we would like to know the name of the file that was changed, the new mode of the
file, and the name of the user who caused the trouble. We would also like to know
whether the mode change attempt was successful or not.

Here is the rule:

- rule: File Becoming Executable by Others
 desc: Attempt to make a file executable by other users
 condition: >
 (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat)
 and evt.arg.mode contains S_IXOTH
 output: >
 attempt to make a file executable by others
 (file=%evt.arg.filename mode=%evt.arg.mode user=%user.name
 failed=%evt.failed)
 priority: WARNING

The condition section is where the rule’s filter is specified.

File modes, including the executable bit, are changed using the chmod system call, or
one of its variants. Therefore, the first part of the filter selects events that are of type
chmod, fchmod, or fchmodat:

evt.type=chmod or evt.type=fchmod or evt.type=fchmodat

Now that we have the right system calls, we want to accept only the subset of them
that set the “other” executable bit. Reading the chmod manual page reveals that the
flag we need to check is S_IXOTH. We determine its presence by using the contains
operator:

evt.arg.mode contains S_IXOTH

82 | Chapter 6: Fields and Filters

https://oreil.ly/zuKuC

Combining the two pieces with an and gives us the full filter. Easy!

Now, let’s focus our attention on the output section of the rule. This is where we tell
Falco what to print on the screen when the rule’s condition returns true. You will
notice that this is just a printf-like string that mixes regular text with fields, whose
values will be resolved in the final message:

attempt to make a file executable by others (file=%evt.arg.filename
mode=%evt.arg.mode user=%user.name failed=%evt.failed)

The only thing you need to remember is that you need to prefix field names in the
output string with the % character; otherwise, they will just be treated as part of the
string.

Time for you to try this! Save the preceding rule in a file called ch6.yaml. After that,
run this command line in a terminal:

$ sudo falco -r ch6.yaml

Then, in another terminal, run these two commands:

$ echo test > test.txt
$ chmod o+x test.txt

This is the output you will get in the Falco terminal:

17:26:43.796934201: Warning attempt to make a file executable by others
(file=/home/loris/test.txt mode=S_IXOTH|S_IWOTH|S_IROTH|S_IXGRP|S_IWGRP
|S_IRGRP|S_IXUSR|S_IWUSR|S_IRUSR user=root failed=false)

Congratulations, you’ve just performed your very own Falco detection! Note how
evt.arg.mode and evt.failed are rendered in a human-readable way, even if inter‐
nally they are numbers. This shows you the power of the filter/fields type system.

Fields and Filters in sysdig
An introduction to sysdig was provided in Chapter 4 (if you need a refresher, see
“sysdig” on page 45). Here we will look specifically at how filters and fields are used in
sysdig.

While Falco is based on the concepts of rules and of notifying the user when
rules match, sysdig focuses on investigation, troubleshooting, and threat-hunting
workflows. In sysdig, you use filters to restrict the input, and you (optionally) use
field formatting to control the output. The combination of the two provides a ton of
flexibility during investigations.

Filters in sysdig are specified at the end of the command line:

$ sudo sysdig proc.name=echo

Using Fields and Filters | 83

Output formatting is provided using the -p command-line flag and uses the same
printf-like syntax that we just described when talking about Falco outputs:

$ sudo sysdig -p"type:%evt.type proc:%proc.name" proc.name=echo

An important thing to keep in mind is that, when the -p flag is used, sysdig will only
print an output line for the events in which all of the specified filters exist. So, this
command:

$ sudo sysdig -p"%evt.res %proc.name"

will print a line only for events that have both a return value and a process name,
skipping, for example, all the system call “enter” events. If you care about seeing all of
the events, put a star (*) at the beginning of the formatting string:

$ sudo sysdig -p"*%evt.res %proc.name"

When a field is missing, it will be rendered as <NA>.

When no formatting is specified with -p, sysdig displays input events in a standard
format that conveniently includes all of the arguments and argument names, for
every system call. Here’s an example sysdig output line for an openat system call, with
the system call arguments highlighted in bold for visibility:

4831 20:50:01.473556825 2 cat (865.865) < openat fd=7(<f>/tmp/myfile.txt)
dirfd=-100(AT_FDCWD) name=/tmp/myfile.txt flags=1(O_RDONLY) mode=0 dev=4

Each of the arguments can be used in a filter with the evt.arg syntax:

$ sudo sysdig evt.arg.name=/tmp/myfile.txt

As a more advanced example, let’s convert the File Becoming Executable by Others rule
we created for Falco in the previous section into a sysdig command line:

$ sudo sysdig -p"attempt to make a file executable by others \
 (file=%evt.arg.filename mode=%evt.arg.mode user=%user.name \
 failed=%evt.failed)" \
 "(evt.type=chmod or evt.type=fchmod or evt.type=fchmodat) \
 and evt.arg.mode contains S_IXOTH"

This shows how easy it is to use sysdig as a development tool when creating new
rules.

Falco’s Most Useful Fields
This section presents a curated list of some of the most important Falco fields,
organized by class. You can use this list as a reference when writing filters. For a full
list, including all plugin fields, use the following at the command line:

$ falco --list -v

84 | Chapter 6: Fields and Filters

General
The fields listed in Table 6-4 apply to every event and include general properties of an
event.

Table 6-4. evt filter class fields

Field name Description
evt.num The event number.

evt.time The event timestamp as a string that includes the nanosecond part.

evt.dir The event direction; can be either > for enter events or < for exit events.
evt.type The name of the event (e.g., open).
evt.cpu The number of the CPU where this event happened.

evt.args All the event arguments, aggregated into a single string.

evt.rawarg One of the event arguments, specified by name (e.g., evt.rawarg.fd).
evt.arg One of the event arguments, specified by name or by number. Some events (such as return codes

or file descriptors) will be converted into a text representation when possible (e.g., evt.arg.fd or
evt.arg[0]).

evt.buffer The binary data buffer for events that have one, like read, recvfrom, etc. Use this field in filters with
contains to search in I/O data buffers.

evt.buflen The length of the binary data buffer for events that have one, like read, recvfrom, etc.
evt.res The event return value, as a string. If the event failed, the result is an error code string (e.g., ENOENT);

otherwise, the result is the string SUCCESS.
evt.rawres The event return value, as a number (e.g., -2). Useful for range comparisons.
evt.failed true for events that returned an error status.

Processes
The fields in this class contain all the information you need about processes and
threads. The information in Table 6-5 comes mostly from the process table that
libsinsp constructs in memory.

Table 6-5. proc filter class fields

Field name Description
proc.pid The ID of the process generating the event.

proc.exe The first command-line argument (usually the executable name or a custom one).

proc.name The name (excluding the path) of the executable generating the event.

proc.args The arguments passed on the command line when starting the process generating the event.

proc.env The environment variables of the process generating the event.

proc.cwd The current working directory of the event.

proc.ppid The PID of the parent of the process generating the event.

proc.pname The name (excluding the path) of the parent of the process generating the event.

Falco’s Most Useful Fields | 85

Field name Description
proc.pcmdline The full command line (proc.name + proc.args) of the parent of the process generating the

event.
proc.logi

nshellid

The PID of the oldest shell among the ancestors of the current process, if there is one. This field can
be used to separate different user sessions and is useful in conjunction with chisels like spy_user.

thread.tid The ID of the thread generating the event.

thread.vtid The ID of the thread generating the event as seen from its current PID namespace.

proc.vpid The ID of the process generating the event as seen from its current PID namespace.

proc.sid The session ID of the process generating the event.

proc.sname The name of the current process’s session leader. This is either the process with pid=proc.sid
or the eldest ancestor that has the same session ID as the current process.

proc.tty The controlling terminal of the process. This is 0 for processes without a terminal.

File Descriptors
Table 6-6 lists the fields related to file descriptors, which are at the base of I/O. Fields
containing details about files and directories, network connections, pipes, and other
types of interprocess communication can all be found in this class.

Table 6-6. fd filter class fields

Field name Description
fd.num The unique number identifying the file descriptor.

fd.typechar The type of the file descriptor, as a single character. Can be f for file, 4 for IPv4 socket, 6 for IPv6
socket, u for Unix socket, p for pipe, e for eventfd, s for signalfd, l for eventpoll, i for inotify, or o for
unknown.

fd.name The full name of the file descriptor. If it’s a file, this field contains the full path. If it’s a socket, this field
contains the connection tuple.

fd.directory If the file descriptor is a file, the directory that contains it.

fd.filename If the file descriptor is a file, the filename without the path.

fd.ip (Filter only) Matches the IP address (client or server) of the file descriptor.

fd.cip The client’s IP address.

fd.sip The server’s IP address.

fd.lip The local IP address.

fd.rip The remote IP address.

fd.port (Filter only) Matches the port (either client or server) of the file descriptor.

fd.cport For TCP/UDP file descriptors, the client’s port.

fd.sport For TCP/UDP file descriptors, the server’s port.

fd.lport For TCP/UDP file descriptors, the local port.

fd.rport For TCP/UDP file descriptors, the remote port.

fd.l4proto The IP protocol of a socket. Can be tcp, udp, icmp, or raw.

86 | Chapter 6: Fields and Filters

Users and Groups
Table 6-7 lists the fields in the user and group filter classes.

Table 6-7. user and group filter class fields

Field name Description
user.uid The user’s ID

user.name The user’s name

group.gid The group’s ID

group.name The group’s name

Containers
The fields in the container class (Table 6-8) can be used for everything related to
containers, including obtaining IDs, names, labels, and mounts.

Table 6-8. container filter class fields

Field name Description
container.id The container ID.

container.name The container name.

container.image The container image name (e.g., falcosecurity/falco:latest for Docker).
container.image.id The container image ID (e.g., 6f7e2741b66b).
container

.privileged

true for containers running as privileged, false otherwise.

container.mounts A space-separated list of mount information. Each item in the list has the format
<source>:<dest>:<mode>:<rdrw>:<propagation>.

container.mount Information about a single mount, specified by number (e.g., container.mount[0])
or mount source (e.g., container.mount[/usr/local]). The pathname
can be a glob (e.g., container.mount[/usr/local/*]), in which case
the first matching mount will be returned. The information has the format
<source>:<dest>:<mode>:<rdrw>:<propagation>. If there is no mount with
the specified index or matching the provided source, this returns the string "none" instead of
a NULL value.

container.image

.repository

The container image repository (e.g., falcosecurity/falco).

container.image

.tag

The container image tag (e.g., stable, latest).

container.image

.digest

The container image registry digest (e.g., sha256:d977378f890d445c15e51795296
e4e5062f109ce6da83e0a355fc4ad8699d27).

Falco’s Most Useful Fields | 87

Kubernetes
When Falco is configured to interface with the Kubernetes API server, the fields in
this class (listed in Table 6-9) can be used to fetch information about Kubernetes
objects.

Table 6-9. k8s filter class fields

Field name Description
k8s.pod.name The Kubernetes Pod name.

k8s.pod.id The Kubernetes Pod ID.

k8s.pod.label The Kubernetes Pod label (e.g., k8s.pod.label.foo).
k8s.rc.name The Kubernetes ReplicationController name.

k8s.rc.id The Kubernetes ReplicationController ID.

k8s.rc.label The Kubernetes ReplicationController label (e.g., k8s.rc.label.foo).
k8s.svc.name The Kubernetes Service name. Can return more than one value, concatenated.

k8s.svc.id The Kubernetes Service ID. Can return more than one value, concatenated.

k8s.svc.label The Kubernetes Service label (e.g., k8s.svc.label.foo). Can return more than one
value, concatenated.

k8s.ns.name The Kubernetes namespace name.

k8s.ns.id The Kubernetes namespace ID.

k8s.ns.label The Kubernetes namespace label (e.g., k8s.ns.label.foo).
k8s.rs.name The Kubernetes ReplicaSet name.

k8s.rs.id The Kubernetes ReplicaSet ID.

k8s.rs.label The Kubernetes ReplicaSet label (e.g., k8s.rs.label.foo).
k8s.deployment.name The Kubernetes Deployment name.

k8s.deployment.id The Kubernetes Deployment ID.

k8s.deployment.label The Kubernetes Deployment label (e.g., k8s.rs.label.foo).

CloudTrail
The fields in the cloudtrail class (listed in Table 6-10) are available when the
CloudTrail plugin is configured. They allow you to build filters and formatters for
AWS detections.

Table 6-10. cloudtrail filter class fields

Field name Description
ct.error The error code from the event. Will be "" if there was no error.
ct.src The source of the CloudTrail event (eventSource in the JSON).
ct.shortsrc The source of the CloudTrail event (eventSource in the JSON), without the .amazonaws.com

trailer.
ct.name The name of the CloudTrail event (eventName in the JSON).

88 | Chapter 6: Fields and Filters

Field name Description
ct.user The user of the CloudTrail event (userIdentity.userName in the JSON).
ct.region The region of the CloudTrail event (awsRegion in the JSON).
ct.srcip The IP address generating the event (sourceIPAddress in the JSON).
ct.useragent The user agent generating the event (userAgent in the JSON).
ct.readonly true if the event only reads information (e.g., DescribeInstances), false if the event modifies

the state (e.g., RunInstances, CreateLoadBalancer).
s3.uri The S3 URI (s3://<bucket>/<key>).
s3.bucket The bucket name for S3 events.

s3.key The S3 key name.

ec2.name The name of the EC2 instance, typically stored in the instance tags.

Kubernetes Audit Logs
Fields related to Kubernetes audit logs (listed in Table 6-11) are available when the
k8saudit plugin is configured. The k8saudit plugin is responsible for interfacing Falco
with the Kubernetes audit logs facility. The fields exported by the plugin can be used
to monitor several types of Kubernetes activities.

Table 6-11. k8saudit filter class fields

Field name Description
ka.user.name The name of the user performing the request

ka.user.groups The groups to which the user belongs

ka.verb The action being performed

ka.uri The request URI as sent from client to server

ka.uri.param The value of a given query parameter in the URI (e.g., when uri=/foo?
key=val, ka.uri.param[key] is val)

ka.target.name The target object’s name

ka.target.namespace The target object’s namespace

ka.target.resource The target object’s resource

ka.req.configmap.name When the request object refers to a ConfigMap, the ConfigMap name

ka.req.pod.containers.image When the request object refers to a Pod, the container’s images

ka.req.pod.containers

.privileged

When the request object refers to a Pod, the value of the privileged flag for
all containers

ka.req.pod.containers

.add_capabilities

When the request object refers to a Pod, all capabilities to add when running
the container

ka.req.role.rules When the request object refers to a role or cluster role, the rules associated with
the role

ka.req.role.rules.verbs When the request object refers to a role or cluster role, the verbs associated with
the role’s rules

ka.req.role.rules

.resources

When the request object refers to a role or cluster role, the resources associated
with the role’s rules

Falco’s Most Useful Fields | 89

Field name Description
ka.req.service.type When the request object refers to a service, the service type

ka.resp.name The response object’s name

ka.response.code The response code

ka.response.reason The response reason (usually present only for failures)

Conclusion
Congratulations, you are now a filtering expert! At this point, you should be able to
read and understand Falco rules, and you are much closer to being able to write your
own. In the next chapter, we will devote our attention to Falco’s outputs.

90 | Chapter 6: Fields and Filters

CHAPTER 7

Falco Rules

Chapters 3 through 6 gave you a comprehensive view of Falco’s architecture, describ‐
ing most of the important concepts that a serious Falco user needs to understand.
The remaining piece to cover is one of the most important ones: rules. Rules are at
the heart of Falco. You’ve already encountered them several times, but this chapter
approaches the topic in a more formal and comprehensive manner, giving you the
foundation you will need as you work through the next parts of the book.

This chapter covers what rules are and their syntax. The goal is to
give you all the knowledge you need to understand and use them,
not to teach you to write your own. Writing your own rules will be
covered in Part IV of the book (in particular, in Chapter 13).

Falco is designed to be easy and intuitive, and the rule syntax and semantics are no
exception. Rules files are straightforward, and you’ll be able to understand them in no
time. Let’s start by covering some basics.

Introducing Falco Rules Files
Falco rules tell Falco what to do. They are typically packaged inside rules files, which
Falco reads at startup time. A rules file is a YAML file that can contain one or more
rules, with each rule being a node in the YAML body.

Falco comes packaged with a set of default rules files that are normally located in /etc/
falco. The default rules files are loaded automatically if Falco is launched with no
command-line options. These files are curated by the community and updated with
every new release of Falco.

91

When it starts, Falco will tell you which rules files have been loaded:

$ sudo falco
Mon Jun 6 17:09:22 2022: Falco version 0.32.0 (driver version
39ae7d40496793cf3d3e7890c9bbdc202263836b)
Mon Jun 6 17:09:22 2022: Falco initialized with configuration file
/etc/falco/falco.yaml
Mon Jun 6 17:09:22 2022: Loading rules from file /etc/falco/falco_rules.yaml:
Mon Jun 6 17:09:22 2022: Loading rules from file
/etc/falco/falco_rules.local.yaml:

Often, you will want to load your own rules files instead of the default ones. You
can do this in two different ways. The first one involves using the -r command-line
option:

$ sudo falco -r book_rules_1.yaml -r book_rules_2.yaml
Mon Jun 6 17:10:17 2022: Falco version 0.32.0 (driver version
39ae7d40496793cf3d3e7890c9bbdc202263836b)
Mon Jun 6 17:10:17 2022: Falco initialized with configuration file
/etc/falco/falco.yaml
Mon Jun 6 17:10:17 2022: Loading rules from file book_rules_1.yaml:
Mon Jun 6 17:10:17 2022: Loading rules from file book_rules_2.yaml:

And the second one involves modifying the rules_file section of the Falco configu‐
ration file (normally located at /etc/falco/falco.yaml), which looks like this by default:

rules_file:
 - /etc/falco/falco_rules.yaml
 - /etc/falco/falco_rules.local.yaml
 - /etc/falco/rules.d

You can add, remove, or modify entries in this section to control which rules files
Falco loads.

Note that with both of these methods, you can specify a directory instead of a single
file. For example:

$ sudo falco -r ~/my_rules_directory

and:

rules_file:
 - /home/john/my_rules_directory

This is handy because it lets you add and remove rules files by just altering the
contents of a directory, without having to reconfigure Falco.

As we mentioned, Falco’s default rules files are normally installed under /etc/falco.
This directory contains files that are critical for Falco to function in different environ‐
ments. Table 7-1 gives an overview of the most important ones.

92 | Chapter 7: Falco Rules

Table 7-1. Falco’s default rules files

Filename Description
falco_rules.yaml This is Falco’s main rules file, containing the official set of system call–based rules for hosts and

containers.
falco_rules.local.yaml This is where you can add your own rules, or create overrides to modify existing rules, without

risking polluting falco_rules.yaml. Chapter 13 will cover rule creation and overriding in detail.
rules.available/
application_rules.yaml

This file contains rules that target common applications like Cassandra and Mongo. Since this
ruleset tends to be fairly noisy, it’s disabled by default.

k8s_audit_rules.yaml This file contains rules that detect threats and misconfigurations by tapping into the
Kubernetes audit log. This ruleset is not enabled by default; to use it, you need to enable
it and configure the Falco Kubernetes Audit Events plugin.

aws_cloudtrail_rules.yaml This file contains rules that perform detections by tapping into the stream of AWS CloudTrail
logs. This ruleset is not enabled by default; to use it, you need to enable it and configure the
Falco CloudTrail plugin, as we will explain in Chapter 11.

rules.d This empty directory is included in the default Falco configuration. This means you can add
files to this directory (or create symlinks to your rules files in this directory) and Falco will
automatically load them.

By default, Falco loads two of these files: falco_rules.yaml and falco_rules.local.yaml.
In addition, it mounts the rules.d directory, which you can use to extend the ruleset
with no changes to the command line or to the configuration file.

Anatomy of a Falco Rules File
Now that you know what a rules file looks like from the outside, it’s time to learn
what’s inside it. The YAML in a rules file can contain three different types of nodes:
rules, macros, and lists. Let’s take a look at what these constructs are and the roles they
play in rules files.

Rules
A rule declares a Falco detection. You’ve seen several examples in the previous
chapters, but as a reminder, a rule has two main purposes:

1. Declare a condition that, when met, will cause the user to be notified1.
2. Define the output message that will be reported to the user when the condition is2.

met

Here’s an example rule, borrowed from Chapter 6:

- rule: File Becoming Executable by Others
 desc: Attempt to make a file executable by other users
 condition: >
 (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat)

Anatomy of a Falco Rules File | 93

https://oreil.ly/6aQEx
https://oreil.ly/1opUj

 and evt.arg.mode contains S_IXOTH
 output: >
 attempt to make a file executable by others
 (file=%evt.arg.filename mode=%evt.arg.mode user=%user.name
 failed=%evt.failed)
 priority: WARNING
 source: syscall
 tags: [filesystem, book]

This rule notifies us every time there is an attempt to change the permissions of a file
to make it executable by another user.

As you can see in the preceding example, a rule contains several keys. Some of the
keys are required, while others are optional. Table 7-2 contains a comprehensive list
of the fields that you can use in a rule.

Table 7-2. Rule fields

Key Required Description
rule Yes A short sentence describing the rule and uniquely identifying it.

desc Yes A longer description that describes in more detail what the rule detects.

condition Yes The rule condition. This is a filter expression, with the syntax described in Chapter 6,
specifying the condition that needs to be met in order for the rule to trigger.

output Yes A printf-like message that is emitted by Falco when the rule triggers.
priority Yes The priority of the alert generated when the rule is triggered. Falco uses syslog-style

priorities and therefore accepts the following values for this key: EMERGENCY, ALERT,
CRITICAL, ERROR, WARNING, NOTICE, INFORMATIONAL, and DEBUG.

source No The data source to which the rule should be applied. If this key is not present, the source
is assumed to be syscall. Each plugin defines its own source type that can be used
as the value for this key. For example, use aws_cloudtrail for rules that contain
conditions/outputs based on the CloudTrail plugin fields.

enabled No A Boolean key that can optionally be used to disable a rule. Disabled rules are not loaded
by the engine and don’t require any resources when Falco is running. If this key is
missing, enabled is assumed to be true.

tags No A list of tags that are associated with this rule. Tags have multiple uses, including easily
selecting which rules to load and categorizing the alerts that Falco generates. We’ll talk
about tags later in this chapter.

warn_evttypes No When set to false, this flag disables warnings about missing event type checks for this
rule. When Falco loads a rule, in addition to validating its syntax, it runs a number of
checks to make sure that the rule meets basic performance criteria. If you know what you
are doing and you specifically want to craft a rule that doesn’t meet such criteria, this flag
will prevent Falco from complaining. By default, the value of this flag is true.

skip-if-

unknown-filter

No Setting this flag to true causes Falco to silently skip this rule if the field is not accepted
by the current version of the rule engine. If this flag is not set or set to false, Falco will
print an error and exit when it encounters a rule that cannot be parsed.

94 | Chapter 7: Falco Rules

The key fields in the rule are condition and output. Chapter 6 talks about them
extensively, so if you haven’t done so yet, we recommend that you consult that
chapter for an overview.

Macros
Macros are heavily used in the default Falco ruleset. They make it possible to “sepa‐
rate” portions of rules into independent and reusable entities. You can think of a
macro as a piece of a condition that has been separated out and can be referenced
by name. To explore this concept, let’s go back to the previous example and try to
modularize it using a macro:

- rule: File Becoming Executable by Others
 desc: Attempt to make a file executable by other users
 condition: >
 (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat)
 and evt.arg.mode contains S_IXOTH
 output: >
 attempt to make a file executable by others
 (file=%evt.arg.filename mode=%evt.arg.mode user=%user.name
 failed=%evt.failed)
 priority: WARNING

Take a look at the condition: we match the event type against three different system
calls because, well, the kernel offers three different system calls to change file permis‐
sions. In practice, these three system calls are all flavors of chmod, with essentially the
same arguments to check. We can make the same condition easier to read by isolating
this complexity into a macro:

- macro: chmod
 condition: (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat)

- rule: File Becoming Executable by Others
 desc: attempt to make a file executable by other users
 condition: chmod and evt.arg.mode contains S_IXOTH
 output: >
 attempt to make a file executable by others
 (file=%evt.arg.filename mode=%evt.arg.mode user=%user.name
 failed=%evt.failed)
 priority: WARNING

Note how the condition is much shorter and more readable. In addition, now we
can reuse the chmod macro in other rules, simplifying all of them and making them
consistent. Even more importantly, if we ever want to add another chmod system call
that Falco should inspect, we have only one place to change (the macro) instead of
multiple rules.

Macros help us keep our rulesets clean, modular, and maintainable.

Anatomy of a Falco Rules File | 95

https://oreil.ly/qAdBA

Lists
Like macros, lists are heavily used in Falco’s default ruleset. Lists are collections of
items that can be included from other parts of the ruleset. For example, lists can
be included by rules, by macros, and even by other lists. The difference between a
macro and a list is that the former is actually a condition and is parsed as a filtering
expression. Lists, on the other hand, are more akin to arrays in a programming
language.

Continuing with the previous example, an even better way to write it is the following:

- list: chmod_syscalls
 items: [chmod, fchmod, fchmodat]

- macro: chmod
 condition: (evt.type in (chmod_syscalls))

- rule: File Becoming Executable by Others
 desc: attempt to make a file executable by other users
 condition: chmod and evt.arg.mode contains S_IXOTH
 output: >
 attempt to make a file executable by others
 (file=%evt.arg.filename mode=%evt.arg.mode user=%user.name
 failed=%evt.failed)

What’s different this time? First, we’ve changed the chmod macro to use the in
operator instead of doing three separate comparisons. This not only is more efficient,
but it also gives us the opportunity to separate out the three system calls into a list.
The list approach is great for rule maintenance because it allows us to isolate only the
values into an array-like representation that is clear and compact and can easily be
overridden if necessary (more on list overriding in Chapter 13).

Rule Tagging
Tagging is the concept of assigning labels to rules. If you are familiar with modern
cloud computing environments like AWS or Kubernetes, you know that they let you
attach labels to resources. Doing that lets you manage those resources more easily, as
groups instead of individuals. Tagging brings the same philosophy to Falco rules: it
lets you treat rules as cattle instead of pets.

This, for example, is a rule in the default Falco ruleset:

- rule: Launch Privileged Container
 desc: >
 Detect the initial process started in a privileged container.
 Exceptions are made for known trusted images.
 condition: >
 container_started and container
 and container.privileged=true
 and not falco_privileged_containers

96 | Chapter 7: Falco Rules

 and not user_privileged_containers
 output: >
 Privileged container started
 (user=%user.name user_loginuid=%user.loginuid command=%proc.cmdline
 %container.info image=%container.image.repository:%container.image.tag)
 priority: INFO
 tags: [container, cis, mitre_privilege_escalation, mitre_lateral_movement]

Note how the rule has several tags, some indicating what the rule applies to (e.g.,
container) and others mapping it to compliance frameworks like CIS and MITRE
ATT&CK.

Falco lets you use tags to control which rules are loaded. This is done through two
command-line flags, -T and -t. Here’s how it works:

• Use -T to disable rules with a specific tag. For example, to skip all rules with the•
k8s and cis tags, you can run Falco like this:

$ sudo falco -T k8s -T cis

• Use -t for the opposite purpose; i.e., to only run the rules that have the specified•
tag. For example, to only run the rules with the k8s and cis tags, you can use the
following command line:

$ sudo falco -t k8s -T cis

Both -T and -t can be specified multiple times on the command line.

You can use any tags you want to decorate your rules. However, the default ruleset is
standardized on a coherent set of tags. Table 7-3 shows what this standard set of tags
is, according to the official Falco documentation.

Table 7-3. Default rule tags

Tag Used for
file Rules related to reading/writing files and accessing filesystems

software_mgmt Rules related to package management (rpm, dpkg, etc.) or to installing new software

process Rules related to processes, command execution, and interprocess communication (IPC)

database Rules that have to do with databases

host Rules that apply to virtual and physical machines but not to containers

shell Rules that apply to starting shells and performing shell operations

container Rules that apply to containers and don’t work for hosts

k8s Rules related to Kubernetes

users Rules that apply to users, groups, and identity management

network Rules detecting network activity

cis Rules covering portions of the CIS benchmark

Anatomy of a Falco Rules File | 97

Tag Used for
mitre_* Rules covering the MITRE ATT&CK framework (this is a category that includes several tags:

mitre_execution, mitre_persistence, mitre_privilege_escalation, and so on)

Declaring the Expected Engine Version
If you open a Falco rules file with a text editor, the first line you will normally see is a
statement that looks like this:

- required_engine_version: 9

Declaring the minimum required engine version is optional, but it’s very important
because it helps ensure that the version of Falco you are running will properly
support the rules inside it. Some of the fields used in a ruleset may not exist in older
versions of Falco, or a rule may require a system call that was added only recently.
Without correct versioning, a rules file might not load or, even worse, it might load
but produce incorrect results. If the rules file requires an engine version higher than
the one supported by Falco, Falco will report an error and refuse to start.

Similarly, rules files can declare the plugin versions they are compatible with through
the required_plugin_versions top-level field. This field is optional too; if you
don’t include it, no plugin compatibility checks will be performed, and you may see
similar behavior to that just described. The syntax of required_plugin_versions is
as follows:

- required_plugin_versions:
 - name: <plugin_name>
 version: <x.y.z>
 ...

Below required_plugin_versions you specify a list of objects, each of which has
two properties: name and version. If a plugin is loaded and a corresponding entry
in required_plugin_versions is found, then the loaded plugin version must be
semver-compatible with the version property.

The default rules files that come prepackaged with Falco are all versioned. Don’t
forget to do the same in each of your rules files!

Replacing, Appending to, and Disabling Rules
Falco comes prepackaged with a rich and constantly growing set of rules that covers
many important use cases. However, there are many situations where you might find
it beneficial to customize the default ruleset. For example, you might want to decrease
the noisiness of some rules, or you might be interested in expanding the scope of
some of the Falco detections to better match your environment.

98 | Chapter 7: Falco Rules

https://semver.org

One way to approach these situations is to edit the default rules files. An important
lesson to learn is that you don’t have to do this. Actually, you shouldn’t do this—
Falco offers a more versatile way to customize rules, designed to make your changes
maintainable and reusable across releases. Let’s take a look at how this works.

Replacing Macros, Lists, and Rules
Replacing a list, macro, or rule is just a matter of redeclaring it. The second declara‐
tion can be in the same file, or in a separate file that is loaded after the one containing
the original declaration.

Let’s see how this works through an example. The following rule detects if a text
editor has been opened as root (which, as we all know, people should avoid doing):

- list: editors
 items: [vi, nano]

- macro: editor_started
 condition: (evt.type = execve and proc.name in (editors))

- rule: Text Editor Run by Root
 desc: the root user opened a text editor
 condition: editor_started and user.name=root
 output: the root user started a text editor (cmdline=%proc.cmdline)
 priority: WARNING

If we save this rule in a rules file called rulefile.yaml, we can test the rule by loading
the file in Falco:

$ sudo falco -r rulefile.yaml

The rule will trigger every time we run vi or nano as root.

Now say we want to change the rule to support a different set of text editors. We can
create a second rules file, name it editors.yaml, and populate it in the following way:

- list: editors
 items: [emacs, subl]

Note how we redefined the content of the editors list, replacing the original com‐
mand names with emacs and subl. Now we just load editors.yaml after the original
rules file:

$ sudo falco -r rulefile.yaml -r editors.yaml

Falco will pick up the second definition of editors and generate an alert when root
runs either emacs or subl, but not vi or nano. Essentially, we’ve replaced the content of
the list.

This trick works exactly the same way with macros and rules as well.

Replacing, Appending to, and Disabling Rules | 99

Appending to Macros, Lists, and Rules
Let’s stick to the same text editor rule example. This time, however, suppose we want
to append additional names to the list of editors instead of replacing the full list. The
mechanism is the same, but with the addition of the append keyword. Here is the
syntax:

- list: editors
 items: [emacs, subl]
 append: true

We can save this list in a file named additional_editors.yaml. Now, if we run the
following command line:

$ sudo falco -r rulefile.yaml -r editors.yaml

Falco will detect root execution of vi, nano, emacs, and subl.

You can append (using the same syntax) to macros and rules as well. However, there
are a couple of things to keep in mind:

• For rules, it is only possible to append to the condition. Attempts to append to•
other keys, like output, will be ignored.

• Remember that appending to a condition just attaches the new text at the end of•
it, so be careful about ambiguities.

For example, suppose we extended the rule condition in our example by appending to
it like this:

- rule: Text Editor Run by Root
 condition: or user.name = loris
 append: true

The full rule condition would become:

 condition: editor_started and user.name=root or user.name = loris

This condition is clearly ambiguous. Will the rule trigger only whenever the user root
or loris opens a text editor? Or will it trigger when root opens a text editor and when
loris executes any command? To avoid such ambiguities, and to make your rules files
more readable, you can use parentheses in the original conditions.

Disabling Rules
You will often encounter situations where you need to disable one or more rules in a
ruleset, for example because they are too noisy or they are just not relevant for your
environment. Falco provides different ways to do this. We are going to cover two of
them: using the command line and overriding the enabled flag.

100 | Chapter 7: Falco Rules

Disabling rules from the command line
Falco actually offers two separate ways to disable rules via the command line. The
first one, which we discussed when talking about rule tagging earlier in this chapter,
involves using the -T flag. As a refresher, you can use -T to disable rules with the
given tag. -T can be used multiple times on the command line to disable multiple
tags. For example, to skip all rules with either the k8s tag, the cis tag, or both, you
can run Falco like this:

$ sudo falco -T k8s -T cis

The second way to disable rules from the command line is by using the -D flag.
-D <substring> disables all the rules that include <substring> in their name. Simi‐
larly to -T, -D can be specified multiple times with different arguments.

These parameters can also be specified as a Helm chart value (extraArgs) if you are
deploying Falco via the official Helm chart.

Disabling rules by overriding the enabled flag
You might remember from Table 7-2 that one of the optional rule fields is called
enabled. As a refresher, here’s how we documented it earlier in the chapter:

A Boolean key that can optionally be used to disable a rule. Disabled rules are not
loaded by the engine and don’t require any resources when Falco is running. If this key
is missing, enabled is assumed to be true.

enabled can be turned on or off by overriding the rule with the usual mecha‐
nism. For example, if you want to disable the User mgmt binaries rule in /etc/falco/
falco_rules.yaml, you can add the following content in /etc/falco/falco_rules.local.yaml:

- rule: User mgmt binaries
 enabled: false

Conclusion
You see, it wasn’t that hard! At this point, you should be able to read and understand
Falco rules, and you are much closer to being able to write your own. We’ll focus on
rule writing in Part IV of the book, and in particular in Chapter 13. Our next step will
be learning everything about Falco outputs.

Conclusion | 101

CHAPTER 8

The Output Framework

In previous chapters, you learned how Falco collects events (its input) and how it
processes them to allow you to receive important security notifications (its output).
At the end of this processing pipeline, a key piece of Falco—the output framework—
enables it to deliver those notifications (also called alerts) to the right place. We call it
a framework because its modular design provides all you need to deliver notifications
to any destination you wish. In this chapter, you will learn how the output framework
works and how you can configure and extend it.

Falco’s Output Architecture
The output framework is the last piece of the event-processing pipeline that we have
been describing in this part of the book. Falco’s user-space program implements
the core mechanism internally, but external tools can extend it. Its job is to deliver
notifications to the correct destination on time. Whenever an upstream event (pro‐
duced by a driver, a plugin, or any other input source supported by Falco) meets
a rule’s condition, the rule engine asks the output framework to send a notification
to a downstream consumer, which could be any other program or system in your
environment (or simply you).

The process of delivering alerts involves two distinct stages, as pictured in Figure 8-1.

In the first stage, a handler receives the event data and information about the
event-triggered rule. It prepares the notification using the provided information and
formats the textual representation according to the rule’s output key. Then, to prevent
the output destination from blocking the processing pipeline (which runs in the main

103

1 A concurrent queue is a way of implementing a queue data structure that multiple running threads can safely
access in parallel. The pop and push operations are typical actions that a queue supports (respectively, to
enqueue and dequeue an item). Most implementations allow performing those operations in either blocking
or nonblocking fashions.

execution thread), the handler pushes the notification into a concurrent queue.1 The
push operation is nonblocking, so the processing pipeline does not need to wait
for the notification consumer to pull the notification; it can continue to do its job
without interruption. Indeed, Falco needs to perform this stage as quickly as possible
so that the processing pipeline can process the next event.

Figure 8-1. The two stages of delivering notifications in Falco

At the other end of the queue, the output worker (which runs in a separate execution
thread) is waiting to pop notifications from the queue. This is when the second
stage begins. Once the output worker receives a notification, it immediately fans that
notification out to all configured output channels. An output channel (or simply an
output) is a part of the output framework that allows Falco to forward alerts to a
destination. Each output channel implements the actual logic to notify a particular
class of alert consumers. For instance, some consumers want notifications written to
a file, while others prefer them to be posted to a web endpoint (see Chapter 10).

104 | Chapter 8: The Output Framework

https://oreil.ly/NWtzd

This two-stage approach allows the processing pipeline to run without interference
from the output delivery process. However, things can still go wrong with delivery.
In particular, when delivering a notification involves I/O operations, those may
block the caller temporarily (for example, in the event of a network slowdown) or
indefinitely (e.g., when there’s no space left on the disk). The queue in the middle
of the two stages works well at absorbing temporary slowdowns—so well that you
won’t even notice them (by default, Falco can accumulate pending notifications in the
queue for up to two seconds). But when the recipient of a notification blocks for a
long time (or indefinitely), there’s nothing that Falco can automatically do. As a last
resort, it will try to inform you about what happened by logging to the standard error
stream (stderr). When this happens, it is usually a symptom of a misconfiguration
(for example, the path to the destination is wrong) or insufficient resources (no space
left in the destination), which the user is asked to manually fix.

Once the notification delivery process completes, Falco’s user-space program has
accomplished its purpose. It’s then up to the consumer to decide what to do with the
alert.

The output framework accommodates many different use cases and can take care of
many possible issues. It is also flexible enough to allow you to receive notifications
in various ways and at different destinations. The rest of this chapter will give you
details about all the available possibilities. We’ll also take a quick look at some
other tools that allow you to further extend output processing before delivering the
notifications to their final destination. (We’ll go deeper into this in Chapter 13.)

Output Formatting
In the first stage of notification delivery, Falco applies formatting to the notification
before forwarding it to the output channel. You can customize how Falco presents
notifications to its consumers so that you can easily integrate them with your specific
use case.

Two options in the Falco configuration file (/etc/falco/falco.yaml) control this opera‐
tion. The first controls the formatting of the timestamp:

time_format_iso_8601: false

If this option is false (the default value), Falco will display dates and times according
to the /etc/localtime settings. If it’s true (the default value when Falco is running
in a container), Falco will use the ISO 8601 standard for representing dates and
times. Note that this option controls not only output notifications but also any other
messages that Falco logs.

The second option is actually a set of options that enable JSON formatting for the
notifications. By default, JSON formatting is disabled:

Output Formatting | 105

https://oreil.ly/IbBik
https://oreil.ly/IbBik

json_output: false

With this setting, Falco formats the notification as a plain-text string (including
the timestamp, the severity, and the message). If it’s set to true, Falco encloses the
notification in a JSON-formatted string, including several fields. The following two
options allow you to include or exclude some of those fields from the output:

json_include_output_property: true

If this option is enabled (the default), you will still find the plain-text representa‐
tion of the notification in the output field of the JSON object. You can disable
this option to save a few bytes if you don’t need it.

json_include_tags_property: true

If this option is enabled, you will find a tags field in the JSON object containing
an array of tags specified in the matching rule. Rules with no tags defined will
have an empty array (tags:[]) in the output. If you disable this option, you won’t
get the tags field in the JSON object.

Despite its name, json_output is not an output channel. The
json_output configuration controls the formatting applied to noti‐
fications in the first stage of processing—thus, it affects the content
of the notifications that channels deliver. The next section describes
the available output channels.

Output Channels
Falco comes with six built-in output channels, listed in Table 8-1. We will describe
each of them in more detail in the following subsections. By default only two chan‐
nels are enabled—standard output and syslog output—but Falco allows you to enable
as many channels as you need simultaneously.

Table 8-1. Falco’s built-in output channels

Channel Description
Standard output Sends notifications to Falco’s standard output (stdout)
Syslog output Sends notifications to the system via syslog
File output Writes notifications to a file
Program output Pipes notifications to a program’s standard input
HTTP output Posts notifications to a URL
gRPC output Allows a client program to consume notifications via a gRPC API

You configure these outputs in the Falco configuration file (/etc/falco/falco.yaml).
Note that all the configuration snippets in this section are part of this file.

106 | Chapter 8: The Output Framework

https://oreil.ly/kBm4I

Each output channel has at least one option called enabled, which can be true
or false. Other options may be available for specific outputs (you will discover
them soon). Furthermore, there are some global options that can affect the func‐
tioning of all or some output channels. One such option (which you saw in the
previous section) is json_output; when this is enabled, the alert messages will be
JSON-formatted, regardless of the output channel used. The other global options that
can affect the output channels’ behavior are listed in Table 8-2.

Table 8-2. Global options for output channels

Global option (with default) Description
buffered_outputs:

false

This option enables or disables full buffering in output channels. When disabled, Falco
immediately flushes the output buffer on every alert, which may generate higher CPU usage
but is useful when piping outputs into another process or a script. Unless you encounter an
issue with the default value, you usually won’t need to enable this option. Note that Falco’s
--unbuffered command-line flag can override this option.
Not all output channels observe this global option. Some output channels may implement
specific buffering strategies that you cannot disable.

output_timeout: 2000 The value of this option specifies the duration to wait (in milliseconds) before considering
the delivery notification deadline exceeded.
When the notification consumer blocks and the output channel cannot deliver an alert
within the given deadline, Falco reports an error indicating which output is blocking the
notifications. Such an error indicates a misconfiguration issue or I/O problem in the consumer
that Falco cannot recover.

outputs:

 rate: 1

 max_burst: 1000

These options control the notification rate limiter so that output channels do not flood their
destinations. The rate limiter implements a token bucket algorithm. To send a notification,
the system must remove a token from the bucket. rate sets the number of tokens the
system gains per second, and max_burst sets the maximum number of tokens in the
bucket.
With the defaults, Falco can send up to 1,000 notifications in a row; then it must wait for
additional tokens to be added to the bucket, which happens at the rate of 1 token per
second. In other words, once the bucket has been emptied, notifications are rate-limited to
one per second.

Although not strictly related to the output mechanism, other Falco
settings may affect what you will receive in the output. For exam‐
ple, the configuration priority: <severity> controls the mini‐
mum rule priority level to load and run, and the command-line
option -t <tag> allows you to load only those rules with a specific
tag. In those cases, clearly, you won’t get any output regarding rules
that Falco does not load. In general, any rules-related option or
configuration could indirectly affect the output.

Now that you’ve learned what the output channels are and what settings can change
their behavior, let’s go through each in turn.

Output Channels | 107

2 In the syslog protocol, the facility value determines the function of the process that created the message.
LOG_USER is intended for messages generated by user-level applications.

Standard Output
Standard output (stdout_output in the configuration file, enabled by default) is
Falco’s most straightforward output channel. When it is enabled, Falco will print a
line to standard output for each alert. This allows you to see alert notifications when
manually running Falco from a console or when looking at a container or Kubernetes
Pod log. The only option specifically available for this output channel is enabled
(which can be either true or false). However, it’s also affected by the global buffering
option, buffered_outputs. When the outputs are buffered, the stdout stream will be
fully buffered or line-buffered if the stream is an interactive device (such as a TTY).

Syslog Output
The syslog output channel (syslog_output in the configuration file, also enabled by
default) allows Falco to send a syslog message for each alert. As with standard output,
the only option specifically available for this output channel is enabled (which can be
either true or false). When enabled, Falco sends messages to syslog with a facility of
LOG_USER2 and a severity level equal to the priority value defined by the rule.

Depending on the syslog daemon you are using, you can read those messages using
commands like tail -f /var/log/syslog or journalctl -xe. The actual message
format depends on the syslog daemon, too.

File Output
If you enable file output, Falco will write each alert to a file. The default configuration
for this output channel is:

file_output:
 enabled: false
 keep_alive: false
 filename: ./events.txt

The filename option allows you to specify the destination file to which Falco will
write. It will create the file if it does not yet exist and will not try to truncate or rotate
the file if it exists already.

With keep_alive disabled (the default), Falco will open the file for appending, write
the message, and then close the file for each alert. If keep_alive is set to true,
Falco will only open the file once before the first alert and will keep it open for all
subsequent alerts. Whether keep_alive is enabled or not, Falco closes and reopens

108 | Chapter 8: The Output Framework

the file when it receives a SIGUSR1 signal. This feature is handy if you’d like to use a
program to rotate the output file (for example, logrotate).

Finally, writing to a file is generally buffered unless you disable the global buffering
option. Closing the file will flush the buffer.

Program Output
The program output is very similar to the file output, but in this case Falco will
write the content of each alert to the standard input of a program you specify in the
configuration file. The default configuration for this output channel is:

program_output:
 enabled: false
 keep_alive: false
 program: >
 jq '{text: .output}' | curl -d @- -X POST https://hooks.slack.com/services...

The program field allows you to specify the program the alerts will be sent to. Falco
runs the program via a shell, so you can specify a command pipeline if you wish to
add any processing steps before delivering the messages to the program. This field’s
default value shows a nice example of its usage: when executed, that one-liner posts
the alert to a Slack webhook endpoint. (However, using Falcosidekick would be a
better option; see Chapter 12.)

If keep_alive is set to false, Falco restarts the program and writes the content of the
alert to its standard input each time it has a notification to deliver. If keep_alive is
set to true, Falco starts the program once (right before sending the first alert) and
keeps the program pipe open for delivering subsequent alerts.

Falco closes and reopens the program when it receives a SIGUSR1 signal. However, the
program runs in the same process group as Falco, so it gets all of the signals that Falco
receives. It’s up to you to override the program signal handler if you need to.

Buffering is supported via the global option. When Falco closes the program, it also
flushes the buffer.

HTTP Output
When you need to send alerts over an HTTP(S) connection, the best choice is to use
the HTTP output. Its default configuration is straightforward:

http_output:
 enabled: false
 url: http://some.url

Once enabled, the only other configuration you need to specify is the url of your
endpoint. Falco will make an HTTP POST request to the specified URL for each alert.

Output Channels | 109

Both unencrypted HTTP and secure HTTPS endpoints are supported. Buffering
for this output channel is always enabled (even if you disable the global buffering
option).

The HTTP output channel is preferred when you use Falcosidekick; it takes Falco’s
alerts and forwards them in fan-out style to many different destinations (more than
50 are available at the time of writing). If you want Falco to forward alerts to
Falcosidekick, apply this Falco configuration:

json_output: true
json_include_output_property: true
http_output:
 enabled: true
 url: "http://localhost:2801/"

Note that this configuration assumes you already have Falcosidekick running and
configured to listen to localhost:2801; change it accordingly if your setup is differ‐
ent. You can find details about configuring Falcosidekick in Chapter 12 and in its
online documentation.

gRPC Output
The gRPC output is the most sophisticated output channel. It allows greater control
than the others over alert forwarding and full granularity in the information received.
This output channel is for you if you’d like to send alerts to an external program
connected via Falco’s gRCP API. Its default configuration is:

grpc_output:
 enabled: false

As you can see, it’s disabled by default—and before you enable it, there’s something
you should consider. Falco comes with a gRPC server that exposes the API. You
will need to enable both the gRPC server and the gRPC output (we will show you
how to do that in a moment). The API provides several gRPC services, only some
of which are related to the gRPC output. One service allows you to pull all pending
alerts. Another allows you to subscribe to a stream of alerts. Client programs can
decide which implementations best fit their needs. In both cases, when the gRPC
output is enabled, Falco uses an internal queue to temporarily store alerts until the
client program consumes them. This means you should not enable the gRPC output
if there’s no client program set up to consume the alerts; otherwise, the internal
queue may grow indefinitely. The global buffering option does not affect this output
channel.

With that in mind, to make this output channel work, the first thing you have to do is
to enable the gRPC server. It supports two binding types: over a Unix socket and over
the network with mandatory mutual TLS authentication.

Here’s how to enable the gRPC server over a Unix socket:

110 | Chapter 8: The Output Framework

https://oreil.ly/uUQBR
https://grpc.io

grpc:
 enabled: true
 bind_address: "unix:///var/run/falco.sock"
 threadiness: 0

And here’s how to enable the gRPC server over the network with mandatory mutual
TLS authentication:

grpc:
 enabled: true
 bind_address: "0.0.0.0:5060"
 threadiness: 0
 private_key: "/etc/falco/certs/server.key"
 cert_chain: "/etc/falco/certs/server.crt"
 root_certs: "/etc/falco/certs/ca.crt"

Both binding types offer the same gRPC functionalities, so you can choose the one
that satisfies your needs. Once you have enabled the gRPC server, the next step is to
enable the gRCP output:

grpc_output:
 enabled: true

Finally, you will have to configure your client program to connect to the Falco gRPC
API. How this is done depends on the program you are using. The Falcosecurity
organization provides two programs that can connect to this output (see Chapter 2):
falco-exporter, which connects to the Falco gRPC API to export metrics consumable
by Prometheus (more on this in Chapter 12), and the event-generator, which can
optionally connect to the Falco gRPC API to test whether fake events are actually
processed (helpful when developing integration tests). You can also implement your
own program. The Falcosecurity organization provides SDKs that allow you to create
gRPC client programs for Falco easily in several programming languages—for exam‐
ple, client-go for Golang, client-rs for Rust, and client-py for Python. You can find
more information about developing with the Falco gRPC API in Chapter 14.

Last but not least, here is an extract from the proto-definition of the message that
Falco sends via the gRCP API:

// The `response` message is the representation of the output model.
// It contains all the elements that Falco emits in an output along
// with the definitions for priorities and source.
message response {
 google.protobuf.Timestamp time = 1;
 falco.schema.priority priority = 2;
 falco.schema.source source_deprecated = 3 [deprecated=true];
 string rule = 4;
 string output = 5;
 map<string, string> output_fields = 6;
 string hostname = 7;
 repeated string tags = 8;

Output Channels | 111

https://oreil.ly/FN9gE
https://oreil.ly/4MHw1
https://oreil.ly/HXPKL
https://oreil.ly/XdgVp
https://oreil.ly/A64Dh

 string source = 9;
}

The response message includes the already formatted alert string (which you will
find in the output field) as well as all the component pieces of information, split
across various fields. The client program can assemble and process them in any way it
needs, which is very useful if you want to build your own application on top of Falco.

Other Logging Options
So far we’ve described the core part of the output framework. Now let’s look at
a few options to help you in troubleshooting. Like most applications, Falco can
output debugging information and errors. Those informative messages are about the
functioning of Falco itself and are not its primary output.

Falco implements various logging messages internally. They can vary from one
release to another. A common example of this logging is the initial information that
Falco prints out when it starts. Another, less common case is when Falco informs you
that it was not able to load the driver:

Mon Dec 20 14:00:23 2021: Unable to load the driver.

The term logging does not refer to the process of outputting secu‐
rity notifications. The log messages discussed in this section are not
security alerts. Logging options do not affect notification process‐
ing in any way. Also, since these log messages are not notifications,
Falco does not output them through the output channels. Although
you might see the usual notifications interleaved with log messages
when running Falco in a terminal, keep in mind that they are
different.

Falco outputs these messages via the standard error stream and sends them to syslog.
You can configure Falco to discard some messages based on their severity level.
Table 8-3 lists the logging options you can configure in Falco’s configuration file
(/etc/falco/falco.yaml).

Table 8-3. Options for Falco’s internal logging

Logging option
(with default)

Description

log_stderr: true If enabled, Falco sends log messages to the stderr.

log_syslog: true If enabled, Falco sends log messages to syslog. Note that this option is not related to the syslog
output and does not affect it.

log_level: info This option defines the minimum log level to include in logs: emergency, alert,
critical, error, warning, notice, info, or debug. Note that these values, although
similar, are not rule priority levels.

112 | Chapter 8: The Output Framework

https://oreil.ly/yatpB

Conclusion
This chapter concludes Part II of this book. At this point, you should have a solid
understanding of Falco’s architecture and its inner workings. Your familiarity with the
processing pipeline’s data flow, ending with the output framework, will allow you to
use Falco in a variety of ways. For example, you can view security notifications in
your favorite dashboard or even create a response engine (a mechanism that takes
action when a specific event occurs) on top of Falco. To discover more use cases, use
your imagination—and continue reading this book.

The next level up is real-world use cases, so Part III is all about running Falco in
production. As always, we will guide you through each step.

Conclusion | 113

PART III

Running Falco in Production

CHAPTER 9

Installing Falco

Welcome to Part III of this book, which will walk you through using Falco in the real
world. Now that you know how Falco and its architecture work, the next step is to
start using it to protect your applications and systems. In this chapter, you will learn
what you need to know to install Falco in production. We will show you different
scenarios and common best practices so that you can find the right instructions for
your use case.

We’ll start by giving you an overview of common usage scenarios, then we’ll describe
different installation methods for each of them. We strongly recommend reading
about all of the installation methods, even if you need only some of them, to get a
complete picture of the possibilities and choose which fits your needs best.

Choosing Your Setup
The Falco Project officially supports three ways to run Falco in production:

• Running Falco directly on a host•
• Running Falco in a container•
• Deploying Falco to a Kubernetes cluster•

Each option has a different installation method, and there are a few important differ‐
ences between the first option and the others. Installing Falco directly on the host
is your only choice when your environment does not include a container runtime
or Kubernetes. It is also the most secure way to run Falco, because it’s isolated from
the container system (and thus difficult to breach in case of compromise). However,
installing Falco directly on the host is usually the most difficult solution to maintain.
It’s also not always possible (for example, when your applications live in a managed
Kubernetes cluster and you don’t have full access to the host machines). The other

117

options are usually more straightforward and easier to manage. Especially if your
applications run on a Kubernetes cluster, deploying Falco to Kubernetes is a common
choice. Consider the pros and cons of each and your requirements before making
your choice.

Before installing Falco with any of these methods, you need to decide how you’re
going to use Falco, which can have a significant impact on the installation process and
configuration. The two most common scenarios are monitoring syscalls and working
with data sources provided by plugins.

The default scenario is instrumenting the system to monitor syscalls. In this case
you will need to deploy a Falco sensor on each machine or cluster node, as well as
installing a driver on each underlying host.

When you work with data sources provided by plugins, you will likely need to install
only one Falco sensor (or one for each event producer), and you won’t need a driver.
Although there may be small differences in the actual setup of each data source, for
simplicity we can treat this as a single installation scenario because the overall process
is very similar. Generally, this latter scenario has fewer requirements and is simpler to
implement.

If you need to satisfy more than one scenario at the same time, you will need more
Falco installations. You can then aggregate the notifications coming from each sensor
by using other tools, like Falcosidekick (discussed in Chapter 12).

Your final setup will depend on your needs and choices. The following sections
provide instructions for each installation method in the two scenarios mentioned
above (monitoring syscalls and working with data sources provided by plugins).

Installing Directly on the Host
Installing Falco directly on a host is a straightforward task—you learned the essential
aspects in Chapter 2. This installation method is mainly intended for the default
scenario where Falco uses system calls to secure and monitor a system, so it also
installs the driver and configures Falco to use it. (In Chapter 10, we’ll discuss how to
change the Falco configuration and set it up for other data sources.)

This method installs the following:

• The user-space program falco•
• The driver (the kernel module, by default)•
• The default configuration file and the default ruleset files in /etc/falco•
• The falco-driver-loader utility (you can use this to manage the driver)•
• A few bundled plugins (these may vary from version to version)•

118 | Chapter 9: Installing Falco

To install Falco, you will use one of the following artifacts provided by Falco’s “Down‐
load” page:

• .rpm package•
• .deb package•
• .tar.gz (binary) package•

You should use one of the first two packages if you intend to install Falco via a
compatible package manager; otherwise, use the binary package. Read on for more
details.

The following subsections include various commands that you
need to run on your system. Ensure that you have sufficient privi‐
leges to execute them (for example, using sudo).

Using a Package Manager
This installation method is for Linux distributions with a package manager that
supports .deb or .rpm packages. The setup process for a .deb or .rpm package will also
install a systemd unit to use Falco as a service on your system, as well as the kernel
module—the default driver—via Dynamic Kernel Module Support (dkms).

apt and yum are the most popular package managers that allow installing, respec‐
tively, .deb and .rpm packages. If you’re using a different package manager that
supports .deb or .rpm packages, the installation procedure will be very similar, though
the exact instructions may vary. Refer to its documentation for further details.

Using apt (.deb package)
apt is the default package manager for Debian and Debian-based distributions like
Ubuntu. It allows you to install software applications distributed as .deb packages.
To install Falco using apt, you first need to trust The Falco Project’s GPG key and
configure the apt repository that holds Falco packages:

$ curl -s https://falco.org/repo/falcosecurity-3672BA8F.asc | apt-key add -
$ echo "deb https://download.falco.org/packages/deb stable main" | tee \
 -a /etc/apt/sources.list.d/falcosecurity.list

Then update the apt package list:

$ apt-get update -y

Since this installation method will also install Falco’s kernel module, you must install
the Linux kernel headers as a precondition:

$ apt-get -y install linux-headers-$(uname -r)

Installing Directly on the Host | 119

https://oreil.ly/sOLzu
https://oreil.ly/sOLzu
https://oreil.ly/Egkoo

Finally, install Falco:

$ apt-get install -y falco

Using yum (.rpm package)
yum is a command-line utility for Linux distributions that use the RPM Package
Manager, such as CentOS, RHEL, Fedora, and Amazon Linux. It allows you to install
software applications distributed as .rpm packages. Before installing Falco with yum,
you must ensure that the make package and the dkms package are present on your
system. You can check that by running:

$ yum list make dkms

If they are not present, install them:

$ yum install epel-release
$ yum install make dkms

Next, trust The Falco Project’s GPG key and configure the RPM repository that holds
Falco packages:

$ rpm --import https://falco.org/repo/falcosecurity-3672BA8F.asc
$ curl -s -o /etc/yum.repos.d/falcosecurity.repo \
 https://falco.org/repo/falcosecurity-rpm.repo

Since this installation method will also install Falco’s kernel module, you must install
the Linux kernel headers as a precondition:

$ yum -y install kernel-devel-$(uname -r)

If yum -y install kernel-devel-$(uname -r) does not find the
kernel headers package, run yum distro-sync and then reboot the
system. After the reboot, try the preceding command again.

Finally, install Falco:

$ yum -y install falco

Completing the installation
You should now have the kernel module installed via dkms and a systemd unit
installed to run Falco as a service.

Before you start using Falco, you need to enable the Falco systemd service:

$ systemctl enable falco

Your installation is now complete. The service will automatically start running at the
next reboot. If you want to start it immediately, just run:

120 | Chapter 9: Installing Falco

https://oreil.ly/t5WaG

$ systemctl start falco

From now on, you can manage the Falco service through the functions provided by
systemd.

Switching to the eBPF probe
Falco packages use the kernel module by default, and this is usually the best choice
when installing Falco directly on the host. However, if you have particular require‐
ments or other reasons not to use the kernel module, you can easily switch to the
eBPF probe.

First, make sure you have an eBPF probe installed on your system. You can install
it using the falco-driver-loader script, as explained in “Managing the Driver” on page
122.

Then you need to edit the systemd unit file, located at /usr/lib/systemd/user/
falco.service (the path may vary depending on your distro). You can use systemctl
edit falco to modify it. You need to add an option to set the FALCO_BPF_PROBE
environment variable in the [Service] section of that file. Also, in the same section,
comment (or remove) the ExecStartPre and ExecStartPost options, so the Falco
service will not load the kernel module anymore. The changes are highlighted in the
following excerpt from the falco.service file:

[Unit]
Description=Falco: Container Native Runtime Security
Documentation=https://falco.org/docs/

[Service]
Type=simple
User=root
Environment='FALCO_BPF_PROBE=""'
#ExecStartPre=/sbin/modprobe falco
ExecStart=/usr/bin/falco --pidfile=/var/run/falco.pid
#ExecStopPost=/sbin/rmmod falco

Once you’re done, don’t forget to restart the Falco service:

$ systemctl restart falco

Falco should now start using the eBPF probe.

Using a plugin
Falco packages come configured for the syscalls instrumentation scenario, so the
included systemd unit loads the kernel module when Falco starts. However, if you’re
not using syscalls, you don’t need to load the driver. As described in the previous
section, to prevent the Falco service from loading the kernel module, edit the /usr/lib/
systemd/user/falco.service file and remove (or comment out) the ExecStartPre and

Installing Directly on the Host | 121

ExecStartPost options. Optionally, you can also configure the service to run Falco
with a less privileged user by modifying the value of the User option.

Next, you’ll need to configure Falco to use the plugin of your choice (we’ll explain
how to do this in Chapter 10) and restart the Falco service. Falco will then run using
the new configuration.

Without Using a Package Manager
Installing Falco without using a package manager is quick and easy. This installation
method is intended for distributions that do not support a compatible package
manager. We walked through the steps in detail in Chapter 2, but we’ll give you a
short refresher here.

All you need to do is grab the link to the latest available version of the binary package
from the Falco “Download” page, and download it into a local folder:

$ curl -L -O \
 https://download.falco.org/packages/bin/x86_64/falco-0.32.0-x86_64.tar.gz

Then extract the package and copy its content to your filesystem’s root:

$ tar -xvf falco-0.32.0-x86_64.tar.gz
$ cp -R falco-0.32.0-x86_64/* /

Finally, if you’re planning to use system calls as your data source, install the driver
manually before using Falco (you’ll find instructions in the following section). You
don’t need to install the driver if you want to use a plugin. Also note that the binary
package does not provide a systemd unit or any other mechanism to run Falco when
your system starts automatically, so whether to execute Falco or run it as a service is
entirely up to you.

Managing the Driver
If you use syscalls as a data source, you will likely need to manage the driver. If
you installed Falco without a package manager, you’ll have to install the driver
before using Falco manually. All the available packages provide a helpful script called
falco-driver-loader (introduced in Chapter 2) that you can use for this purpose. If you
followed the instructions earlier in this chapter, you should already have it installed
on your system.

Our suggestion is to familiarize yourself with the script by using --help to get its
command-line usage. To do that, just run:

$ falco-driver-loader --help

122 | Chapter 9: Installing Falco

https://oreil.ly/HEvdB

The script allows you to perform several actions, including installing a driver (either
the kernel module or the eBPF probe) by compiling it or downloading it. It also
allows you to remove a previously installed driver.

If you run the script without any options:

$ falco-driver-loader

by default it will try to install a kernel module via dkms. To be precise, it will first
try to download a prebuilt driver, if one is available for your distribution and kernel
version. Otherwise, it will try to compile the driver locally. The script will also inform
you if any required dependencies are missing (for example, if dkms or make is not
present on your system).

If you want to install the eBPF probe instead, run:

$ falco-driver-loader bpf

Running Falco in a Container
The Falco Project provides several container images that you can use to run Falco in
a container. Although the Falco container images described in this section will work
with almost any container runtime, we’ll use Docker in our examples for simplicity.
If you want to use a different tool, including Kubernetes, you can apply the same
concepts. Even if you are only interested in deploying Falco on Kubernetes, we still
advise you to read this section as it presents some essential concepts.

Table 9-1 lists the main available images, which you can get from the Falco “Down‐
load” page. These images contain all the necessary components to install the driver
and run Falco. Later in this section, we’ll discuss how to use them to support some
common use cases.

Table 9-1. Falco container images hosted by the docker.io registry

Image name Description
falcosecurity/
falco

This is the default Falco image. It contains Falco, the falco-driver-loader script, and the building toolchain
(required to build the driver on the fly). The entry point of this image will call the falco-driver-loader script
to automatically install the driver on the host before running Falco in the container.

falcosecurity/
falco-driver-
loader

This image is similar to the default one, but it will not run Falco. The image entry point will only run the
falco-driver-loader script. You can use it when you want to install the driver at a different moment or when
using the principle of least privilege (see “Least privileged mode” on page 125). Since this image alone
cannot run Falco, use it in combination with another image, like falcosecurity/falco-no-driver.

falcosecurity/
falco-no-driver

This alternative to the default image only contains Falco, so it cannot install the driver. Use it when using
the principle of least privilege or when your data source does not need a driver (for example, when using a
plugin).

Running Falco in a Container | 123

https://oreil.ly/rkZoV
https://oreil.ly/rkZoV

Different tags are available for each distributed image. Tags allow you to choose a
specific Falco version: for example, falcosecurity/falco:0.32.0 contains Falco’s 0.32.0
release. The :latest tag points to the latest released version of Falco.

If you want to experiment with a not-yet-released version of Falco, the :master tag
ships the latest available development version. An automatic process builds and pub‐
lishes images with this tag every time new code changes are merged into the master
branch of Falco’s GitHub repository. This means it is not a stable release—don’t use
it in production unless you want to try an experimental feature or debug a particular
issue. Generally, we suggest always using the :latest tag, since it ships the latest Falco
version and ruleset updates.

Next, we will describe how to use these images in the two common scenarios we’ve
been discussing: syscall instrumentation, which requires a driver, and using a plugin
as a data source, which does not.

Syscall Instrumentation Scenario
A Falco driver (either a kernel module or an eBPF probe) installed directly on
the host is required for syscall instrumentation. Falco needs to run with enough
privileges to interact with the driver; of course, if you want to use a container image
to install the driver, that image needs to run with full privileges.

The Falco Project provides two modes for installing the driver on the fly and then
running Falco in a container. The first and simplest mode uses just one container
image with full privileges. The second uses two images: one image that temporarily
runs with full privileges just to install the driver, and another image that then runs
Falco with lesser privileges. The second approach allows enhanced security since
the long-running container gets a restricted set of privileges, making life harder for
a possible attacker. We recommend using least privileged mode to run Falco in a
container.

Fully privileged mode
Running Falco in Docker with full privileges is quite straightforward. You just have to
pull the default image:

$ docker pull falcosecurity/falco:latest

Then run Falco with the following command:

$ docker run --rm -i -t \
 --privileged \
 -v /var/run/docker.sock:/host/var/run/docker.sock \
 -v /dev:/host/dev \
 -v /proc:/host/proc:ro \
 -v /boot:/host/boot:ro \
 -v /lib/modules:/host/lib/modules:ro \

124 | Chapter 9: Installing Falco

 -v /usr:/host/usr:ro \
 -v /etc:/host/etc:ro \
 falcosecurity/falco:latest

This command will install the driver on the fly before running Falco. The container
image uses the kernel module by default. If you want to use the eBPF probe instead,
just add the -e FALCO_BPF_PROBE="" option and remove -v /dev:/host/dev (only
the kernel module requires /dev).

As you can see, aside from the --privileged option, the preceding command
mounts a set of paths from the host into the container (each -v option is a bind
mount).

Specifically, the -v /var/run/docker.sock:/host/var/run/docker.sock option
shares the Docker socket, so Falco can use Docker to obtain container metadata
(as described in Chapter 5, where we discussed Falco’s data enrichment techniques).
You can add similar options for each container runtime available on your system.
For example, if you also have containerd, include -v /run/containerd/containerd
.sock:/host/run/containerd/containerd.sock.

Falco requires sharing /dev and /proc to interface with the driver and the system,
respectively. Other shared paths are needed to install the driver.

Least privileged mode
This running mode follows the principle of least privilege for enhanced security.
Although this mode is the recommended way to run Falco in a container, it might
not necessarily work for all systems and configurations. We advise you to give it a
try anyway and fall back to the fully privileged mode only if this does not fit your
environment.

As noted, this approach uses two different container images. The first step, which
requires full privileges, is to install the driver using the falcosecurity/falco-driver-
loader image. You’ll need to do this before running Falco for the first time, and if you
want to upgrade the driver at any point. (Alternatively, as explained earlier, you can
install the driver directly on the host using the falco-driver-loader script shipped with
the binary package. If you did so, skip this step.)

To install the driver using a container image, pull the image first:

$ docker pull falcosecurity/falco-driver-loader:latest

Then run the installation command:

$ docker run --rm -i -t \
 --privileged \
 -v /root/.falco:/root/.falco \
 -v /proc:/host/proc:ro \
 -v /boot:/host/boot:ro \

Running Falco in a Container | 125

https://oreil.ly/PKosx

 -v /lib/modules:/host/lib/modules:ro \
 -v /usr:/host/usr:ro \
 -v /etc:/host/etc:ro \
 falcosecurity/falco-driver-loader:latest

This command installs the kernel module by default. If you want to use the eBPF
probe instead, just add the -e FALCO_BPF_PROBE="" option.

The last step is to run Falco. Since the driver is already installed, you will just need to
use the falcosecurity/falco-no-driver image. So, pull it first:

$ docker pull falcosecurity/falco-no-driver:latest

Then run Falco:

$ docker run --rm -i -t \
 -e HOST_ROOT=/ \
 --cap-add SYS_PTRACE --pid=host $(ls /dev/falco* | xargs -I {}
$ echo --device {}) \
 -v /var/run/docker.sock:/var/run/docker.sock \
 falcosecurity/falco-no-driver:latest

If you use another container runtime, customize this command by adding a -v option
accordingly.

Finally, there are some caveats when using the eBPF probe. You cannot use least
privileged mode unless you have at least kernel version 5.8. This is because, with
previous kernel versions, loading the eBPF probe required the --privileged flag. If
you are running a kernel version equal to or greater than 5.8, you can use the SYS_BPF
capability to overcome this issue by customizing the command as follows:

$ docker run --rm -i -t \
 -e FALCO_BPF_PROBE=""
 -e HOST_ROOT=/ \
 --cap-add SYS_PTRACE --cap-add SYS_BPF -pid=host \
 -v /root/.falco:/root/.falco \
 -v /var/run/docker.sock:/var/run/docker.sock \
 falcosecurity/falco-no-driver:latest

Note that on systems with the AppArmor Linux Security Module (LSM) enabled, you
will also need to pass the following:

--security-opt apparmor:unconfined

Depending on the Falco version you are using and your environ‐
ment, you might need to customize the commands described in
this section; refer to the online documentation.

126 | Chapter 9: Installing Falco

https://oreil.ly/TXTge

Plugin Scenario
When you’re using a plugin as your data source, there’s no need to install a driver,
nor will Falco need full privileges to run, so we recommend you use the falcosecurity/
falco-no-driver image for this scenario. Whatever container image you choose, the
default Falco configuration it contains won’t work out of the box; you’ll have to give
Falco the required configuration for the plugin. You can do that by using an external
configuration file and mounting it in the container.

As a preparation step, you’ll have to create a local copy of falco.yaml and modify it
according to your plugin configuration. We will explain how to do that in the next
chapter.

Once you’ve prepared your custom falco.yaml, to run Falco, use the following
command:

$ docker run --rm -i -t \
 -v falco.yaml:/etc/falco/falco.yaml \
 falcosecurity/falco-no-driver:latest

If you want to use a plugin not shipped in the default Falco distribution, you will have
to mount the plugin file and its rules file in the container, too. For example, to mount
libmyplugin.so and myplugin_rules.yaml, add the following options to the preceding
command:

-v /path/to/libmyplugin.so:/usr/share/falco/plugins/libmyplugin.so
-v /path/to/myplugin_rules.yaml:/etc/falco/myplugin_rules.yaml

Deploying to a Kubernetes Cluster
One of the most common Falco use cases is securing clusters, so deploying Falco to
Kubernetes is perhaps the most important installation method to be aware of. The
Falco Project recommends two approaches for this:

Helm
The first installation method uses Helm, a very popular tool to install and man‐
age software built for Kubernetes. The Falco community provides and maintains
a Helm chart for Falco and other tools that integrate with Falco. Installing Falco
using the provided chart is straightforward and mostly automatic.

Kubernetes manifest files
The other installation method, geared toward flexibility, is based on a set of
Kubernetes manifest files. These files provide default installation settings, which
users can customize based on their needs. Although this approach requires a
bit more effort, it permits the installation of Falco on virtually any Kubernetes
cluster without the need for extra tools.

Deploying to a Kubernetes Cluster | 127

https://oreil.ly/E31wy

Both approaches are solid, and you should select the one that best suits your envi‐
ronment and your organization’s requirements. In the following subsections, we will
walk you through each of them. The only requirement is having a Kubernetes cluster
installed and running.

The installation methods for Kubernetes described in this section
use the default Falco container image discussed in “Running Falco
in a Container” on page 123.

Using Helm
If you prefer a fully automated installation process or are already using Helm in
your environment, this installation method is for you. Having Helm installed is a
prerequisite; for instructions, see the online documentation.

Falco’s Helm chart will add Falco to all nodes in your cluster using a DaemonSet.
Then each deployed Falco Pod will try to install the driver on its own node.
That is the default configuration that reflects the most common scenario, syscall
instrumentation.

Falco Pods internally use falco-driver-loader, which tries to down‐
load a prebuilt driver; failing that, it will build the driver on the
fly. Usually, no action is required. If you notice that the Falco Pods
are continuously restarting after being deployed, the process was
probably unable to install the driver. This issue usually happens
when a prebuilt driver is unavailable for your distribution or kernel
and no kernel headers are available on the host. To build the driver,
kernel headers must be installed on the host. You can fix the issue
by manually installing the kernel headers and then deploying Falco
again.

Helm uses the Kubernetes context provided by kubectl to access your cluster. Before
installing Falco with Helm, ensure that your local configuration points to the proper
context. You can check that by running:

$ kubectl config current-context

If the context is not pointing to your targeted cluster or kubectl cannot access your
cluster, you will have to address this issue. Otherwise, you can proceed with the next
step.

128 | Chapter 9: Installing Falco

https://helm.sh
https://oreil.ly/YCiLB
https://oreil.ly/S7tqe

1 The actual URLs of the Falco manifest example files for Kubernetes may change from time to time, but you
can always find links to them in the official documentation. Falco’s Helm chart can generate those files, too.
Surprisingly, The Falco Project uses this Helm functionality to automatically publish up-to-date manifest
example files under the Falcosecurity GitHub organization.

Before installing the chart, add Falco’s Helm repository so that your local Helm
installation can find the Falco chart:

$ helm repo add falcosecurity https://falcosecurity.github.io/charts

Running this command is usually a one-time operation. To get the latest information
about the Falco chart, use:

$ helm repo update

Execute this command whenever you want to install and update Falco with Helm.

The next and final step is actually to install the chart by running:

$ helm install falco falcosecurity/falco

The chart installs the kernel module by default. If you want to use the eBPF probe
instead, just append --set ebpf.enabled=true to this command.

And you’re done! After a while, Falco’s Pods will show up in your cluster. You can use
the following command to check whether they are ready:

$ kubectl get all

The chart installs Falco for the default scenario (syscall instrumentation), as per the
default settings. The Helm installation process for other scenarios is very similar;
just provide the appropriate configuration. We will discuss how to customize your
Falco deployment in Chapter 10. You can find more information about Falco’s chart
configuration in its online documentation.

Using Manifests
Kubernetes manifests are JSON or YAML files (mainly YAML) that contain the speci‐
fications for one or more Kubernetes API objects and describe your application and
its configurations. The kubectl command-line utility lets you deploy your workload
in Kubernetes using these files. Projects often provide almost-ready-to-use example
manifests, but you’ll usually need to adapt them to your needs.

Since Falco supports very different scenarios and environments, The Falco Project
does not officially provide manifests for all use cases. However, for the syscall instru‐
mentation scenario, you can use the Falco example manifests (listed in Table 9-2) as a
starting point to make your customized manifests.1

Deploying to a Kubernetes Cluster | 129

https://oreil.ly/P5BUa
https://oreil.ly/6QhH3
https://oreil.ly/pcJWP
https://oreil.ly/qWW1w

Table 9-2. Example manifest files for Falco

Filename Description
daemonset.yaml Specifies a DaemonSet so that a copy of the Falco Pod will run on each node (required by the syscall

instrumentation scenario). The Pod specification uses the falcosecurity/falco container image. It also
includes all settings needed to run the image in this scenario, similar to those described in “Running
Falco in a Container” on page 123.

configmap.yaml Specifies a ConfigMap containing the default falco.yaml file and rules files. Modify it according to
your needs.

serviceaccount.yaml Specifies a ServiceAccount for running Falco’s Pods. Falco requires this to talk with the Kubernetes
API. You usually don’t need to alter it, unless you want to change the service account name.

clusterrole.yaml Specifies a ClusterRole, including the role-based access control (RBAC) authorizations required by
Falco to talk with the Kubernetes API. Don’t change the list of permissions needed, or Falco will not
enrich the Kubernetes metadata correctly.

clusterrolebinding.yaml Specifies a ClusterRoleBinding that grants the permissions defined in clusterrole.yaml to the service
account defined in serviceaccount.yaml. You usually won’t need to change this, unless you’ve
changed the service account or the cluster role name in the other files.

Once you’ve modified the manifest files according to your needs, to apply them to
Kubernetes (that is, to deploy Falco to Kubernetes) just run the following command:

$ kubectl apply \
 -f ./templates/serviceaccount.yaml \
 -f ./templates/clusterrole.yaml \
 -f ./templates/clusterrolebinding.yaml \
 -f ./templates/configmap.yaml \
 -f ./templates/daemonset.yaml

Falco’s Pods should show up in your cluster after a while. To check whether they are
ready, use:

$ kubectl get all

If everything went well, Falco is now up and running in your production cluster—
and you have learned how to customize your Falco deployment. Congratulations!

Conclusion
This chapter introduced the different installation methods available for Falco and
explained the difference between the two most common installation scenarios. How‐
ever, in some cases, your installation will need specific configurations or customiza‐
tions. The next chapter gives you all the complementary information you need to
finally run Falco in production and completely control your Falco installation.

130 | Chapter 9: Installing Falco

https://oreil.ly/9YwAV
https://oreil.ly/WRtRb
https://oreil.ly/vTAdd
https://oreil.ly/sXkl9
https://oreil.ly/gWjN4
https://oreil.ly/PTEcU

CHAPTER 10

Configuring and Running Falco

In the previous chapter, you learned how to install Falco in production environments.
However, you still need to know how its configuration system works. Learning to
change its settings is fundamental to managing them over time and accommodating
your needs. You can configure Falco during or immediately after installation, when
updating to a newer version, or any time your needs change.

This chapter will help you understand and use the available settings. First, we’ll
explain the main areas of intervention: command-line options, environment vari‐
ables, the configuration file, and rules files. Then we will go deeper into each of
them. You will also find valuable suggestions for production use cases, along with
some tips to fine-tune your Falco configuration. At the end of the chapter you’ll find
a dedicated section on configuring plugins, and we’ll show you how to update the
configuration of a running Falco instance.

Configuring Falco
You can configure Falco through its settings, which we have grouped into three
categories:

Command-line options and environment variables
Command-line options and environment variables are the first settings you need
to run Falco. Most of these settings allow Falco to talk with your system, which
is particularly important for system instrumentation and data enrichment. Other
settings here let you adapt Falco to specific needs or help with troubleshooting.

Configuration file
You can configure almost any Falco behavior from within the main configuration
file, which you can customize according to your needs. For instance, you can
load rules files, activate the output channels you want, and use plugins if you

131

need to. By default Falco looks for this file at /etc/falco/falco.yaml, but you can
specify a different path using a command-line option.

Ruleset
Falco comes with a rich default ruleset so that you can start to use it immediately.
However, the ruleset is perhaps the most critical aspect to customize. It represents
the configuration of the Falco engine and sets what Falco will detect. By conven‐
tion, rules files live in /etc/falco.

Before we address each category in detail, we want to show you how Falco changes
depending on how you install it.

Differences Among Installation Methods
Regardless of the installation method you choose, Falco’s configuration areas will
always be the same. However, the ways you can change the settings may be slightly
different.

Host Installation
If you installed Falco using a package manager, you can specify the command-line
options and environment variables directly in the systemd unit file, which you can
find at /usr/lib/systemd/user/falco.service. Using systemctl edit falco is a conve‐
nient way to do that. When you’re finished, remember to restart the service with
systemctl restart falco.

If you are not using a package manager, running Falco is entirely up to you, including
passing command-line options and setting the environment variables. In such a case,
you can manually create a systemd unit. You can use the falco-service file’s source
code as an example.

Regardless of the package you use, you’ll find Falco’s configuration and rules files
under /etc/falco. You can edit those files directly and then restart Falco.

Containers
Falco’s container images allow you to specify the command to run, which by default
is /usr/bin/falco. If you need to pass command-line options, do so through the CLI
of your container runtime. For example, with Docker, to pass --version, you would
use:

$ docker run --rm -it falcosecurity/falco /usr/bin/falco --version

Note that the falcosecurity/falco container image’s entry point is a script that tries to
install the driver automatically. If you want to skip the installation, you need to set

132 | Chapter 10: Configuring and Running Falco

https://oreil.ly/0LcF3
https://oreil.ly/0LcF3

1 There are several other ways to set environment variables when running a container in Docker; for more
information, refer to Docker’s online documentation.

2 There are several alternatives for mounting files into a container. For details, see Docker’s documentation.

the SKIP_DRIVER_LOADER environment variable to any nonempty value. In Docker,
you can use the -e option to set an environment variable.1 So, for example, to get the
version and skip the driver installation at the same time, you would run:

$ docker run --rm -it -e SKIP_DRIVER_LOADER=y \
 falcosecurity/falco /usr/bin/falco --version

Falco container images also bundle both the default configuration file and the default
rules files. If you need to modify any of these, the usual approach is to make an
external copy of the file (for example, /etc/falco/falco.yaml) and then mount it into
the container. You can grab the configuration and rules files from the binary package
(make sure it matches the version of Falco running in the container) and modify
them according to your needs. Then, in Docker, use the -v option to mount the
modified files into the container.2

Kubernetes Deployments
When you deploy Falco in Kubernetes, you’ll also specify command-line options
and environment variables in the DaemonSet or the Deployment manifest. If you
use Helm or the example manifests from Chapter 9, the deployment will already
be configured with all the options to connect to your container runtime and the
Kubernetes API server. If you need to modify an option, find the corresponding Falco
chart configuration or modify the manifest directly.

Another important difference is that configuration and rules files live inside a Config‐
Map whose contents shadow those shipped within the container image. For Helm
users, the maintainers update Falco’s chart and configuration and rules files in sync
with the Falco distribution. On the other hand, if you are using manifest files, it’s
completely up to you to ensure the ConfigMap embeds the right files.

Command-Line Options and Environment Variables
When running Falco, specifying a command-line option or setting an environment
variable is sometimes the only way to change some of the settings. Settings you
configure via the command line always take precedence over settings loaded from the
configuration file.

Command-Line Options and Environment Variables | 133

https://oreil.ly/91H3j
https://oreil.ly/4cdap
https://oreil.ly/9CsSk
https://oreil.ly/9CsSk
https://oreil.ly/L6rs9

You can get the full list of Falco’s command-line options by running falco --help.
Falco will print each option (along with a brief description) in alphabetical order. The
available options may change depending on the Falco version. Always refer to falco
--help when in doubt.

In the rest of this section, to help familiarize you with the most important settings, we
group them by function. We also provide detailed information about using environ‐
ment variables, which you will not find in falco --help.

Configuration Settings
The two command-line options shown in Table 10-1 pertain to Falco’s configuration
file (located by default at /etc/falco/falco.yaml). The first one allows you to load a
configuration file from a different location; the second allows you to override some
configuration values on the fly. You won’t usually need to use them, but they can
be handy when troubleshooting. Also, when running Falco in production, ensure
nobody sets them by mistake so that Falco uses the correct configuration file and the
intended settings.

Table 10-1. Configuration command-line options

Option Description
-c Sets the path to the configuration file Falco will load. If this is not set, Falco uses the default

path: /etc/falco/falco.yaml.
-o, --option
<key>=<val>

Overrides a value in the configuration file by setting the value <val> to the configuration option
specified by <key>. You can use dot notation (.) to specify nested options or square brackets
notation ([]) to access lists: for example, -o key.subkey.list[0]=myValue.

Instrumentation Settings (Syscalls Only)
As you learned in Chapters 4 and 9, Falco uses the kernel module driver by default.
You can switch to the eBPF probe by setting the FALCO_BPF_PROBE environment
variable. You can set it to the path of the probe you want to use: for example,
FALCO_BPF_PROBE="/path/to/falco-bpf.o". Otherwise, you can set it to an empty
string (FALCO_BPF_PROBE="") and Falco will use ~/.falco/falco-bpf.o by default.

When you run Falco in a container or Kubernetes, the container image supports
FALCO_BPF_PROBE to control the on-the-fly driver installation, along with other envi‐
ronment variables. (The falco-driver-loader script exposes most of them, so you can
also use falco-driver-loader --help to get more information.) Let’s look at those
environment variables now:

134 | Chapter 10: Configuring and Running Falco

DRIVERS_REPO

If you create a repository of prebuilt drivers (either kernel modules or eBPF
probes), you can use this option to instruct the script to download a driver from
your repository. A driver repository hosts files with the following URL structure:

<DRIVERS_REPO>/<DRIVER_VERSION>/falco_<OS_ID>
_<KERNEL_RELEASE>_<KERNEL_VERSION>.[ko|o]

This variable allows you to set the base URL of your repository (with no trailing
slash). You may want to use this setting if you are running Falco in an air-gapped
environment or if you don’t want to download prebuilt drivers from the internet.
If not set, this variable defaults to The Falco Project’s public driver repository.

DRIVER_INSECURE_DOWNLOAD

If your driver repository does not support HTTPS, set it to any value (for
example, yes) to allow the script to download files from insecure URLs.

SKIP_DRIVER_LOADER

If you installed the driver on the host by other means, you’ll likely want to disable
the falco-driver-loader script when the container starts. In that case, set this
environment variable to any value (for example, yes). This setting only affects
Falco container images that use falco-driver-loader in the entry point, like the
falcosecurity/falco container image.

HOST_ROOT

This environment variable differs from the others listed here in that it’s not
related to the driver installation and directly affects Falco. HOST_ROOT expects a
base path and affects the instrumentation setup and enrichment system. If the
value is not empty, Falco uses it as a path prefix when it accesses the host’s
filesystem to use the kernel module devices (under /dev) or to fetch information
for data enrichment (in particular from /proc and the container runtime Unix
socket path). The falco-driver-loader script uses this variable for similar purposes
(for example, to access /boot, /lib, /usr, and /etc).

Use HOST_ROOT when running Falco in a container. The usual convention is to
set HOST_ROOT=/host and mount all the relevant paths into the container under
the /host directory. Kubernetes deployment uses this approach; see Chapters 5
and 9 for more details.

Command-Line Options and Environment Variables | 135

https://oreil.ly/vsE8X

For completeness, other settings related to syscall instrumentation are listed in
Table 10-2. These settings have a significant performance impact, so don’t use them
unless you need to.

Table 10-2. Syscall instrumentation command-line options

Option Description
-A Falco does not monitor all syscalls by default, so you usually cannot use all event types in rule conditions

(the driver skips most syscalls that are noisy or expensive to process, such as read, write, send, and
recv). If you enable this setting, the driver will send all supported syscall events to Falco, which may
be helpful in edge use cases. However, enabling this setting has a severe performance penalty. Falco may
not be able to catch up with the event stream.
The full list of supported syscalls is available in syscall_info_table.c. By default, the driver skips those
marked with EF_DROP_SIMPLE_CONS.

-u,
--userspace

Use this option only when you can’t use the kernel space instrumentation. This option must be used with
a user-space driver like pdig (discussed in Chapter 4).

Data Enrichment Settings (Syscalls Only)
When using syscalls as a data source, Falco needs to connect to a driver. It also
needs to fetch information from the host, the container runtime, and Kubernetes. In
Chapter 5, we talked briefly about the settings described in this section; Table 10-3
provides detailed usage descriptions of command-line options and environment
variables that affect the data enrichment mechanism.

Table 10-3. Data enrichment command-line options

Option Description
--cri <path> Use this option to specify the path to the Unix socket of a CRI-compatible

container runtime. If the Unix socket is valid, Falco will connect to the
runtime to fetch the container metadata.
In recent versions of Falco, you can specify this option multiple times.
Falco will try each given path in order and use the first one that connects.
When this option is not set, Falco will only try to use /run/containerd/
containerd.sock.

--disable-cri-async This option disables asynchronous CRI metadata fetching. You won’t
usually need to set it. However, if Falco shows container metadata
intermittently, this option can help you fix the issue.

-k <url>, --k8s-api <url> This enables Kubernetes metadata enrichment by connecting to the
Kubernetes API server specified by <url>.
Alternatively, you can use the FALCO_K8S_API environment variable,
which accepts the same values allowed by this option.

136 | Chapter 10: Configuring and Running Falco

.

https://oreil.ly/WVDRm

Option Description
-K <bt_file> |

<cert_file>:<key_file[#pwd]>

 [:<ca_cert_file>],
--k8s-api-cert <bt_file> |

<cert_file>:<key_file[#pwd]>
 [:<ca_cert_file>]

Use this option to authenticate with the Kubernetes API server. You can
provide either a bearer token filea (<bt_file>) or a certificate and a
private key (<cert_file>:<key_file>). If you use the latter, you
can optionally use a passphrase (#pwd) to access the private key, if
encrypted, and a CA certificate (:<ca_cert_file>) to verify the API
server’s identity. Certificates and private keys must be provided in the PEM
file format.
As an alternative, you can use the FALCO_K8S_API_CERT environment
variable, which accepts the same values allowed by this option.

--k8s-node <node_name> This option enables an important performance optimization for Kubernetes
metadata enrichment: Falco will use the node name as a filter when
requesting metadata of Pods from the API server, discarding unnecessary
metadata coming from other nodes. You should always set this option.
If you don’t, Falco will work, but may have performance issues on large
clusters.

a A bearer token file contains a string that authenticates the API request, one of the available authentication strategies for
Kubernetes.

Ruleset Settings
Table 10-4 shows the command-line options that can affect the ruleset. Falco will only
use the configuration file to load rules if you don’t use any of these options.

Table 10-4. Ruleset command-line options

Option Description
-D <substring> This option allows you to disable one or more rules that match <substring> in their names. You

can specify it multiple times, but it is incompatible with the -t option (see below).
-r <rules_file> This option allows you to specify a file or a directory that Falco will use to load rules. In the case of a

directory, Falco loads all the files it contains. You can specify -r multiple times to load multiple files
or directories.
If you use this option, Falco will ignore any rules files and directories specified in the configuration
file (/etc/falco/falco.yaml). Thus, we do not recommend using it in production, except for debugging
or in special cases.

-T <tag> This option disables any rules with the given <tag>.You can specify it multiple times, but it is
incompatible with the -t option (see below).

-t <tag> This option enables only rules with the given <tag> and disables all others. You can specify it
multiple times, but it is incompatible with the -T and -D options.

Output Settings
We described most of the output formatting options (along with Falco output chan‐
nel configuration) in Chapter 8. However, two other command-line options (listed in
Table 10-5) allow you to further customize Falco’s output behavior.

Command-Line Options and Environment Variables | 137

https://oreil.ly/nh9Qk

Table 10-5. Output command-line options

Option Description
-p<output_format>,
--print<output_format>

When enabled, this option appends additional information to the Falco notification’s
output. A few flavors are available; for instance:

• -pc or -pcontainer will add container information, such as the name and ID.•
• -pk or -pkubernetes will add Kubernetes information, such as the namespace•

and Pod name.

We recommend using -pk when using Falco in a Kubernetes context.

-U, --unbuffered This option disables full output buffering in the output channels (see Chapter 8). Use it
only if you encounter issues when piping the Falco output into another process or script.
Turning off output buffering may increase CPU usage.

Other Settings for Debugging and Troubleshooting
The command-line options we have described so far are the ones you’re likely to use
routinely while operating Falco. However, there’s another group of options (listed in
Table 10-6) for more occasional use, such as when you need information about your
Falco installation or are trying to solve a problem.

Table 10-6. Command-line options for debugging and troubleshooting

Option Description
-e <events_file> Tells Falco to use the trace file (see Chapter 3) specified by <events_file> as a data

source instead of using a live event source. Once Falco consumes all the events in the file, it
exits. Useful for testing and rule authoring.

-L Prints information about all loaded rules.

-l <rule> Prints the name and description of the rule with name <rule>, if loaded.
--list[=<source>] Lists all available condition fields, grouped by class (see Chapter 6). If you also provide

<source>, Falco will only list fields for that data source. The value of <source> can be
syscall or any other data source provided by configured plugins.

--list-plugins Prints information about configured plugins.

-s <stats_file> Tells Falco to create the file <stats_file> and populate it with statistics while running.
--stats-interval

<msec>

Sets the refresh interval (in milliseconds) for updating the file created by
-s <stats_file>.

--support Prints details about the loaded Falco configuration and ruleset, and other useful information
for troubleshooting that you can provide when asking for help (for example, when opening an
issue in the Falco GitHub repository).

-V, --validate
<rules_file>

Validates the content of the given <rules_file>. Useful for testing and rule authoring.

-v Enables verbose logging while Falco is running. This option does not affect the usual Falco
notifications, but log messages may interleave. Useful for debugging.

--version Prints the version of Falco you are using.

138 | Chapter 10: Configuring and Running Falco

https://oreil.ly/vkk2h
https://oreil.ly/vkk2h

3 Falco’s developers initially introduced the web server to support the Kubernetes audit log as a data source.
Recently, they factored out this functionality into a plugin. Thus, the actual settings you can find under the
webserver configuration node may vary significantly from one Falco version to another.

Configuration File
We talk about Falco’s configuration file all throughout this book, and we’ve already
covered its most important aspects. This section provides an overview and pointers to
everything you may need.

The configuration file is a YAML file, located at /etc/falco/falco.yaml by default. In this
file, you can configure:

Rules files
The rules_file configuration node is the first one you’ll find in the configura‐
tion file. It allows you to choose which rules files Falco will load (more on these
in the next section).

Plugins
You can enable plugins and pass settings through the load_plugins and plugins
configuration nodes (see “Using Plugins” on page 142).

Output channels
Various configuration nodes allow you to configure formatting, logging, and
output channel options. Refer to Chapter 8 for more information on the output
framework.

Embedded servers
Falco provides an embedded web server that exposes a healthy endpoint.3 Con‐
tainer orchestrators and other applications can use this endpoint to check if Falco
is up and running. The webserver configuration node allows you to enable and
configure the server.

Falco also provides a gRPC server that you can enable and configure using the
grpc configuration node (see Chapters 8 and 12).

Advanced fine-tuning settings (syscalls only)
Syscall instrumentation is likely the most complex feature Falco supports, so
the configuration file also provides advanced settings for it. Those settings vary
between versions of Falco, so we suggest you always refer to the online documen‐
tation and the inline comments included in the configuration file.

Notable options here include syscall_event_drops, which controls the detec‐
tion of dropped events; syscall_event_timeouts, which helps detect the
absence of events (an uncommon situation for syscalls); and metadata_download,

Configuration File | 139

which provides several options to fine-tune information downloads from the
container orchestrator API server.

Ruleset
Falco comes with a set of predefined rules that you can use right out of the box.
However, there are good reasons to customize your ruleset as much as possible. The
default ruleset is designed to cover major attack vectors, but these rules cannot cover
all possible cases. Attack mechanisms are always evolving, so your ruleset needs to
keep up. If you want the highest level of security, you need a ruleset that’s tailored to
your specific environment.

Additional benefits of customizing your rules include avoiding noisy false positives
and optimizing Falco’s performance. You need to learn how to configure the ruleset
correctly for all of these reasons.

Loading Rules Files
There are two ways to tell Falco which rules files to load: through the command
line or the configuration file. On the command line, you specify rules files using the
-r flag. In the configuration file, you put rules files under the rules_file section.
Recall that anything you set via the command line will take precedence over the
configuration file. In production, we recommend loading rules files through the
configuration file only, for this reason.

Whichever method you choose, you can specify more than one rules file or directory.
So, you can do:

$ falco -r path/to/my/rulefile1.yaml -r path/to/my/rulefile2.yaml

or:

rules_file:
 - path/to/my/rulefile1.yaml
 - path/to/my/rulefile2.yaml

It’s important to be aware that rules files are loaded and parsed in the order you
specify. (When the entry is a directory, Falco will load every file in that directory
in alphabetical order.) This makes it possible to customize rules, macros, and lists
(see Chapter 7) that are defined in one file in a subsequent file. The default Falco
configuration is crafted to take advantage of this mechanism.

Let’s take a look at the rules_file section in the default configuration file that is
shipped with Falco:

140 | Chapter 10: Configuring and Running Falco

rules_file:
 - /etc/falco/falco_rules.yaml
 - /etc/falco/falco_rules.local.yaml
 - /etc/falco/rules.d

The main rules file, falco_rules.yaml, which contains rules for syscalls, is followed by
a file named falco_rules.local.yaml. This file is where you should make changes to
falco_rules.yaml. It is empty by default, and you can work in it without having to
worry about polluting the main rules file. You can create other local files as you need.

Usually, Falco provides one rules file per data source. You can use this approach or
use multiple files, depending on your needs. Just keep in mind that the loading order
matters. Also note that Falco will only load rules that match the configured data
source; all others will be ignored. This means you don’t have to worry about manually
removing or disabling rules files intended for other data sources.

Tuning the Ruleset
The most important aspect of tuning the ruleset is understanding what your use case
needs to detect. That will allow you to decide which rules work for you and which
do not. Avoiding unnecessary rules has the double benefit of increasing performance
(Falco will use less CPU resources) and reducing false positives.

Once you have done an initial skim, disable the rules you are not interested in (as
described in Chapter 7). We do not suggest removing them from the rules files unless
you have created your own rules files from scratch. We also recommend periodically
evaluating your ruleset, because the rules you need will change over time.

Next, look at the rules’ conditions. We’ll get into the details of writing Falco rules in
Chapter 13, but for now we’ll offer two general guidelines for evaluating Falco rules.

First, avoid using too many exceptions in conditions: for example, long chains of and
not (...) and not (...). Falco has no alternative but to sequentially check any
exception present in the condition, which is an expensive task. Shorter conditions,
whenever possible, can improve rule evaluation performance significantly.

The second guideline applies only to syscalls and holds that a rule condition
should always match just one event type or a small set of event types. For example,
evt.type=connect and evt.type in (open,openat,openat2) are both fine, but
evt.type!=execve is not, because that filter would match all event types except one,
which is too many. Falco indexes rules by event type as a way of optimizing its
internal evaluation process; a rule matching too many event types would make this
indexing inefficient. To help rule authors spot this issue, Falco emits warnings for
rules that match all event types.

Ruleset | 141

Using Plugins
By default, Falco comes configured to use syscalls. If you want to use a plugin as your
data source instead, make sure that:

• The plugin file is already available in /usr/share/falco/plugins (some plugins are•
shipped with Falco); if not, you’ll need to install it in that folder.

• A rules file for the plugin is available (we recommend placing it under /etc/falco).•
• You have read the plugin’s documentation and understand which configuration•

parameters it needs.

Then, preparing Falco’s configuration file to use a plugin is a three-step process: select
the correct rules file, configure the plugin, and enable it.

To illustrate this process, we will use the CloudTrail plugin, which fetches log files
containing CloudTrail events (details on using this plugin are provided in the next
chapter). The CloudTrail plugin has a ruleset that requires another plugin with field
extraction capability: the JSON plugin. Both plugins and the ruleset come bundled
with Falco out of the box, so you should already have them if you’ve installed Falco.
You’ll find the plugin files libcloudtrail.so and libjson.so under /usr/share/falco/plugins
and the rules file at /etc/falco/aws_cloudtrail_rules.yaml.

Rules files for plugins are not usually configured by default in the Falco configura‐
tion, so you’ll have to add an entry to rules_file to load the correct rules file (you
can also remove unnecessary ones if you want to):

rules_file:
 - /etc/falco/aws_cloudtrail_rules.yaml

Next, under plugins, add the relevant entries:

plugins:
 - name: cloudtrail
 library_path: libcloudtrail.so
 init_config:
 sqsDelete: true
 open_params: "sqs://my-sqs-queue"
 - name: json
 library_path: libjson.so
 init_config: ""

The name field must match the plugin name, and library_path must match the
plugin file under /usr/share/falco/plugins.

In init_config, add the initialization parameters that Falco will pass to the plugin
(refer to your plugin’s documentation for details). Most plugins accept either a plain-
text or a JSON-formatted string. If the plugin supports a JSON string, you can still

142 | Chapter 10: Configuring and Running Falco

https://oreil.ly/kgImn
https://oreil.ly/DUEDJ
https://oreil.ly/Viiaj

4 The first versions of Falco with the plugin system do not allow you to enable multiple plugins with the event
sourcing capability at the same time. However, you can enable multiple plugins with only the field extraction
capability (see Chapter 4).

use the YAML syntax for init_config (as in the preceding example); Falco will
automatically convert it for you.

The open_params setting is needed only for plugins with event sourcing capability
(such as the CloudTrail plugin) and accepts only a plain-text string. It provides the
parameters to open the stream of events (again, refer to your plugin’s documenta‐
tion). Some plugins might not need this setting; in that case, you can just set it to an
empty string ("").

The last step is to enable your plugins:

load_plugins: [cloudtrail, json]

The load_plugins setting accepts an array of plugin names. You can enable multiple
plugins at the same time.4

That’s it! Your plugins are now configured and ready to run in Falco.

Changing the Configuration
Once you’ve installed and configured Falco, you may need to change its configuration
from time to time. There are two ways to tell Falco to load an updated configuration
(that is, any modification to the configuration file or rules files).

The simplest method is just to modify the configuration and then restart Falco. If you
installed Falco on the host using a package manager, you can do this with systemctl
restart falco. If you are running Falco in a container, restart the container. If you’re
running it in a Kubernetes cluster, you’ll need to redeploy Falco. Restarting Falco is
the only way to upgrade to a newer version or change its command-line settings.

The second way to load an updated configuration is to hot-reload, or tell Falco to
reload the configuration and rules files without stopping its running process. You can
tell Falco to reload itself by sending a SIGHUP signal:

$ kill -HUP <falco process ID here>

Once Falco receives the signal, it will reload the configuration file and the configured
rules files.

Since version 0.32.0, Falco can automatically hot-reload when the configuration file
or a rules file is modified. In the configuration file, the watch_config_files setting
controls this feature (enabled by default). So, in recent versions of Falco, you can just

Changing the Configuration | 143

https://oreil.ly/6unav

change the configuration file or rules files without the need to send a SIGHUP signal
manually.

Note that when Falco is restarting or hot reloading, it does not detect events. How‐
ever, the amount of time required to hot-reload Falco is significantly shorter than the
time it takes to restart the process, and is usually negligible.

Conclusion
This chapter and the previous one provided in-depth coverage of installing, configur‐
ing, and running Falco in a production environment, for both the syscall instrumen‐
tation scenario and the scenario where you’re using a plugin as a data source. Now, it’s
time to dig deeper into a concrete plugin case: using Falco for cloud security. In the
next chapter, you will discover how to secure your cloud by taking advantage of the
CloudTrail plugin.

144 | Chapter 10: Configuring and Running Falco

CHAPTER 11

Using Falco for Cloud Security

Now that you’ve learned all you need to know about configuring and running Falco,
it’s time to focus on an important topic that can have a huge impact on your security
posture: cloud security.

If you are reading this book, there is a good chance that some of your software (or all
of it!) runs in the cloud. Since AWS is the leading provider of cloud services, there is
also a good chance that your software is running there.

Public clouds are great environments to run software. Their support for elasticity,
flexibility, and automation makes building and running apps easier and more effi‐
cient. However, cloud-based apps and the data they use are exposed to attacks
from the whole planet. They are also exposed to misconfigurations, mistakes, and
malicious behavior from internal teams.

A comprehensive security posture needs to take many domains into account, includ‐
ing applications, users (external and internal), and data. Failing to properly protect
any one of these domains will result in gaps and therefore in risk. For example,
protecting workloads that run in containers and hosts (which you can do effectively
with Falco) is not beneficial unless you also cover the cloud infrastructure where
these workloads run.

Fortunately, Falco can bridge this gap and help you achieve the coverage you need.
Let’s learn how!

Why Falco for AWS Security?
Cloud security is a fertile and constantly evolving space with many implementation
options. Architecturally, most of those options fall into two basic categories:

145

1. Tools that query cloud APIs or watch cloud data stores to detect misconfigura‐1.
tions or vulnerabilities

2. Tools that stream cloud logs into a backend, index them, and let you query them2.

If your goal is to detect threats in cloud-based software, tools in category 1 won’t be
very useful. Polling is great for detecting gaps and validating compliance, but lacks
the real-time nature required to detect threats and respond quickly. Category 2 tools
are powerful, but also tremendously expensive (especially in environments like the
public cloud, where tons of logs are produced) and not friendly to deploy and use.

The Falco runtime security approach provides a very effective solution to this prob‐
lem. Falco’s philosophy is based on three key concepts. First, it parses data in a
streaming fashion to detect threats in real time. Second, it implements detection
on top of an engine that is lightweight to run and easy to deploy. Third, it offers
a compact rule language that is quick to learn but flexible and expressive. This
philosophy, as you’ve seen throughout the book, is very effective with system calls
and works equally well when applied to logs like those produced by AWS CloudTrail.

Falco consumes few resources and, most importantly, analyzes the data in a streaming
way—no need to perform expensive copies or wait until the data is indexed. Falco
looks at your data in real time and notifies you of problems in seconds. Getting it up
and running takes only a few minutes, as you saw in Part I of this book, and adopting
it for both cloud logs and system calls allows a unified approach to threat detection.
Let’s look at how it works.

Falco’s Architecture and AWS Security
When deployed in the context of AWS infrastructure security, Falco implements
detections on top of a specific data source: the logs generated by AWS CloudTrail.
The way this works is shown in Figure 11-1.

Figure 11-1. The high-level architecture of a Falco deployment for AWS security

CloudTrail is a log aggregation service offered by Amazon. It collects logs from hun‐
dreds of AWS services and stores them in S3, using a consistent and well-documented
format. CloudTrail is easy to set up and offers a coherent layer that insulates the
customer from the complexities of collecting logs of users’ and services’ activity.

146 | Chapter 11: Using Falco for Cloud Security

CloudTrail events are entries in JSON files that CloudTrail writes in the S3 bucket
at regular intervals. Falco understands how to read and parse these events thanks to
the CloudTrail plugin (Figure 11-2), which is created and maintained by the Falco
community. (If you need a refresher on what Falco plugins are and how they work,
see Chapter 4.)

Figure 11-2. Event collection with the CloudTrail plugin

In addition to offering multiple methods to collect CloudTrail logs (more on each
of these methods later in the chapter), the CloudTrail plugin extends Falco with
AWS-specific fields, which you can use to create rules like this one:

- rule: Console Login Without MFA
 desc: Detect a console login without MFA.
 condition: >
 ct.name="ConsoleLogin" and ct.error=""
 and ct.user.identitytype!="AssumedRole"
 and json.value[/responseElements/ConsoleLogin]="Success"
 and json.value[/additionalEventData/MFAUsed]="No"
 output: >
 Detected a console login without MFA
 (requesting user=%ct.user, requesting IP=%ct.srcip, AWS region=%ct.region)
 priority: CRITICAL
 source: aws_cloudtrail

Once Falco’s CloudTrail plugin is configured with a CloudTrail trail as an input, Falco
will continuously analyze the trail’s upcoming data, providing real-time anomaly and
threat detection. It’s like having a security camera for your cloud activity!

Detection Examples
Here are some of the things you can detect with Falco when it’s configured for AWS
security:

• Someone logs into the AWS console without multifactor authentication (MFA).•
• Someone deactivates MFA for the root user.•
• Someone creates a new AWS user or group.•

Falco’s Architecture and AWS Security | 147

• Someone runs instances in a nonapproved region.•
• Someone changes the permissions of an S3 bucket.•
• Someone disables CloudTrail logging.•

For the full list, refer to the CloudTrail rules file.

Configuring and Running Falco for CloudTrail Security
This part of the chapter will outline approaches to setting up cloud security using
Falco, describe the components, and guide you through configuring everything prop‐
erly. As we mentioned, Falco’s integration with CloudTrail happens through the
CloudTrail plugin. The plugin can be configured to receive log files in three different
ways:

• A Simple Queue Service (SQS) queue that passes along Simple Notification•
Service (SNS) notifications about new log files

• An S3 bucket•
• A local filesystem path•

Of these three methods, the first one is what you will use in the vast majority of
production situations, so we will focus on it first.

Receiving Log Files Through an SQS Queue
This deployment method consists of leveraging SQS to notify Falco when new Cloud‐
Trail logs are produced. Falco monitors the SQS queue and parses new logs in real
time when they arrive. The process is depicted in Figure 11-3.

Figure 11-3. SQS queue collection diagram

The process of setting up Falco in this configuration involves three steps:

148 | Chapter 11: Using Falco for Cloud Security

https://oreil.ly/beQYF
https://oreil.ly/OWVgb

1. Creating the CloudTrail trail and configuring it with an SNS topic. The SNS1.
topic detects changes to the S3 bucket where the trail is depositing the files and
broadcasts them to the world.

2. Creating the SQS queue and attaching it to the SNS topic. This creates an2.
endpoint that Falco can use to detect the arrival of new data.

3. Configuring Falco to receive the logs using the SQS queue.3.

We will guide you with step-by-step instructions to set all of this up, so you have full
knowledge of the moving parts. Before doing that, however, we’ll show you the easy
shortcut: a Terraform module that will do the work for you.

Terraform-based deployment
You can find the Terraform module on GitHub. Clone the repository to your local
machine and then execute the following commands:

$ cd examples/single-account
$ terraform init
$ terraform validate
$ terraform apply

If all goes well, you should get output that looks like this:

Apply complete! Resources: 14 added, 0 changed, 0 destroyed.

Outputs:

cloudtrail_sns_subscribed_sqs_arn = "arn:aws:sqs:ZZZZ"
cloudtrail_sns_subscribed_sqs_url = "https://sqs.<REGION>.amazonaws.com/.../
<QUEUE_NAME>"

You can now use <QUEUE_NAME> in your falco.yaml file:

plugins:
 - name: cloudtrail
 library_path: libcloudtrail.so
 init_config: ""
 open_params: "sqs://<QUEUE_NAME>"
 - name: json
 library_path: libjson.so
 init_config: ""
load_plugins: [cloudtrail, json]

Next, configure the rules_file section of falco.yaml to load the CloudTrail rules:

rules_file:
 - /etc/falco/aws_cloudtrail_rules.yaml

and you’re ready to launch Falco!

Configuring and Running Falco for CloudTrail Security | 149

https://oreil.ly/4qvQX

Manual deployment
Here are the steps to follow to set up Falco with an SQS queue if you don’t want to use
the Terraform script. The first step is to create the trail. You can do this as follows:

1. Go to the CloudTrail section of the AWS console.1.
2. Click “Create trail.”2.
3. Name the trail Falco.3.
4. As the storage location, you can either pick an existing trail or tell AWS to create4.

a new one.
5. Uncheck “Log file SSE-KMS encryption.” SSE encryption is something you5.

should definitely use as a good practice, but configuring it goes beyond the scope
of this chapter.

6. Check “SNS notification delivery.”6.
7. Under “Create a new SNS topic,” select New and name the topic falco-cloudtrail-7.

logs.
8. Click Next.8.
9. The “Choose log events” page lets you pick which logs you want to capture. The9.

default settings are enough for Falco to operate properly. Checking “Data events”
or “Exclude Amazon RDS Data API events” will allow you, if you desire, to craft
more granular rules on data events, like S3 bucket-level and object-level access.

10. Click Next.10.
11. Click “Create trail.”11.

Next, create the SQS queue:

1. Go to the SQS section of the AWS console.1.
2. Click “Create queue.”2.
3. Name the queue falco-queue.3.
4. The default access policy will work as is with Falco. However, consider imple‐4.

menting a less privileged access policy, for example using the AWS Policy
Generator.

5. Click “Create queue” at the bottom of the page. This will bring you to the5.
falco-queue details page.

6. Click “Subscribe to Amazon SNS topic.”6.
7. Select the topic whose name ends in falco-cloudtrail-logs.7.
8. Click Save.8.

150 | Chapter 11: Using Falco for Cloud Security

https://oreil.ly/fyxDD
https://oreil.ly/fyxDD

Now you need to configure Falco. This involves setting up AWS authentication and
configuring Falco itself. To read log files from an S3 bucket or SNS notifications from
an SQS queue Falco needs authentication credentials, and it needs to be configured
with an AWS region. Falco relies on the same authentication mechanisms used by the
AWS Go SDK: environment variables or shared configuration files. Configure these
as follows:

Environment variables
Specify the AWS region with AWS_REGION=xxx, the access key ID with
AWS_ACCESS_KEY_ID=xxx, and the secret key with AWS_SECRET_ACCESS_KEY=xxx.
Here’s a sample command line:

AWS_DEFAULT_REGION=us-west-1 \
AWS_ACCESS_KEY_ID=xxx \
AWS_SECRET_ACCESS_KEY=xxx \
falco -c <path-to-falco.yaml> -r <path-to-falco-rules>

Shared configuration files
Specify the AWS region in a file at $HOME/.aws/config and the credentials in a
file at $HOME/.aws/credentials. Here are some examples of what these files will
look like:

$HOME/.aws/config
[default]
region = us-west-1

$HOME/.aws/credentials
[default]
aws_access_key_id=<YOUR-AWS-ACCESS-KEY-ID-HERE>
aws_secret_access_key=<YOUR-AWS-SECRET-ACCESS-KEY-HERE>

Now, set up Falco itself:

1. Add the following snippet to falco.yaml to configure SQS-based log collection:1.
plugins:
 - name: cloudtrail
 library_path: libcloudtrail.so
 init_config: ""
 open_params: "sqs://falco-queue"
 - name: json
 library_path: libjson.so
 init_config: ""
load_plugins: [cloudtrail, json]

2. Configure the rules_file section of falco.yaml to load the CloudTrail rules:2.
rules_file:
 - /etc/falco/aws_cloudtrail_rules.yaml

Configuring and Running Falco for CloudTrail Security | 151

https://oreil.ly/DmUSL

3. Start Falco.3.

Et voilà: your AWS infrastructure is now protected!

Reading Events from an S3 Bucket or the Local Filesystem
While the SQS-based setup is recommended for real-time detection, Falco can also
read CloudTrail logs directly from the S3 bucket or from a copy of the logs stored
in the local filesystem. While the SQS setup processes “live” logs as they arrive, the
S3 and local filesystem setups read stored data. This means they effectively operate in
the past and cause Falco to exit when they reach the end of the currently stored data.
This approach can be valuable for a couple of reasons. First, it allows you to iterate
quickly during rule development. Second, it allows you to run Falco “back in time”
on CloudTrail logs that have already been stored (even if they’ve been stored for a
long time). Curious if (or when) somebody has changed the permissions of a bucket
during the last three weeks? Point Falco to the logs and you can find out easily!

Let’s take a look at how to run Falco in this mode.

S3 bucket
First, you need to set up AWS authentication. We just described how to do this for
SQS access, and it works exactly the same for S3, so just go back and follow the steps
at the end of the previous section.

Once you’ve configured AWS authentication, add the following snippet to falco.yaml:
plugins:
 - name: cloudtrail
 library_path: libcloudtrail.so
 init_config:
 s3DownloadConcurrency: 64
 open_params: >
 s3://my-s3-bucket/AWSLogs/411571310278/CloudTrail/us-west-1/2021/09/23/
 - name: json
 library_path: libjson.so
 init_config: ""
 load_plugins: [cloudtrail, json]

Note how the open_params key is just the URI of the trail location on S3, which you
can easily obtain by navigating to the data in the S3 console and then clicking “Copy
S3 URI.” You don’t need to specify the whole bucket; you can point to a subdirectory
or even a specific log file.

Now you need to configure the rules_file section of falco.yaml to load the Cloud‐
Trail rules:

rules_file:
 - /etc/falco/aws_cloudtrail_rules.yaml

152 | Chapter 11: Using Falco for Cloud Security

After that, you can just run Falco. It will process every file below the provided S3 URI
and return when it’s done.

Parsing the logs from a machine outside AWS, such as your laptop, might be pretty
slow, because the machine needs to download the data in order to process it. You can
speed things up by increasing the download concurrency (s3DownloadConcurrency
in the init_config key), or predownload the data locally using the AWS CLI and
then point Falco to the local logs (which we’ll describe next).

Local filesystem path
You can process CloudTrail logs stored in the local filesystem by putting the following
configuration in falco.yaml:

plugins:
 - name: cloudtrail
 library_path: libcloudtrail.so
 init_config: ""
 open_params: >
 /home/user/cloudtrail-logs/059797578166_CloudTrail_us-east-1_2021...
 - name: json
 library_path: libjson.so
 init_config: ""
 load_plugins: [cloudtrail, json]

You can point to a single file or to a directory, in which case Falco will recursively
read all of the files in the directory.

You will also need to edit the rules_file section of falco.yaml to load the CloudTrail
rules:

rules_file:
 - /etc/falco/aws_cloudtrail_rules.yaml

Once you’ve done that, just run Falco. It will process all of the files and exit when it’s
done.

Extending Falco’s AWS Ruleset
Falco comes with a powerful set of CloudTrail-based rules. However, if you need
customization, the CloudTrail plugin exports a rich set of fields that you can use to
craft your own rules with a high level of granularity.

Writing Falco rules will be extensively covered in Chapter 13. However, since that
chapter is primarily focused on system call–based rules, here are a couple of tips that
will help you get started with cloud rules development:

Extending Falco’s AWS Ruleset | 153

• CloudTrail rules need to include the following key: source: aws_cloudtrail.•
This tells Falco that the fields in the rule condition and output must come from
the CloudTrail plugin.

• You can obtain a list of fields you can use in a CloudTrail rule by using•
the --list=aws_cloudtrail Falco command-line switch. Also, take a look at
Table 6-10 in Chapter 6.

What About Other Clouds?
AWS is a very important player in cloud computing, so Falco added support for it
first. However, at the time of writing the Falco community was working on adding
support for both Microsoft Azure and Google Cloud Platform. Expect more clouds to
be added in the long term!

If you want to find out if Falco supports your cloud, check out the plugins repository
on GitHub.

Conclusion
In this chapter, you learned that Falco is about more than system calls and containers,
and how you can employ it to protect your cloud software and vastly improve your
security posture. In the next chapter we will switch to the output side and show you
how to collect and treat Falco events.

154 | Chapter 11: Using Falco for Cloud Security

https://oreil.ly/W20tv
https://oreil.ly/W20tv

CHAPTER 12

Consuming Falco Events

At this point, you’ve learned how to run and configure Falco. You understand how
Falco can be used for runtime and cloud security and how it can detect a vast spec‐
trum of threats. Now, it’s time to focus on what you can do with Falco’s detections.
Consuming Falco’s output is the final piece of the puzzle and the subject of this
chapter.

Alerts generated by Falco are helpful for observing and securing your production
system, and we will give you some advice on how to use those alerts proficiently.
The first part of the chapter is about tools that help you consume Falco’s outputs
effectively. We will teach you how to get notified immediately when Falco detects
a security threat, so your security team can react as soon as possible and take
appropriate countermeasures. Finally, we’ll show you a mechanism for automatically
responding to threats to speed up response times.

Working with Falco Outputs
A minimal Falco installation outputs a simple textual log that you can store for later
consultation, but this is not very useful. Fortunately, more intelligent tools allow you
to work with Falco’s outputs and expand its possibilities, and these are an important
part of integrating Falco into your ecosystem.

This section will talk in detail about two tools that we have already mentioned in
the book. The first, falco-exporter, is a tool designed to do one thing and do it well:
produce metrics from Falco’s detected events. The second, Falcosidekick, is the Swiss
Army knife of Falco outputs. It lets you aggregate data from multiple Falco sensors,
filter the notifications, and forward them to any other application or platform in your
environment.

155

1 A Grafana dashboard is a set of organized UI elements to visualize the data. Dashboard configurations can be
stored in a file and shared. You can get most of the available dashboards from Grafana’s online gallery.

falco-exporter
The falco-exporter project provides a Prometheus metrics exporter for Falco output
events. It consumes Falco outputs via a streamed gRPC API and exposes a metrics
endpoint. The metrics include information on the number of triggered rules and
detailed information on the priority and tags associated with the rules, as well as
labels to identify each event’s origin, such as the hostname, namespace, and pod’s
name. It also provides a preconfigured Grafana dashboard.1 falco-exporter is useful
for when you only need metrics about security events. (By contrast, Falcosidekick can
also export metrics, but it comes with many other functionalities and outputs.)

Before installing falco-exporter, ensure that Falco is installed and configured with the
gRCP server and gRPC output enabled over a Unix socket (see “gRPC Output” on
page 110 for a refresher).

Host installation
To install falco-exporter directly on the host, you have to download the latest version
from the releases page, decompress the archive, and copy the executable file falco-
exporter to your preferred location (e.g., /usr/bin). Whether you execute it manually
or run it as a service is entirely up to you. The default options work out of the box
with the gRPC Unix socket in /var/run/falco.sock (the default option for Falco). If you
need to customize its options, run falco-exporter --help for assistance.

Running in a container
To run falco-exporter in a container using Docker, use these commands:

$ docker pull falcosecurity/falco-exporter:latest
$ docker run -v /var/run/falco.sock:/var/run/falco.sock \
 falcosecurity/falco-exporter:latest

The docker run command assumes that Falco is installed on the host and Falco’s
gRPC Unix socket is present in /var/run/falco.sock.

Deploying to Kubernetes
You can deploy falco-exporter to a Kubernetes cluster using either Helm or manifest
files (see Chapter 9 for details on the two installation methods), but we recommend
Helm. You first need to add the Falcosecurity charts repository:

$ helm repo add falcosecurity https://falcosecurity.github.io/charts
$ helm repo update

156 | Chapter 12: Consuming Falco Events

https://oreil.ly/2sVSm
https://oreil.ly/F25kV
https://oreil.ly/0j6EJ
https://oreil.ly/rfK8e

Then, to install the chart, run:

$ helm install falco-exporter falcosecurity/falco-exporter

For detailed instructions, see the falco-exporter chart documentation. If you want to
use manifest files instead, follow the steps in the falco-exporter documentation.

Falcosidekick
The Falcosidekick project provides a complete solution for connecting Falco to your
ecosystem. It works on top of Falco’s output and allows you to forward its notifica‐
tions to many other destinations (see Figure 12-1). Falcosidekick can add custom
fields to the notifications or filter events by priority (on a per-destination basis). In
particular, supported outputs include platforms and applications for:

• Communication and collaboration•
• Metrics and observability•
• Alerting•
• Logging and storage•
• Function as a Service (FaaS) and serverless•
• Message queues and streaming•

Figure 12-1. The Falcosidekick logo (left) and some of its supported notification destina‐
tions (right)

Working with Falco Outputs | 157

https://oreil.ly/qkH5G
https://oreil.ly/lktaK
https://oreil.ly/MVyRi

Falcosidekick also allows you to use a side project, falcosidekick-ui, to visualize Falco
events in a pleasant web UI (shown in Figure 12-2). The web UI displays statistics
about detected events and shows values in aggregate form and on a timeline. You can
also filter for the events you are interested in and get all the event details quickly.

Figure 12-2. The Falcosidekick web UI

158 | Chapter 12: Consuming Falco Events

https://oreil.ly/o1pcB

Using Falcosidekick requires a small change in Falco’s configuration: before using
it, enable JSON formatting and configure the HTTP output to send events to the
Falcosidekick endpoint (it listens at port 2801 by default). See Chapter 8 for Falco
output configuration instructions and the Falcosidekick online documentation for
specific details.

Host installation
To install Falcosidekick directly on the host, download the latest version from the
releases page, decompress the archive, and copy the executable file falcosidekick to
your preferred location (e.g., /usr/bin). Whether to execute it manually or run it as a
service is entirely up to you. You also need to create a YAML configuration file and
pass its path as an argument. For example:

$ falcosidekick -c falcosidekick_config.yaml

The Falcosidekick repository includes an example configuration file that you can
start with. Falcosidekick also supports environment variables that you can use as an
alternative or to override the configuration file values.

Running in a container
To run Falcosidekick in a container using Docker, use these commands:

$ docker pull falcosecurity/falcosidekick:latest
$ docker run -d -p 2801:2801 falcosecurity/falcosidekick:latest

The docker run command assumes that Falco is installed on the host and that the
HTTP output is configured to send events to port 2801. Using Docker’s -e option,
you can use environment variables to pass configurations. Alternatively, use Docker’s
-v option to give it a YAML configuration file.

Deploying to Kubernetes
As with falco-exporter, you can deploy Falcosidekick to a Kubernetes cluster using
either Helm or manifest files. We recommend the Helm installation option, which
comes in two variants. Before we explore them, if you haven’t already added the
Falcosecurity charts repository to Helm, do it by running:

$ helm repo add falcosecurity https://falcosecurity.github.io/charts
$ helm repo update

Working with Falco Outputs | 159

https://oreil.ly/ToAMj

2 The actual URLs of the Falcosidekick example manifest files for Kubernetes may change from time to time,
but you can always find them under the Falcosecurity GitHub organization. Note that any Helm chart can
generate such files. Indeed, like Falco’s manifest files, Falcosidekick’s files are rendered starting from its chart.

Now you’re ready to deploy to your Kubernetes cluster. The first and more ordinary
way to do this is when you already have Falco deployed and configured to send events
to Falcosidekick and you just need to install the Falcosidekick chart:

$ helm install falcosidekick falcosecurity/falcosidekick

The other variant allows you to deploy Falco and Falcosidekick in a single Helm
installation that will automatically configure both charts to work together. It’s usually
the most convenient solution. To do this, run:

$ helm install falco falcosecurity/falco --set falcosidekick.enabled=true

Optionally, if you want to deploy the Falcosidekick web UI as well, add --set
webui.enabled=true to the install command (regardless of which variant you
choose).

You can find details on additional options in the Falcosidekick chart documentation.
If you want to use manifest files instead, use the provided online examples.2

Observability and Analysis
Falco allows you to observe and analyze the security of your cloud-native environ‐
ment. If you plan to leverage Falco’s detections for auditing or forensic purposes,
you’ll usually want to store as much information as possible and make Falco’s results
easily accessible and searchable. The tools described in this chapter offer you plenty
of support.

Storing Falco events is like ingesting any other application logs. This means you can
reuse your existing logging backend for Falco. Also, Falcosidekick can easily send
Falco events to systems that allow you to store and analyze vast volumes of log data,
like Elasticsearch and Splunk. Since you will likely use this approach for later analysis,
we suggest keeping all events that Falco emits with no filtering.

You’ll probably also want to collect metrics, as this can help you detect errors and
anomalies in your application. For instance, a metric reporting that a Falco rule
regularly triggers on a particular machine may be a symptom of a security problem,
a misconfiguration, or an implementation bug in your running application. A reliable
tool for this purpose is falco-exporter: it exposes metrics, connects Falco to Prome‐
theus, and also offers a ready-to-use Grafana dashboard (Figure 12-3).

160 | Chapter 12: Consuming Falco Events

https://oreil.ly/QaipZ
https://oreil.ly/fziYL

Figure 12-3. The preconfigured Grafana dashboard for Falco events metrics provided by
falco-exporter

Getting Notified
Although storing and aggregating Falco events is fine for observability, it’s not helpful
when you need to react promptly to a security event. You likely want to receive
important notifications immediately and in the right place so that you or your team
can take countermeasures or start investigating right away.

Falco’s built-in output channels do not provide a specific mechanism for immediate
notifications, but Falcosidekick allows you to forward only important notifications.
For example, let’s say you want to get notifications whenever an event triggers the
Sudo Potential Privilege Escalation rule (which comes with priority: CRITICAL), but
not for other, noisier rules with lower priority levels. Falcosidekick allows you to
configure a minimum priority level at which you want to send events to a specific
destination, and to adjust this configuration for each destination. It supports most
on-call systems, like PagerDuty, Opsgenie, and Prometheus Alertmanager and can
send notifications to most common communication platforms, including Slack, Mat‐
termost, Rocket.Chat, Microsoft Teams, and Discord.

You can use Falcosidekick configurations to integrate Falco alerts into your existing
environment easily. And because Falcosidekick allows you to forward Falco notifica‐
tions to multiple destinations simultaneously, you can, for example, send the alerts to
both PagerDuty and a Slack channel.

Responding to Threats
Another meaningful—and more sophisticated—way of consuming Falco events is
to create systems that automatically take action in response to threats or security

Getting Notified | 161

incidents. Implementing custom actions in response to threats is easier than you
might think.

Although The Falco Project does not provide a specific tool for this purpose, a few
emerging projects in the community are implementing this concept. Such systems
are sometimes called response engines and usually specialize in managing threats in
Kubernetes.

A response engine provides a straightforward mechanism to perform a predefined
task when a Falco rule condition is violated. You can create a simple implementation
using Falcosidekick to forward Falco notifications to a FaaS platform or serverless
solution that, in turn, performs the required action. For example, you can automati‐
cally terminate a Kubernetes Pod whenever a Falco rule determines that the Pod is
compromised, by implementing a cloud function that uses the Kubernetes API to
delete the compromised Pod. Figure 12-4 illustrates this approach and shows some
cloud function providers supported by Falcosidekick.

Figure 12-4. Example of a functional scheme for a response engine for Kubernetes that
uses Falcosidekick outputs to perform actions

You might want to be notified regardless of the rule’s priority level, but you will
probably only want to perform actions for specific rules. For example, you might
want only rules with a CRITICAL priority level to terminate Pods. Falcosidekick helps
with this because it allows you to filter notifications based on their priority value, so
you can control the information each destination receives.

We advise you to analyze your needs and design your response engine to meet them.
Falco and tools like Falcosidekick will provide everything you need to support your
solution.

162 | Chapter 12: Consuming Falco Events

Conclusion
This chapter concludes Part III. You’ve learned all the fundamental aspects of running
Falco in production and can now configure and customize it for almost any need and
scenario. You’ve also discovered how to consume Falco events properly and integrate
them with your ecosystem.

In Part IV, you will go beyond the knowledge of the average user and learn how to
extend Falco to satisfy any advanced requirement.

Conclusion | 163

PART IV

Extending Falco

CHAPTER 13

Writing Falco Rules

Welcome to Part IV of the book! Now that you’ve learned what Falco is and does
(Part I), understand the intricacies of its architecture (Part II), and are a pro at
deploying and running it (Part III), it’s time, once more, to step up your game.

The final part of this book (Chapters 13 through 15) is about going beyond what
comes out of the box. You will learn how to customize Falco for your specific needs
and how, if you desire, you can contribute your improvements to the project so
that the community can benefit from them. This is where you get to unleash your
creativity.

We’ve already covered rules extensively in the book, in particular in Chapter 7. But
you unlock the true power of Falco when you become capable of creating your own
rules and adapting the existing ones to your environment—which is what we’re going
to show you how to do here.

This chapter assumes you have a good understanding of fields and filters (covered in
Chapter 6) and of the basics of rules and rules files (Chapter 7). If you feel you need a
refresher, just go back to those chapters. We’ll wait for you here until you’re ready.

Customizing the Default Falco Rules
Although Falco’s default set of rules is rich and constantly expanding, it’s not uncom‐
mon to encounter situations where those rules require customization. Here are some
examples:

• You want to expand the scope of a rule or increase its coverage.•
• You want to tighten the number of rules that Falco loads to decrease its CPU•

usage.

167

• You want to reduce alerting noise by controlling a rule’s behavior or adding•
exceptions to it.

Falco offers a framework to accomplish these things without having to fork the
default rules files and maintain your own copies. Chapter 7 taught you how to
replace and append to macros, lists, and rules, as well as how to disable rules. This
is especially useful since, as you learned in Chapter 10, the order in which rules files
are loaded is important, and you control that order. This means you can change an
existing rule in a separate file that is loaded later in the initialization chain.

The default Falco configuration is crafted to take advantage of this mechanism,
providing two places out of the box where you can customize existing rules without
touching the default ruleset. The first is falco_rules.local.yaml. This file, which is ini‐
tially empty, is loaded after falco_rules.yaml and is therefore a good place to disable or
modify rules in the default ruleset. The second is /etc/falco/rules.d. Falco, by default,
loads all the rules files that it finds in this directory after loading falco_rules.yaml and
falco_rules.local.yaml. This makes it another good place for customizations.

Writing New Falco Rules
At its core, writing a new rule is just a matter of crafting the condition and the output,
so conceptually it is a very straightforward process. In practice, however, there are
several factors to take into account. Improvised rule development often results in
imperfect or even nonfunctional rules. Seasoned Falco users tend to develop their
own processes for rule writing, and we recommend you do the same. What the best
process is depends on your setup, target environment, and taste, so we won’t be able
to offer you absolute prescriptions. Instead, we’ll share the way we do it, hoping it can
serve as inspiration and guidance.

Our Rule Development Method
The method for rule development used by this book’s authors consists of nine steps:

1. Replicate the events you want to detect.1.
2. Capture the events and save them in a trace file.2.
3. Craft and test the condition filter with the aid of sysdig.3.
4. Craft and test the output with the aid of sysdig.4.
5. Convert the sysdig command line into a rule.5.
6. Validate the rule in Falco.6.
7. Modularize and optimize the rule.7.

168 | Chapter 13: Writing Falco Rules

1 The term symlink is short for symbolic link; in Unix, it indicates a filesystem entry that is a reference to
another file or directory.

8. Create a regression.8.
9. Share the rule with the community.9.

In the following sections we’ll expand on each item in this list and provide a real-
world example, walking you through crafting a new rule that detects attempts to
create symlinks1 inside the /proc, /bin, and /etc directories. This is, at minimum,
strange behavior and could potentially indicate fishy activity. Here’s how you would
apply our method to build such a rule.

1. Replicate the events you want to detect
It’s almost impossible to create a reliable rule without testing and validating it, so the
first step is to re-create the scenario (or scenarios) that the rule should detect. In this
case, you want to detect the creation of symlinks in three specific directories. You can
re-create that scenario from within a terminal using the ln command:

$ ln -s ~ /proc/evillink
$ ln -s ~ /bin/evillink
$ ln -s ~ /etc/evillink

2. Capture the events and save them in a trace file
Now you can capture the suspicious activity using sysdig. (If you need a refresher on
sysdig and trace files, go back to “Observing System Calls” on page 43.) sysdig allows
you to easily store the activity in a trace file using the -w command-line flag. To see
how it works, issue this command in a terminal:

$ sysdig -w evillinks.scap

In another terminal, run the three ln commands again, then go back to the first
terminal and stop sysdig with Ctrl-C. You now have your activity in a trace file that
you can inspect as many times you want:

$ sysdig -r evillinks.scap

You will notice that the trace file contains all of the host’s activity, not only your ln
commands. You will also notice that the file is pretty big. You can make it smaller and
easier to inspect by using a filter when you run the capture:

$ sysdig -w evillinks.scap proc.name=ln

Now you have a noise-free file that is less than 1 MB in size, containing only the
specific activity that you need to craft your rule. Saving the rule-triggering activity in
a trace file has several advantages:

Writing New Falco Rules | 169

• It requires replicating complex behaviors only once. (Not all suspicious behaviors•
are as simple to detect as running ln three times!)

• It allows you to focus on the events and stay in a single terminal, without having•
to replicate the rule-triggering commands many times.

• It allows you to develop rules on a different machine. You don’t even need to•
deploy and configure Falco on the machine where the behavior is happening!
This is really nice if you want to capture behaviors in “unfriendly” environments
like cloud containers or edge devices.

• It lets you develop rules with normal user privileges.•
• It provides consistency, which is useful not only for creating the rule but also for•

implementing regressions when the rule is done.

3. Craft and test the condition filter with the aid of sysdig
Now that you have the data you need, it’s time to work on the condition. Typically, at
this stage you’ll want to answer a couple of questions:

1. What type of system call (or system calls) do you need to target? Of course,1.
not all Falco rules are based on system calls; for example, you might be using a
plugin. But in general, identifying the type of event that will trigger the rule is the
first order of business.

2. Once you know which event to parse, which of its parameters or arguments do2.
you need to check?

sysdig can help you answer these questions. Use it to read and decode the capture file:

$ sysdig -r evillinks.scap

Toward the end of the output file is where the magic happens:

2313 11:21:22.782601383 1 ln (23859) > symlinkat
2314 11:21:22.782662611 1 ln (23859) < symlinkat res=0 target=/home/foo
linkdirfd=-100(AT_FDCWD) linkpath=/etc/evillink

Our system call is symlinkat. The system call’s manpage tells you that it’s a variation
of another system call, symlink. You can also see that the linkpath argument con‐
tains the filesystem path of the symbolic link. This is exactly what you need to know
to craft your filter, which should look like this:

(evt.type=symlink or evt.type=symlinkat) and (
 evt.arg.linkpath startswith /proc/ or
 evt.arg.linkpath startswith /bin/ or
 evt.arg.linkpath startswith /etc/
)

You can immediately leverage sysdig to validate that this is the right filter:

170 | Chapter 13: Writing Falco Rules

https://oreil.ly/oW7rT

$ sysdig -r evillinks.scap \
 "(evt.type=symlink or evt.type=symlinkat) and \
 (evt.arg.linkpath startswith /proc/ or \
 evt.arg.linkpath startswith /bin/ or \
 evt.arg.linkpath startswith /etc/)"
438 11:21:13.204948767 2 ln (23814) < symlinkat res=-2(ENOENT) target=/home/foo
linkdirfd=-100(AT_FDCWD) linkpath=/proc/evillink
1679 11:21:19.420360948 0 ln (23850) < symlinkat res=0 target=/home/foo
linkdirfd=-100(AT_FDCWD) linkpath=/bin/evillink
2314 11:21:22.782662611 1 ln (23859) < symlinkat res=0 target=/home/foo
linkdirfd=-100(AT_FDCWD) linkpath=/etc/evillink

Bingo! The output correctly shows the three system calls that should trigger the rule.

4. Craft and test the output with the aid of sysdig

sysdig, handily, can help you craft the rule’s output too. The sysdig -p flag, in particu‐
lar, receives a Falco output–compatible string as input and uses it to print a Falco-like
output to the terminal for each event accepted by the filter. This makes it effortless to
craft and test the rule’s output, knowing that Falco will show the same thing when the
rule triggers. For example, this looks like a nice output for your rule:

a symlink was created in a sensitive directory (link=%evt.arg.linkpath,
target=%evt.arg.target, cmd=%proc.cmdline)

Test it, together with the filter, in sysdig:

$ sysdig -r evillinks.scap \
 -p"a symlink was created in a sensitive directory \
 (link=%evt.arg.linkpath, target=%evt.arg.target, cmd=%proc.cmdline)" \
 "(evt.type=symlink or evt.type=symlinkat) and \
 (evt.arg.linkpath startswith /proc/ or \
 evt.arg.linkpath startswith /bin/ or \
 evt.arg.linkpath startswith /etc/)"
a symlink was created in a sensitive directory (link=/proc/evillink,
target=/home/foo, cmd=ln -s /home/foo /proc/evillink)
a symlink was created in a sensitive directory (link=/bin/evillink,
target=/home/foo, cmd=ln -s /home/foo /bin/evillink)
a symlink was created in a sensitive directory (link=/etc/evillink,
target=/home/foo, cmd=ln -s /home/foo /etc/evillink)

Note the quotation marks around both the filter and the output condition. This
prevents the shell from getting confused by any characters they contain.

Your condition and output look pretty good. Time to switch to Falco!

5. Convert the sysdig command line into a rule
The next step is converting what you have into a Falco rule. This is little more than a
copy-and-paste exercise, since you already know that the condition and output work:

- rule: Symlink in a Sensitive Directory
 desc: >

Writing New Falco Rules | 171

 Detect the creation of a symbolic link
 in a sensitive directory like /etc or /bin.
 condition: >
 (evt.type=symlink or evt.type=symlinkat) and (
 evt.arg.linkpath startswith /proc/ or
 evt.arg.linkpath startswith /bin/ or
 evt.arg.linkpath startswith /etc/)
 output: >
 a symlink was created in a sensitive directory
 (link=%evt.arg.linkpath, target=%evt.arg.target, cmd=%proc.cmdline)
 priority: WARNING

6. Validate the rule in Falco
Save the rule in a YAML file called symlink.yaml. Now testing it in Falco is a matter of
loading it with the -r flag, then using the -e flag to use the capture file as input:

$ falco -r symlink.yaml -e evillinks.scap
2022-02-05T01:09:23+0000: Falco version 0.31.0 (driver version
319368f1ad778691164d33d59945e00c5752cd27)
2022-02-05T01:09:23+0000: Falco initialized with configuration file
/etc/falco/falco.yaml
2022-02-05T01:09:23+0000: Loading rules from file symlink.yaml:
2022-02-05T01:09:23+0000: Reading system call events from file: evillinks.scap
2022-02-04T19:21:13.204948767+0000: Warning a symlink was created in a
sensitive directory (link=/proc/evillink, target=/home/foo, cmd=ln -s /home/foo
/proc/evillink)
2022-02-04T19:21:19.420360948+0000: Warning a symlink was created in a
sensitive directory (link=/bin/evillink, target=/home/foo, cmd=ln -s /home/foo
/bin/evillink)
2022-02-04T19:21:22.782662611+0000: Warning a symlink was created in a
sensitive directory (link=/etc/evillink, target=/home/foo, cmd=ln -s /home/foo
/etc/evillink)
Events detected: 3
Rule counts by severity:
 WARNING: 3
Triggered rules by rule name:
 Symlink in a Sensitive Directory: 3
Syscall event drop monitoring:
 - event drop detected: 0 occurrences
 - num times actions taken: 0

The rule triggered the expected number of times and displayed the correct output.
Congratulations!

Note how, in Falco, you can leverage the same trace file that you created with sysdig.
The -e command-line option tells Falco: “Read system calls from the given file
instead of using a driver. When you reach the end of the file, print a summary and
return.” Very handy for quick iteration!

172 | Chapter 13: Writing Falco Rules

7. Modularize and optimize the rule
You have a working rule and you’ve tested it, but there’s room to make it prettier.
Step 7 is adding modularity to the rule:

- macro: sensitive_sylink_dir
 condition: >
 (evt.arg.linkpath startswith /proc/ or
 evt.arg.linkpath startswith /bin/ or
 evt.arg.linkpath startswith /etc/)

- macro: create_symlink
 condition: (evt.type=symlink or evt.type=symlinkat)

- rule: Symlink in a Sensitive Directory
 desc: >
 Detect the creation of a symbolic link
 in a sensitive directory like /etc or /bin.
 condition: create_symlink and sensitive_sylink_dir
 output: >
 a symlink was created in a sensitive directory
 (link=%evt.arg.linkpath, target=%evt.arg.target, cmd=%proc.cmdline)
 priority: WARNING

This moves the condition’s checks into macros, which makes the condition shorter
and more readable. That’s great, but you can do even better:

- list: symlink_syscalls
 items: [symlink, symlinkat]
- list: sensitive_dirs
 items: [/proc/, /bin/, /etc/]

- macro: create_symlink
 condition: (evt.type in (symlink_syscalls))
- macro: sensitive_sylink_dir
 condition: (evt.arg.linkpath pmatch (sensitive_dirs))

- rule: Symlink in a Sensitive Directory
 desc: >
 Detect the creation of a symbolic link
 in a sensitive directory like /etc or /bin.
 condition: create_symlink and sensitive_sylink_dir
 output: >
 a symlink was created in a sensitive directory
 (link=%evt.arg.linkpath, target=%evt.arg.target, cmd=%proc.cmdline)
 priority: WARNING

What you did here is to move the condition constants into lists. This has multiple
benefits. First, it makes the rule easy to extend, in a noninvasive way. If you want to
add another sensitive directory, you can do it easily by adding the relevant item to
the list or, even better, by creating a second symlink_syscalls list in append mode.

Writing New Falco Rules | 173

This also gives you an opportunity to optimize the rule by using operators like in and
pmatch that can perform multiple checks in an efficient way.

8. Create a regression
When you create a new rule, particularly if your goal is including it in the official
ruleset, you might like to be able to test it in the future. For example, you might want
to ensure it still works with new versions of Falco or on different Linux distributions.
You might also want to measure its performance (such as its CPU utilization) under
stress. The capture file you created at the beginning of the process is a good base for a
regression.

As an alternative, the Falco community has created a tool called event-generator
(mentioned in Chapter 2) that’s useful for testing. If you add an action for your rule
in event-generator, you or other people will be able to trigger the rule in real time on
an arbitrary machine. The tool can replay your rule-triggering scenario in a flexible
way, including triggering the rule multiple times and at specific frequencies. That way,
you can precisely measure its CPU utilization. You can also check if, under heavy
stress, the rule will slow Falco down to the point where the driver starts dropping
system calls.

A full discussion of event-generator goes beyond the scope of this book, but you can
take a look at its GitHub repository to learn more about it.

9. Share the rule with the community
Congratulations, you’ve completed the development of a brand new rule! At this
point, it is important to remember that Falco is a tool written by the community
for the community. Every new rule you write could be valuable to many others, so
you should consider contributing it to the default ruleset. Chapter 15 will teach you
everything you need to know about contributing to Falco. As Falco maintainers and
community members, we’d like to thank you in advance for any rules you decide to
share with the community.

Things to Keep in Mind When Writing Rules
Now that we’ve covered the basics, let’s discuss some concepts that are a bit more
advanced but very important to keep in mind when developing rules.

Priorities
As mentioned in Chapter 7, every Falco rule must have a priority. The rule priority is
typically reported in conjunction with the output and can have one of the following
values:

174 | Chapter 13: Writing Falco Rules

https://oreil.ly/jERpD

• EMERGENCY•
• ALERT•
• CRITICAL•
• ERROR•
• WARNING•
• NOTICE•
• INFORMATIONAL•
• DEBUG•

Picking the right priorities for your rules is crucial, because typically rules are filtered
based on priority. Assigning too high a priority to a rule could cause alert flooding
and diminish its value.

Here is what the official Falco documentation has to say about how priorities are used
in the default ruleset:

• If a rule is related to writing state (filesystem, etc.), its priority is ERROR.•
• If a rule is related to an unauthorized read of state (reading sensitive files, etc.), its•

priority is WARNING.
• If a rule is related to unexpected behavior (spawning an unexpected shell in•

a container, opening an unexpected network connection, etc.), its priority is
NOTICE.

• If a rule is related to behaving against good practices (unexpected privileged•
containers, containers with sensitive mounts, running interactive commands as
root), its priority is INFORMATIONAL.

Noise
Noise is one of the most critical factors to take into account when crafting rules,
as well as a generally complex topic in security. The trade-off between detection
accuracy and false positive generation is a constant source of tension in detection
tools like Falco.

It’s often said that the only ruleset with no false positives is one with no rules.
Completely avoiding false positives is extremely difficult and often an unrealistic
goal, but there are some guidelines you can follow to reduce the problem:

Guideline 1: Test and validate.
Before using a rule in production, make sure you test it extensively in as many
environments as possible (different OS distributions, kernels, container engines,
and orchestrators).

Things to Keep in Mind When Writing Rules | 175

Guideline 2: Priorities, and priority-based filtering, are your friends.
Avoid deploying a rule for the first time with ERROR or CRITICAL as the priority.
Start with DEBUG or INFO, see what happens, and increase the value if it’s not
too noisy. Lower-priority rules can be easily filtered out at different stages of the
output pipeline, so they don’t run the risk of waking up the security operations
center team in the middle of the night.

Guideline 3: Leverage tags.
The tags that you assign to your rules are included in Falco’s gRPC and JSON
outputs. This means you can use them to complement priorities and filter Falco’s
output in an even more flexible way.

Guideline 4: Plan for exceptions.
Good rules are designed to account for known and unknown exceptions in a way
that is readable and modular and can easily be extended.

Take a look, for example, at the Write below rpm database rule from the default
ruleset:

- rule: Write below rpm database
 desc: an attempt to write to the rpm database by any non-rpm related program
 condition: >
 fd.name startswith /var/lib/rpm and open_write
 and not rpm_procs
 and not ansible_running_python
 and not python_running_chef
 and not exe_running_docker_save
 and not amazon_linux_running_python_yum
 and not user_known_write_rpm_database_activities
 output: >
 Rpm database opened for writing by a non-rpm program
 (command=%proc.cmdline file=%fd.name
 parent=%proc.pname pcmdline=%proc.pcmdline
 container_id=%container.id image=%container.image.repository)
 priority: ERROR
 tags: [filesystem, software_mgmt, mitre_persistence]

Note how known exceptions are included in the rule as macros
(rpm_procs, ansible_running_python, etc.), but the rule also includes a macro
(user_known_write_rpm_database_activities) that lets the user add their own
exceptions through the override mechanism.

Performance
Performance is another important topic to consider when writing and deploying
rules, because Falco typically operates with high-frequency data sources. When you
are using Falco with a system call source like the kernel module or the eBPF probe,

176 | Chapter 13: Writing Falco Rules

your whole ruleset might need to be evaluated millions of times per second. At such
frequencies, rule performance is key.

Having a tight ruleset is definitely a good practice to keep Falco’s CPU utilization
under control, as you learned in Chapter 10. It is also important, however, to make
sure every new rule you create is optimized for performance. The overhead of your
rule is more or less proportional to the number of field comparisons that the rule’s
condition needs to perform for every input event. Therefore, you should expect that a
simple condition like this:

proc.name=p1

will use around 20% of the CPU of a more complex rule like this one:

proc.name=p1 or proc.name=p2 or proc.name=p3 or proc.name=p4 or proc.name=p5

Optimizing a rule is all about making sure that, in most common situations, it
requires the Falco engine to perform the smallest possible number of comparisons.

Here are some guidelines you should follow to reduce the CPU utilization of your
rules:

• The rule should always start with a check on the event type (such as•
evt.type=open or evt.type in (mkdir, mkdirat)). Falco is smart about this:
it understands when your rule is restricted to only some event types and will
evaluate the rule only when it receives a matching event. In other words, if your
rule starts with evt.type=open, Falco won’t even start evaluating it for any event
that is not an open system call. This is so effective (and important!) that Falco
emits a warning when a rule doesn’t include a check on the event type.

• Include aggressive comparisons that have a high probability of failing earlier,•
rather than later, in your rule. A Falco condition works like an if statement in
a programming language: it’s evaluated left to right until something fails. The
sooner you make the condition fail, the less work it will require to complete. Try
to find simple ways to restrict the scope of your rule. Can you limit it to specific
processes, files, or containers? Can you apply it to only a subset of users? Encode
these restrictions in the rule, toward the beginning.

• Heavy, complex rule logic should be included after (to the right of) the aggressive•
comparisons and restrictions. For example, long exception lists belong at the end
of the rule.

• Whenever possible, use multiple value operators like in and pmatch instead of•
writing multiple comparisons. In other words, evt.type in (mkdir, mkdirat)
is better than evt.type=mkdir or evt.type=mkdirat. Multiple value operators
are heavily optimized and become progressively more effective as the number of
values grows.

Things to Keep in Mind When Writing Rules | 177

• In general, small is good. Develop the habit of keeping things as simple as•
possible. This will not only speed up processing of your rules, it will also ensure
they are readable and maintainable!

Tagging
Tagging is a powerful tool for crafting rules. It has three important uses: flexibly
filtering the rules Falco loads, adding context to its output, and supporting notifica‐
tion filtering and prioritization, therefore reducing noise. Using tags generously will
improve your Falco experience and ensure you get the most out of your rules.

Conclusion
This was an intense chapter! Rule writing is a demanding topic, but it can also be
fun and creative. Plus, writing the perfect rule to perform an impressive detection will
earn you a lot of points with your coworkers.

178 | Chapter 13: Writing Falco Rules

CHAPTER 14

Falco Development

Extending Falco is the best way to ensure that it perfectly fits your unique require‐
ments. This chapter will show you three approaches to Falco development. We’ll
begin with an overview of Falco’s codebase and a quick guide to building Falco from
the source, which allows you to work with Falco’s code directly. This first approach
gives you more freedom but is more difficult and perhaps less convenient than the
other two. The second approach lets you build an application that processes Falco
notifications in the desired way by interfacing with the gRPC API. The third is the
standard and easiest way of extending Falco: writing your own plugin.

For the last two approaches, we will teach you by using examples. We use the Go
programming language in these code snippets, so some familiarity with it will be
helpful, but it’s not strictly required. This chapter also assumes that you have read
Part II of this book. If you are concerned that this material may be too difficult, don’t
be scared: we think you’ll find it understandable and interesting even if you are not a
developer.

Programming Languages for Falco Development
Falco’s core is written mainly in C++, with some low-level components in C (like
libscap and the drivers). To fully understand the codebase or work with the core
components, a good knowledge of C/C++ is required. However, Falco also exposes
the gRPC and Plugin APIs, which you can use to develop components for Falco in
virtually any programming language you like. Using these APIs is our preferred way
of extending Falco and does not require you to stick with C/C++.

Go is the most common language for interfacing with Falco’s APIs, because it’s been
so widely adopted in cloud native software. You will notice that most Falcosecurity
libraries, SDKs, and tools use Go. For the same reason, we use Go in the code snippets
included in this chapter, and you’ll need to install Go if you want to run them.

179

If you want to use another programming language, the general concepts described in
this chapter still apply, so we recommend reading on.

Working with the Codebase
Falco is open source, and all its source code lives in GitHub under the Falcosecuriy
organization. All you need to start navigating the codebase is a browser. If you want
to store the source code locally and open it with your preferred editor, you will need
to use Git.

The Falcosecurity organization hosts Falco and many other related projects. The
community is very active, so you will also find many experimental projects. The
core of The Falco Project lives in two main repositories: falcosecurity/falco and
falcosecurity/libs.

The falcosecurity/falco Repository
The falcosecurity/falco repository contains the source code of the falco user-space pro‐
gram (the one you usually interact with). It’s the main and most important repository.
The project is organized as follows:

/cmake
Here you can find cmake modules that the Falco build system uses to pull
dependencies and implement specific functionalities, including cmake files to
pull the falcosecurity/libs source code during the build process.

/docker
This folder is organized into various subdirectories, each containing the source
code of a Falco container image. Some are not published because they are for
development use only. See the README file for details.

/proposals
This folder includes design proposals made by the community and approved by
maintainers. You may find useful information here that helps you understand
how the Falco authors made certain architectural decisions and the rationale
behind them.

/rules
The default rules files live here.

/scripts
Various script files live inside this folder. For example, this is where you’ll find
the falco-driver-loader script’s source code.

180 | Chapter 14: Falco Development

https://oreil.ly/lqnL4
https://oreil.ly/oiGQQ

/test and /tests
These two folders contain regression tests and unit tests for Falco, respectively.

/userspace
The actual C++ source code of Falco lives inside this folder. Its contents are
organized into two subdirectories: engine, which contains the rule engine imple‐
mentation, and falco, which contains the implementations of high-level features
like the output channels, the gRPC server, and the CLI application.

Although this is the main Falco repository, not all of the project’s source code
lives here. Most is actually in the falcosecurity/libs repository, which contains the
implementations of Falco’s core low-level logic.

The falcosecurity/libs Repository
Throughout this book, we have mentioned libscap, libsinsp, and the drivers many
times. The falcosecurity/libs repository hosts the source code of those components. It
is organized as follows:

/cmake/modules
This folder contains cmake modules to pull external dependencies and module
definitions for libscap and libsinsp that consumer applications (like Falco) can
use.

/driver
This folder includes the source code for the kernel module and eBPF probe
(mainly in C).

/proposals
Similar to the one in the Falco repository, this folder contains the design proposal
documents.

/userspace
Organized into several subdirectories, here you can find the source code (in C
and C++) of libsinsp and libscap along with other shared code.

This repository contains all the low-level logic required for kernel instrumentation
and data enrichment. The filtering grammar, plugin framework implementation, and
many other functionalities are hosted here. The libs codebase is vast, but don’t let that
frighten you: all you need to understand it is a good knowledge of C/C++.

Building Falco from Source
Compiling Falco from its source is similar to compiling any other C++ project that
uses cmake. The build system requires a handful of dependencies: cmake, make, gcc,

Working with the Codebase | 181

https://oreil.ly/HSLDT

wget, and of course git. (You also need Git to get a local copy of the Falco repository.)
You can find instructions on how to install those dependencies in the documentation.

Once you have ensured that the required dependencies are installed on your system,
use the following command to get a local copy of the repository:

$ git clone git@github.com:falcosecurity/falco.git

Git will clone the repository into a newly created folder called falco. Enter that
directory:

$ cd falco

Prepare a directory to contain the build files, then enter it:

$ mkdir -p build
$ cd build

Finally, inside the build directory, run:

$ cmake -DUSE_BUNDLED_DEPS=On ..
$ make falco

This command will likely take a substantial amount of time the first time you run it,
as cmake downloads and builds all the dependencies. This is because we configured
it with -DUSE_BUNDLED_DEPS=On; alternatively, you can set -DUSE_BUNDLED_DEPS=Off
to use system dependencies, but if you do this, you will need to manually install all
the required dependencies on your system before building Falco. You can find an
updated list of dependencies and other useful cmake options in the documentation.

After the make command completes, if there were no errors, you should find the
newly created Falco executable in ./userspace/falco/falco (the path is relative to the
build directory).

Now, if you also want to build the driver from the source and you already have the
kernel headers installed in your system, run:

$ make driver

This command only builds the kernel module, by default. If you want to build the
eBPF probe instead, use:

$ cmake -DBUILD_BPF=True ..
$ make bpf

In both cases, you will find the newly built driver under ./driver (the path is relative to
the build directory).

Extending Falco Using the gRPC API
Although you might be tempted to introduce a new feature directly into the codebase,
there are more convenient ways. For example, if you want to extend Falco’s output

182 | Chapter 14: Falco Development

https://oreil.ly/UMJI2

mechanism, you can create a program that works on top of Falco and implements
your business logic. In particular, the gRPC API allows your program to consume
Falco notifications and receive metadata easily.

This section will use an example program to show you how to start developing with
the Falco gRPC API. To follow along, you’ll need a running Falco instance with the
gRCP server and gRPC output channel enabled (see Chapter 8). You will use gRPC
via a Unix socket, so make sure you have installed and configured Falco accordingly.

We use the client-go library in the following example, which makes using the gRPC
API straightforward:

package main

import (
 "context"
 "fmt"
 "time"

 "github.com/falcosecurity/client-go/pkg/api/outputs"
 "github.com/falcosecurity/client-go/pkg/client"
)

func main() {

 // Set up a connection to Falco via a Unix socket
 c, err := client.NewForConfig(context.Background(), &client.Config{
 UnixSocketPath: "unix:///var/run/falco.sock",
 })
 if err != nil {
 panic(err)
 }
 defer c.Close()

 // Subscribe to a stream of Falco notifications
 err = c.OutputsWatch(context.Background(),
 func(res *outputs.Response) error {
 // Put your business logic here
 fmt.Println(res.Output, res.OutputFields)
 return nil
 }, time.Second)
 if err != nil {
 panic(err)
 }
}

We start by importing the client-go library.

The main function sets up a connection (represented by the variable c) to Falco’s
gRPC server via the Unix socket using the default path.

Extending Falco Using the gRPC API | 183

https://oreil.ly/1bSay
https://oreil.ly/iQD2m

The connection c allows it to call the OutputsWatch function, which subscribes
to a stream of notifications and processes any incoming notification using a
callback function.

This example uses an anonymous function that prints the notification to stan‐
dard output. In a real-world application, you would implement your own busi‐
ness logic to consume Falco notifications.

Using the gRPC API to implement programs that interact with Falco is convenient
and straightforward. If, instead, you need to make Falco work with other data sour‐
ces, the plugin system is likely what you are looking for.

Extending Falco with Plugins
Plugins are the main way to extend Falco, and we’ve mentioned them many times
throughout the book. To recap briefly, plugins are shared libraries that conform to
specific APIs. In the Falco plugin framework, the primary responsibilities of plugins
are adding new data sources by connecting Falco to external sources and producing
events, and extracting data from events by exporting lists of fields and decoding event
data to produce field values when Falco requires them.

Plugins contain the logic to produce and interpret data. This is powerful because
it means that Falco is only concerned with gathering field values from plugins and
composing them into rule conditions. In other words, Falco only knows which fields
can be used and how to get their values; everything else is delegated to the plugins.
Thanks to this system, you can connect Falco to any domain.

There are a few important aspects to consider when designing a plugin. First, a
plugin with event sourcing capability implicitly defines the event payload format (the
serialized raw event data that the plugin returns to the framework). The same plugin,
or other plugins with field extraction capability compatible with that data source, will
be able to access the payload later, when extracting fields. Second, a plugin with field
extraction capability explicitly defines fields that are bound to a data source. Finally,
rules rely on data source specifications to consume the events in the format they
expect.

Since describing every single technical aspect of plugin development would require
a dedicated book, in this section we’ll just offer an educational example of how
to implement a plugin that can both generate events and extract fields. For more
extensive coverage, refer to the documentation.

Our example will implement a plugin that reads from the bash history file (by
default located at ~/.bash_history). Each time a user enters a command in the shell,
bash stores that command line. When the shell session ends, bash appends the
entered command lines in the history file. It’s basically a log file. Although it has no

184 | Chapter 14: Falco Development

https://oreil.ly/f4htn
https://oreil.ly/EkUs3
https://oreil.ly/004ur

compelling use cases, it’s a simple way to learn how to create a plugin that generates
events from a log file. So, let’s start having fun with a bit of Go code.

Preparing a Plugin in Go
First, create a file (we called ours myplugin.go) and import a bunch of Go packages
to simplify development. You’ll also import tail, a library that emulates the tail
command (our example uses it to read from the log file), and a set of packages from
Falcosecurity’s Plugin SDK for Go that let you implement a source plugin with that
extractor capability. You must use the main package, or Go won’t allow you to compile
it as a shared object:

package main

import (
 "encoding/json"
 "fmt"
 "io"
 "os"
 "time"

 "github.com/hpcloud/tail"

 "github.com/falcosecurity/plugin-sdk-go/pkg/sdk"
 "github.com/falcosecurity/plugin-sdk-go/pkg/sdk/plugins"
 "github.com/falcosecurity/plugin-sdk-go/pkg/sdk/plugins/extractor"
 "github.com/falcosecurity/plugin-sdk-go/pkg/sdk/plugins/source"
)

The SDK defines a set of interfaces that help you implement a plugin by following
a simplified, well-defined pattern. As you will see in a moment, you have to satisfy
those interfaces by adding methods—also called functions with receivers in Go—to
a couple of data structures that represent your plugin. Under the hood, the SDK
exports those methods as the calling convention functions (or simply C symbols)
required by the plugin framework. (See “Falco Plugins” on page 58 if you need a
refresher on this.)

Plugin State and Initialization
The SDK requires a data structure that represents the plugin and its state. It can
implement various composable interfaces, but all types of plugins must implement, at
minimum, Info to expose general information about the plugin and Init to initialize
the plugin with a given configuration string.

The example calls this data structure bashPlugin. You’ll also define another data
structure (called bashPluginCfg) that represents the plugin’s configuration, to store
options inside it. This isn’t mandatory, but it’s usually convenient:

Extending Falco with Plugins | 185

https://oreil.ly/BdIXO
https://oreil.ly/OWco5
https://oreil.ly/OWco5
https://oreil.ly/lnyhl
https://oreil.ly/t5aAZ

// bashPluginCfg represents the plugin configuration.
type bashPluginCfg struct {
 Path string
}

// bashPlugin holds the state of the plugin.
type bashPlugin struct {
 plugins.BasePlugin
 config bashPluginCfg
}

Now you’ll implement the first required method that exposes general information
about the plugin:

func (b *bashPlugin) Info() *plugins.Info {
 return &plugins.Info{
 ID: 999,
 Name: "bash",
 Description: "A Plugin that reads from ~/.bash_history",
 Version: "0.1.0",
 EventSource: "bash",
 }
}

The ID field is required for all source plugins and must be unique
across them to ensure interoperability. The special value 999 is
reserved for development purposes only; if you intend to distribute
your plugin, you should register it in the plugins registry to get a
unique ID.

Another important field for interoperability is EventSource, where you can declare
the name of the data source. Extractor plugins can use that value to determine
whether they are compatible with the data source.

The other required method is Init. Falco calls this method only once, when loading
the plugin, and passes the configuration string (the one defined in the Falco configu‐
ration for the plugin). Commonly, the configuration string is JSON-formatted. Our
example first sets a default value for a member of b.config (an instance of the data
structure for the plugin configuration that we declared earlier). Then, if the given
config string is not empty, the function decodes the JSON value into b.config:

func (b *bashPlugin) Init(config string) error {

 // default value
 homeDir, _ := os.UserHomeDir()
 b.config.Path = homeDir + "/.bash_history"

 // skip empty config
 if config == "" {

186 | Chapter 14: Falco Development

https://oreil.ly/7C9n1

 return nil
 }

 // else parse the provided config
 return json.Unmarshal([]byte(config), &b.config)
}

Adding Event Sourcing Capability
Specifically for plugins with event sourcing capability, the SDK requires another data
structure that represents a capture session (a stream of events). It also requires the
following methods:

• Open to start and initialize a capture session•
• NextBatch to produce events•

Falco calls Open immediately after initialization. That represents the beginning of a
capture session. The method’s main responsibility is instantiating the data structure
that holds the session state (bashInstance in our example). Specifically, here we
make a *tail.Tail instance (that mimics the behavior of tail -f -n 0) and store
it in t. Then we create a bashInstance instance (to which we can assign t) and
return it:

// bashInstance holds the state of the current session.
type bashInstance struct {
 source.BaseInstance
 t *tail.Tail
 ticker *time.Ticker
}

func (b *bashPlugin) Open(params string) (source.Instance, error) {
 t, err := tail.TailFile(b.config.Path, tail.Config{
 Follow: true,
 Location: &tail.SeekInfo{
 Offset: 0,
 Whence: os.SEEK_END,
 },
 })
 if err != nil {
 return nil, err
 }

 return &bashInstance{
 t: t,
 ticker: time.NewTicker(time.Millisecond * 30),
 }, nil
}

Extending Falco with Plugins | 187

The plugin system stores the value returned by Open and passes it as an argument
to the most important method for a source plugin: NextBatch. Unlike the other
methods, this belongs to the session data structure (bashInstance) and not to the
plugin data structure (bashPlugin). During the capture session, Falco repeatedly calls
NextBatch, which in turn produces a batch of new events. A batch’s maximum size
depends on the size of its underlying reusable memory buffer. However, a batch can
have fewer events than its maximum capacity; it can contain just one event or even
be empty. This method usually implements the core business logic of a source plugin,
but this example just implements some simple logic: it tries to receive lines from the
b.t.Lines channel and add them to the batch. If there are none, it will time out after
a while:

func (b *bashInstance) NextBatch(
bp sdk.PluginState,
evts sdk.EventWriters,

) (int, error) {
 i := 0
 b.ticker.Reset(time.Millisecond * 30)

 for i < evts.Len() {
 select {
 case line := <-b.t.Lines:
 if line.Err != nil {
 return i, line.Err
 }

 // Add an event to the batch
 evt := evts.Get(i)
 if _, err := evt.Writer().Write([]byte(line.Text)); err != nil {
 return i, err
 }
 i++
 case <-b.ticker.C:
 // Timeout occurred, return early
 return i, sdk.ErrTimeout
 }
 }

 // The batch is full
 return i, nil
}

As you can see, the SDK provides an sdk.EventWriters interface. This automatically
manages the reusable memory buffer for the batch and allows the implementer to
write the raw event payload as a sequence of bytes. The function evts.Len returns the
maximum number of events allowed in a batch.

The choice of the format of the event payload is up to the plugin author, because
the Plugin API allows both the encoding (in our example, for simplicity, we store the

188 | Chapter 14: Falco Development

whole line as plain text in the payload) and the decoding of the data (as we will see in
a moment). This permits you to create fields that you can use in rules. Choosing the
correct format is essential because it has implications both for performance and for
compatibility with other plugins (other authors may want to implement an extractor
plugin that works with your events).

So far, you have seen the minimum set of methods required to implement a source
plugin. However, the plugin would not really be useful at this point if we did not add
a way to export fields to use in rule conditions and output.

Adding Field Extraction Capability
Plugins with field extraction capability can extract values from the event data and
export fields that Falco can use. A plugin can have only event sourcing capability
(described in the previous section), only field extraction capability, or both (like our
example plugin). A plugin with field extraction capability will work on data sources
provided by other plugins, while a plugin with both capabilities usually works only
on its own data source. However, the mechanism is the same, regardless of the data
source. The SDK lets you define the following methods, which apply in both cases:

• Fields to declare which fields the plugin is able to extract•
• Extract to extract the value of a given field from the event data•

Let’s implement those methods in our example plugin. The first method, Fields,
returns a slice of sdk.FieldEntry. Each entry contains the specification of a sin‐
gle field. The following code tells Falco that the plugin can extract a field called
shell.command (this example adds just one field):

func (b *bashPlugin) Fields() []sdk.FieldEntry {
 return []sdk.FieldEntry{
 {Type: "string", Name: "shell.command", Display: "Shell command line",
 Desc: "The command line typed by user in the shell"},
 }
}

Now, to make the extraction work, we need to implement the Extract method,
which provides the actual business logic to extract the field. The method receives as
arguments an extraction request (which contains the identifier of the requested field)
and a reader (to access the event payload). Implementing it is straightforward since
this example has just one field and will simply return all the content of the event
payload. In a real-world scenario, you would usually have more fields and specific
logic to extract each of them:

func (m *bashPlugin) Extract(req sdk.ExtractRequest, evt sdk.EventReader) error {
 bb, err := io.ReadAll(evt.Reader())
 if err != nil {

Extending Falco with Plugins | 189

 return err
 }

 switch req.FieldID() {
 case 0: // shell.command
 req.SetValue(string(bb))
 return nil
 default:
 return fmt.Errorf("unsupported field: %s", req.Field())
 }
}

With the field extraction capability in place, our example plugin is nearly ready. Let’s
see how to complete and use it.

Finalizing the Plugin
You’re almost there. Next, you’ll create an instance of the plugin and register its
capabilities with the SDK. You can do that during the Go initialization phase by using
the special init function. (Do not confuse this with the Init method!) Since our
example plugin has both source and extractor capabilities, we have to inform the SDK
of both using the provided functions:

func init() {
 plugins.SetFactory(func() plugins.Plugin {
 p := &bashPlugin{}
 extractor.Register(p)
 source.Register(p)
 return p
 })
}

func main() {}

Note the empty main function. As you will see in a moment, the Go building system
requires this to build the plugin correctly, but it will never call main, so you can
always leave it empty.

The last step to make your code a real Go project is to initialize the Go module and
download the dependencies:

$ go mod init example.com/my/plugin
$ go mod tidy

These commands create the go.mod and go.sum files, respectively. The code for your
plugin is now ready. It’s time to compile it so that you can use it with Falco!

190 | Chapter 14: Falco Development

https://oreil.ly/LDPaK

Building a Plugin Written in Go
A plugin is a shared library (also called a shared object)—specifically, a compiled
file—that exports a set of C symbols required by the plugin framework. (The SDK we
used in the example hides those C symbols by using high-level interfaces, but they are
still present underneath.)

The Go compiler has a specific command called cgo for creating Go packages that
interface with C code. It allows you to compile your plugin and get a shared library
file (a .so or .dll file). The command is pretty straightforward. From the same folder
where the source code lives, run:

$ go build -buildmode=c-shared -o libmyplugin.so

This command creates libmyplugin.so, which you can use with Falco. (By convention,
shared object files in Unix-like systems start with lib and have .so as their extension.)
You learned about plugin configuration in Chapter 10, but the following section will
give you some hints about using plugins while developing.

Using Plugins While Developing
By default, Falco looks for installed plugins at /usr/share/falco/plugins. However, you
can specify an absolute path in the configuration and place your plugin wherever
you want. (That’s convenient while developing, since you won’t need to install the
plugin in the default path.) We suggest building the plugin (using the command in
the previous section) in the same folder you are using to develop it. Then, in the same
folder, create a copy of falco.yaml, add your plugin configuration accordingly, and set
the library_path option to the absolute path of your plugin. For example:

plugins:
 - name: bash
 library_path: /path/to/your/plugin/libmyplugin.so
 init_config: ""

load_plugins: [bash]

Now, before using your plugin, you need a rules file that matches the data source
provided by the plugin. (Falco would load the plugin even without the rules file, but
you wouldn’t get any notifications.) You can create a rules file in the same folder—for
instance, myplugin_rules.yaml—and add a rule like the following to it:

- rule: Cat in the shell
 desc: Match command lines starting with "cat".
 condition: shell.command startswith "cat "
 output: Cat in shell detected (command=%shell.command)
 priority: DEBUG
 source: bash

Extending Falco with Plugins | 191

https://oreil.ly/sD0aW

Once you have prepared both your customized falco.yaml and myplugin_rules.yaml,
the very last step is to run Falco and pass those files in the respective options:

$ falco -c falco.yaml -r myplugin_rules.yaml

Done! This way of running a plugin in Falco is very convenient during development,
since it does not require you to install any files or mess with your local Falco
installation.

If you built the plugin in our example, to trigger the rule, you can
run:

$ bash
$ cat --version
$ exit

Conclusion
There are several ways of extending Falco. Writing a plugin is generally the best
option, especially if you want Falco to work with a new data source to enable new
use cases. The gRPC API may help you if you need to interface with outputs. On rare
occasions, you may need to modify the Falco core and its components directly.

Whatever the case, you will need to read the documentation. You may sometimes
need to study and understand advanced topics. Since Falco is open source and a
collaborative project, you always have the opportunity to get in touch with its vibrant
community. Sharing ideas and knowledge with others will help you find answers
faster.

You may also discover that other people have your exact needs and are willing to help
you improve or extend Falco. That would be a perfect opportunity to contribute to
the Falco project. Everyone can contribute to Falco. Not only is it a rewarding experi‐
ence, but contributing is a great help to the project and all of its users, including you.
Want to know how? Read the next chapter!

192 | Chapter 14: Falco Development

CHAPTER 15

How to Contribute

Reaching this point in the book means you’re on your way to mastering all aspects of
Falco. This chapter will give you some advice on contributing to The Falco Project.
Contributing means much more than just writing code (a common misconception)—
in fact, there are many valuable ways to contribute. We’ll explain where to start and
how to satisfy the Falcosecurity organization’s specific contribution requirements.

Contributing to open source software is a rewarding experience. Not only will you
improve Falco, but you’ll also meet people with similar interests, share feedback and
ideas with others, and improve your own skills. If you are new to open source or want
to learn more, we suggest taking a look at the Open Source Guides.

What Does It Mean to Contribute to Falco?
Falco is a Cloud Native Computing Foundation project. The CNCF serves as a
vendor-neutral place for cloud native software. It empowers self-governing models
for its hosted projects and helps sustain healthy open source communities. Falco is
primarily driven by its community, which includes users, maintainers, and developers
who curate and continuously improve it by:

• Sharing feedback to improve the design and existing features•
• Testing Falco to discover issues•
• Reporting bugs•
• Writing project documentation•
• Experimenting with new ideas•
• Test-driving new features•

193

https://oreil.ly/ZBe39
https://www.cncf.io

• Proposing changes•
• Writing code•

And the list goes on. In summary, contributing means sharing knowledge and collab‐
orating for the benefit of The Falco Project.

Where Should I Start?
You should start by joining the Falco community. You can do that by joining the
Falco Slack channel and introducing yourself. The community is very welcoming. We
recommend subscribing to the official mailing list. Community members, including
maintainers, also get together in a weekly call, which everyone can join. You can
find details about the weekly community call and other initiatives in the community
GitHub repository.

As a friendly reminder, the community is made up of human beings: be kind with
them, and they will do the same with you. Everyone participating in the community
must adhere to its Code of Conduct, so make sure you read and understand it.

Contributing to Falcosecurity Projects
As you know by now, Falco and all its related projects are hosted under the Falco‐
security organization on GitHub. Each project has its own public repository—you
can even find a repository with the source code of the Falco website. If you don’t have
a GitHub account yet, you’ll need to create one. We also advise you to take your time
and get familiar with how GitHub works. You’ll need a working knowledge of Git,
particularly if you plan to contribute code.

The Falcosecurity organization has an automated support mechanism (or bot) to help
you and make the contribution process easier. You will probably need a bit of time to
get acquainted with it. If you need help, feel free to ask! An actual human from the
community will be happy to help you.

Before preparing any contribution, make sure to check out the online contribution
guidelines, since they change from time to time. However, keep reading and we will
explain the most important aspects.

Issues
GitHub issues are the main way to interact with a project. Opening an issue to report
a bug or propose an enhancement is one of the principal forms of contribution. Using
issues correctly is also vital for the project, since most feedback comes from them.

Each Falcosecurity repository defines kinds of issues. The most common kinds are
Bug Report, Documentation Request, Failing Test, and Feature Request. You select the

194 | Chapter 15: How to Contribute

https://oreil.ly/00Az6
https://oreil.ly/R5CSB
https://oreil.ly/VMhp4
https://oreil.ly/VMhp4
https://oreil.ly/GgbyC
https://oreil.ly/KNTDD
https://oreil.ly/KNTDD
https://oreil.ly/47j3K
https://oreil.ly/F61GW
https://oreil.ly/yRema
https://oreil.ly/yRema
https://oreil.ly/cOTct

kind when opening an issue. Depending on the kind you select, you will see an issue
description along with a form for you to fill out. The form usually includes questions:
for example, it might ask you to describe a bug, how to reproduce it, the Falco version
that presents the bug, and so on. This information helps others understand your issue
and work on it, so it’s crucial to answer all of the questions to save everyone time and
increase the chances of successful resolution.

Once an issue has been opened, a collaborative process starts. Any community
members interested in the topic can participate, not just maintainers. Participating in
this process is a welcome way to get involved.

The initial stage of this process is called triaging. It involves verifying and categorizing
the information reported in the issue. For example, in the case of a bug, community
members try to reproduce it and check if it appears in the manner described. In
some cases, the process ends with someone correctly answering a question or simply
pointing the reporter to resources that solve the problem. In other cases, someone
volunteers to implement a requested feature or fix a bug and takes ownership of
submitting a pull request (see the next section).

You can be involved at any stage of this process. As long as it is constructive, everyone
can contribute.

Pull Requests
Pull requests (PRs) are the only way to commit changes to a Falcosecurity project.
When you want to submit a new feature or a fix, you have to fork the related reposi‐
tory, create a branch in your fork, and add your commits. Once you’re confident your
change works as expected, you are ready to submit a PR. Similar to issues, PRs come
with a predefined template to fill out. Be sure to read the instructions carefully. The
template also includes some commands to help you interact with the automation.

After you open a PR, you will need to wait for a maintainer to review it. Maintainers
have a lot of ongoing issues and PRs to look at, so be patient if they do not reply
quickly! They might approve the PR directly or ask you to change something in
your code. The review process is collaborative: maintainers and the PR author (and
sometimes other users) share feedback and comments until the PR gets approved and
merged. Any time you’re in doubt, ask for support: the maintainers will explain how
to proceed.

There are a few general guidelines to follow when making a PR:

• Each repository may have its own coding style and guidelines; make sure you•
read and understand them.

• Avoid proposing too many code changes in a single PR; submitting several•
smaller, self-contained PRs usually works better.

Contributing to Falcosecurity Projects | 195

https://oreil.ly/bcerI
https://oreil.ly/yfuIq
https://oreil.ly/yfuIq
https://oreil.ly/zqqJL

• Maintainers highly recommend using the Conventional Commits style in your•
Git commit messages.

• You must sign off on all of your Git commits, and your PR must not include•
merge commits (which we’ll discuss in a moment).

The following subsections explain the main requirements you must satisfy when
preparing your code using Git.

Git conflict resolution and linear history
Sometimes you may need to synchronize with the upstream (remote) branch when
working on your PR. If the remote branch has diverged from your local one, conflicts
might arise. Git allows you to synchronize and resolve conflicts by merging or rebas‐
ing. Both methods solve the same problem, but they produce different outcomes.

Merging happens when the histories of the local and remote branches have diverged,
and you use the git merge command or the git pull command to reconcile
nonlinear histories. However, merging has the drawback of not leaving the repository
history clean, making it harder to navigate with commands like git bisect or git
log. For these reasons, the Falcosecurity organization does not allow merging in its
projects.

In contrast, rebasing moves your commits, placing them on top of the history of
the other branch (instead of introducing a merge commit). That ensures the Git
history is always linear. When developing your PR, you must always use rebasing
to synchronize with the upstream or resolve conflicts with the main branch. The
following command works in both cases (replace <branch> with the name of the
remote branch):

$ git fetch origin
$ git rebase -i origin/<branch>

This command also removes merge commits if you have accidentally introduced
them. You can use its shortened version, git pull --rebase, when you only need
to pull changes from your remote branch (for example, when working with collabo‐
rators on the same branch).

To reiterate: the Falcosecurity organization enforces a linear history and does not
allow merge commits for any projects. If your PR has a merge commit, the automa‐
tion will block the PR and maintainers will not be able to merge it until you fix the
issue. Always use rebasing, or your changes will not be accepted.

The Developer Certificate of Origin
In 2004, the Linux Foundation (the parent organization of the CNCF) introduced
the Developer Certificate of Origin (DCO), a lightweight way for contributors to

196 | Chapter 15: How to Contribute

https://oreil.ly/BB160
https://oreil.ly/Qttlz

state that they have written (or have the right to submit) a piece of code. Projects
that enforce the DCO require contributors to sign off on their commits, indicating
that they agree to the DCO’s terms for that single contribution. The Git CLI has an
embedded sign-off functionality that you can use via the -s option or by manually
adding the following line to the commit message:

Signed-off-by: Full Name <example@example.net>

The line must follow this format and include your name and email address.

As part of the CNCF, Falco and all its related projects require the DCO. The Falco‐
security organization implements an automation mechanism to check the DCO on
PRs. When it is missing in a commit, the automation blocks the PR. So, don’t
forget to sign off on every single commit; otherwise, maintainers cannot accept your
contributions.

If you submit a PR and the DCO check fails because you missed signing off on one
or more commits, don’t worry. You can adjust it. If you just need to amend the last
commit, use:

$ git commit --amend --signoff
$ git push --force-with-lease

If you need to fix all the commits in your PR, use:

$ git rebase --signoff origin
$ git push --force-with-lease

Conclusion
Congratulations, you’ve reached the end of the book! It’s been a long journey that
covered architecture, syntax, real-world usage, customization, code development, and
many more interesting topics. We sincerely hope you’ve enjoyed reading it and, more
importantly, that the content is valuable to you, whether you came to this book as a
beginner or an advanced user.

For us, this is a bittersweet moment. While we are sad to say goodbye, we’re grateful
we had a chance to go through this journey with you, and we are proud to contribute
to making your software a little more secure.

You are now ready to start another incredible adventure. As Falco maintainers, we
welcome you to the project and hope to meet you in one of the community forums.

Conclusion | 197

https://oreil.ly/5VcWl

Index

Symbols
" (double quotes), delimiting strings with, 78
' (single quotes), delimiting strings with, 78

A
application programming interface (API), 42
apt (package manager), 119
architecture of Falco, 29-40

AWS security and, 146-148
data flows/critical modules, 31
drivers, 32
libscap, 34-37
libsinsp, 37-39
plugins, 33

argument fields, 78-80
AWS security (see cloud security)

B
Berkeley Packet Filter (BPF), 11, 51-53

eBPF versus, 53
binary package, downloading/installing, 16
BPF (see Berkeley Packet Filter)

C
capabilities, plugins and, 59
capture session, 187
capturing system calls, 47-53

accuracy, 49
kernel-level instrumentation approaches,

50-53
performance, 49
scalability, 49

Cloud Native Computing Foundation (CNCF),
13, 193

cloud security, 145-154
for clouds other than AWS, 154
configuring/running Falco for CloudTrail

security, 148-153
detection examples, 147
extending Falco’s AWS ruleset, 153
Falco’s architecture and, 146-148
reasons for using Falco for, 145

CloudTrail, 146
cloudtrail filter class fields, 88
configuring/running Falco for CloudTrail

security, 148-153
plugin, 142
reading events from an S3 bucket or local

filesystem, 152-153
receiving log files through an SQS queue,

148-152
cluster security, 127-130
CNCF (Cloud Native Computing Foundation),

13, 193
codebase

building Falco from source, 181
falcosecurity/falco repository, 180
falcosecurity/libs repository, 181
working with, 180-182

command line, disabling rules from, 101
command-line options

configuration settings, 134
configuring Falco with, 133-138
data enrichment settings, 136
debugging/troubleshooting settings, 138
output settings, 137

199

ruleset settings, 137
syscall instrumentation settings, 134-136

community
contributing to Falco, 193-197
Falcosecurity projects, 194-197
sharing rules with, 174

condition key, 18
conditions

defined, 6
fields and, 19

configuration file, 139
configuring Falco

changing the configuration, 143
command-line options and environment

variables, 133-138
configuration file, 139
containers, 132
data enrichment settings, 136
debugging/troubleshooting settings, 138
differences among installation methods, 132
host installation, 132
instrumentation settings, 134-136
Kubernetes deployments, 133
output settings, 137
plugins, 142
ruleset, 140-141
ruleset settings, 137
settings for, 131

consuming Falco events, 155-163
getting notified, 161
observability and analysis, 160
responding to threats, 161
working with Falco outputs, 155-160

container filter class fields, 87
container metadata

data enrichment and, 67-69
dealing with missing metadata, 68

container runtime, 67
containers

capturing system calls within, 55
configuring Falco, 132
fully privileged mode, 124
least privileged mode, 125
plugin scenario, 127
running Falco in, 123-127
running falco-exporter in, 156
running Falcosidekick in, 159
syscall instrumentation scenario, 124-126

contributing to Falco, 193-197

Falcosecurity projects, 194-197

D
data enrichment, 6, 63-73

command-line options, 136
defined, 64

data enrichment for syscalls, 63-72
container metadata, 67-69
Kubernetes metadata, 69-72
operating system metadata, 65-67

data enrichment with plugins, 73
data flows, 31
data sources, 4, 41-61

capturing system calls, 47-53
Falco driver implementations, 53-56
libscap’s management of, 34
plugins, 58-61
running Falco drivers, 56-58
system calls, 41-47

DCO (Developer Certificate of Origin), 196
Debian, 119
debugging, command-line options for, 138
desc key, 18
design principles, Falco, 7-10
Developer Certificate of Origin (DCO), 196
developing Falco (see extending Falco)
disabling rules, 100

from command line, 101
overriding the enabled flag, 101

Docker containers (see containers)
drivers

basics, 32
capturing system calls within containers, 55
choosing, 55
Falco driver implementations, 53-56
installing, 16
running, 56-58

E
eBPF, 11, 51-53
eBPF probe

Falco installation, 121
kernel module versus, 32, 55
running Falco with, 57

embedded server configuration nodes, 139
enabled field, 101
enabled flag, 101
endpoint instrumentation, 9
engine versions, 98

200 | Index

enrichment fields, 78-80
environment variables, 133-138
Ethereal (Wireshark), 11
event parser, 38
event sourcing capability, 59, 187-189
event-generator tool, 20, 174
events

consuming, 155-163
generating, 18-20

evt filter class fields, 85
extended Berkeley Packet Filter (eBPF), 11,

51-53
(see also eBPF probe)

extending Falco, 179-192
gRPC API and, 182-184
plugins for, 184-192
programming languages for, 179
working with codebase, 180-182

F
Falco (generally)

architecture (see architecture of Falco)
background/history, 10-14
basics, 3-14
cloud security and (see cloud security)
configuring (see configuring Falco)
contributing to (see contributing to Falco)
customizing instances, 23-25
design principles, 7-10
development (see extending Falco)
elements of, 3-7
generating events, 18-20
installing (see installing Falco)
installing/running on local machine, 15-25
interpreting output, 21-22
limitations, 10
network packets, 11
origins, 13
starting, 17
strengths, 10

Falco libraries, 30
falco-driver-loader, 128
falco-exporter, 156

deploying to Kubernetes, 156
host installation, 156
running in a container, 156

Falcosecurity projects
contributing to, 194-197
GitHub, 194

pull requests, 195-197
falcosecurity/falco repository, 180
falcosecurity/libs repository, 181
Falcosidekick, 157-160

defined, 30
deploying to Kubernetes, 159
host installation, 159
running in a container, 159

fd filter class fields, 86
field extraction, plugins and, 59, 189
fields, 6, 18

argument fields versus enrichment fields,
78-80

basics, 78-82
cloudtrail class, 88
conditions and, 19
container class, 87
Falco rules, 82
file descriptors, 86
general, 85
Kubernetes audit log filter class fields, 89
Kubernetes filter class fields, 88
mandatory fields versus optional fields, 80
most important, 84
process/thread information, 85
sysdig, 83
types, 80-82
user/group filter classes, 87
using, 82-84

file descriptors
defined, 36
fields related to, 86

file output channel, 108
filters

basics, 75-76
cloudtrail class, 88
container class, 87
defined, 38, 75
Falco rules, 82
file descriptors, 86
Kubernetes audit log filter class fields, 89
Kubernetes filter class fields, 88
libsinsp and, 38
logical operators, 78
process/thread information, 85
relational operators, 77
strings and quoting, 78
syntax reference, 76-78
in sysdig, 83

Index | 201

user/group filter classes, 87
using, 82-84

fully privileged mode, 124

G
GitHub issues, 194
glibc, 48
Go

building a plugin written in, 191
Falco APIs, 179
preparing plugins in, 185

group filter class fields, 87
gRPC API, 24, 182-184
gRPC output channel, 110-112

H
handlers, 103
Helm, 128
history of Falco, 10-14
HTTP output channel, 109

I
installing Falco, 117-130

apt for, 119
deploying to a Kubernetes cluster, 127-130
installing directly on host, 118-123
managing the driver, 122
package managers for, 119-122
plugins for, 121
running in a container, 123-127
setup choice, 117
switching to eBPF probe, 121
syscall instrumentation scenario, 124-126
without package manager, 122
yum for, 120

instances, customizing, 23-25
output channels, 23
rules files, 23

instrumentation settings, 134-136
intent-free instrumentation, 8
issues (GitHub), 194

K
k8s filter class fields, 72, 88
k8saudit filter class fields, 89
kernel instrumentation, 50-53

eBPF, 51-53
kernel module, 50

kernel module, 50
defined, 4
eBPF probe versus, 32, 55
running as driver, 56

Kubernetes
CNCF and, 13
deploying falco-exporter to, 156
deploying Falcosidekick to, 159
Falco’s expansion into, 13
k8s filter class fields, 88
Kubernetes support versus Kubernetes audit

log, 65
Kubernetes audit logs

as data source, 13
filter class fields, 89

Kubernetes cluster
deploying Falco to, 127-130
Helm for installation, 128
manifests for installation, 129

Kubernetes manifest files, 129
Kubernetes metadata

alternate means of acquiring, 72
data enrichment, 69-72

L
least privileged mode, 125
libraries, 30
libscap

basics, 34-37
data flows and, 31
managing data sources, 34
system state collection, 36
trace file support, 34-36

libsinsp, 37-39
container metadata and, 67
data enrichment and, 65-67
data flows and, 31
enrichment fields and, 79
event parsing, 38
filtering, 38
Kubernetes metadata collection, 70
output formatting, 39
plugin function for field extraction, 73
state engine, 37

lists
appending to, 100
defined, 19
replacing, 98-101
rules files and, 96

202 | Index

local machine, running Falco on, 15-18
log files, 148-152
logging, in Falco context, 112
logical operators, 78

M
macros

appending to, 100
defined, 19
replacing, 98-101
rules and, 95

mandatory fields, 80
manifests, 129
merging, 196
message, in alert notifications, 21
metadata

operating system metadata, 65-67
syscalls and, 64

N
network packets, 11, 12
noise, rule writing and, 175
notifications of security events, 161

O
observability, 160
operating system (OS), defined, 42
operating system metadata, data enrichment

and, 65-67
optional fields, 80
output channels, 6, 23, 106-112

configuration nodes, 139
defined, 104
file output, 108
gRPC output, 110-112
HTTP output, 109
program output, 109
standard output, 108
syslog output, 108

output framework, 103-113
channels, 106-112
Falco’s output architecture, 103-105
formatting, 105

output worker, 104
outputs

command-line options, 137
defined, 6
falco-exporter, 156

Falcosidekick and, 157-160
interpreting, 21-22
libsinsp and formatting, 39
working with Falco outputs, 155-160

P
package manager

installing Falco with, 119-122
installing Falco without, 122

PCAP files, 34
(see also trace files)

pdig, 57
plugins

architecture concepts, 59
basics, 33
building a plugin written in Go, 191
configuration nodes, 139
configuring Falco, 142
data enrichment with, 73
as data source, 142
defined, 30
event sourcing capability and, 187-189
extending Falco ingestion with, 58-61
extending Falco with, 184-192
Falco’s evolution and, 14
field extraction capability, 189
finalizing, 190
how Falco uses, 60
installing Falco using, 121
preparing in Go, 185
state and initialization, 185-186
using while developing, 191

Pods (Kubernetes object), 69
proc filter class fields, 85
process information pseudo-filesystem (procfs),

66
processes, fields containing information about,

85
production environment, Falco deployment in,

7
program output channel, 109
pull requests (PRs), 195-197

Developer Certificate of Origin, 196
Git conflict resolution/linear history, 196

Q
quotes, delimiting strings with, 78

Index | 203

R
rebasing, 196
regression, for testing rules, 174
relational operators, 77
response engines, 161
RPM Package Manager, 120
rule declaration, 18
rule engine, 39
rule tagging, 96
rules, 5, 91-101

appending to, 100
basics, 93
core entries in, 6
fields/filters and, 82
general guidelines for evaluating, 141
main purposes, 93
replacing, 98-101
writing (see writing Falco rules)

rules files, 23
appending to macros/lists/rules, 100
basics, 91-93
configuration nodes, 139
contents, 93-98
declaring the expected engine version, 98
disabling rules, 100
lists, 96
loading, 140
macros, 95
replacing macros/lists/rules, 98-101
rule tagging, 96
rules and, 93

rulesets
command-line-options, 137
customizing, 140-141
defined, 18
extending Falco’s AWS ruleset, 153
loading rules files, 140
tuning, 141

running Falco drivers
eBPF probe, 57
kernel module, 56
pdig and, 57

runtime, 7

S
S3 bucket, reading CloudTrail logs from, 152
scalability, 8
SDK (software development kit)

adding event sourcing capability, 187

adding field extraction capability, 189
finalizing the plugin, 190
plugin state and initialization, 185
preparing a plugin in Go, 185

security (see cloud security)
security incidents, responding to, 161
sensors, 4
severity level, in alter notifications, 21
Simple Queue Service (SQS)

manual deployment, 150-152
receiving log files through an SQS queue,

148-152
Terraform-based deployment, 149

simplicity, as design choice, 9
Snort, 11
software development kit (see SDK)
SQS (see Simple Queue Service)
standard output channel, 108
starting Falco, 17
state, 36, 185-186
state tables, 37
strace, 44
strings, specifying, 78
syscalls (see system calls)
sysdig, 12, 45-47

condition filter crafting with, 170
converting command line into rule, 171
fields/filters in, 83
output crafting/testing with, 171

syslog output channel, 108
system calls

capturing, 47-53
capturing within containers, 55
configuration settings, 139
data enrichment for syscalls, 63-72
data enrichment settings, 136
as data source, 12, 31, 41-47
defined, 4, 41
drivers and, 32
examples, 43
instrumentation settings, 134-136
managing the driver, 122
observing, 43-47
strace and, 44
sysdig and, 45-47
truthfulness of, 9

system state, 36

204 | Index

T
tagging

rule writing and, 178
rules and, 96

tcpdump, 11
Terraform, 149
threads

defined, 47
fields containing information about, 85

threats, responding to, 161
timestamps, 21
trace files

libscap’s support of, 34-36
saving events in, 169

tracepoint, 54
triaging, 195
troubleshooting, command-line options for,

138

U
user filter class fields, 87

W
webserver configuration node, 139
Wireshark, 11
writing Falco rules, 167-178

customizing default rules, 167
important concepts for, 174-178
noise considerations, 175
performance considerations, 176
priorities, 174
rule development method, 168
tagging, 178
writing new rules, 168-174

Index | 205

About the Authors
Loris Degioanni is the CTO and founder of Sysdig. He’s also the creator of sysdig,
the popular open source troubleshooting tool, as well as the CNCF runtime security
tool Falco. Loris was one of the original contributors to Wireshark, the open source
network analyzer. He holds a PhD in computer engineering from Politecnico di
Torino and lives in Davis, California.

Leonardo Grasso is an open source software engineer at Sysdig and a core main‐
tainer of The Falco Project. He has a strong passion for software design and long
professional experience in the R&D field. Leonardo loves contributing to open source
projects from his home in Italy and enjoys building tools other engineers would like
to use.

Colophon
The animal on the cover of Practical Cloud Native Security with Falco is a red-necked
falcon (Falco chicquera).

Red-necked falcons are medium-size, long-winged birds of prey occurring in two
distinct populations—one in Africa, the other in India—that genetic studies suggest
have been separate for nearly one million years. As such, they are often treated as
different species, with the African “subspecies” Falco chicquera ruficollis given the
species name Falco ruficollis.

In both India and Africa, these falcons are often found in open habitats, though in
Africa they may also inhabit riverine forests. They typically hunt in pairs, sometimes
utilizing a coordinated technique in which one falcon flushes up small birds from
below and the other seizes the prey from above. The prowess to which this attests is
perhaps one reason they were once a favorite among Indian falconers.

The Indian variant of red-necked falcons has been categorized by IUCN as near
threatened due to declining population. The African variant is listed as of least
concern. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Wood’s Animate Creation. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	Overview
	Part I: The Basics
	Part II: The Architecture of Falco
	Part III: Running Falco in Production
	Part IV: Extending Falco

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Leonardo
	Loris

	Part I. The Basics
	Chapter 1. Introducing Falco
	Falco in a Nutshell
	Sensors
	Data Sources
	Rules
	Data Enrichment
	Output Channels
	Containers and More

	Falco’s Design Principles
	Specialized for Runtime
	Suitable for Production
	Intent-Free Instrumentation
	Optimized to Run at the Edge
	Avoids Moving and Storing a Ton of Data
	Scalable
	Truthful
	Robust Defaults, Richly Extensible
	Simple

	What You Can Do with Falco
	What You Cannot Do with Falco
	Background and History
	Network Packets: BPF, libpcap, tcpdump, and Wireshark
	Snort and Packet-Based Runtime Security
	The Network Packets Crisis
	System Calls as a Data Source: sysdig
	Falco

	Chapter 2. Getting Started with Falco on Your Local Machine
	Running Falco on Your Local Machine
	Downloading and Installing the Binary Package
	Installing the Driver
	Starting Falco

	Generating Events
	Interpreting Falco’s Output
	Customizing Your Falco Instance
	Rules Files
	Output Channels

	Conclusion

	Part II. The Architecture of Falco
	Chapter 3. Understanding Falco’s Architecture
	Falco and the Falco Libraries: A Data-Flow View
	Drivers
	Plugins
	libscap
	Managing Data Sources
	Supporting Trace Files
	Collecting System State

	libsinsp
	State Engine
	Event Parsing
	Filtering
	Output Formatting
	One More Thing About libsinsp

	Rule Engine
	Conclusion

	Chapter 4. Data Sources
	System Calls
	Examples
	Observing System Calls

	Capturing System Calls
	Accuracy
	Performance
	Scalability
	So What About Stability and Security?
	Kernel-Level Instrumentation Approaches

	The Falco Drivers
	Which Driver Should You Use?
	Capturing System Calls Within Containers

	Running the Falco Drivers
	Kernel Module
	eBPF Probe
	Using Falco in Environments Where Kernel Access Is Not Available: pdig
	Running Falco with pdig

	Falco Plugins
	Plugin Architecture Concepts
	How Falco Uses Plugins

	Conclusion

	Chapter 5. Data Enrichment
	Understanding Data Enrichment for Syscalls
	Operating System Metadata
	Container Metadata
	Kubernetes Metadata

	Data Enrichment with Plugins
	Conclusion

	Chapter 6. Fields and Filters
	What Is a Filter?
	Filtering Syntax Reference
	Relational Operators
	Logical Operators
	Strings and Quoting

	Fields
	Argument Fields Versus Enrichment Fields
	Mandatory Fields Versus Optional Fields
	Field Types

	Using Fields and Filters
	Fields and Filters in Falco
	Fields and Filters in sysdig

	Falco’s Most Useful Fields
	General
	Processes
	File Descriptors
	Users and Groups
	Containers
	Kubernetes
	CloudTrail
	Kubernetes Audit Logs

	Conclusion

	Chapter 7. Falco Rules
	Introducing Falco Rules Files
	Anatomy of a Falco Rules File
	Rules
	Macros
	Lists
	Rule Tagging
	Declaring the Expected Engine Version

	Replacing, Appending to, and Disabling Rules
	Replacing Macros, Lists, and Rules
	Appending to Macros, Lists, and Rules
	Disabling Rules

	Conclusion

	Chapter 8. The Output Framework
	Falco’s Output Architecture
	Output Formatting
	Output Channels
	Standard Output
	Syslog Output
	File Output
	Program Output
	HTTP Output
	gRPC Output
	Other Logging Options

	Conclusion

	Part III. Running Falco in Production
	Chapter 9. Installing Falco
	Choosing Your Setup
	Installing Directly on the Host
	Using a Package Manager
	Without Using a Package Manager
	Managing the Driver

	Running Falco in a Container
	Syscall Instrumentation Scenario
	Plugin Scenario

	Deploying to a Kubernetes Cluster
	Using Helm
	Using Manifests

	Conclusion

	Chapter 10. Configuring and Running Falco
	Configuring Falco
	Differences Among Installation Methods
	Host Installation
	Containers
	Kubernetes Deployments

	Command-Line Options and Environment Variables
	Configuration Settings
	Instrumentation Settings (Syscalls Only)
	Data Enrichment Settings (Syscalls Only)
	Ruleset Settings
	Output Settings
	Other Settings for Debugging and Troubleshooting

	Configuration File
	Ruleset
	Loading Rules Files
	Tuning the Ruleset

	Using Plugins
	Changing the Configuration
	Conclusion

	Chapter 11. Using Falco for Cloud Security
	Why Falco for AWS Security?
	Falco’s Architecture and AWS Security
	Detection Examples

	Configuring and Running Falco for CloudTrail Security
	Receiving Log Files Through an SQS Queue
	Reading Events from an S3 Bucket or the Local Filesystem

	Extending Falco’s AWS Ruleset
	What About Other Clouds?
	Conclusion

	Chapter 12. Consuming Falco Events
	Working with Falco Outputs
	falco-exporter
	Falcosidekick

	Observability and Analysis
	Getting Notified
	Responding to Threats
	Conclusion

	Part IV. Extending Falco
	Chapter 13. Writing Falco Rules
	Customizing the Default Falco Rules
	Writing New Falco Rules
	Our Rule Development Method

	Things to Keep in Mind When Writing Rules
	Priorities
	Noise
	Performance
	Tagging

	Conclusion

	Chapter 14. Falco Development
	Working with the Codebase
	The falcosecurity/falco Repository
	The falcosecurity/libs Repository
	Building Falco from Source

	Extending Falco Using the gRPC API
	Extending Falco with Plugins
	Preparing a Plugin in Go
	Plugin State and Initialization
	Adding Event Sourcing Capability
	Adding Field Extraction Capability
	Finalizing the Plugin
	Building a Plugin Written in Go
	Using Plugins While Developing

	Conclusion

	Chapter 15. How to Contribute
	What Does It Mean to Contribute to Falco?
	Where Should I Start?
	Contributing to Falcosecurity Projects
	Issues
	Pull Requests

	Conclusion

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

