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Preface

Most computer security books tell you what to do and what not to do. This one tells you
why.

The list of security dos and don’ts is long: run antivirus software, get a firewall, lock
everything down, follow extensive checklists, encrypt everything in sight, watch every-
thing that goes on in your network, (especially) bring in over-priced consultants, and so
on. The results are dismaying: companies are spending a great deal on security, but we
read of massive computer-related attacks. Clearly, something is wrong.

The root of the problem is twofold: we’re protecting (and spending money on protect-
ing) the wrong things, and we’re hurting productivity in the process. Unlike automobile
locks, which increase a car’s functionality by enabling you to park in bad neighborhoods,
computer security tends to stop a user from doing something rather than enabling them
to go into bad neighborhoods safely. People—read that as “employees”—want to be pro-
ductive; when security measures get in their way, guess what’s going to suffer? That’s
right: security.

The solution, though of course easier said than done, is similarly twofold: protect the
right things, and make it easy for employees to do the right thing. That requires more
than checklists; it requires thought about the actual threats and technology. That’s what
this book is about: how to think about security.

Protecting the Right Things

Security starts by knowing what you’re protecting and against whom. A corollary to this is
that any security advice that doesn’t start with those two questions is wrong: you’ll spend
too much effort on the wrong things. If you’re protecting national security secrets against
foreign intelligence agencies, you probably need every defense ever invented and some
that haven’t been invented yet. You also need defenses against “the three Bs”: burglary,
bribery, and blackmail.

xi



xii Preface

Many of us don’t have spies as our enemies (though news reports suggest that that
may be changing [Barrett 2015]). The typical attacker today is motivated by money; the
question you have to ask yourself is how an attacker can monetize your computers and
networks. If you work for a bank, the answer is pretty obvious; banks are, to quote the
famous line, “where the money is.” But any random computer can help the bad guys steal
from the rest of us, so we can’t let our guard down. These attacks, though, will be often
opportunistic rather than targeted. Even then, there are different gradations of risk.

There’s a corollary to this: defense is also about money. It makes no sense to spend
more money to protect an asset than you have at risk. There’s a saying that bears re-
membering [Schiffman 2007]: “Amateurs worry about algorithms; pros worry about eco-
nomics.” Your goal is not to make a system penetration impossible; rather, it’s to make it
too expensive for your enemies, while not spending too much yourself.

Let’s look at passwords as a typical example. We’ve been told for more than 30 years
that weak passwords are a bad idea [Morris and Thompson 1979]. It’s absolutely true;
break-ins caused by poor password selection are very real. We’re also told never to write
down a password. However, the world has changed in many ways since 1979.

Suppose I pick a really strong password. Well, I’m not picking just one really strong
password; I’m picking many different ones, for all the different web sites I have to log in
to. There’s no way I can remember all of them; I’m certain to forget a few, so I’ll have to
resort to a password recovery mechanism. And what is that? For many web sites, they’ll
just email me the password. The security of my account, then, depends on the security of
my email, right? Not quite—there’s more.

For many people, the real threat isn’t a password guesser, it’s a keystroke logger. That
is, someone or something has surreptitiously installed some malware—some malicious
software—on their computers; this software records all of their keystrokes, especially
including passwords. Even if you have a very strong password that you have remembered,
if you ever actually type it your account will be compromised [D. Florêncio, Herley, and
Coskun 2007]. By contrast, if your password is emailed to you via a recovery mechanism
and you use copy-and-paste to enter it, you never type it and you’re safer. And your
email account? Many people have their email passwords stored by their mailers; those
are never typed, either. But if they are typed, all of the password-strength mechanisms for
the original web site are useless, because this stolen email password will let the bad guys
recover it.

Password security, then, is a far more complex problem than simplistic checklists
would have us believe. You have to have good passwords, but you have to protect them in
the right way against the right threats. There is no perfect answer. Making the best choice
requires understanding the interactions, the trade-offs, and the threats. In other words, a
checklist will not suffice; you have to understand why to do things.
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Doing the Right Thing

Once upon a time, back in the days of dial-up access, there was a company in Silicon
Valley that worried about security. They were worried about “war-dialers”—hackers who
dial all of the phone numbers in an exchange, looking for a modem—and password-
guessing attacks. So they did the obvious: they banned modems.

The problem with the ban was that it conflicted with the prevailing culture in Silicon
Valley, where many of the best developers are fond of working at all hours while garbed
in their pajamas or less. The developers did the obvious: they went to their local neigh-
borhood computer store, bought a modem for $29.95, and hooked it to their office phone
lines when they left for the day. Corporate security caught on soon enough, though, and
countered by installing a digital phone system, one for which modems were not readily
available. Getting a regular analog phone line required a signature from the vice pres-
ident in charge of signatures. All looked good, but the security folks couldn’t ban that
other indispensable adjunct to modern corporate life: the fax machine. Suddenly, a lot of
engineers needed fax lines in their offices; those requests, of course, were approved. To
be sure, those $29.95 modems could send and receive faxes; it wasn’t 100% bogus.

Everyone was happy—security was happy because they knew there were no dial-
in lines, and the engineers were happy because they could log in from their hot tubs.
All went well, until a disgruntled former employee started breaking in via these poorly
protected, unofficial modems. And security was mystified, because they knew there were
no modems.

Imagine, instead, if there were a centrally managed modem pool, with proper authen-
tication and a login list linked to the personnel department’s database. It would be secure
enough and it would foster productivity without tempting people to evade the rules.

Security: Not Too Big, Not Too Small, Just Right

These two scenarios have a lot in common. Most importantly, they show that security
decisions cannot be made in a vacuum. There’s a large human element to worry about;
security solutions that are not matched to people’s behavior, good and bad, will fail.

Another point of similarity is that the defenses are often poorly matched to the actual
threats. Strong passwords don’t protect against keystroke loggers; nevertheless, countless
users are annoyed by the necessity of complying with such rules. Worse yet, they have
to comply with many sets of rules, all subtly different. Strong passwords are more easily
forgotten, thus creating a reliance on password-recovery schemes; these are generally
much weaker than the primary authentication scheme, as Sarah Palin learned when her
email account was hacked [Zetter 2010]. The site she used went to great trouble to develop
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the recovery code, to collect and store the data, and to prompt for the questions. In a strong
sense, they had to do that; people will forget passwords—but was the real flaw reliance
on strong passwords in the first place?

Similarly, the ban on modems was intended to keep out war-dialers. They ignored the
disgruntled insider attack, while at the same time they cost themselves productivity. They
also suffered the more subtle problems of buying too many modems at retail prices, and
they probably paid for too many extra phone lines.

Sometime in the next few years, your boss will read about the new Herkawat attack,
and about how some Kushghab.com software will prevent it. Should you buy their prod-
uct? How will you decide? Those, I hope, are the sorts of questions this book will help
you answer, even for attacks and product names that don’t come from a random password
generator.1

A Guide to the Perplexed

This book is not an introductory security text. Think of it as a graduate course, one aimed
especially at system administrators, IT managers, chief security officers, and system ar-
chitects. I assume that you know what firewalls are, and what the difference is between
symmetric and public key cryptography. You’ve probably seen the usual checklists, per-
haps achieved a (checklist-based) security certification, and obeyed most (but not all) of
their prescriptions. I won’t tell you how to avoid buffer overflows, cross-site scripting,
and SQL injection attacks; there are other books that do that. Rather, my goal is to teach
you how to think about the implications of security decisions, and how to design an ar-
chitecture that will deal with the consequences of failures. I don’t know what the Internet
will be like or what the popular services or devices will be 10 years hence; I’m quite
certain that there will be some very surprising new ones, ones that haven’t even reached
the garage or dorm room tinkering stage yet. How will you protect yourself, from them or
with them? Checklists are for when people know the right answers, but sometimes, none
have been developed yet.

Part I of this book is about mindware: how to think about the subject. Of necessity,
it includes a discussion of likely enemies. Part II discusses the basic technologies of
interest, not just security technologies like firewalls, but also the special properties (or
lack thereof) of wireless communications.

In Part III, I discuss putting it together. How do you build and operate real systems?
We’re living in an imperfect world; we need to solve our problems now.

Finally, in Part IV, I demonstrate these principles with a few case studies and offer
some very vague thoughts about the future of the field.

1. “APG (Automated Password Generator),” http://www.adel.nursat.kz/apg/.

http://www.adel.nursat.kz/apg/
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A Note on Link Rot

George R.R. Martin wrote [G. R. R. Martin 2000], “Valar morghulis. . . all men must die.”
The same seems to be true of links to web pages. I checked every URL in this book in
August 2015—but by the time you read these words, some of the links will no longer
work. Even the US Supreme Court suffers from this problem [Zittrain, Albert, and Lessig
2014]. Right now, there are no great solutions. The Wayback Machine (https:/ /www.
archive.org) is probably your best hope.
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Chapter 1

Introduction

“Who are you?” said the Caterpillar.

This was not an encouraging opening for a conversation. Alice replied, rather
shyly, “I hardly know, sir, just at present—at least I know who I was when I
got up this morning, but I think I must have been changed several times since
then.”

“What do you mean by that?” said the Caterpillar sternly. “Explain yourself!”

“I can’t explain myself, I’m afraid, sir,” said Alice, “because I’m not myself,
you see.”

“I don’t see,” said the Caterpillar.

“I’m afraid I can’t put it more clearly,” Alice replied very politely, “for I can’t
understand it myself to begin with; and being so many different sizes in a day
is very confusing.”

“It isn’t,” said the Caterpillar.

“Well, perhaps you haven’t found it so yet,” said Alice. . . .

Through the Looking-Glass, and What Alice Found There
—LEWIS CARROLL

1.1 Changes

One of the most visible aspects of the computer industry is how rapidly things change.
Four aspects of the change rate are of interest here: performance improvements (obvi-

3



4 Introduction

ously, today’s computers are much faster); capability improvements (we can do things
today that we couldn’t do even a few years ago); price; and environment (because people
and companies around us do more, we can interact with them electronically). All of these
affect security.

Recently, I received a check in the mail and deposited it by taking a picture of it with
my phone. Think of the technical security challenges the bank had to deal with to make
that possible:

• They have to have very high confidence that the right person is connecting to the
account.

• This server application has to be very robust against all sorts of attacks; it can, after
all, touch live bank accounts. In particular, it can add money to an account, based on
user input; quite conceivably, their previous online application deliberately couldn’t
do that, as a security measure.

• However—the deposit is conditional, based in part on the image of the check being
examined, by a human or by software, to verify the amount. In other words, some
sensitive part of their system has to process an enemy-supplied image file.

• They have to allow the upload of large image files, with the consequent need for
bandwidth, disk space, and more.

• My phone’s operating system has to be secure enough that rogue phone apps can’t
spy on or modify the banking transactions.

• All traffic has to be encrypted.

• The phone has to be assured of connecting to the proper destination.

• There needs to be a proper audit trail for all transactions.

• Everything must work seamlessly with the “traditional” web application (itself not
more than 15 years old, and probably a lot less), human tellers, and the legacy back-
end systems that may have originally been written in COBOL and entered on punch
cards for some giant mainframe, but now probably runs on a mainframe emulator
on the CTO’s tablet.

• Given all of these other changes, the entire architecture’s security characteristics
should be revisited.
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Obviously, my bank and many other banks have made the necessary changes; the appli-
cation works. The system architects figured out what had to be done; the security folks,
the programmers, the network engineers, and everyone else made the necessary changes.

The interesting question is what the internal debates looked like. Did a security person
say, “No, you can’t do that; our back-end process isn’t robust enough to accept online
deposits”? Did the user experience group have to fight with the security group about
authentication for account setup? Did the lawyers want to know how well fraudulent
transactions could be traced to a particular phone or physical location? Did the head of
the security group still try to say, “No, you can’t do it; it’s just too risky”?

Sometimes, “no” is indeed the right answer. As noted, though, capabilities and envi-
ronments change. The worst mistake one can make in the computer business is to blithely
give yesterday’s answer to today’s question. The second worst mistake, of course, is re-
jecting yesterday’s answer without thinking about it. The technical and economic con-
straints may be the same; alternately, the same answer may be correct for an entirely
different reason. The challenge is performing the analysis correctly.

1.2 Adapting to Change

There are many ways to deal with change and its likelihood. You can leave enough
hooks to handle all possible future contingencies; you can reject changes until you’re
dragged into the future, kicking and screaming (or go out of business); you can embrace
all changes, willy-nilly—or you can stop to do the sober, careful analysis that the problem
demands.

Planning for all contingencies is the simplest and most common option. After all,
everyone who has been in the business more than a few years knows that change will
come, and will come in unpredictable ways. There are a number of problems with this
approach. For one thing, it’s ugly and produces ugly systems. Jon Postel said it well
[Comerford 1998]:

It’s perfectly appropriate to be upset. I thought of it in a slightly different
way—like a space that we were exploring and, in the early days, we fig-
ured out this consistent path through the space: IP, TCP, and so on. What’s
been happening over the last few years is that the IETF is filling the rest of
the space with every alternative approach, not necessarily any better. Every
possible alternative is now being written down. And it’s not useful.

Planning for everything also produces complex and bloated systems, and while memory
and CPU are not critical resources these days, the engineering time to build, maintain, and
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Hackers

Once in ancient days, the then King of England told Sir Christopher Wren,
whose name is yet remembered, that the new Cathedral of St. Paul which
he had designed was “awful, pompous and artificial.” Kings have seldom
been noted for perspicacity.

. . .

In the case of the King and Sir Christopher, however, a compliment was
intended. A later era would have used the words “awe-inspiring, stately,
and ingeniously conceived.”

“A Tragedy of Errors”
—POUL ANDERSON

Words’ meanings change over time. Once upon a time, “hacker” might indeed have
meant “A person who enjoys exploring the details of programmable systems and how
to stretch their capabilities, as opposed to most users, who prefer to learn only the
minimum necessary.”a That isn’t the way it is commonly used today. In this book, I’ll be
using it to mean “A person who uses his skill with computers to try to gain unauthorized
access to computer files or networks,” per the OED; when writing about security, that is
the commonly accepted definition. It is, perhaps, worth noting that the OED traces that
usage to 1976, the same year as its first citation for “A person with an enthusiasm for
programming or using computers as an end in itself.” And if you prefer older meanings,
we can go back to either 1481’s “That which hacks; an implement for hacking, chopping
wood, or breaking up earth; a chopper, cleaver; a hoe, mattock,” or 1581’s “A ‘cutter’,
cut-throat, bully”.

a. “The New Hacker’s Dictionary,” http://outpost9.com/reference/jargon/jargon 23.html#SEC30.

http://outpost9.com/reference/jargon/jargon_23.html#SEC30
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configure such systems is expensive and becoming more so. From a security perspective,
though, complexity is fatal. No one understands a complex system, from the architects
and programmers who design and build it to the engineers who have to configure it. A
1994 study showed that about 25% of security flaws were due to bugs in the specification,
not the code [Landwehr et al. 1994]. In other words, it’s not just a programming problem.

Let me give an example of how complexity—necessary complexity, in this case—can
lead to a security problem. A web posting [Chan 2011] detailed how an Apple Smart
Cover can be used to override the security lock on an Apple iPad 2 running iOS 5.0. (For
those who are not initiates into the High Mysteries of the Cult of Apple, a Smart Cover is
held to the iPad 2 via magnets. When the cover is peeled back, a sensor inside the iPad 2
notices the absence of the magnet, and wakes up the display. Also, to power off an iPad 2,
you hold down the Power button for a few seconds until a confirmation request appears;
at that point, you swipe across the designated area of the screen.)

The attack works as follows:

• Lock a passcode-enabled iPad 2.

• Hold down the Power button until it reaches the shutoff slider screen.

• Close the Smart Cover.

• Open the Smart Cover.

• Tap cancel.

What led someone to discover this attack?
If one simply presses the Home button on a blank-screen iPad 2, the lock screen

illuminates; if nothing further is done, it blanks again after 10 seconds. On the other
hand, if one opens a Smart Cover, the screen remains illuminated for 60 seconds, again
reverting to a blank screen if nothing is done. On the gripping hand [Niven and Pournelle
1993], if one initiates the power-down sequence from a blank screen but does nothing,
after 30 seconds the device switches to a very dim, non-interactive wallpaper screen. In
other words, it goes through a very different sequence of states for each of these ways for
waking up the display. The author of the aforementioned posting wrote, “I don’t know
how anyone would’ve figured that out but it definitely works.”

Consider the state transition diagram shown in Figure 1.1. Two of the states, Covered
and Lock screen, are parameterized: the transition from them depends on how they were
entered. Arguably, they should be shown as separate nodes on the graph; however, the
behavior suggests a single code path with memory. That is the key to the attack.

Someone who thinks like a security person (see Chapter 2) might wonder what would
happen if an unexpected transition were to occur. In particular, consider the dotted arc
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Figure 1.1: Simplified state transitions for unlocking or powering down an iPad 2. Activity can
start from the Covered, Home, or Blank states. The dotted lines show the attack. Note that there
are three possible destination states if the cover is opened, and two different ways to go from the
lock screen to a blank screen.

from the Confirmation state to the Covered state. There is clearly memory in that state,
since opening the cover can go to two different places. Is this memory always properly
initialized? Clearly not—the actual transition in this case goes to the Home screen state,
rather than the Lock screen state.

Change introduces complexity, but the risks of resisting all changes—the second com-
mon option—are sufficiently obvious that I won’t belabor them, save to recall Ken Olsen’s
comment that “the personal computer will fall flat on its face in business” [Rifkin 2011].
Olsen was co-founder of the Digital Equipment Corporation, a computer company that
no longer exists. Ignoring the world is not a security risk per se; nevertheless, the purpose
of computer security is not security for its own sake, but to enable some other operation
to function properly and (in some cases) profitably. Let me stress that: the purpose of an
organization—a business, a school, a government agency, a hospital—is not to be secure;
rather, security is an aid to carrying out its real purpose.
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The third option for dealing with change is to embrace it. When a new device comes
out, start using it. When there’s a new service, install it. That way lies disaster; the risks
are not always clear. Some years ago, Bruce Schneier wrote about the security risks of
Unicode [Schneier 2000], the standard for handling all of the world’s alphabets. At the
time, I was skeptical, but he was quite correct. The first attack was fairly obvious—since
the same glyph in different alphabets (such as the Cyrillic “a” versus the Latin “a”) has
different codepoints, the domain http://www.p&#1072;ypal.com/ is different than the
domain http://www.paypal.com, but the two look identical on screen [Schneier 2005].
A more subtle attack was discovered recently; it relies on the Unicode metacharacters to
cause right-to-left rendering (necessary for languages like Hebrew and Arabic) to hide
the .exe extension on some files [Krebs 2011b]. Handling cases like these requires not
just good code, it requires a good understanding of people’s behavior and of the salient
characteristics of many different languages.

Note that Unicode or something like it is quite necessary, unless we want to exclude a
large fraction of the world’s population from the net. That is clearly unacceptable. Nor are
the problems a matter of lack of forethought; there was no way, thousands of years ago
when some of these languages grew up, that one scribe could say to another, “You know,
in the far future, people are going to have these things called computers that will need to
handle our alphabet and that of those uncivilized folk across the water, so let’s all agree
on a direction of writing and on a set of letters.” We had to wait for a bit, until the new
technology had been deployed and analyzed, for someone to realize that Unicode falls
into a classic risk case: two different byte strings can produce the same visual display; the
humans who rely on it cannot perceive the internal processing difference.

1.3 Security Analysis

The fourth and best approach to dealing with change is analysis. Naturally, everyone
intends to do it, but it isn’t easy. Doing it right requires approaching the problem de novo,
rather than taking shortcuts. What are the components of the new system? What are their
black-box properties? What else do we know or can we guess about them? What are their
inputs and outputs? How are things combined? Is every input “secure”? If not, how can it
be made secure?

Consider the problem of passwords (a subject that is discussed much more deeply in
Chapter 7). Morris and Thompson demonstrated in 1979 that guessable passwords were
a security risk [1979]; ever since, “pick strong passwords” has been an entry on every
security checklist. However, they were writing about login passwords for a multi-user
time-sharing system with remote access. The BIOS password for a server in a physically
secure machine is in a very different environment. Do the same rules apply? How about

http://www.p&#1072;ypal.com/
http://www.paypal.com
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my home desktop machine? I’m the only user, and while remote logins are possible I’ve
configured the machine so that passwords are not accepted for such logins. Do I need
a strong password? (If you’re wondering, I have one, because I’m unconvinced that I’ll
always get the configuration right; if nothing else, a system update from Apple might
change that file.)

It is tempting to say “ignore maxims from the past,” but that is not quite correct, either.
One should certainly examine the assumptions behind them, whether environmental (as
in this case), based on the threat, or based on the assets being protected. (Teasing out these
assumptions, especially the implicit ones, is one of the hardest things about security.) On
the other hand, there is a lot of wisdom behind some of them; one cannot reject them
all out of hand. Indeed, one of my touchstones—that complexity leads to insecurity—
is nothing more than one of my personal checklist items, based on about 50 years of
experience in the field and on a lot of research by many, many people.

Despite the vast and rapid changes in the computer business, the nature of threats
hasn’t changed much. Certainly, the technical details evolve over time; if nothing else,
before there were web servers there was no need to know how to secure one. When
web servers—or rifcaghy servers, whatever they are—do exist, though, you need to know
those details. More importantly, you need to be able to answer several different questions:

• Do we need a rifcaghy server? More precisely, is there a business need for one,
where “business” is shorthand for “the purpose of my organization”?

• What are the risks of rifcaghy servers? How can those risks be ameliorated?

• How much confidence do I have in that analysis?

• Are the residual risks more or less than the value to the business of running that
service?

Security checklists are not going to give you the answer to any of those questions, until
much of the world has been running rifcaghy for quite a while. At that point, you’re be-
hind the business curve; perhaps more seriously from a security perspective, your fellow
employees may have been using external rifcaghy servers for quite some time, quite un-
aware of the risks. (Not convinced? Substitute “social media” for “rifcaghy.” Substitute
“smart phone.” Substitute “cloud storage service.”)

Furthermore, securing an organization or even a service is not something that’s done
once. As noted, technologies change, and software is updated. There are new devices, new
connectivity, new threats, and new defenses. Even apart from that, designing a security
solution is itself an iterative process. The corporate security group or even the security
function in a smaller organization generally cannot design a meaningful protective ar-
chitecture and simply toss it over the wall to the application programmers—and if they
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try to do so, the application programmers are likely to take the architecture and toss it
themselves. I hesitate to say exactly where, but I do observe that it’s very hard to fill up
/dev/null.

The problem is that a security solution conceived of by only the security group is
likely to pay too little attention to issues like cost and functionality. The problem is not
just the cost of the security pieces itself or even the additional development cost; rather, it
is the likely loss of functionality or market appeal of the actual product, and it is products
that pay everyone’s salaries. A perfectly secure service that no one will tolerate using is
quite worthless; a security solution of that kind can, will, and should be rejected.

Given all that, the proper process looks like this:

while true repeat

1. Identify the assets at risk.

2. Ascertain the enemies interested in each asset, and assess their likely
capabilities.

3. Select application technologies.

4. Evaluate the vulnerabilities for each piece.

5. Identify candidate defensive solutions.

6. Estimate the cost, including the cost in damage to the application if
security is breached.

It’s an iterative process; many solutions involve new assets that themselves need to be
protected. Besides, even after you reach a stable answer, the outside world is not standing
still; new implementations, new loads, new business requirements, and more mean that
the security analysis group will never be out of a job.

But how can this be achieved? When a service is brand new, how is it possible to go
through this sort of analysis? Since it would be redundant for me to say that by definition,
that’s the topic of this book, I’ll give a better answer: absent a formal theory of secure
system design (and I expect that such a theory will continue to be absent for many years
to come), we need to learn from the past. More specifically, by looking at today’s security
technologies deductively, we can derive appropriate design principles; by applying these
inductively, we can reason about tomorrow’s rifcaghy services, and even the gushnewly
and treltudy services of the day after.

Let’s use firewalls as a brief example. (We’ll revisit them in much more detail in
Chapter 5.) When we look at why they worked in 1994, when Bill Cheswick and I wrote
our book on them [1994], we see their basic assumptions: all traffic from the inside would
reach the outside Internet via a very small number of chokepoints; only good guys lived on
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the inside; and the firewall was capable of filtering out inbound nastiness, operationally
defined as anything that didn’t match a security policy. How do those principles work
today? By and large, they don’t. Laptops and smart phones wander across the barrier to
the outside, where they’re unprotected; malware constitutes an enemy presence inside
your organization; policies aren’t—can’t be—strong enough to describe things like PDF
files infected with the latest 0-day exploits. It is tempting to conclude that firewalls are
useless.

A deeper look at the principles, though, shows that we can still use firewalls, al-
beit rather differently. If we can find special circumstances where the principles hold—a
server complex is a good example—we can still rely on firewalls as a strong defense. Fur-
thermore, recognition of these principles as explicit guidelines teaches us administrative
policies we need to enforce, such as not permitting any mobile devices into the server
network, either directly or via a virtual private network (VPN). That in turn says some-
thing about the resources we need to give the developers and administrators of that server
complex.

This is how we have to proceed in the future. We shouldn’t discard the past, nor should
we let it straight-jacket us. Rather, we should use it as a guide.

1.4 A Few Words on Terminology

“You keep using that word. I do not think it means what you think it means.”

Inigo in The Princess Bride
—WILLIAM GOLDMAN

I’ve already explained what I mean by “hacker” and why I use the word (page 6); no more
needs to be said about that issue.

Several unusual terms—targetier, APT, Andromedan, and more—are explained in
Chapter 3.

There are a number of technical terms I use freely, under the assumption that you
know what I mean; these include RSA, MAC address, ARP spoofing, and more. As I
noted in the preface, this book is not intended as an introductory text.

Finally, I will often use phrases like “business” or “business purpose.” By no means
do I intend to imply that this book is limited to the for-profit sector. Although I have
indeed worked in industry, I’m now a professor and have served as Chief Technologist of
the US Federal Trade Commission. All of these organizations have a goal, whether it’s
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to make money, instruct students, perform research, protect the nation, or what have you.
“Work”—and of course that includes computer work—done on behalf of any of these
serves to further those goals. In the interests of clearer writing, I generally use the simpler
form to include all of these. Please make mental substitutions as appropriate.
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Chapter 2

Thinking About Security

“Think, youth, think! For know, Lensman, that upon the clarity of your
thought and upon the trueness of your perception depends the whole future
of your Patrol and of your Civilization; more so now by far than at any time
in the past.”

Mentor of Arisia in Second Stage Lensman
—E. E. “DOC” SMITH

2.1 The Security Mindset

I’ve often remarked that the best thing about my job is that I get to think evil thoughts
and still feel virtuous about it. Remarkably, it isn’t easy. In fact, for most people it’s
remarkably hard to think like a bad guy. Nevertheless, the ability to do so is at the heart
of what security people have to do.

Bruce Schneier explained it very well in an essay a few years back [Schneier 2008]:

Uncle Milton Industries has been selling ant farms to children since 1956.
Some years ago, I remember opening one up with a friend. There were no
actual ants included in the box. Instead, there was a card that you filled in
with your address, and the company would mail you some ants. My friend
expressed surprise that you could get ants sent to you in the mail.

I replied: “What’s really interesting is that these people will send a tube
of live ants to anyone you tell them to.”

15
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In other words, a security person will look at a mechanism and think, “What else can this
do? What can it do that will serve my needs rather than the intended purpose?”

One way to “think sideways” is to consider every process as a series of steps. Each
step, in turn, depends on a person or gadget accepting a series of inputs. Ask yourself this:
what if one of those inputs was wrong or corrupted? Would something useful happen? Do
I have the ability to cause that input to be wrong? Can the defender spot the error and do
something about it?

Look again at Bruce’s story. Someone at the company will read the card and send a
tube of ants somewhere. However, one of the inputs—the address to which to send the
bugs—is under the control of the person who filled out the card, and thus can trivially be
forged.

There’s another input here, though, one Bruce didn’t address. Can you spot it? I’ll
wait. . .

/ / /

Most of you got it; that’s great. For the rest: how does the company validate that the card
is legitimate? That is, how do they ensure that they only send the ants to people who have
actually purchased the product?

Once, that would have been easy; the card was undoubtedly a printed form, very easily
distinguished from something produced by even the best typewriters. Forging a printed
document would require the connivance of a print shop; that’s too much trouble for the
rather trivial benefit. Today, though, just about everyone has very easy access to word
processors, lots of fonts, high-quality printers, and so on. If you put in a very modest
amount of effort, you can reproduce the form pretty easily. For that matter, a decent
scanner can do the job. (Note that easy forgery is a problem for other important pieces of
paper, too; airplane boarding passes have been forged [Soghoian 2007].)

The next barrier is probably the cardboard the card is printed on. This isn’t as trivial,
but something close enough is not very hard to obtain.

To a computer pro, the fixes are obvious: put a serial number on each card and look
it up in a database of valid, unused ant requests. Add some sort of security seal, such as
a hologram, on the card [Simske et al. 2008]. Ask for a copy of the purchase receipt, and
perhaps the UPC bar code from the box. For that matter, creating hard-to-forge pieces of
paper is an old problem: we call it paper money. Problem solved?

Not quite—we don’t even know if there was a problem. The defensive technologies
cost money and time; are they worth it? What is the rate of forged requests for ants? Is the
population of immature forgers—who else would be motivated to send fake ant delivery
requests?—large enough to matter? More precisely, is the cost of the defense more or less
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than the losses from this attack? This is a crucial point that every security person should
memorize and repeat daily: the purpose of security is not to increase security; rather, its
purpose is to prevent losses. Any unnecessary expenditure on security is itself a net loss.

There’s one more lesson to take from this example: was the old security measure—the
difficulty of forgery—rendered obsolete by improvements in technology? The computer
field isn’t static; giving yesterday’s answers to today’s questions is often a recipe for
disaster.

2.2 Know Your Goals

What are you trying to do? What are your security goals? The questions may seem trite,
but they’re not. Answering them incorrectly will lead you to spend too much, and on the
wrong things. (Spending too little generally results from being in denial about the threat.)

All too often, insecurity is treated as the equivalent of being in a state of sin. Be-
ing hacked is not perceived as the result of a misjudgment or of being outsmarted by an
adversary; rather, it’s seen as divine punishment for a grievous moral failing. The peo-
ple responsible didn’t just err; they’re fallen souls to be pitied and/or ostracized. And of
course that sort of thing can’t happen to us, because we’re fine, upstanding folk who have
the blessing of the computer deity—$DEITY, in the old Unix-style joke—of our choice.

Needless to say, I don’t buy any of that. First and foremost, security is an economic
decision. You are trying to protect certain assets, tangible or not; these have a certain
monetary value. Your goal is to spend less protecting them than they’re worth. If you’re
uncomfortable trying to attach a cost to things like national honor or human lives, look at
it this way: what is the best protection you can get for those by spending a given amount of
money? Can you save more lives by spending the money on, say, antivirus software or by
increasing the rate of automotive seat belt use? A hack may be a more spectacular failure
(and you’re entitled to take bad publicity into account in calculating your damages), but
it’s not a sin, and you are not condemned to eternal damnation for getting it wrong.

What should you protect? Not only is there no one answer, if you’re reading this book
you’re probably not the right person to answer it, though you can and should contribute.
The proper answer for any given system revolves around the worst possible damage that
can occur if your worst enemy had control of that computer. That, in turn, is very rarely
limited to the street price of a replacement computer. Consider what supposedly hap-
pened in 1982: the “most massive non-nuclear explosion ever recorded,” because a Soviet
pipeline was controlled by software the CIA had sabotaged before it was stolen from a
Canadian company [R. A. Clarke and Knake 2010; Hollis 2011; Reed 2004]. That’s an ex-
treme case, of course, but it doesn’t take a Hollywood scriptwriter’s imagination to come
up with equally crazy scenarios. (This story may also be the result of someone’s imagina-
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A Word About Serious Adversaries

Although most of this book is about ordinary sorts of attacks, at times I will talk about se-
rious adversaries, the kind of people who can create something like Stuxnet or infiltrate
defense contractors. We all know who they are. If you’re American, you probably blame
China’s People’s Liberation Army Unit 61398 [Mandiant 2013] and Russia [NCIX 2011].
If you’re Chinese, you probably blame the NSA [Sanger, Barboza, and Perlroth 2013;
Tatlow 2013; Whitney 2013]. France and other European countries may feel the same
way [Gallagher 2012; MacAskill 2013], especially in the wake of the Snowden revela-
tions. Iran blames Israel’s Unit 8200 [UPI 2012]; Israel probably blames some shadowy
Palestinian group that has Iranian backing. In some countries, you may blame your own
government, but governments in such countries probably don’t want you saying so.

I’m not taking sides. In the interests of euphony and informality, I want to avoid
clumsy phrases like “nation-state”—last time I looked, there were very few city-states
left, and as far as I know none of them have “cyberwarfare” units—and pick a sim-
ple proper noun. I’ve chosen “Andromeda,” as in the nearby galaxy, and the crack
Andromedan hacker unit MI-31. You may, of course, choose to mentally substitute Ruri-
tania or Warhoon or Andorraa or whatever country (or city-state) you think might attack
you. (In fact, I cheat—in the LATEX source file for this book, I use \Enemy, \Enemyan,
and \Unit, so I can change it whenever I want. . . .)

For lesser threats, I’ll use the phrases joy hack , opportunistic attack , and targeted
attack ; see the next chapter for an explanation.

a. “Andorra,” http://people.wku.edu/charles.smith/MALVINA/mr005.htm.

tion. Most published reports seem to derive from Reed’s original published report [2004].
Reed was an insider and may have had access to the full story, but it’s hard to understand
why anything was declassified unless it was deliberately leaked—or fabricated—to warn
potential enemies about the US government’s prowess in cyberweaponry. The details and
quote given here are from [R. A. Clarke and Knake 2010, pp. 92–93]. Zetter, who has done
a lot of research on the topic, doubts that it happened [Zetter 2014].) Malware designed to
steal confidential business documents, to aid a rival? It’s happened [Harper 2013; B. Sul-
livan 2005]. A worm that blocks electronic funds transfers, so that your company appears
to be a deadbeat that doesn’t pay its bills? Why not? (If you think it sounds far-fetched,
see [Markoff and Shanker 2009]: the United States seriously contemplated hacking the
Iraqi banking system to deny Hussein funds to pay his troops, buy munitions, and so on.

http://people.wku.edu/charles.smith/MALVINA/mr005.htm
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“‘We knew we could pull it off—we had the tools,’ said one senior official who worked at
the Pentagon when the highly classified plan was developed.”) All of these could happen.
However. . .

The roof of your factory is almost certainly not armored to resist a meteor strike.
When selecting the site for your office building, you probably didn’t worry about the
proximity of a natural gas pipeline that a backhoe might happen to puncture. Most likely,
you’re not even expecting spies to hide in the false ceiling above the reception area, so
they can sneak past a locked door in the dead of night. All of these threats, cyber and
otherwise, are possible; in general, though, they’re so improbable that they’re not worth
worrying about—which is precisely my point.

In most situations, the proper defense posture is an economic question. There are
no passages in Leviticus prescribing exile from your family because your system was
hacked. You are not a lesser human being if your laptop suffers a virus infestation. You
may, however, be a bad system administrator if you don’t have good backups of that
laptop. Not using encryption when connecting from a public hotspot is negligent. Ignoring
critical vendor patches is foolish. And of course, you should know how to recover from
the loss of any computer system, whether due to hackers or because a wandering cosmic
ray has fried its disk drive controller.

In general, one should eschew paranoia and embrace professionalism. If you run the
network for an X-ray laser battery used for anti-UFO defense, perhaps you should worry
about Andromedan-instigated meteor strikes aimed at your router complex. On the other
hand, if the network you’re trying to protect controls the cash registers for a large chain of
jewelry stores, MI-31 isn’t a big concern, but high-end cyberthieves might be. Regardless,
you need to decide: what are you trying to protect, what are you leaving to insurance, and
what is too improbable to care about? You cannot deploy proper defenses without going
through this exercise. Brainstorming to come up with possible threats is the easy part;
deciding which ones are realistic requires expertise.

Here are two rules of thumb: first, distinguish between menaces and nuisances; sec-
ond, realize the scope of some protection efforts. Let’s consider some concrete examples.

Imagine a piece of sophisticated malware that increases the salary reported to the tax
authorities for top executives, while leaving intact the amounts printed on their paystubs.
When the executives file their tax returns, the numbers they report will be significantly
lower, triggering an audit. What will happen? Ultimately, it will likely be a non-event.
A passel of lawyers and accountants will spend some time explaining the situation; ulti-
mately, there will be too much other evidence—contracts, annual reports, bank records,
other computer systems, minutes of the Board of Directors’ compensation committee,
perhaps discussions with an outside consulting firm that knows the competitive landscape
—to make any charges stick. In other words, this is a nuisance attack. By contrast, mal-
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ware that damages expensive, hard-to-replace equipment—think Stuxnet or the “Aurora”
test [Meserve 2007; Zetter 2014] that destroyed an electrical generator—is a serious
threat.

A more plausible scenario is malware that tries to steal important corporate secrets.
There are enough apparent cases of this occurring that it’s a plausible threat, with at-
tackers ranging from random virus writers to national intelligence services and victims
ranging from paint manufacturers to defense contractors [NCIX 2011]. Protecting impor-
tant secrets is hard, though; they’re rarely in a single (and hence easy to isolate) location.
Nevertheless, it’s often worth the effort. Even here, some analysis is necessary: can your
enemies actually use your secrets? Unless your enemy has at least the tacit support of
a foreign government or a very large company, efforts that require a large capital outlay
may be beyond them—and support from competitors isn’t always forthcoming, much to
the dismay of some bad guys [Domin 2007].

There is no substitute here for careful analysis. You need to evaluate your assets,
estimate what it will take to protect them, guess at the likelihood and cost of a penetration,
and allocate your resources accordingly.

One special subcase of the protection question deserves a more careful look: should
you protect the network or the hosts? We are often misled when we call the field “network
security”; more often, saying that network security is about protecting the network is
like saying that highway robbery means that a piece of pavement has been stolen. The
network, like the highway, is simply the conduit the attackers use.

With a couple of exceptions, attackers are uninterested in the network itself. Connec-
tivity is ubiquitous today; few attackers need more per se. They often want hosts with
good connectivity, especially for spamming and launching DDoS attacks, but the pipe
itself doesn’t need special protection; protect the hosts and the pipe will be fine.

There are some important special cases. The most obvious is an ISP: its purpose is to
provide connectivity, so attacks on its network cut at the heart of its business. The main
threat is DDoS attacks; note carefully that an ISP has to mitigate attacks coming from
hosts it has no control over and which may not even be directly connected to its own
network.

There are two other special cases worth mentioning; both affect ISPs and customers.
The first is access networks, those used to connect a site to an ISP; the second is networks
that have some unusual characteristic, such as very low bandwidth where every extra byte
can cause pain. In these situations, even modest attacks on the infrastructure can lead
to a complete denial of service. As before, the network operator will have little or no
direct control over the hosts that are causing trouble; consequently, its responses (and its
response plans) have to be in terms of network operations.
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Don’t confuse the question of what to protect with where the defenses should be.
Protecting hosts might best be done with network firewalls or network-resident intrusion
prevention systems; conversely, the best way to deal with insecure networks is often to
install encryption software on the hosts.

There’s an important special case that’s almost a hybrid: the “cloud.” What special
precautions should you take to protect your cloud resources? The issue is discussed in
more detail in Chapter 10; for now, I’ll note that “Is the cloud secure?” is the wrong
question; more precisely, it’s a question that has a trivial but useless answer: “No, of
course not.” A better question is whether the cloud is secure enough, whether using the
cloud is better or worse than doing it yourself.

2.3 Security as a Systems Problem

Changing one physical law is like trying to eat one peanut.

“The Theory and Practice of Teleportation”
—LARRY NIVEN

Here’s a quick security quiz. Suppose you want to steal some information from a partic-
ular laptop computer belonging to the CEO of a competitor. Would you:

(a) Find a new 0-day bug in JPG processing and mail an infected picture to the CEO?

(b) Find an old bug in JPG processing and mail a picture with it to the CEO?

(c) Lure the user to a virus-infected web site that you control (a so-called “watering hole”
attack)?

(d) Visit the person’s office on some pretext, and slip a boobytrapped USB stick into the
machine?

(e) Wait until her laptop is brought across a national border, and bribe or otherwise induce
the customs officer to “inspect” it for you?

(f) Bribe her secretary to the do same thing without waiting for an international trip?

(g) Bribe the janitor?
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(h) Wait till she takes it home, and attack it via her less-protected home network? The
NSA considers that a threat to its own employees.1

(i) Penetrate the file server from which the systems administrator distributes patches and
antivirus updates to the corporation, and plant your malware there?

(j) Install a rogue DHCP server or do ARP-spoofing to divert traffic from that machine
through one of yours, so you can tamper with downloaded content?

(k) Follow her to the airport, and create a rogue access point to capture her traffic?

(l) Cryptanalyze the encrypted connection to the corporate VPN from her hotel?

(m) Infect someone else in the company with a tailored virus, and hope that it spreads to
the executive offices?

(n) Send her a spear-phishing email to lure her to a bogus corporate web site; under the
assumption that she uses the same password for it and for her laptop, connect to its
file-sharing service?

(o) Wait until she’s giving a talk, complete with slides, and when she’s distracted talking
to attendees after the talk steal the laptop?

Obviously, some of these are far-fetched. Equally obviously, all of them can work un-
der certain circumstances. (That last one appears to have happened to the CEO of Qual-
comm.2) In fact, I’ve omitted some attacks that have worked in practice. How should you
prepare your defenses?

The point is that you can’t have blinders on, even when you’re only trying to protect a
single asset. There are many avenues for attack; you have to watch them all. Furthermore,
when you have a complex system, the real risk can come from a sequence of failures. We
told one such story in Firewalls [Cheswick and Bellovin 1994, pp. 8–9]: the production
gateway had failed during a holiday weekend, the operator added a guest account to fa-
cilitate diagnosis by a backup expert, the account was neither protected nor deleted—and
a joy hacker found it before the weekend was over. In another incident, I was part of a
security audit for a product when we learned that one of the developers had been arrested
for hacking. We wondered whether a back door had been inserted into the code base;
when we looked, we found two holes. One, I learned, was an error by another developer

1. “Best Practices for Keeping Your Home Network Secure,” https://www.nsa.gov/ia/ files/factsheets/
I43V Slick Sheets/Slicksheet BestPracticesForKeepingYourHomeNetworkSecure.pdf.

2. “Qualcomm Secrets Vanish with Laptop,” http://www.infosyssec.com/securitynews/0009/2776.html.

https://www.nsa.gov/ia/_files/factsheets/I43V_Slick_Sheets/Slicksheet_BestPracticesForKeepingYourHomeNetworkSecure.pdf
https://www.nsa.gov/ia/_files/factsheets/I43V_Slick_Sheets/Slicksheet_BestPracticesForKeepingYourHomeNetworkSecure.pdf
http://www.infosyssec.com/securitynews/0009/2776.html
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(ironically, she was part of the audit team). The other, though, gave us pause: it took a
common configuration error and two independent bugs—for one of which the comments
didn’t agree with the code—to create the problem. To this day, I do not know whether
we spotted deliberate sabotage; on odd-numbered days, I think so, but I wrote this on an
even-numbered day.

Complex systems fail in complex ways! More or less by definition, it isn’t possible to
be aware of all of the possible interactions. Worse yet, the problem is dynamic; a change
in software or configurations in one part of a network can lead to a security problem
elsewhere. Consider the case of an ordinary, simple-minded firewall, of the type that may
have existed around 1995 or thereabouts. It may have been secure, but two unrelated
technological developments, each harmless by itself, combined to cause a problem [D. M.
Martin, Rajagopalan, and Rubin 1997].

The first was the development of a transparent proxy for the File Transfer Protocol
(FTP) [Postel and Reynolds 1985]. By default, FTP requires an inbound call from the
server to the client to transmit the actual data; normally, the host and port to be contacted
are sent by the client to the FTP server. Normally, of course, a firewall won’t permit
inbound calls, even though they’re harmless (or as harmless as sending or receiving data
ever is). The solution was a smarter firewall, one that examined the command stream,
learned which port was to be used for the FTP transfer, and temporarily created a rule to
permit it. This solved the functionality problem without creating any security holes.

The second technological development was the deployment of Java in web browsers
[Arnold and Gosling 1996; Lindholm and Yellin 1996]. This was also supposed to be safe;
a variety of restrictions were imposed to protect users [McGraw and Felten 1999]. One
such restriction was on networking: a Java applet could do network I/O, but only back to
the host from which it was downloaded. Of course, that included networking using FTP.
The problem is now clear: a malicious applet could speak FTP but cause the firewall to
allow connections to random ports on random protected hosts.

The philosophical failure that gave rise to this situation requires deeper thought.
First, FTP handling in the firewall was based on the assumption, common to all fire-
wall schemes, that only good guys are on the inside; thus, malicious FTP requests could
not occur. A hostile applet, however, was a malicious non-human actor, a scenario unan-
ticipated by the firewall designers. Conversely, the designers of the Java security model
wanted to permit as much functionality as they could without endangering users; firewalls
were not common in 1995, let alone ones that handled FTP that way, so it’s not surprising
that Java didn’t handle this scenario.

Amusingly enough, the problem may now be moot. The rise of the web has made
FTP servers far less common; disabling support for it on a firewall is often reasonable.
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Figure 2.1: SQL injection attacks.

Furthermore, if users encrypt their FTP command channels [Ford-Hutchinson 2005], the
firewall won’t be able to see the port numbers and hence won’t be able to open ports,
even for benign reasons. Four separate developments—the creation of smarter firewalls,
the deployment of Java, the rise of the web and the decline of FTP, and the standardization
of encrypted FTP—combined to first cause and then defang a security threat.

Although protecting an enterprise network is complicated, there’s a very important
special case that is itself almost as complicated: protecting a “single” function that is ac-
tually implemented as many interconnected computers. Consider a typical e-commerce
web site. To the customer, it appears to be a single machine; those who’ve worked for
such companies are already laughing at that notion. At a minimum, the web server is just
the front end for a large, back-end database; more commonly, there are multiple back-end
databases (inventory, customer profiles, order status, sales tax rates, gift cards, and more),
links to customer care (itself a complex setup, especially if it’s outsourced), the network
operations group, external content providers, developer sites, system administration links,
and more. Any one of these can be the conduit for a break-in. SQL injection attacks (Fig-
ure 2.1) occur when the web server is incautious about what it passes to a database.
Customer care personnel have—and must have—vast powers to correct apparently erro-
neous entries in assorted databases; penetration of their machines can have very serious
consequences. System administrators can do more or less anything; it doesn’t take much
imagination to see the threats there. Note carefully that firewalls are of minimal benefit
in such a setup; the biggest risks are often from protocols that the firewall has to allow.
SQL injection attacks are a good example; they’re passed to the web server via HTTP,
and thence on to the database as part of a standard, apparently normal query.
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2.4 Thinking Like the Enemy

One of the hardest things about practicing security is that you have to discard all of your
childhood training. You were, most likely, taught to flee from evil thoughts; there’s no
point to planning how to do something wrong unless you’re actually intending to do it,
and of course you wouldn’t ever want to do something you shouldn’t.

Being a security professional turns that around. I noted at the start of this chapter that
my job entails thinking evil thoughts, albeit in the service of good; however, it’s not an
easy thing to do. It is, nevertheless, essential. How does a bad guy think?

I’ve already discussed the obvious starting point: identifying your assets. Identifying
weak points, beyond the checklist that every security book gives—buffer overflows, SQL
injection and other unchecked inputs, password guessing, and more—is harder. How can
you spot a new flaw in a new setup? If you’re developing a completely different kind of
Internet behavior (Peer of the Realm to Peer of the Realm bilesharing?), how can you
figure out where the risks are?

By definition, there’s no cookbook recipe. To a first approximation, though, the pro-
cess is straightforward: attackers violate boundaries and therefore defenses have to. For
example, suppose that a particular module requires that its input messages contain only
the letters A, D, F, G, V, and X. It’s easy to guess that trouble could result if different
characters appeared; the question is how to prevent that. The two obvious fixes are input
filtering in one module or output filtering in another. The right answer, though, is both,
plus logging. Output filtering, of course, ensures that the upstream module is doing the
right thing. Indeed, it may be a natural code path: call the communications routine, and
let it encode the message using the six appropriate permissible characters. Nothing can
go wrong—except that the bad guy will look at other ways to send Q, Z, and even nastier
letters like J and þ. Can a random Internet node send a message to the picky module?
What about a subverted node on your Intranet? Another module in the same system? Can
the attacker get access to some LAN that can reach the right point? Is there some minor,
non-sensitive module that can be subverted and tricked into sending garbage? None of
these things should happen, of course, but a defensive analyst has to spot them all—and
since spotting them all may be impossible, you want input filtering, plus logging to let
you know that somewhere, your other protections have fallen short.

There’s another lesson we can learn from that scenario: the more moving parts a
system has, the harder it is to analyze. Quite simply, if code doesn’t exist, it can’t be
subverted. As always, complexity is your enemy. This applies within modules, too, of
course; a web server is vastly more complex, and hence more likely to contain security
holes, than a simple authentication server. Thus, even though an authentication server
contains more sensitive data, it is less likely to be the weak point in your architecture.
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When trying to emulate the enemy, the most important single question is what the
weak points are. That is, what system components are more likely to be penetrated. There
is no absolute way to measure this, but there are a few rules of thumb:

• A module that processes input from the outside is more vulnerable.

• A privileged module is more likely to be targeted.

• All other things being equal, a more complex module or system is more likely to
have security flaws.

• The richer the input language a module accepts, the more likely it is that there are
parsing problems.

The question is addressed more fully in Chapter 11.
Don’t neglect the human element. True, only MI-31 is likely to suborn an employee,

but someone with a grudge, real or imagined, can do a lot of harm. What would you do
if your boss came to you and said, “We’re about to fire Chris,” when Chris is a system
administrator who knows all of the passwords and vulnerabilities? How about “The union
is about to go on strike; can we prevent them from creating an electronic picket line?”
“There’s going to be a large layoff announced tomorrow; can we protect our systems?” All
of these are real questions (I’ve been asked all three). Distrusting everyone you work with
is a sure route to low morale (yours and theirs); trusting everyone is an equally sure route
to trouble, especially when the stakes are high or when people are stressed. Put yourself
in a given role—again, you’re emulating a role, not a person—and ask what damage you
can do and how you can prevent it. The answer, by the way, may be procedural rather
than technical. For example, if your analysis indicates that bad things could happen if a
fake user were added to the system, have a separate group audit the new user list against,
say, a database of new employees.

Conti and Caroland have another good pedagogical idea [2011]: teach students to
cheat. They gave a deliberately unfair exam, which elicited the predictable (and jus-
tifiable) complaints. They told the students they were allowed to cheat, but the usual
penalty—failing—would apply if and only if they were caught. The response was mag-
nificently creative, which is what they wanted. Breaking security is a matter of not follow-
ing the rules; people who don’t know how to do that can’t anticipate the enemy properly.
Their conclusion is quite correct:

Teach yourself and your students to cheat. We’ve always been taught to color
inside the lines, stick to the rules, and never, ever, cheat. In seeking cyber
security, we must drop that mindset. It is difficult to defeat a creative and
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determined adversary who must find only a single flaw among myriad defen-
sive measures to be successful. We must not tie our hands, and our intellects,
at the same time. If we truly wish to create the best possible information
security professionals, being able to think like an adversary is an essential
skill. Cheating exercises provide long term remembrance, teach students how
to effectively evaluate a system, and motivate them to think imaginatively.
Cheating will challenge students’ assumptions about security and the trust
models they envision. Some will find the process uncomfortable. That is OK
and by design. For it is only by learning the thought processes of our adver-
saries that we can hope to unleash the creative thinking needed to build the
best secure systems, become effective at red teaming and penetration testing,
defend against attacks, and conduct ethical hacking activities.

It pays to keep up with reporting on what the bad guys are doing. The trade press is
useful but tends to be later to the game; you want to be ahead of the curve. Focus first on
the specific things bad guys want. If you think you’d be targeted by the Andromedans, you
should probably talk to your country’s counterintelligence service. (Don’t skip this step
because you’re a defense contractor and you know what MI-31 wants; their methods—and
those include compromise of intermediate targets—are of interest as well; the counterin-
telligence folks want to know what’s going on.)

The changes in target selection over the years have been quite striking. In general, the
hackers have been ahead of the bulk of the security community, spotting opportunities
well before most defenders realized there was a problem. Mind you, the possibility of
these attacks was always acknowledged, and there were always some people warning of
them, but too many experts assumed a static threat model.

The first notable shift from pure joy hacking happened in late 1993; advisories de-
scribed it as “ongoing network monitoring attacks” on plaintext passwords.3 What was
more interesting, if less reported, was that a number of ISPs had workstations directly
connected to backbone links. Given the LAN technology of the time—unswitched Eth-
ernet—any such machine, if penetrated, could be turned into an eavesdropping station. It
remains unclear how the attackers knew of the opportunity; the existence of such well-
located machines was not widely known. The essence of the incident, though, is that the
good guys did not understand the security implications of the placement of those ma-
chines; the bad guys did.

Attackers’ target selection improved over the years, notably in the attention paid to
DNS servers, but the next big change happened around 2003. Suddenly, splashy worms
that clogged the Internet for no particular reason more or less stopped happening; instead,

3. “CERT Advisory CA-1994-01 Ongoing Network Monitoring Attacks,”
http://www.cert.org/advisories/CA-1994-01.html.

http://www.cert.org/advisories/CA-1994-01.html
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starting with the Sobig virus [Roberts 2003], the malware acquired a pecuniary motive:
sending spam. The virus writers had formed an alliance with the spammers; the latter
paid the former for an enhanced ability to clog our inboxes with their lovely missives.
It took quite a while for the good guys to understand what had happened, that infecting
random PCs was no longer just to allow the perpetrators to cut another notch into their
monitors. Again, the bad guys “thought differently.” This was followed by the widespread
appearance of phishing web sites and keystroke loggers. Financial gain had become the
overwhelming driver for attacks on the Internet.

The next change occurred shortly afterwards, with the Titan Rain [Thornburgh 2005]
attacks. Widely attributed to China, these attacks appeared to be targeted industrial espi-
onage attacks against US government sites. The concept of cyberespionage isn’t new—
indeed, a real attempt goes back to the early days of the Internet [Stoll 1988; Stoll 1989]—
but use on a large scale was still a surprise. Today, we may have moved into another era,
of high-quality, militarized malware (Stuxnet, Duqu, and Flame) generally attributed to
major governments’ cyberwarfare units [Goodin 2012b; Markoff 2011b; Sanger 2012;
Zetter 2014].

What happened? What is the common thread in all of these incidents? With the
exception of the cryptanalytic element in Flame [Fillinger 2013; Goodin 2012b; Zetter
2014], there was nothing particularly original or brilliant about the attacks; they’re more
the product of hard work. Their import is that the attackers realized the significance of
changes in what was on the Internet. It wasn’t possible to attack, say, the US military in
1990, because except for a very few research labs, it wasn’t online. When it was online,
the hackers struck.

The essence of these incidents was better thinking about targets and opportunities by
the attackers than by the defenders. In some sense, that’s understandable—it’s hard to get
management buy-in (and funding) to defend against attacks that have never before been
a real threat—but that doesn’t forgive it. There’s an old Navy saying that there are two
types of ships, submarines and targets. The same can be said of cyberspace: there are
two types of software, malware and targets, and the good guys are blithely building more
targets. Will the next unexpected step be cyberwarfare? That’s a very complex topic, well
beyond the scope of this book, and while I don’t think that the worst scenarios one sees in
the press are credible I do think there’s significantly more potential risk than some would
have you believe. The important point here comes from the title of this section: one has
to think “outside the box” about next year’s targets. If you deploy a brand new service,
what are the non-obvious ways to pervert it?

Beyond target selection, defenders have to think about how their systems are ex-
ploited. At the architectural stage, pay more attention to longer-term trends than to the
bug du jour. Eavesdropping, SQL injection attacks, buffer overflows, and the like have
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Cyberwar?

I set out my ideas on cyberwarfare in [Bellovin 2013], but here I’ll give my beliefs in
a nutshell. First, there’s no such thing as “cyberwarfare” per se; there are wars that
employ weapons, which may or may not be cyberweapons. Second, wars don’t start
simply because someone has a new weapon, whether it’s malware, a nuclear-tipped
ICBM, or a better crossbow. Weaponry can enable a war, but one will start for other
reasons. Even during the height of the Cold War, few strategists expected a Bolt out of
the Blue (BOOB) attack; the same is likely true today. Furthermore, the characteristics
of cyberattacks make them more suitable as tactical weapons, not strategic weapons.
For more on this last point, see [Libicki 2009].

All that said, it doesn’t mean that any malign interaction between countries consti-
tutes a war, or even a casus belli. A DDoS attack is not in the same category as an
air strike, nor is state-sponsored electronic espionage the same as a commando raid.
Here’s a simple metric: if the same action—I’m including spying here—were done by
a satellite, how would it be categorized? By a drone? Special forces? An intelligence
agent? A locally recruited but foreign-controlled spy or saboteur? A local group with
funding or other ties to another country? Intelligence activities clearly do not make the
cut, nor do disinformation campaigns. Actions that cause physical damage may or may
not qualify; certainly, they generally do not lead to full-scale war unless done repeat-
edly.

been with us for decades; they’ll always need to be guarded against. A specific vulnera-
bility in version eπi of some module may be of interest operationally, but dealing with it
poses a complex problem; there’s often little you can do save to monitor more intensively
until you get a patch from your vendor. Is availability of your service important enough
that you should take the risk of leaving it up? Only you can answer that question—but be
sure you know there’s a question that needs answering.

Consider it from the bad guy’s perspective, though. Suppose you’re a hacker, and
you’ve obtained or written some code to exploit a new vulnerability. What do you do
with it? Attack one target? Many targets? Wait a while and see if it really works for oth-
ers? Some attackers want instant gratification: what can I steal now? Others, especially the
more sophisticated ones, take a longer-range view: they’ll use their new code to make ini-
tial penetrations of interesting targets, even if they can’t do anything useful immediately,
and plant a back door so they can return later.
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Chapter 3

Threat Models

“And by the way, we are belittling our opponents and building up a disas-
trous overconfidence in ourselves by calling them pirates. They are not—they
can’t be. Boskonia must be more than a race or a system—it is very probably
a galaxy-wide culture. It is an absolute despotism, holding its authority by
means of a rigid system of rewards and punishments. In our eyes it is funda-
mentally wrong, but it works—how it works! It is organized just as we are,
and is apparently as strong in bases, vessels, and personnel.”

Kimball Kinnison in Galactic Patrol
—E. E. “DOC” SMITH

3.1 Who’s Your Enemy?

The correct answer to most simple security questions is “it depends.” Security isn’t a mat-
ter of absolutes; it’s a matter of picking the best set of strategies given assorted constraints
and objectives.

Suppose you’re a security consultant. You visit some client and are asked whether you
can secure their systems. The first question you should ask is always the same: “What are
you trying to protect, and against whom?” The defenses that suffice against the CEO’s
third grader’s best frenemy will likely be insufficient against a spammer; the defenses
that suffice against a spammer won’t keep out the Andromedans.

A threat is defined as “an adversary that is motivated and capable of exploiting a vul-
nerability” [Schneider 1999]. Defining a threat model involves figuring out what you have
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that someone might want, and then identifying the capabilities of those potential attack-
ers. That, in turn, will tell you how strong your defenses have to be, and which classes of
vulnerabilities you have to close. If you run the academic computing center for a univer-
sity, you probably don’t have to deal with extraordinary threats (though login credentials
for university libraries are eagerly sought); on the other hand, if your company’s products
are so highly classified that even the company doesn’t know what it makes, things like
physical security and extortion against employees become major concerns. An accurate
understanding of your risk is essential to picking the right security posture—and hence
expense profile—for your site.

In the 1990s, most hackers were so-called joy hackers, typically teenage or 20-
something males (and they were almost all male) who wanted to prove their cleverness
by showing how many supposedly tough systems they could break into. It’s not that there
weren’t intruders motivated by espionage—there were, as Cliff Stoll demonstrated [Stoll
1988; Stoll 1989]—and Donn Parker noted the existence of financially motivated com-
puter crimes as long ago as 1976 [Parker 1976], but the large majority of the early Internet
break-ins were done for no better motive than “because it’s there.”

The world has changed, though, and today most of the problems are caused by people
pursuing specific goals. There are some hacktivists—people who attack systems to pur-
sue ideological goals—but the large majority of problems are caused by criminals who,
when not maturing other felonious little plans, are breaking into computer systems for
the money they can make that way. They use a variety of different schemes, most notably
spamming and credential-stealing. In fact, most of the spam you receive is sent from
hacked personal computers. This has an important consequence: any Internet-connected
computer—that is to say, most of them—is of value to many attackers. Maybe your com-
puter doesn’t have defense secrets and maybe you never log on to your bank from it, but
if it can send email, it’s useful to the bad guys and thus has to be protected.

We thus have a floor on the threat model; it extends all the way up to Andromedan
attacks on national security systems. There is, though, a large middle ground. The rough
metric of how much risk your systems are subject to is simple: how much money can
a criminal make by subverting it? For example, computers used for banking by small
businesses are major targets—large companies use much more complex payment schemes
and consumers typically don’t have that much money in their bank accounts—but small
businesses will typically have a fair amount. It’s thus worth an attacker’s while to take
over such machines and either use them directly or install keystroke loggers to collect
login credentials.

One thing they don’t seem to go after very often is credit card numbers entered on in-
dividual computers—they’re not worth the trouble. Stolen credit card numbers are in suf-
ficiently large supply that their market value is low, only a few dollars apiece [Krebs 2008;
Riley 2011], so collecting them one or two at a time isn’t very cost-effective. (Enough in-
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formation for easy identity theft is even cheaper: $.25/person for small volumes; $.16/per-
son in bulk [Krebs 2011a].) A large database of card numbers is a much more interesting
target, though, and some very large ones have been penetrated. Alberto Gonzalez is prob-
ably the most successful such criminal. As The New York Times Magazine put it [Verini
2010],

Over the course of several years, during much of which he worked for the
government, Gonzalez and his crew of hackers and other affiliates gained ac-
cess to roughly 180 million payment-card accounts from the customer data-
bases of some of the most well known corporations in America: OfficeMax,
BJ’s Wholesale Club, Dave & Buster’s restaurants, the T. J. Maxx and Mar-
shalls clothing chains. They hacked into Target, Barnes & Noble, JCPenney,
Sports Authority, Boston Market, and 7-Eleven’s bank-machine network. In
the words of the chief prosecutor in Gonzalez’s case, “The sheer extent of
the human victimization caused by Gonzalez and his organization is unpar-
alleled.”

The cost to the victims was put in excess of $400 million; Gonzalez himself made millions
[Meyers 2009].

The most interesting corporation Gonzalez hit was Heartland Payment Systems, one
of the biggest payment-card processors in the country. The Times noted that “by the time
Heartland realized something was wrong, the heist was too immense to be believed: data
from 130 million transactions had been exposed,” probably affecting more than 250,000
businesses. What’s especially interesting is his target selection: most people are unaware
that such a role exists; Gonzalez researched the payment systems enough to learn of it
and to hack one of the major players.

Most computers, of course, don’t store or process 180 million card numbers; ob-
viously, very few do, but these systems merit extremely strong protection. Somewhat
less obviously, there are a fair number of systems that connect to the large database
machines—administrators, individual stores in a chain, even the point-of-sale systems.
All of these need to be added to the threat model—control of these computers can and
will be monetized by attackers, and money is the root of most Internet evil.

There is, in fact, a burgeoning “Underground Economy” centered on the Internet. It
includes the hackers, the spammers who pay them, the DDoS extortionists, the folks who
run the phishing scams and the advance fee (AKA “419”) frauds, and more. Someone in
one part of the world will order something via a stolen credit card and have it delivered
to a vacant house. Someone else will pick it up and reship it, or return it for cash that
is then wired to the perpetrator. Hardware-oriented folks build ATM skimmers, complete
with cameras that catch the PIN as it is entered.

A lot of these folk are engaged in other sorts of criminal activity as well. To them,
the Internet is just one more place to make money illegally. A 2012 takedown of an
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international Internet crime ring included seizure of a web site that featured “financial
data, hacking tips, malware, spyware and access to stolen goods, like iPads and iPhones”;
some of those arrested allegedly “offered to ship stolen merchandise and arrange drop
services so items like sunglasses, air purifiers and synthetic marijuana could be picked
up” [N. D. Schwartz 2012]. Information may want to be free, but sunglasses?

It is also worth remembering that employees are not always trustworthy, even if they
are employed by major companies. One of Gonzalez’ accomplices, Stephen Watt, worked
for Morgan Stanley at the time of the hacks [Zetter 2009c], though as far as is known he
never engaged in criminal activity connected with his employment. Insider fraud is a very
serious problem, one that is rarely discussed in public.

3.2 Classes of Attackers

The easiest way to visualize threats is to consider two axes: the skill of the attacker, and
whether the attacker is trying to get you in particular or someone at random. It’s shown in
threat matrix (Figure 3.1).

What I dub the joy hacker is close to the Hollywood stereotype: the teenage or 20-
something nerdy male who lives in his parents’ basement, surrounded by crumpled soft
drink cans and empty pizza boxes, and whose only contact with the outside world is
via his computer, with nary a “girl” in sight [M. J. Schwartz 2012]. He’ll have a cer-
tain amount of cleverness and can do some damage, but the effect is random and lim-
ited because his hacking is pointless; there’s no goal but the hack itself, and perhaps the
knowledge gained. It’s youthful experimentation, minus any sense of morals.

The joy hacker exists, though much of the stereotypical picture is (and was) wrong.
From a security perspective, though, gender and the presence or absence of parents, base-

Sk
ill
−→ Opportunistic hacks Advanced Persistent Threats

Joy hacks Targeted attacks

Degree of Focus −→

Figure 3.1: The threat matrix.
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ments, pizza, and romantic interests are irrelevant. What matters is the unfocused nature
of the threat—and the potential danger if you’re careless. Make no mistake; joy hackers
can hurt you. However, ordinary care will suffice; if you’re too hard a target, they’ll move
on to someone simpler to attack. After all, by definition they’re not very good.

A related (but lesser) threat is the script kiddie. Script kiddies have little real under-
standing of what they’re doing. They may try more different attacks, but they’re limited
to using canned exploits created and packaged by others.

As joy hackers progress (I hesitate to use the phrase “grow up”), they can move along
either axis. If they simply develop more skills, the attacks are still random but more so-
phisticated. They don’t want your machine in particular; they want someone’s. They may
care about the type of machine (perhaps their exploits only work against a certain version
of Windows) or its bandwidth, but exactly whose machine they attack is irrelevant. Most
worms are like this, as are many types of malware—they spread, and if they happen to
catch something useful, the hacker behind it will benefit and probably profit.

Opportunistic hackers are considerably more dangerous than joy hackers, precisely
because they’re more skilled. They’ll know of many different vulnerabilities and attack
techniques; they’ll likely have a large and varied arsenal. They may even have some
0-days to bring to bear. Still, their attacks are random and opportunistic; again, they’re
not after you in particular. They may briefly switch their attention to you if you annoy
them (see the box on page 172 for one such incident) or if they’re paid to harass you, but
on the whole they don’t engage in much target selection.

Their lack of selectivity doesn’t make them harmless. It is likely that this class of
malefactor is responsible for many of the botnets that infest the Internet today; these
botnets, in turn, send out spam, launch DDoS attacks, and so on. For many sites, the
opportunistic hacker is the threat to defend against.

Targetiers aim specifically at a particular person or organization. Here, to reverse the
old joke, it’s not enough to outrun the other guy; you have to outrun the bear. Depending
on how good the bear—the attacker—is, this might be quite a struggle. Targetiers will
perform various sorts of reconnaissance and may engage in physical world activities like
dumpster-diving.

These people are quite dangerous. Even an unskilled attacker can easily buy DDoS
attacks; more skilled ones can purchase 0-days. If they’re good enough, they can ascend
to the upper right of our chart and be labeled advanced persistent threats (APTs).

One particularly pernicious breed of targetier is the insider who has turned to the Dark
Side. They may have been paid, or they may be seeking revenge; regardless, they’re inside
most of your defensive mechanisms and they know your systems. Worse yet, human
nature is such that we’re reluctant to suspect one of our own; this was one factor that
hindered the FBI in the investigation that eventually snagged Robert Hanssen [Fine 2003;
Wise 2002].
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Targetier?

For lack of a better noun, I’ve chosen to use “targetier,” by analogy with “bombardier,”
to denote someone who launches a targeted attack. However, that is probably etymo-
logically incorrect.

Targetier—the word is listed in the OED, along with many other variants (targeteer,
targettier, targatier, targatyer, targuattier, targueteere, targuetier, and targuettier)—is
defined as “A foot-soldier armed with a target; a peltast.” But that meaning of “target”
isn’t the one we generally think of; it’s a “A light round shield or buckler,” that is, a
defensive mechanism, not a goal. “Targeter,” the obvious noun for me to use, is even
further from the meaning we want; the OED defines it as “A shield-maker, or a shield-
bearer.”

3.3 Advanced Persistent Threats

Apt: An Arctic monster. A huge, white-furred creature with six limbs, four of
which, short and heavy, carry it over the snow and ice; the other two, which
grow forward from its shoulders on either side of its long, powerful neck,
terminate in white, hairless hands with which it seizes and holds its prey.
Its head and mouth are similar in appearance to those of a hippopotamus,
except that from the sides of the lower jawbone two mighty horns curve
slightly downward toward the front. Its two huge eyes extend in two vast
oval patches from the centre of the top of the cranium down either side of
the head to below the roots of the horns, so that these weapons really grow
out from the lower part of the eyes, which are composed of several thousand
ocelli each. Each ocellus is furnished with its own lid, and the apt can, at
will, close as many of the facets of his huge eyes as he chooses.

Thuvia, Maid of Mars
—EDGAR RICE BURROUGHS

APTs are, of course, the big enchilada of threat models, the kind of attack we typically
attribute to the Andromedans. There’s no one definition of APT; generally speaking,
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though, an APT involves good target intelligence and a technical attack that isn’t eas-
ily deflected. Also note that there are levels of APT; Gonzalez et al. are arguably in that
quadrant, but they did not have the capabilities of a major country’s intelligence service.

The best-documented example of a real APT attack is Stuxnet [Falliere, Murchu, and
Chien 2011; Zetter 2014], a piece of malware apparently aimed at the Iranian uranium
centrifuge enrichment plant. The source is unclear, though press reports have blamed
(credited?) Israel and the United States [Broad, Markoff, and Sanger 2011; Williams
2011]. Stuxnet meets anyone’s definition of an APT.

The actual penetration code used four different 0-days, vulnerabilities that were un-
known to the vendors or the community. (Actually, two of them had been reported, but
the reports were either unnoticed or ignored by the community—but perhaps not by the
people behind Stuxnet; it is unknown whether they read of these exploits or rediscovered
them.) Stuxnet did not use the Internet or Iranian intranets to spread; rather, it traveled
over LANs or moved from site to site via USB flash disks. The attackers apparently
charted its spread [Markoff 2011a], possibly to learn a good path to the target [Falliere,
Murchu, and Chien 2011; Zetter 2014]. Once it got there, special modules infected the
programmable logic controllers (PLCs) that control the centrifuge motors. The motor
speeds were varied in a pattern that would cause maximum damage, the monitoring dis-
plays showed what the plant operators expected to see, and the emergency stop button did
nothing.

There were other interesting things about Stuxnet. It would only attack specific mod-
els of PLC, the ones used in the centrifuge plant. It installed device drivers signed with
public keys belonging to legitimate Taiwanese companies; somehow, these keys were
compromised, too. It also used rootkits—software to conceal its existence—on both
Windows and the PLCs. We can deduce several things about Stuxnet. First, whoever
launched it believed they were aiming at a high-value target: 0-days, while hardly un-
known, are rather rare. Perhaps significantly, APTs appear to be the primary user of 0-
days [Batchelder et al. 2013, p. 9]. Furthermore, once they’ve been detected, they’re use-
less; vendors will patch the holes and anti-malware software will recognize the exploits.
That someone was willing to spend four of them in a single attack strongly suggests that
they really wanted to take out the target.

The next really interesting thing is how much intelligence the attackers had about
their target. Not only did they know a set of organizational links by which a flash drive
attack might spread, they also knew precisely what type of PLCs were in use and what
motor speeds would do the most damage. Did they learn this from on-site spies? Other
traditional forms of intelligence? Another worm designed to learn such things and exfil-
trate the information? A Stuxnet variant intended for the latter has been spotted [Markoff
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2011b]; some sources think that that was the goal of Flame [Nakashima, G. Miller, and
Tate 2012; Zetter 2014], too. The first two options strongly suggest an intelligence agency
working with something like the Andromedans’ MI-31 (or, if the press reports are accu-
rate, the NSA and/or Unit 8200).

The last really interesting thing about Stuxnet is the resources it took to create it.
Symantec estimates that it took at least five to ten “core developers” half a year to create
it, plus additional resources for testing, management, intelligence-gathering, etc. Again,
this points to a high-end adversary willing to spend a lot on the attack. Stuxnet was indeed,
as I noted in my blog, “weaponized software” [Bellovin 2010].

Stuxnet is a classic example of an APT attack, but there have been others. The penetra-
tion of Google in late 2009, allegedly by attackers from China [Jacobs and Helft 2010],
is often described as one; another well-known example is the attack on RSA [Markoff
2011c], though that claim has been challenged [Richmond 2011].

What makes an attack an APT? Uri Rivner, the author of RSA’s blog posting on what
happened to them, has it right [Rivner 2011]:

The first thing actors like those behind the APT do is seek publicly avail-
able information about specific employees—social media sites are always a
favorite. With that in hand they then send that user a Spear Phishing email.
Often the email uses target-relevant content; for instance, if you’re in the
finance department, it may talk about some advice on regulatory controls.

He goes on to talk about how a 0-day exploit was used, but often that’s less important; no
one will spend more on an attack than they have to, be it in 0-days or dollars. All attackers
are limited; people who can carry out these attacks are the scarcest resource of all, even
for the Andromedans.

It’s an interesting question why so many companies seem proud to announce that
they’ve been the victim of an advanced persistent threat (APT). Are they saying that
their internal security is so good that nothing less could have penetrated it? Or are they
bragging that they’re important enough to warrant that sort of attention?

Recall the definition of threat: “an adversary that is motivated and capable of exploit-
ing a vulnerability.” Capabilities are often the easiest part; plenty of garden-variety oppor-
tunistic hackers can find 0-days, and even script kiddies can send phishing emails. What’s
really important is the motivation: who wants to get you? Someone who’s interested in
something ordinary, like a corporate bank account, may come after you with a 0-day,
but probably not. If they fail at getting you, though, they’ll probably move on; there are
plenty of other targets. However, if you manufacture anti-Andromedan weaponry, MI-31
may try something newer or more clever, because they really want what you’ve got. The
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most important question, then, when determining whether you may be the target of an
APT is whether you have something that an enemy of that caliber might want.

It is important to remember that not all advanced attackers will want the same things.
Weaponry might be of interest to the Andromedan military, but that isn’t all that’s at risk.
Some countries’ intelligence agencies may work on behalf of national economic inter-
ests; as long ago as 1991, first-class seats on Air France were reportedly bugged to pick
up conversations by business executives [Rawnsley 2013]. Enterprises that might be mil-
itary targets in the event of a shooting war may be penetrated to “prepare the battlefield”
[National Research Council 2010].

An APT attacker won’t be stopped by the strongest cryptography, either. There are
probably other weaknesses in the victim’s defenses; why bother going through a strong
defense when you can go around it? It’s easier to plant some malware on the endpoint;
such code can read the plaintext before it’s encrypted or after it’s decrypted. Better yet,
the malware can include a keystroke logger, which can capture the passwords used to
encrypt files.1

Andromeda’s MI-31 won’t restrict itself to online means. Finding a clever hole in
software is a great academic game; pros, though, are interested in results. If the easiest
way to break in to an important computer is via surreptitious entry into someone’s house,
they’ll do that. As Robert Morris once noted when talking about a supposedly secure
cryptosystem: “You can still get the message, but maybe not by cryptanalysis. If you’re
in this business, you go after a reasonably cheap, reliable method. It may be one of the
three Bs: burglary, bribery or blackmail. Those are right up there along with cryptanalysis
in their importance” [Kolata 2001].

What should you do if you think you are a potential target for an APT? While you
should certainly take all of the usual technical precautions, more or less by definition
they alone will not suffice. Two more things are essential: good user training (see Chap-
ter 14) and proper processes (Chapter 16). Finally, you should talk to your own country’s
counterintelligence service—but at this point, they may already have contacted you.

A caveat: There’s a piece of advice given to every beginning medical student: when
you hear galloping hoofbeats, don’t think of zebras. Yes, zebras exist, but most likely,
you’re hearing horses. The same is true of attacks. Many things that look like attacks
are just normal errors or misconfigurations; many attacks that appear to be advanced and
targeted are ordinary, opportunistic, garden-variety malware. If you are hit by an APT,
don’t assume you know who did it.

1. See United States v. Scarfo, Criminal No. 00-404 (D.N.J.) (2001), http://epic.org/crypto/scarfo.html, for
an example of a keystroke logger planted by law enforcement. Governments do indeed do that sort of thing
[Paul 2011].

http://epic.org/crypto/scarfo.html
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In fact, don’t even assume it was really an APT. When JPMorgan Chase was hacked
in 2014, news reports suggested foreign government involvement [Perlroth and Goldstein
2014]:

Given the level of sophistication of the attack, investigators say they be-
lieve it was planned for months and may have involved some coordination or
assistance from a foreign government. The working theory is that the hackers
most likely live in Russia, the people briefed said.

They said the fact that no money was taken did not necessarily mean it
was a case of state-sponsored espionage, only that the bank was able to stop
the hackers before they could siphon customer accounts.

Further investigation told a different story [Goldstein 2015]: “Soon after the hacking was
discovered at JPMorgan, agents with the Federal Bureau of Investigation determined the
attack was not particularly sophisticated even though the bank’s security people had ar-
gued otherwise. The hacking succeeded largely because the bank failed to properly put
updates on a remote server that was part of its vast digital network.”

Attribution is one of the toughest parts of the business. A National Academies report
quoted a former Justice Department official as saying, “I have seen too many situations
where government officials claimed a high degree of confidence as to the source, intent,
and scope of an attack, and it turned out they were wrong on every aspect of it. That is,
they were often wrong, but never in doubt” [Owens, Dam, and Lin 2009, p. 142].

3.4 What’s at Risk?

What do you have that’s worthwhile? A better way to ask that question is to wonder,
“What do I have that an attacker—any attacker—might want?”

Generically speaking, every computer has certain things: an identity, bandwidth, and
credentials. All of these are valuable to some attackers, though of course which attackers
will value a particular computer will depend on just what access that machine grants
them. An old, slow computer that is nevertheless used for online banking would indeed
be attractive to some people. Furthermore, the more or less random pattern of non-APT
attacks means that it may indeed be hit. To a first approximation, every computer is at risk;
the excuse that “there’s nothing interesting on this machine” is exactly that: an excuse.
This fact is the base level from which all risk assessments must start.

For generic machines, the next level up depends on particular characteristics of the
machine. Computers with good bandwidth and static IP addresses can be used to host
illicit servers of various types: bogus web servers for phishing scams, archives of stolen
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data, and so on. They’re also more valuable as DDoS botnet nodes because their fast links
let them fire more garbage at the victim. (Aside: some sources say that in the Underground
Economy bots are called boats, because they can carry anything—their payload modules
are easily updatable and are quite flexible. The same machine that is a DDoS engine today
might host a “warez” archive tomorrow and a phishing site the day after.)

The more interesting—and higher-risk—category involves those computers that have
specific, monetizable assets. A large password file? That’s salable. A customer database?
Salable; the price will depend on what fields are included. Credit card numbers in bulk
are lucrative, especially if they’re linked to names, addresses, expiration dates, card ver-
ification values (CVV2s), etc. Lists of email addresses? Spammers like them, both for
their own use and for resale to other spammers. Real web servers can be converted into
malware dispensers.

Particular organizations often have data useful to people in that field. A school’s ad-
ministrative computers are valuable to people who want to sell improved grades. Business
executives have been accused of hacking in to rivals’ systems [Harper 2013; B. Sullivan
2005]. Corporations have been accused of hacking into environmental groups’ computers
[Jolly 2011].

A closely related set of at-risk machines are client machines that connect to actual
target machines. Login credentials can be stolen or the entire machine hijacked to get at
the data of interest.

If you work for a large company, you have a special problem: you almost certainly do
not know of everything that’s valuable. Indeed, some of the most valuable data may be
very closely held; you may never have heard of the unit that has it. The attackers might
know, either through blind chance or because they have other useful intelligence. For
example, major corporate hires are sometimes mentioned in the trade press or in business
publications. If a new executive is hired with a particular specialty not related to what
your company is currently doing, it’s news—but it’s news that you, as a computer security
specialist, may not have seen. Someone tracking that technology or your company might
spot it, though, and target this new business unit.

The solution—and it’s easier said than done—is, of course, cooperation within the
company. Every business unit with valuable data needs to tell the corporate security group
that it exists. They don’t have to say just what it is; they do need to know and report its
value and to what class of rival. Another company? A company with a reputation for lax
corporate ethics? A company headquartered in a country that doesn’t respect intellectual
property rights? A minor foreign intelligence agency? The Andromedans themselves?
The hard part is not just the intracompany cooperation, though that can be challenging
enough; rather, it’s getting non-security people to understand the nature of the threat.
There’s a lot of hype out there and noise about threats that aren’t real; consequently, there
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are a lot of skeptics. (Tell them they need to buy their own copy of this book. . . ) Again:
the issue of what defenses to deploy is a separate question from ascertaining which assets
are at risk.

3.5 The Legacy Problem

When identifying what’s at risk, don’t neglect legacy systems. Greenfield development
is very rare; virtually all non-trivial software development projects are based on ancient
code and/or have to talk to ancient database systems running on obsolete hardware with
an obsolete OS. It’s probably economically infeasible to do anything about it, either. The
application may be tied to a particular release and patch level of its OS [Chen et al. 2005];
fixing that would cost a significant amount of money that isn’t in the budget because the
code currently (mostly) works. Besides, organizationally it’s someone else’s system, and
you haven’t the remit to do anything about it. But if a penetration happens because your
new application opened up a channel to someone else’s ancient, crufty code, you know
whose problem that is.

All that said, the asset still exists; protection of it still needs to be part of your analysis.
The solutions won’t be as elegant, as complete, or in most cases as cheap as it would be
had things been designed properly; as noted, perfect foresight is impossible. I return to
this issue in Section 11.5.
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Chapter 4

Antivirus Software

“Let me put it another way. You have a computer with an auto-dial phone
link. You put the VIRUS program into it and it starts dialing phone num-
bers at random until it connects to another computer with an auto-dial. The
VIRUS program then injects itself into the new computer. Or rather, it repro-
grams the new computer with a VIRUS program of its own and erases itself
from the first computer. The second machine then begins to dial phone num-
bers at random until it connects with a third machine. You get the picture?

. . .

“It’s fun to think about, but it was hell to get out of the system. The guy who
wrote it had a few little extra goodies tacked onto it—well, I won’t go into
any detail. I’ll just tell you that he also wrote a second program, only this one
would cost you—it was called VACCINE.”

Don Handley in When Harlie Was One
—DAVID GERROLD

4.1 Characteristics

Antivirus software is one of those things that drives traditional security people crazy.
It shouldn’t be necessary, it shouldn’t work, and it should never be listed as a security
essential. However, it is needed, it often works, and sometimes—though not always—it
really is important.

45
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Viruses were once seen as an artifact and a consequence of the “primitive” opera-
tional and security environment of personal computers. After all, in the early Apple and
Microsoft worlds, programs ran with full hardware permission; the operating system was
more a program loader and a set of utility routines than a full-fledged OS. A real OS
had protected mode and access controls on files; people said that viruses simply couldn’t
happen in such a world.

To some extent, of course, that was true. Boot sector viruses “couldn’t” exist because
no virus would have access rights to the boot sector of any drive. Similarly, no virus could
infect any system file because those were all write-protected against any ordinary users’
programs.

Two things shook that belief. First, the Internet (“Morris”) worm of 1988 [Eichin
and Rochlis 1989; Spafford 1989] spread almost entirely without privileges; instead, it
exploited buggy code and user-specified patterns of trust. Second, Tom Duff showed that
it was possible to write viruses for Unix systems, even viruses that could infect shell
scripts [Duff 1989a; Duff 1989b]. To understand why these could happen, we need to
take a deeper look at the environment in which viruses exist.

It is a truism in the operating system community that an OS presents user programs
with a virtual instruction set, an instruction set that consists of the unprivileged subset
of the underlying hardware’s op codes combined with OS-specific “virtual instructions”;
these latter (better known as system calls) do things like create sockets, write to files,
change permissions, and so on. This virtual machine (not to be confused with virtualiza-
tion of the underlying hardware à la VMware) does not have things like Ethernet adapters
or hard drives; instead, it has TCP/IP and file systems. Early DOS and Mac OS programs
had full access to the underlying hardware (hence the ability to overwrite the boot sector)
as well as to the virtual instructions provided by the operating systems of the day. Morris
and Duff (and of course Fred Cohen in his dissertation [1986], which—aside from being
the first academic document to use the term “virus”—presented a theoretical model of
their existence and spread) showed that access to the privileged instructions was unnec-
essary, that the OS’s virtualized instruction set was sufficient. We can take that two steps
further.

First (and this is graphically illustrated by Duff, and formally modeled by Cohen),
the effective target environment of a virus is limited to those files (or other resources)
writable by the user context in which it executes. The effect of file permissions, then, is
to limit the size of the effective target environment, rather than eliminating it; as such,
file permissions slow virus propagation but do not prevent it. In other words, this virtual
instruction set is just as capable of hosting viruses as the real+virtual instruction set; it’s
just that these viruses won’t multiply as quickly.

Other than effective target environment, the main parameter in modeling virus propa-
gation is the spread rate, i.e., the rate at which the virus is invoked with a different target
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Why Were Early Operating Systems So Primitive?

One oft-puzzling aspect of computer history is why it took so long for “real” operating
systems—that is, ones with some sort of protection and access control—to appear in
the personal computer space. The answers are, not surprisingly, rooted in economics,
but not in the obvious way.

It pays to look back at the early Unix systems. In their classic paper on Unix, Ritchie
and Thompson [1974] described a machine (which ran on hardware “costing as little
as $40,000”) that had 144K bytes of RAM and about 50M bytes of disk. This was
admittedly a large computer of its kind, and a smaller system would have sufficed.

Let’s consider the Apple Macintosh SE, introduced in 1987.a Its minimum configu-
ration was 256K of RAM, far more than Ritchie and Thompson had had. Similarly, the
IBM PC XT shipped with at least 128K in 1983 [Morse 1982]. Again, that was clearly
enough memory. Furthermore, by 1986 IBM was shipping a machine based on the Intel
80286 chip, which supported memory management and protected mode [Intel 1983].
What was the issue?

One constraint was disk: early machines didn’t necessarily have a hard drive, and
floppies were too slow. Still, even early models of IBM System/360s could run in tape-
only configurations (I used one—TOS/360, the Tape Operating System—in 1968); the
notion of a real OS without a hard drive is not preposterous. The real problem was
software compatibility.

DOS—the Disk Operating System that was at the heart of Microsoft’s early rela-
tionship with IBM—existed before a lot of the hardware was capable of running a real
OS. Windows 3.1 was just a thin gloss on DOS; it had to be able to support older
applications that assumed that they could do BIOS calls to get at the disk, load their
own graphics card driver, etc. That in turn meant that when Windows 95 came along—
the first version of Windows that really was an operating system, one that provided its
own device drivers for everything—compatibility with older applications meant that DOS
mode still had to be supported. Windows XP finally had file access control, but many of
the Windows applications that had been developed since 1995 assumed that they were
running with full OS privileges, and hence wouldn’t work on ordinary user accounts. It
wasn’t until Windows Vista, in 2007, that there was finally a version of Windows that
had full protections and an unprivileged user environment that was actually functional.
Until then, PC users were paying for decisions made in 1981, when the original IBM
PC was shipped.b To quote Melinda Shore, “hardware brevis, software longa.”

a. “Macintosh SE: Technical Specifications,” http://support.apple.com/kb/SP191.
b. “IBM Archives: The Birth of the IBM PC,”

http://www-03.ibm.com/ibm/history/exhibits/pc25/pc25 birth.html.

http://support.apple.com/kb/SP191
http://www-03.ibm.com/ibm/history/exhibits/pc25/pc25_birth.html
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environment. While that latter could mean the creation of new, infectable files, more likely
it means being executed by a different user, who would have a different set of write per-
missions and hence a very different effective target environment. (For a more detailed and
formal model of propagation, see [Staniford, Paxson, and Weaver 2002].)

The second generalization of a suitable virus environment is even more important than
the role of file permissions: any sufficiently powerful execution environment can host a
virus; it does not have to be an operating system, let alone bare hardware. It is easy to
define “sufficient power”: all it has to be able to do is to copy itself to some other location
from which it can execute with a different effective target environment. That might be a
different user on the same computer, or it might be a different computer; for the latter, the
transport can be automatic (as is the case for worms) or aided by a human transmitting
the file. Going back to our virtual instruction set model, any programmable environment
will suffice, if the I/O capabilities are powerful enough. Microsoft Office documents, with
their access to Visual Basic for Applications (VBA), are the classic example, but many oth-
ers exist. LATEX—the system with which this book was written—comes very close; it has
the ability to write files, but many years ago a restriction was imposed that only let docu-
ments write to files in the current directory. This effectively froze the effective target en-
vironment, since very few directories contain more than one LATEX document. PostScript
is another example, though I’ll leave the design (and limitations) of a PostScript virus as
an exercise for the reader. Even LISP viruses have appeared in the wild [Zwienenberg
2012].

There’s one more aspect of the virtual instruction set that bears mentioning: what mat-
ters is the actual instruction set, not just the one intended by the system designers. Just
as on the IBM 7090 computer a STORE ZERO instruction existed by accident [Koenig
2008], a virus writer can and will exploit bugs in the underlying platform to gain abilities
beyond those anticipated by the programmers. Bugs are not necessary—the IBM “Christ-
mas Card” virus1 spread because of the credulity of users—but they do complicate life
for the defender.

Collectively, these points explain why the classic protection model of operating sys-
tems does not prevent viruses: they can thrive within a single protection domain and
spread by ordinary collaborative work. Duff’s experiments relied on the prevalence of
world-writable files and directories, but such are not necessary. His design, involving
an infected Unix executable, would not work well without such artifacts of a loosely
administered system, since Unix users rarely shared executable files, but higher-level
environments—Word, PostScript, etc.—could and did host their own forms of malware.

A corollary to this is that the classic operating system protection model—an isolated
trusted computing base (TCB)—does not protect the users of the system from themselves.

1. “The Christmas Card Caper, (hopefully) concluded,” http://catless.ncl.ac.uk/Risks/5.81.html#subj1.

http://catless.ncl.ac.uk/Risks/5.81.html#subj1
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It also explains why, say, the Orange Book [DoD 1985a], the US Department of Defense’s
1980s-vintage specification for secure computer systems, is quite inadequate as a defense
against viruses: they do not violate its security model and hence are not impeded by it.

In short, classic operating system design paradigms do not and cannot stop viruses.
That is why antivirus programs have been needed.

To understand why virus checkers “shouldn’t” work, it is necessary to understand how
they function. It would be nice, of course, if they could analyze a file and know a priori that
that file is or isn’t evil [Bellovin 2003]. Even apart from the difficulty of defining “evil,”
the problem can’t be solved; it runs afoul of Turing and the Halting Problem [Cohen
1987]. Accordingly, a heuristic solution is necessary.

Today’s virus checkers rely primarily on signatures: they match files against a data-
base of code snippets of known viruses. The code matched can be part of the virus’
replication mechanism or its payload.

The disadvantages of this sort of pattern-matching are obvious. One, of course, is that
its success is crucially dependent on having a complete, up-to-date signature database.
The antivirus companies love that, since it means that customers have to buy subscriptions
rather than make a one-time purchase, but it’s entirely legitimate; by definition a new virus
won’t be matched by anything in an older database.

Virus writers have used the obvious counter to signature databases; they’ve employed
various forms of obfuscation and transformation of the actual virus. Some viruses en-
crypt most of the body, in which case the antivirus software has to recognize the decryp-
tor. Other viruses do things like inserting NOPs, rearranging code fragments, replacing
instruction sequences with equivalent ones, and so on.

Naturally, the antivirus vendors haven’t stayed idle. The obvious defense is to look
for the the invariant code, such as the aforementioned decryptor; other techniques include
looking for multiple sequences of short patterns, deleting NOPs, and so on. Ultimately,
though, there seems to be a limit on how good a job a static signature analyzer can do; in
fact, experiments have shown that “the challenge of modeling self-modifying shellcode by
signature-based methods, and certain classes of statistical models, is likely an intractable
problem” [Song et al. 2010]. Fundamentally different approaches are needed.

One, widely used today by antivirus programs, employs sandboxed or otherwise con-
trolled execution. It is based on two premises: first, virus code is generally executed at
or very near the start of a program to make sure it does get control; second, the behavior
of a virus is fundamentally different than that of a normal, benign program. Normal pro-
grams do not try to open the boot block, nor do they scan for other executable files and try
to modify them. If such behavior patterns are detected—and there are behavior patterns
(see, e.g., [Hofmeyr, Somayaji, and Forrest 1998]) as well as byte patterns in a signature
database—the program is probably malware.
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Note, though, the word “probably.” Antivirus programs are not guaranteed to produce
the correct results; not only can they miss viruses (false negatives), as discussed above,
they can also produce false positives and claim that perfectly innocent files are in fact
malicious.

A second approach, used somewhat today but likely to be a mainstay in the future,
relies on anomaly detection. Anomaly detection relies on statistics: the properties of nor-
mal programs and documents are different than those of malware; the trick is avoiding
false positives.

One challenge is how to identify useful features that distinguish malware from normal
files. Data mining is the approach of choice [Lee and Stolfo 1998] in many of today’s
products, but it’s not the only one. Another study attempted to detect shellcode—actually,
machine code, especially machine code intended to invoke a shell—in Word documents
by looking at n-gram frequencies [W.-J. Li et al. 2007]. While in theory more or less
anything can appear in a Microsoft Office document—“modern document formats are
essentially object-containers. . . of any executable object”—some sections of legitimate
documents are much less likely than others to contain shellcode. Li and company found
that by counting the frequency of various n-grams, they could detect infected documents
quite successfully.

Anomaly detectors require training; that is, they need to “know” what is normal.
Training is commonly done by feeding large quantities of uninfected files to an analyzer;
the analyzer builds some sort of statistical profile based on them. This is then used to
catch new malware.

Naturally, what is “normal” changes over time and by location. A site that tends to
include pictures in its Word documents will look quite different than a site that does not.
Similarly, as new features are added, statistical values will change. Thus, even anomaly
detection requires frequently updated databases.

The problem with anomaly detection is, as noted, false positives. While signature
schemes can have such issues, the rate is very much higher with anomaly schemes. Users
doing different things, either on their own or because the applications that they use have
changed, can appear just as anomalous as malware. A partial solution is to correlate
anomaly information from different sites [Debar and Wespi 2001; Valdes and Skinner
2001]. If a file seems somewhat odd but not quite odd enough to flag it definitively, it can
be uploaded to your antivirus vendor and matched against similar files from other sites.

The final piece of the puzzle is how to find new malware. Sometimes, machines
or files believed to be infected are sent to the antivirus companies; indeed, that is how
Stuxnet and Flame were found [Falliere, Murchu, and Chien 2011; Zetter 2012; Zetter
2014]. More often, the vendors go looking for infections. They deploy machines that
aren’t patched, get on spam mailing lists and open—execute—the attachments, etc. They
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also haunt locales known to be infested. “Adult” sites are notorious for hosting mal-
ware; before suitable scripting technologies were developed, some vendors had employ-
ees whose job responsibilities were to spend all day viewing porn. (Anecdotal evidence
suggests that yes, it is possible to get bored with such a job, even in the demographics
believed to be most interested in such material.)

4.2 The Care and Feeding of Antivirus Software

Antivirus software is not fire-and-forget technology. It needs constant attention, both
because of the changing threat environment and the changing computing environment.
Other operational considerations include handling false negatives, handling false posi-
tives, efficiency, where and when scanning should happen, and user training.

The need for up-to-date signature and anomaly databases is quite clear. What is less
obvious is how the operational environment interacts with virus scanning. To pick a trivial
example, if you don’t run Microsoft Office you don’t need a scanner that can cope with
Word documents; if the former changes, you do.

Sometimes, the environmental influences can be more subtle and serious. Once, three
separate versions of a program’s installer were falsely flagged as viruses by a particular
scanner.2 It seems likely that the installer had an unusual code sequence that happened to
match a virus’s signature.

Several of the other factors interact as well. Consider the false-negative problem, often
due to an inadequate or antiquated database. Many people suggest running two different
brands of antivirus software to take advantage of different collections of viruses. That’s
reasonable enough, if you didn’t have to worry about (of course) cost, performance, and
increasing your rate of false positives. Assuming that the false positive rate is low enough
(it generally is), one solution is to use one technology at network entry points—mail
gateways, web proxies, and perhaps file servers—while using a different technology on
end systems. That also helps deal with the cost issue; you don’t have to buy two different
packages for each of your many desktops and laptops.

That strategy has its own flaw, though: network-based scanners can’t cope with en-
crypted content. Encrypted email is rare today; encrypted web traffic is common, and web
proxies pass HTTPS through unexamined. Furthermore, there is one form of encryption
that has been used by malware: encrypted .zip files, with the password given in the body
of the message.

In most situations, the proper response to the encryption problem is to ignore it. If you
have antivirus software on your end systems, it will probably catch the malware. Most of
what’s missed by major scanners is the rarer viruses; they all handle the common ones.

2. “Pegasus Mail v4.5x Released,” http://www.pmail.com/v45x.htm.
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You might be inclined to worry more if you’re being targeted by the Andromedans;
after all, they can find 0-days to use against you. However, by definition 0-days aren’t
known and hence won’t be in anyone’s signature files; besides, MI-31 can run their code
through many different scanners and make sure it gets through unmolested. However,
you might find, after someone else has noticed and analyzed the malware, that signatures
are developed (as has happened with Stuxnet); in that case, your end system scanners
will pick up any previous infections. Anomaly detectors are another solution. (There’s an
interesting duality here. As mentioned earlier, anomaly detectors need to be trained on
uninfected files. An exploit for a 0-day by definition won’t be in the training data and is
therefore more likely to be caught later on. By contrast, the lack of prior instances of the
0-day means that it won’t be in a signature file. The world is thus neatly bifurcated; the
two different technologies match the two different time spans. One caveat: just because
something hasn’t been noticed doesn’t mean it doesn’t exist. Sophisticated attacks, espe-
cially by our friends the Andromedans, may not be noticed for quite a while. Again, this
happened with both Stuxnet and Flame.)

Using multiple antivirus scanners is a classic example of when one should not treat
insecurity as a sin. It’s an economic issue; gaining this small extra measure of protection
isn’t worth it if it costs you too much. If your end systems are well managed—that is, if
they’re up to date on patches and have current antivirus software—infrastructure-based
scanning is an extra layer. It’s a useful extra layer and shouldn’t be neglected if feasible;
the question is what it costs, not in dollars but in lost functionality and perhaps user
miseducation. Consider: if you’re in an environment where sending around .zip files is
common, barring them costs productivity. Users rapidly learn to evade this, by changing
the extension—and teaching users to evade security mechanisms is never a good idea.

Don’t neglect the opportunity to detect viruses after they’ve infected a machine. For
the most part, today’s viruses aren’t designed for random malicious mischief; rather, they
have very specific goals. Catching that sort of behavior is a good way to find infected
machines.

The form of detection to use, of course, depends on the goal of the virus; since you
can’t know that you’ll have to employ several. One form is extrusion detection, as dis-
cussed in Section 5.5: looking at outbound traffic for theft of data. This is especially useful
if you’re the victim of a targeted attack (especially an Andromedan attack), since exfiltra-
tion of proprietary data is a frequent goal of such attackers. Another good approach is to
look for command and control traffic; infected machines are frequently part of a botnet
managed via a peer-to-peer network. This isn’t easy to spot, though there are some fruitful
approaches. Traffic flow visualization [D. Best et al. 2011; T. Taylor et al. 2009] is one
approach. If you know your machine population well, you can look for client-to-client
traffic; such behavior is uncommon except in peer-to-peer networks.
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4.3 Is Antivirus Always Needed?

One of the most controversial issues surrounding antivirus software is on which machines
it should be used. Some people say it needs to be used everywhere; others say it should
never be used. Since absolute statements are always wrong, let’s approach the question
analytically.

An antivirus package is another layer of defense. Per the analysis above, it protects
against threats that an OS cannot catch; it’s also capable of blocking attacks that somehow
managed to get through some other layer. On occasion, this is a matter of timing; a new
security hole may be difficult to fix. Or it might be that the vendor quite rightly wants—
needs, actually—to put the fix through testing and quality assurance before shipping it.
Antivirus firms can ship signature updates much more quickly, because they’re advisory.
In a very strong sense, the division of responsibilities between the antivirus package and
the OS is like the split between the C compiler and lint [S. C. Johnson 1978]:

In conclusion, it appears that the general notion of having two programs is a
good one. The compiler concentrates on quickly and accurately turning the
program text into bits which can be run; lint concentrates on issues of porta-
bility, style, and efficiency. Lint can afford to be wrong, since incorrectness
and over-conservatism are merely annoying, not fatal. The compiler can be
fast since it knows that lint will cover its flanks.

Just so. There is, however, one extremely crucial difference: unlike a programmer de-
ciding to ignore a lint warning, deciding to turn off virus-checking is a very difficult
decision, and well beyond the pay grade of most users. It’s tempting to say that people
know when they’re doing dangerous things, such as downloading programs from random
Internet sites, and when they’re doing something that should be safe, such as installing
software from a major vendor’s official distribution page. Indeed, many very legitimate
packages caution you to turn off your virus scanner prior to running the installer. It’s not
that simple. Even apart from timing coincidences and malware that waits for a software
installation to fire up, out-of-the-box products have been infected with viruses, including
Microsoft software CDs [Barnett 2009], IBM desktops [Weil 1999], Dell server mother-
boards [Oates 2010], and even digital picture frames [Gage 2008].

One consideration that often leads people to omit antivirus technology is a system’s
usage and/or connectivity. An ordinary end-user’s desktop machine is the environment
for which, it would seem, antivirus packages were developed; users, after all, are con-
stantly visiting sketchy web sites, downloading dubious files, and receiving all manner
of enticing (albeit utterly fraudulent) email. But what about servers? Embedded systems?
Systems behind an airgap? Embedded systems behind an airgap? All of these can be
vulnerable, but in different ways.
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Servers can be infected precisely because they’re servers: they’re listening for certain
requests, and if the serving applications are buggy they can be vulnerable to malware.
This is, after all, what leaves them very vulnerable to many of the usual attacks: stack-
smashing, SQL injections, and more. It is important to realize that nowhere in the opera-
tional definition of an antivirus program is any requirement that the signatures only match
self-replicating programs. Anything can be matched, including garden-variety persistent
malware. In fact, the word “antivirus” is a misnomer; it is, rather, antifile software, and
can flag any file that matches certain patterns, as long as the file is of a type that it knows
to scan.

Embedded devices—the small computers that run our cars, printers, toasters, DVD
players, televisions, and more—are often quite vulnerable [Cui and Stolfo 2010]. Per-
haps surprisingly, they’re frequently controlled by general-purpose operating systems
(often, though not always, Windows), and they’re very rarely patched. An address space-
scanning virus isn’t particular; it doesn’t know if it’s probing your colleague’s desktop
or the office thermostat; if it answers in the right way, it can be infected. Furthermore,
since the software powering such devices is very rarely updated, they’re generally sus-
ceptible to very old hacks. Unfortunately, they also never have antivirus software, and if
they did the signature database would be out of date. (What release of what OS is your
car’s tire pressure monitor running? It might be vulnerable [Rouf et al. 2010]. Note, too,
that although there is local wireless connectivity to your wheels, there is no Internet con-
nectivity and hence no way to automatically download signature updates. Perhaps your
mechanic is regularly updating the base software—but perhaps not.) Even nuclear power
plants have been infected [Poulsen 2003; Wuokko 2003].

How was the Davis-Besse nuclear power plant infected? There was a firewall that
was properly configured to block the attack, but it only protected the direct link to the
Internet. The Slammer worm, though, infected a machine at a contractor’s facility, and
that contractor had a direct link to the operator of the plant. This link was not protected
by the firewall, which permitted the worm to attack an unpatched server within the nuclear
plant operator’s network. In other words, there were several different ways the problem
could have been prevented—but it wasn’t.

Airgapped systems—ones with no network connections, direct or indirect, to the out-
side world—are sometimes seen as the ultimate in secure, protected machines. Grampp
and Morris wrote [1984], “It is easy to run a secure computer system. You merely have
to disconnect all dial-up connections and permit only direct-wired terminals, put the ma-
chine and its terminals in a shielded room, and post a guard at the door.” Unfortunately,
in many ways such systems are less secure.

How can attacks enter? The easiest way is via USB flash disk. Indeed, Stuxnet is be-
lieved to have been introduced into the Iranian centrifuge plant in exactly that fashion,
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since one of the 0-days it used caused autoexecution of code on a flash disk [Falliere,
Murchu, and Chien 2011]. For a while, the US military banned such devices because of
a very serious network penetration via that mechanism [Lynn III 2010]. Who provided
the infected flash disks in these cases? It isn’t known (at least not publicly), but it could
have been a legitimate user who found it in a parking lot; in at least one test, most users
fell for that trick [Kenyon 2011]. Alternately, a machine legitimately intended to commu-
nicate across the airgap, perhaps to provide new software for it or to receive outbound
reports, might have been infected; when the communications flash drive was inserted into
it, the drive (or the legitimate files on it) could have been infected, to the detriment of
its communicants beyond the airgap. Add to that the difficulty of installing patches and
signature file updates on machines that can’t talk to the Internet and you see the problem:
the administrators were lulled into a false sense of security by the topological separation,
and they didn’t do the hard work of otherwise protecting the machines.

Is the xkcd cartoon (Figure 4.1) wrong? Is it necessary and proper to have antivirus
software on voting machines? As in so many other situations, it depends. There can be
false positives; indeed, antivirus software was (incorrectly, it turned out) blamed for prob-
lems with a voting system [Flaherty 2008]. But voting systems are supposed to be care-
fully controlled, running only certified software [Flaherty 2008]:

Unlike other software, the problem acknowledged by Premier cannot be fixed
by sending out a coding fix to its customers because of federal rules for
certifying election systems, Rigall said. Changes to systems must go through
the Election Assistance Commission, he said, and take two years on average
for certification and approval—and that is apart from whatever approvals and
reviews would be needed by each elections board throughout the country.

If the machine is only running certified software, and if proper procedures are followed,
there should be no chance of any attacks, and hence no need for protective add-ons.

Note, though, that second “if” (and remember the Davis-Besse nuclear power plant).
In practice, voting machines are often not properly protected. Ed Felten, a prominent
computer science professor at Princeton, has made a habit of touring his town and pho-
tographing unguarded machines [2009]. Nor are the systems secure against someone
who has physical access; reports on this are legion, but the summary Red Team report
in the California “Top to Bottom” review makes it clear just how bad the situation can be
[Bishop 2007]. Similarly, the protective seals are not effective defenses against tamper-
ing [Appel 2011]. In short, though in theory antivirus software isn’t needed, in practice
it might help—except that the vulnerabilities are so pervasive the attackers could disable
any protective mechanisms at the same time as they replaced all of the other software
on the machine. Besides, how, when, and by whom would the signature databases be
updated?
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Figure 4.1: Voting machines with antivirus software.

(The larger question of electronic voting machine security and accuracy is quite in-
teresting. Fortunately, however, most of it is well outside the scope of this book. Let it
suffice to say that most computer scientists are very uneasy about direct recording elec-
tronic (DRE) systems. For further details, see [Rubin 2006] or [D. W. Jones and Simons
2012].)

There’s one more situation where antivirus software isn’t needed: when the inci-
dence of viruses is so low as to render the protection questionable. In that case, you pay
the price—the cost of the software, hits to system efficiency, possible false positives—
without reaping much benefit. Mac OS X currently (September 2015) falls into that cat-
egory, though with the growing popularity of the platform that probably won’t be true
for very much longer. Again, antivirus software is not an abstract technology; it can only
protect against real, past threats. If there are no threats, there’s nothing to put into the
signature database. The most serious attacks on Macs have involved either social engi-
neering or a Java hole; the former can be avoided with education (but see Chapter 14) and
the latter by upgrading to the latest release of Mac OS X, which does not include Java.
(Microsoft Office macro viruses could, in theory, affect Macs as well, but they seemed
extinct because of long-ago fixes by Microsoft. Some people say they’re starting to come
back [Ducklin 2015].) This might, though, be a great time to start collecting Mac OS X
files for baseline data for anomaly detectors. After all, given the extremely low rate of
infection, you’re virtually guaranteed that you won’t inadvertently train your model on
unsuspected malware.

One last word of warning: just because your attention is focused on the Andromedans,
don’t neglect antivirus protection. Sure, it won’t stop 0-days, but MI-31 will happily use
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older vulnerabilities if they’ll suffice. Why use an expensive weapon when a cheap one
will do the job?

4.4 Analysis

Antivirus—more properly, antimalware—software is a mainstay of today’s security en-
vironment. Unfortunately, it is losing its efficacy. One recent article [Krebs 2012] noted
that of a recent sample of nasty malware—programs aimed at stealing banking credentials
from small businesses—run through multiple scanners via https://www.virustotal.com/,
most were not detected. A mean of just 24.47% and a median of 19% of scanners caught
these files. This means that the most relied-upon defense usually fails. If people blithely
click on attachments under the assumption that they’re protected, they’re in for a very
rude shock. The other defenses here—getting people to stop clicking on phishing mes-
sages, and either bug-free or quickly patched software—seem even more dubious. Will
there be technical changes that can help?

The two areas most likely to change are the efficacies of signature-based detection
and anomaly-based detection. A decline in the former would spur greater reliance on the
latter; however, it is unclear whether its false positive rate is good enough at this point.

The death of signature-based scanning has been bruited about for quite some time;
thus far, it has not quite come to pass. The virus writers may improve their technology,
but the antivirus companies have been around for a long time and have invested a lot in
their technology; its death will most likely manifest itself as a long decline rather than
as a sudden cessation. To be sure, many of the rapid updates are possible only because
anomaly detectors have flagged something as suspicious enough to merit analysis by
humans.

Anomaly detection is at its best on systems that do the same sort of thing. An embed-
ded device is a better setting for it than, say, a shared computer in a library or Internet
cafe. Variations in usage patterns can trigger an upsurge in false positives; this is not a
current technological limit but an issue inherent to the technology: by definition, anomaly
detectors look for behavior that doesn’t match what has been happening. (Normal varia-
tions do happen. Consider the previous paragraph, where I quite unintentionally used the
words “bruited” and “cessation.” Searching my system reveals that I virtually never use
either of those words in my writing, but they both showed up here. An anomaly detec-
tor might conclude—incorrectly!—that I did not write those sentences. No, I didn’t do it
consciously, either; those words just happened to jump out of my brain at the right time.)

Another technology that is coming into use is digitally signed files. Just how this is
implemented matters a lot; thus far, performance has been mixed.

https://www.virustotal.com/
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The basic notion is that an executable file can be digitally signed; this is intended to
give the user assurance that it hasn’t been tampered with by a virus. Issues include who
signs it, protection of the private signing keys (see Chapter 8 for more discussion of this),
and when and how checking is done. Note that the limitations I describe are properties of
the concepts themselves, not of their implementation.

In what I will call the “Microsoft device driver model,” many different developers
have keys and certificates signed by Microsoft. (Apple’s Gatekeeper system for Mac OS
X uses the same model.) Such a design offers some protection against low-end virus au-
thors, but not against the Andromedans; there are too many trusted parties, and experience
has shown that at least a few will fail to take adequate care. For that matter, MI-31 is quite
capable of setting up a fake development shop and acquiring its own, very legitimate cer-
tificate. (The CIA has run its own covert airlines [M. Best 2011]; software development
shops are much cheaper.)

The iOS signing model, used for iPhones, iPads, and other iToys, is very different:
Apple is the sole signing party, and it nominally scrutinizes programs before approving
them. There is only one private key to guard—but of course, if it’s ever compromised a
tremendous amount of damage can be done. There is thus less risk from low-end attackers
but more risk from the very high end. One can also question just how good a job Apple
or anyone else can do at finding cleverly hidden nastiness.

Android has an interesting variant: applications have public keys; these are used to
verify updates to those applications. Thus, whoever has obtained the private key for, say,
Furious Avians could create fake, malicious updates to it, but not to the Nerds with Fiends
game; users who had only the latter and not the former would not be at risk.

When the signature is checked matters a great deal. If it’s checked each time the file
is loaded (e.g., on iOS you are protected against on-disk modification by some currently
running nastyware; the risk, though, is that the checking code itself might be subverted.
You are still protected if the malware has achieved penetration with user privileges rather
than root privileges; a variant scheme would have signature checking done at a lower
layer still, perhaps by the hypervisor or what a Multics aficionado would call “Ring 0”
[Organick 1972].

There is an interaction here with the different signing paradigms. In the iOS model
(and assuming that the One True Key hasn’t been stolen), the attacker must either dis-
able all checking or install a substitute verification key and resign all executables on the
machine, a task that is quite expensive and probably prohibitively so. With the device
driver model, the virus can include a signing key and use it to revalidate only those files
it modifies.

Some systems check signatures at installation time. This provides no protection
against changes to already-installed programs. It does ensure that what the vendor shipped
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is what you get and protects you from infection en route. That happened with some
copies of the SiN game, where some secondary download servers were apparently in-
fected [Lemos 1998] by the CIH virus; quite possibly, it was also the root cause of the
infected CDs that Microsoft shipped [Barnett 2009]. Perhaps more importantly, you’re
protected against drive-by downloads, though there a great deal does depend on the im-
plementation.

The ultimate utility of signed code as an antivirus defense remains to be seen. Further-
more, the benefits need to be weighed against the social costs of giving too much power
to a very few—two or three—major vendors.

The other technical trend in this space is the increased use of sandboxing, running
applications with fewer privileges. The notion has been around in the research commu-
nity for many years. Long ago, Multics supported multiple protection rings even for user
programs [Organick 1972], though few if any made effective use of it. Other, more recent
work includes my own design for “sub-operating systems” [S. Ioannidis and Bellovin
2001; S. Ioannidis, Bellovin, and J. Smith 2002], a design that permitted any user to cre-
ate a very large number of subusers with fewer permissions. In the commercial world,
both Windows and Mac OS X use sandboxing for web browsers and some risky applica-
tions. Quite notably, Adobe has modified its popular but troubled PDF viewer to run in a
sandbox on Windows Vista and later.

The benefit of a sandbox, though, is crucially dependent on two things: how much the
isolated application needs to interact with the outside world, and how effectively those
interactions can be policed. Consider, for example, an email message with an attached
file, handled by a sandboxed mailer. If the file contains a virus, at best I might be barred
from opening it—the mail sandbox should disallow execution—but at the least, should
the file be executed, it would run with fewer permissions than even the mailer itself. On
the other hand, if the attachment is a document I’m expected to edit I want to be able to
open it normally; then, however, I take the risk that that document wasn’t really sent by
my colleague but was in fact generated by a virus on her machine.

The ultimate in sandboxing is the virtual machine (VM) (Section 10.2). As I’ve noted
elsewhere [Bellovin 2006b], assuming that you’re safe because the malware is running
in its own VM is like letting your enemy put a 1U-height server into racks in your data
center. Would you trust such a machine on your LAN? Even without the intended and
expected interactions, you would probably (and rightly) consider that to be a serious risk.
A VM is no better—and applications generally do need to interact with other parts of
your system.

In essence, a sandbox can do two things: it can reduce both the effective instruction
set and the effective target environment of programs executed within it. Taken together,
these properties can drastically reduce or even stop the spread of viruses and worms.
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Should you run antivirus software? For generic desktop systems, the answer is prob-
ably yes. It’s relatively cheap protection and is usually trouble free. Similarly, server or
firewall-resident scanners can block malicious inbound malware before it reaches your
users. Be sure, though, that your environment and policies are such that definitions are
regularly updated. As a corollary, it’s wasteful on most embedded systems, simply be-
cause of the lack of any regular update mechanism. If an attacker can persuade such a
device to download and run some file, you probably have bigger architectural problems.



Chapter 5

Firewalls and Intrusion Detection
Systems

Summoning grids—pentacles with attitude—have a number of uses. Unsur-
prisingly, summoning spirits from the vasty deeps of Hilbert space is one of
them. They can also be used, by the foolhardy or terminally reckless, to open
gateways to other spaces (most of which are utterly inhospitable to human-
like life). Finally, they can be used to create a firewall, like a science fictional
force-field only buggier and prone to hacking attacks by extra-dimensional
script kiddies with pseudopods. Which is why nobody with any sense uses
them casually.

The Apocalypse Codex
—CHARLES STROSS

5.1 What Firewalls Don’t Do

Since the dawn of the commercial Internet, firewalls have been a mainstay of the defense.
Many books have been written about them, including two I co-authored [Cheswick and
Bellovin 1994; Cheswick, Bellovin, and Rubin 2003]. That said, their utility, and in par-
ticular the protection they provide, has diminished markedly over the years. The time has
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come to ask whether the general-purpose firewall—the one protecting an enterprise—is
still worth its capital, operational, and productivity cost.

When the world was young and Bill Cheswick and I wrote the first edition of Firewalls
and Internet Security, laptops were rare, Wi-Fi and hotel broadband were non-existent,
and smart phones weren’t even dreamed of. External users logged in to time-sharing
machines via the firewall to read their email; companies had very few Internet links to
other companies. Even the web was new; the section on it was one of the last things we
added to the book before it went to press, and we declined the suggestion that something
called a “URL” be employed to state the location of useful resources.

None of that is true today. There is a massive amount of connectivity through and
around a typical large firewall, hundreds or even thousands of links. We noted quite some
years ago that AT&T had at least 200 links to business partners [Cheswick, Bellovin,
and Rubin 2003, p. xiii]; anecdotally, that sort of interconnection has grown greatly in the
intervening time. Employees telecommute and travel, staying in touch all the while from a
variety of devices including personally owned ones. Attempts to restrict what employees
do from their own machines are generally futile (see Chapter 14). Furthermore, much
of the important employee traffic to the company, especially email retrieval, is easily
encrypted; adding a customs stop at the firewall can weaken security, since the encryption
is no longer end to end. Whence, then, the traditional firewall? Does it actually do any
good? Note carefully that I’m not saying that firewalls were wrong; I do not believe that
at all. Rather, I’m saying that the world has changed and that the decision to rely on them
should be reexamined and perhaps abandoned.

It helps to go back to what we wrote in Firewalls. The real problem, we noted, was
buggy code; the purpose of the firewall was to keep the bad guys away from the bugs.
Today’s firewalls demonstrably cannot do that. Web browsers on ℵ0 different devices are
exposed to malware daily, and you can’t even start to use a hotel network until you turn
off all proxying and VPNs. Similarly, all sorts of nastiness is emailed to people every
day, often on their unofficial, unapproved, personally owned, external email accounts,
accounts that they check from their employee laptops. (Yes, I know that many security
policies prohibit such behavior. They also prohibit employees from copying data to flash
drives so that they can get work done at home or while they’re on the road. Again, see
Chapter 14.)

Beyond that, modern computers—though not (yet?) most tablets or smart phones—
all have built-in firewalls; if those are properly configured (see Section 15.3), you may
get more security at less cost by scrapping your customs booth. If we enhanced these de-
vices still further to use cryptographically based distributed firewall technology [Bellovin
1999], we’d be in better shape still.
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5.2 A Theory of Firewalls

Fundamentally, a traditional firewall is a security policy enforcement device that takes
advantage of a topological chokepoint. Let’s look at it analytically. There are three prop-
erties necessary for a firewall to be effective:

1. There must exist a topological chokepoint at which to place a firewall. Formally,
we can regard the network as a graph and the firewall as a cutpoint that partitions
the graph into two or more disjoint components.

2. The nodes on the “inside” of the firewall share the same security policy. (See Sec-
tion 16.2 for more discussion about creation of security policies.)

3. All nodes on the “inside” must be “good”; all nodes on the outside are, if not
actually “bad,” untrusted.

When one or more of these conditions does not hold, a firewall cannot succeed. Today,
none are true for the typical enterprise.

Property 1 fails because of the number of links a typical company has, links that do
not go through “the” firewall. These links may be to suppliers, customers, joint venture
partners, outsourcees, what have you.

Property 2 fails because of the number of computers used today. With so many nodes,
the policies have to differ drastically. When firewalls first became popular, only a small
subset of employees needed Internet connectivity. For all practical purposes, there was
no web. Email was not the way business was done. Documents were faxed rather than
scanned and attached. If, by some chance, your company needed connectivity to another
company, you leased a circuit from the phone company, but that wasn’t a gross expo-
sure because most companies didn’t have very much connectivity even internally. (Bear
in mind that Firewalls came out 1 1

2 years before the release of Windows 95, the first Mi-
crosoft operating system with TCP/IP support. You could get TCP/IP, but it was an add-on
product from some outside vendor. Most machines were not upgraded in that fashion.)

Property 3 fails, too, partly because of the large population on the inside, and partly
because of mobile nodes: if they get infected when they’re on the outside, they’re effec-
tively bad guys when inside the firewall.

There’s a corollary to this: firewalls can work in environments where these conditions
still hold. To take a neglected but important case, most residences are protectable by
firewalls. (Admittedly, parents and teenagers often disagree on the proper security policy
or even on what constitutes “good” behavior. Besides, consumers have smart phones and
laptops, too. Computer-savvy parents will sometimes set up a separate “teen-net,” isolated
from “parent-net.”)
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It is worth noting that these three properties, with the possible exception of Property 3,
are not absolute; tolerating minor deviations is feasible. You can have two or possibly
three firewalls—with more than that, coordinating policy is hard, and there’s too much
chance of return traffic going through a different firewall—you can have a small number
of different policies for machines like the mail server, etc.

Given this model, we can construct scenarios where firewalls are effective. A degen-
erate case is a single machine. If we regard the firewall as residing between the network
interface and the TCP/IP stack (and this is, in fact, how it is often implemented), all three
conditions are obviously satisfied. What makes this interesting is where policy comes
from. All current operating systems permit the machine’s administrator to set the policy
for that machine. Some packages permit a central administrator to ship policy to many
endpoints. Finally, if we use cryptographically verified identity to accomplish our parti-
tion (and thus use a virtual network topology rather than a physical one), we achieve the
distributed firewall described in [Bellovin 1999].

A more interesting case is a departmental print server. The policy is simple: any-
one within the department is allowed to print; no one outside is allowed to print at all.
Property 2 is therefore satisfied. Departments typically don’t have rich connectivity, thus
satisfying Property 1. Finally, since by policy anyone on the inside has permission to use
the printers, everyone is by definition good, satisfying the final property.

There’s one wrinkle. If the department has an external link, perhaps to a supplier,
systems on the far side of that link should be barred from reaching the printer. That could
be accomplished by a packet filter on the router handling that connection; alternately (and
per the discussion below on threat models), it can be ignored.

It is fair to ask what other choices there might be. Any network connected device
needs some sort of access control; many do not provide it, or do not do a good job of it.
Your typical printer, for example, does not support TLS or logins and passwords; if it did,
many computers would have trouble talking to it. However, some sort of access control
is necessary; I do not want some bored teenager launching a denial of service attack on
my paper budget or on my printers’ hardware [Cui and Stolfo 2011]. (I recently bought a
new home printer with IPv6 support—which I promptly turned off because there was no
access control option; anyone who knew its name or IP address could have reached it.)

There are other services that are commonly used within a department or other small
group; file servers are the obvious example. These often do have their own authentication;
nevertheless, the service provided is sufficiently sensitive (and the underlying code has
been sufficiently buggy, at least in the past) that an extra layer of protection is useful.

The solution is a point firewall, a simple firewall in front of a limited set of resources.
Point firewalls work because of their scope: they are not trying to protect arbitrarily many
devices, they are not enforcing complex rules, they are not dealing with thousands of
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exceptions. There is also a more subtle philosophical difference: their primary function is
not just bug deflection; rather, they are add-on access control mechanisms. Nevertheless,
since they are enforcing a policy they qualify as firewalls.

If we add the threat environment to our model, we can generalize still further. In
particular, we will assess the properties separately for different threat levels. When we
do, we see that enterprise firewalls do provide a modicum of protection against low-skill
hackers. Specifically, let’s consider joy hackers.

Property 2 is effectively true; typically, everyone has the same policy against the sorts
of attacks launched by joy hackers. A simple “no inbound calls” policy, plus rules to
force all mail and perhaps web traffic through specific virus scanner-equipped gateways
will likely handle all of the usual attacks from that grade of bad guy.

Property 1 is more subtle. If we temporarily ignore links to other companies, we’re
left with the usual handful of connections to ISPs; these are the traditional locations for
firewalls. This property is thus satisfied.

It is Property 3 that is the most interesting for this scenario. I will assert that at the
joy hacker level, to a first approximation all employees are honest good guys. Yes, there
is embezzlement, insider trading, and the usual rate of petty thefts from the stockroom
or the paper cabinet (Bell Labs used to use four ring loose leaf binders, apparently to
discourage people from bringing these home as school supplies). However, what little
low-grade technical malfeasance there is tends to be locally targeted; employees will
attack what they know, and by definition unskilled attackers do not have the tools or
knowledge to learn the extended network topology, especially to other companies. We
thus satisfy Property 3 and Property 1.

The risk from mobile devices remains, but today’s dangerous viruses are not the work
of script kiddies. We can thus conclude that traditional enterprise firewalls do provide
some protection.

Our protection breaks down if we consider opportunistic hackers, and of course all
bets are off when dealing with MI-31. An opportunistic hacker is capable of launching
sophisticated viruses and worms, working out (or stumbling on) a path through inter-
connected companies (or using a worm that does the same thing), and so on. We thus
lose Property 1. Property 2 also fails, because a sophisticated attacker can find and ex-
ploit weaker policies. Still, the biggest risks can be deflected, at least partially, if we can
protect the external links (Chapter 11).

Targetiers don’t have much technical skill, but they are targeting you. If nothing else,
it means that we lose Property 3 because such people will resort to physical presence
in their attacks. Depending on just how much skill they have, they may also be able to
exploit links between companies, which violates Property 1. In other words, enterprise
firewalls do not protect against higher grades of attackers.
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It is important to realize that the three properties were applicable all along; how-
ever, in the mid-1990s the threat profile was very different. There were few targetiers or
Andromedans, with the arguable exception of Cliff Stoll’s Stasi-controlled East Germans
[1988; 1989]. There were opportunistic attackers, including some very good ones, but
with no interconnected companies and few mobile devices their scope of operation was
limited.

/ / /

Another way to think about firewalls is to realize that no firewall can provide protection
at any layer other than the one at which it operates. A typical packet filter, for example,
works at layer 3 and a bit of layer 4 (the port numbers); as such, it can filter by IP address
and service. It can’t look at MAC addresses (especially from more than one hop away
because it never sees them!), nor can it look inside email messages. The trouble is that a
good firewall needs to operate at multiple layers. It may need to do TCP normalization,
to deal with attackers who are playing games with the subtle semantics of TCP [Handley,
Kreibich, and Paxson 2001]; it definitely needs to scan email for viruses, block nasty web
sites, and more. Furthermore, the trend in recent years has been to layer more and more
non-web protocols on top of HTTP or HTTPS, rather than directly on TCP or TCP+TLS;
simple port number filtering or circuit relaying will no longer do the job. (HTTP is some-
times referred to as the “universal solvent for firewalls.”) Indeed, even in Firewalls we
described the need for FTP and X11 application proxies; the need has gotten much more
urgent since then.

One result of the increased attention to higher-level protocols has been the rise of
Deep Packet Inspection (DPI) [N. Anderson 2007]. A DPI firewall has rules and policies
that look at more or less arbitrary parts of packets. This is difficult, and not just because
of performance issues; in general TCP implementations will split up messages as they
see fit, forcing a DPI system to reassemble packets and keep extra state. Furthermore, the
ability to express policies in terms of the contents of packets has led to evermore complex
policies; these themselves are a significant source of trouble.

The result of this shift is that firewalls have gotten far more complex. There are many
more different application that are of interest; each of them requires custom code on the
firewall to enforce policies and to delete or otherwise defang sketchy stuff. This is bad for
security. It pays to look back at what Cheswick and I wrote in Firewalls:

Axiom 1 (Murphy) All programs are buggy.

Theorem 1 (Law of Large Programs) Large programs are even buggier
than their size would indicate.
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Are Network Address Translators Firewalls?

Network address translators (NAT boxes) [Srisuresh and Egevang 2001] are a source
of controversy in the networking community. Some people denounce them as the
spawn of Satan, excrescences on the body technic that interfere with end to end
communication. Others point to their necessity—we’ve long since run out of IPv4
addresses—and tout the interference as a security virtue: NATs are firewalls, they say.
Are they right? If so, do their benefits outweigh their disadvantages?

By definition, NATs operate at the network layer, with a slight excursion up to the
transport layer to inspect and modify port numbers. As a consequence, they provide
no protection against things like emailed malware and nasty web sites. The answer to
the first question is therefore obvious: NATs are not firewalls per se; however, they do
provide protection more or less equivalent to that of a packet filter. Combined with pro-
tections common to many consumer ISPs or large enterprises—a central mail server
with virus detection, and web filtering done by a proxy or by the features built in to many
browsers—there is a tolerably complete level of protection, more than one would have
without the NAT. Alternate schemes based on host resident filtering generally require
configuration, ruling them out for most home use.

The issue of balance, though, is rather more complicated and subjective. Some
of the cost is already borne by everyone, in the form of excess protocol complexity or
in the need for auxiliary helper servers. There are other features that don’t work very
well through NATs. As end systems become more and more hardened against direct
attacks, the benefits of NATs decrease and the costs become higher. On balance, I’d
say they’re not worth it—and I’ve enjoyed having direct IPv6 access to my house without
interference from a NAT. Of course, until IPv6 becomes ubiquitous, most home users
have no real choice.

Proof: By inspection.

Corollary 1.1 A security-relevant program has security bugs.

Theorem 2 If you do not run a program, it does not matter whether or not
it is buggy.

Proof: As in all logical systems, (false⇒ true) = true.

Corollary 2.1 If you do not run a program, it does not matter if it has
security holes.
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Theorem 3 Exposed machines should run as few programs as possible; the
ones that are run should be as small as possible.

Proof: Follows directly from Corollary 1.1 and Corollary 2.1.

Corollary 3.1 (Fundamental Theorem of Firewalls) Most hosts cannot
meet our requirements: they run too many programs that are too large.
Therefore, the only solution is to isolate them behind a firewall if you wish
to run any programs at all.

In other words, the reason that firewalls were secure is that they ran many fewer programs,
and hence didn’t have as much vulnerable code. Given the hundreds of applications that
a modern firewall has to support, and given the complexity of some of those applications
(e.g., SIP), it is far from clear that less code is involved. In fact, an enterprise firewall
today, supporting very many users, endpoints, and policies, is arguably running more
Internet-facing code than a typical host. Perhaps the code is higher quality, and perhaps
the firewalls are better administered than end user machines—but perhaps not.

The code complexity issue is another driver for smaller, more specialized firewalls.
The XML-scanning firewall protecting some database machine may be just as buggy as
the same code on an apatosaurus-sized firewall for the enterprise, but if it fails it exposes
one database machine, not an entire company.

/ / /

We can therefore draw some conclusions about the role of firewalls in today’s net.

• Small-scale firewalls, protecting a network about the size run by a single system
administrator, still serve a useful function. Generally speaking, these will be packet
filters and hence not require extra hardware.

• Complex server applications are rarely amenable to firewall protection, unless the
firewall has some very, very good (and very, very well-written) sanitizing technol-
ogy.

• An enterprise firewall retains value against low-skill attackers but is actually a point
of risk, not protection, when trying to filter complex protocols against sophisticated
adversaries. If you have such services that must be accessible from the outside, use
packet filtering on the enterprise firewall and a separate protection layer near the
server itself. This is discussed in more detail in Section 11.3.
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Planning for Failure

Given the complexity of some application firewall modules, it is not unreasonable to
suspect that they might fail. What is the proper course of action? The proper design
assumes that a failure can happen and tries to mitigate the consequences. Here are
two approaches.

The first approach is to abandon the notion of an application-specific firewall for
that system. Unless the firewall can do filtering or blocking that the host itself can’t
do, it doesn’t add any value over a high-quality host application. Web servers are a
good example; the danger comes from the HTTP itself and the scripts that are run in
response; what can the firewall add? What a simple firewall, such as a packet filter, can
do is block access to other ports on the server and prevent illicit outgoing calls. So—the
server is hacked, but the attacker can’t go anywhere else in the company and may not
even be able to steal the data. This is a cheap design, in that all it needs is a router port
with the appropriate access control rules; only the dodgy server is behind that port.

The second approach uses a properly designed application firewall; again, all that’s
behind it is the server you want to protect. By “properly designed” I mean one that im-
plements the same type of dual protection: a packet filter followed by an application-
specific module. There are two utterly crucial internal architectural details. For one
thing, the application proxy must be “behind” the packet filter, that is, between the
packet filter and the port facing the server, so that any outward-bound traffic from the
proxy to the rest of the company must pass through the packet filter.

Furthermore, the internal structure of the firewall must be such that if the proxy
module itself is penetrated, the attacker cannot reprogram the packet filter. Unfortu-
nately, it’s very hard to learn that sort of internal detail about the design.

• Arguably, mobile devices—laptops, tablets, smart phones—should never be fully
trusted, not because they use wireless connections, but because they’re much more
likely to carry malware (see Property 3). This suggests that your wireless LAN
should be outside the firewall, with a VPN+filter for access by iToys and the like.
The suggestion is analyzed in greater detail in Chapter 9.

5.3 Intrusion Detection Systems

“Do you mean to admit that you may have been invaded and searched—
tracelessly?” Alcon fairly shrieked the thought.
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“Certainly,” the psychologist replied, coldly. “While I do not believe that it
has been done, the possibility must be conceded. What we could do, we have
done; but what science can do, science can circumvent.”

Second Stage Lensman
—E. E. “DOC” SMITH

An intrusion detection system (IDS) is a backup security mechanism. It assumes that
your other defenses—firewalls, hardened hosts, goat entrails (tofu entrails for vegetarian
security professionals) offered up in the dark of the moon—have failed. The task then
is to notice the successful attack as soon as possible, which permits minimization of the
damage, either via automated systems or their backup humans.

Most of what I’ve said about antivirus technology is true of IDSs as well. An IDS can
be signature or anomaly based; the same advantages and disadvantages apply. The key
difference is deployment scenarios and hence inputs; antivirus programs operate on files,
whereas IDSs are more multifarious.

IDSs are generally classified as network or host intrusion detection systems; for the
latter, they can operate on network or host behavior or content. Each of these approaches
has benefits and limitations.

The big attraction of anything network based is the same as the big attraction of a
firewall: it’s scalable, in that there are typically many fewer networks to instrument than
hosts. In fact, the firewall is one very common location to install a network IDS, since by
definition all traffic from the outside is supposed to pass through that chokepoint.

Doing intrusion detection in the network, by grabbing packets in flight, is difficult.
The obvious problem is dealing with encrypted traffic; more seriously, it’s all too easy to
miss packets. There are also theoretical issues with enemies who try to exploit odd corner
cases in the network protocol specs [Handley, Kreibich, and Paxson 2001], though such
behavior seems to be rare or unknown in the wild. (If the Andromedans are doing this,
perhaps they haven’t yet been caught at it?)

The simplest form of network IDS relies on IP addresses and port numbers: if the
packets are going to destinations that some parties shouldn’t try to reach, you know there’s
a problem. The technique is analogous to the “network telescope” concept [Cheswick
2010; C. Shannon and Moore 2004]: if some IP addresses are deliberately left empty,
packets sent to them (or from them!) are a priori suspicious. The same can be true of
certain ports on sensitive hosts, especially if you have good information on just who can
legitimately send to them.
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If that’s all you want to do, though, don’t bother trying to look at packets. Your routers
are already doing that; some places have built IDSs based on routers’ NetFlow data.1

More sophisticated network monitoring can be done as well. There are comparatively
simple systems that look for simple patterns of data, such as Bro [Paxson 1998; Paxson
1999] or Snort [Roesch 1999]. DPI systems [N. Anderson 2007] are more sophisticated;
they look at higher layers of the stack and are often used for various sorts of governmental
monitoring [Poe 2006].

The fundamental problem with any form of network IDS is that it lacks context. Yes,
DPI and other forms of network monitoring can detect suspicious packets, but it’s difficult
for even the best network scanners to reassemble every file in transit and then scan it for
malware. That sort of thing is much easier to do on hosts. Hosts can also look at log files;
more importantly—and all but impossible to do on the wire—they can scan their own
file systems for unexpected changes [G. Kim and Spafford 1994a; G. Kim and Spafford
1994b; G. Kim and Spafford 1994c]. Finally, host based IDSs are network independent;
they can detect problems no matter how they arrive, whether via the Internet or carried in
on an infected USB flash disk.

Host-based IDSs can do one more thing more easily than their network partners: they
can emulate network protocols, above the level of any encryption. Depending on their
purpose, they can be part of or intermediaries for the real network daemons; alternatively,
they can be pure fakes, doing nothing but detecting things that you hope will never hap-
pen. This is an ancient technique [Bellovin 1992], but it is useful nevertheless.

5.4 Intrusion Prevention Systems

We have a VPN, and firewalls, and you do not want to mess with them be-
cause the design spec for the Laundry’s firewall software is not to keep in-
truders out, but to make them undergo spontaneous combustion when they
get in: as Bob puts it, it’s the only way to be sure.

The Annihilation Score
—CHARLES STROSS

Suppose a network IDS does detect something unpleasant. Then what? An intrusion pre-
vention system (IPS) can best be described as an IDS with an attitude. Rather than simply
detecting something bad, they try to do something about it. The trick is avoiding collat-
eral damage, or at any rate collateral damage that’s worse than what the attack would

1. “PaIRS: Point of contact and Incident Response System,” http://goo.gl/xhroc.

http://goo.gl/xhroc
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have caused if left unmolested. The worst situation is a successful attack whose goal was
to induce you to perform harmful actions.

Consider, for example, the Slammer worm [Moore et al. 2003]. Slammer spread via
a single UDP packet to port 1434, used by a Microsoft SQL server. Because UDP does
not require a 3-way handshake the way TCP does, the worm spread extremely quickly; its
growth rate was limited by the outbound bandwidth of infected hosts. One can postulate
an IPS that noticed links being clogged, saw a tremendous spike in traffic to a rarely seen
port, and automatically set up a filter rule blocking such packets. It makes perfect sense,
and that is in fact what was done by many ISPs. Now imagine a variant of Slammer that
emitted three packets to UDP port 53 for every one it sent to 1434. The packets to 53—
DNS—would, for this example, be harmless, but would a network based IPS know that?
All that it can see are three facts: links are being clogged by an unprecedented flood of
traffic; many of the unusual packets are to port 1434; even more of them are to port 53.
Would it try to shut down both ports? If so, the IPS would effectively turn off the Internet.
(N.B. I’ve slightly simplified the details of this enhanced attack; correcting it is left as an
exercise for the reader.)

An IPS can do many things. As with an IDS it can be host or network resident; both
sitings have advantages and disadvantages. Depending on where it is located, it can block
connections, quarantine files, modify packets, and more [Scarfone and Mell 2007]. For-
rest and Somayaji described one that slowed down suspect processes, rather than killing
them [2000]; this scheme doesn’t do irrevocable harm if it’s guessed incorrectly.

Ultimately, the IPS problem rests on three pillars: very good detection, selection of
countermeasures, and matching the countermeasures to confidence in identification of the
root cause of the problem. This last issue is much less studied than the second, which in
turn is much less studied than the first.

5.5 Extrusion Detection

Extrusion detection is a specialized form of IDS. It’s aimed at one particular form of
harm: someone trying to steal your data and export it. The trick is picking up the out-
bound data transfer. There are two challenges: picking out the right data, amidst all of the
legitimate (or at least normal) traffic, and distinguishing authorized from unauthorized
transfers. This latter isn’t trivial; uploading a chip design to a foundry can be the normal
way of doing business, while sending it to the Andromedans’ web server most likely is
not. Extrusion detection has one principal advantage over many other types of security
systems: it can cope with rogue insiders.

There are a number of ways to perform extrusion detection. One of the simplest is the
honeypot: create fake files that will attract the attention of a spy, commercial or govern-
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The WikiLeaks Cables

The case of the classified US diplomatic cables given to WikiLeaks and then pub-
lished provides an interesting case study in extrusion detection. The factual basis for
this analysis is mostly taken from [Capehart 2012a; Capehart 2012b; Capehart 2012c;
Capehart 2012d; Capehart 2012e], a series worth reading for the discussion of proce-
dural issues (even though I feel that some of Capehart’s conclusions are debatable);
also see [Zetter 2011] and [BBC 2014].

What happened is that Chelsea Manning (at the time of the actions and the trial,
male and known as “Bradley”), an apparently untrustworthy individual who neverthe-
less had access to systems holding classified documents, developed scripts to do bulk
downloads. The downloaded documents were burned onto a CD labeled “Lady Gaga”;
the contents of the CD were then shared with WikiLeaks.

There has been a lot of criticism of the US State Department for having such sensi-
tive data available with very weak controls. While the issue is indeed debatable, it was
the result of a deliberate decision to increase availability of data, even highly classified
data, to individuals with suitable clearances; lack of information sharing had been seen
as one of the problems leading up to the 9/11 terrorist attacks.

However, what could and should have been done was to log accesses, and look for
unusual patterns. Apparently, more than 250,000 cables were downloaded. Are there
any legitimate uses for that sort of bulk download by a single individual? Proper log
files, and proper analysis of them, would have shown that something unusual was hap-
pening. At the least, security personnel could have investigated.

Manning herself apparently understood the problem. She wrote, “Weak servers,
weak logging, weak physical security, weak counter-intelligence, inattentive signal anal-
ysis. . . a perfect storm” [Poulsen and Zetter 2010].

Marcus Ranum has summed it up nicely [Field 2010]:

Then the other piece of the puzzle that I find is really interesting is the
apparent inability of the people who lost the data, the original data holders,
to tell what data was stolen and while it was being stolen [sic]. And this
is an important message for anyone who is a CISO [Chief Information
Security Officer] because it shows what can happen when your data leaks
if you don’t have auditing and logging in place so that you can go back
and say, “Well, OK if we do believe this guy leaked a bunch of information,
what information did he actually access and when?” Of course, ideally you
would get in front of that process and maybe detect the fact that somebody
who really didn’t have a need to access this particular information was
downloading [this information] in one fell swoop. That is kind of a red flag,
I would think.

Precisely.
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mental, and wait for someone to grab one. This has been done a number of times, most
famously by Stoll [1988; 1989] in the “Wily Hacker” incident. (Bill Cheswick and I sub-
titled Firewalls “Repelling the Wily Hacker” in homage to Cliff, and we used that phrase
with his permission.) Briefly, he discovered intruders in a University of California com-
puter system and traced them to Germany. To allow enough time for technicians to trace
the attackers’ phone calls—this was in the days of dial-up modems—he created fake
documents about the Strategic Defense Initiative, a missile defense system, and waited
for someone to look at them. His trap was successful; the attackers’ response included
sufficient indicia of espionage that he notified the FBI.

In the more usual scenario, you don’t know whether you’ve been penetrated. Accord-
ingly, the proper honeypot strategy requires a wide range of believable-seeming decoys.
Exactly what decoys you should create depends on your system; you want something that
resembles normal items on that system. Bowen at al. [Bowen 2011; Bowen et al. 2009]
describe a number of types of decoys—“honey documents”—including fake logins for
banking web sites; they also define criteria for decoy generation. One notable aspect to
their work was the use of web bugs, normally used by advertisers to track consumers on
the web. With a web bug, opening the document causes an attempt to fetch a file (typically
a 1×1–pixel transparent GIF) from a monitored HTTP server.

Naturally, a sufficiently knowledgeable attacker can dodge many decoys. Someone
who suspects web bugs, for example, would simply read exfiltrated documents on an
offline computer. Indeed, intelligence agencies’ classified networks are generally discon-
nected from the outside world [R. A. Clarke and Knake 2010], so no strategy that relies
on active documents can succeed. A different approach is needed, one based on IDS tech-
nology.

The big advantage of honey documents is that they’re transport independent. That is,
no matter how the files are exfiltrated, the trap can be sprung on any network connected
machine used to view them. Even printing them out first doesn’t help; the monitors will
detect the documents being opened inside the enterprise.

You may be able to detect network based exfiltration while the documents are being
transported if your network is configured in a firewall-friendly manner, that is, if Prop-
erty 1 holds. An extrusion detection module can be installed at the firewall; it can then
attempt to detect misbehavior from amidst the noise of routine Internet traffic. As with
IDSs, one can approach this from a signature or anomaly detection perspective. Signature
detection can look for certain documents or perhaps markings—should the strings “Com-
pany Confidential” or “Top Secret UMBRA” appear in outbound mail?—or anomaly de-
tection. Anomaly detection might be as simple as volume—does this person or IP ad-
dress normally send so much data? Does someone in that organization normally send so
much?—or it may be based on the statistical characteristics of the outbound data.
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Figure 5.1: A byte frequency plot for a JPG file and an encrypted version of the same file. (The
x = 0 value was omitted, since the frequency of 0 in the JPG file was so high that it obscured
the other differences.) The horizontal line is y = 1

256 , what a perfectly even distribution would
be. Note that JPG and other highly compressed formats like MP3 are harder to distinguish from
random data; encrypted files in general do (and should) look very random. In a test of 1024-byte
blocks, Oprea et al. found that less than 2% had an entropy that appeared close to that of random
data [2005].



76 Firewalls and Intrusion Detection Systems

There are some interesting wrinkles here that makes extrusion detection harder in
some ways than firewalls or intrusion detection. For one thing, someone exporting infor-
mation is freer to use encryption because he or she can control both ends of the channel.
By contrast, an attacker breaking in to an organization can only encrypt traffic if the vul-
nerability being exploited uses encryption. Of course, once the penetration is complete,
the attacker can install any sort of back door desired, including encrypted ones. Even
if encryption is used, the defenders aren’t helpless. While crypto does hide the precise
content being sent, it can’t hide the volume; more importantly, encrypted data has a very
unique flat byte distribution; this, too, is anomalous if from a source or to a destination
that does not normally receive such. An example is shown in Figure 5.1, which compares
the byte frequency distribution of a JPG file and an encrypted version of the same file.

In some situations, the firewall-like topology need not be of the user network, but
rather of the data-providing network. Imagine a data center with a web front end serving
thousands of clients around the world. There is no feasible perimeter around the users;
however, all sensitive data is flowing out through that web server. Proper log files and
analysis of them (see Section 16.3) can also be a form of extrusion detection. Indeed,
the lack of such analysis has been claimed to be at fault in the WikiLeaks diplomatic
cables case; see the box on p. 73. Some organizations already track all outbound traf-
fic. In the United States, some financial sector companies are required to log and retain
certain communications [FINRA 2010; FINRA 2011]; these records can be analyzed for
improper exports. Of course, the rest of the perimeter needs to be secured to preclude
other forms of export.

One can view intrusion and extrusion detection systems as in some sense the dual
of firewalls. The latter attempts to prevent trouble; the former attempt to detect it. Fire-
walls are primarily concerned with what the communications endpoints and protocols
are; detection systems are more concerned with the contents. Firewalls are generally cen-
tralized; detection systems function better if decentralized. Both yield benefits; both have
their limitations.

5.6 Analysis

It is very clear that the trend towards decentralization is going to continue. Ever-cheaper
processing power makes it possible to put CPUs more or less everywhere; increasingly,
these CPUs have communications capabilities. Today, interacting with some of these var-
ied computers is optional; more and more, it will become a necessity. A generation ago,
an airplane flight required a paper ticket that you exchanged for a cardstock boarding
pass at the airport. Today, tickets are electronic and you’re encouraged to print your own



5.6 Analysis 77

boarding pass, but if you want you can often display it as a 2-D barcode on your smart
phone. In not very many years, smart phones will become the normal way to fly, with
temperamental barcode scanners replaced by network communication with the passen-
ger’s phone. Will corporate security policies permit installation of the necessary app on
employees’ iToys? They’ll have to.

There are also considerations of physical laws. If you’re in Tokyo and trying to down-
load some local content, routing your request via the corporate firewall in Rio de Janeiro
will slow you down; neither DARPA nor the ITU can increase the speed of light, and
bandwidth is intimately linked to latency. It’s not just that security policies that ignore
reality will be ignored (though that will happen, too); rather, it’s that they’ll start to in-
terfere very seriously with productivity. People derive inner satisfaction (and better merit
reviews) if they’re more productive; they derive neither from obeying security policies
they generally don’t understand. Only if there is a problem will there be consequences,
but 99% of the time ignoring policy results in no harm whatsoever. It’s the last 1% that
gets them—and their employers—in very big trouble.

Things might change. We’re currently at a point where there are three plausible, cur-
rently visible directions in which technology can move. First, it might move to a purely
decentralized model, where there is no perimeter and any device can be used for any-
thing. The rise of the “gig economy” [Editorial Board, New York Times 2015] will push
in that direction. Second, a cloud plus random device solution may dominate. In that case,
although today’s perimeter-and-firewall solution will vanish, the cloud-based servers can
become a locus for logging, intrusion and extrusion detection, and other forms of protec-
tion against large-scale attacks. Finally, things can stay about the way they are today. I
say “about” because there are too many advantages to the other two paths for the status
quo to hold completely, but the extent to and rate at which it will erode remain unclear.

There’s a potential variant on the “lots of devices” model that might arise: the local ad
hoc network scenario. In it, a user’s device (somehow) associates itself with other devices
in the neighborhood. The obvious and probably non-threatening examples are things like
hotel room displays, keyboards, and the like; perhaps more interestingly, one can imagine
a laptop taking over some sort of mobile Wi-Fi hotspot or connecting to a local disk or
neighboring laptop to share content. In scenarios like this one, the perimeter is fuzzier
still.

The conclusion is that we have to figure out how to push our security policies towards
the edges. This is not the simplistic “I don’t believe in firewalls” chant of 20 years ago; the
need for good security policies—generally, organizational security policies—and mecha-
nisms is stronger than ever; we just have to change how and where we enforce them. This
may be the real conundrum of the “bring your own device” movement; it’s not that con-
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sumer devices are necessarily less secure than corporate-issued ones as it is the difficulty
of an IT department installing its own policies on an employee’s widget. Quite likely, they
have neither the authorization nor the knowledge to do so, especially for newer or rarer
widgets.

Better virtualization and policy languages will help. If the work environment can be
properly isolated from the play environment, and if a system-independent policy lan-
guage can be devised (and of course implemented by consumer gadgetry purveyors), this
issue can be avoided. It’s not an easy task, since it will be necessary to implement this
functionality in such a way that malware can’t disable it.

/ / /

Intrusion detection and its counterpart intrusion prevention are widely seen as the most
promising avenues to pursue, given that purely defensive measures have not succeeded
despite more than forty years of effort [Wulf and A. K. Jones 2009]. The challenge,
though, is considerable; not only must an IDS cope with a change in people’s legitimate
activities, it must cope with changing software and changing technology. A new release
of a web browser might sandbox each tab or window, which would produce different pat-
terns of system calls than the older versions did; similarly, the rise of mobile devices to,
say, read email via a cellular network will reduce the contribution of LAN-based mailers
to the total traffic mix and thus change its overall characteristics. These sorts of changes
are legitimate and probably inevitable, but the same package that has to adapt to these
changes must also detect the very subtle changes of a new “low and slow” attack.

Extrusion detection is even more challenging than policy enforcement. Generally
speaking, physical access wins; it is very hard to prevent the owner of a device from
getting at any or all of its contents. One thing that will help is if vendors implement a
distributed logging system. Even in, say, a peer-to-peer distributed corporate file system,
a request for a file should generate a log message back to some central correlator. I would
argue that for security purposes, logging is even more important than delivering the data;
a user will retry the download but won’t be similarly motivated to resend missed log
messages.

It is hard to predict what other trends will take root even in the next five years, let
alone ten or twenty. The human and organizational need for collaborative work will not
change, but the mechanisms will. A generation ago, people swapped floppy disks. (Two
generations ago, it was decks of punch cards.) We moved from there to central repositories
and/or emailing files back and forth. Today, collaboration is moving towards the cloud.
How long will that continue? Will peer-to-peer mechanisms take over instead? If I’m on
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a train or plane, I’d rather not have to deal with an intermediary when I’m working with
someone a few rows back; I’d rather use a mobile network. That part looks feasible—but
how will it be done securely, and how will transactions be logged?

What is really needed is a way for packets or messages of security interest to be
flagged reliably, thus simplifying policy enforcement [Bellovin 2003]. Until that happens,
all of these mechanisms will be imperfect.
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Chapter 6

Cryptography and VPNs

He unlocked his desk, opened the drawer-safe, and withdrew the Executive’s
Code Book, restricted to the executive heads of the firms listed quadruple
A-1-* by Lloyds.

The Demolished Man
—ALFRED BESTER

6.1 Cryptography, the Wonder Drug

Some years ago, shortly after Firewalls and Internet Security [1994] was first published, a
friend who wasn’t fond of firewalls remarked that someday, he was going to write a book
on how to do Internet security “correctly.” I asked him what that entailed; he replied, “Use
Kerberos or other forms of cryptography.” Now, Kerberos [Bryant 1988; S. P. Miller et al.
1987; Neuman et al. 2005; Steiner, Neuman, and Schiller 1988] is a perfectly fine system;
in Firewalls, we called it “extremely useful.” But to call it or any form of cryptography
the “correct” way to do Internet security is to misunderstand both the security problem
and what cryptography can and cannot do for you.

Although theoreticians have come up with many interesting cryptographic tricks (and
some are even in commercial use), the two most common uses of cryptography are to
prove identity and to hide data from prying eyes. It can do these things very well, but
at a price. The most obvious is that keys have to be protected. To quote another friend
of mine, “Insecurity is like entropy: it can’t be destroyed, but it can be moved around.

81
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With cryptography, we substitute the insecurity of the key for the insecurity of the data,
because we think we can protect the keys better.”

A second major price is the difficulty of devising proper cryptographic mechanisms.
Cryptography is a very difficult and subtle branch of applied mathematics; remarkably
few people are qualified to practice it. Never use a proprietary encryption algorithm, es-
pecially if you’re told that it’s more secure because it’s secret. The same applies to crypto-
graphic protocols; they’re also quite hard to get right. I’ll give just one example. SSL 3.0
was devised for Netscape in 1996. It was devised by one world-famous cryptographer,
analyzed by two others [Wagner and Schneier 1996], and served as the basis for the In-
ternet Engineering Task Force’s (IETF) Transport Layer Security (TLS) protocol [Dierks
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Crypto Exploits

In the military world, sophisticated attacks on cryptography are not at all unknown.
During World War II, for example, the Americans sent a message in the clear, in order
to learn the Japanese code group for the island of Midway [Kahn 1967]. Peter Wright
tells the story of planting microphones to hear the number of clicks as rotor settings
were changed [Wright 1987].

Things like that are very rare or unknown in the civilian sector. The most sophisti-
cated exploit was against a code-signing key for Texas Instrument calculators [Goodin
2009]. Firmware updates for their calculators have to be digitally signed; TI, though,
used 512-bit keys. That’s much too short; some hobbyists factored the public keys,
which let them determine the private key and sign their own code.

A more serious problem with 512-bit keys has turned up, too. As best as can be
determined—at this writing, not all the facts are in—a number of code-signing cer-
tificates with 512-bit keys exist, and these keys have been factored as well [Bijl 2011].
Signed code will often be accepted silently by Windows systems; if malware is signed—
and it has been—it can easily be installed without the user noticing anything.

Gonzalez et al. appear to have used WEP-cracking. While the public record is not
entirely clear, the Canadian report on the incident says that TJX used WEP [Privacy
Commissioner 2007], and some of the counts in the information against one of Gonza-
lez’ confederates states that he connected to TJX’s wireless network.a

(Continued)

a. “Information, United States v. Christopher Scott, (D. Mass. August 5, 2008), ¶3.d ,”
http://i.cdn.turner.com/cnn/2008/images/08/05/scott.information.pdf.

http://i.cdn.turner.com/cnn/2008/images/08/05/scott.information.pdf
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One spectacular exploit was found in the Flame malware [Zetter 2012; Zetter 2014].
Even early analyses concluded that it was developed by a major government, though
quite unaccountably Andromeda was never named as a suspect in news reports. One
of the many interesting things Flame did was to use fake certificates (Chapter 8) to sign
modules. That in itself isn’t new; Stuxnet did it, too. But Flame had two new wrinkles.
First, it exploited a Microsoft design error, rather than a stolen key. Second, and far
more interesting, it relied on a cryptanalytic attack unknown to the civilian sector to
generate forged certificates [Fillinger 2013; Goodin 2012b; Zetter 2014]. One can argue
that a large criminal enterprise could have built a large piece of malware, but only a
major government’s SIGINT agency could have done the cryptanalysis. The attack had
a complexity of at least 246.6 and probably more, because it was apparently optimized
for a massively parallel architecture. In other words, this was not a commercial threat,
this was a government.

The oddest known case of a cryptanalytic attack involved an individual who just
wanted revenge against his neighbors [Kravets 2011]. He cracked their WEP password,
hacked their computers, and used his stolen access to plant child pornography and
send threatening emails. There’s another lesson in this incident, though: the neighbor’s
defenses were set up assuming that the risk was an opportunistic attack; instead, they
were targeted. Threat models are not always obvious.

The news from crypto-cracking isn’t all bad. I know of at least one case where the
good guys read botnet traffic because the bad guys were using bad crypto [Anonymous
2011].

and Rescorla 2008], which itself received a lot of scrutiny from members of the IETF’s
TLS working group. In 2011, a new flaw was found [Rescorla 2011], present in the most
commonly deployed versions of TLS; other new problems have been found since then.
[Sheffer, Holz, and Saint-Andre 2015] lists attacks known through February, 2015, but at
least one more has been found since then [Adrian et al. 2015]. Don’t try it at home, kids;
even trained professionals have trouble getting protocols right.

The third issue to be aware of is the difficulty of retrofitting cryptography to exist-
ing systems, especially if there are complex communication patterns or requirements. A
simple reliable transport channel between two nodes that know and trust each other can
easily be secured with TLS. Multiparty communications with complex trust patterns are
considerably more difficult and may require the inclusion of additional, mutually trusted
parties. Ideally, the cryptographic mechanisms should be designed together with the sys-
tem. Unfortunately, “green field” architectures are very rare; most of the time, we have to
deal with legacy requirements, legacy systems, and legacy code, and aspects that are not
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just difficult to encrypt but downright hostile to encryption. You might very well need a
custom protocol—which, of course, is a bad idea for other reasons.

What happens if you get the cryptography wrong? Is there a real threat? Thus far,
the many cryptographic weaknesses that have been found in deployed systems have only
rarely been exploited, at least as far as the public knows. None of the more complex
protocol attacks have been reported in the wild, with the arguable exception of Flame
[Goodin 2012b; Zetter 2014]. Those exploits do take a fair amount of skill and often need
specific types of access. More to the point, such attacks haven’t been necessary; there
always seem to be easier ways in. However. . .

Flaws of this type are very hard to fix. The problem is in the protocol itself, not a par-
ticular piece of code; very likely, all implementations will be vulnerable. (Implementing
cryptography correctly is itself a Herculean task; it’s even harder to get right than ordinary
code.) It’s often impossible to fix just one end at a time; both ends (or all endpoints) may
need to be upgraded simultaneously. (Think how many hundreds of millions of endpoints
need patching to upgrade to TLS 1.2, which is immune to the known flaws!) And even
though designers try to build in negotiation mechanisms to allow for an orderly transition,
they don’t always get it right [Bellovin and Rescorla 2006].

Finally, there’s one class of attacker—the advanced persistent threat—where crypto-
graphic weaknesses are a very real problem. MI-31 knows a lot about the subject, and if
that’s the easiest way in they’ll use it.

6.2 Key Distribution

Where do long-term keys come from? How does one party know the other’s keys or
enough about them to trust them? These questions are at the heart of the key distribution
problem.

For a small number of nodes, especially if they’re in reasonable geographic proximity,
manual distribution can work. The problem, though, lies in the word “small”: it’s an O(n2)
process. The usual solutions are key distribution centers and public key cryptography,
often in the form of certificates.

A key distribution center (KDC) is a special computer, trusted by all parties, that
hands out keys. Every other computer shares a key with it; this key is used to protect
and authenticate traffic between it and the KDC. When some computer wants to talk to
another, it asks the KDC for a session key to the other machine. Somehow—I’ll omit
the details; see any good cryptography text or the Kerberos documentation [Bryant 1988;
S. P. Miller et al. 1987; Neuman et al. 2005; Steiner, Neuman, and Schiller 1988] for how
to do it—the other computer learns the session key, too, in a message protected by its
long-term key.
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There are three crucial points to notice. First, the key provisioning problem is reduced
to O(n); for even modest-sized n, this is important. Second, the KDC plays a crucial
security role, and hence is an important target for any sophisticated adversary. Suppose,
for example, that MI-31 has intercepted traffic between computers A and B. This traffic
is protected by some random session key KA,B generated by the KDC and distributed to
those nodes. But that distribution takes place under long-term keys KA,KDC and KB,KDC,
which are both known to the KDC. An attacker who breaks into the KDC, even very
much later, can obtain those keys and read all recorded traffic; the only caveat is that the
key set-up messages must be recorded, too. Finally, although the provisioning problem
is now O(n), it must be done via a secure process that preserves both confidentiality and
authenticity; there is by definition no existing key to protect the traffic between a new
machine and the KDC.

The latter two problems are frequently handled by use of public key technology.
A new node can generate its own key pair and send only the public key to the KDC;
this changes a confidentiality and authenticity problem into just an authenticity problem,
which is often much easier to solve. Furthermore, the KDC no longer shares any long-
term secrets with individual nodes; it knows only public keys. When it generates a session
key, it encrypts it with the two computers’ public keys; it never sees the corresponding
private keys, and thus cannot read what it itself has written. There is thus no threat to past
traffic if a public key-based KDC is compromised, though there is of course a threat to
keys handed out before a compromise is detected and remediated.

The final step is for the KDC or some other mutually trusted party to sign each com-
puter’s 〈name,publickey〉 pair. This is known as a certificate; certificates are discussed in
great and gory detail in Chapter 8.

6.3 Transport Encryption

There are two primary ways encryption is employed: for transport encryption, where a
real-time connection is being protected, and for object encryption, where a sequence of
bytes must be protected across an arbitrary number of hops amongst arbitrary parties.
We’ll deal with each of them in turn.

Transport encryption is the easiest (not easy, merely easiest) cryptographic problem
to solve. Fundamentally, two parties wish to talk. At least one, and often both, have keying
material. How do you set up a “secure” connection?

The first phase is key setup, during which the two parties somehow agree on a com-
mon session key. (Resist the temptation to preprovision static keys to use as session keys
[Bellovin and Housley 2005]; at best, you lose certain abilities, and at worst it’s a com-
plete security disaster, where the enemy can read, modify, create, etc., all traffic.) Some



86 Cryptography and VPNs

key setup schemes include authentication—often, bilateral authentication—whereas in
others, the application must do it itself if necessary. Beyond that, there are three require-
ments for key setup: that the two parties agree on the same key, that no one else can obtain
those keys, and that the keys be fresh, that is, new for this session and not old keys being
reused. This last requirement helps protect against the various sorts of nastiness that an
enemy can engage in by replaying old traffic into the current session.

An optional key setup property is forward secrecy. Forward secrecy means that if an
endpoint is compromised after the session is over, the keys for that session cannot be
recovered. The more competent your attackers, the more important this is. In particular,
if you’re worried about the Andromedans, you should use it; they’re just the sort of folks
who will record your traffic and later, when they find they can’t cryptanalyze it, they will
hack in to try to get the keys another way.

The second phase, of course, is the actual data transport. It, too, has certain impor-
tant properties. You should always use authentication with encryption; there are too many
nasty games an attacker can play if you don’t, by judiciously modifying or combining
various pieces of ciphertext [Bellovin 1996]. Some textbooks will say that you only need
to use authentication when using stream ciphers. They’re wrong. Authentication is vital
with stream ciphers, but it’s almost always extremely important. (There are a few—a very
few—situations where one can omit it. As usual when dealing with materia cryptograph-
ica, that’s a call that should only be made by qualified experts, and many of them will
get it wrong. In 1978, in the very first paper on key distribution protocols, Needham and
Schroeder said it very well [1978]:

Finally, protocols such as those developed here are prone to extremely subtle
errors that are unlikely to be detected in normal operation. The need for tech-
niques to verify the correctness of such protocols is great, and we encourage
those interested in such problems to consider this area.

They were remarkably prescient; indeed, their own designs had several flaws [Denning
and Sacco 1981; Lowe 1996; Needham and Schroeder 1987].) There are some newer
modes of operation that combine encryption with authentication in a single pass; this is
the preferred way to proceed.

Another important property of the transport phase is replay protection. Just as keys
must be fresh, so, too, must messages. Don’t make the mistake of assuming that just
because the IP and UDP service models permit reordering, duplication, damage, replay,
etc., that they’re benign when done by a clever attacker. Again, there are rare exceptions,
but this decision should be left to qualified experts.

Different sorts of encryption need to be used for UDP and TCP. The former is a
datagram protocol; accordingly, use of a stream cipher is almost certain to be disastrous.
(That is one of the flaws in WEP; see the box on page 177.)
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The last phase is tear-down. It seems trivial, but you want to ensure that your con-
versation hasn’t been truncated. Accordingly, the “goodbye” signaling should be cryp-
tographically protected, too. One last thing: when you’re done, destroy the session key;
even if you’re not using forward secrecy, there’s no point to making life too easy for the
attackers.

Transport encryption can be applied at different layers of the stack. What protection
is obtained depends on the choice; all have their uses.

Link-layer protection, such as assorted Wi-Fi encryption schemes (Chapter 9), has
two primary uses: it limits access to a LAN to authorized users, and it protects against
eavesdropping and traffic analysis, especially on particularly vulnerable links. Wi-Fi nets
are the most obvious choice, but it is used as well on things like international satellite
links: a satellite has a large signal footprint, and many unauthorized recipients can pick up
transmissions [Goodin 2015b]. In the past, when there was a lot less undersea fiber, many
companies used link encryptors for all international connections, even fiber or copper,
because they might be rerouted to a satellite circuit in case of an outage. In some cases,
there was suspicion that outages were not accidental—some countries seemed to have a
very large number of very clumsy fishing trawlers. But that’s the sort of attack frequently
launched by the Andromedans, which means that link encryption can’t be your only layer
of defense if you’re the actual target: a typical connection traverses many hops and hence
many links.

On certain kinds of connection and against certain enemies, link encryption has a very
powerful property: an eavesdropper can’t even tell that a message has been sent. The NSA
realized this more than fifty years ago [Farley and Schorreck 1982]:

Mostly we were aiming for online equipment and, in fact, eventually gener-
ated the notion that we had a circuit and there was something going on the
circuit twenty-four hours a day. If you had a message to send you just cut
in and sent your message. But an enemy intercepting that link would sim-
ply see a continuous stream of off/on signals which when you examine them
all looked random and you can’t tell when or where a message was inserted
along in there. That was the aim, the goal.

Network-layer encryption can be end to end, end to gateway, or gateway to gateway;
it is most commonly used for virtual private networks (VPNs), discussed below (Sec-
tion 6.5). The chief advantages of network encryption is that it can protect multiple hops
and all traffic. A crucial limitation is that the granularity of protection is typically per ma-
chine (or per destination pair), which may not be what is desired, especially for servers
or other multiuser computers. (The IPsec standards do permit finer-grained keying; this is
difficult to do and rarely implemented.)
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Transport-level cryptographic protocols have been defined (see, for example, [Bittau
et al. 2010]), but are rarely used in practice. They require kernel modifications, which
makes them hard to deploy, and they offer limited advantages compared with application-
level encryption. Unlike network-layer encryption, it’s easy to do fine-grained keying;
in addition, transport encryptors can protect the TCP header [Postel 1981] against mali-
cious modifications. Users are thus protected against session-hijacking attacks [Joncheray
1995]. However, network-layer has often been good enough; the utility of fine-grained
keying for typical VPN scenarios is not obvious.

The most common layer at which encryption is done is the application layer; in par-
ticular, TLS and its older sibling SSL are heavily used for web transmission security. TLS
has two tremendous advantages: it’s relatively easy to add it to more or less any two-party,
TCP-based application, on more or less any operating system; in addition, configuration
is quite straightforward compared to, say, IPsec. There’s even a UDP version of it now,
DTLS [Rescorla and Modadugu 2006]. TLS doesn’t do everything; that’s probably one
of the secrets to its success. All that said, there are caveats—important ones—that imple-
menters and system administrators should heed; see Chapter 8.

At what layer should you encrypt? Not surprisingly, there’s no one answer; it depends
on what your goals are. There have been times when I have used four layered encryption
mechanisms, each of which serves a different purpose:

• WPA2, to limit access to the LAN to authorized users (Unknown to me at the
time, there may also have been cryptographic protection of some of the telephony
links; see [Malis and Simpson 1999] for a definition of a point-to-point link-layer
encryption protocol.)

• A VPN, to protect my traffic from the local network operator

• SSH [Ylönen 1996] to a remote site I control, used to tunnel my web traffic to
my HTTP proxy, to protect my traffic from the remote network—my VPN is to a
university network that has experienced serious attacks (page 172)

• HTTPS to a remote web site, for end-to-end protection of credit card or login in-
formation

The combination of SSH and the VPN is unusual (and arguably unnecessary), but one of
those two is quite important and neither is redundant with WPA2 or HTTPS.

I’ve spoken here about two-party conversations. Multiparty secure communications
are possible, too, but the actual mechanisms are considerably more complex and are well
beyond the scope of this book. That said, if you’re trying to protect all traffic between a
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pair of computers, or you’re trying to protect all traffic between two groups of machines
(including the case where one group is just a single machine), you should consider using
a VPN instead (Section 6.5).

6.4 Object Encryption

Object encryption is much harder than transport encryption because by definition you’re
not talking to the other party when you encrypt something. Accordingly, you can’t ne-
gotiate things like cipher algorithms; you have to know in advance what the other party
supports. You don’t know whether your key setup has succeeded; you have to encrypt and
pray. With long-lived objects (such as email messages), you may want to read or verify
them long after you’ve lost or deleted the relevant keys. In a multihop protocol, you may
not know what portions of the data are deemed modifiable by some hop or other. Worse
yet, you might know and find yourself unable to do anything about it, especially if you’re
trying to bolt the crypto on to an existing design—secure email and DNSSEC come to
mind. Replay detection is harder; detection of message deletion is much harder because
each object is effectively a datagram.

Here, too, there are phases: key acquisition, message canonicalization, encryption
and/or signing, and transport encoding, though in some situations some of these steps
may be omitted.

Key acquisition is exactly what it sounds like: getting the keys for the other parties.
As with transport encryption, it can be preprovisioned, though in the more common case
you’ll be using certificates (see Chapter 8). If you’re only trying to authenticate the ob-
ject, rather than encrypt it—a scenario that is possible for transport, too, though rather
less common—you need to ensure that the receivers have your key as well. If you’re us-
ing certificates, you can just include the certificate in the message. If you’re not using
certificates, the recipients either know your key or have the difficult problem of verifying
the authenticity of any included keys, so there’s no point to putting them in the message.

One special case of key acquisition is when it’s your own key; more accurately, it’s
the key you’re going to want to use at some arbitrary time in the future to decrypt the
object. This is especially serious for things like encrypted archival backups, since you
may not ever need them, but if you do you’ll need the key as well. The issue, then, is not
acquiring the key per se but rather figuring out how you’re going to preserve it while still
keeping it safe from prying eyes.

Message canonicalization is a problem that applies to signed, unencrypted objects.
When objects are moved from system to system, transformations such as adding or delet-
ing white space, expanding tabs, and changes in the end-of-line character—a simple line
feed on Unix-derived systems; a carriage return/line feed sequence on Windows—are
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Disk or File System Encryption?

There are two ways to encrypt a drive: disk encryption and file system encryp-
tionencryption!file system. The two are quite different; each has its strengths and weak-
nesses. (Note that I’m not talking about manually encrypting individual files—generally
speaking, that’s an error-prone nuisance.)

Disk encryption (sometimes referred to as full disk encryption (FDE)) protects in-
dividual disk blocks. Each block, typically 512 or 2,048 bytes, is encrypted separately,
probably in CBC mode with some function of the block number used as the initialization
vector (IV); this includes blocks on the free list. It’s a good choice for hardware vendors,
since the encryption is agnostic to operating system file formats. The most important
advantage, though, is that you don’t have to think about what’s protected: everything
on the disk is.

Disk encryption can be done either by the OS or by the disk hardware. The latter
generally offers better performance, but of course not all drives offer it. And you still
need OS and perhaps BIOS support; the key, after all, has to come from somewhere.

File system encryption, on the other hand, protects individual files. Metadata are
exposed, including things like file size, access patterns, and more; these may represent
a serious security leak. That said, it’s still the most useful technique for remote file
systems; they are, per their name, file systems. The interface presented is that of a
directed graph, not a remote disk volume. A good summary of the issues in encrypting
file system design is presented in [Blaze 1993].

It is tempting to mount an encrypted remote disk image, for example, a .dmg file
on Mac OS X or a .vhd file on Windows, and decrypt it on the client. That can work for
single-client access. However, unless the underlying OS’s file system code was written
to deal with shared disk drives, you’re likely to experience ghastly failure modes due
to lack of locking of, say, the free list. There’s another issue as well: to do this, you
often have to specify—and allocate—space for the entire virtual disk at creation time;
free space on that disk is thus not available for use by the parent disk. By contrast, an
encrypted file system has just one free list, that of the underlying OS.

There’s one more important distinguishing issue: granularity of keying. With disk
encryption, the entire volume is protected by a single key. With file system encryption,
different subtrees can be protected by different keys, held by different users.
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commonplace. XML objects can be embedded in other objects, which in turn might
induce a change in indentation. A digital signature verification will not survive such
changes. Accordingly, a canonical representation is often defined; the signature and veri-
fication calculations are performed over it, rather than over any given real instantiation.

Transport encoding is an optional phase. It is necessary if some channels over which
the object is likely to be transported cannot handle arbitrary byte sequences. Arguably,
one could say that this isn’t really part of the encryption process—one can represent
any byte sequence as a series of hexadecimal digits—but if some channel is especially
likely to be used its properties should be taken into account. The S/MIME standards
(partially based on the earlier PEM design) for signed and/or encrypted email are one case
in point; many email systems can’t handle binary values, so a base-64 encoding [Josefsson
2006; Linn 1989] was specified. Another interesting case is DNSSEC, the extension to
the DNS for digitally signed records [Arends et al. 2005a; Arends et al. 2005b; Arends
et al. 2005c]: DNS packets over UDP were limited to 512 bytes by [Mockapetris 1987],
which is not enough to accommodate both the actual response and a digital signature.
Accordingly, the DNSSEC standards had to mandate the use of the EDNS0 extension
[Vixie 1999]. (DNSSEC is actually a case study in the difficulty of retrofitting object
security to an existing protocol. The advanced student of such matters would be well
advised to compare today’s standards with the predecessor [Eastlake 1999]: many of the
changes were needed because of subtle protocol and operational aspects.)

The temporal aspects of object security raise some interesting philosophical issues.
Certificates expire; they can also be revoked if the private key is compromised or if there’s
reason to fear that the certificate might be fraudulent (Chapter 8). What does it mean to
check the signature on signed email, if the certificate was revoked? Can you still read
an encrypted email message, if your certificate has expired since then? What if you have
a digitally signed program? Can you install it after the expiration date? Should you run
it after certificate revocation? There may be a timestamp in the file saying when it was
signed, but of course an enemy can change the system clock before signing some mal-
ware. Should software vendors re-sign their software when the certificates roll over? What
about copies on CDs? How do you validate the code if you’re installing something such
as a network device driver on an offline machine? This is discussed at great length in
Section 8.4.

Storage encryption raises other issues, especially because the popular mythology of-
ten conflates the notions of “encrypted disk” and “information security.” To put it briefly,
encryption is useful if and only if your threat model includes attacks that do not go
through the operating system; most notably, this includes someone with physical access.
Good places to use storage encryption are USB flash drives (they’re regularly lost), lap-
tops (judging from how many of them seem to walk away, one can only conclude that
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laptops have feet), off-site backup media, and the like. Bad places for it are most desktops
and virtually all servers, unless your threat model includes targeted burglaries aimed at the
information on your drives rather than the hardware’s resale value, or perhaps seizures by
the police. (Of course, you can’t count on drive encryption defeating the police, since they
now have technology to keep your machine powered up while they cart it away to their
lab.1) There’s one more physical security threat that many people overlook: what happens
to the disk drive when you discard your computer? Most people do not remember to wipe
their disk first [S. L. Garfinkel and Shelat 2003].

Why not encrypt other disks? The main reason is that it generally doesn’t do any good.
Suppose the enemy doesn’t have root or Administrator privileges on the machine? In that
case, ordinary file permissions will keep the data safe. On the other hand, if the attacker
has gained elevated privileges, he or she can impersonate the legitimate users, replace
software, steal keys, and so on. In other words, it doesn’t do much good; it just increases
system overhead, though that’s often quite low these days. You might, of course, want to
encrypt your drives to protect yourself against random burglaries and the discarded drive
problem. That’s not bad reasoning, but remember that it won’t protect against electronic
intrusions that are more likely to target your information. The threats are very different,
and a single defense does not address both.

Supplying keys for encrypted storage objects poses another problem. For interactive
use—inserting a flash drive, booting a laptop, etc.—it’s not a big deal; the user can just
type in the passphrase at the right time. But what about server keys? Most servers run in
lights-out computer rooms; there’s no one present to type in the key at boot time.

6.5 VPNs

“What do you think happens if you open a gateway for an ancient evil to
infest our departmental LAN?”

Bob Howard in The Jennifer Morgue
—CHARLES STROSS

Virtual private networks (VPNs) are intended to provide seamless, secure communica-
tions between a host and a network or two or more networks. While there are many types
in use, we’ll focus on encrypted ones—this is, after all, the cryptography chapter in a se-
curity book. The big advantage of VPNs is that they provide fire-and-forget crypto: once
you turn one on, all of your traffic is protected.

1. “HotPlug: Transport a live computer without shutting it down,”
http://www.wiebetech.com/products/HotPlug.php.

http://www.wiebetech.com/products/HotPlug.php
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Figure 6.1: VPN routing configurations. The dotted lines show the encrypted link back to the
home organization.

Although many VPN topologies are possible, only two are common: connecting mul-
tiple locations of a single organization, and connecting road warriors’ laptops (and often
other toys) back to the mothership. For the most part, they use similar technologies. Let’s
look at the road warrior case first.

A virtual private network is intended to seem and operate like a real network, with
one crucial difference: some of the “wires” are in fact encrypted network connections
that may pass through many other networks and routers. These links—tunnels—are often
treated like any other network links. This has several implications for VPN configuration.
First, packets are routed to the virtual interface, including using the usual longest prefix
match [Fuller and T. Li 2006]. This makes triangle routing—sending all traffic through
the VPN gateway—straightforward, by pointing the default route at the tunnel interface;
typically, it also permits direct connection to resources on directly connected LANs, since
they have a longer prefix than 0/0. This is often necessary—how else will packets reach
the real network’s default gateway?—but carries certain risks; in particular, you are some-
times not shielded from attacks originating on-LAN. This is a particular concern when on
untrusted networks, such as coffee shop hotspots. The alternative, adding prefixes only
for the organizational LAN to the tunnel link, is known as split tunneling; see Figure 6.1.

It’s important to remember that a road warrior VPN is connecting some machine to
your network and giving it essentially unfettered access. Is that machine trustworthy?
More or less by definition, it lives outside your firewall some of the time—has it been in-
fected? Perhaps more to the point, it is often used outside of the social milieu of an office;
what are euphemistically termed “adult sites” are notorious malware purveyors [Won-
dracek et al. 2010]. Such sites sometimes label themselves not safe for work (NSFW).
Their concern is what your coworkers or boss might see, but there’s a security aspect as
well. Has that laptop connecting via the VPN been infected?
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Viewing virtual network links strictly like any other network link, and hence using
them in accordance with the routing table, has another, more subtle limitation: it’s impos-
sible to pass only certain ports over the VPN, as opposed to certain destination hosts and
networks [Bellovin 2009a]. While in principle routing by port number can be done [Zhao
and Bellovin 2009; Zhao, Chau, and Bellovin 2008], I know of no production operating
systems that support it.

The use of triangle routing raises some complex issues. It certainly hurts performance,
in that all traffic has to be routed to the home network before heading to its proper des-
tination. On the other hand, it provides two types of protection: it lets road warriors reap
the benefits (whatever they may be) of the enterprise firewall; perhaps more importantly,
it ensures that plaintext traffic to assorted web sites is shielded from others on the same,
untrusted LAN. (A lot of the plaintext traffic, and in particular much web traffic, is un-
encrypted; this in turn can expose people to sidejacking attacks [Krebs 2007], where web
authentication cookies are stolen from unencrypted sessions after login.)

From a security perspective, then, it would seem that triangle routing should always
be used, with the VPN activated immediately at boot time. Unfortunately, there are some
complications. First, many hotspots use boxes that intercept the first web request and pop
up a box with the usual login, advertising, terms of service, liability waiver, and so on. If
even initial web traffic is routed towards the VPN, the interception can’t occur, in which
case the user can’t log in and the network path isn’t unblocked for use. The fact that the
VPN can’t be set up is a minor inconvenience compared with not being able to talk at all.
Perhaps users could take advantage of the local net exception to the VPN’s routing and
try to connect to some hypothetical on-LAN web server; however, most normal people
neither know nor care what IP address their laptop has at any given time. Besides, some
of the resources necessary to complete some of these web logins are off-LAN and hence
would be caught by the VPN.

The second issue is a little odder. On some systems—Macs are notorious for this—
some applications wake up and try to transmit as soon as a network connection appears.
Depending on timing and VPN design, they may start sending as soon as the network is
unblocked, before the VPN can finish its setup.

On top of that, of course, there are performance issues: the possible overloading of the
official gateway’s link (fixable by spending more money on a faster link), and the latency
from the user to that gateway, which is often a matter of geography and hence is fixable
only by finding applied physicists who don’t think that the speed of light is really that
stringent an upper bound on signal propagation times.

Picking what VPN technology to use is harder than deciding that you need one; VPNs
are the poster child for the saying that the nice thing about standards is that there are so
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many to choose from.2 There are at least five obvious choices: IPsec [S. T. Kent and
Seo 2005]; Microsoft’s Point-to-Point Tunneling Protocol (PPTP) [Hamzeh et al. 1999];
the Layer 2 Tunneling Protocol (L2TP) [Townsley et al. 1999], the IETFication of PPTP
which needs to run over IPsec to be secure; OpenVPN [Feilner 2006]; and a plethora of
so-called “TLS VPN” products [Frankel et al. 2008].

IPsec probably has the cleanest architectural vision. It is available on virtually all
platforms, supports a wide range of authentication methods, and can secure more or less
anything layered on top of it. Unfortunately, its adoption has been hindered by too much
complexity in the base specification (e.g., per-user keying of port-specific IPsec connec-
tions), plus about ℵ0 different options [Srivatsan, M. Johnson, and Bellovin 2010]. The
key management protocol, Internet Key Exchange (IKE) [Kaufman 2005], has even more
options than that. IPsec also has trouble with NATs [Srisuresh and Egevang 2001]; it
seems it does too good a job of protecting the IP and TCP headers [Aboba and Dixon
2004]. There is a mechanism in IKE to negotiate NAT traversal [Kivinen et al. 2005];
naturally, this involves another option, rather than it being standard for all IPsec configu-
rations. Worse yet, according to various reports, different implementations don’t interop-
erate very well; they’re a fine choice for single-vendor shops but can often be problematic
otherwise.

PPTP is a Microsoft invention. It’s basically a LAN extension protocol—remote ma-
chines appear to be on the same LAN, and things like broadcast messages are supposed
to work—with its own built-in encryption mechanisms. In some environments, the LAN
orientation can cause trouble because remote machines have different timing characteris-
tics, especially if they’re reached by slow links; talking to them is not cheap, and broad-
cast messages carry a notable cost. Still, the ubiquity of Windows means that almost any
machine you have will support PPTP. There are two significant limitations, though, that
should be considered. First, PPTP uses Generic Routing Encapsulation (GRE) [Hanks
et al. 1994] for transport. GRE is blocked by many packet filters; reconfiguration may be
necessary to support it. Second, the authentication protocol has serious flaws [Marlinspike
and Hulton 2012; Schneier and Mudge 1999].

L2TP is, as noted, the IETF’s version of PPTP. Because the security comes from
IPsec, if you want to use it you have to deal with both the LAN orientation of PPTP and
the configuration complexity of IPsec. It does exist, it is supported, and it is used, but it’s
hard to identify a compelling unique niche for it unless you’re already running IPsec for
other reasons. L2TP uses UDP for transport, which means that it passes easily through
most rational NAT boxes. Unfortunately, “rational NAT box” is often an oxymoron.

OpenVPN is the open source community’s response to the problems people have
experienced with IPsec, PPTP, and L2TP. OpenVPN runs on most platforms of interest,

2. “How Standards Proliferate,” http://xkcd.com/927/.

http://xkcd.com/927/
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can communicate through NATs, and supports both triangle routing and direct routing.
The disadvantage is that it’s virtually always add-on software, no matter what OS you’re
using.

The last option is the TLS (or SSL) VPN. The key differentiator here is the use of
TLS to provide the protected transport; it in turn builds on the many years of easy inter-
operability of web browsers and servers. In fact, they do more than build on TLS, they
actually use web browsers. This is both the benefit and the limitation of the technology.

In TLS portal VPNs, the server is just a glorified web server: after the usual process,
the user is presented with a web page customized to show links to the resources he or she
is allowed to access. Crucially, though, when the links are clicked on, the browser itself
does not contact another machine directly; instead, the TLS VPN server acts as a proxy,
contacting the internal server on the client’s behalf and forwarding data in both directions.
This in turn exposes the two crucial limitations of portal VPNs. First and most obviously,
only specific services can be reached. Second, the encryption from the browser is not end
to end. Apart from the fact that the VPN gateway itself becomes a very tempting target,
since a lot of traffic will be in the clear on it, it also rules out authentication methods like
client-side certificates (Section 7.8).

TLS tunnel VPNs support other applications, but in a curious way: the browser down-
loads some active content (Java, JavaScript, ActiveX, what have you) that acts as a more
conventional VPN. That is, the active content is the VPN endpoint for an IPsec-like VPN,
but only for connections from that machine.

Although TLS VPNs are relatively simple to configure and operate, they have some
unique limitations. First, because there are no standards there is little interoperability.
This is not a serious issue for portal VPNs; it is very serious for tunnel VPNs. A related
issue is that the necessary active content modules may not exist for all client platforms of
interest.

There’s a more subtle limitation as well: more than any other type of VPN, TLS
VPNs rely on the user to do the right thing. Any way to trick the user into disclosing
login credentials (e.g., phishing) will work against a TLS VPN, since the client is, after
all, a browser. Furthermore, portal VPNs require the user to consent to the installation
of some active content. This an extremely dangerous habit to teach people. (Aside: there
was once a web-based corporate expense vouchering system written in Java. Employees
who used it—more precisely, who were required to use it—would visit this page, at which
point the Java applet would be downloaded. This applet required more access rights than
the standard Java sandbox permitted; accordingly, there was a pop-up box asking user
permission to do this. The real security experts complained that this was teaching bad
habits; the answer that came back from On High said that the vendor had been thoroughly
checked by the corporate security group and that the applet was safe. That response, of
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course, missed the point completely, which if nothing else shows that even corporate
security groups are very fallible.)

6.6 Protocol, Algorithm, and Key Size Recommendations

Given all this, what protocols, algorithms, etc., should you use? For standard situations,
this is generally a relatively easy question to answer. With cryptography, though, in addi-
tion to the usual questions about threat model, there are two more things to think about:
work factor and time.

Unlike most security situations, in cryptography we often have a quantitative upper
bound on the effort an adversary must expend. When using a symmetric cipher with an
n-bit key, the enemy’s work factor is bounded at 2n: that number of trial decryptions is
guaranteed to find the key. (I’m ignoring the question of how they can recognize when
they’ve gotten the right answer. It’s generally not too hard; see [Bellovin 1997] and its
references for some discussion of the topic.) If we can estimate the enemy’s resources,
we can determine whether that upper bound is sufficient.

That’s the good news. The bad news is the time dimension: encrypted data often must
be protected for a long time, and it’s quite imponderable how much cryptanalysis will
improve over the years. There’s an NSA saying that Bruce Schneier is fond of quoting:
“attacks always get better; they never get worse.” We can calculate a lower bound on the
attacker’s economic improvement by assuming that Moore’s Law will continue to hold.
Assume that you’ve determined that an m-bit key is adequate today, given your estimate
of your enemy’s resources. The data you’re encrypting must remain secret for 30 years.
By Moore’s Law, we know that there will be approximately 20 halvings of the price-
performance of a given amount of CPU power. Accordingly, you should use a cipher with
a keylength of at least n+20 bits.

We can approach the question from another angle: the attacker’s maximum possible
resource commitment. Assume that the enemy has 107 processors, each of which can
try 109 keys per second. (107 nodes is a large but not preposterously large botnet. 109

decryptions/second is too high by a factor of at least 10 and probably 100 for a general-
purpose processor or GPU core.) There are about 3.15 ·107 seconds in a year, which yields
3.15 · 1023 guesses per year, which in turn corresponds to a keylength of about 78 bits.
Adding 20 bits for a 30-year margin and another 20 bits to reduce the odds of a lucky
guess early in the effort gives a keylength of 118 bits. In other words, using a standard
128-bit key is more than ample. (It’s also worth noting that even a very powerful enemy
who can manage 1016 trial decryptions per second is unlikely to devote all that to one
single problem, such as your data, for 30 years. A few years ago, I told a friend with
spooky connections about a new paper on cryptanalytic hardware. The design would cost
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Physical Limits

Can we bound the effort an attacker can launch by physical science? Let’s restrict
our attention to the solar system, since the speed of light is an effective barrier to
programming other stars.

The sun contains most of the matter in the solar system; its mass is approximately
2 ·1030 kg. A proton masses about 2 ·10−27 kg; assuming that the sun is entirely com-
posed of protons (a reasonable assumption, since neutrons have about the same mass
and electrons are three orders of magnitude less massive), we see that the solar sys-
tem has about 1057 protons. Call every one of these a computer, and assume it can
do 1015 decryptions per second. In a full year, then, this solar system-sized computer
could manage 2254 decryptions, so a 256-bit key is safe, even against super-powered
villains. . .

We can take this a step further: why limit our proton computers to 1015 decryp-
tions/second? It’s unclear whether time is quantized in the same way that energy is. On
the other hand, according to some interpretations of physical theory, times shorter than
10−44 seconds aren’t meaningful [Baez, Unruh, and Tifft 1999]. This bounds the speed
of our solar system computer to 10101 operations per second, or 3.8 ·10108 operations
per year. This translates to a keylength of about 361 bits.

many millions to build and would take a year for each solution. He laughed, thinking of
the political fights that would ensue: which intercepts would be worth solving on such
slow, expensive hardware?)

There’s one more aspect to take into account: advances in cryptanalysis. Can some-
one, such as the Andromedans, crack a modern cipher? While this can’t be ruled out—
though no one ever knowingly uses a cipher that their enemies can break, the history
books are full of examples of world-changing cryptanalytic feats—it’s important to real-
ize what a solution would look like. Ciphers today don’t shatter; it is all but impossible to
imagine a solution where one plugs in some ciphertext, presses a button, and an answer
pops out immediately. Rather, there’s a work factor associated with a solution, often a
considerable work factor. Consider the Data Encryption Standard (DES), a now-obsolete
56-bit cipher endorsed at the time by the NSA. The best attack on it ever published, linear
cryptanalysis [Matsui 1994], requires 243 known plaintexts. As it turns out, for completely
different reasons, encrypting more than 232 DES blocks with the same key is a bad idea;
no one will encrypt 2,048 times more data. In other words, the attacker almost certainly
cannot collect enough ciphertext, let alone the corresponding plaintext, to launch the at-
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tack. If a modern 128-bit cipher is cracked, it’s likely that the work factor is reduced
to something that is still preposterously large, but not up to the nominal 2128 standard.
There’s still plenty of safety margin.

An interesting statement appeared in the press recently. James Bamford, probably the
foremost NSA watcher, wrote: [2012]:

According to another top official also involved with the program, the NSA
made an enormous breakthrough several years ago in its ability to cryptana-
lyze, or break, unfathomably complex encryption systems employed by not
only governments around the world but also many average computer users
in the United States. The upshot, according to this official: ‘Everybody’s a
target; everybody with communication is a target.’

Is that statement accurate? If so, what work factor is still needed? The context of the
statement was a description of a massive new NSA datacenter.

It is worth stressing that this analysis has primarily focused on the upper bound, the
one given by key size. A cipher can be much weaker than that! A monoalphabetic sub-
stitution cipher on the 26-letter English alphabet has 26! possible keys, or a key size of
about 88 bits. It is nevertheless simple enough to solve that there are puzzles based on
it in daily newspapers. However, the amount of cryptanalytic review that today’s public
ciphers undergo is a reasonable guarantee that they’re nowhere near that weak.

There’s one more way to look at the problem: an appeal to authority. In 2009, the NSA
published a remarkable document, their so-called Suite B Cryptography specifications.3

In it, they state that 128-bit Advanced Encryption Standard (AES) encryption is strong
enough for Secret data, and 256-bit AES is good enough for Top Secret data. Assuming
that this isn’t disinformation (and I don’t think that it is), the NSA is saying that a 128-
bit cipher is good enough for most national security data. (Of course, given Bamford’s
statement, perhaps it is disinformation.)

Should you go to 256 bits? After all, that’s what they recommend for Top Secret
data. Your cryptography is rarely the weakest point. The NSA itself says, “Creating se-
cure cryptographic components, products and solutions involves much more than simply
implementing a specific cryptographic protocol or suite of cryptographic algorithms.”
Unless your computers and practices are in line with NSA’s own habits—and they’re al-
most certainly not—your algorithms and key sizes are not your weak link. And the NSA
itself? From what I’ve heard, they want 256-bit keys to guard against the possibility of
massively parallel quantum computers being developed; such a computer could crack a
128-bit key in O(264) time. Their enemies may not be your enemies, though, and their
requirements are stringent; I’ve seen redactions they ordered in a document more than 65

3. “NSA Suite B Cryptography,” http://www.nsa.gov/ia/programs/suiteb cryptography/.

http://www.nsa.gov/ia/programs/suiteb_cryptography/
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years old. That said, newer versions of their Suite B document do suggest planning for
quantum-resistant algorithms and key lengths.

I conclude that 128-bit keys are adequate for almost all purposes and against all ene-
mies short of MI-31. You can use longer keys if it doesn’t cost you anything (256-bit RC4
runs at the same speed as 128-bit RC4), but it rarely makes much security sense.

Stream ciphers are harder to employ properly than are block ciphers, but they do have
their uses. RC4 has been the most popular choice, and it is extremely fast; that said, it has
a number of serious cryptanalytic weaknesses [Golić 1997; Knudsen et al. 1998; Vanhoef
and Piessens 2015]. Don’t use it for new applications; instead, use AES in counter mode.
In fact, do your best to eliminate all uses of RC4 within your infrastructure. (The history
of RC4 is too tangled to explain here; the Wikipedia article is a good starting point. The
best source for a description of the algorithm itself is an expired Internet draft.4)

If we’re going to use 128-bit keys for our symmetric ciphers, what size modulus
should be used for RSA or Diffie-Hellman moduli for equivalent strength? There have
been analytic efforts based on how many operations are required to factor large numbers;
two of the best-known analyses are by the National Institute of Standards and Technology
(NIST) [Barker et al. 2012] and the IETF [Orman and Hoffman 2004]; a comprehensive
survey of recommendations can be found at http://www.keylength.com/. The calcula-
tions are complex and I won’t repeat them here, but they don’t completely agree. That
said, both agree that a 3,072-bit modulus is adequate for 128-bit ciphers, and 2,048-bit
moduli are sufficient for 112-bit ciphers. Although the 3,072-bit size is probably more
mathematically accurate, it is considerably more expensive in CPU time, especially on
low-end devices. Unless you feel that you really need 128 bits of security (as opposed to
key size, since AES doesn’t support 112-bit keys), 2,048-bit moduli are adequate. Again,
if the Andromedans are after you, a more conservative choice may be indicated; even the
NSA says so. 1,024-bit moduli are too small; research results suggest that MI-31 or its
competitors can break them [Adrian et al. 2015].

The situation for elliptic curve algorithms is more complex, since deployment has
been hindered by confusion about their patent status (but see [McGrew, Igoe, and Salter
2011]). That said, most of the analyses, including the NSA’s, concur that a 256-bit mod-
ulus is suitable for 128-bit ciphers. The problem is that using elliptic curve cryptography
requires picking a curve; it’s not entirely clear which are the safest.

One choice is the set of curves standardized by NIST [NIST 2013]. In years gone
by, that would have been uncontroversial; NIST standards have generally been seen as
strong. However, one of the Snowden revelations was that the NSA tampered with the
design of a NIST standard random number generator used for cryptography [Checkoway

4. “A Stream Cipher Encryption Algorithm ‘Arcfour’,”
http://tools.ietf.org/id/draft-kaukonen-cipher-arcfour-03.txt.

http://www.keylength.com/
http://tools.ietf.org/id/draft-kaukonen-cipher-arcfour-03.txt
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Table 6.1: Size Recommendations for Cryptographic Primitives

Purpose Size (bits)
Symmetric cipher key length 128
RSA or DH modulus 2,048
Elliptic curve modulus 256
Hash function (output) 256

et al. 2014; Green 2013; Perlroth, Larson, and Shane 2013]; since then, many people
have come to distrust all NIST standards. The NIST curves do include some mysterious
constants; might they have been selected to produce a curve that the NSA can break?
Some people prefer the Brainpool curves [Lochter and Merkle 2010], but there is concern
that those curves could have been manipulated, too [Bernstein et al. 2014]. Others have
opted for Bernstein’s Curve25519 [2006], which is very fast; however, there are some
technical issues with its point representation that pose some compatibility issues. If you
don’t trust NIST and the NSA, the latter two choices are arguably safer, but which of the
two is best is not yet completely obvious.

By contrast, the proper hash function output size is very strongly and clearly related to
cipher key length: it should be double to avoid birthday paradox attacks. In other words,
if you’re using a 128-bit cipher, use a hash function with 256-bit output.

My size recommendations are summarized in Table 6.1.
For protocols, the IETF made a series of recommendations in 2003 that have held

up pretty well [Bellovin, Schiller, and Kaufman 2003]. Some of the protocols described
there (e.g., IPsec and TLS) have newer versions, but in general the advice given there is
worth following. Table 6.3 summarizes it and adds some newer items.

Recommendations for the cryptographic algorithms themselves (Table 6.2) are a bit
more problematic. RSA, Diffie-Hellman, and elliptic curve are all considered secure when
used with proper modulus sizes, per Table 6.1. Elliptic curve is often preferred because it
requires less CPU and produces smaller output; however (and especially in the wake of
the Snowden revelations), there is concern over which curves to use.

Considerations of cryptanalytic strength and output size both rule out the MD5 and
SHA-1 algorithms as hash functions. The 256-, 384-, and 512-bit variations of SHA-2
[Eastlake and T. Hansen 2011; NIST 2015b] all look quite strong. NIST has selected an al-
gorithm known as Keccak as SHA-3 [NIST 2015a], but a NIST cryptographer has recently
stated that “cryptanalysis since 2005 has actually eased our concerns about SHA-2.”5 The

5. “IETF 83 Proceedings, Security Area Open Meeting,”
http://www.ietf.org/proceedings/83/slides/slides-83-saag-0.pdf.

http://www.ietf.org/proceedings/83/slides/slides-83-saag-0.pdf
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Threat Modeling: A Case History

A friend recently posed the following question:

Given an 80-bit random key, whitened with SHA-2-256 and used as an
AES key, what is your estimate of the probability that a national actor can
recover the original key using brute force techniques in the next five years?
The only crib is that the plaintext is in ASCII, with the top bit cleared.

Further questioning revealed that he wanted to protect a password hint file on a smart
phone that might be lost; he assumed that he would notice the loss, and would be
able to change his passwords within a week. In other words, there is no long-term
confidentiality threat to the data. Let’s crunch the numbers.

DES, a 56-bit cipher, was solved by brute force in 1997 for $250K [Electronic Fron-
tier Foundation 1998]. My friend wants to be safe in 2017, about 13 Moore’s Law dou-
blings since 1997. On the other hand, he’s planning on using an 80-bit key rather than
56, so the net increase in difficulty is 11 bits, or a work factor increase of 211. The
cost, then, is about 211 ·$250,000, or $500 million. Can a nation spend that much on
a cryptanalysis box? Assuredly, though few private companies could. Thus far, there
would seem to be a real threat. However. . .

The suggested algorithm involved “whitening” the key: using SHA-2-256 to spread
the random bits uniformly around the 256-bit AES key. This avoids any possible short-
cut attacks based on the assumption that the high-order 176 bits of the key are all 0s.
This is a non-standard way of doing things: a brute force attack would require con-
necting an 80-bit counter to a hash function, and then feeding that in as the key to a
cipher. (It would also slow down the attack; at least in software, AES is much faster than
SHA-2-256.) If my friend is the only one doing this, the question is rather different: is it
worth spending that much money on a special-purpose machine good only for cracking
one particular individual’s passwords? Unless his passwords are really important, one
would have to be skeptical. However, if the CEOs of much of the Fortune 500 were to
adopt this scheme, the scales might tilt back.

There’s one more point to consider: is the threat model correct? Is he really a target
of the Andromedans? Would he really know if MI-31 had taken his phone, and hence
be able to change his passwords? Might they sneak into his hotel room and copy its
memory while he’s at the pool? Would they resort to a cyberattack instead, and insert
some malware that would wait for him to unlock the file? For that matter, what they’d
really be interested in is the data protected by those passwords. Are those systems
hackable? Are their sysadmins bribable? His 80-bit key may not be the weakest link.
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significance of SHA-3 is that it is based on fundamentally different design principles than
MD5, SHA-1, and SHA-2; a new cryptanalytic attack on one is unlikely to affect the
other. At this point, both seem like excellent choices.

A somewhat troublesome part is the block cipher algorithm. AES is standardized, en-
dorsed by the NSA, and has been the subject of a lot of academic study. That said, and
even discounting Bamford’s comments because he didn’t say what algorithms are vulner-
able (and for all we know was himself the victim of disinformation), there is a modest
amount of uneasiness about it; it doesn’t seem to have the safety margins one would
like. There have been attacks on weakened versions of AES with 256-bit keys [Biryukov,
Dunkelman, et al. 2010], and attacks only marginally better than brute force [Bogdanov,
Khovratovich, and Rechberger 2011], but some cryptographers feel that these attacks are
still stronger than one would like. Others feel that there’s no problem [Landau 2004]. Thus
far, there are no results that pose any credible threat—the attacks on 256-bit AES were
related-key attacks, which shouldn’t be an issue for properly designed protocols—but it
bears watching. It’s even harder to decide what to recommend in its place. One obvious
thing to do is to increase the number of rounds in AES (at a modest cost in performance)
and/or improve the key scheduling algorithm, especially for the 192- and 256-bit variants;
those algorithms were criticized while the algorithm was still being considered for stan-
dardization. Ferguson et al. [2000] wrote, “Compared to the cipher itself, the Rijndael key
schedule appears to be more of an ad hoc design. It has a much slower diffusion structure
than the cipher, and contains relatively few non-linear elements.” Of course, doing that
means that you have a non-standard cipher, with all that that implies for compatibility.
Camellia [Matsui, Nakajima, and Moriai 2004], a Japanese standard, has gained some
adherents and should be a drop-in replacement for AES. Still, it has not received as much
analysis because AES is the 800-kilogram gorilla in the crypto world.

On the other hand, is AES really weak? Some years ago, Biham et al. found a margin-
ally more efficient attack than brute force on a slightly weakened version of the NSA-

Table 6.2: Recommended Cryptographic Algorithms

Algorithm Function
AES Block cipher; generally speaking, new applications should

use Galois Counter Mode
Counter mode AES Stream cipher
SHA-2-256/384/512 Hash function

SHA-3-256/384/512
RSA or EC Public key algorithm
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Table 6.3: Recommended IETF Cryptographic Protocols

Protocol Uses
IPsec General network-layer encryption [S. T. Kent and Seo 2005]
TLS Simple encrypted circuits [Dierks and Rescorla 2008]; use Ver-

sion 1.2 or newer
HMAC/SHA-2 Message authentication [NIST 2015b; Weinrib and Postel

1996]
Security/Multipart Secure email and similarly formatted text [Ramsdell and

Turner 2010]
XMLDSIG Signed XML [Eastlake, Reagle, and Solo 2002]
CMS Secure objects [Housley 2009]

designed algorithm Skipjack [Biham, Biryukov, and Shamir 1999]. I marveled aloud
about it to a very knowledgeable friend, noting that taking away just one round made
such a difference. His reply: “You call it a weakness; I call it good engineering.” Maybe
the NSA really has that deep an understanding of cipher design—or maybe the safety
margin is low. We’ll know for sure in a few decades; for now, I do recommend AES’s
use.

6.7 Analysis

As long as we stay with today’s standard models of interaction—client/server, for sim-
ple transmission or object security—I don’t expect significant changes in protocols. The
important cases are handled reasonably well; the difficult problems, such as preserving
access to the key used to encrypt a backup tape, are inherent in the problem statement. One
can’t rule out breakthroughs, of course—prior to Diffie and Hellman’s work [1976], no
one in the civilian world had even conceived of the concept of public key cryptography—
but such insights occur once in a generation at most.

An interesting question is what will happen with different interaction models, such
as inherently 3-way or 4-way sessions with no one universally trusted party. (No, I don’t
know what sort of really popular application would require that; if I did, I might find
myself a venture capitalist.) The key management protocol might be a bit tricky, but lots
of other things get complicated with more than two parties.

My very strong statement that people should stick with well-understood, standardized
protocols is extremely likely to stand. Remember the quote from Needham and Schroeder
discussed earlier. It goes down as one of the more prescient statements in a technical



6.7 Analysis 105

paper; indeed, it took 18 years for what in retrospect was an obvious flaw in one of their
own schemes to be discovered [Lowe 1996].

A place I hope we’ll see improvements is the usability of cryptographic technology.
A certain amount of over-the-wire flexibility is mandatory, if only to permit migration to
different algorithms over time. Unfortunately, this protocol flexibility generally manifests
itself as more buttons, knobs, and sliders for the poor, benighted users, who neither know
nor care about, say, the rationale for using what is essentially SHA-2-256 truncated to
224-bit output [Housley 2004] to better match triple-DES; all they know is that they’re
presented with yet another incomprehensible option. Couple that with the inherent issues
of trust management—who really owns a given key?—and you end up with applications
that very few people can actually use successfully [Clark et al. 2011; S. L. Garfinkel and
R. C. Miller 2005; Whitten and Tygar 1999]. Thus far, cryptography has succeeded where
users weren’t given any decisions to make; if it’s all hidden away under the hood, people
accept it and feel better for having used it.

Given the concerns I expressed in the last section, do I think that the algorithm rec-
ommendations in the previous section will change soon? It’s important to note the as-
sumptions behind my suggestions. First, I’m assuming no drastic improvements in the
price/performance of hardware. Even if I’m off by a factor of 100—about 7 bits of
keylength—it probably doesn’t matter. If Moore’s Law runs into a brick wall within the
desired secrecy lifetime (it will at some point; it seems extremely unlikely that we can
produce gates smaller than an atom), the situation is better yet for the defender. I’m also
assuming no unforeseen cryptanalytic results. The algorithms and protocols discussed are
all well studied, but breakthroughs happen. Again, it is unlikely that a modern algorithm
will suddenly shatter, so there will still most likely be a large work factor required—but
that’s a prediction, not a promise.

Large-scale quantum computers, should they ever become real, will change things
significantly. In particular, there are efficient quantum factoring algorithms [Shor 1994];
that will probably rule out all of today’s public key algorithms. However, it’s still unclear
whether such computers are possible.

Finally, remember Shamir’s advice in 1995: “Don’t use cryptographic overkill. Even
bad crypto is usually the strong part of the system.”6

Given all that, where should cryptography be used? The security advantages of uni-
versal encryption are clear enough that I won’t bother reviewing them; the disadvantages
are not always obvious beyond the problem of “what do I do if lose my key?” That latter
is especially serious (albeit obvious) for object encryption, enough so to merit a blan-
ket statement: do not encrypt stored objects unless the risk is very great; if you do, take

6. “Notes on ‘Cryptography—Myths and Realities,’ a talk by Adi Shamir, CRYPTO ’95,”
http://www.ieee-security.org/Cipher/ConfReports/conf-rep-Crypto95.html.

http://www.ieee-security.org/Cipher/ConfReports/conf-rep-Crypto95.html
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adequate precautions to preserve keys at least as carefully. If you’re encrypting backup
media, stage regular practice drills in retrieving files (a good idea in any event, if only to
test the quality of the backups and your operational procedures for using them) and keys.

There are other disadvantages as well. The difficulty in network operations has long
been recognized: it’s impossible to see the contents of an encrypted message, even if you
need to understand why it’s causing trouble. This can also cause problems for security
folk; network intrusion detection systems can’t peer inside, either. It would be nice if we
had some sort of magic cryptanalysis box that could only look at packets with the evil bit
set [Bellovin 2003]; thus far, no one has developed a suitable one.

There’s a more subtle issue, though. Obviously, protecting cryptographic keys is ex-
tremely vital. A key that doesn’t exist on a machine can’t be stolen from it; a key that
is there but itself strongly encrypted is likewise effectively immune to compromise. This
poses a dilemma: the best way to keep a key safe is to avoid using it. Of course, if we
never use it, it’s rather pointless to have it. Nevertheless, we can draw an important con-
clusion: high-value keys should be employed as sparingly as possible and removed from
machines when they’re no longer necessary. Given the rate of host compromise, a long-
term key in constant use—say, for routinely signing all outbound email—is at great risk;
a recipient should therefore attach a lot less value to the signature than one produced
by a key that is rarely used and well protected at other times. In the absence of strong
key storage (and general-purpose hosts rarely have such facilities), strong overall secu-
rity therefore requires different keys for different sensitivity levels, suitable (and suitably
usable) software to let users manage such complexity, plus a lot of user education and
training on how to behave.



Chapter 7

Passwords and Authentication

“I haven’t told him about you, but I have told him to trust absolutely whoever
has the key word. You remember?”

“Yes, of course. Meshuggah. What does it mean?”

“Never mind.” Abrams grinned.

Ensign Flandry
—POUL ANDERSON

7.1 Authentication Principles

Authentication is generally considered to be one of the most basic security principles.
Absent bugs—admittedly a very large assumption—authentication effectively controls
what system objects someone can use. In other words, it’s important to get authentication
right.

Most discussions of authentication start by describing the three basic forms: some-
thing you know (e.g., a password); something you have, such as a token or a particular
mobile phone; and something you are, that is, some form of biometric. While this cate-
gorization is indeed useful, it understates the systems nature of authentication. The total
environment—who will use it, how you deal with lost credentials, what the consequences
are of lack of access or access by the wrong person, and more—is at least as important.
The most important question of all is how people will actually use the authentication
technology in the real world.

107
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Another important thing to remember: we authenticate in many more situations today
than we did in the not very distant past. Once upon a time, we would log in to a work
machine or two. Now, we log in to many different web sites, mail systems, devices, doors,
and even cars. The challenges, and hence the solutions, can differ.

7.2 Passwords

This book is about demythologizing security. Few areas are in sorer need of that than
passwords. The trouble started with a classic—and still correct—paper by Morris and
Thompson [1979], which among other things showed why guessable passwords were
bad. However, that result is often misapplied today; in particular, insufficient attention is
paid to the threat model (what assets you are protecting, and against whom) and to the
tension between security and usability. ([Singer, W. Anderson, and Farrow 2013] gives a
good presentation of the history of how we got to where we are and of the many mistakes
and unjustified assumptions made along the way.)

The problem of password strength is easy to explain. Simple experiments using the
classic Unix password-hashing algorithm show that given a hashed password, an early
2009 laptop—by no means a state-of-the-art computer—can try more than 150,000 pass-
word guesses per second. If the enemy has 1,000 such computers—trivial for any self-
respecting botnet owner—all possible passwords of up to eight lowercase letters can
be tried in less than half an hour. Even if digits are included in the mix, the guessing
time is still only about 5¼ hours. The attacker’s problem is often even simpler than that;
people don’t pick truly random strings like “gisegpoc” or “A*9kV#2jeCKQ”; they pre-
fer words or names, or simple variants of these. A recent study based on the RockYou
dataset, a list of passwords posted by some hackers, showed that 19 of the top 20 pass-
words found fit this model [Weir et al. 2010]; the list of most frequent choices included
“abc123”, “princess”, and the ever-popular “password” (#4 on the list, preceded
only by “123456”, “12345”, and “123456789”).

It seems simple enough to solve—just choose strong passwords!—but it’s very prob-
lematic in practice. Users today don’t have just one or two passwords to remember, they
have many dozen passwords—at the moment, I personally have well over 100—with im-
portance ranging from online financial accounts down to stores, for-pay news sites, social
networking sites, and assorted random places that simply want you to register. I cannot
possibly remember that many different passwords, let alone that many strong ones. Be-
sides, each site has different rules for what a password should be like. Some sites insist on
punctuation; others ban it. Some want long passwords; others have length limits. Some
insist on mixed case; others don’t check that, but are case sensitive; still others are case
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insensitive. The most restrictive set of rules I’ve seen comes from a US Customs and
Border Protection site used by the public.

This is the actual text, copied and pasted from their web site:

• Minimum Length : 8

• Maximum Length : 12

• Maximum Repeated Characters : 2

• Minimum Alphabetic Characters Required : 1

• Minimum Numeric Characters Required : 1

• Starts with a Numeric Character

• No User Name

• No past passwords

• At least one character must be ˜!@#$%ˆ&*()-_+!+={}[]\|;:/?.,<>"’‘!

Good luck remembering your password for it, especially since you’ll use that account
about once a year.

Suppose you do forget your password. What then? Every real-world system has to
have some provision for password recovery or reset. This is very much a trade-off between
cost and security; except for high-value sites (banks, employers, etc.), there are rarely
secure solutions. This issue is discussed in more detail in Section 7.5.

Another important issue is the change in threat model. When Morris and Thompson
wrote their paper, the primary danger was theft of the password file, followed by an offline
guessing attack. Remember that in those days, /etc/passwd was world readable; anyone
with unprivileged access to the machine could grab a copy. They certainly realized that
the host or its login command could be subverted, in which case it was game over, but that
wasn’t the threat model their solution was intended to deal with. Unfortunately, today that
is one of the most serious problems. The attackers aren’t stupid; phishing attacks, com-
promising servers, and compromising client hosts are the easiest ways to grab passwords.
But if the attacker has accomplished any of these, a strong password is no defense at all;
a keystroke logger doesn’t care about the number of special characters you’ve chosen. Is
password strength obsolete [D. Florêncio, Herley, and Coskun 2007]?

Well, not necessarily. As is frequently the case, the correct answer is “it depends.” In
this case, it depends on the kinds of attacks you’re trying to defend against and on your
total system design:
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1. What types of guessing attacks are you trying to guard against, online (where the
attacker actually tries to log in) or offline, based on a stolen hashed password file?

2. Are the passwords in question employee passwords or user passwords? If the latter,
are some users especially likely to be targeted? For example, do you have (or expect
to have) celebrity users? There are unscrupulous tabloid papers and web sites that
will pay handsomely for dirt about the famous; that in turn can attract more focused
attacks.

3. More generally, are you concerned with opportunistic or targeted attacks?

4. What do you assume the enemy can do? Subvert client machines? Subvert your

Figure 7.1: Picking a good password.
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servers? Steal your password file? Launch phishing attacks? Bribe employees?
Eavesdrop on communications?

I’ll discuss the questions in order, though (of course) the answers interact.
Offline attacks against hashed passwords is the threat model against which strong

passwords were suggested as a defense. If that’s the risk, password strength is still rele-
vant.

Online guessing is another matter. While password strength may be an issue, the
attacker’s problem is the effective guessing rate: How many tries per second does the
system allow? Is there an upper bound, after which the account is locked for some period
of time?

It’s relatively straightforward to design a system to respond relatively slowly; indeed,
Morris and Thompson designed their scheme to be inherently slow, to frustrate offline
guessers as well. An obvious and frequently implemented variant is to slow things down
more for each incorrect guess. That gets tricky, though. Is the slowdown per session?
The attacker can counter by creating many sessions, perhaps even simultaneously. The
defender’s obvious counter is to tie the guess rate to a login name, but that creates inter-
esting synchronization and locking issues, especially on large-scale distributed systems.
If there’s too much contention for a per-user lock, simply trying incorrect guesses can
constitute a denial-of-service attack against the legitimate user.

Taken to the limit, the notion of slowing down the response to an incorrect login at-
tempt is to lock the account for some substantial period of time, on the order of hours.
Again, an attacker can abuse this to lock out legitimate users. Some financial sites require
human intervention to unlock accounts, but you can afford that only if you make a con-
siderable profit for each user. By contrast, companies that make very little per user, such
as social networking sites, can’t afford people for that sort of event; they have to rely on
automated processes. The question you have to ask yourself here is pretty obvious: What
is the expected rate of loss from password-guessing attacks, compared with the cost of
reset and the loss of annoyed legitimate users? That is, you’re balancing the cost of an
account breach against the cost of a forgotten password or locked-out account. Picking
strong passwords cuts the cost of the former while increasing the cost of the latter. (If
you’re planning to turn this question into a spreadsheet, remember to include generous
error bars; there are considerable uncertainties in many of the input parameters. “Never
let your precision exceed your accuracy.”)

Handling online password-guessing attacks is hard enough when the passwords be-
long to your customers. The question may be completely different when dealing with
employee passwords (item 2). The risk of lockout can be quite serious if the locked-out
accounts belong to your system administrators or security response team, especially if
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What Makes a Password Strong?

Suppose you do want to pick a strong password. Will compliance with, say, the rules
mentioned on page 109 do it? Perhaps surprisingly, the answer is “not necessarily.”

The essence of the problem is how to increase the attacker’s work, ideally to the
point that it is statistically extremely improbable for any guess to be right. Let’s look at
that list.

The first character must be numeric, so there are only ten choices. Only one digit
is required; since switching between letters and numbers is inconvenient, most people
will use a consecutive string of digits followed by a consecutive string of letters. A
punctuation character is needed, but the easy, natural choice is to put a period at the
end. A common choice, then, will be one or more digits, one or more letters, and a
period, where the total number of digits and letters will be seven. There are 10 digits
and 26 letters, and six choices for how many digits versus letters. The total number of
combinations, then, is

6

∑
i=1

10i ·267−i

which comes to 5,003,631,360. (It’s actually a bit less than that because of the rule
about repeated characters.) Using the assumptions from page 108—1,000 computers
each doing 150,000 guesses per second—it will take about 30 seconds to try them
all. Not everyone following those rules will have a guessable password, but the rules
themselves don’t guarantee it.

[D. Florêncio and Herley 2010] argue persuasively that password strength policy is
determined more by whether or not users have a choice about using the site, rather than
by security needs. Thus, monopoly providers—employers, government agencies, and
so on—impose strong restrictions because they can. Shopping and advertising sites,
which fear losing users—that is, opportunities for profit—impose weaker requirements:
“ We conclude that the sites with the most restrictive password policies do not have
greater security concerns, they are simply better insulated from the consequences of
poor usability.”

The essence of a good password is given in Figure 7.1: unpredictability. The spe-
cific scheme it suggests—four random, common words—is decent; the trouble, though,
is that most people won’t pick random words nor will they put them in random order.
(Besides, four words is probably too short, given today’s attackers.) I suspect that it
works well only if the system assigns passwords.

Are there other rules? Sure; the trick is simple: create a large-enough search
space. But it can’t be any large search space; it’s got to be one from which people
will actually choose (more or less) uniformly. Even picking eight random lowercase let-
ters gives about 209 billion choices, more than 40 times as many as that convoluted
set of rules might yield, but as we’ve seen that’s insufficient; 209 billion isn’t that large
a number these days. The problem is that people’s choices from the space prescribed
by those rules are decidedly nonuniform. Password choice is a people problem.
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the denial of service is just one part of a larger, more serious attack [Grampp and Morris
1984]. In other words, detecting guessing attacks is easy; deciding how to respond is hard.

Employee passwords can be a simpler problem. The easiest solution is to avoid using
passwords entirely, especially for external access. You can afford other forms of authenti-
cation, and you can invest in training. You can apply different policies if the login attempts
are coming from the employee’s usual haunts (perhaps a given IP address or LAN) rather
than external logins. You can try to ensure that employees use different passwords for
different services; in particular, if your employees are also users of your publicly avail-
able services, you want them to use different passwords. This is hard, though; people
are aggressively uncooperative when dealing with policies that seem arbitrary. If exter-
nal passwords like “plugh” and “xyzzy” are acceptable but your system insists on special
characters in internal passwords, you’ll undoubtedly find that the same people who picked
“plugh” and “xyzzy” will use “plugh.” and “xyzzy!” internally.

The issue of targeted versus opportunistic attacks (item 3) interacts strongly with
item 2. If your organization is being targeted, cracking a single employee account can
lead to profound damage. This may even be true for external service passwords, if they
have privileged access to the service. Note carefully that often, a disgruntled employee or
ex-employee is the most likely person to launch such an attack—and such a person might
know things that an outsider doesn’t know, such as the names of spouses or pets.

For user accounts, there is always some risk of targeted attacks. Some users will have
to contend with a disgruntled spouse, a suspicious partner, a mischievous friend, or the
like.

The last issue (item 4) is the easiest to understand: if the attacker can eavesdrop on
communications or can subvert machines at either end, password strength is irrelevant. If
the attacker can steal the password file, the issue is whether you store passwords in the
clear or hashed. (Stealing a password file may not involve subverting a machine. How
good is the physical security of your off-site backup media? You do store copies off-site,
right? No? You have another serious problem.) If you store them in the clear, the attacker
has won. (Do you store them in the clear? See Section 7.3 and Section 7.5.) A skilled
attacker will almost certainly be able to compromise some client machines, at the very
least, and will quite possibly be able to compromise the server. An Andromedan will be
able to compromise the server and/or steal the password file.

Several conclusions can be drawn from all this. First, employee passwords, if used,
should be very strong. However, you’re better off using better authentication for em-
ployees. Second, while rate-limiting guesses is a good idea, you can’t carry that too far
except for high-value systems. Third, given the rate of compromise of random client sys-
tems, the stress on strong passwords is misguided for many, many systems; the cost of
password loss (including the risks of secondary authentication; see below) is higher.
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A closely related issue is enforced password changes, especially at frequent intervals.
Conventional wisdom says that this is a good idea; often, though, it is counterproductive.
Again, a thorough analysis of the threat model is necessary.

The original rationale for frequent password changes came from the US Department
of Defense in 1985 [DoD 1985b]. They gave an equation to calculate the proper fre-
quency. Unfortunately—and even apart from the gross uncertainties in some of the input
values—the analysis ignores modern threats like keystroke loggers. (It was rather hard to
plant a keystroke logger on a 1985-vintage terminal. Many were electromechanical, hard-
copy devices that didn’t even have CPUs; the few that did were mostly programmed in
ROM and were largely immune to attack. Only a very few were “smart.”) More seriously,
it ignores user behavior.

Gene Spafford did a thorough analysis of the threats some years ago [Spafford 2006].

. . . [P]eriodic password changing really only reduces the threats posed by
guessing, and by weak cracking attempts. If any of the other attack methods
succeed, the password needs to be changed immediately to be protected—a
periodic change is likely to be too late to effectively protect the target system.
Furthermore, the other attacks are not really blunted by periodic password
changes. Guessing can be countered by enforcing good password selection,
but this then increases the likelihood of loss by users forgetting the pass-
words. The only remaining threat is that periodic changes can negate crack-
ing attempts, on average. However, that assumes that the passwords choices
[sic] are appropriately random, the algorithms used to obfuscate them (e.g.,
encryption) are appropriately strong, and that the attackers do not have ad-
equate computing/algorithmic resources to break the passwords during the
period of use. This is not a sound assumption given the availability of large-
scale bot nets [sic], vector computers, grid computing, and so on—at least
over any reasonable period of time.

User response to password change requests makes matters even worse. Grampp and
Morris observed many years ago [Grampp and Morris 1984] that people tended to use
patterns when rotating passwords: a suffix of “03” for March, “04” for April, and so
forth. A large-scale study by Zhang, Monrose, and Reiter [Zhang, Monrose, and Reiter
2010] confirmed this: they developed an algorithm that could guess about 41% of new
passwords from seeing the old ones. Their scheme often succeeded even with online
guesses; 17% of passwords could be found in five or fewer tries using just one of their
algorithms. Again, their conclusion is unambiguous: “We believe our study calls into
question the continued use of expiration and, in the longer term, provides one more piece
of evidence to facilitate a move away from passwords altogether.”
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7.3 Storing Passwords: Users

Passwords present a conundrum. They should be (at the least) reasonably strong. People
have far too many passwords; it simply isn’t possible to remember that many random-
looking strings—but the conventional wisdom is that writing down passwords is danger-
ous. The alternative, used by just about everyone, is to reuse the same password or one
of a small set of passwords, for multiple purposes; this means that a single compromise
can expose all of your resources. What’s to be done, if you have to use passwords but you
can’t memorize them and you can’t write them down and you can’t reuse them?

As always, let’s go back to our threat model. It turns out that writing down passwords
(or some approximation thereof) isn’t always a bad idea. If you’re worried about joy
hackers, in fact, it’s probably a good idea; they’re not likely to abandon their pizza box
lair to steal your wallet. Sure, MI-31 might do something like that—indeed, the FBI
has done similar things when pursuing foreign spies [Williams 2010]—but unless you’re
being targeted for attack by the Andromedans, there are easier ways for a skilled attacker
to collect passwords, such as keystroke loggers. The only caveat is that passwords should
not be stored “near” the resource being protected since that might expose them to the
same attack.

There’s a simple analogy here. People are regularly warned not to write down the
PINs for their ATM cards. This is correct, as far as it goes, since you don’t want some-
one who has stolen your wallet or purse to be able to loot your bank account. However,
an obfuscated PIN—say, the last four digits of what appears to be a phone number in
your address book—is probably OK, as long as it’s not obvious what you’ve done. The
Andromedans might trace every contact number you’re carrying; the average pickpocket
won’t, and the cleverer thieves will resort to things like mag stripe skimmers and hidden
cameras [Kormanik 2011].

In a computer context, “near” is a trickier concept. A strong sense of “not near” might
be “on a different device”; thus, you could store your computer’s passwords on your
phone. That may be an ideal, but good luck seeing the tiny special characters (your pass-
words are strong ones, right?) and copying them to your browser. Besides, if you sync
your phone to your computer, the distance is less than you thought, and if you have a
smart phone you’ll probably want the passwords usable on it, too, so you don’t really
have as much separation as you thought you did.

A more usable notion of distance is “not in the same application.” That is, store your
web passwords in some program other than your browser; if your browser is compromised
(and for most users, browsers are their most vulnerable applications), the rest of your
password stash is safe. You still have the ability to copy and paste passwords from the
dedicated application. That won’t protect you if your computer’s OS is compromised,
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but neither will anything else. Of course, there are trade-offs here, too—if you copy and
paste a password, it’s going to be on the clipboard, where other malware (or simple user
carelessness) can paste it to the wrong place. A browser-based password manager has
another advantage: it can protect you against phishing attacks. If you never type your web
site passwords, but instead rely on the manager, you’re safe: it won’t send a password to
your bank unless it believes you’re talking to the bank, and not to some site that merely
looks like it. (A really good design would look at the certificate name, rather than just the
URL, but that helps only if the login prompt is itself on an HTTPS-protected page. Too
many are not.)

There are two more things to take into account: the confidentiality and availability of
your password stash. Availability seems obvious; it’s not, because different people have
different usage patterns.
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The Security of Password Managers

There are a number of password managers available. How safe are they? I’m going
to use a few real-world examples, not as reviews or recommendations of products—
those would be silly to put in a book, in a field as fast moving as this—but to illustrate
security design trade-offs. I’m ignoring usability, except for how it affects security; I’m
also paying no attention to price or platforms supported. All of these are, of course,
very important considerations when actually buying something.

Encryption Most password managers encrypt the passwords, though the one
built in to Firefox makes the existence of a master password—the encryp-
tion key—optional. Some managers encrypt the URLs, too; others do not,
which poses privacy risks for people who visit sketchy web sites.

Synchronization Synchronization between gadgets is crucial for people who
use more than one device, especially if the stored passwords are strong,
that is, random. LastPass uses its own cloud server; if it is penetrated, an
attacker could mount a guessing attack on the encrypted password store.
1Password can use Dropbox or iCloud for synchronization, including on
their mobile apps (and the same caveats about the potential vulnerability
of a cloud storage service apply). It can also sync over a LAN; is the
protocol secure?

(Continued)
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Given that password repositories are, after all, just files or collections of
files, most password managers will work with more or less any synchro-
nization system, up to and including flash drives and sneakernet.

Some products (e.g., LastPass) provide web access to your password
collection, specifically to permit access from public machines. While un-
doubtedly convenient, encouraging use of sensitive passwords—including
your master encryption password—from potentially insecure machines is
dangerous.

Web authentication Many password managers (1Password, LastPass, Robo-
Form, and more) will automatically fill in login forms in a browser window.
Although a tremendous convenience, from a security perspective it’s both
good and bad: bad, because it fails the “nearness” test (page 115); good,
because it helps prevent phishing attacks. Pass Safe instead makes it
very easy to copy a password to the clipboard for easy pasting into a web
form; significantly, it clears the clipboard when you close the application,
thus preventing you from accidentally pasting the password elsewhere.

External hardware IronKey and CHIPDRIVE use external USB devices. That’s
great, since your passwords can’t be stolen when the device isn’t in-
serted, but human nature suggests that most people will leave their de-
vices plugged in most of the time.

Finally, password managers are not easy to get right [Z. Li et al. 2014]. See Section 11.7
for some discussion on how to evaluate software packages.

If you use only one computer—more precisely, if you use a disjoint set of computers
for different sets of accounts—this isn’t a big concern; you simply store a (suitably pro-
tected) password stash on that computer. If you use two or more computers, though, you
need something available to each of them. There are two basic answers: a portable device,
such as a USB flash drive, or some form of cloud storage. Portable devices seem more
secure, but if you encrypt the files that’s not really an issue. They’re also more subject to
loss or simply being left in the wrong place. (Have you ever wanted to grep your house
for your keys? You know—the keys on the key ring that have your flash drive attached?
The ones your teenager borrowed, along with your car?) For that matter, it’s too easy to
leave a flash drive plugged in for too long.

There’s another obvious form of portable storage: a piece of paper. Apart from failing
the availability test (What’s your backup for a piece of paper? How well does that piece of
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paper stand up to repeated folding?) it fails the confidentiality test, in that you probably
have to write down the site name next to the username and password. This means that
anyone who steals that paper will have (apart from the rest of your wallet’s contents) your
credentials for, say, the Bank of Zork.1 You may be able to obscure that one by listing the
site as “J. Pierpont Flathead” or by writing “Hippolyta” for Amazon.com, but that’s not a
solution that is generically useful.

Confidentiality is usually achieved by encrypting the stored passwords; this is gen-
erally a good idea, if it is done correctly. Some cloud storage providers do offer encryp-
tion; their solutions are acceptable if and only if the decryption is done on your machine
and they never see a decryption key. (Read the service description very carefully; some
providers encrypt files only for transmission, or encrypt the stored files with a key that
they themselves possess.) If your service provider doesn’t do the right thing (or if you
don’t trust them or can’t decrypt their service description), use an encrypted file or disk
image. All modern operating systems provide such a facility, either in the base system or
as an easy add-on.

A dedicated password storage application may be better, since it will automatically
encrypt the storage and will generally do the right thing about caching recently used pass-
words. There are many from which to choose; make sure that the one you select will let
you store the encrypted passwords in the proper spot for use with multiple devices (a
cloud drive, a flash disk, etc.). Also pay attention to cross-platform compatibility, includ-
ing with devices like phones and tablets. Think hard about the frequency and circum-
stances under which you reenter your master password; there’s a trade-off here between
ease of use and protection of the data.

The password with which you encrypt the stored passwords is extremely sensitive.
If someone gains access to the encrypted store (by stealing your flash drive, hacking
the cloud provider, seizing your computer via a search warrant, or what have you), this
password is all that stands between the attacker and all of your accounts. It is worth
considering whether you want to have different encryption passwords for sites of different
sensitivity, but that’s easier said than done. What’s important is the probability of malware
on your machine being able to get at the plaintext of the passwords. You may think that an
online banking password deserves very strong protection (and it does), but if the computer
in question is part of the accounts payable office of a medium-sized business, you’ll need
to get at that password more or less continuously anyway, so the encryption matters rather
less than one might think. For that scenario, you’re better off using a dedicated computer,
one used for no other functions. (Brian Krebs has long advocated using a “Live” CD for
banking, especially for small businesses [Krebs 2009]. It’s not that Linux is inherently

1. “Bank of Zork,” http://www.thezorklibrary.com/history/bank of zork.html.

http://www.thezorklibrary.com/history/bank_of_zork.html
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more secure—I don’t think that it is—but it’s less targeted, and using a Live CD means
that infections won’t be persistent; rebooting restores you to a clean state. And if you
don’t have a CD drive on your computer? Get a USB flash disk with a physical read-only
switch. They’re a bit hard to find, but they do exist.)

There is one more variant that should be considered. There are password managers
that generate per-site passwords from the domain name and a user-specified master pass-
word (see, for example, [Halderman, Waters, and Felten 2005; Ross et al. 2005], but there
are many others). The good thing is the inherent protection that design provides against
both phishing and password reuse. The bad thing is that any site that legitimately receives
its own password can launch a guessing attack on the master password; if found, it lets
them generate all per-site passwords for that user. There’s another problem: you can’t
change just one password. If a site makes you change your password (perhaps because
they’ve been compromised), you can only do this by changing your master password,
which in turn means that you have to change all of your passwords.
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7.4 Password Compromise

Someday, your password or passwords or password file may be compromised. Now what?
If you’re an individual, you need to do three things. First, change your password on

the affected site. Second, change your password everywhere else you used that same one.
That should be easy, since of course you don’t reuse your own passwords, but you prob-
ably know people who do. Pass this advice on to them. . . . Finally, and most seriously,
assess what information or resources are associated with that password. A financial ac-
count? Check your statements very carefully, preferably on paper; there’s malware in the
wild that can tamper with online statements [Zetter 2009a]. Physical address information?
Data that can be used for identity theft? Access to your own computers or files? In case of
mass compromise, by skilled attackers who aren’t targeting you, you’re probably safe—
they likely have information on far more people than they can profitably steal from—but
if it’s part of a targeted attack, you’re in trouble.

If you run a large, public-facing site, you have a very different problem. The hardest
part is figuring out exactly what information was compromised; that in turn is heavily
dependent on the details of your system architecture. What machine was the target of the
initial compromise? (Note that this may or may not be the same as the machine whose
compromise you detected.) From there, what can an attacker do that cannot easily be done
from the outside? Is there data that can be retrieved? If you have an ordinary database sys-
tem that is exposed to random queries from the trusted—but not trustworthy—web server,
everything in that database has to be considered exposed. You then have an ethical—and
in many cases, legal—obligation to notify all affected users. Depending on the precise
circumstances and applicable laws, you may also need to notify assorted credit card com-
panies, government regulators, and so on.

How serious a problem this is depends heavily on your system architecture and data-
base design. If you’ve stored personally identifiable information (PII), you have consid-
erably more liability under the laws of the European Union, Canada, and other civilized
jurisdictions, but perhaps not under US law. Planning ahead can save you a great deal of
grief. It is worth reading the report of the Office of the Privacy Commissioner of Canada
[Privacy Commissioner 2007] on the TJX hack; briefly, if they had stored the hash of
driver’s license numbers rather than the numbers themselves, they’d have been able to
achieve their business goals while neither exposing the information to compromise nor
violating Canadian privacy law. (System design is discussed in more detail in Chapter 11;
intrusion response is in Chapter 16.)

Notifying users is a separate problem. Many public sites have very little in the way of
contact information for their users; often, it’s at most an email address, and those tend to
suffer from bitrot. You can and should use those email addresses for breach notification,
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but you shouldn’t be surprised if many of your messages bounce or get caught by spam
filters. Depending on the severity of the problem and what information you have, you may
need to resort to paper mail; again, you will likely see a nontrivial number of undeliverable
letters. There may also be legal constraints: some jurisdictions, such as New York state,
require paper mail notification for PII breaches unless the user has consented in advance
to email notification.

In many situations, the best approach is to modify what happens after login for those
users: they’re diverted to a special sequence that tells them what happened and goes
through secondary authentication procedures to authorize a password change sequence.
With luck—or good system design—the secondary authentication data is on a separate
machine, one that wasn’t compromised at the same time as the computer used to hold
passwords. How difficult it is to present a different set of screens to the user after login
depends heavily on your system design. You may find you need this capability anyway
to handle multiple languages, changes in terms of service, and so forth. Again, planning
ahead will be a big help.

If the compromise is severe enough, it’s possible you’ll have to shut down your online
presence. This has happened to some very big companies, such as Sony [Schreier 2011];
needless to say, pulling the plug can result in a serious hit to your bottom line.

You have more difficult decisions to make if passwords are compromised on an en-
terprise system. On one hand, those passwords are considerably more valuable than are
those to, say, a newspaper’s web site. On the other hand, if you lock people out of their
work accounts you lose their productivity. Sometimes, that’s the right trade-off. I’ve seen
situations where employees were handed their new passwords when they walked into the
building the next morning. That, however, works poorly if many people telecommute or
are traveling. The good thing here is that you have much more in the way of secondary au-
thentication and contact information. As before, of course, advance planning—including
consultations with your corporate counsel—is a good idea.

7.5 Forgotten Passwords

It’s a fact of life: users (including employees) will forget their passwords. What do you
do about it? Traditionally, there are two approaches: send the password to them or cre-
ate a new password and send that to them. Sometimes, a supplementary authentication
procedure is employed for extra protection.

Users tend to like receiving their original password. After all, it’s probably one they
use elsewhere, possibly trivially modified to accommodate your strength rules; seeing it
will remind them what they did: “Oh, yeah, I replaced the ‘o’ in ‘password’ with a ‘0.’ ”
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The fact that it’s popular doesn’t make it a good idea. The problem isn’t so much that
you’ve emailed it to them (that may or may not be safe, as I discuss below) as it is that
you can only do this if you store cleartext passwords. If your login program can read
that list, so can many other programs, including attackers’ malware and your own corrupt
employees. That in itself can be bad enough; what makes it really bad is that people reuse
passwords. The same magic string that lets people into their favorite porn sites will quite
likely be used to let them into their bank’s or their employer’s systems.

Generating a new password is a much better idea. True, people will probably change
it to something they find more memorable, but they can do that anyway. Many sites that
send out passwords insist on this, for no good reason. If strong random numbers [Eastlake,
Schiller, and Crocker 2005] are used to generate the password, why not let it persist?
What is the incremental risk? There seems to be some notion that “the system knows
your password, and that’s bad.” The system will know your password as soon as you type
it in; what’s bad is if the system stores it. The other issue is where the user stores the
notification of the new password; if that is likely to be insecure relative to the value of the
resource being protected, a mandatory change may be in order.

To be sure, generating passwords isn’t trivial. At a minimum, you need a good supply
of random numbers [Eastlake, Schiller, and Crocker 2005]. There’s a standard published
algorithm for generating pronounceable passwords (such as [NIST 1993]), but that algo-
rithm has problems [Ganesan and Davies 1994]. More seriously, the notion of generating
pronounceable passwords is based on a false premise: not just that such a password is
easier to remember, but that someone is going to want to remember it. As I’ve already
mentioned, in the real world most people have far too many passwords and they can’t
even dream of remembering most of them. Typability—on whatever platforms are of in-
terest, including smart phones—is far more important.

As noted, some sites use supplementary authentication mechanisms to validate lost
password requests. In principle, this is a good idea; in practice, it’s often insecure or
unworkable. The challenge is fearsome and difficult: What sorts of questions can you ask
a user that that person will always remember, but that cannot easily be discovered by
an attacker? Your childhood pet? It might be on your Facebook page. Where you went
to school? You may be listed on the school’s page. That old standby, mother’s maiden
name? It’s a venerable choice, having been used at least as early as 1882 [Bellovin 2011b;
F. Miller 1882], but it doesn’t work very well. Apart from the complexities of modern
society compared with 1882’s conventions [Newman 1989] or the fact that many women
do not change their names when they marry, marriage records are public documents; an
attacker can easily look up the data. You might think that this would happen only in
a serious, targeted attack, perhaps by MI-31, but in fact the attack has been automated
[Griffith and Jakobsson 2005] since many of these records have been put online.
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Secondary authentication is more challenging for public figures, since there is fre-
quently a lot of information available about such people. The Sarah Palin email account
incident is a good case in point [Zetter 2008]; all the attacker needed to know was Palin’s
birthday, zip code, and the answer to a simple security question: where did she meet her
spouse? It might be challenging to learn that about a random person, but for someone
who is the subject of as much media attention as she was, it’s pretty easy.

This illustrates another issue: those very close to a person know the answers to these
questions. Divorce cases are particularly thorny, since soon-to-be-ex-spouses are often on
their worst behavior. Snooping on email has happened in such circumstances [Springer
2010]; technical measures are likely to be inadequate. It is interesting to speculate what
will happen in the future with online banking passwords.

The challenge is to ensure that the password, old or new, reaches the right individ-
ual and only the right individual. In an employment situation, the employee’s supervisor
might be the best person to handle it, since he or she presumably knows the employee.
That doesn’t work as well with today’s distributed companies, where solitary employ-
ees can be in any part of the globe. Similarly, in university environments students are
sometimes told to show up with their ID card to get their passwords reset; again, this is
problematic with the rise of distance learning.

To address this, some have suggested “social authentication”—letting your friends
authenticate you. In one scheme, designed to deal with the loss of a token, another legit-
imate (but preconfigured) user can use his or her own credentials to obtain a temporary
authentication code for a colleague [Brainard et al. 2006]. This is combined with the
user’s PIN for a single login session. The big risk here is that lots of people can now grant
access; if they’re careless about security or dishonest, you have a problem. A related no-
tion relies on users’ abilities to recognize their friends; unfortunately, that seems to be
very susceptible to targeted attacks [H. Kim, Tang, and R. Anderson 2012].

The most common way to hand out reset passwords is by email. This can be per-
fectly appropriate; some resources are of little enough value that the risks of email being
intercepted are acceptably low. For more valuable passwords, some form of out-of-band
authentication is a better idea. Banks will generally send paper mail with new credentials;
SMS messages are another good way, though the malware artists have started building
phone apps that do nasty things when phones are used for authentication [Crossman 2013;
Pauli 2014].

If you use email, the message will be in the user’s inbox. How well protected is
that, both immediately and over the long term for people who don’t delete their email?
For passwords of modest value, you’re probably safe; for something like an employee
password being sent to a free mail account, it’s rather more dicey. (This is one of the rare
instances where people have to use outside servers for work-related matters: more or less
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by definition, if they’ve forgotten their employee password they can’t get at their internal
email.) There are two good choices here: require an immediate password change, or send
a URL for a password reset page. A lot depends on your overall system design—how
hard is it to have special case handling of successful logins, versus how much access does
your (externally facing) web server have to the password database. If you do send a URL,
it should have two crucial properties: it should be usable only once, and it should only be
usable for a limited amount of time.

Ultimately, the risk is that many secondary authentication systems are weaker than the
primary one, especially against certain threats. The more you’re the subject of a targeted
attack, the more risk you’re facing. A random 419 scammer halfway around the world
won’t steal an envelope from your mailbox; an Andromedan agent might.

7.6 Biometrics

“We need something that will identify any representative of Civilization, pos-
itively and unmistakably, wherever he may be. It must be impossible of du-
plication, or even of imitation, to which end it must kill any unauthorized
entity who attempts imposture.”

Dr. Nels Bergenholm in First Lensman
—E. E. “DOC” SMITH

There’s a saying in the security business: if you think that biometrics are the answer,
you’re asking the wrong question. That’s exaggerated, of course, but so are many of the
claims made for biometrics. More than any other form of authentication, biometrics must
be looked at from a systems perspective.

Although many biometrics have been proposed over the years, including speech, typ-
ing rhythms, and hand geometry, three are of major importance: fingerprints (100+ years
of criminology have given us reasonable assurance of their uniqueness; besides, scan-
ners have become very cheap); iris scans, widely regarded as the most secure [Daugman
2006]; and facial recognition, due to the ubiquity of cameras and the potential in physical
security situations for walk-through authentication. Acceptors generally don’t store the
actual image of any of these; rather, they store a template—more or less the equivalent
of a hashed password—against which they match a submitted biometric. (As with many
aspects of biometric, reality is often more complex. Some schemes, e.g., [Ballard, Ka-
mara, and Reiter 2008] and [Pauli 2015], do store images; in others, the templates are
effectively reversible.)
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A biometric authentication system consists of a number of components: a human (or
parts thereof), a sensor, a transmission mechanism, a biometric template database, and
an algorithm are the minimum. An attack can target any of these, which means that they
must all be protected.

Let’s start with the human. The premise of biometric authentication is that it al-
ways Does the Right Thing. It can’t be forged, it can’t be forgotten, and it will always
work. None of these are true. Researchers have successfully spoofed fingerprint readers
with gelatin casts made from molds created from latent fingerprints [Matsumoto et al.
2002]. Facial recognition has been spoofed by photographs [Boehret 2011]. Thieves have
chopped off people’s fingers to fool cars’ fingerprint readers [J. Kent 2005] and compro-
mised biometric scanners [Whittaker 2015]. A non-trivial percentage of the population
has fingerprints that cannot be read by common scanners [S. T. Kent and Millett 2003,
p. 123]. And there’s the obvious: someone who injures or loses a body part may not be
able to use systems enrolled in before the incident.

Sensors are sometimes designed to compensate for some of the spoofing attacks.
Many contain “liveness detectors”: pulse detectors, thermal devices, and so on, that try to
verify that the body part being monitored really is a live body part attached to a real, living
person. Determined adversaries have been able to work around many of these defenses.
For example, [Matsumoto et al. 2002] notes that capacitive detectors were intended to
resist attacks that had been launched successfully against optical scanners, but their tech-
niques worked against both kinds of sensors.

Suppose your laptop has an iris scanner. Can you use that to log in to some remote web
site? Recall that the remote web site doesn’t see a finger or a fingerprint; rather, it sees a
stream of bits. An enemy who can eavesdrop on the transmission line can easily replay the
bit stream, thus spoofing the “absolutely secure” biometric authenticator. At a minimum,
the transmission link needs to be encrypted; depending on the operational environment,
the sensor and encryptor may need to be inside a tamper-resistant enclosure.

The most misunderstood part of biometric authentication systems is the actual algo-
rithm used to do the match. Processing, say, a retinal image is not the same as checking
a password. The latter will always yield a definite answer of “right” or “wrong.” By
contrast, the former is a probabilistic process; sometimes, the correct body part will be
rejected, while at other times someone else’s will be accepted. Worse yet, there is a trade-
off between the true accept rate (TAR) and the false accept rate (FAR): the more you tune
a system to reject impostors, the more likely it is that it will reject the real user. A 2004
report from NIST [Wilson et al. 2004] makes this clear. If the best available fingerprint
scanner was tuned for a 1% FAR when trying to pick out an individual from a large col-
lection, the TAR was 99.9%. But cutting the FAR to .01% cut the TAR to 99.4%. (Facial
recognition was much worse; for the same FAR rates, the TAR was 90.3% and 71.5%.)
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While the technology has improved since then,2 the trade-off issue remains. There
are several implications for systems design. The first is what the consequences are of a
true accept failure (sometimes known as the insult rate). That is, if a legitimate user is
rejected by the system, what happens? Can that person try again, perhaps repeatedly? As
discussed earlier, locking someone out for too many password failures is often a good
idea; do we do the same with biometrics? Do we resort to secondary authentication, with
all of its costs and risks? There is no one answer to this question; a lot depends on your
application and system design.

The FAR raises its own issues. One can be understood by simple mathematics: for
any given FAR rate, with enough different biometric templates, the probability of a false
match becomes quite acceptable. Suppose that our system is tuned for a FAR of .01%.
If there are n entries in our database of acceptable biometrics (i.e., n faces or iris scans
from n/2 users or full fingerprints from n/10 users), the odds of a successful attack are
.9999n. At n = 6,932, the odds tip in the attacker’s favor. The countermeasure is obvious:
require an assertion of identity before the scan, and match the input biometric against a
single user’s templates, rather than against your entire database. (The fingerprint scanners
built in to many laptops generally don’t do this, because n isn’t high enough to matter.
Undoubtedly, though, they’re tuned for a relatively high FAR, in order to keep the TAR
acceptable.)

The cost of a trial to the attacker also interacts with the FAR. If the cost is high
enough—say, what will happen if Pat Terrorist tries to cross a border with Chris Clean-
record’s biometrically enabled passport—the attackers can’t easily launch an imperson-
ation attack. Conversely, if trials are cheap—a self-service visa kiosk?—the attack is fea-
sible if there is a large enough supply of cooperative people with passports and clean
records.

The last element of our abstract biometric authentication system is the template data-
base. Given a template, can an attacker easily construct a fake biometric that matches it? If
so, the legitimate users have a very serious problem if the database is ever compromised:
most people have a very limited supply of fingerprints and irises to use, and even fewer
faces. It’s much easier to change your password than to change your eyeball. Templates
are supposed to be irreversible, much like the hash of a password, but some researchers
have managed to attack them successfully [Galbally et al. 2013]. Beyond that, possession
of the database allows for low-cost trials to exploit the FAR. The database compromise
issue, which is a conceptual one rather than an artifact of today’s technological failings,
may be the ultimate limit on the growth of biometrics.

There are other difficult issues. What resources, precisely, are accessible via by bio-
metric authentication? On a local system—say, a laptop that is unlocked by a fingerprint

2. “NIST: Performance of Facial Recognition Software Continues to Improve,”
http://www.nist.gov/itl/iad/face-060314.cfm.

http://www.nist.gov/itl/iad/face-060314.cfm
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swipe—part of the answer is access to a local database of cryptographic keys, such as
Apple’s keychain. When passwords are used to authenticate access to the laptop, that
password is converted to a key that is in turn used to decrypt the database. Converting a
password to a key is straightforward; there are even standards saying how to do it properly,
such as [Kaliski 2000]. Not so with biometrics; by their nature, they’re inexact. Here’s an
experiment to try. Mount your camera on a tripod and take two indoor pictures of the ex-
act same scene. Strip out the metadata (such as timestamps) and see whether the resulting
files are identical. If they differ in even a single bit, they can’t be used as keys.

The solution is a technology known as fuzzy extractors [Dodis, Reyzin, and A. Smith
2007]. Without going into the details, a fuzzy extractor generates a uniformly random
string from noisy input; this string is suitable for use as a cryptographic key. Unfortu-
nately, in practice biometrics tend to be too noisy to work well in such situations. It might
be possible, but there are very few, if any, such products available today.

There’s one more important reason to avoid biometrics: privacy. A biometric identifier
is more or less the ultimate in PII; using one unnecessarily not only brings you into the
ambit of various privacy laws, it exposes you to serious public relations problems should
your database be stolen. Furthermore, because biometrics can’t be changed, in some cases
the consequences are serious and long-lasting [Volz 2015]:

Part of the worry, cybersecurity experts say, is that fingerprints are part
of an exploding field of biometric data, which the government is increas-
ingly getting in the business of collecting and storing. Fingerprints today are
used to run background checks, verify identities at borders, and unlock smart
phones, but the technology is expected to boom in the coming decades in
both the public and private sectors.

“There’s a big concern [with the OPM hack] not because of how much
we’re using fingerprints currently, but how we’re going to expand using the
technology in the next 5-10 years,” said Robert Lee, cofounder of Dragos
Security, which develops cybersecurity software.

. . .
One nightmare scenario envisioned by Ramesh Kesanupalli, an expert

in biometrics, is that agents traveling across borders under aliases could be
spotted for their true identities when their prints are scanned. Kesanupalli
also warned that the fingerprints could end up somewhere on the black mar-
ket, making biometrics a novel good to be trafficked on the Internet that could
be useful to a buyer for decades.

Where does this leave us? The risk of compromise of large template files seems high,
given the rate of compromise of conventional password files. That, combined with the fact
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that a remote server sees only a bit stream, suggests that biometrics cannot and should not
be used for general Internet authentication. On the other hand, use of a biometric when the
submitter is under observation—a border checkpoint or a bank teller’s station are good
examples—is rather safer, since the ability of an attacker to spoof the input is considerably
reduced. Even here, the insult rate issue has to be considered in the total system design: a
biometric match failure does not always indicate enemy action, and hauling people off to
the hoosegow because they’ve had cataract surgery (which will sometimes but not always
affect the scan [Roizenblatt et al. 2004]) or have aged since the template was captured
[Fenker and Bowyer 2011] does not seem like a good idea. (The privacy concerns apply
to governments, too, even in the United States.)

Biometrics are also a reasonable authentication mechanism for local resources, such
as an encrypted flash drive, an authentication token, or a phone. In such cases, the use
of tamper-resistant enclosures is strongly suggested to forestall attempts at bypassing the
authentication. There is still some risk from targeted attacks—MI-31 probably has your
fingerprints and iris scans from the last time you crossed the border into Andromeda—so
good sensors, liveness detectors, etc., are still a good idea. The insult rate problem can
be dealt with by replacing the device (you always need to plan for lost authentication
tokens; see below) and/or by storing a backup access key in a physically secure location.
(Newer Apple iOS devices can be unlocked by a fingerprint. However, a PIN is required
for the first unlock after each reboot, since the key used to encrypt sensitive portions of the
devices’ memory is derived in part from the PIN [Apple 2015]. The fingerprint template
itself is stored in a secure part of the CPU.)

7.7 One-Time Passwords

The phrase one-time password (OTP) is often misused. It does not refer to a single tech-
nology; rather, it refers to any scheme that appears to accept a simple password that is
never reused. That is, instead of being some static concept—a conventional password, or
even a fingerprint or other biometric—what is sent is a dynamic value, one that depends
implicitly or explicitly on time or past history.

Often, the notion of an OTP is conflated with a particular technology, such as RSA’s
popular SecurID token (Figure 7.2). Not so; there are many other types of OTP.

An OTP scheme has two crucial properties. First, its output must be effectively non-
repeating. By “effectively” I mean that the odds of a repetition should be no greater than
would occur by chance. Thus, if a single-use password Pi is drawn from the closed in-
terval [0,n−1], the probability that Pi ∈ {P0,P1, . . . ,Pn−1} should be approximately 1/n.
Second, seeing some set of values should not allow an adversary to predict future values.
That is, no matter how many Px the adversary has seen, the odds of a successful guess at
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Pi should remain no better than 1/n. Note that this property rules out the use of a secret
permutation of [0,n−1] as the sequence of OTPs, though we could do it if we relax our
condition to say that the probability of a successful guess must merely be less than some
suitably small ε and i� n.

Figure 7.2: An RSA SecurID authentication
token.

In practice, OTP schemes generally
depend on a strong cryptographic function
and a secret. Thus, the SecurID tokens dis-
play F(K,T ) where T is the time. (The
scheme is actually rather more compli-
cated than that; for my purposes, this sim-
plification will suffice.) An adversary who
could invert F—today, AES is used—
could recover K and thus generate re-
sponses. There are two obstacles. First, if
F is strong (and AES is believed to be) the
attacker won’t be able to invert it, espe-
cially with the limited number of samples available compared with encrypted traffic. Sec-
ond, for purely pragmatic reasons the output of F is often truncated. Thus, the display
of a SecurID is generally capped at six digits, or about 20 bits, leaving 108 bits of the
output of the AES encryption unknown. Even if you could find K for one particular value
of those bits, you don’t know that that value is actually the one that the actual token’s cal-
culation produced; there are, after all, 2108− 1 other possibilities. Did you find the right
K for the next T ?

The same analysis holds true for typical challenge/response OTPs. In those, the server
sends the client some random value N; the client (who is assumed to have a secure com-
puting device) responds with F(K,N). As before, F is hard to invert and only a truncated
form of its output is transmitted.

There are OTP schemes that don’t require the client to have anything more sophis-
ticated than a piece of paper. Lamport’s scheme [Lamport 1981] uses a noninvertible
function F and a secret seed value x; he defines password i to be Fk−i(x) where k is the
maximum number of passwords that can be derived from x. Thus, if k = 1,000, the first
user password is P0 = F1,000(x), the next are P2 =F999(x), P3 = F998(x), . . . . A user going
on a trip could simply print out some number of passwords on a sheet of paper, and cross
out each one as it is used. As before, the security of the scheme depends on the secrecy
of some value (in this case, x rather than a key K) and the non-invertibility of F . There is
one salient difference in the usual implementations [Haller 1995]: the output of F cannot
be truncated, since a server expecting password i will have stored password i− 1—the
last password successfully sent—and will verify it by calculating F(Pi) to see whether it
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matches what it just received. (Clearly, one could define F to be the truncation of some
F ′ that has a longer output; while this saves typing, it is the output of F—the truncated
version—that is iterated. Consequently, there is no ambiguity resulting from the attacker’s
lack of knowledge of many bits of the output.)

One can carry this further: why bother with a public algorithm to generate Pi to print
on a piece of paper; why not just give the user a printout of the next several of random
passwords generated and stored by the server? Lamport rejected that idea because of the
storage costs, but storage is much cheaper today. More seriously, if the server is storing
many passwords, an attacker can steal that list, which isn’t possible if just the last one
used is stored. A second reason—that if the user has local computing capacity, he or she
could simply type a password for x—is arguably a disadvantage today, since there may
be a keystroke logger collecting x. In addition, if x can be a password, it is possible to run
a password guesser on the F i.

In fact, some banks do send such papers to their users, often with the password
sequence protected by a scratch-off overlay. There’s a variant that is used: a two-
dimensional grid, where the bank will ask for, say, 〈x1,y1〉 and 〈x2,y2〉. Fundamentally,
this is just a challenge/response scheme, where K is the user’s grid and F is “look up two
values in the table.”

OTP schemes solve a lot of problems, but they all have certain limitations. For one
thing, most rely on the user having something: the token, the key, perhaps the seed for
Lamport’s algorithm if a password isn’t used, or some such. From a systems perspective,
they’re at least as challenging to manage as passwords. If a SecurID or challenge/response
token is lost, it has to be replaced; this may involve an overnight express shipment for
telecommuters or road warriors. The alternative—some form of manual single-use pass-
word set by a help desk—is effectively a reliance on secondary authentication techniques;
as we have seen, those are often far weaker than ordinary passwords, let alone one-time
passwords. This is the worst of all possible worlds: higher cost and less security.

Because physical objects are subject to theft as well as accidental loss, most sites
using OTPs supplement them with a PIN. Of course, PINs can be forgotten just as easily
as can passwords, thus taking us back to the world and costs of secondary authentication.

Apart from question of secondary authentication, how secure are OTPs? The answer
is rather more mixed than appears at first glance.

There are two major benefits from the use of OTP schemes. First and foremost, the
problem of password guessing is eliminated. (I’m assuming, of course, that the seed for
Lamport’s scheme is not a typed password.) Against many forms of targeted attack, this
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is a very significant advantage indeed. However, as we have seen, this is often a small
part of the password problem. A second benefit is that a token can’t easily be shared. Or
rather, it can be lent, but when it is the authorized user no longer has possession of the
token and hence can no longer log in. (Using “soft tokens” on phones is one way to limit
this risk. While the phone isn’t as tamper resistant as a dedicated hardware token, few
people want to be without their toys.)

I’m sure many of you are now thinking, “But what about the one-time use prop-
erty??!!” This is certainly a strength, but it’s not nearly as significant as it once was. For
one thing, the risk of over-the-air eavesdropping today is much less than it was even ten
years ago. Many forms of cryptography are in widespread use, including VPNs. Any-
one who logs in to a remote system without using encryption is vulnerable to many other
forms of attack. Even with encryption, though, an attacker who has compromised one end
of the connection or the other can steal a credential. True, a password stolen that way can
be reused. If the attacker has compromised the server, it doesn’t matter much; he or she
is already in a position to do anything to any account. And if the client is compromised?
Against modestly clever malware, it doesn’t matter much.

Suppose you’re sitting at your computer, typing one character at a time from your
OTP device or paper. The malware is watching and waiting for you to type the next-to-last
digit. It then sets up ten new connections to the server, replays the digits you’ve already
typed, and then tries a separate guess at the last digit on each of the connections. One
will succeed. For that matter, if your machine is compromised you don’t even know that
you’ve set up a single connection; you may be talking to the malware all along. Of course,
when the malware collects the entire password, it simply says “connection dropped” or
“password incorrect” or some such. Obviously you mistyped the password, right?

There are similar attacks at the server end. Suppose you fall for a phishing attack and
enter a single-use password into a fake web site. The attacker can collect it and log in in
your stead.

Clearly, the same stunts could be pulled with conventional passwords. OTPs do have
an advantage—the stolen session or credentials can be used only once (and for time-based
tokens, only for a limited time). But reduced harm is not the same as no harm.

There have also been phishing attacks on banks’ paper-based OTP systems. In fact,
I’ve heard of one scheme that told victims that they needed to revalidate their online
access by entering the next three numbers in the sequence.

There’s more to consider, starting with the server-side infrastructure. What happens
if your servers are compromised? With several of the schemes I’ve just described—time-
based authentication, challenge/response, and probably the two paper-based schemes—
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the server knows the clients’ secrets. Someone who hacked that database could then im-
personate those clients indefinitely. Given the number of high-profile password databases
that have been hacked, there is no reason to think that the OTP equivalents are immune.

In fact, the entire back-end infrastructure has to be seen as part of the security perime-
ter. An attacker who can modify account data, perhaps by using the administrative inter-
face to record that a new token with a new (and known) K has been assigned to a given
user, can take over that user’s account. Don’t underestimate this problem—SecurID suc-
ceeded so well in the marketplace precisely because they didn’t sell just tokens or just
cryptographic routines; they sold an entire system, of authentication software, servers,
administrative code to add and delete users, databases, and so on. That was quite good,
both as marketing strategy and because such code is definitely needed, but all of it and
the machines it runs on are security sensitive. Can you protect them well enough? Note
that any authentication system needs at least some of those components; engineering a
secure system requires understanding which components you have and figuring out how
to protect them.

Finally, there is the question of where the authentication secrets come from. Who
picks K or x? Is that a secure process? If they’re supplied by a vendor, does the vendor
protect them properly? This is not an idle question; Lockheed was penetrated using data
on the SecurID system stolen from RSA [Drew 2011]. Exactly what was stolen has never
been disclosed, but one guess is information on the Ks used by Lockheed. The attacker
had to have had more data than that—users generally connect via a login name, but the
tokens’ keys are indexed by serial number—so either a penetration attempt needed the
mapping between logins and serial numbers, or the attackers had to try an entire set of
serial numbers (and hence keys) for some selected set of users.

7.8 Cryptographic Authentication

Cryptographic authentication is generally considered the strongest type. It can be, though
sometimes implementation flaws vitiate the protection. As always, it is vital to look at the
entire system, rather than just the 0s and 1s of the algorithm.

While there is no precise definition of cryptographic authentication, intuitively I
mean a protocol where both parties are using cryptography and cryptographic secrets (i.e.,
keys) to do the authentication. In particular, it is a scheme in which the user’s authenti-
cation isn’t forwardable to another site, thus preventing monkey-in-the-middle (MitM)
attacks. Furthermore, the process includes negotiating keying material for session en-
cryption. Often, though not always, such mechanisms provide bilateral authentication.
If users are to employ keys and cryptography, though, it implies that (a) they have suffi-
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cient, secure local computing capacity to do the necessary calculations, and (b) they have
secure, long-term storage for keys. Sufficient local computing capacity is easy; secure
capacity and secure key storage are another matter entirely.

Why, though, is cryptographic authentication so strong? Is that actually true? Or is it
all perception? Some of the strength comes from the properties outlined above, but some
of it may indeed be perception.

The biggest theoretical advantage of cryptographic authentication is that it is, in prin-
ciple, based on random keys rather than on a weak password. Saying that, though, begs the
question of key storage and protection. As I noted earlier, insecurity can’t be destroyed,
only moved around. If the cryptographic key is derived from a password, or a password is
used to protect it, the inherent strength of the scheme isn’t necessarily stronger than pass-
words. Consider, for example, a system that uses cryptographic authentication but uses
PKCS #5 [Kaliski 2000] on the user’s side to derive a cryptographic key from a password.
The server doesn’t need the password itself; it does need its copy of the key. But this value
is in effect a hashed password, against which a guessing attack can still be launched.

Am I saying, then, that such a system is no stronger than ordinary passwords? Not
quite; there’s still a difference, but it’s a bit more subtle: the user’s password is not sent to
the server, and hence can’t be captured that way. This in turn gives rise to the anti-MitM
property: the server does not receive anything that it can forward to another site. Phishing
attacks are rendered harmless; no stealable, let alone reusable, credentials are transmitted.

The optional bilateral authentication property is even more useful, since a clever at-
tacker may still try to trick a user into revealing sensitive information even if there’s no au-
thentic server on the other end of the connection. If the two parties can use cryptographic
mechanisms to negotiate a session key, this key can be used for challenge/response au-
thentication in both directions. We can turn that around. If we have a shared key, the
bilateral authentication property can guarantee that there is no MitM; an attacker won’t
have the necessary long-term key to perform its part of the authentication dance. Do not,
however, rely on users to notice failure of bidirectional authentication; make sure your
systems will not operate in such cases.

The keying material can, of course, be used to encrypt the entire session. This provides
the usual protections; that is particularly important in this context because the encryption
protects against someone hijacking an authenticated session after it’s fully set up. Even
without that, though, cryptographic authentication is indeed very strong—if you can store
and protect the private key.

There are three principal mechanisms that can be used for private key storage: pass-
word derivation, external devices, and locally encrypted storage. None is perfect; all have
their disadvantages.
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I’ve already described the issues with deriving a key from a password; per the analy-
sis, though, it’s still a better choice than sending the password directly. The most common
way this is used, though, is with single-sign-on systems (Section 7.10) such as Kerberos.
A word of warning: a keystroke logger is just as effective against this use of a password
as against the more common use.

External device storage of keys is the most secure option. However, as discussed
in Section 7.9, there are still significant concerns. They’re mostly cost and convenience
issues, but there is one security concern: if there’s malware on your machine, it can use
the key, or sit in the middle of an authentication session you intend to initiate and use
your key to initiate its own session instead.

The third option is probably the most common. Passwords can be used to encrypt
.ssh private keys or private keys associated with certificates, especially with TLS. The
problems with the other two schemes are present (I expect that keystroke loggers will
be upgraded to steal the encrypted key file as well as the password used to protect it);
the bigger issue, in most situations, is availability of the file containing the key. If your
users frequently use more than one machine (and for many people, that’s the norm, not
the exception), the key file—often the same key file—has to be present on all of the
machines. This can be addressed by using cloud storage or USB flash drives to hold
the key; many see this as ideal, since it makes it possible to use such authentication on
public kiosk machines or in Internet cafés. That’s actually a disadvantage; such machines
are notorious lairs of all sorts of malware. Using cryptographic authentication from an
infected machine is just as insecure as any other way of using such a machine.

One final pessimistic note: a cryptographic authentication scheme is, ultimately, a
cryptographic protocol; all of the warnings, caveats, and cautions that apply to crypto-
graphic protocols in general apply here, too. Don’t invent your own.

7.9 Tokens and Mobile Phones

Tokens—something you have—are a popular authentication mechanism for security-
sensitive organizations. Often, this is a good idea: Using tokens avoids all of the weak-
nesses of passwords: their secrets can’t be guessed, the authentication sequence is (almost
always) not repeated, one can’t share a token without losing use of it oneself, and so on.
All that said, the risks and limits of tokens must be considered as well. As always, we
must look at the problem from a systems perspective.

One obvious issue is the cost: tokens cost money and at first blush are more expensive
than passwords. While there is certainly an initial cost, the total expense for authentica-
tion is rather more complex to assess. Passwords carry hidden costs, both in the form of
complex secondary authentication mechanisms and in the much greater costs of recover-
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ing from password-related compromises. There is also the question of whether all relevant
applications can adapt to tokens. The biggest incompatibility is the semantic mismatch
between applications that instantiate many sessions over time and the single-use prop-
erty of most token-based systems. The obvious example is anything web based. HTTP is
stateless; in general, any new request or even any element on a single page can entail a
separate TCP connection and hence separate authentication. That is clearly unacceptable.
The usual answer, of course, is to use token-based authentication to create some other,
longer-lived authentication scheme, such as a web cookie. This, though, creates a differ-
ent secret, one that is not stored in the token and hence one that may be more vulnerable
to abuse. Cross-site scripting attacks to steal cookies are the classic example.3

It is important to realize that the flaw is not in token-based authentication per se;
cross-site scripting attacks are based on the properties of web browsers, regardless of
how the initial authentication was done. From a systems perspective, though, the site is
not getting the security it sought by deploying tokens.

A similar weakness can occur if some malware waits for the token-supplied authenti-
cation string to appear. This string is captured by the malware and used for its own login,
rather than the user’s; the desired site gets some random garbage, which of course pro-
duces a failed authentication. No one will particularly notice this, though; it will likely be
interpreted as a random failure or a typographical error. (Thought experiment: how often
have you had a web interaction fail, only to succeed when you resubmitted the same in-
formation? Did your security antennae twitch? Should they have?) Again, the problem is
not in the concept of tokens; however, the benefits of tokens are not realized.

Apart from security risks, the question of application compatibility is sometimes a
deal breaker. For common tokens and popular applications on mainstream platforms,
there may not be a problem; the vendor may have provided a suitable interface. Alter-
nately, the platform may use generic authentication interfaces that any application can
use. As noted in Section 7.7, the software support for a token should comprise far more
than just the token itself or a simple “Is this authentication valid?” routine.

Earlier, I spoke of the problem of forgotten passwords. Tokens, of course, can be for-
gotten, lost, or stolen. If authentication must be done by a token and the token is left at
home, the user has no way to authenticate, and hence no way to work. What do you do?
Lose a day’s productivity? Fall back to secondary authentication? Employ some tempo-
rary authentication scheme? The answer, of course, depends on how you balance security
and cost: a high-security site will pay the price and not use an insecure secondary authen-
tication scheme. At the least, it will require in-person vouching by someone who knows
the careless employee. Other sites, of course, will make other choices. An oft-suggested
solution to some issues surrounding tokens is the so-called soft token: software that em-

3. “Cross-site Scripting (XSS),” https://www.owasp.org/index.php/Cross-site Scripting (XSS).

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
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ulates a dedicated token running on some computer. A popular choice is a smart phone,
since many people are more likely to forget their clothing than their phones (Figure 7.3).
There is a serious danger lurking here, though: ordinary computing devices are not at all
resistant to reverse engineering; it’s relatively easy to build malware that extracts secrets
from other applications.

Figure 7.3: Is she reading text messages before get-
ting dressed? Taking a selfie? Not really; the sculpture
is Erastus Dow Palmer’s Indian Girl, or the Dawn of
Christianity, and dates to 1856.

We don’t have to posit the cre-
ation of phone-based malware that
targets authentication systems; exam-
ples already exist. One popular one
[M. J. Schwartz 2011] targets a dif-
ferent way in which phones are used
as tokens: the server sends a ran-
dom string to the user via an SMS
(“text”) message. Theoretically, only
the user has that phone, and hence
is the only one who will see the
challenge; consequently, this seems to
be a simple way to implement chal-
lenge/response authentication via a
token. It’s simple—but it may not be
secure.

It may also pose a privacy issue.
Most people have only one mobile
phone number, which they may keep
for life. This in turn makes it a per-
sistent, unique identifier, bound to one
individual. This is exactly the sort of
thing that marketers love for match-
ing profiles. If you sign up for a bunch
of cloud services that use text mes-
sages as part of the login process—at
this point, Google, Paypal, Dropbox,
Apple’s iCloud, and more all support
this—you may be opening the privacy door very wide. It may be a good trade-off, since
the privacy harm from having these accounts hacked is also very great, but it is a trade-off.

Phones, especially smart phones, are popular targets for thieves. Fortunately, the av-
erage street thief is unlikely to extract secrets or otherwise exploit the authentication
properties of a phone; the same, of course, cannot be said for MI-31. If a phone used for
authentication to sensitive data is stolen, is it clear what the motive is [Allen 2012]?



7.10 Single-Sign-On and Federated Authentication 137

For reasons like this, tokens should always be used together with some other form of
authentication, such as a password, PIN, or biometric. Great care has to be taken in the
design of any such two-factor authentication scheme, especially if the second factor is sent
directly to the token rather than to the server: MI-31 can quite likely bypass authentication
done by the token itself, unless the token was specifically (and competently) designed to
resist just this threat. Soft tokens are especially vulnerable to this threat; absent strong
evidence for the security of the underlying platform, their use should be eschewed in
high-risk scenarios.

One more point must be made about tokens: you should always have some plan for
invalidating lost tokens and switching authentication to new ones. Tokens will need re-
placement, whether because of loss, theft, fire, accident, or simple hardware failure. A
corollary is that if any data is accessible solely through a secret resident on the device,
you’d better have a backup copy of that secret. Encrypting your files with a key stored
only on a user’s smart card is a recipe for disaster; keep another copy safe somewhere
else.

7.10 Single-Sign-On and Federated Authentication

Single-sign-on (SSO) schemes use a two-phase authentication scheme: the user somehow
authenticates to a central server; the fact of this authentication is then communicated
to any other systems the user wishes to communicate with. A federated authentication
scheme is essentially the same thing, save that the central server is an outside party that
can vouch for identities to many other outside sites. There are three primary issues for
an internal SSO system: the initial authentication, how the additional authentications are
done, and the user interface to the latter. There are additional issues when external parties
are involved; those will be discussed later.

The first question is relatively easily disposed of: in theory, any standard authenti-
cation system can be used, and the usual strengths and weaknesses apply. There is one
very important caveat, though: an SSO is a very tempting target for attackers, especially
the more skilled ones, and hence requires more than the usual protection. By extension,
since a login to such a server gives a lot of access, stronger forms of user authentica-
tion are probably a good idea. At a minimum, the authentication used for an SSO server
should be at least as strong as you would want for any given system that will trust that
authentication.

There is another issue: the form of SSO authentication used interacts with the later
authentications. In particular, these later authentications sometimes rely on some sensitive
material passed to the user’s computer by the SSO server. This transmission needs to be
protected, which implies some sort of cryptography; that in turn favors cryptographic
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schemes that permit easy setup of an encrypted channel. The alternative, used for web-
based SSO schemes, relies on the use of a TLS-protected session to the SSO server.

A web-based authentication system will probably rely on cookies [Barth 2011] to
maintain the logged-in state. However, cookies can be returned only to the site that set
them, so some other mechanism must be used to pass the login information to other web
sites. Generally, this is done by out-of-band communication between such web sites and
the SSO site.

It helps to consider the one possible (and oversimplified) sequence of operations. As-
sume that some user Chris first contacts www.ReallyAwesomeSSO.com and logs in. That
site sends Chris’s browser a cookie. (If Chris is really lucky, that cookie will have ap-
propriate cryptographic protections, but that’s another matter.) She then contacts the site
she really wants to visit: FeralAmoebae.com. The page from FeralAmoebae.com con-
tains a URL—an IFRAME, an image, some JavaScript, or what have you—pointing to
www.ReallyAwesomeSSO.com and containing some per-session unique string. Chris’s
browser therefore contacts www.ReallyAwesomeSSO.com and sends back the identify-
ing cookie. When www.ReallyAwesomeSSO.com sees it, it uses its out-of-band chan-
nel to tell FeralAmoebae.com which user has connected using that unique string. (More
accurately, FeralAmoebae.com will ask www.ReallyAwesomeSSO.com what user corre-
sponds to that string.)

The best-known web-based SSO service at the moment is Facebook Connect.4 Its
operation (based on the IETF’s OAuth 2.0 design [Hardt 2012]) is rather more complex
than my outline, partly because it’s a real system and not a toy example and partly for a
more substantive reason: it requests authorization from the user for what information it
will send FeralAmoebae.com (or whomever). This is part of the third question: How easy
is it for the user to control what is sent to whom? In this case, the big issue is user privacy;
Facebook knows a lot about people, and not all of them want all of that to be sent to every
random web site they visit that happens to have a contract with Facebook.

There is an additional privacy issue: in schemes like this, the SSO knows every affil-
iated site you visit. Is this acceptable? It may be fine for public-facing web sites, though
not necessarily to their users. For employers, though, this is rarely a good choice.

There are more general SSO schemes than the web-based one I’ve just outlined. Imag-
ine a world of multiple identity providers. A user could have accounts with several of
these. After logging in to one, the SSO server returns some sort of cryptographically
sealed object. To log in to some other systems, the user designates which of the cached
identities—that is, which of the several cryptographically protected identities she has
available—should be forwarded to the desired site. That site, in turn, is told the identity
provider involved and Chris’s identity as known to that provider.

4. “Authentication—Facebook Developers,” http://developers.facebook.com/docs/authentication/.

http://developers.facebook.com/docs/authentication/
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Again, the user interface is crucial. If nothing else, Chris wants to make sure that
her employer doesn’t receive her credentials from HiTechEmploymentAgencySSO.com,
since it would be rather embarrassing to Chris. From the employer’s perspective, it has
to decide which identity providers it trusts. Only its own? Facebook’s? The local govern-
ment’s? The one it knows is run by a front organization for MI-31? In a federated system,
what can matter the most is the tuple 〈provider, identity〉. This is, of course, the crucial
distinction between authentication and authorization: which tuples will you authorize?

There are a number of systems based on this paradigm. Microsoft’s is one of the
best known,5 but there are many others, including at least one open-source system. The
concept of federated identities is at the heart of the National Strategy for Trusted Identities
in Cyberspace (NSTIC), the White House’s scheme for identification on the net [White
House 2011].

There are other products intended for SSO within an organization. Kerberos, de-
scribed earlier, is one such. In such cases, issues of reliability and privacy don’t arise
as much. However, the user interface question is still crucial: if a user has nice, transpar-
ent access to everything within a company, any malware that user is running has the same
access.

7.11 Storing Passwords: Servers

How should sites store password databases? What about other sorts of authentication
data? Let’s look at passwords first. Note well: I assume that there will be some sort of
security failure at your server complex; if there isn’t, there’s no reason to do anything
fancy. But if you assume perfect security and you’re wrong, the results can be disastrous.

Back when the world was young, passwords were stored in cleartext in a read-
protected file. They weren’t encrypted because pre-DES, there were no suitable en-
cryption algorithms. Besides, operating system file protections were thought to be good
enough. The classic Morris and Thompson paper [1979] showed why that was a bad
idea, so people switched to hashed passwords but in readable files. Password-guessing
attacks remained an issue, so most vendors eventually switched to hashed passwords in
read-protected files.

That’s all well and good for single machines. It doesn’t work nearly as well for net-
worked complexes of machines or for large server complexes with vast numbers of users
who have no traditional login access to most machines. They might be users of your ISP,
or subscribers to your mail service, or customers of your web site, but they all have logins
and passwords. And you’re probably operating at a scale not seen on single hosts; you’ll

5. “A Guide to Claims-Based Identity and Access Control (2nd Edition),”
https://msdn.microsoft.com/en-us/library/ff423674.aspx.

https://msdn.microsoft.com/en-us/library/ff423674.aspx
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have somewhere between tens of thousands and possibly tens of millions of accounts.
(Facebook claims more than 1.4 billion active users, more than 18% of the world’s popu-
lation.6 And they all have passwords.)

Clearly, many enterprises need a password or authentication server of some type.
How should it be protected? The analysis has to start with two questions: what are the
operational needs for this server, and what are the consequences of a breach? Initially,
let’s look at the second question.

The type of authentication you require plays a large role in answering this question.
If your users are employing public key authentication, the database is relatively benign; a
leak exposes only public keys. Public keys are, by definition, allowed to be public; seeing
one doesn’t permit an attacker to learn the corresponding private keys. In that case, there
is little reason to take special precautions with the data. (Under certain circumstances, it
is possible for a private key and hence the corresponding public key to be derived from
a password; a colleague and I proposed such a scheme many years ago [Bellovin and
Merritt 1993]. This opens the risk of password-guessing attacks; see below.)

One step down is the case in which stolen data allows illicit entry to your own ser-
vices, but to no others. A Kerberos database or other collections of symmetric keys fall
into this category. This is clearly a disaster for you, but not for your users (except, of
course, the damage they suffer from abuse of their login on your system).

The worst situation is if plaintext passwords are compromised. As I noted earlier,
people reuse logins and passwords; a compromise on your site is likely to lead to a com-
promise of many accounts on many other sites. Quite apart from any moral blame you
might incur, it is quite conceivable that you’re running a risk of legal liability. Since the
only reason to store a plaintext password is for password recovery, the answer is simple:
don’t do that.

Some people will claim that there’s another reason: using a password as a key for a
symmetric cipher requires both sides to have the password. That’s not quite correct. What
both sides need is the same shared secret; rather than the password itself, it should be
some value deterministically and irreversibly derived from the password. The simplest
solution is to store, say, the MD5 hash of the password; that value, though, is useful when
attacking other sites that use the same scheme. Instead, hash (or better yet, HMAC [Bel-
lare, Canetti, and Krawczyk 1996; Krawczyk, Bellare, and Canetti 1997]) the password
with your service name. This value—HMAC(PW, https://www.example.com)—is useful
when talking to you and only when talking to you.

Guessing attacks are a risk against any storage of data derived from passwords. The
problem and its solution go back to Morris and Thompson [Morris and Thompson 1979]:
add a salt and iterate the hash. More details on modern versions are given in [Kaliski

6. “Company Info,” https://newsroom.fb.com/company-info/.

https://newsroom.fb.com/company-info/
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2000]. Unfortunately, that isn’t straightforward in a distributed environment, where both
sides may need to calculate the shared secret before any communication takes place.
(Encrypted Key Exchange (EKE) [Bellovin and Merritt 1992] is such a protocol.) Instead,
calculate a different hash:

H ′(username, site, password)

and use the high-order 64 bits as the salt and the low-order 18–24 bits as the iteration
count. Why 18–24 bits? The purpose of the iterated hashing is to slow down dictionary
attacks; if every password is hashed 100,000 times, an attacker processing a series of
guesses is slowed down to 1/100,000 the previous rate. Unfortunately, the good guys are
slowed down, too, so we have to pick a suitable compromise. Informal experiments show
that about 300,000 iterations of MD5 are about right for slower smart phones. Salting is
vital, since it guards against precomputation attacks.

Server-side considerations for iteration count are a bit more complex. You need to
know the peak period login rate u (users per second); c, the number of CPUs you can
dedicate to iterated hashes; and t, the CPU time per hash. The maximum iteration count
is then h · u/c. If it’s too low—that is, if it makes guessing attackers easier—you need
more CPUs.

The challenge/response, time-based, and paper-based OTP schemes generally do not
suffer from password-guessing vulnerabilities, so other sites are safe. However, the data
is useful for attacking your own site’s accounts and hence must be carefully protected.
Lamport’s scheme is quite nice in this regard; the stored data cannot be used for new
authentication, on your site or elsewhere, and it inherently uses iteration. If the maximum
count is set high enough, there will always be a substantial base number of iterations that
an attacker will have to do even if the seed secret is derived from a password. (However, if
you’re relying on the limited-number-of-logins property of his scheme, you should iterate
many times before using that value to seed the algorithm.)

A summary of the risks to different types of authentication data storage is given in
Table 7.1.

It is tempting to suggest that usernames also be hashed before storage. After all,
knowing that user smb has password 123456 is rather different from knowing that user
79e0f325804dafbdaef73b3b17c0fd8d has that password or even password e10adc3949b-
a59abbe56e057f20f883e. Unfortunately, it’s probably fruitless; the attacker can quite
likely figure out a large portion of the usernames from other data lying around the system,
and it’s rather easy to do the necessary hashes.

Let’s turn our attention to the other question I posed near the start of this section:
What are the operational needs? A site that stores passwords also has to store secondary
authentication information. Most public-facing sites and many internal sites have such
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Table 7.1: Risks from Compromise of Stored Authentication Data, in Approximate Order of De-
creasing Risk

Scheme Potential Damage
1 Plaintext passwords Immediate login to your site and others
2 Simple hashed shared secrets Immediate login to at least your site; easy

guessing attacks against your site and oth-
ers

3 Paper schemes Immediate login to your site only
4 Time-based and challenge/response Immediate login to your site only
5 Password-based Lamport Guessing attacks against your site and

others
6 Non-password Lamport; public key None

information; it’s quite critical and much harder to protect by hashing because there are
so few choices for so many of the common fields. Place of birth? There are fewer than
20,000 incorporated places in the United States.7 Favorite color? Most people don’t know
that many color names.8 Mother’s maiden name? More than 90% of American surnames
can be found in fewer than 100,000 guesses.9 One can even find lists of common pet
names online. I suspect that the numbers are comparable for other countries, though the
data may be harder to obtain for some. In other words, typical secondary authentication
data is almost as risky to store as plaintext passwords.

Other important operational needs, beyond secondary authentication, include adding
users, deleting users, changing or resetting the password, and (of course) verifying a login
attempt. Don’t neglect the fact that an authentication server is, among other things, a com-
puter, which means that it has all of the usual computer needs: software maintenance, disk
backup and recovery, database synchronization with the other replicas of the authentica-
tion files, sysadmin login for routine troubleshooting, and more.

There is another, more subtle concern: database consistency. It’s never a good idea to
store the same data in two different places; the two instances will get out of sync. Sites
typically store other, non-sensitive profile information on their users, whether for direct
operational needs (Which mail server holds this person’s email?), revenue related (Which
type of targeted ads are believed to be most effective?), or simply user preferences such

7. “Population Estimates,” http://www.census.gov/popest/data/intercensal/cities/cities2010.html.
8. “Color Survey Results,” http://blog.xkcd.com/2010/05/03/color-survey-results/.
9. “Demographic Aspects of Surnames from Census 2000,”

http://www2.census.gov/topics/genealogy/2000surnames/surnames.pdf.

http://www.census.gov/popest/data/intercensal/cities/cities2010.html
http://blog.xkcd.com/2010/05/03/color-survey-results/
http://www2.census.gov/topics/genealogy/2000surnames/surnames.pdf
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as preferred language. If you store that sort of information with the authentication data,
you increase the attack surface; if you store it separately, you have more consistency
problems. Worse yet, things like credit card numbers are sensitive in a different way and
may merit their own secure storage.

Table 7.1 makes it clear that if you are using safe authentication technologies (i.e.,
the last row in the table), it doesn’t much matter where you store the data; the most
convenient server will suffice. Conversely, the risks from at least the first two rows and
probably the first four are sufficiently great that extra care is needed. Such authentication
data should be stored on a separate server, with a lot of attention paid to the protocols
and operational environment. (Design issues are discussed in Chapter 11.) Only the fifth
row, password-based Lamport, presents a difficult choice; keeping the data in the general
user profile database is a defensible choice, but if you need secure authentication storage
anyway (e.g., for secondary authentication data) you may as well put the primary data
there as well (but see Chapter 11 for other considerations).

7.12 Analysis

Figure 7.4 summarizes the properties of a number of different authentication mechanisms,
when dealing with different issues: threats, forgetting or losing something, and so on.

Guessing Forgetting Device Server file Temp External Phishing/
loss stolen access trust logging

Passwords # # ! # ! ! ##

Lamport’s ? # # # ? ! ?
Chall/resp ! ! # ## # ! !

SMS ! ! ? ! # ? !

Time-based ! ! # ## ? # !

Crypto ! ! ? #,! ? ! !

Biometric ! ! ? # # ! ##

Federated ? ? ! ! ? # ?

! No particular problem; strength of this mechanism
? Some trouble or implementation-dependent
# Significant risk
## Very serious risk

Figure 7.4: Properties of different authentication mechanisms.
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What’s striking is that none of the analyzed mechanisms are good under all circumstances.
Password authentication, that much-maligned mechanism, is better than most when it
comes to granting temporary access or the need to trust external parties. Most alternatives
concentrate on the most glaring issues with passwords, users forgetting their passwords,
attackers guessing them, or capture of a password by phishing sites or keystroke loggers.
Almost all are weaker under other circumstances. In fact, most pairs of mechanisms fall
short, too, though the combination of a password sent to a site and some form of federated
authentication not relying on passwords comes close. The real benefit from avoiding pass-
words is that you’re not vulnerable if some other password-using site is compromised.

There are no perfect solutions here. Even read requests from /dev/brain run afoul of
the bilateral authentication. issue. (While that could, presumably, be solved by writes to
/dev/brain by the verifying computer, the mind boggles at what could happen if that pro-
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Picking a Strong Password?

There are two strategies for picking a good password, practical and theoretical.
The practical approach is simple: use anything that won’t be found by the attackers’

patterns. Thus, if attackers are generating passwords based on lowercase letters, you’d
be safe if your simple password used only uppercase. The problem, of course, is that
you don’t know what the attackers do, and they could change it easily enough. In other
words, a practical approach won’t work very well. (However, if you want to do it, the
best thing to do is to use a multiword phrase; so few people do that that most attackers
won’t bother trying.)

Looking at it theoretically, you want a password space so large that it can’t be
searched. If you have s symbols in your “alphabet” and n letters, then the size of the
guess space g is, quite obviously, g = sn. Thus, in the example shown in Figure 7.1,
s = 211 = 2,048 and n = 4, giving g = 244 or about 1.8 ·1013. What is crucial is that your
password be chosen uniformly from that space.

The next question is how large g should be. That depends on the attacker’s com-
puting resources and how long you want your password to resist attack. To futureproof
ourselves, increase the numbers from p. 108 to grant the attacker 1,000,000 machines
that can do 10,000,000 guesses per second: 1013. At that rate, the space covered by
that algorithm will be exhausted in a couple of seconds. Clearly, that’s not good enough
against an enemy with those resources.

(Continued)
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We can compensate by either using five words or choosing our words from a list
that’s twice as long. The former gives us 3.6 ·1017 possibilities; the latter 2.8 ·1014, and
may be harder to remember because the words are less common. Choosing six words
takes us to 7.3 ·1020; guessing time comes to about 116 days, which is probably good
enough.

Any other algorithm can be evaluated this way. Suppose you’re restricted to eight
characters, digits, or mixed case letters only. (Yes, there are such sites, even today.)
How well do you fare? If you choose randomly, you get n = 8, s = 62, and hence g =
2.1 ·1014. That’s clearly not good enough, but under those silly rules it’s the best you can
do. Simply using 10 characters instead of eight takes us to 8.3 ·1018, which is probably
adequate. Beware of simple “fixes” like adding punctuation, since many people will just
append a period or comma. Suppose you did that instead of the eighth alphameric
character. That cuts the search space to 627 · 3, for seven characters, those seven
followed by a period, or those seven followed by a comma, giving just 1.0 ·1013 choices.

I could go through more arithmetic, but it’s really just a simple exercise in combi-
natorics. Pick your own algorithm—but remember, if you don’t choose randomly from
the space, the calculations are very different. Early password guessers succeeded,
despite much slower computers than we have today, because people tended to pick
words, and English words have only about 2.3 bits/letter [C. E. Shannon 1948; C. E.
Shannon 1951], giving an effective g = 3.5 ·106.

The algorithm from Figure 7.1? If you let a generator pick a few random words from
a list, you’re fine. However, if you ask the generator for ten sequences and pick the
“easiest to memorize,” you’ve cut the search space dramatically—except for the very
practical point I mentioned at the top of this box.

cess were hacked. . . .) That said, sites need to pick some authentication solution, despite
all of the limitations of usability, human frailty, and so on. A few points stand out:

• Passwords are not suitable for high-security needs. This includes most logins for
medium and large enterprises. Even smaller enterprises should move away from
passwords if the threat model so indicates.

• That said, passwords will not go away, even in sensitive environments; converting
all applications to use stronger authentication is at best time consuming. It will be
a very long time before web sites convert to any other authentication mechanism.
Accordingly, technical means, such as password managers, should be used to cope
with the password reuse problem. This will also help with the password strength
problem, though as noted this isn’t as big a threat as is commonly trumpeted.
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• Implement bilateral authentication; it’s strong protection against phishing. Some
password managers do this automatically: they’ll send a password only if they rec-
ognize the site, and they’re not fooled by clever email messages.

• Master passwords—those used with password managers or SSO systems, those
used to decrypt private keys, and so forth—are especially crucial and need the best
protection. These should indeed be “strong.”

• Like much of security, authentication is a systems issue. Special care must be taken
with secondary authentication mechanisms and password reset schemes.

• Plan for exceptions. Know in advance how to handle lost or stolen passwords, com-
promised servers, and more.

Finally, there are many fads in authentication. As discussed above, all schemes have
their limitations and weaknesses. Decide based on the threat model and your operational
environment.

A more interesting question is what would cause me to change these recommenda-
tions. The strengths and weaknesses of passwords are likely to remain pretty stable for
the foreseeable future. On the attacking side, the basic techniques have been known since
1979; while there have been performance improvements and storage capacity changes,
these are not revolutionary. We are even less likely to see changes in how humans cope
with passwords, since homo sapiens 2.0 isn’t even in beta yet.

Improvements in tokens, and in particular in their cost and usability, are more likely.
Many different versions have shown up over the years; with the notable exception of
the SecurID, none have really caught on. It is worth restating why SecurID succeeded:
they sold a complete system, not just tokens and basic support software. A competitor
would have to match that and more; it would have to support logins to more devices of
interest (smart phones? cars?) and be some combination of cheaper, more secure, or more
usable. The latter is probably the greatest technological barrier, but the other issues are
non-trivial. The best chance for a change is if a major vendor (probably Microsoft or
Apple) were switch to tokens as the preferred login scheme, with suitable support and
(most likely) subsidized tokens.

I doubt that biometrics will displace passwords in the next 10–20 years. While we
will certainly see improvements in correctness and in sensor design, some of the other
issues—dealing with database compromise, changing biometrics after compromise, re-
mote authentication—are inherent in the problem statement and will not go away.

The variable most likely to change is how people authenticate. If some other style
catches on, such as federated authentication, the role of passwords will indeed diminish.



7.12 Analysis 147

Given the many variables here—cost, privacy, trust, compatibility, security, and more—it
is difficult to make any concrete predictions. All that said, it does seem to be the scenario
to watch most closely.
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Chapter 8

PKI: Public Key Infrastructures

“I see a complex netting of obligations, but within it there is a pyramid of
power. No one is truly independent, but as you near the top of the pyramid
power increases enormously; however, it is seldom used to its fullest. There
are lines of obligation that reach in all directions, upwards, downwards, side-
ways in a totally alien manner.”

Charlie in The Mote in God’s Eye
—LARRY NIVEN AND JERRY POURNELLE

8.1 What’s a Certificate?

Public key cryptography, as originally described by Diffie and Hellman [1976], seemed
simple. Someone uses your public key to encrypt a message to you; you use your private
key to decrypt it. However, Diffie and Hellman paid little attention to how communicants
acquire each others’ public keys, saying only:

The enciphering key E can be made public by placing it in a public di-
rectory along with the user’s name and address. Anyone can then encrypt
messages and send them to the user, but no one else can decipher messages
intended for him.

Public key cryptosystems can thus be regarded as multiple access ciphers.
It is crucial that the public file of enciphering keys be protected from unau-
thorized modification. This task is made easier by the public nature of the file.
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Read protection is unnecessary and, since the file is modified infrequently,
elaborate write protection mechanisms can be economically employed.

They do not say where this public directory is, who runs it, how the other party gets
access to it, or just what these “elaborate write protection mechanisms” might be. More
seriously, they do not conduct a threat analysis. How does everyone agree on or find
the proper public directory? Who runs it? Can you trust that party with the “crucial”
responsibility of write-protecting the file? How does that party distinguish “unauthorized”
from authorized modification? In other words, there are profound systems questions.

Part of the answer was devised by an MIT undergraduate, Loren Kohnfelder, who in-
vented certificates [1978]. In the simplest form, a certificate is a digitally signed message
containing a user’s name and his or her public key. Reality, of course, is more complex;
at a minimum, real-world certificates need things like algorithm identifiers.

Today, certificates are generally embedded in a framework known as public key infra-
structure (PKI). The Internet Security Glossary [Shirey 2007] defines PKI as “The set of
hardware, software, people, policies, and procedures needed to create, manage, store, dis-
tribute, and revoke digital certificates based on asymmetric cryptography.” Note carefully
that the definition includes “people, policies, and procedures,” and not just code. Because
of the wide variety of uses of PKI, the semantics of many of these operations are quite
complicated; I’ll only skim the surface. (For more information on the details of PKI, see
[Housley and Polk 2001].)

Complex semantics tends to breed complex syntax; certificates are no exception. Most
certificates you will encounter use the X.509 standard [ITU-T 2012], and in particular the
Internet’s “PKIX” profile [Cooper et al. 2008]. X.509 has complexity in full measure, in-
cluding highly structured names, highly structured addresses, serial numbers, usage flags,
and even corporate logos [Santesson, Housley, Bajaj, et al. 2011; Santesson, Housley,
and Freeman 2004], among many other fields. (Actually, originally X.509 wasn’t even
intended to define general-purpose certificates, but that’s another story.)

A more interesting addition to the basic concept are attribute fields. An attribute is
some characteristic about the certificate holder, attested to by the signer. For people, it
might be something like their age. Attributes can be used with or without names. As we
shall see, pure attribute certificates are quite useful.

The fundamental questions about certificates are about security: who signs the certifi-
cates? Do you trust them? Are they honest? Are they competent, both at procedures (e.g.,
verifying the holder’s identity) and technically (e.g., preventing unauthorized access to
their signing key)? Questions like these are at the heart of this chapter.
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8.2 PKI: Whom Do You Trust?

When you use a certificate in any way, you are utterly relying on the trustworthiness of
its issuer. Understanding the exact mechanisms used today isn’t easy, though; the total
certificate system architecture is quite complex. Let’s look at the pieces of the traditional
X.509 setup.

The heart of the certificate system is the certificate authority (CA). A CA does just
what its name implies: it issues—signs—certificates. These certificates may be for end
users, or they may be for sub-CAs. For end-user certificates, they also indicate (up to a
point) the permitted uses for the certificate: encryption, digital signatures, etc. If a sub-
CA issues a certificate, the trust question becomes more complex: you have to trust not
just the immediate issuer but also every other CA up to the root of the tree. After all, you
may trust MyFavoriteInternetCA.com, but the CA certificate it has may have been issued
by MI-31.mil.Andromeda, whom you don’t trust at all. (They even have a non-existent
domain name—the Andromedans are tricky. . . .) Is it the real MyFavoriteInternetCA.com
who certified the site you’re talking to, or are you being tricked? The root of this tree is
called the trust anchor, and though it may be turtles all the way down,1 it has to be trust
all the way up.

If there’s only one CA in your universe, life is relatively simple. Unfortunately, that
isn’t the universe most of us live in. Most commercial operating systems, and especially
web browsers, come equipped with a very large set of CAs built in. This implies that your
vendor trusts them—but do you? Are they (your vendor and the CAs) honest? Compe-
tent? Most crucially, does their threat model match yours?

The existence of sub-CAs raises another thorny question: what is the permissible
scope of activity of the sub-CA? If some company example.com is a sub-CA, it’s perfectly
reasonable for it to want to issue certificates to its own divisions (e.g., hr.example.com)
or employees (e.g., Mary@hr.example.com). Can it legitimately issue a certificate for
ARandomBrand.com? What if that corporation is a subsidiary of example.com? What if
it was a subsidiary but has since been sold?

More subtly, sometimes an employee speaks for the corporation and sometimes he or
she speaks personally. In a paper world, of course, you can’t tell whether the person who
signed a contract was authorized to do so by her employer. Should certificates embody
that sort of authority? Can you tell? You might think that music.example.com was one
division of some large media conglomerate, but it turns out that “Music” is the 6,304th
most common surname in the United States;2 perhaps the cert belongs to Mary Music’s
laptop. (“Lawyer” is #6,309. I think that that’s a coincidence.)

1. “Turtles all the way down,” https://en.wikipedia.org/wiki/Turtles all the way down.
2. “dist.all.last,”

http://www.census.gov/topics/population/genealogy/data/1990 census/1990 census namefiles.html.

https://en.wikipedia.org/wiki/Turtles_all_the_way_down
http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
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There are special rules for special circumstances. In certificates representing owner-
ship of IP addresses, for example, there are explicit rules for ensuring that certificates
contain only address ranges that are subsets of those owned by the issuing CA or sub-CA
[Lynn, S. T. Kent, and Seo 2004, Section 2.3]. Of course, the root CA has to have the
right to those addresses before it can delegate them. That’s a political issue; on the global
Internet, those rights are held by the five Regional Internet Registries (RIRs), those rights
are assigned to them by the Internet Assigned Numbers Authority (IANA).

Other special rules exist as well. There are standard ways to indicate that a certificate
can be used for signing executables, or for email or web encryption. For CA certificates,
there is a “Name Constraints” field; this means that a CA trusted to issue certificates
for, say, *.example.com can’t issue fake certificates for some other company. In general,
though, the precise role of a certificate is not obvious, especially to a program.

Sometimes, the policies of a CA matter. CAs are supposed to document their policies
in a Certificate Practice Statement (CPS). In the real world, few people even know of
the existence of CPSs, let alone try to read them, but since they’re often very long and
written in legalese it isn’t clear that that matters much. More seriously, the party most
likely to know about the CPS is the one to whom the certificate was issued, while the
relying party—who is most affected by failures—is much less likely to even know of its
existence. Let’s put it like this: when you decide to do some shopping on the Internet,
do you even look to see which CA issued the certificate to the site you’re visiting? Do
you examine the certificate thoroughly enough to find a pointer to the CPS? Do you then
download and study it? Some CAs appear to claim that you’re legally required to read
their CPS before going to any site that uses it. Here’s one from Symantec:3

WHETHER YOU ARE AN INDIVIDUAL OR ORGANIZATION, YOU
(“RELYING PARTY”) MUST READ THIS RELYING PARTY AGREE-
MENT FOR USER AUTHENTICATION CERTIFICATES (“AGREE-
MENT”) EACH TIME BEFORE VALIDATING A SYMANTEC-ISSUED
USER AUTHENTICATION CERTIFICATE (“SYMANTEC CERTIFI-
CATE”) , USING SYMANTEC’S ONLINE CERTIFICATE STATUS PRO-
TOCOL (OCSP) SERVICES, ACCESSING OR USING A SYMAN-
TEC DATABASE OF CERTIFICATE REVOCATIONS OR RELYING ON
ANY INFORMATION RELATED TO THE SYMANTEC CERTIFICATE
(COLLECTIVELY, “SYMANTEC INFORMATION”). IF YOU DO NOT
AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT SUB-
MIT A QUERY AND DO NOT DOWNLOAD, ACCESS, OR RELY ON

3. “Relying Party Agreement for User Authentication Certificates,” https://www.symantec.com/content/en/
us/about/media/repository/relying-party-agreement-user-authentication.pdf.

https://www.symantec.com/content/en/us/about/media/repository/relying-party-agreement-user-authentication.pdf
https://www.symantec.com/content/en/us/about/media/repository/relying-party-agreement-user-authentication.pdf
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How Many CAs Does Your Browser Trust?

Still not convinced there’s a problem? Let’s look at the list of trusted CAs. As of October
2011, Microsoft listed 320 different root certificates.a It had been 321, but one was
removed because the CA, DigiNotar, was hacked and its private signing key stolen,
allegedly by parties linked to the government of Iran [Galperin, Schoen, and Eckersley
2011] (or maybe the NSA [Schneier 2013]). More than 100 different company names
are represented (because of assorted mergers and acquisitions, it’s difficult to tell just
how many companies are actually involved) from 49 different countries. More than 30
of the certificates are explicitly listed as belonging to agencies of national governments.
Does that give you a warm, fuzzy feeling?

Mozilla lists 150 different CAs, from about 60 different organizations. Their data-
base does not have an explicit country indication, but 8 of the CAs are identified as
belonging to government agencies.b

It’s harder to assess Apple’s list, since they don’t appear to have a single web
page; examination of the system certificate file on a computer running Mac OS X “Lion”
(10.7.3) on April 12, 2012, shows about 180 different certificates, from at least 30 coun-
tries and more than 70 companies.

Note that any of these CAs can create unrestricted sub-CAs, which you can’t even
see listed in your browser. Any of these organizations can issue certificates for any site
on the net.

Is that bad enough? It’s worse: some vendors will “helpfully” update your trusted
CA list automatically [Microsoft 2009]:

Root certificates are updated on Windows Vista automatically. When a
user visits a secure web site (by using HTTPS SSL), reads a secure email
(S/MIME), or downloads an ActiveX control that is signed (code signing)
and encounters a new root certificate, the Windows certificate chain veri-
fication software checks the appropriate Microsoft Update location for the
root certificate. If it finds it, it downloads it to the system. To the user, the
experience is seamless. The user does not see any security dialog boxes
or warnings. The download happens automatically, behind the scenes.

What you’re supposed to do instead is to add unwanted certificates to the “untrusted”
list, through a fairly ghastly user interface.

a. “Windows Root Certificate Program — Members List (All CAs) — TechNet Articles — United
States (English) — TechNet Wiki,”
http://social.technet.microsoft.com/wiki/contents/articles/2592.aspx.

b. “Included Certificate List,” http://www.mozilla.org/projects/security/certs/included/.

http://social.technet.microsoft.com/wiki/contents/articles/2592.aspx
http://www.mozilla.org/projects/security/certs/included/
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ANY SYMANTEC INFORMATION. IN CONSIDERATION OF YOUR
AGREEMENT TO THESE TERMS, YOU ARE ENTITLED TO USE
SYMANTEC INFORMATION AS SET FORTH HEREIN. AS USED IN
THIS AGREEMENT, “SYMANTEC” MEANS SYMANTEC CORPORA-
TION OR ANY OF ITS SUBSIDIARIES.

The shouting caps are all theirs. Note what it says: before “validating” or “relying” on
information in the certificates they issue, you “must read this” agreement. Your browser
did tell you that, right? No? I guess you’re not allowed to buy things online.

All of this—the certificates, the trust anchors, the delegation rules, the revocation
mechanisms (see Section 8.4)—compose what we know as PKI. PKI is the subject of
a great deal of angst, fear, misinformation, disinformation, and downright mythology.
Unfortunately, the foci of all of this Sturm und Drang are generally the complexity and
security issues. While these are indeed of concern, we now see the crucial limitations of
certificates for most people:

• It is rarely clear to system administrators or developers which CAs are trusted for
given applications. It is almost never clear to end users.

• It is rarely clear to anyone what a given certificate’s intended use is.

• It is almost never clear how trustworthy or competent a CA is. Many years ago,
Matt Blaze observed that a commercial CA would protect you from anyone from
whom they wouldn’t take money [2010]. This is a crucial point: if you trust a sys-
tem’s built-in CAs, you are in effect trusting some unknown set of third parties to
vouch for someone else’s identity (or attributes) and making access control deci-
sions based on these third parties’ opinions.

It helps here to reason by analogy. Suppose someone who claims to be an employee
wants to walk into your building. Rather than showing an employee ID card, they instead
pull out what appears to be a credit card in a real employee’s name; this credit card
was issued by one of several hundred banks you’ve never heard of, possibly up to and
including the Bank of San Serriffe.4,5 Do you think they should be admitted to your
building? Would you accept that as a login credential for your computer systems?

Any of these CAs can issue a certificate for any web site in the world—and your
browser will accept it.

4. “San Serriffe,” http://www.museumofhoaxes.com/hoax/archive/permalink/san serriffe.
5. “Knuth: The Bank of San Serriffe,” http://www-cs-faculty.stanford.edu/∼knuth/boss.html.

http://www.museumofhoaxes.com/hoax/archive/permalink/san_serriffe
http://www-cs-faculty.stanford.edu/~knuth/boss.html
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8.3 PKI versus PKI

Although, as I’ve shown, the standard Internet-wide PKI is unacceptably insecure, most
of the tools and pieces can be used quite securely if we can reverse the three big problems
listed above. That is, if we can construct a scenario in which everyone knows exactly
who can issue a certificate and what the purpose of that certificate is, and if the issuer can
be trusted to an extent commensurate with the resource being protected, we will have a
secure (or secure enough) system, while using the same software, syntax, and so on. In
particular, if we give up on the notion of the One True PKI and the One True List of CAs,
and instead have a CA per access control point, we can reap most of the benefits of public
key cryptography while avoiding the pitfalls. I call this concept PKI, to suggest small-
scope CAs, rather than the large-scope CAs of a traditional PKI. To expand on the credit
card analogy, enterprises generally issue their own employee credentials that are used to
enter the building, rather than deferring to the bank. Furthermore—and I’ll expand on
this point—employee ID cards function as authorization tokens even more than they do
as identification devices. It’s your possession of the card (possibly as authenticated by
your picture—a biometric—and perhaps knowledge of a PIN) that gets you in the door,
rather than your name and address.

The key insight is that every function that requires (or would benefit from) use of cer-
tificates should have its own PKI. Thus, an IPsec gateway would issue its own certificates;
these would be distinct from the certificates issued by, say, the corporate email service
for use in encrypting and authenticating messages. Similarly, the outside company that
handles procurement would issue a sub-CA certificate to the enterprise; this CA would in
turn certify employees who are authorized to buy things.

Note how this solves the problems described in the previous section. The IPsec gate-
way CA is trusted for IPsec; your web browser won’t believe certificates that it issues for,
say, Amazon.com. The purchasing certificate from ReallyNiceCorporateToys.com comes
from a CA that has the name ReallyNiceCorporateToys.com; no one will think it should
let you use IPsec.

The trustworthiness issue is the most important distinguisher. By definition, PKI cer-
tificates are issued by the party that is entitled to grant access to some resource. It does
not have to be—and is not—trusted to grant or withhold access to anything else. Fur-
thermore, given that such parties are handing out access credentials, from a security per-
spective it does not matter whether these credentials are key pairs, passwords, or special
thought symbols that are sensed by a magic crystal under the users’ keyboards. The ac-
tual technologies used may have differing security properties, but the fact that public key
technologies are used does not change the powers of the grantor. It is certainly possible to
overload the meaning of a PKI certificate, just as (in the United States) drivers’ licenses
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are used to gain access to airplanes and alcohol; the trick (and it’s at least as much or-
ganizational as technical) is to resist the temptation and do things properly. Use these
certificates only for the purpose for which they were issued.

A consequence of this is that running a PKI does not imply a need for excessive com-
plexity or security. In describing a simplified approach to IPsec configuration [Srivatsan,
M. Johnson, and Bellovin 2010], we wrote:

Public key infrastructures (PKIs) are surrounded by a great mystique.
Organizations are regularly told that they are complex, require ultra-high
security, and perhaps are best outsourced to competent parties. Setting up
a certificate authority (CA) requires a “ceremony”, a term with a technical
meaning [Ellison 2007] but nevertheless redolent of high priests in robes,
acolytes with censers, and more. This may or may not be true in general; for
most IPsec uses, however, little of this is accurate. (High priests and censers
are definitely not needed; we are uncertain about the need for acolytes. . . )

Much of the mystique is due to the general-purpose nature of PKIs and
certificates. If a certificate is intended to attest to a person’s identity, a lot
of process may be necessary. The real danger from a compromised root key
comes from the attacker’s ability to create arbitrarily many fraudulent cre-
dentials.

This is crucially important: a PKI installation need not be surrounded by any more security
than any other credential-issuing system. Some years ago, I heard a presentation from a
PKI vendor; the speaker stressed how “court-certified videographers” recorded all root
key ceremonies. Would you do the same when setting up your payroll system? Your
ID card system? Of course not—but why is it needed for certificate issuance? In multi-
organization situations, it could be defended as a mechanism to ensure trust; internally,
that isn’t needed.

A PKI avoids the central philosophical contradiction of general-purpose PKIs: the CA
is not authoritative for the name space concerned. This means that there are two different
entities that have to vouch for someone’s identity, the actual name space owner—on the
web, that’s whoever controls the DNS name—and the CA. Much of the bureaucratic
overhead of large-scale PKIs is dedicated to ensuring that their decisions match those of
the name space owner.

Running a PKI instead of using a KDC or even, in some cases, a password file has
another, more subtle advantage: successful attacks against your centralized infrastructure
are less damaging. Secret keys and password files must be protected against disclosure. In
other words, you have a confidentiality problem. By contrast, CAs need only authentica-
tion, a simpler problem. (Recall Table 7.1 and Figure 7.4: public key-based authentication
is the most secure type available.)
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Apart from hype and myth-making, there’s another reason that many organizations
refrain from issuing their own certificates: it seems like a very hard thing to do. There’s
some truth to that, albeit for a very bad reason. Let’s face it: many of the readily available
certificate-minting software packages are not only not user friendly, they’re downright
user hostile. Much of the complexity comes from asking for information that is gener-
ally irrelevant and often incomprehensible. Too many fields don’t need to be user settable
in 99.99% of cases. Do you really need to know (or want to know) what the difference
is between the “keyUsage” and “extendedKeyUsage” fields? A vendor of cryptographic
software is almost certainly more qualified than a typical organization to pick, say, ap-
propriate algorithms, key lengths, expiration periods, and so on, but the poor soul who
has to use the software has to read through (and understand) all of these options before
concluding that the default values can be left alone. Other fields, such as Organizational
Unit or City, might be necessary for identity certificates; they’re generally irrelevant for
the certificates I’m advocating, which are authorization certificates. That is, they give ac-
cess to some resource, but by intent they give access to the holder of the corresponding
private key. By contrast, identity certificates are used for authentication; after that, the
user’s name is matched against some form of access control list.

The ability to do something like this naturally suggests the idea of a company issuing
certificates for its own internal web sites, rather than buying them from a commercial CA.
It’s not a bad idea, but alas it is probably not worth it. Yes, it’s good that your own internal
IT department is the one attesting to the identity of, say, the Payroll web site. Alas (and as
described above), the risks arise because all of the other CAs your browsers trust can also
issue such certificates; having your own CA doesn’t change that. You could try deleting
them, but then you’re faced with the challenge of keeping up with the deletions, that is,
knowing every machine in the company (including all of the mobile devices people are
using), knowing what browsers are in use, knowing how to delete CAs from all of these,
actually having the authority to do so, keeping up with “helpful” vendor functionality that
restores CAs (see the box on page 153), and so on. An organization with a highly central-
ized, all-controlling IT group may be able to accomplish this (except, perhaps, working
around that excessive helpfulness), but excessive rigidity has its own disadvantages [Per-
row 1999].

Some companies do, in fact, do this, for a somewhat different reason: their firewalls
want to inspect all traffic, even if it’s HTTPS-protected. To do that, they use local CAs
that issue fake certificates for any web site; this permits the firewall to decrypt and then
reencrypt all traffic. There are interesting liability questions if this is done to, say, banking
web sites, but of course many organizations bar all non-work usage. (On the other hand,
I once worked for an organization that explicitly based its computer usage policies on
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Deuteronomy 25:4: “You shall not muzzle an ox while it is threshing.” A modest amount
of personal usage was explicitly permitted.)

There’s one more bad idea in this space that should be disposed of. Some people will
get the notion that they should delete all CAs that have issued certificates for Facebook
and other sites on which employees “waste” time. It won’t work. People who want to get
to such sites will just click through all of the bloodthirsty warnings their browsers will
display; you’ll only succeed in training people to ignore security pop-up messages.

If you don’t want to rely on a PKI or a PKI, there’s another way to get a great deal
of safety: key continuity (also known as certificate pinning or key pinning). Key continu-
ity relies on a simple concept: public keys rarely change. Accordingly, applications can
record the key sent by a peer; if there’s a difference on successive connections, it’s quite
possible that some evil party is trying to play nasty games. On the other hand (and as
shown in the error message in Figure 8.1), key changes can also occur for perfectly be-
nign reasons. In fact, this situation will occur. Knowing how to deal with it—and training
users how to react when they see such errors—is crucial; you do not want your users
to become acclimated to clicking through error messages. A variant checks whether the
issuing CA has changed; while less likely to generate false alerts—organizations don’t
change their CA vendors that often—such changes are by no means impossible. Indeed,

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that the RSA
host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
c5:10:e6:70:18:65:22:6f:48:71:26:26:3f:6d:2b:07.
Please contact your system administrator.
Add correct host key in /Users/smb/.ssh/known_hosts to get
rid of this message.
Offending key in /Users/smb/.ssh/known_hosts:150
RSA host key for some.host has changed and you have requested
strict checking.
Host key verification failed.

Figure 8.1: A key continuity failure message.
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making it hard to switch CAs would create a serious vendor lock-in problem. The key or
CA change problem, and the question of protecting initial contacts, has limited the use
of key continuity; to my knowledge, the only popular non-web application that uses it is
ssh. Still, it is a powerful tool in the right hands.

The IETF has recently created an HTTP extension for key pinning [Evans, Palmer,
and Sleevi 2015]. The new header fields defined can specify the length of time for which
a pin should remain active. In addition to permitting pinning of the certificate itself, it
permits pinning to a particular CA, thus allowing for easy issuance of new certificates for
the site. In addition, there is provision for a reporting URL, so that the web site owner
can be informed of spoofed certificates. This will work well for some sites; it remains to
be seen how well it will work in general.

Another way to look at the PKI problem is that it has created a technical decoupling
of trust from user-accessible concepts. That is, users try to connect to a service (e.g.,
the web) on some specific domain. They thus implicitly trust the DNS to give them the
proper IP address. If we add DNSSEC [Arends et al. 2005a; Arends et al. 2005b; Arends
et al. 2005c] to the mix, this is a reasonably secure process. With today’s PKI, though,
trust is coming from the collection of root CAs. If the sites’ certificates (or the hashes
thereof) were stored in the DNS and protected by DNSSEC, there would be no need to
trust the CAs; each site could control its own cryptographic fate. This is the approach
being taken by the IETF’s DNS-based Authentication of Named Entities (DANE) working
group [Barnes 2011; Hoffman and Schlyter 2012]; however, it is crucially dependent on
DNSSEC, which has not yet seen widespread adoption. It is too soon to predict what will
happen here.

Earlier, when I spoke of PKI CAs issuing certificates to users, I know that some of you
were practically jumping out of your seats and raising your hands to ask about usability.
It’s a serious issue: in a world of multiple devices per person, how can normal users
securely store and manage a large collection of private keys? Fortunately, with a bit of
software assistance, it’s not a show-stopper.

Recall that in Section 7.3, I discussed password managers. The same concept (and
much of the same code) can be used to handle private keys, while encrypting them for
storage in some convenient place, for example, a cloud provider. Again, if a private key is
simply an access token for a single service, it does not need to be protected more strongly
than a password would be for the same service. It would be nice if there were secure, con-
venient, portable key storage devices that worked well with our laptops, phones, tablets,
smart light switches, and the like, especially for high-value keys, but such tokens have
been just around the corner for well over a decade.
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DANE versus Certificate Transparency

Some people have practical or philosophical objections to DANE. DNSSEC responses
are large, there are complex technical issues hindering its deployment, and there is
serious reason to wonder whether DNS registrars understand the security challenges
involved in running a CA-like service. One alternative proposal is a Google proposal,
Certificate Transparency (CT) [Laurie, Langley, and Kasper 2013]: every CA would log
all of the certificates it issue, thus permitting browsers to notice if two different CAs
had issued a certificate for some site. For that matter, any company that wishes could
monitor the various CT logs to see whether certificates appear in inappropriate places.

The trouble with CT is that it requires universal compliance; otherwise, there’s no
way to protect against a non-CT CA issuing the bogus certs. To date, most CAs have
indicated that they are not enamored of CT, quite notably including Symantec, one of
the major CAs.a It is unclear whether there will be sufficient participation for it to fly,
though it has already detected one incident [Goodin 2015d].

The security concerns about registrars are quite plausible. With today’s CA struc-
ture, as problematic as it is, someone attacking a secure web site has to subvert two
independent mechanisms: the routing or DNS entry that controls where the traffic goes,
and the CA. With DANE, anyone who can seize control of a company’s DNS entry—
and that has happened, even to security-savvy firms [Edwards 2000]—can replace the
certificate. Is this better or worse than CT? A lot depends on your threat model, but
there isn’t room in the Internet for two solutions to the PKI conundrum.

a. “Upcoming changes to Google Chrome’s certificate handling,”
https://cabforum.org/pipermail/public/2013-November/002336.html.

8.4 Certificate Expiration and Revocation

Regardless of whether we use a PKI or a PKI, certificates do not last forever. After some
time interval specified in the certificate (i.e., set by the CA), certificates expire. Alter-
natively, they can be revoked for any number of reasons, including if the private key
is believed to have been compromised. Expiration and revocation seem straightforward.
They’re not, but before diving into the complexity, let’s look at how certificates die.

Certificates can become invalid (“die”) in one of two ways. First, they can expire; all
certificates include an expiration date, after which they may not be used. Second, they
can be revoked, that is to say, explicitly declared to be invalid. The latter may be done

https://cabforum.org/pipermail/public/2013-November/002336.html
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because of private key compromise, suspected or actual misbehavior by the holder of the
private key, or fears for the strength of the cryptographic algorithms used.

There are three reasons for expiration. First, there is the sense (often a vague sense)
that after a certain period of time, the likelihood of an undetected compromise of the pri-
vate key has become unacceptably high. The mathematics of this policy are impeccable.
Suppose that the probability of a compromise during a given time interval is p; further
suppose that the intervals are independent. Obviously, then, the probability of security—
that is, of no compromise—after n intervals is (1− p)n. Pick your trustworthiness prob-
ability threshold t and solve, getting n = log t

log1−p ; it’s nice, simple, and mathematical. It’s
also a useless exercise, since no one has any good idea what p might be. A few years is a
common choice, but the mathematical basis for that is nil.

The second reason for certificate expiration is that algorithms age. Back in the dawn of
time when the web was young, CAs commonly issued certificates with 1,024-bit keys and
MD5 as the hash algorithm. Both are now believed to be insecure; suitable choice of an
expiration date protects against that. This, too, seems like an impossible decision—how
can you know when an algorithm will be cracked?—but in reality, modern algorithms do
not fail all at once. Generally speaking, cracks will show up years in advance. To give just
one example, signs of weakness in MD5 were noted as early as 1996 [Dobbertin 1996],
well before the 2004 crack [X. Wang et al. 2004]. People realized this, even without
hindsight; to give just one example, Bill Cheswick, Avi Rubin, and I warned about it in
Firewalls [2003, p. 347]. A certificate lifetime of a few years should allow enough time
to change; your credentials based on insecure algorithms will probably expire and be
replaced before the problem becomes critical.

Finally, certificates expire to ease bookkeeping with respect to revocations: there’s no
apparent need to keep track of the revocation status of an expired certificate because it is
a priori invalid. As we shall see, though, that benefit is more illusory than real.

A party accepting a certificate can check for revocation in two different ways. The
older mechanism uses a Certificate Revocation List (CRL) [Cooper et al. 2008], a file of
revoked certificates signed by the issuing CA; the URL of this list is included in certifi-
cates. Those of a certain age may recall store clerks looking up credit cards in a book-
format blacklist; conceptually, this is the same thing, save that CRLs include the time
of the next update to provide warning of stale revocation lists. (Just what a relying party
should do if a new CRL doesn’t arrive on time is a difficult question. Clearly, something is
wrong; quite possibly, a denial of service attack has been launched to prevent folks from
learning of newly revoked certificates. Equally clearly, rejecting all presented certificates
just because you can’t retrieve a new CRL is very unlikely to be correct.)

The other way to check the validity of a certificate is via a network connection using
Online Certificate Status Protocol (OCSP) [Myers et al. 1999]. The obvious analogy,
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Figure 8.2: Timeline of certificate compromise, revocation, and expiration.

of course, is a modern credit card terminal. Don’t stretch that analogy too far; credit
card numbers are not self-checking the way certificates are. OCSP is used to verify the
continuing validity of a certificate, rather than whether it was ever valid. OCSP can return
Valid, Invalid, or Unknown status codes; again, the question of what to do if the OCSP
server is unavailable or returns Unknown is a difficult one.

Intuitively, OCSP seems “more secure,” in that it reduces the time between key com-
promise and effective revocation. The actual benefit, though, is much less. Consider the
timeline in Figure 8.2. The effect of OCSP is to shrink interval b, the time between
compromise and a “don’t trust this” signal. Almost always, though, the time between
Tcompromise and discovery of the problem is much longer than the time between discov-
ery and effective revocation. Yes, OCSP reduces the effort needed for effective revocation,
but realistically that’s almost always a small percentage of the interval b.

Furthermore, the very concept of certificate death isn’t as simple as it appears. Let’s
look at expiration first. It seems obvious—after a certain date D, the certificate may not
be used—but “used” for what? Suppose that someone encrypts and signs a file at date
D−1, when the certificate is still good. Are you allowed to verify the signature at D+1?
Obviously, you should be; anything else would be absurd. What should happen, though,
if the sender created the file at D+1? That shouldn’t happen—but what should you, the
recipient, do if it does, and how can you tell if you don’t have access to the sender’s clock?
(The problem of clock synchronization between the sender and the recipient is an entirely
separate can of worms.)

Digital signatures present an even more complex challenge. The point of a digital
signature is to provide proof that some individual (more accurately, some private key)
created a particular file or message. However, one reason why certificates expire is to
deal with unsuspected compromise of its private key. How should a recipient handle a
message that was signed with a now-expired key? The timestamp in the message itself
may indicate that it was signed before the expiration date—but can you trust the signer’s
timestamp? After all, that value might have been set by the enemy. Equally problematic,
how do you prove to a third party, such as a judge, just when the message was signed?
There are schemes for timestamping documents—see, for example, [Haber and Stornetta
1991a; Haber and Stornetta 1991b]—but they’re rarely used, at least in the United States.

Ultimately, the issue becomes a very deep question: when does your reliance on a
signature expire? That is, when should you no longer take actions based on a message
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that was signed with some particular key? A case in point is a software package, such as
a device driver, that was signed by the vendor. Depending on the package, a considerable
amount of time may elapse between signature time and the time the signature is checked.
A lot can happen between those two events.

Let’s first consider an easier situation: receiving a digitally signed email message,
perhaps containing an assent to a contract. There are four parties to consider: the CA,
the signer, the relying party, and a judge who may be asked to rule on disputes. Look
again at the timeline in Figure 8.2; the certificate was created at Tissue. If the message is
received during interval a, clearly all is well; no compromise has yet happened. Interval b
is the danger period: the private key has been compromised, but the certificate has not yet
been revoked. The size of the interval depends on two different factors: how much time
has elapsed between the actual compromise and its detection, and how long the various
processes take to actually revoke the certificate.

Interval c is safe if the relying party actually checks for revocation. As we have seen,
different revocation schemes have different properties here. Depending on the scheme and
various environmental considerations, Trevoke can move to the right, effectively length-
ening interval b. (Revocations do carry an explicit timestamp, but the meaning will vary;
it may be the time of compromise as determined by the certificate holder, or it may be
when the revocation was requested. You have to check the CPS for details.)

Interval d is unambiguous (everyone checks for expiration) in the sense that you won’t
trust a compromised certificate, though the exact value of Texpire depends on the clock
skew between the CA and the relying party.

All this seems simple, but it’s not. Tcompromise is uncertain and often unknowable;
was the message signed during interval a or interval b? For that matter, suppose the signer
regrets agreeing to the contract and deliberately leaks the key, but claims that it was
available earlier? Is the signature genuine or not? What then? This matters if there’s a
dispute: who actually signed the message, the nominal signer or an attacker who has the
compromised private key? Ultimately, a judge may have to decide.

The problem intended to be solved by digital signatures was described this way by
Diffie and Hellman in their original paper [1976]:

In current business, the validity of contracts is guaranteed by signatures. A
signed contract serves as legal evidence of an agreement which the holder
can present in court if necessary.

and

That is, a message may be sent but later repudiated by either the transmit-
ter or the receiver. Or, it may be alleged by either party that a message was
sent when in fact none was. Unforgeable digital signatures and receipts are
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needed. For example, a dishonest stockbroker might try to cover up unautho-
rized buying and selling for personal gain by forging orders from clients, or a
client might disclaim an order actually authorized by him but which he later
sees will cause a loss. We will introduce concepts which allow the receiver
to verify the authenticity of a message, but prevent him from generating ap-
parently authentic messages, thereby protecting against both the threat of
compromise of the receiver’s authentication data and the threat of dispute.

Unfortunately, the issue of key compromise has dimmed the luster of Diffie and Hell-
man’s solution. The crucial advantage provided by digital signatures, non-repudiation,
vanishes in the face of a deliberate key leak by the signer. This means that ultimately, the
authenticity of a signature is a factual question, of the sort commonly handled by courts.
Unfortunately, in this situation the crucial evidence—log files, forensic examination of
the purported signing computers, and so on—is of a sort rarely handled well by courts
and juries; the material is too technical. Your best defense is logging (Section 16.3) and
insistence on logging by the other party; ideally, such logs are kept by an independent
party. Think notary publics, moved to the digital world.

Life is even more complicated in other digital signature scenarios, where the actual
dependency is considerably later than receipt of the signed message, or where “receipt” is
not obvious. Consider, for example, a digitally signed device driver, written onto a CD and
packaged with the hardware. The real dependency of the signature is not when you buy
the device, but when the CD was burned (though of course you don’t know whether the
signature was checked at that point). A compromise later is quite irrelevant; no hacker, no
matter how good, can affect an already created CD. (On the other hand, the Andromedans
can launch a supply chain attack and tamper with nominally sealed boxes of hardware,
substituting their own CD for the genuine one. They’ve done it in the past.) Sure, you can
check whether the certificate has been revoked before you install the device driver, but
that isn’t a meaningful operation unless you’re somehow informed that Tcompromise was
before the CD was created—and of course you can’t know that. Note carefully that none
of this analysis applies to downloaded device drivers; for those, the situation is similar to
the email situation. After all, a clever attacker can easily replace a signed device driver on
a vendor’s web site.

Generally, attackers aren’t trying to tamper with software you know you’re installing.
Rather, they’re trying to take advantage of the implicit authorization that some operating
systems attach to the authentication of files signed by certain CAs. That is, they’ll silently
install code if the file is signed by a certificate issued by any of a vast number of parties.
Stuxnet took advantage of this [Falliere, Murchu, and Chien 2011; Zetter 2014]; there
have been other reports of signed malware using the same technique [Bijl 2011; Goodin
2012b; Hypponen 2011; IIJ 2012] as well as at least one accidental key compromise
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Are Digital Signatures Legally Binding?

The formal status of a digital signature—that is, of the output of a series of calculations
that can only be performed or verified by a computer—is of course a legal matter, not a
technological one. In the United States, such signatures are binding, both as a matter
of common law and as explicitly codified in the Electronic Signatures in Global and
National Commerce Act of 2000.a

A signature “whether electronic or on paper, is first and foremost a symbol that
signifies intent” [Smedinghoff and Bro 1999]. Identifying the signer and ensuring the
authenticity of the signed document are described as “secondary purposes.” A legal
opinion from the Comptroller-General [1991] notes that “Because of its uniqueness, the
handwritten signature is probably the most universally accepted evidence of an agree-
ment to be bound by the terms of a contract. . . Courts, however, have demonstrated a
willingness to accept other notations, not necessarily written by hand.” In general, then,
there is no reason that a digital signature cannot be used.

However—this is, as noted, a legal matter, and there are often exceptions, caveats,
and different rules in different jurisdictions. Before assuming that a digital signature is
legally binding, consult your own attorney or logomancer.

a. “Public Law 106-229,” http://www.gpo.gov/fdsys/pkg/PLAW-106publ229/content-detail.html.

[Goodin 2015c]. As noted in the box on page 82, there is speculation that 512-bit RSA
keys were factored in at least one case; with Flame, a new cryptanalytic technique—
applied to certificates using MD5, which the CA should not have accepted—was used. In
the other cases, it seems more likely that the private key was stolen.

Looking at things more formally, what we really need to consider is the relation-
ship between Trevoke and Trely, the time when you use the certificate. Ideally, of course,
Trely < Trevoke. The complexities discussed above occur when Trevoke < Trely; prob-
lematic uses include file installation, showing the signature to a judge, and more. Absent
more information, dilemmas are inescapable. That, however, points to a solution: more
information.

If the digital signature includes a trustworthy timestamp (this will generally be the
case for signed software; if you don’t trust your vendors to tell the truth about the time,
why are you installing their code?), this value can be compared with Tcompromise when
it is learned. (Of course, if it’s a fraudulent software package, it isn’t from the vendor you
trust.) If vendors would do things like publish a time-stamped list of signatures they’ve

http://www.gpo.gov/fdsys/pkg/PLAW-106publ229/content-detail.html
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created, you could compare your signed files with that list, and with Tcompromise if and
when you learn of it. (Some companies prefer not to reveal that they’ve been hacked
[Yadron 2014].) I know of no vendors who create such lists, and few who publish the
results of forensic examinations, but perhaps that will change. Better yet, the vendors
could let an outside party maintain the list; that’s better for things that someone may
want to show to a judge. (If done properly, publishing a signature list doesn’t reveal any
sensitive information. The list doesn’t have to have the signature itself, let alone the file
being signed; rather, it can be the cryptographic hash of the actual signature.)

Now consider what happens if Texpire < Trely. Is using the certificate at that time
safe? As before, there isn’t enough information to decide; what we really need to know is
the relationship of Tcompromise to Tsignature. Conceptually, this means that one might
want to revoke an expired certificate, if the compromise isn’t detected until much later.
This can happen; see [Naraine 2012] for one example. The existence of a revocation
message is an explicit statement of danger, rather than the more generalized feeling of
concern that expiration times are intended to handle. Think of it this way: certain diseases
are more likely to occur as we age, even though they can occur earlier. However, this
general warning—when you reach age X , get tested for such-and-such—is very different
than a doctor looking at some test results and delivering the bad news. When there’s
bad news—when a certificate is known to have been compromised—that fact has to be
communicated explicitly, so that you can take appropriate action.

What it comes to is that revocation is rarely used or usable on the Internet. The se-
mantics are unclear, and the very different models for what it means to “use” a certificate
means that the effects of such an action are often unpredictable.

One more point bears mentioning: none of the conceptual problems with revocation
are related to the difference between PKI and PKI. Those have to do with trust patterns;
revocation suffers from complex semantics. Moreover, the complexity is inherent in the
problem statement; they are not an artifact of current designs. A PKI limits the damage
from a compromised key; it doesn’t change the very difficult reasoning about what to trust
and when.

8.5 Analysis

What possible changes might affect the recommendations of this section?
The heart of the web PKI problem is the “let a hundred CAs bloom” approach of

browser and OS vendors. It seems unlikely that they will change their policies; unless and
until either certificate transparency or DANE are deployed, there are no secure alternatives
for initial contact. Besides, this is The Way Things Are Done; we are dealing with the
Deity of Inertia. Finally, the political implications of having only one root CA—one all-
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powerful entity that decides who can and who cannot do secure web interactions—make
it an extremely unacceptable alternative.

Key continuity as an add-on is relatively simple to add; however, the key change or
CA change scenarios must be dealt with. This is a challenging problem in user experience
design. A good solution would present users with comprehensible information about the
old and new CAs. I suspect that a perfect solution is an intractable problem; even under-
standing the question “do you want to trust this change in certificate authorities?” requires
a far deeper understanding of PKI than most users have, want to have, or should have.
There are browser add-ons (e.g., Certificate Patrol for Firefox) that provide such func-
tionality for sophisticated users; indeed, key continuity checking is how the DigiNotar
hack was detected. On the other hand, the number of (apparent?) false alarms is so great
that I’ve disabled it on my computers.

Google has implemented key continuity in Chromium, its open-source operating sys-
tem and browser. However, the feature announcement came with a warning [Evans 2011]:

You can now force HTTPS for any domain you want, and even “pin” that
domain so that only a more trusted subset of CAs are permitted to identify
that domain.

It’s an exciting feature but we’d like to warn that it’s easy to break things!
We recommend that only experts experiment with net internals settings. [em-
phasis in the original.]

Their own sites are protected by default, and we can assume that they would push out an
update in advance of any change in their own certificates or CAs. That isn’t a solution
that is generally applicable.

It would be nice if users could easily download a different collection of CAs from
some source that they themselves trust. Enterprises would like this; it would permit easy
tailoring of the list to include corporate CAs. There is a downside, though; repressive gov-
ernments could use it to insert their own CA in the list, at least for browsers distributed
within their countries. It also poses a new problem: how is that download to be authen-
ticated? Most likely, every browser vendor would use its own, hard-wired CA to protect
such downloads; they would then issue certificates to anyone who wanted to supply a CA
list, being careful only to verify the identity of the supplier. There is no strong need to
verify their trustworthiness, at least if you assume that people who download the MI-31
CA list are only doing so voluntarily.

There are two other models of certificates that bear mentioning, the web of trust and
simple public key infrastructure (SPKI). Both are significant steps away from the hierar-
chical, name-based approach of traditional certificate authorities.

The web of trust, used by the Pretty Good Privacy (PGP) mail encryptor [S. L.
Garfinkel 1995; Lucas 2006; Zimmermann 1995], certifies name/key bindings via an ar-
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bitrary directed graph rather than a tree. There are no keys specifically designated for use
by CAs; rather, every key is simultaneously usable for certificate signing and for actual
data encryption or signing.

The advantage of the web of trust is that no infrastructure is necessary to start using it;
you and your friends can generate keys and sign each others’, and you’re off and running.
You don’t have to worry about Andromedan-run CAs; you’re trusting your friends. On a
small scale, it works well; you can even view it as a form of PKI. Problems appear when
you need to make more than one hop. You probably trust your friend to vouch for her
friends’ identities, but do you trust them as much? Their friends, whom you don’t know
even at one remove? Have you ever met a friend of a friend who seemed rather sketchy to
you, enough so that you wondered why your friend associated with such a person? Scale
that up a little and it becomes obvious that trust drops off very rapidly with distance.

Revocation is even more problematic in web-of-trust systems than in hierarchical
CAs, since there is no single CRL to consult. There are some well-known PGP key
servers, but these are generally used to obtain keys, not to revalidate currently stored
keys.

SPKI [Ellison 1999; Ellison et al. 1999] takes a different, even less conventional ap-
proach to certificates: it’s based solely on authorization, rather than identity. The certifi-
cate may contain the name of the putative holder, but that’s more a convenience; presen-
tation of the certificate gives the authorization information for the holder, and the private
key is (of course) used for authentication. The name is never looked up in any sort of ac-
cess control list. This decision was made for a number of reasons, most notably because
of the difficulty of constructing a single global, unique name space. SPKI also includes
the notion of delegation, and a number of set-theoretic operations on collections of cer-
tificates to decide whether a particular one provides authorization for a given service; see
[Ellison et al. 1999] for details. It’s an interesting model, and it has been used in a few
situations; it’s unclear, though, how well it would function at Internet scale.

It is important to realize that the thorny problems in this chapter—the need to trust
many CAs, and the meaning of revocation—are conceptual problems that are inherent in
the overall solution space. Simple changes in technology, such as a different hash function
or switching to elliptic curve signatures, don’t affect them at all; these problems are not
susceptible to easy technical fixes. It will take major breakthroughs to find fundamentally
different solutions, and a multi-year effort to deploy them.



Chapter 9

Wireless Access

“They do not use lasers, they do not use radio, they do not use hyperwave.
What are they using for communication? Telepathy? Written messages? Big
mirrors?”

“Parrots,” Louis suggested. He got up to join them at the door to the control
room. “Huge parrots, specially bred for their oversized lungs. They’re too
big to fly. They just sit on hilltops and scream at each other.”

Ringworld
—LARRY NIVEN

9.1 Wireless Insecurity Myths

Among the stories that one hears is that wireless, and in particular 802.11 (AKA Wi-Fi),
is inherently and horribly insecure. Is it? As is often the case, the answer is “it depends.”

The way to understand the Wi-Fi problem is to realize that there are really four dif-
ferent issues: ability to talk to wireless hosts (which, in this chapter, I’ll refer to as “host
access”), ability of the attacker to get on the wireless network (“network access”), ability
to eavesdrop on the packets being carried on the net (“content access”), and ability to do
traffic analysis (“metadata access”). The first affects whether you let traveling employees
use Wi-Fi; the other three are about whether your enterprise should use it. The four prob-
lems are quite different; different solutions are needed for each. Furthermore, there are
two different classes of popular wireless technology, Wi-Fi and mobile phones; Wi-Fi
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can be internal or external, and tech toys (i.e., smart phones and tablets) tend to live in
multiple worlds. Because of their dual nature, I’ll defer discussion of toys to Section 9.4.
(There are, of course, many other wireless technologies in use; however, with the possible
exception of Bluetooth, few are serious computer security issues.)

Let’s look at content access first. There is no doubt that eavesdropping on unencrypted
Wi-Fi traffic is trivial. Wi-Fi’s advertised operational range is 100 meters; however, with a
suitable external antenna, considerably longer ranges than that are quite easily achievable.
The canonical do-it-yourself Wi-Fi antenna is based on an empty Pringles can; plans are
widely available on the Internet.

If the Andromedans are after you, though, a conventional, wired network may not be
any better. Someone I once knew put it like this: “All those Ethernet cables you’ve run?
You call them wires; I call them antennas.”

If you’re dealing with a lesser enemy, there is little doubt that an unencrypted Wi-Fi
network is easier to eavesdrop on than a wired one. Wired networks are switched; for
the most part, machines receive only packets intended for them. Although this can’t be
seen as a security measure, let alone a strong one—there are well-known attacks, and
even without them some packets are flooded to all ports as part of normal operations—it
certainly is a help. With a wireless net, there may be many hosts connected to each access
point, which is the only device whose location you really know and to which traffic is
filtered by the switch.

Perhaps more seriously, wireless extends the perimeter of your network for active
users, letting someone outside your building appear as if they are actually on your LAN.
In other words, content access and network access are far easier with wireless nets than
wired. Although this would seem to be a significant defect, it is fairly easily countered
with proper cryptography.

What applies to access to content applies to access to the network: if your network
isn’t properly protected, the lack of a physical perimeter is a serious issue. However,
the differential advantage is a lot less than one might suspect when dealing with skilled
enemies; an enemy who has compromised any single machine on your LAN has amazing
powers.

By playing games with ARP, MAC spoofing, and the like, it’s relatively easy for
a rogue machine to divert traffic to itself. In one incident I saw (the boxed story on
page 172), the attacker was able to spoof any machine on the LAN, as well as intercept
any traffic. An open access point might be useful in achieving initial penetration (indeed,
Gonzalez [Chapter 3] and company did use such techniques), but in many situations, there
are many other ways, such as spear-phishing, to achieve the same goal.

In other words, wireless networks are indeed somewhat less secure than wired nets.
However, the odds of a single-machine penetration of your LAN, especially by a targetier,



9.1 Wireless Insecurity Myths 171

are sufficiently high that one should not skimp on internal protection. “The machine is on
my LAN” is good enough access control only for low-value resources.

Proper use of cryptography—WPA2 Personal and especially WPA2 Enterprise—is
a very effective defense. Put simply, the cryptography here works; it does the job it’s
intended to do. In fact, in one way it is arguably better than an unencrypted wired net:
outsiders with fancy antennas can’t read the data. The details, though, do matter.

To associate with a WPA2-protected network, a node needs a cryptographic key. With
WPA2 Enterprise, a login and authenticator (often, though not always, a password) are
needed as well. Using these and some randomly generated values, a separate session key
is generated for each user. This means that other nodes on the same net can’t read the
data. There are two important caveats here, though. First, with simple WPA2 Personal, an
attacker who is on-net before a target node joins can overhear the key exchange dialog and
can calculate the session key just as well as the target can; eavesdropping is thus possible.
This sounds like it takes a sophisticated adversary; in fact, there are popular open-source
tools that do just that. WPA2 Enterprise prevents the attack, since the user’s secret au-
thentication data is also part of the session key calculation. Second, WPA2 encryption is
link encryption, that is, between the wireless access point and the nodes. Traffic delib-
erately sent to an attacker’s node (perhaps in the wake of an ARP-spoofing attack) will
be encrypted to it, not to the proper recipient, so it will be readable by the attacker. To
protect against this sort of diversion attack, you need to encrypt at Layer 3 or above. That,
however, is identical to what can happen on a wired net.

The conclusion is that WPA2 Enterprise is somewhat better than wired LANs against
content access and network access attacks. This applies even to the Andromedans with
their souped-up Pringles cantennas. Plain WPA2 is slightly weaker than wired LANs,
since many more nodes are associated with a typical access point than with a port on a
wired switch, so machines using the same access point can eavesdrop on each other.

On the other hand, wireless networks are significantly more vulnerable to metadata
access attacks. Even with encryption, the source and destination MAC addresses of pack-
ets are sent in the clear; anyone within range can pick them up. Yes, the Andromedans
can do the same to a wired net, but it takes rather more unusual equipment. This is prob-
ably not an issue, though, for most enterprises; metadata access is rarely of interest to
any threat level short of an APT (though even the lower grades of APTs will do it), and
even though the bad guys gain some advantage from tackling a wireless net, doing so still
requires reasonable proximity. Most attackers would probably find it easier to hack into a
router or network management station and capture the NetFlow data.

The situation is rather different for external, public Wi-Fi nets. Here, use of encryption
is extremely rare; the nets are, after all, public, and expecting Joe Sixclick, the proverbial
mouse potato, to turn on encryption when visiting a local hotspot is simply not realistic.
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An Active Attacker

Some years ago, my department’s system administration group was notified by the
campus network security people that one of our machines was infected: it was doing
an address space scan across campus, trying to find vulnerable machines. Things like
that happen; it’s unfortunate, but it’s hardly a surprise if a random desktop machine has
been taken over. This one, though, was a shocker: it was the departmental FTP server,
a tightly administered machine. Naturally, it was immediately shut down. Some hours
later, the campus folks inquired why nothing had been done. . .

The sysadmins checked: it was powered off. To be sure, they physically pulled the
plug and the network cable. “Still scanning?” “Yes. . . ”

At this point, it seemed like a case of IP address spoofing, which is pretty easy
for an on-net attacker. They checked the ARP tables, only to discover that the proper
MAC address was being used. MAC address spoofing, though also easy, is much rarer,
because MAC addresses aren’t normally logged by hosts, and hence are of much less
utility in network forensics. Fortunately, the campus networking people keep very de-
tailed histories of the Ethernet switch management data. With the help of those his-
tories, we were able to determine that the actual attacking machine was in another
building entirely. Furthermore, it had been spoofing many different department hosts,
at the MAC and IP layers, for at least six months. The final irony: the compromised
machine was a small firewall. . . (When we cleaned up that firewall and some desk-
top boxes that were also compromised, the attacker retaliated by launching a denial of
service attack against the department. How dare we take away his (her) toys!)

(I’ve seen published suggestions that hotspot login pages tell users to reconfigure to an
alternate network name with a public WPA2 key. I strongly suspect that the people making
such suggestions have never run any network larger than their own houses’. How much
free customer care can you afford when your real business is selling coffee?) Network
access is not a concern, of course, but access to content is much greater than on a typical
switched network; as discussed below, use of a VPN or application-level encryption is
absolutely mandatory. There is one area of concern to some network operators: the ease
of sniffing MAC addresses complicates access control at paid hotspots; unscrupulous
users can pick up addresses of people who have paid for the service and piggyback on
them. (That’s a bit more complicated than it sounds; see [Clayton 2005] for some details.)

What about danger to the hosts themselves? Are they at more risk on wireless nets
than wired? The answer is a qualified “no.”
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For encrypted internal Wi-Fi networks, there is strong access control; thus, there
should be no new attackers present. There is one more moving part—the key negotia-
tion component—and it’s quite conceivable that some implementations have exploitable
security holes. I haven’t seen any reported, but given how many other network entities
have proved vulnerable it would be foolish to assume that it can’t happen. Still, at this
point at least the incremental risk seems to be low.

External networks are another matter. Attackers who set up fake access points or who
play ARP games can capture content. If you’re cautious, it should all be encrypted, so
you shouldn’t have any problems. Alas, there are complications.

The ideal form of encryption on a public network is a VPN, with all traffic going
back to somewhere safe. In fact, what we really want to do is to lock down our hosts
sufficiently well that they won’t emit anything unencrypted. That turns out to be hard;
most hotspots want your browser to talk to a login session first; often, you have to pay,
and they want to show you more ads [Seltzer 2015]. (Most also want you to agree to a
long laundry list of terms and conditions that their lawyers drew up, though even some
prominent judges don’t bother reading that kind of verbiage [Weiss 2010].) Perhaps more
seriously, using encryption in such scenarios requires proper bilateral authentication; all
too many software packages and users get this wrong. Besides, as discussed in Chapter 8,
getting it right can be quite hard. The risk, then, is low under good conditions—proper
software and well-trained users—but noticeable under other conditions.

Because outsiders—your potential enemies—have access to the same wireless net as
you do, mobile hosts may also be at risk in two different ways. First, access to some of
your traffic may enable an attack. It shouldn’t—you should be using a VPN—but as noted,
there is generally a brief period when that just isn’t feasible, even if everything else is set
up properly. Can a sophisticated attacker who fakes a login page send your browser nasty
stuff via a drive-by download? It’s almost certainly possible, though it’s hard to assess
the odds. The second risk is network scanning attacks: attacks intended to learn what
hosts are present and what services these hosts are listening for. These are, of course,
possible against wired nets, assuming that your attacker knows your IP address. Proper
IPsec software should reject non-VPN packets; it isn’t clear that all implementations do
so properly, and some other types of VPN don’t even try.

The real danger from use of external networks, wired or wireless, may be indirect.
Suppose that a machine does become infected. The real risk is when that machine comes
home and connects to your organizational network: will they bring the infection home?
For that matter, if they only use their VPNs part of the time, will the infection traverse
the tunnel when they do set it up? The incremental risks seem somewhat less today than
a few years ago (possibly because machines are as likely to be infected from inside-your-
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walls web browsing and email as they are when traveling), but if you’re worried about
APTs and your employees are visiting Andromeda, special precautions may be indicated.
Indeed, there are people who bring “burner laptops” with them when traveling to some
countries, and they leave their smart phones home [Perlroth 2012]. The inconvenience is
considerable, but so, apparently, is the threat.

Another way to look at the issue is to consider the Wi-Fi threats posed by our different
classes of attackers. We will assume WPA2 for internal nets and no encryption for external
ones.

Joy hackers If they’re geographically very close (i.e., within 100 meters), they can use
a wireless net more easily. Joy hackers are the group most easily defeated by Wi-Fi
encryption.

Opportunistic attackers Random attackers, by definition, aren’t likely to be particularly
close in the physical world, so there is little difference in risk. You might stumble
on one at a public hotspot; again, you want to use VPNs there in any event.

Targetiers Targetiers are the most interesting case. Many will have ways to penetrate
at least one machine on your LAN. Some, in fact, will be disgruntled insiders and
hence already have access. While they may also seek to gain initial entry via poorly
protected wireless nets, they can do so much damage once they’re on the inside that
simple external access control will do little. In other words, there is little differential
security for a Wi-Fi net.

On the other hand, poorly secured Wi-Fi nets have been entry points in the past.
Again, though, WPA2 is a strong defense against network access attacks on internal
nets; the more interesting question is host access attacks against roaming devices.

MI-31 There is little that can be done to prevent eavesdropping by the Andromedans;
ubiquitous cryptography, at all layers, is the best answer. Although the use of Wi-
Fi encryption will help deflect one entry point to your net, they have many other
ways in. Wi-Fi does make metadata access easier, which they may find to be a
significant advantage.

In other words, the usual recommendation for wireless security (using Wi-Fi encryption)
is quite effective against most threats. If the Andromedans are not in your threat model,
there is no reason to eschew wireless connectivity; the precautions you have to take on
any network are more than sufficient to deflect common wireless threats.

There is one more aspect of wireless security that is rarely mentioned, but is familiar
to many system administrators: finding the offending host when there’s a problem. If you
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use managed switches (and except possibly for in-room use, an enterprise should use
nothing else), and if you have good records about which switch ports are connected to
which jacks, localization is easy: map the offending IP address to a MAC address, map
it to a switch port, and look up the offender’s location. (That’s what was done in the
story on page 172.) Except under unusual circumstances, that’s much harder in a wireless
world. Even without snack food container antennas, the range of an access point can be
up to 100 meters; that’s a lot of area to search for a malefactor, especially if the malefactor
is actually a piece of malware living unsuspected on someone’s machine.

What can you do? Sometimes, there are special circumstances. I recall one confer-
ence where nasty stuff was coming from someone’s laptop. We knew from the switch
logs which access point was involved; given the layout of the network, we were fairly
certain what room the offending machine was in. Someone ping-flooded the machine,
while someone else wandered around looking for the combination of a brightly lit indi-
cator LED and the bewildered face of someone wondering why he suddenly couldn’t get
out to the net. . .

There are more general techniques, of course. Tao et al. describe using RF signal
strength to localize machines within a few meters [2003], though it seems likely that
directional antennas would defeat their scheme [Wallach 2011]. Generally speaking, the
easiest thing to do is to blacklist the offender’s MAC address; if it’s an innocent party’s
infected machine, they’ll complain soon enough. Better yet, put it on a separate VLAN,
where any web page they try to visit tells them what’s going on and how to get help. Some
universities do that, especially for student machines in dorm rooms.1 That won’t block a
skilled attacker who can change the machine’s MAC address, but even pros can forget to
do that [Williams 2010].

9.2 Living Connected

As we’ve seen, Wi-Fi is acceptably secure for internal use if proper cryptography is used.
Let’s take a deeper look at Wi-Fi link encryption. All Wi-Fi devices come with the ability
to encrypt traffic. It costs little and should generally be turned on. However, there are
different flavors of crypto available; which one you select matters a great deal.

The oldest form of Wi-Fi encryption, Wired Equivalent Privacy (WEP) is all but use-
less and should be avoided [Borisov, Goldberg, and Wagner 2001; Stubblefield, J. Ioan-
nidis, and Rubin 2002; Stubblefield, J. Ioannidis, and Rubin 2004]. It has no redeeming
virtues save for backwards compatibility with ancient hardware; any device manufac-

1. “PaIRS: Point of contact and Incident Response System,” http://goo.gl/xhroc.

http://goo.gl/xhroc
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tured since, I suspect, the late Cretaceous period should support something better. WEP
is a poor implementation of a weak cipher (RC4); in addition, it has the key distribution
weakness discussed below.

There are two newer encryption standards, WPA and WPA2. WPA will run on older
hardware; however, it generally uses RC4, which means that it can be cracked in about
an hour [Vanhoef and Piessens 2015]. When available, WPA2 should be used. (If it’s not
available on some of your gear, upgrade the hardware and/or the OS; something that old
probably has other security weaknesses as well.)

Any time you use cryptography, key management is a crucial question. Even apart
from the cryptanalytic weaknesses of RC4, which were not known at the time WEP was
designed, the architects made a very serious blunder: every authorized device has to have
the same key. This in turn has two important consequences: first, departure of an employee
or loss of any single device (a phone, a laptop, etc.) compromises the key for everyone,
necessitating an immediate key change; second, when this happens it’s extremely difficult
to change the key in an organization of any size, since every device and access point
have to be rekeyed more or less simultaneously, including the keys in gadgets belonging
to telecommuters and road warriors, as well as the 12,345.67 nodes of yours that are
currently out for repair. In a practical sense, this is impossible for organizations much
larger than a family.

The right answer is enterprise mode. With it (and, to be sure, a RADIUS server), every
user has a separate login. Individual keys can be revoked without interrupting connectivity
for everyone else. You may think that setting up a RADIUS server is unnecessary work—
but the first time you have to change a widely shared key, you’ll wish you had done it.
Besides, you probably need RADIUS anyway, for other access control decisions.

For external use, there is, of course, no access control. What then? As noted, the
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WEP: A Case Study in Bad Crypto

From a security perspective, WEP is all but useless and shouldn’t be used. This advice
is widely accepted, though not necessarily widely followed. (Sitting here in my house,
I see 12 of my neighbors’ networks. Nine use WEP, two use WPA2—and one is wide
open. . . .) But how did WEP get that bad? It turns out that the flaw that finally impelled
vendors to act was the only one that wasn’t avoidable.

What were the problems with WEP?

• As noted, there’s no key management. There was supposed to be, but according
to rumor the standards group felt that that was a problem for another layer and
hence another group—but it never happened.

• WEP uses RC4, a stream cipher. Stream ciphers, though, are a very bad match
for an unreliable datagram network like Wi-Fi; they assume a reliable byte
stream. To partially compensate for this, a so-called initialization vector (IV)—
actually, a packet counter used as part of the key—is employed. But it’s too small
(only 24 bits), which causes collisions, which in turn lead to the very well-known
problem of a stream cipher used to encrypt two different plaintexts with the same
key. Decryption by the attacker becomes trivial. (More details on this issue can
be found in [Borisov, Goldberg, and Wagner 2001].)

• Stream ciphers, when employed without authentication, permit predictable
changes to received plaintext. This, too, can be employed to read the plaintext
and to do all sorts of other nasty things. (Again, see [Borisov, Goldberg, and
Wagner 2001].)

• RC4, despite its use on the web for many years, turned out to have a serious
cryptanalytic weakness: it’s vulnerable to related-key attacks [Stubblefield, J.
Ioannidis, and Rubin 2002]. That is, if the attacker can intercept two or more
packets whose keys differ in only a few bits, it’s possible to cryptanalyze the
cipher. While susceptibility to related-key attacks is considered a serious theo-
retical weakness in a cipher design, it rarely matters in practice; the key manage-
ment layer normally prevents that. But not only does WEP not have a key man-
agement layer, the IV design guarantees the existence of many related keys. No
one could have predicted the flaw in RC4; however, it could be turned into an
attack on WEP [Stubblefield, J. Ioannidis, and Rubin 2002] only because of the
other, avoidable design errors.

Why did these mistakes occur? The fundamental issue was cost, especially when
Wi-Fi was first introduced: RC4 is very cheap, so it could run fast enough on low-end
hardware. That, coupled with insufficient attention to the operational model and the
threat model, led to the design decision. We are still paying for that mistake today, long
after cheap, fast encryption hardware became readily available.
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most important defense is a VPN. Always enable triangle mode (and disregard complaints
about performance—but if you’re a large, multinational corporation, give your employees
access to all of your VPN nodes around the globe, unless some quirk of local laws makes
that undesirable). Pay a lot of attention to bilateral authentication, in software you buy, in
software you develop, and in user education and training.

It pays, of course, to ask who the threats are in this environment. With very few
exceptions—some hypothetical Big Ear Bar outside a SIGINT agency, where off-duty
spooks go to drink after work, or perhaps a conference or trade show at which some
company will always have a significant presence—targetiers are rarely causes for concern
here; there are just too many places for such an enemy to cover to have any real chance
of success. MI-31 is of course a threat; knowing where employees of their targets tend to
be is part of their stock in trade. Still, this is an expensive attack, even for them, since it
requires people to be physically present for just the right amount of time—too little time
and they’ll miss their targets; too much and they’ll stand out and be suspicious, especially
to the counterintelligence folks who also hang out at the Big Ear Bar.

The biggest risk, then, is the opportunistic attacker, someone sophisticated enough to
create fake access points complete with nastyware. While they’re good, they don’t come
one per hotspot; the odds on encountering one are reasonably low. In other words—and if
you’re not being targeted by Andromedan agents—ordinary care (fully patched systems,
VPNs, antivirus protection if indicated) and no more than the usual allotment of luck will
keep you safe enough that excess paranoia isn’t necessary.

9.3 Living Disconnected

Now, there are few existential crises as unnerving for a geek like me (the
original feral kind. . . ) as being off the net.

The Apocalypse Codex
—CHARLES STROSS

Suppose you think random Wi-Fi is too risky. What then? Are there risks you incur by
eschewing it?

It’s trite but true to observe that availability is generally considered a security prop-
erty; thus, not being online for fear of Wi-Fi is by definition a problem. That may very
well be; however, engineering is the art of picking the right trade-off in an overconstrained
environment, and it’s perfectly reasonable to decide that some (presumably small) sacri-
fice of availability is a better, if imperfect, choice. Are there more threats?
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One issue is access to security updates. Sometimes, problems are urgent; indeed, as I
was writing this section a news blog ran a story headlined, “Attention all Windows users:
patch your systems now: A critical IE vulnerability Microsoft patched Tuesday is under
active exploit” [Goodin 2012a]. A delay in installing a patch can be serious, especially
for folks who are willing to insert others’ USB drives.

If, as an organization, you still prefer to avoid Wi-Fi, keep it turned off on all laptops.
Better yet, have the hardware surgically removed. Do NOT use Wi-Fi internally while
barring it externally; it’s just too easy for an attacker to set up a fake hotspot bearing your
own organization’s network identifier [Legnitto 2012], at which point employee laptops
will automatically associate.

It is important to consider the organizational culture, personnel training, and actual
usage demands before making such decisions. If the job demands some way to exchange
files or deal with web sites or email when out of the office, most people will find some
way to do that, be it flash drives, personal devices (with your data loaded onto them), and
more. You may find that in reality, you’re taking a greater risk by barring Wi-Fi than if
you figured out how to lock down machines against all network threats.

There’s one more point to consider, and it goes to the heart of this book’s theme: is
living disconnected worth it? Employees have laptops and network connections because
there’s a business need for such things, and not just to provide them with recreation in
lonely hotel rooms or a cheap way to make a video call home. As always, the proper
question is not “is Wi-Fi access safe?”; rather, it’s “is the benefit to the business from
having connectivity greater than or less than the incremental risk?”

9.4 Smart Phones, Tablets, Toys, and Mobile Phone Access

More and more people are carrying smart phones, tablets, iToys, and other forms of very
portable connectivity. These devices can typically talk over both mobile phone and Wi-Fi
networks. Are they safe?

The whole Bring Your Own Device (BYOD) issue is quite complex; I’ll address other
aspects of it in later chapters. For now, though, let’s focus on connectivity.

When in Wi-Fi mode, the connectivity issues are, of course, the same as for any other
device. When outside, though, toys will fall back to mobile phone networking. Indeed,
depending on the vagaries of your access points and the Wi-Fi geography of your build-
ing, this can even happen when inside the office. As a consequence, toys, more than most
devices, live in both worlds, and have to be able to function that way. In particular, access
to essential resources, especially email, need to be readily and transparently available no
matter where the toy is or which network it is using. The most secure way to accomplish
this is via a VPN.
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For phones in particular, it is often reasonable to bar outside Wi-Fi use; most emails
that people will actually deal with on a phone are short enough that downloading over a
phone network only is not a hardship. Folks will gripe (and often with good reason), but
it’s a trade-off worth considering. The big exception, of course, is for people who travel
internationally; international data roaming prices are generally extremely high.

Of course, we haven’t yet answered the question of whether mobile phone data net-
works are safe (or safe enough, or safer than Wi-Fi). Are they? Let’s look at the same four
categories.

For most people, including most attackers, it’s a lot harder to intercept or modify
phone traffic than Wi-Fi. Governments, though, including that of Andromeda, have al-
ready solved that problem; they have fake base stations that can trick phones and mobile
hotspots into associating with them instead of with the real network [Department of Jus-
tice 2005; B. Heath 2015; Strobel 2007; Valentino-DeVries 2011]. In other words, the
defensive technique fails against precisely the same class of enemy who can generally de-
feat Wi-Fi security. (If you still prefer this technology to Wi-Fi and want to connect from
your laptop, make sure you use a dedicated USB modem instead of a portable Bluetooth-
or Wi-Fi-connected hotspot. Why expand your attack surface?)

Traffic on mobile phone networks is generally encrypted these days. While the en-
cryption isn’t that strong [Biryukov, Shamir, and Wagner 2001]—indeed, the claim has
been made that it was deliberately weakened by governments—it is strong enough that
it’s not the weak point in your defenses. Sure, MI-31 can cryptanalyze it, but they’re the
same folk who have the fake base stations or who can gain access to the wired part of the
cellular network. In addition, the encryption is probably a good enough defense against
metadata access to data packets.

We don’t have to worry about the security of access to mobile phone networks. That’s
generally the concern of the carriers; very few organizations run their own such nets. All
that said, it’s pretty good; there are few technical attacks on phone authentication these
days.

To sum up: mobile phone networks are reasonably safe against attackers short of APT
status. The toys themselves carry some risks, but as noted I’ll discuss those in Chapter 15
and Chapter 16.

9.5 Analysis

To provide coverage of 95 percent of the UK population we require a total
of 8 million digitally networked CCTV cameras (terminals). Terminals in
built-up areas may be connected via the public switched telephone network
using SDSL/VHDSL, but outlying systems may use mesh network routing
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over 802.11a to ensure that rural areas do not provide a pool of infectious
carriers for demonic possession.

The Atrocity Archives
—CHARLES STROSS

As can be seen from Table 9.1, the incremental risks from Wi-Fi are not great. There is
some extra danger to mobile nodes, but this is often manageable, especially if you use
VPNs and don’t have to deal with annoying web login pages. (Those of you who realized
that there should really be a 3-dimensional table, to match our threat categories, get an
extra gold star on your copy of the book. I covered that in the text; besides, I don’t think
that having four different, near-identical tables would help comprehensibility.)

Inside an organization, WPA2 and especially WPA2 Enterprise are very effective
forms of network control, if access to the network key is properly controlled. There is
some risk if a device is stolen, but only until the affected login is disabled or its password
changed. Of course, you can only do that with WPA2 Enterprise, but that’s one reason you
want to run it. Another risk is a rogue employee deliberately sharing her or his credentials,
but the danger of folks setting up external tunnels is almost as great.

Looking at the table, the two areas of most concern are access to content and risks to
the host when on external Wi-Fi nets. Both seem amenable to fixes. For the former, a well-
implemented VPN should solve the problem. Most of the risks to the host come from the
lack of such protection, especially when dealing with login screens. Those login screens
won’t go away; the reasons for their existence are not primarily technical. (There’s al-
ready an IEEE standard for network authentication and access, 802.1x. I’ve encountered
it exactly once, at an IETF meeting, and of course the IETF prefers to do things in a nice,
standardized way. Most sites prefer to hijack an HTTP session.) A sandboxed browser,
though, would help, especially if that browser were crippled in such a way as to prevent
typing in a URL; that way, it could only talk to a fixed URL, and thus elicit the login
screen. In the future, then, we should be able to switch those two entries to !. (Exer-
cise for the reader: why do I say that this browser should be crippled?) This question is
discussed in more detail in Chapter 10.

/ / /

Let’s take a deeper look at the suggestion from Chapter 5 that mobile devices should live
outside the firewall because of their risk of infection. If they’re to be useful at all, the
devices have to have access to some enterprise resources. That has security implications.
What are they, and what can we do to minimize adverse consequences? Email is a good
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case study, since it’s more or less a minimal requirement for device users. We need to
consider both the high-level requirements and implementation-level attacks.

First, it’s obvious that email connections need to be encrypted. It would be good to
use a special VPN for this, but few devices support VPNs for some protocols but not
others. As noted above, it’s difficult to live in a pure VPN environment.

The other way to do it is to encrypt just the email protocols: SMTP for sending; IMAP
and POP3 for reading. Fortunately, all of them support Transport Layer Security (TLS)
(Chapter 6). TLS is quite secure, but it uses public key infrastructure (PKI) technology
(Chapter 8), which carries certain risks unless handled and implemented very carefully.
Certificate pinning would work well here, but few, if any, email clients support that. Un-
fortunately, some TLS implementations, notably OpenSSL, have quite a mixed security
reputation; see, for example, [Baxter-Reynolds 2014; Bellovin 2014c; Ducklin 2014] on
the goto fail bug or [Andrade 2014; Bellovin 2014b; Schneier 2014] on Heartbleed. It is
worth considering moving your mail servers to be outside the firewall. More precisely,
they may be better off in a DMZ where they can be reached from both the inside and the
outside; this will limit the consequences to the rest of the organization if one is compro-
mised.

Authentication is a second problem: attackers could launch online password-guessing
attacks against the mail server. There are several obvious counters here: rate-limiting of
guesses, strong email passwords, and so on. A better solution is cryptographic authenti-
cation, either as the sole form of authentication or as an adjunct to conventional password
authentication. Client-side certificates—issued by the email service PKI, not a PKI—work
well here; they provide strong authentication at the TLS level. If the client does not have
the proper certificate, it can’t get to the SMTP or IMAP level, and hence can’t launch
password-guessing attacks or attacks against the implementations. It sounds great; unfor-

Table 9.1: The wireless security problems matrix. The symbol ! indicates “secure” (or rather,
“about as secure as a wired LAN”), # indicates “insecure,” and ? means “it’s complicated.”
A wired LAN is the standard for comparison. For internal Wi-Fi nets, assume WPA2 or WPA2
Enterprise.

Access Type
Hosts Network Content Traf. Anal.

Internal Wi-Fi ! ! ! #

External (public) Wi-Fi ? N/A # #

Mobile phone ! N/A ! !
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tunately, support for client-side certificates is also lacking today.
I’ve carefully omitted one class of scenarios: a compromised or captured mobile de-

vice being used to attack the mail server, or even simply to retrieve email improperly.
While those are certainly risks with mobile devices, they are not unique to external mail
servers. If we insisted that mobile devices create a VPN to get inside the firewall before
retrieving email, the risks would be greater, not less; not only would the email be at risk,
but so would everything else inside the firewall. Indeed, it is precisely this situation that
leads me to suggest moving email outside the firewall.

The same sort of analysis can be applied to other protocols. The requirements are
straightforward: ubiquitous encryption, bilateral authentication, and cryptographic au-
thentication. Web servers are the other class where this can be done fairly easily, if only
there were a good solution to the PKI problem.
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Chapter 10

Clouds and Virtualization

She had never driven through the clouds. It was an adventure that always she
had longed to experience. The wind was strong and it was with difficulty that
she maneuvered the craft from the hangar without accident, but once away
it raced swiftly out above the twin cities. The buffeting winds caught and
tossed it, and the girl laughed aloud in sheer joy of the resultant thrills. She
handled the little ship like a veteran, though few veterans would have faced
the menace of such a storm in so light a craft. Swiftly she rose toward the
clouds, racing with the scudding streamers of the storm-swept fragments, and
a moment later she was swallowed by the dense masses billowing above.

The Chessmen of Mars
—EDGAR RICE BURROUGHS

10.1 Distribution and Isolation

Two seemingly disparate technologies have gained increasing attention in recent years,
cloud computing and virtual machines (VMs). The only way to improve the buzzword
level of a virtualized, cloud-enabled system is to add that other au courant word, “ecosys-
tem,” to it. Though the mechanisms are not precisely new—VM technology dates back
to the 1960s [Meyer and Seawright 1970], and those of us of a certain technical age have
to squint to differentiate “the cloud” from the time-sharing service bureaus of the same
era—their importance has increased dramatically in recent years. Most of the attention
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has been on the economic and functionality impact of cloud services, albeit with much
handwringing about its supposed insecurity.

Virtualization, on the other hand, has been hailed as the solution to security problems,
ranging from sandboxing desktop apps to protection in the cloud. Even virus scanning, it
is said, can be improved by VM architectures.

From a broader perspective, the two can be seen as complementary. The cloud seem-
ingly creates new security problems, while virtualization solves them. Is this an accurate
summary? Not quite. Each has a sphere of action that the other doesn’t impinge on; in
those places, the two are completely independent. Furthermore, even where they do inter-
act the risks and benefits are not one-sided; cloud services have security advantages even
without virtualization, and VMs can have their own set of risks.

In most situations, cloud computing is based on VM technology; I’ll therefore discuss
virtualization first.

10.2 Virtual Machines

The basic concept of virtualization is simple: Take an ordinary, off-the-shelf operating
system, and, instead of running it in privileged mode on real hardware, run it as a user
program in virtual address space provided by the hypervisor. When the guest OS attempts
to execute a privileged instruction, it instead traps to the hypervisor, which examines
the intended instruction and emulates it. Thus, if the virtualized OS is trying to write a
block of memory to a disk drive, the hypervisor will take that block and schedule it to
be written somewhere appropriate: a physical drive dedicated to that guest, a file taking
the place of a disk drive, or even a network connection to a storage server. When the
operation is complete, the hypervisor simulates an interrupt to the guest machine. Modern
machines have special architectures and instructions to make this more efficient, but the
basic concept is still the same.

As well as emulating privileged instructions, the hypervisor creates and destroys
VMs, allocates and manages resources of the underlying hardware (e.g., disk, RAM, CPU
time), separates different VMs from each other, and so on. It has an interface (sometimes
command line, sometimes graphical) to let users control such actions, and to do things
like press the virtual reset button. There are also hypervisor calls (hypercalls) that allow
VMs to make explicit requests; these might be for things like copy and paste between the
guest OS and the underlying system.

Consider this in light of the virtual instruction set and effective target environment
concepts introduced in Chapter 4. The virtual instruction set presented to the guest OS
includes all of the real hardware instructions, emulated if necessary, as well as the facili-
ties made available by hypercalls. The effective target environment is the set of physical
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or virtual resources allocated to it by the hypervisor. If this sounds familiar, it should; it
is quite clear that a hypervisor is an operating system, and can even have its own privi-
lege escalation vulnerabilities (see, for example, [CERT 2012]). (Although today’s VMs
generally consist of a few extra kernel and user-level modules on a familiar OS such as
Windows or Linux, it doesn’t have to be done that way. In fact, the very first VM hypervi-
sor, CP-67 [Meyer and Seawright 1970], was extremely specialized and provided none of
the facilities commonly associated with an OS. It didn’t even have a file system; through
at least the early 1980s, system administrators creating user VMs had to manually specify
absolute ranges of disk cylinders to be assigned to each virtual disk.)

In most typical configurations, individual VMs are strongly separated from each
other; this is the property that has led some people to propose that VM technology is
the solution to our security woes. This is at best partly true, and even the part that is true
will hold only under certain circumstances.

A guest OS is, of course, an OS; guest Windows is Windows, guest Linux is Linux,
and so on. These do not magically become less vulnerable because of the existence of a
hypervisor between them and the silicon; an SQL injection attack against a virtualized
web server will succeed or fail in the same way as it would on the same configuration and
server without a hypervisor. The same care is necessary, the same feeding is necessary,
and the same patches are necessary. In fact, if nothing else in the environment changes,
VMs can be less secure because the sudden increase in the number of operating systems
can create a very large bump in the system administration load.

On the other hand, the isolation between guest VMs on a single box is much stronger
than the isolation between two different users on a conventional OS; as such, the effective
target environment for any malware is less. A VM can thus help contain an intrusion. This
breaks down, however, when VM technology is used as a sandbox technology (see Sec-
tion 10.3) for user applications. The trouble is that there needs to be too many interactions
and connections. A virtualized web browser still needs to be able to save downloaded files
and pass mailto: URLs to the mailer; a virtualized mailer needs to talk to the web browser
to handle embedded URLs, etc. The degree of protection provided by virtualization in
that kind of environment can be quite limited [Bellovin 2006b].

At best, a VM is about the equivalent of letting your enemy have a machine in a rack in
your data center. Even without the added risks of cache timing attacks and bugs allowing
escape from the virtualized environment, this is probably not the sort of thing you’d be
enthusiastic about. On the other hand, if the network connectivity from that machine were
limited, say by VLANs and/or internal firewalls, the incremental risk is low.

If a hypervisor is just an OS, why should it be more secure than a conventional OS?
After all, an ordinary operating system is supposed to separate different users’ programs
from each other; why, if these fail, should one think that a VM architecture will succeed?
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The answer is the nature of the virtual instruction set. From the perspective of the
hypervisor, there are very, very few (and perhaps no) privileged operations, which in turn
means there are very, very few (and perhaps no) opportunities for mistakes. Yes, there
are resource access requests, for example, attaching a virtual disk drive, but these are
generally done by the VM’s operator using its command interface; the VM itself may not
have the ability to make such requests, valid or not.

A related reason is the absence of privileged VMs. Historically, very few security
holes have been in the kernel (though this is changing); rather, they’ve been due to buggy
applications that are either tricked into abusing their privileges or are themselves ex-
ploited. Exploitation of a VM, though, is a guest OS issue and with no VMs having any
special abilities there is no way to trick one into misusing its powers.

The strong separation provides for another advantage: the hypervisor can do intru-
sion detection and virus scanning of the guest OSs without fear of interference from a
successful attack. Such interference is quite common, ranging from simple measures—
adding entries to /etc/hosts to direct virus signature update requests to the wrong place to
sophisticated rootkits, collections of programs and tools that hide intrusions. My favorite
example involved a sabotaged version of /sbin/init, traditionally process 1 on Unix-like
systems. This program is invoked from the kernel at boot time; all other processes on
the system are direct or indirect descendants of it. Naturally, a simple scan for changed
files (e.g., by Tripwire [G. Kim and Spafford 1994a; G. Kim and Spafford 1994b; G.
Kim and Spafford 1994c]) would detect the modified version of /sbin/init, so it took pre-
cautions: it modified the kernel’s file system code to include a module that looked for
requests to open /sbin/init. If the processID was 1—that is, if it was the OS itself trying to
boot and hence invoke init—the hacked version was loaded. All other requests, including
Tripwire’s, would get the original, unmodified version.

Putting the scanner in the host OS solves this problem if we assume that the infection
cannot spread. If the IDS knows a lot about the setup of the VM and knows something
about the guest OS, it can do the scans. There are difficulties, but they can be surmounted;
see, for one example, [T. Garfinkel and Rosenblum 2003].

10.3 Sandboxes

Sandboxing, sometimes known as jailing, is a class of techniques designed to limit the
access rights—the effective target environment—of a program. The intent, of course, is
to limit the damage that that program can do if it is evil, infected, or subverted. The con-
cept has been around for many years. Bill Cheswick used a jail (and apparently coined
the usage) when we were monitoring the attacker he dubbed “Berferd” [Cheswick 1992;
Cheswick 2010; Cheswick and Bellovin 1994]. Cheswick’s fundamental isolation prim-
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itive was chroot(), a system call that has been in Unix since the late 1970s. Sandboxing
has become of much more interest in the last few years, since both Microsoft and Apple
have made it a central part of their desktop architectures, most notably for browsers but
also for other high-risk applications.

Quite a variety of mechanisms have been used to implement sandboxes. For our pur-
poses here, though, those details aren’t important. From an architectural perspective, there
are three interesting questions:

1. What restrictions are imposed on the sandboxed program? Alternatively, what sen-
sitive resources are still accessible?

2. What is the granularity of exceptions to the general restrictions?

3. How easy is it to use correctly, that is, how hard is it to configure and maintain?

Naturally, the questions interact. VMs, for example, restrict more or less every form of
access, but they’re hard to maintain (you have an entire extra OS to patch). Similarly,
fine-grained security policies require a lot of detailed work to understand exactly what
resources are needed; this provides a lot of flexibility, but it’s easy to get it wrong. If you
restrict too much, you may find that under unusual circumstances the application doesn’t
run; restrict too little and you create security holes. Leaving some of the decisions to
system administrators or (worse yet) end users is generally an invitation to trouble.

In practice, strong isolation is relatively easy: put the suspect code on a VM. Apart
from the maintenance issues, the isolation is often too strong; it’s too hard to share in-
formation, even aside from the problem of creating the policy specification. This strong
isolation alone is why VMs are not good general-purpose sandboxes.

There are two issues with sharing items across the boundary of the sandbox. The
first, as noted, is the policy specification issue. The second is more subtle: there is now
a communications channel between the untrusted application and the outside world. You
have to be extremely suspicious of anything coming out of the sandbox; conceptually,
that program is under the control of your enemy (and of course, the more skillful your
enemy is the more you have to worry). Consider just a simple bidirectional stream. This
is exactly equivalent to a network connection, but we already know that nasty things can
happen via Internet connections; streams from the sandbox are no better. The situation
almost feels like the Schrödinger’s cat experiment [Trimmer 1980]: until you look at the
sandboxed process, in some sense nothing has happened—but here, it’s the observer who
may end up dead instead of the cat.

For a case study, let’s look back at my suggestion at the end of Chapter 9, that the
signon to a public wireless network be done via a sandboxed browser. Why would a
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sandbox help? More importantly, what sort of sandbox is appropriate? What sort of com-
munication to and from the sandbox is necessary?

The risk we were worried about was unpleasant things happening to a roaming laptop
on a public wireless network. A strict VPN, where all outbound traffic was encrypted
and no inbound traffic was accepted if it were not cryptographically protected, was the
solution I suggested. However, that left no way to sign on to the public network, so I
suggested a sandboxed browser.

Assuming that the VPN does its job, the specific issue is what can happen to the
sandboxed browser. That suggests one characteristic of the sandbox: it should permit no
other network I/O than by the browser and its utterly necessary adjuncts, such as DNS
queries. It would be nice if the browser itself were minimally configured, with no Java, no
JavaScript, no Flash, and so on, but that’s not realistic; too many login screens need one
or both of the latter two. Still, the network capabilities of the sandbox should be strictly
limited.

Another characteristic is that to a first approximation, we don’t need any output from
the sandbox; that tremendously improves security. Unfortunately, that is just a first ap-
proximation; there are many strange and wondrous varieties of login systems. As Ted
Lemon has noted, “The ingenuity that is applied to breaking the Internet by hotel Internet
providers is genuinely inspiring. If only they would use their powers for good. . . .”1 I’ve
seen screens where the first login attempt gives you a password you need for subsequent
uses. I’ve seen pop-up windows that give live countdown timers for your session; if you
close that window, you’re assumed to have logged off. I’ve seen screens that show your
credit card receipt, which you really need to save to be reimbursed for the expenditure.
The details vary, but it seems clear that some way to save the output from such a session,
if only as an image file, is necessary. Though not ideal, it is still reasonably safe.

The third characteristic, though, is more problematic: the browser may need access
to your password manager (Chapter 7). Often, you’re logging on to a network run by a
service provider for which you have an account; that account needs a password, and of
course you want your password manager to keep track of it for you. How should you
implement this?

The wrong answer is to run your regular password manager in the sandbox. Doing so
would imply that an untrusted environment—the browser that’s running in the sandbox
precisely because it’s doing dangerous things—should have access to all of your creden-
tials. It may be acceptable to have a separate instance of the password manager there, one
that only knows about network access credentials, but that implies the need for persistent
storage across instantiations of the sandbox. That’s undesirable, because it means that

1. “Ted Lemon—Google+—The network at World IPv6 forum has a captive portal which intercepts port
80,” https://plus.google.com/108428495411541457022/posts/2782SLV9Fe2.

https://plus.google.com/108428495411541457022/posts/2782SLV9Fe2
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infections can persist, too; you want to be able to discard the sandbox when you’re done
logging in. Still, this is an option that may be useful for some people.

The other extreme is to do it manually: run the password manager in your regular
environment, look up the password you need, and type it into the sandbox. Alternately,
you can probably use copy and paste; that’s possible with most hypervisors. You lose
something, though: automatic selection of the proper password based on the URL you’ve
visited, which is a useful guard against phishing attacks.

It’s tempting at this point to try to devise a custom solution, a specialized channel that
would allow for precisely the proper queries. Is there some way to export the actual URL
from the sandbox and import the proper login details? It can be done, but it’s probably
not a good idea.

Assume some sort of channel back from the browser—the compromised browser,
running in a thoroughly p0wned sandbox—to the password manager. The first risk is the
obvious one, as discussed above: is the code that is listening to this channel trustworthy?
Let’s assume that it is. It’s still a dangerous situation. For obvious reasons, the browser
can’t be allowed to make direct queries—“here’s a URL, give me the login credentials”—
as opposed to popping up some sort of dialog box asking the user to permit the action.
Visualize that request, in the context of this somewhat tongue-in-cheek definition of a
dialog box: “A window in which resides a button labeled ‘OK’ and a variety of text and
other content that users ignore.”2 In other words, too often (and probably far too often)
users will ignore the URL in the dialog box and just give their assent to their password
being collected. This sort of habituation to security warnings is very well known (see,
e.g., [Egelman, Cranor, and Hong 2008]). If a user is expecting a password dialog box
and is not expecting an attack, all too frequently the user will simply assent to the request
and not bother reading it.

We are faced with an unpleasant dilemma here: do we trust the user to notice which
URL is being requested, and copy and paste the proper password, or do we trust the user to
notice a bogus hostname in a dialog box? We can resolve it by looking at the comparative
harm from the two failure modes. In the first case, the malware will get the password to the
network the user is trying to access; in the second, it will receive some arbitrary password
of the user’s. The former is of comparatively low value; the latter could be high value, but
the success of the attack depends in part on the attacker’s ability to guess for which sites
the user has passwords. There are some obvious guesses that will often be successful—a
Google or Facebook login, or something like American Express in an airport, to name
just a few—but a targetier or MI-31 is likely to know what sites you connect to. Looked
at this way, the choice is quite clear: a custom interface to the password manager from
the sandbox is far riskier, especially against sophisticated adversaries.

2. “Glossary—W3C Web Security Context Wiki,” http://www.w3.org/2006/WSC/wiki/Glossary.

http://www.w3.org/2006/WSC/wiki/Glossary
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It’s also worth realizing the limitations of sandboxing. In this scenario, it does nothing
to prevent you from connecting to a phony access point or being asked to enter your credit
card details to a bogus access server. A sandbox is designed to protect your host against
software you wish to run; these threats represent evil on external boxes.

10.4 The Cloud

Is the cloud “secure”?
The question as I have just phrased it is unanswerable because neither “secure” nor

(especially) “cloud” have rigorous definitions. We also have to ask the first question in
any security dialog: “what are you trying to protect, and against whom?” And there’s one
more question that is asked all too infrequently: secure compared with which alternatives?
This last question is often the most interesting.

Intuitively, the cloud can provide computing cycles (e.g., Amazon’s EC2) and/or re-
mote storage (see Section 10.7); this latter can be just for the owner, or it can permit
sharing. For “security,” we can use the usual trio of confidentiality, integrity, and avail-
ability. Our questions, then, are these: for remote storage and computing, does the cloud
provide more or less confidentiality, integrity, and availability, across a wide spectrum of
attackers, compared with providing the same functionality yourself?

Availability is probably the easiest to answer. I assert that despite occasional well-
publicized failures, a professionally run cloud service is more available than a typical in-
house solution. There are more redundant resources that can be used to resolve outages,
whether malicious or accidental in origin. A good cloud service will use RAID disks
and back them up. (How recent are your backups? When did you last test your ability to
recover from a disk crash?) Put it this way: do you have more servers than Amazon? Do
you have more bandwidth than Google? Yes, a failure at a large provider will affect more
users [Brodkin 2012]; conversely, we hear about such failures more than we hear about
the routine (and frequent) outages at typical corporations. The difficult issue is whether
your enterprise can function if all of its computer capability is cloud resident; diversity
is always a good thing. But should you seek diversity in your own environment or via
different cloud providers? If you need very high availability, you can’t just accept a cloud
provider’s word that all will be well.

Integrity and confidentiality are somewhat harder to assess. Most (though of course
not all) penetrations result from exploitation of holes for which patches are already avail-
able. Is your own in-house staff conscientious about installing all available fixes? Are
your systems properly configured, especially for sharing data? Would a service provider
do better? The questions aren’t easy to answer. If the reason for a delay in patching is lack
of resources, the cloud provider is likely to be better. On the other hand, many enterprises
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delay until they can assess the compatibility of their own in-house applications with the
new system—and cloud providers have very many applications to worry about. Sharing
resources with outsiders is almost certainly better done via the cloud; their access control
mechanisms are tuned for that sort of scenario, and they’ve dealt with the complexity of
the underlying platforms.

In-house computing probably has the edge when considering possible attackers. Apart
from a provider’s own employees turning to the dark side, you run the risk of being col-
lateral damage when some other customer is being targeted. There are also legal issues
to consider: under the laws of many different countries, you arguably have less protec-
tion against “subpoena attacks” when your data isn’t stored in house [Maxwell and Wolf
2012].

I do not claim that the answer to cloud computing is simple. I do assert that running
your own systems is not inherently better, even from a security perspective. You need to
think about the problem without preconceptions and do a detailed assessment for your
own particular situation.

10.5 Security Architecture of Cloud Providers

Although there are many different ways to build a cloud provider, from a security per-
spective there are three interlinked pieces: the service platform, the administration and
provisioning system, and the corporation. A failure in any of these pieces or in the people
associated with them can lead to trouble for customers.

The service platform is what gets all of the security attention, but there are questions
that have to be answered. Is it Windows or Linux? How is virtualization done? Where are
files stored? How are network segments partitioned? What security mechanisms are used
for the switches and routers? How much bandwidth is available? What flavor of hyper-
visor is used? What auxiliary services, such as credit card services, are provided? Who
has physical access to the data centers? How are they screened? All of these are impor-
tant; the answers should be addressed in reasonable detail in provider documentation, for
example, [Amazon 2011].

The service platform isn’t the only risk, though. The administration and provisioning
system—the mechanisms, both web-based and programmatic, by which customers re-
quest and configure services—are quite important, too. The issue is not so much abuse of
the direct mechanisms (can Customer A request access to B’s files? What if C’s password
is stolen?) as what can happen if the provisioning system is penetrated. This is a very
plausible threat. If nothing else, a provisioning system obviously requires databases, and
many, many web sites have fallen to SQL injection attacks. Beyond that, of course, there’s
the human element: are the people who program, maintain, administer, and operate these
systems screened to the same extent as those who deal with the service platform?
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The third piece of the security puzzle is the corporation itself. Cloud providers are
like any other corporation, complete with marketing departments, human resources de-
partments, clerks, lawyers, system administrators, and vice presidents in charge of dis-
pensing administratium [DeBuvitz 1989]. The risk here is indirect but nevertheless very
real: the people who run the service and provisioning platforms are employees and thus
have to deal with internal web servers and computers run by the IT group (as well, of
course, as shoveling the administratium out of their offices). If an attacker can penetrate
an internal system, it can be used to infect a system administrator’s computer. If the same
computer is used to talk to the service platform, vae victis!

The obvious defense against this scenario is an airgap: give such employees two com-
puters, one for general corporate computing and one for work that gets near the service
platform, with no connection between them. This is obviously not foolproof—again, re-
member Stuxnet [Falliere, Murchu, and Chien 2011; Zetter 2014]—but from a customer’s
perspective, the questions are whether it’s even attempted, and how well employees actu-
ally follow good practices.

We’ve seen similar penetrations in the real world. Consider how Twitter was hacked
a few years ago [FTC 2010]. In one incident, the bad guys launched a password-guessing
attack against an administrative login. In another case, an attacker penetrated the personal
email account of an employee. Two similar passwords were stored in plaintext in this ac-
count. With this data, the hacker was able to guess the employee’s Twitter administrative
password and used it to commit mischief.

10.6 Cloud Computing

Computation, especially on small amounts of data, is one of the simpler and more straight-
forward uses for the cloud. You lease a machine (typically a VM) with a particular operat-
ing system, upload the input data, run your programs, and download the results. Depend-
ing on the cloud provider, you may find it easy to lease many VMs. Typically, you only
pay for the CPU time and data transfers you actually use. What are the security risks?

The first thing to realize is that a VM is, as noted, a computer with an operating
system, with all of the risks appertaining thereto. If a given OS is insecure if run on
bare silicon, sprinkling it with cloud dust does not magically secure it. The surrounding
environment may provide some protection (see below), but an OS is an OS.

There has yet to be a perfect, bug-free, secure operating system; given that, it is obvi-
ous that it will be necessary to apply patches on occasion. Who will maintain the OS for
your VMs? There are different models possible. Sometimes, you, the user will be respon-
sible; in others, the cloud provider will do it. Neither is intrinsically better; while it’s nice
to be rid of the responsibility, OS patches can break your applications (Chapter 13).

http://goo.gl/AgVU0
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Beyond the simple OS, some cloud providers supply interfaces to common applica-
tions and services: databases, credit card billing systems, content management systems,
even shopping carts for small online stores. These programs can also have security bugs,
which will also require patches. The provider will generally handle that, though of course
with some risk of breaking code of yours that talks to these services.

Suppose, though, that you’re on your own, and the cloud provider does not patch your
OS and applications for you. What then? The cloud provides three things: a large amount
of computing capacity, surge capacity for peak loads, and (in theory) higher availability
than most stand-alone data centers. Against that, you take the risk of a penetration from
another customer, from the provider’s staff, or from some hacker who has penetrated the
cloud provider, and in particular their support systems. It is difficult to measure any of
these risks, especially that of insider attacks; such crimes are rarely detected, let alone
reported. There may also be some extra advantages if you don’t provide enough physical
security for your own data centers; there may also be better tools for managing large
numbers of VMs.

Cloud computing is an especially good place to treat security as an economic issue.
There is certainly some incremental risk; on the other hand, running a data center sized for
peak loads can be quite expensive, particularly when you include the costs of electricity
and cooling. Furthermore, you have your own insiders to worry about; do you vet your
personnel as well as a cloud provider does for its people?

10.7 Cloud Storage

Storage is a particularly important special case of cloud computing. Computation is gen-
erally private; users want as much isolation from other customers as is feasible. VMs are
thus a good approach, since the strong isolation they provide is all to the good.

Storage is another matter. Cloud storage is desirable precisely because it makes data
sharing easy. Services like Dropbox, Box.net, Google Drive, and more make it easy to
share files, either broadly or selectively. Is this a safe thing to do?

One question is why organizations might prefer to use these external services for
external file sharing, rather than doing it in house. After all, all major operating systems
(and most minor ones) have some form of file-sharing ability. There seem to be at least
three reasons, apart from the lovely automagic synchronization some of these services
provide. First, someone has to manage the authorization name space: if you want to let
some external parties view your files, you have to have a way to name them; this in turn
means that they have to have some sort of login and credentials on some part of your
system. Cloud providers handle that for you; all you have to know is the login name your
partners use. Second, file sharing is obviously quite delicate from a security perspective,



196 Clouds and Virtualization

and several of the popular networked file systems have had a long, sad history of security
problems. It’s better not to rely on such systems in a high-threat environment. Finally, and
partly for this reason, corporate file servers tend to live behind the firewall, where they’re
unavailable to legitimate outside users. Indeed, many corporate firewalls will even block
outbound requests for such protocols; by contrast, most cloud storage services use HTTP
or HTTPS, which are allowed through.

The first reason is valid. Managing such logins is a difficult matter, and more so
procedurally than technically; it’s not at all unreasonable to want to let someone else have
the headaches. The other two, though, are troubling. Why should cloud storage vendors
be able to produce more secure storage access code than Microsoft, Apple, Oracle, et al.?
Perhaps more to the point, can they? Do we have any strong evidence that they’ve actually
succeeded? There is some reason for optimism; the cloud protocols were specifically built
for one purpose, secure Internet-wide sharing; at least two of the local solutions, Oracle’s
NFS and Microsoft’s CIFS, were built on top of very general and problematic Remote
Procedure Call (RPC) protocols and had authorization mechanisms aimed at local users,
making them harder to secure.

On the other hand, at least one cloud storage vendor, Dropbox, has experienced a
serious security failure [Singel 2011]. Somehow, a bug in a program change let it accept
any password and gain access to any file at all. The flaw was in the authentication mech-
anisms, not the file access protocol itself, but as I’ve noted over and over again, security
is a systems property; you cannot restrict your attention to just one component.

The third reason for the popularity of cloud storage is the most worrisome. When our
security mechanisms exclude valid uses and force use of external solutions that evade—
there is no milder word—the firewall, there is something seriously wrong with our pro-
tocols, our firewalls, our policies, or (most likely) all of the above. It is possible to bring
such services in house—see the discussion in Section 11.3—but it takes a fair amount of
effort and care.

Flaws in the design or implementation of the authentication and file access proto-
cols are the two obvious failure modes. There are several other possibilities as well, the
most serious of which are the cloud provider being hacked or suffering an insider attack.
They’re tempting targets for skilled attackers because a single penetration exposes the
resources of many other organizations. (Per the threat classification matrix, the provider
would be the victim of a targeted or APT attack; its customers would probably be op-
portunistic victims.) The usual approach to the latter has been via process: the provider
uses stringent procedures to limit the number of employees who can get at user files. A
better solution to both, from a technical perspective, is to encrypt and decrypt files on the
client machines. This, however, makes sharing much more difficult. It takes a moderately
complex cryptographic protocol, especially if you want to be able to revoke access—and
you almost certainly do.
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Another theoretical issue is transport security. Most providers have used the obvious
solution, HTTPS rather than HTTP, but it’s something to watch for. Note, though, that
unless the developers were quite cautious, cloud storage over HTTPS is susceptible to
the same PKI flaws as a web browser. A cloud client could easily do certificate pinning,
but it’s unclear which, if any, products actually implement that. Many mobile apps have
trouble doing even basic TLS [Fahl et al. 2012; Georgiev et al. 2012].

The biggest risk, though, has nothing to do with clouds, cumulo-silicon or otherwise.
Rather, it is intrinsic to the sharing process: getting the access control list (ACL) correct.
I’m not even talking about the risks of client-side insider misbehavior. Every shared ob-
ject is potentially accessible by anyone with a valid login on the server, in that they can
construct requests to read or write the file. This is limited by ACLs, but there is a large
body of research showing that ACLs are extremely hard to manage, especially in complex
situations [Madejski, M. Johnson, and Bellovin 2012; Reeder, Kelley, et al. 2008; Reeder
and Maxion 2005; Smetters and Good 2009]. In a cloud scenario, where many different
people may set controls on many shared resources, this is a recipe for disaster. Let me
give just one scenario. Suppose your company shares many files with an outside vendor;
you then switch vendors. The initial set of ACLs were created and maintained by some-
one who has since left your company, and because of changes in your system design in
the years since the original contract was signed there was a lot of churn in exactly what
files needed to be shared. How will you revoke all of the access rights held by the first
company?

It is worth repeating that this last issue would arise even if you used your own, internal
file servers. The only saving grace, were you to do it in house, is the increased ability to
write custom scripts to search your file system—more likely, file systems—for all such
files; you may not have that ability with a cloud provider. Their ability to help you solve
problems like this may be the biggest single security difference between otherwise similar
offerings.

10.8 Analysis

By now, it is clear that there is not and cannot be any simple answer to the question of
cloud!security. There are too many types of cloud services and usage patterns; each has
its own risks and benefits. Do not believe any blanket assertions about the security or in-
security of “the” cloud; there is simply no such thing. The same is true of sandboxing and
virtualization; not only are there different uses (and hence different security properties),
there are different implementations.

The risk/benefit trade-offs for cloud storage seem to favor using it, especially for
sharing data with external parties. Even if there were similar protocols for in-house cloud
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storage, the problem of managing the external username space is daunting. The gain from
outsourcing that responsibility, though, comes with a potentially serious cost: you have
little control over the authentication mechanisms used for your own employees, let alone
for your partners’. As noted in Chapter 7, there are many ways to do it poorly. The issue,
though, is not the cloud per se, but how a particular service is provided; the risk would be
the same if you made the same poor choices yourself.

A very serious concern is unmanaged use of cloud storage by your own employees.
If people want to take work home—and many people do—cloud storage can be much
more convenient than flash drives. Either may be against corporate policy; both are hard
to stop. Fundamentally, though, this is a people problem and a cultural problem more
than a technical one. Yes, you can get add-on products that limit use of USB drives, at
which point you’ve made life difficult internally. (Have you ever handed a memory stick
with a presentation to a colleague? I sure have, and before that CDs and floppies; slide
shows to go are de rigeur in large organizations [Bumiller 2010].) Similarly, you can try
to add firewall rules that block unauthorized connections to popular cloud services, but
it’s easy to set up relays on external private servers and work around the blockages. The
real issue is the mismatch between employee work habits or desires (and, perhaps, how
people are evaluated) and corporate security policies. Unless you’re being targeted by the
Andromedans, you’re probably better off finding a secure way to let people use cloud
storage than trying to ban it.

There’s an interesting trade-off here. Which is better, a private file server available
internally and externally, or a commercial cloud storage provider? As noted, common
network file system protocols do not have a great reputation for security; however, com-
mercial providers have a relatively large attack surface, per Section 10.5. You would have
the same attack surface but you may be less tempting to targetiers; besides, you know
what precautions you’ve taken.

A possible solution to some of the security issues posed by a private store is to put it
on an external network, but make it accessible only via a VPN, even from inside your or-
ganization. The trick will be finding VPN software flexible enough (and comprehensible
enough) to allow for two or more secure networks—one for general “phone home” ac-
cess and one for the file store—and automatic enough that users don’t have to think about
how to use it. (That’s why you want encrypted access even from the inside: you want the
user’s behavior to be as similar as possible, inside or outside.) The fundamental precept
here is to make it easy for people to do the right thing; forcing them to fight menus of
soul-wrenching complexity will not endear your system to your colleagues.

If your security policies do permit some sharing of material, you’re probably bet-
ter off trusting your users [M. Johnson et al. 2009]. When official mechanisms are too
complicated, people will ignore them and resort to the aforementioned work-arounds.
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If one looks only at security, cloud computation is a tougher problem than cloud stor-
age because there’s no issue of external logins that need to be maintained. Cloud storage
can give you new functionality—shared access—while cloud computation merely saves
you money. That, then, is how the question should be answered: is the expected differ-
ence in loss from relying on a cloud computation provider more or less than what you
save by employing such facilities? Unfortunately, as posed that question is unanswerable,
since measuring security isn’t possible even without trying to measure the probability of
an attack in different situations [Bellovin 2006a]. A different approach is needed.

Start by comparing, as best you can, the security of each of the provider’s three com-
ponents (Section 10.5) with your own equivalents. Pay no attention to mechanisms de-
signed to separate different customers from each other; you don’t have the equivalent.
You’ll probably find that your provisioning component is minimal; if you can’t find your
own instance, consider the provider’s as part of their service platform.

Most of the time, a cloud provider will win on availability and physical security.
In many cases, they’ll also do better on personnel security, especially for the delivery
platform; that is, after all, what they’re selling, and many businesses do not do much in
the way of background checking. For technical security issues, while you can’t measure
your security proactively, you can get a good handle by looking retrospectively. Select
some pieces of software you run, including the operating system, and do a deep dive into
its vulnerability list over the last year. Don’t restrict yourself to the vendors’ bug lists;
much of the time, vendors don’t post security holes until patches are available. Check
official compendia like the Common Vulnerabilities and Exposures (CVE) list (http:/ /
cve.mitre.org/cve/index.html) and especially the National Vulnerability Database (NVD)
(http://nvd.nist.gov/), as well as sites like bugtraq and Full Disclosure. When were the
vulnerabilities known? When were patches available? When did you install them? For
how long were you vulnerable? You won’t find it easy to get similar data from providers,
but now you know what questions to ask. Try this one: what do they do when a bug report
shows up on one of those lists? If they don’t monitor them—well, that’s an answer, too.
(On the other hand, do your security people monitor those lists?) Don’t forget to ask about
auxiliary services offered by the provider; you may not use them, but if they’re hacked do
they provide an entrée into your systems?

Life gets more interesting when you factor in threat models. Ordinary care should
shield both you and cloud providers against joy hackers. Against targetiers, there are
advantages in both directions. On the one hand, you may prefer an external service, pre-
cisely because it is external and hence less known to insiders; on the other hand, a popular
cloud provider may attract outsiders who think there are fruitful pickings once they break
in. The really interesting questions, though, are posed by the more skilled attackers, the
opportunistic hackers and the Andromedans.

http://cve.mitre.org/cve/index.html
http://cve.mitre.org/cve/index.html
http://nvd.nist.gov/
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A cloud provider is a very tempting target because if someone penetrates it they gain
a lot. They have not only the immense power of the provider’s platforms, they have access
to the systems of many different customers. This can turn some opportunistic hackers into
targetiers—and a skilled targetier is, of course, an APT. Perhaps they’re at the lower left of
that quadrant (given the nomenclature in this book, shall I say that they’re from the Lesser
Magellanic Cloud?), but they are in the quadrant, with all that implies. Your systems may
be collateral damage to such an incident, but that’s small comfort. The conclusion is that
a cloud provider has to be held to higher security standards than most companies.

Finally, what if your own threat model includes attacks from Andromeda? Does re-
liance on a cloud provider make things worse? If the cloud provider is good, they’re
already trying to build defenses at that level. Your problem is that your attack surface
has increased, and from a direction against which you have few defenses. MI-31 is the
sort of organization that can find hypervisor bugs, bribe or extort employees, and so on.
They’re also quite capable of setting up a fake company that purchases services from
your provider, giving them closer connections to you. This is a serious threat model,
which means that you need a really good cloud provider. The best rule of thumb here is
to select one whose security—technical, people, and process—is better than your own.

/ / /

It is harder to do a blanket analysis on sandboxing per se because there are many kinds
of sandboxes and many applications that can benefit from it. The trick is to match the
scenario to the available protective technology. The other big issue is the system adminis-
tration overhead necessary to set up the sandbox; VMs, in general, need as much care and
feeding as do regular ones, so the expense will depend on how efficient your organization
is at system administration.

Some characteristics that are a good fit for a VM sandbox include few channels to
the outside world, simple policies controlling those channels, and infrequent creation and
destruction of the sandbox. A standing service—say, an inbound mail handler—is a good
example. By contrast, it does not make sense to spin up a VM for each message; the rate
is far too high.

A departmental file server passes the creation rate test, if it instantiates a sandbox per
client, but it fails the policy test: complex access control rules that govern which users
can perform which operations on given files. Web browsers fail both tests, if you want a
separate sandbox for each site visited.

Another issue is what resources are available within the sandbox. VMs provide many;
they’re great at keeping misbehaving code away from other machines’ files, but they don’t
restrict network access, they have plenty of privileged code lying around, etc. If you need
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fine-grained restrictions, some sort of jail technology may be better. On the other hand, if
all you need is a restriction on its network reach, you could use an inward-facing firewall
to block that and get the other advantages of virtualization.

Note the implication here: often, the right choice is to use more than one sandbox
mechanism. Thus, a browser may run with reduced privileges overall, but still use separate
userids for different sites [S. Ioannidis and Bellovin 2001; H. J. Wang et al. 2009]. That
provides intrabrowser protection.

All of the major operating systems have their own sandbox scheme, though the design
principles vary tremendously. In general, the choice is between simplicity—of design
and implementation, and hence of the implementation and configuration of sandboxed
applications—and flexibility. This means that it’s relatively hard to port a sandboxed ap-
plication between OSs unless it assumes minimum granularity and is coded accordingly.
(That’s one reason that Firefox is sometimes called the least secure browser [Anthony
2014]: it doesn’t use a sandbox, because its many different platforms have very different
sandboxing paradigms.) A consequence of that is that the same program may be less safe
on one OS than on another, which in turn means that flexibility in choice of OS might be
appropriate in some deployments.

I sometimes ask my students which operating system is the most secure. It’s the wrong
question; the proper one is “which OS makes it easiest to write secure applications?”
Sandboxing is part of the answer.
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Secure Operations
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Chapter 11

Building Secure Systems

“All through that century, the human race was drawing slowly nearer to
the abyss—never even suspecting its existence. Across that abyss, there is
only one bridge. Few races, unaided, have ever found it. Some have turned
back while there was still time, avoiding both the danger and the achieve-
ment. Their worlds have become Elysian islands of effortless content, play-
ing no further part in the story of the universe. That would never have been
your fate—or your fortune. Your race was too vital for that. It would have
plunged into ruin and taken others with it, for you would never have found
the bridge.”

Karellen in Childhood’s End
—ARTHUR C. CLARKE

Basic technologies are all well and good, but what we really want are systems—and, if
you’re reading this book, secure systems. Systems security comprises four very different
aspects: good basic technologies (the subject of Part II), correct coding, proper design,
and secure operation. All of these are necessary; a weakness in any can spell disaster.
I’ve already covered the most important basic technologies. Entire books can be and have
been written about correct coding; accordingly, I’ll just touch on it. I’ll spend more time
on system building and its close cousin evaluation—how do you put the various pieces
together?—though that’s really a topic big enough to merit its own book. Finally, I’ll dis-
cuss secure operation, a vital topic usually lumped under the headings of “simple system
administration” or those “!@#$%&̂ [l]users.” There’s more to both of those topics; I’ll
cover those, too, in subsequent chapters. As always, the stress is on how to think about
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the problem; other than the fundamental limitations of human beings, the specifics will
vary over time but the basic problems remain.

It is important to remember, of course, that there are no foolproof recipes for security.
No matter how good you are nor how carefully you follow my advice, you can still expe-
rience a failure. In other words, a good design includes consideration of how to limit the
damage from any single breach.

11.1 Correct Coding

There are many books and papers on how to write correct, secure code; I don’t propose
to recap them or replace them here. Let it suffice to say that the usual advice—avoid
buffer overflows, sanitize your inputs, watch out for cross-site scripting errors, the usual
seemingly endless list—is sound. A few points are worth stressing, however.

The first is that the threat model—the kinds of bugs that can be exploited, or de-
fenses bypassed—is not static. Once upon a time, if you’d offered defenders “canaries”
to protect against stack-based buffer overflows [Cowan et al. 2003] and made data space
non-executable, everyone would have exclaimed, “Problem solved!” Of course, it wasn’t.
Heap overflows are exploitable, too, and things like return-oriented programming (ROP)
[Pappas 2014; Shacham 2007] showed that there are other attack techniques possible.
No one in the security field is betting that there aren’t more that no one has bothered to
discover yet.

The “solution” sounds simple: write correct code. Of course, it’s neither simple nor
even feasible, which is why I put the word in quotes. Nevertheless, it’s a goal to aim for,
which in turn means that anything that improves correctness improves security. This in-
cludes the whole panoply of software engineering processes, with all that implies: design
documents, design and code reviews, unit and system tests, regression tests, and so on.

Those techniques alone won’t solve the problem, though, because many security
requirements are quite different than the usual. Take “tainting”: the concept that input
from an untrusted source must not be used to do certain things without certain context-
specific checks. It certainly makes sense, but how this should be done is heavily context-
dependent. Let’s consider the differences between web servers and mailers.

Both have to watch out for problems, but the problems can differ, even when they’re
addressing the same underlying issue. One favorite example—favorite because program-
mers still get it wrong, even though it’s been recognized as a problem for decades, is the
“..” problem: filenames that contain enough ‘/../’ strings to move up the tree beyond the
nominal base for that activity. How you achieve this, though, is very different; accord-
ingly, the specific rules programmers must follow (and hence the specifications for the
application) will vary.
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For web servers, all files must be under a directory known as the document root.
Avoiding too many instances of /../ sounds simple, but it isn’t. For one thing, some in-
stances are correct practice in setting up web sites, which means that they must be ac-
cepted and processed correctly; something like html/../art/pic.jpg should be rewritten as
art/pic.jpg; however, html/../../docroot/art/pic.jpg is invalid, even if it would ultimately
point to the same file. There are also the myriad ways to represent /, such as %25 and
&#0025;—to say nothing of all of the Unicode characters that look like a /, such as
&#2044;, which is technically the “fraction slash” rather than the more usual “solidus.”
(If that’s not bad enough, imagine a Unicode-encoded URL that includes something like
iana.org<fractionslash>othernastystuff.com, which can easily be mistaken for something
really on the iana.org web site rather than on othernastystuff.com.)

The problem with mail is more subtle. It’s not so much people sending email directly
to files, since that’s easy to handle simply by checking inbound messages against the list
of legal recipients (few computers will accept messages for /etc/passwd@example.com
or even smb/../../etc/passwd@example.com) as it is the ability on some systems for users
to specify a filename to receive their own email. That is, I can (sometimes) say that mail
for me should be written to /home/smb/funky-mail. That sounds simple, too; the mailer
should simply permit writing to files that I have write permission for. It isn’t; I’ll skip
the details (again, this isn’t a book on secure coding), but in a very similar situation the
Apache web server does about 20 different checks.1 A useful simplification, then, might
be to allow delivery to any files below /home/smb, but that in turn brings in the .. problem.
(Bonus points to all readers who spotted the other very serious security problem inherent
in that very bad idea. Don’t do this without a lot more care; it doesn’t do what you want.)
There’s a lot of security complexity here no matter how you slice it, but given that /../
adds to the conceptual workload and that there aren’t strong reasons to permit it, it’s not
at all unreasonable to bar it in this situation.

There’s one more variant worth mentioning: an FTP server. Those typically log users
in, and then rely solely on the access controls of the underlying OS. Because of the way
in which the login takes place, it’s more similar to an ordinary user login than a mailer is,
which simplifies things; accordingly, FTP servers don’t even have to consider the issue—
unless the server supports pattern-based access control (some do), in which case the situ-
ation is similar to but simpler than for web servers.

We can see, then, that the proper handling of this string is very much context and
specification dependent. A simple set of rules is in fact simplistic.

What programming language you use probably matters, too. C is notorious for its
susceptibility to buffer overflows, uncontrolled pointers, and more; using a more modern
language would eliminate whole classes of problems. Clearly, this is the right thing to do.

1. “suEXEC Support,” http://httpd.apache.org/docs/2.4/suexec.html.

http://httpd.apache.org/docs/2.4/suexec.html
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Or is it? It turns out that scientific evidence for this proposition is remarkably hard to
come by. A 1999 National Academies study noted [Schneider 1999]:

There is much anecdotal and little hard, experimental evidence concerning
whether the choice of programming language can enhance trustworthiness.
One report [Computer Science and Telecommunications Board 1997] looked
for hard evidence but found essentially none. Further study is needed and, if
undertaken, could be used to inform research directions in the programming
language community.

The cited report discussed many studies, but there were always confounding factors that
called the results into question.

There’s another factor to consider: are these modern languages too complex? Remem-
ber Hoare’s warning about Ada, which was being adopted as the standard programming
language for US Department of Defense projects [1981]:

The next rocket to go astray as a result of a programming language error may
not be an exploratory space rocket on a harmless trip to Venus: It may be a
nuclear warhead exploding over one of our own cities. An unreliable pro-
gramming language generating unreliable programs constitutes a far greater
risk to our environment and to our society than unsafe cars, toxic pesticides,
or accidents at nuclear power stations. Be vigilant to reduce that risk, not to
increase it.

On balance, most security people feel that moving away from C and C++ is probably
the right answer, but the answer is less clear-cut than I’d like.

Ultimately, perhaps Brooks’ analysis was the most accurate [1987]:

I predict that a decade from now, when the effectiveness of Ada is assessed,
it will be seen to have made a substantial difference, but not because of any
particular language feature, nor indeed of all of them combined. Neither will
the new Ada environments prove to be the cause of the improvements. Ada’s
greatest contribution will be that switching to it occasioned training program-
mers in modern software design techniques.

Training, though, is an important part of process as well: programmers do need to be
taught how to write correct, secure code.

/ / /

Virtually everything I’ve just described, with the exception of some of the requirements,
applies to all large-scale software development projects. Security, though, is different;
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there are malicious adversaries. In ordinary code, one can say “no records are longer than
1,024 bytes” and not worry. In security-sensitive code, though, that’s a recipe for disaster;
attackers will happily construct longer records for the precise purpose of overflowing your
buffers if you’re not careful. How do you know if you’ve been careful enough?

C, of course, is part of the problem. Since strings do not have explicit length fields,
many string functions—copying, comparison, and more—come in two forms, such as
strcpy() and strncpy(); one uses the conventional zero byte delimiter and one
takes an explicit length as well. Passing lengths around everywhere isn’t always conve-
nient, especially in old code that’s been updated over the years; is it ever safe to use
functions like strcpy()?

It is perhaps unfortunate that the answer is “yes”: sometimes, they are safe as well as
convenient. If the answer were “no,” they could be deleted or flagged with bloodthirsty
warnings by the compiler, much as gets() is. If the program has already verified that
the string lengths are safe, or if the input comes only from trustworthy sources like a
sysadmin-specified file, there’s no strong reason not to use these functions. The problem
is how to tell the difference, and in particular how to audit your code.

I took a very quick look at the source to a recent version of the Firefox web brow-
ser. By actual count of the lines emitted by fgrep -wR I found 303 instances of
strncpy() and 735 instances of strcpy(). Does that imply that Firefox is termi-
nally insecure? Probably not; most of those instances will be false positives—but that’s
an awful lot of code to review by hand.

Beyond that, there are many common errors that cannot be detected that way. The
simplest example is a type mismatch between modules, which is especially easy to do
in C. Another example is the difficulty of taint analysis: given how a variable can be
referred to directly or via a pointer, determining where something came from is very
difficult.

The answer is to use a specialized static analyzer, a program that looks at programs
and finds certain classes of mistakes. Static analyzers are old—lint dates back to the
1970s [S. C. Johnson 1978]—but newer ones are much more comprehensive. If nothing
else, they’ve been tuned to detect security-sensitive misbehavior.

This book is not the place for a comprehensive discussion of such programs. (If you’re
interested, I recommend [Chess and West 2007; McGraw 2006]. Microsoft has developed
many tools that can cope with systems as large as Windows or Office [Ball et al. 2004;
Larus et al. 2004].) I will note three caveats about using them:

• Static analyzers aren’t panaceas. Bad code is bad code, and creatively bad program-
mers can outwit the best tools. (Chess and West’s book also gives a lot of very sage
advice on mistakes to avoid.)
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• Vulnerabilities—in this context, that means programming errors—increase all the
time. Newly discovered attacks, new operating environments, and new languages
will all have their quirks; code that was once effectively safe can become unsafe.
Consider format string attacks, which were completely unknown before around
1999. Old code has to be revisited with newly updated tools.

• Static analysis is just one more part of the development process, along with code
reviews, testing, and so on. Simply having a tool, or using it casually, will not
suffice. Again, process matters.

/ / /

There’s a reason, then, that this section is named “Correct Coding” rather than “Correct
Programming”: the problem is far deeper than just writing the programs.

11.2 Design Issues

Let’s start our discussion of security design principles by considering a typical—but
simplified—example: a modern web server. Major sites’ web servers today don’t serve
static files; rather, they’re controlled by content management systems, which in turn are
database driven. That is, a reference to a page will generally invoke a script that processes
a template for the page; the template, in turn, will contain database references and/or in-
vocations of other scripts. The database will contain structured files for all of the content:
the title and actual text of the requested page, information about other links to show on
that page (“most e-mailed,” “trending,” video or audio adjuncts, and so on), related con-
tent, and more. For that matter, the database will likely contain information about users,
the kinds of ads they should receive, and more.

Figure 11.1 shows the layout of a typical high-end web server. There are several points
about it worth noting. First and foremost, all of the major components are replicated; this
is done for reliability and load sharing. There are two border routers, each perhaps homed
to a different ISP. There are multiple web servers, each fed by load balancers. There are
multiple databases; here, some of the separation is likely because of different roles and
access characteristics. Even the networks are replicated; no single failure should be able
to take this site off the air.

The second point worth noting is the inherent security in the design. The load bal-
ancers, which are also inverse proxies, feed only ports 80 and 443 through to the web
servers. They’re not intended as firewalls per se; nevertheless, they function as such. Sim-
ilarly, an attacker who has somehow compromised the load balancers or the routers on ei-
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Figure 11.1: The layout of a typical web server and its associated databases.

ther side of them still can’t get to the databases; the web servers are just that, web servers,
and they don’t route IP packets between their “north” and their “south” Ethernets.

The third thing we notice is that “minor” link in the southeast to “back ends.” That’s
probably the most dangerous part of the system as shown, unless there are strong secu-
rity protections between the web servers and databases and these undescribed back-end
systems.

The fourth item is that the diagram is seriously flawed; there are many more vital
functions that can’t be integrated into this scheme without breaking the nice security
properties I just outlined. Note carefully what I’m saying: it’s not that I’ve omitted details
(that’s inevitable in such a high-level view); rather, it’s that when you add in some of
these details, a lot of their security properties are inherently compromised.
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The most obvious problem is the network operations center (NOC): how does it talk to
the various pieces? It has to be able to talk to the north routers, the load balancers, and the
routers in the middle; there are also the switches on either side of the web servers. Where
do you connect the NOC? There are no locations on the diagram capable of talking to
all of those network elements; if we introduce one, we’ve bypassed one of the protection
layers. A NOC station that can talk to the two pairs of LANs provides a path to the
database servers that bypasses the web servers; something that can talk to the outside
routers and the inside ones is a path around the load balancers.

Access by network, system, and web administrators poses similar issues. It’s easy
enough to see how the database and web server machines can be contacted via the back-
end routers, but someone has to be able to maintain and reconfigure the network elements
in the north half of this diagram. Perhaps that’s done via a separate management LAN
(a solution that might also help the NOC)—but again, that bypasses the protection of the
proxy servers.

There are many more machines missing from this diagram; connecting them poses
its own challenges. Where do the customer care systems connect? They need pervasive
access to the databases, so presumably they should be on the south LANs—but customer
care is often outsourced or done by teleworkers. In fact, there may be many other external
links to just this complex: suppliers, banks, shipping companies, external web designers,
content suppliers, and more. I’ll deal more with external links in Section 11.3; for now,
let it suffice to say that such links raise another issue that needs to be considered.

Customer email presents a fascinating challenge. All email to and from customers—
including delivery status and failures of outbound email—needs to be logged in a database
for the use of customer care. The mail servers need not be in the same data center, but
they either need to access the same databases, with all the security challenges that implies,
or the separate databases they do use must be accessible to customer care and somehow
linked to what is done via the web servers.

There are many more types of access needed: (tape?) backup machines, along with
the interfaces needed to restore files; the backup data center, which may be on the other
side of the planet but needs up-to-the-minute databases; the console servers; the envi-
ronmental sensing and control networks (if your machine room gets too hot, you really
want to shut things down); your authentication server, which in turn should probably be
linked to your personnel machines so that they know whether an employee has left the
company—the list goes ever on. A few years ago, I looked at the high-level schematic for
a large company’s billing system. It had four different databases and 18 other processing
elements. One of those databases held the sales tax rates for every relevant jurisdiction;
that, of course, implies a real-time link to some vendor who is responsible for tracking
changes in rates and rules, and updating the database as needed. Real-world systems are
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infinitely complex—and if someone shows you a diagram without such complexity, the
proper response is “what aren’t you showing me?”

Security people don’t get to pick what functions exist, nor do they decide which are
handled in house and which are outsourced. We do, however, have the responsibility of
securing it all, even when the rest of the organization decides to change things around.

11.3 External Links

Out of all design issues, the most difficult is external connectivity: the many, many links
to other companies. Make no mistake about it: there are very many links. I once asked
a top network security person at a major American corporation how many authorized
links there were to other companies: “at least a thousand.” And how many unauthorized
links did he think existed? “At least that many more.” These links exist not because of
carelessness or lack of security awareness; rather, they’re there because they’re necessary
for the business. As such, the security question is not whether they should exist, but how
to secure them. You’ll occasionally win a fight on that issue; more often, you’ll not just
lose, you’ll be shunted aside as someone who doesn’t understand the business.

How should external links be secured? Many people’s immediate reaction is to say,
“Set up an encrypted VPN from the outside company to our network.” It’s not a bad
suggestion, and I’d likely include it among my own recommendations, but let’s take a
deeper look at it: why should you encrypt this link, and what does it cost? For that matter,
we should look more closely at just how the encryption should be deployed.

Encryption protects against eavesdropping; it also provides authentication of received
packets. Who, though, is going to engage in such activities? In a business-to-business
connection, both ends have dedicated connections to their ISPs. Eavesdropping on either
the access links or ISP backbones isn’t easy. The Andromedans can do it; few others are
capable of it. Put another way, if your threat model includes surveillance by intelligence
agencies, encrypting such links is vital. That’s by no means a preposterous concept, but
it’s also not a universal threat model. VPNs are cheap and easy—but if they’re problematic
in your environment for some reason, it’s worth thinking hard about who your enemies
are. Hold on a moment, though, before you rip out your crypto: there are two more things
to consider.

I’ll defer discussing one until the end of the section, but I’ve already alluded to the
other: cryptography can authenticate packets without relying on the source IP address.
Again, this goes back to threat models: who is capable of forging addresses? Although
it’s still a sophisticated attack, it’s much easier than eavesdropping. One mechanism is
a routing attack: someone announcing someone else’s IP addresses via BGP. It’s rare
but feasible; there have been reports of spammers doing it [Ramachandran and Feamster
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How to Say “No”

Despite what I said on page 213, sometimes it’s necessary to fight against a thoroughly
bad idea. Under certain circumstances, you’re not just acting in the interests of your
own integrity, you’re acting in your employer’s interests as well. The trick is conveying
the message in the right way. There are two things to remember. First, since the idea
you’re opposing was propounded for business reasons, you have to show business
reasons why it’s a bad idea. Don’t say, “Oh, no; we’ll be hacked!” Instead, show how
much money a security breach in that spot can cause. If the scheme in question is
likely to earn C100,000,000, saying, “There’s a 3% chance we’ll be hacked and it will
cost C100,000 to clean it up,” is not going to get any traction; the expected value of a
successful hack is far lower than the profits, and the hack is only modestly likely. On the
other hand, if you can point to a situation like Target’s—40 million credit card numbers
were stolen; some analysts estimate that the total cost to the company may run into
the billions [Abrams 2014; Riley et al. 2014]—you’ll be taken rather more seriously.

Second, although the argument is nominally about money, discussions like this
are always political. That means that you have to approach it politically, with all that
implies: finding allies, speaking their language, and so on. I know that that doesn’t
come naturally to many technical people, but we live in a wetware world. . .

Come prepared to discuss the technical risks in a comprehensible fashion. Don’t
speak of cross-site scripting attacks; instead, speak of the effects: “The attacker can
steal our users’ login credentials, and we’d be liable.” Demonstrate exactly how the
security failure could occur: “We’re relying on the same software package that was
apparently responsible when the Bank of San Serriffe was hacked last year, so we
know that the capability is out there.”

Your message will be heard more sympathetically if you can show an alternative
that is more secure while still satisfying the business need. Adding components may
increase costs only slightly, while significantly improving security and still preserving
the original business advantage. Compromise might be in order, too. I participated in
one security review where the result was very, very clear to everyone: the risk was
obvious, the consequences severe, and there was no feasible recovery strategy after
the inevitable breach. The outcome, though, was not to cancel the project; rather, it was
to do a very limited scale beta deployment while the flaw was repaired. The scale was
limited enough that the risks were acceptable, the product group would learn how well
things functioned otherwise, and there would be enough time for a proper fix before
large-scale use.
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Figure 11.2: A shared enclave: an internal firewall protecting the rest of the organization from
externally accessible partners that may have been penetrated.

2006; Vervier, Thonnard, and Dacier 2015] and an apparent Bitcoin thief [Greenberg
2014; Litke and Stewart 2014], and I’ve heard of other incidents from Reliable Sources.
Another way to do it is by attacking the DNS, either directly via a cache contamination
attack [Bellovin 1995; Kaminsky 2008] or by hijacking a site’s DNS records via their
registrar [Edwards 2000]. Note that these would be targeted, reasonably sophisticated
attacks; we’re into the upper right quadrant of our threat matrix, though not all the way to
Andromeda.

The more mundane threats demand more of our attention. The real risk is that you’re
letting others inside your network: what can they do, and what can you do to protect
yourself? The answer is very much context dependent, but there are some standard ap-
proaches.

The most obvious, if you can do it, is to apply firewall rules to the interconnection.
That is, restrict what hosts and services of yours the external machines can reach. Note
that there may be a conflict between your cryptography and the need for firewalling: you
can’t filter IPsec-protected traffic based on actual destination addresses and port numbers,
so that has to be done after decryption or integrated with it.

A problem, though, is that the resource of yours being accessed is still vulnerable; if it
is penetrated, the rest of your network is at risk. Thus, and if the threat model so indicates,
a more interesting way to approach the solution is what I call the shared enclave model:
walling off the resource behind a firewall, a firewall that protects the rest of the company
from the enclave. This is shown in Figure 11.2. The main corporate firewall permits the
external traffic into the corporate network, but only to the internal VPN gateway. The
traffic then passes through the second firewall to the decryption gateway; from there, the
actual resource can be reached.
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Note the problem: how does the rest of your organization reach it? The answer, of
course, is to have special rules on that internal firewall permitting such access. What
are the necessary types of access? Obviously, that’s somewhat situation dependent, but
it’s clear that essentially, we’ve more or less replicated the configuration shown in Fig-
ure 11.1, and hence all of the problems that go with it. That’s not to say that this is a bad
idea; however, it comes at a cost.

There’s another reason to adopt shared enclaves: your partner may insist on it. After
all, if you set up a VPN, your partners are vulnerable to attacks from your side. (Yes, I
know that your firewall’s strength is as the strength of ten firewalls because your hearts
are pure, but your partners may not realize this.) Enclaves limit which of your employees
have access to the VPN and hence have the ability to endanger your partner.

Taking this one more step, you may need to insist on an enclave architecture at their
end, for the same reason. Even if you trust their honesty, do you trust their competence
at network security? After all, it is highly unlikely that your site is the only external
connection they have. Unless there are further protections, you’re exposed not just to
your partners but to all of the other companies to whom they talk, ad infinitum. There’s a
word for this sort of transitive closure of connected networks: the Internet.

Note how we derived the shared enclave architecture. It came from a combination of
three factors: the resource to be protected, a threat model that assumed that the computer
hosting this resource might be penetrated, and (to some extent) a need to protect the
partner organization from other failures within your site. The second factor is the most
crucial here: if your shared resource, perhaps a special-purpose web or database server,
is strongly enough protected, you don’t need the extra layers of protection. If it may be
weak, or if it is very exposed to the outside (perhaps you’re a big wholesaler and it’s
handling orders from a very large number of retail outlets), a stronger security posture is
indicated.

/ / /

Sometimes, partners need to access far more than a single cluster of easily segregated
servers. I know of one situation where a company was legally compelled to engage an
outside auditing firm to check on certain classes of transactions. This firm therefore re-
quired access to a fair number of internal databases: the data architecture had of course
not been designed without outside auditing in mind, so information was scattered hither
and yon. How should this be handled?

Again, we go back to our threat model: how much do you trust the outside firm? If
they’re honest and competent, a simple set of firewall rules will suffice. That is, create an
access control list that allows this outside company to reach some set of database servers



11.4 Trust Patterns 217

within your network. (See the box on page 218.) Use standard database facilities, such as
GRANT and VIEW, to limit what parts of the database they can see. If they’re honest but
perhaps not competent enough, the right solution might be an enclave on their side, not
yours. How do you enforce that? You enforce it the same way you enforce many other
things in the real world: by a contract with suitable penalty clauses, rather than just by
technology.

If that isn’t sufficient protection, the best approach is often an application gateway.
The obvious starting point is an SQL proxy that filters out dangerous things, per Fig-
ure 2.1. It then implements a federated database [Josifovski et al. 2002], which treats
multiple independent databases as a single one. Again, the standard SQL restriction mech-
anisms can and should be used. More specifically, use them to restrict what this proxy can
reach; this provides some protection against database access control implementation flaws
since the outside party can’t even reach the actual databases.

Again, note that the proper design is driven by resource and threat models. If the
resource is extremely valuable or the threat is great, stronger protections are indicated.
Often, though, ordinary commercial practices will suffice.

11.4 Trust Patterns

As noted, the criteria used to select different protection schemes are resource value and
threat model. What, though, makes the different schemes more or less secure? Why does
a shared enclave give more protection than a set of firewall rules? Why do all of the
necessary but missing connectivity requirements in our model web server complex hurt
security? The answer to these questions—trust patterns—is at the heart of how one de-
signs secure systems.

What do I mean by trust patterns? Who talks to whom? Who can talk to whom? What
might they do? What do you trust them to do and to which other machines, all modulated
by the strength of any security controls that are applied?

Let’s consider a simple case and a variant: two hosts, A and B, on a network, and
the same two hosts separated by a firewall that permits only port 80 to pass from A to B.
What is the difference? If B trusts that A will only try to connect to port 80 on B—and
not to any other port, nor to any port on host C—there is no difference, and the firewall is
irrelevant. If B does not have that much trust in A, whether because A has nasty tendencies
or because B thinks that A might be penetrated by nasty outsiders, the firewall enforces
B’s trust assumption: that the only connections that A will make will be to B:80.

We see here two essential design and analysis principles: that a system design can
make certain assumptions about what will happen, and that external components can be
used to enforce those assumptions. We can see this in some of the design alternatives dis-
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Managing Firewall Rules

Circa 2000, I was asked to audit a firewall configuration. It was pretty straightforward,
save for one thing: there were about 500 different rules. I told the organization that their
design was terminally insecure; there was no way that anyone could understand the
ruleset, so it was bound to have holes. I was right—but in fact I was wrong; I ignored
the very strong business need for the connectivity. The correct answer would have been
a design for how to do it safely.

Fundamentally, a firewall ruleset is a program that decides which connections
should be permitted. If we approach the problem from this perspective, the shape of
a solution starts to emerge: we employ all our tools for correct programming. Those
include modularization, version control, “compilers,” code review, testing, and more.

Modularization is one of the most crucial. In a situation like this, most sets of rules
come from different internal groups. Perhaps the billing department has one set of
exceptions, Personnel has another, and so on. If they’re non-interfering, they can be
analyzed independently, and even stored in different files; one job of the compiler is to
combine the different files into a single ruleset.

The crucial word in the previous sentence is “non-interfering”: how can the compiler
tell? The answer is fairly straightforward: if the IP address ranges don’t overlap, the
rules don’t interfere. If you have two different rule modules that do interfere, the compiler
should flag that as an error. (One more caveat: multiple IP addresses for the same
machine can also be problematic under certain circumstances. Analyzing that is left as
an exercise for the reader.)

Ideally, a site would have good firewall rule analysis tools. These have been built
[Bartal et al. 2004; Mayer, Wool, and Ziskind 2000], but they don’t seem to be in com-
mon use. Too many products consider a really great GUI to be a better idea. Therein
lies danger.

All rule modules should be tracked back to a particular request by a particular
organization. This is easily done with a standard ticket-tracking system. Rules should
have an expiration date; they should be reviewed periodically and removed when no
longer needed.

There’s one more trick you can use to keep rulesets manageable: have every out-
side partner talk over a different router interface, and have their rulesets tied to that
interface. This need not (and probably is not) a separate physical interface, but a virtual
one—an MPLS channel, a GRE tunnel, or an IPsec VPN—works just as well. In many
cases, in fact, that will be the real benefit of using IPsec for external connectivity: it
provides a convenient hook on which to hang the proper firewall rules.
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cussed earlier. Let’s revisit Figure 11.1 from this perspective; in particular, let’s consider
the effects of the existence of a NOC that has to be able to speak directly to each network.
There are two essential security assumptions here: that the web servers will only be con-
tacted on ports 80 and 443, and that there’s no way to reach the database servers without
going through the web servers. The former property is enforced by the reverse proxies,
and the latter by the topology of the configuration.

The existence of the NOC invalidates both assumptions: there is now a path to the web
servers that does not pass through the proxy servers, and there is a path to the database
servers that does not go through the web servers. These violations do not inherently render
the configuration insecure; however, they force us to take a deeper look. The original
design required that the web servers trust the proxy servers and did not require any trust
assumptions by the database servers. Now, we require an additional two assumptions: that
the NOC itself will not attempt improper connections (and “improper” may have a more
complex meaning), and that the NOC is itself sufficiently secure that it does not create a
bypass path for attackers.

The former assumption is probably safe. If your NOC engineers can’t be trusted,
you probably have bigger security problems. (Can they be trusted? See Section 16.3, on
logging, for precautions you can take.) The more interesting questions are whether the
NOC machines are secure enough, and what to do if they’re not.

Roughly speaking, a computer can be penetrated in one of two ways: either there’s a
flaw in something that’s listening to (i.e., reachable via) a network port, or the user of the
computer has inadvertently downloaded something dubious. Standard Windows and Mac
OS X boxes tend to be listening to too many ports out of the box to be high assurance.
They may very well be secure, but you don’t know that; some form of remediation is
indicated. (How to prevent external connections to those ports can be a bit tricky, since
the operational needs of a NOC tend to conflict with standard firewalls, but the details of
what to do are out of scope for this book. For now, let it suffice to say that it can be done.)
Inadvertent downloads can be dealt with both by policy—“Thou shalt not browse the web
from thy NOC console”—or by technology: delete all browsers from those boxes. If you
can’t delete the browsers because they’re needed to configure or monitor certain things,
force all browsing to go through a proxy that enforces your rules and logs exceptions.

To sum up: analysis of the more realistic server complex configuration shows that
there are additional nodes and paths that have to be trusted. These may not be not fully
trustable; however, with a bit of extra work we can achieve high-enough levels of security.

What did we do here? The essence of the analysis was looking at who could talk
to whom, and deciding whether a simple connection was secure enough. Depending on
the situation—the resources being protected, the threats, the topology, and the inherent
properties of the systems and configurations—we may need to take actions and/or add
components to ensure security.
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Let’s make another change to the topology and to the threat model and see what
happens. Suppose that one of the databases is at a remote location. That is, instead of the
database server being connected to the two south LANs, we instead have a router with
a direct link to another router at some other site; at that site, we have another LAN with
our database server. (For simplicity, I’ll omit the reliability aspects of this variant, but of
course there would be lots of replication.) How does this change our security analysis?

To a first approximation, it doesn’t; we only have to assume that the new routers and
links are secure. However, there are two potential issues. First, we need high assurance
that the other site is indeed secure and that there is no way for other machines at this site
to gain access to the distant database. Second, I noted the need to assume that the links
are secure—but if your enemy is a major government, that may not be a valid assumption
[Timberg 2013].

Encryption is the solution to both issues, but how we deploy it may differ. If the only
risk is from the Andromedans, a link encryptor will suffice. On the other hand, if you’re
worried about what’s going on at your remote site (and you probably should be, since it’s
distant and you have to rely on the sysadmins there), you probably want something like
the enclave strategy discussed above, with a VPN link to it. (Fairly obviously, if you’re not
worried about governments but are worried about remote configurations, an unencrypted
tunnel to the enclave will suffice—but using encryption won’t hurt, and it will protect you
if you’ve gotten the threat model wrong.)

When analyzing trust patterns, what is a node? There is no simple answer; it can be a
process, a computer, or some combination of the two. Ideally, it is just a process; however,
the analysis has to include the risks of privilege escalation attacks by that process should
it be subverted, other active processes on the machine that may be penetrated via network
activity, and so on. Similarly, defenses include file access permissions, sandboxes, virtual
machines, and other host-centric concepts. Security and especially insecurity are systems
properties; looking too narrowly is a classic mistake.

11.5 Legacy Systems

For all my fine words about design, I’ve been quite silent about one very ugly subject:
legacy systems. There are very few greenfield designs in this business, ones where you
get to build everything from scratch. We rarely have that luxury. There’s often some Pa-
leolithic mainframe off in a corner somewhere, one that contains a database vital to the
project, but you can’t talk to it securely because there are no COBOL implementations of
TLS. What then? As it turns out, our analytic tools still work, but there will generally be
more need for additional components.
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Again, we start by assessing trust patterns. Do we trust the legacy systems or the path
to them? Not infrequently, the answer to both questions is “no”; however, you will have
neither the budget nor the time nor the authority to touch the systems. (Even if you had
unlimited budget and authority, “do not touch” is probably the right answer. If you tried to
rewrite every legacy system your project relied upon, the resulting disaster would make
a lovely case study for a software engineering class. The system would end up far too
large and far too complex to even work.) The best you can do is treat the legacy systems
the way you would other unpleasant but necessary components (such as the NOC): they
exist, you have to talk to them, and they have certain immutable properties. Your job is to
engineer around the potential insecurity.

The best answer, in general, is a front end or proxy that you control. This box, which
has known and acceptable properties, is the only one allowed to talk or listen to the legacy
system. In essence, it’s a proxy firewall that provides protection in both directions. It’s
not unreasonable to add some extra functionality, such as syntactic transformations like
converting from XML to a punch card-oriented format, but that should be done with care:
adding too much extra complexity to a security box always weakens it. Bear in mind,
though, that this sort of conversion still has to be done somewhere. This is a difficult
architectural decision: is this a legacy system interface box, a security gateway, or both?
There are sound reasons for saying “both,” but that in turn implies a need for care in just
how this box is implemented. Should technologies like sandboxing be used?

There is one important disadvantage to this proxy strategy: information is lost. Specif-
ically, the legacy system no longer has authoritative information on who initiated partic-
ular transactions; this affects both access control and logging. It is tempting, in some
instances, to let the proxy impersonate individual users, but that may be infeasible or
have other bad side effects. For one thing, how does the proxy server get the credentials
to impersonate users? For another, the legacy system may not be designed for that many
logins; O(n2) algorithms are perfectly acceptable when n is small but not when it’s far
larger than anyone had ever anticipated. Consider, say, a payroll system. Back when the
world was young and punch cards walked the earth, employees probably filled out paper
time sheets; these were sent to the keypunch pool and the resulting card decks were fed
into the system. No logins were necessary. A tech generation later, departmental admin-
istrative folk would have something like an IBM 3270 terminal for interactive entry; at
this point, logins and passwords would have been added, but only one per department.
In today’s world, of course, every employee would do it, via a web browser or a special
smart phone app. That’s at least an order of magnitude more users; can the system handle
it?

From an access control perspective, the answer is to give the proxy full permissions
on the mainframe’s database. This, though, hurts logging (Section 16.3): the mainframe
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no longer knows and hence can no longer record the actual userid that initiated a partic-
ular transaction. This isn’t good, but it is an inevitable consequence of what is often an
unavoidable course of action. The only solution is to do copious logging at the proxy,
with—if possible—enough information to permit automated correlation of the proxy’s
log file entries with the legacy system’s.

11.6 Structural Defenses

There is a remarkable but subtle theme running through the last three sections: the designs
we encounter are driven much more by application logic than by threat model. That is,
the interconnection of web servers, database machines, service hosts, and so on is largely
independent of what enemies might try to do. A high-end web site has a database because
that’s the best way to build the web site; it has nothing to do with the desire to separate a
more critical resource from the highly exposed web server. The threat model comes into
play when we decide what defenses to put in different spots: encryption, packet filters,
hardened hosts, and more. Can we do better? We can, if we divide the logic differently
and build the databases in a fashion that reflects the threats.

Let’s consider an e-commerce site where the primary threat is high-end, targeted crim-
inal activity. That is, the design is not intended to counter the Andromedans; rather, it’s
dealing with folks who just want money. There are three primary threats: theft of credit
card numbers, fake orders to be delivered to a hacker-controlled address, and the financial
and PR loss to the company if customer personal data is stolen. A common response to a
data breach is for the affected company to pay for credit monitoring for the affected peo-
ple. It’s hard to say how much that costs per person, but it seems to be about $5 [Burke
2015]. That is not a trivial amount of money for most companies. Let’s take the threats
one at a time.

From this analysis, it is clear that the biggest threat is to the databases and in particular
to their contents. That is, our protections should focus on certain fields; other components,
such as the web server itself, are of much lower importance.

Credit card number theft is probably the biggest threat. If we can believe the estimates
for Target’s loss [Abrams 2014; Riley et al. 2014], it cost them about $50 per card number
compromised. In other words, it’s worth a considerable amount of effort to ensure that this
failure never happens, no matter what else is compromised.

The first approach is to use database access controls, as outlined above, to make sure
that the web server can never read the credit card number. The web server is the likely
point of entry for a direct attack. If the database server itself is compromised, though, its
access control mechanisms may not stand up—and the data on it is so central to busi-
ness operations that it’s likely very exposed to someone who has already gained access
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to the corporate network. Only one computer really needs to read the credit card num-
ber, though, and that’s the one that actually sends the billing information to the bank.
Accordingly, let’s use public key cryptography to encrypt the credit card numbers; only
the billing computer will have the decryption key. This computer is extremely special-
ized, and hence can be locked down a lot more than most other machines. If it’s still
too vulnerable, or if you can’t afford the public key decryptions, have a specialized en-
crypt/decrypt computer: the web server or the database machine can ask it to encrypt
credit card numbers using, say, AES; only the billing computer can request decryptions.

There is an alternative design that merits analysis: store credit card numbers in a sep-
arate databases, one that could perhaps be locked down more tightly. While better than
storing card numbers in the primary database, it’s not as good as this design. First, if
the billing computer does the decryption itself, the card numbers are never exposed ex-
cept at the single point where they are actually needed. Regardless of anything else, there
must be exposure at this point; more or less by definition, any other scheme must be
strictly weaker. Second, database servers are inherently more complex than the encryp-
tion/decryption server in the alternate scheme; probabilistically, this makes them consid-
erably less secure. (There’s another wrinkle I won’t analyze in detail: many merchants
use credit card numbers as customer identifiers; this lets them link online and offline pur-
chases by the same person. There are a number of ways to deal with this, including using
salted hashes as the identifier.)

We can use a similar strategy against the second threat: delivery to false addresses be-
cause of a database penetration. (Takeover of a user account is a separate issue.) Shipping
addresses are not particularly sensitive, so they don’t necessarily need to be encrypted
(but see below); however, they do need to be authenticated. The crucial point here is
the encryption the key that should be used: one derived from the user’s password. More
specifically, the user’s password is used as a private key for the Digital Signature Algo-
rithm (DSA) or its elliptic curve equivalent. From it, a public key is derived and is sent to
a certificate authority (CA) server. The private key is used to sign all shipping addresses;
the certificate, which is stored in the user profile database, authenticates them.

Note how this works. An attacker with control of the web server or even the database
server cannot create a valid shipping address. Doing that can only be done for an account
that is actively shopping on the site at that time. In fact, a user would be prompted for a
password any time a new shipping address is entered; this is already routinely done by
some sites for high-value purchases. The crucial machine is the CA server; as with the
card number decryption server in the first scenario, it is a specialized machine that can be
locked down far more tightly than a database server can be.

We deal with the third problem, theft of other personal information, by encryption: we
encrypt all such information with the user’s password. It is thus fully exposed to the web
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server when the user is logged in, but is protected otherwise. Certainly, information can
be captured while a web server is compromised, but most accounts are not active most of
the time.

This scheme poses a few interesting trade-offs; in particular, password reset and “big
data” analysis become tricky. Let’s take these one at a time.

If user profile data is encrypted with the user’s password and that password is lost, the
data is lost. There are at least two approaches to dealing with this. The first is to treat it
as an advantage: one common cause of password reset is a compromise of the customer’s
email account, in which case the attacker can use that account to reset passwords on other
interesting accounts and thus gain access to them. Forcing the user to reenter important
data, such as credit card numbers, can actually be an advantage. A second approach is to
keep a backup copy of the data, encrypted with a different key. This works if the password
reset server—which cannot be the web server—is the only one that can decrypt this copy.
It’s a riskier approach, in that this is not nearly as simple a process as, say, the credit
card number decryption server postulated earlier; still, it’s at least somewhat stronger
than keeping the data in the clear all along. Is this worth it? That’s a business decision;
this scheme is more costly (and not super-strong); is it worth it to avoid the customer
annoyance of reentering profile data? How costly would the loss of the data you store be?
(Not storing too much data can be a cost-saving measure as well as privacy-preserving.)
If you don’t use separate protection for credit numbers, as outlined earlier, it would seem
prudent to use this variant for them at least.

There are other business costs as well. Another sensitive item is the user’s email ad-
dress; if a list of email addresses is stolen, it’s valuable to the spammers. (Email addresses
were the goal of some people allegedly linked to a penetration of JPMorgan Chase [Gold-
stein 2015].) That suggests that it should be encrypted. On the other hand, many compa-
nies like to send email to their customers, especially those who haven’t been active lately.
This may or may not be spam from the perspective of the recipient; nevertheless, very
many companies perceive this as a useful (i.e., profitable) thing to do. This is a classic
trade-off of security costs versus business opportunities and has to be evaluated as such,
for each company’s needs.

Big data analysis is easier to deal with. The analyses of interest generally deal with a
set of categories, rather than raw personal data; user data can be categorized appropriately
before encryption. Consider, for example, a company that wants to match its customers
against the vast stores of information accumulated by data brokers [FTC 2014]. The de-
sired information can be extracted (and perhaps hashed) when the user is logged in; later
analyses can be done against this secondary information, without reference to the clear-
text identity. The problem, of course, arises when you conceive of new analyses to do,
ones for which you have not previously extracted the necessary data from the plaintext
record.
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/ / /

I call these defenses “structural” because they’re a reflection of the inherent structure of
what needs to be protected. If your assets can be made to fit such a model, and if you
can find ways to isolate the sensitive information while still fulfilling the primary organi-
zational purposes, you can achieve very strong security against certain threats. However,
these two “ifs” are very big ones indeed; except for passwords (which, as discussed in
Chapter 7, are generally salted and hashed), this is not a common defensive approach.
Often, though, that’s because it hasn’t been thought about. It should be.

11.7 Security Evaluations

For now I’m a judge
And a good judge, too
Yes, now I’m a judge
And a good judge, too
Though all my law be fudge
Yet I’ll never, never budge
And I’ll live and die a judge
And a good Judge too

Trial by Jury
—W. S. GILBERT AND ARTHUR SULLIVAN

The converse of design is analysis: given a system, is it secure? If it isn’t, where are the
problems and how can they be fixed or at least remediated?

Organizations can conduct security reviews at many different points. They may be
done at various points during implementation, shortly before initial customer release,
during periodic audits of the IT infrastructure, or even after a breach in some other system
has awakened management.

Reviews have a lot in common with initial design. There’s a business need; there
are also likely some very necessary security risks. As before, while you must be honest,
it’s still sometimes necessary and always difficult to say “no.” The advice on page 214
applies here, too: instead of saying, “I have a bad feeling about this,” show precisely what
the problem is and how to fix things.
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There is one very important difference between design and review, though. A designer
has a free hand to choose different components, including for reasons as mundane as
“we’ll get a better discount from vendor K if we buy more of their gear this year,” or
for important but non-security reasons such as the ability to run on the −48V DC that
the backup battery plant provides. (Why −48V DC? That’s an old telephone company
central office standard; even today, gear intended to run in telco central offices will support
that voltage. This is especially true for generic hardware such as routers and network
switches.) The analyst has to work with the design as it exists, and not as he or she thinks
it should have been built. The best analogy here is an architect versus the controlled
demolition experts who bring us those really cool building implosion videos. Both need
to understand the strength of materials, how many columns must fail to bring down a
wall, and so on. The architect, though, will worry about aesthetics, the client’s budget,
how the space will be used, and more; the demolition expert takes all that as a given
and figures out how many explosive charges detonated in what sequence will cause the
proper collapse. The exterior wall cladding, carefully selected for its color, reflectivity,
and thermal efficiency, is utterly irrelevant unless its strength or other physical properties
affect the amount of plastique to use.

When doing the analysis itself, the most important thing to remember is that attackers
don’t follow the rules (Chapter 2). More specifically, they don’t follow your notion of
what can happen; they’ll attack where they can. Always look more broadly. Consider,
for example, a single node that the diagram labels “web server.” The naive approach
is to look at the HTTP server itself: Apache or IIS, which version, what configuration
options are supported, and so on. Those questions are necessary but are by no means
sufficient. The attacker would be just as happy to use an ssh port that was left unprotected,
or to penetrate the firm to which you’ve outsourced your web site design; they’ll then
upload backdoored scripts using the authorized connection, which may involve FTP or
something else unusual. You have to consider the computer as a whole—and if it’s a
virtual machine, you have to consider the hypervisor as well.

For that reason, I’m not fond of using attack trees or other top-down methodologies
for security analysis. Those start by saying “to attack X , one must first penetrate Y or Z.”
Certainly, penetrating Y or Z will suffice, but that approach tends to favor known paths.
Instead, go bottom-up: look at each computer, assume that it’s been compromised, and
see what can happen.

I approach system security analysis by boxes and arrows—a directed graph (not a
tree!)—that shows input dependencies. (This approach is similar, though not identical,
to Rescorla’s “protocol models” [Rescorla and IAB 2005]. Also, see the “data flow dia-
grams” in [Shostack 2014].) A module with many arrows pointing to it is harder to secure
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because there are many avenues from which an attack can be launched; by extension,
input from such modules should be treated with suspicion because it’s much more likely
to have been corrupted.

The process is iterative; neither boxes nor arrows are indivisible. If, notionally, an
arrow represents a TCP connection, you need to ask how that TCP connection is protected
and what other TCP connections can be created. Similarly, a box labeled “web server” on
a high-level diagram may in fact run a content management system based on several SQL
databases.

Resist the temptation to reify such a diagram by attaching weights and penetration
probabilities. There are no reliable numbers on just how trustworthy a given component
is; indeed, given how heavily dependent vulnerability is to the type of attacker and the
assets being protected, it’s far from clear that reliable numbers would be useful if used in
a different context.

Here is where defenses come into play. First, we look at what nasty things are being
prevented. Let’s go back to Figure 11.1 and assume that the web server has somehow
fallen. In that diagram, the database servers are now very much at risk. What mechanisms
are in place to protect them? Are there access control lists or other firewall-like mecha-
nisms on the LANs to keep the web servers from any ports other than SQL itself? Is the
database configured to restrict access appropriately? To give one trivial example, there is
no reason whatsoever that a web server should be able to read a customer’s stored credit
card numbers; it should only be able to write them. (If your user interface design includes
the display of the last four digits of a card number, that should be a separate column,
written by the web server at the same time as it writes the actual card number. How to
ensure that the two fields are always consistent requires annoying but not overly hairy
programming.)

It is, of course, fair to ask the chances of a particular computer being compromised.
An analysis that simply says, “Very bad things will happen if Q is compromised,” but
does not explain how that could happen is fatally flawed. A statement like that is at most
a caution—Q must be strongly protected—but says nothing about the actual risk. This
part of the analysis, assessing the strength or weakness of any given computer, is the one
most dependent on the experience and judgment of the analyst; it is also the one most
dependent on the abilities of the adversary. Is Linux more secure than Windows? Is De-
bian Linux 5.0 more secure than Windows 8.1? Does the answer change depending on the
patch installation strategy, or on external protections such as packet filters? What is the
reputation of installed third-party software, such as Apache or MySQL? What can a real-
istic attacker do with physical access to some component? There are no easy or obvious
answers to even simple questions like these, let alone more difficult ones about MI-31’s
stash of 0-day exploits or about attacks involving combinations of software weaknesses.
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One approach to subsystem security analysis is the Relative Attack Surface Quotient
(RASQ) [Howard, Pincus, and Wing 2005]. RASQ does not try to assign an absolute
security value to a component; rather, it compares different designs for a subsystem to
evaluate which is more secure. The evaluation is done by looking for attack opportunities
along a set of different dimensions, such as open communications channels or access
rights. RASQ is not a perfect solution, and it does require two or more versions of a
subsystem to evaluate; still, it is useful when assessing design alternatives or changes to
an existing system architecture.

Operational considerations matter, too. Recall the story from Chapter 2 about the
guest login on a gateway. One can’t anticipate a chain of failures quite like that, but it’s
entirely fair to ask what provisions are present for emergency access. Are they secure? I
once reviewed a design that stated, “No console access except from the computer room.”
That’s a lovely thought, and in the 1980s it might have been a sensible precaution. Today,
though, servers live in lights-out data centers, often with no one on-site. Indeed, the actual
code may run on some cloud provider’s infrastructure. What, then, is “the” computer
room? And if there really is no other access, what will happen in an emergency? The
system I was reviewing would have been more secure in real life if they planned ahead
for secure, available console access.

You may find, if you push, that there are actually more components than are shown
on the diagram you’ve been given, just as we saw when analyzing Figure 11.1. Drill
down! Ask questions about such things! (But do it tactfully: don’t say, “What else are
you hiding from me?” after some extra component is disclosed. . . .) It’s quite normal for
system architects to show a design with only their components; the boring operational
pieces are left to the data center folk who are accustomed to dealing with console servers,
NOCs, and so on. Attackers, of course, don’t care about this organizational boundary.

Understanding and evaluating a system is not a simple task. Indeed, just understand-
ing the threats is difficult; whole books (like the excellent [Shostack 2014]) have been
written on the subject. The essence is to approach the questions systematically. A very
high percentage of failures occur because designers or evaluators completely overlooked
some aspect of the architecture, or because they underestimated the skills and resources
of potential enemies. If you look at every component and every link, asking yourself who
could compromise it and what the effects would be, you’re much more likely to get the
right answer.



Chapter 12

Selecting Software

Most demons are as dumb as a sackful of hammers. This does not mean
they’re safe to mess with, any more than a C++ compiler is “safe” in the
hands of an enthusiastic computer science undergrad. Some people can mess
up anything, and computational demonology adds a new and unwelcome
meaning to terms like “memory leak” and “debugger.”

The Jennifer Morgue
—CHARLES STROSS

12.1 The Quality Problem

When it comes to software, the choice is buy or build. Given the complexity of most
products, the large majority of software today is purchased, not locally built; this includes
almost all operating systems, word processors, web servers, web browsers, compilers,
databases, and a vast assortment of other applications. That means that our security is
critically dependent on the vagaries of vendors—and too much of their software is inse-
cure.

Broadly speaking, product quality (not just software quality) improvement is driven
by three different factors: market pressures, liability, and regulation. All three have failed
here. Let’s take them one by one.

In at least the short term and probably the medium term, most software products have
a pretty constant market share. Some products are effectively monopolies. Microsoft has
no competitors for enterprise desktop computing; even Apple (let alone Linux) has a

229



230 Selecting Software

minuscule market share. Nor is this necessarily wrong; it’s not clear that competing alter-
natives are really ready. Enterprise desktop computers are not managed one at a time the
way that home computers are; rather, a vast array of tools are used by system administra-
tors. The tools for Windows are simply far better developed.

Even if the tools existed, switching would still be very hard. Software is “sticky”;
replacement products are rarely 100% compatible, either technically or in terms of user
experience. Changing mail servers, for example, sounds simple: everything speaks IMAP,
right? Well, no. Apart from the fact that many organizations use Microsoft Exchange’s
own protocols (thus necessitating client configuration changes at the very least), different
implementations of IMAP support different optional features, have different mail-filtering
languages, require very different configurations, and—most seriously—have their own
mail-storage formats. It’s certainly possible to switch, but doing so is neither simple nor
cheap.

The net effect, then, is that there are considerable technical barriers to switching soft-
ware products. Some of this is inherent in the concept, but it’s also true that incumbent
vendors like it that way and often take conscious actions to lock in their customers even
more. The net effect is that the market can’t fix security nearly as much as we’d like, even
apart from the market externalities of many breaches.

Liability (and its usual adjunct, liability insurance), the second common driver, has
also failed, for two very different reasons. One is pervasive: virtually all software comes
with an end-user license agreement (EULA) that disclaims all liability for more or less
anything, up to and including possession of your computers by demons from beyond the
abyss. Here is some sample text from Apple’s EULA for Mac OS X (shouting caps as in
the original):

B. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT, TO THE
EXTENT PERMITTED BY APPLICABLE LAW, USE OF THE APPLE
SOFTWARE AND ANY SERVICES PERFORMED BY OR ACCESSED
THROUGH THE APPLE SOFTWARE IS AT YOUR SOLE RISK AND
THAT THE ENTIRE RISK AS TO SATISFACTORY QUALITY, PERFOR-
MANCE, ACCURACY AND EFFORT IS WITH YOU. C. TO THE MAX-
IMUM EXTENT PERMITTED BY APPLICABLE LAW, THE APPLE
SOFTWARE AND SERVICES ARE PROVIDED AS IS AND AS AVAIL-
ABLE, WITH ALL FAULTS AND WITHOUT WARRANTY OF ANY
KIND, AND APPLE AND APPLE’S LICENSORS (COLLECTIVELY RE-
FERRED TO AS APPLE FOR THE PURPOSES OF SECTIONS 7 AND
8) HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH
RESPECT TO THE APPLE SOFTWARE AND SERVICES, EITHER EX-
PRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
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TO, THE IMPLIED WARRANTIES AND/OR CONDITIONS OF MER-
CHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PAR-
TICULAR PURPOSE, ACCURACY, QUIET ENJOYMENT, AND NON-
INFRINGEMENT OF THIRD PARTY RIGHTS. D. APPLE DOES NOT
WARRANT AGAINST INTERFERENCE WITH YOUR ENJOYMENT OF
THE APPLE SOFTWARE AND SERVICES, THAT THE FUNCTIONS
CONTAINED IN, OR SERVICES PERFORMED OR PROVIDED BY, THE
APPLE SOFTWARE WILL MEET YOUR REQUIREMENTS, THAT THE
OPERATION OF THE APPLE SOFTWARE OR SERVICES WILL BE UN-
INTERRUPTED OR ERROR-FREE. . .
8. Limitation of Liability. TO THE EXTENT NOT PROHIBITED BY AP-
PLICABLE LAW, IN NO EVENT SHALL APPLE BE LIABLE FOR PER-
SONAL INJURY, OR ANY INCIDENTAL, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING, WITH-
OUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, CORRUP-
TION OR LOSS OF DATA, FAILURE TO TRANSMIT OR RECEIVE
ANY DATA OR INFORMATION, BUSINESS INTERRUPTION OR ANY
OTHER COMMERCIAL DAMAGES OR LOSSES, ARISING OUT OF
OR RELATED TO YOUR USE OR INABILITY TO USE THE APPLE
SOFTWARE OR SERVICES OR ANY THIRD PARTY SOFTWARE OR
APPLICATIONS IN CONJUNCTION WITH THE APPLE SOFTWARE
OR SERVICES, HOWEVER CAUSED, REGARDLESS OF THE THEORY
OF LIABILITY (CONTRACT, TORT OR OTHERWISE) AND EVEN IF
APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES. . . In no event shall Apple’s total liability to you for all damages (other
than as may be required by applicable law in cases involving personal injury)
exceed the amount of fifty dollars ($50.00). The foregoing limitations will
apply even if the above stated remedy fails of its essential purpose.

Microsoft’s disclaimers are similar in spirit (boldface as in the original):

The manufacturer or installer, and Microsoft exclude all implied war-
ranties, including those of merchantability, fitness for a particular pur-
pose, and non-infringement. . .
Except for any refund the manufacturer or installer, or Microsoft, may
provide, you may not recover any other damages, including direct, con-
sequential, lost profits, special, indirect, or incidental damages. If you
have any basis for recovering damages from Microsoft, you can recover only
direct damages up to the amount that you paid for the software (or up to
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$50 USD if you acquired the software for no charge). The damage exclu-
sions and limitations in this agreement apply even if repair, replacement or
a refund for the software does not fully compensate you for any losses or
if the manufacturer or installer, or Microsoft, knew or should have known
about the possibility of the damages. Some states and countries do not allow
the exclusion or limitation of incidental, consequential, or other damages, so
those limitations or exclusions may not apply to you.

Even the GNU Public License (GPL) acts this way (LATEX formatting from the origi-
nal!):

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

No one reads these license agreements (even US Chief Justice Roberts doesn’t [Weiss
2010]), but you’re bound by them nevertheless. They all say the same thing: vendors
aren’t liable, no matter if their software leads to demonic possession of your computer.
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Suppose, though, that there was some liability. That would almost certainly lead to
cyberliability insurance, but the insurance industry would have problems, too. For one
thing, there’s not enough actuarial data to use in setting rates; most intrusions are never
detected, and many that are detected aren’t reported. For another, this sort of insurance
works best if it leads to improvement in the underlying artifact—electrical codes, for
example, were originally a creation of the fire insurance industry—but we as a profession
don’t know enough about the actual, detailed causes of failures [Bellovin 2012]; this is
itself a problem.

The third force for improving quality is regulation, but regulation is quite problematic
when it comes to software. Apart from the reluctance of many governments to impose
regulations on a very dynamic industry, it’s quite unclear what regulations should say.
“Don’t commit buffer overflows”? “Don’t be insecure”? “Don’t use C or C++”? “Here is
the One True Model for software development”? The possible rules are either too trite or
venture into areas where there isn’t any agreement at all on how to do it.

To be fair, software has improved. When I started in this business, it was normal for
a mainframe to crash one or more times per day. Here’s how long one of my computers
has been up:

$ uptime
1:28PM up 1124 days, 9:35, ...

The improvement is visible for security, too. As I’ve noted, both in this book and else-
where, Microsoft has expended a tremendous amount of effort on software security, and
the effects have been quite noticeable. Apple’s efforts, though less specifically publicized,
have resulted in improvements to its codebase as well. However, software stickiness, the
need for backwards compatibility with previous (sometimes bad) designs, and general
difficulties in upgrading enterprise software means that problematic code persists for a
very long time.

12.2 Selecting Software Wisely

Given all that, how should one select software wisely (or should I write sC£ect $oftware
wisel¥)? As I imply, it’s a question of money. More precisely, it’s a question of how you
minimize your total outlay over time.

The first question to ask, though, is this: does the software do what you need it to
do? Perfectly secure software that doesn’t meet your requirements is rather useless. Sure,
you won’t get hacked via it—but you also won’t get its benefits. In fact, maybe you
will get hacked because of it: if you have to write your own code to make up for the
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Security Rap Sheets

Periodically, some piece of code will seem to be the focus of a disproportionate number
of security incidents. In 2001, for example, the Gartner Group released an advisory that
said, in part:a

Enterprises using Microsoft’s IIS web server software have to update ev-
ery IIS server with every Microsoft security patch that comes out—almost
weekly. However, Nimda (and to a lesser degree Code Blue) has again
shown the high risk of using IIS and the effort involved in keeping up with
Microsoft’s frequent security patches.

The code was seriously buggy; Gartner recommended that its clients stop using it.
Was it really worse? Why were so many bugs found? Very often, this is not just

random chance; it reflects the fundamentally low quality of some piece of code, and
the concomitant focus on it by the hacker community. If a program is poorly written, it
will probably have many bugs, and not just one or two; ordinary efforts by the bad guys
will tend to expose them. By contrast, fixing a large, buggy program while maintaining
backwards compatibility is a major undertaking; often, the best thing to do is to scrap
the old code and write it afresh, though that will almost certainly cause transition woes.

It is perfectly reasonable to take such history into account when evaluating a sys-
tem. Why not? After all, the hackers do that when deciding where next to chip away. It
is, however, important to stay current; my list of risky software is not the same as it was
ten years ago, or even five. New pieces of crudware take the place of old ones; old ones
can be repaired if the vendor puts in enough effort. Take IIS, for example. That Gartner
Group warning was one of the catalysts that made Microsoft get religion and launch a
massive code and system quality effort. They’ve done an admirable job, a cleanup job
worse than what Heracles did on the Augean stables, but it’s paid off; their code is now
among the best in the business. The IIS warning was retracted in 2004.b

a. “Nimda Worm Shows You Can’t Always Patch Fast Enough,”
https://www.gartner.com/id=340962.

b. “Management Update: IIS Is No Longer the Problem in Web Server Security,”
https://www.gartner.com/id=464817.

https://www.gartner.com/id=340962
https://www.gartner.com/id=464817
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missing functionality, will it be written securely? If you don’t have experience with secure
development, this is a serious risk indeed.

Let’s assume, then, that the product has the right functionality. Can you trust it? Al-
ternately, if there are several competitive products, all of which can do more or less what
you need and all of which are comparable in total cost of ownership, which will be the
most secure? Unfortunately, it’s very, very hard to tell.

One starting point is the product’s reputation (see page 234). If used judiciously, it’s a
reasonable starting point; a series of security flaws tends to indicate fundamental lack of
care during development, and there’s no reason to think that the last flaw found is the last
one present. On the other hand, flaws found are often a reflection of attention paid rather
than underlying code quality. For example, more holes are reported in Windows than in
Apple’s OS X—but is that a reflection of code quality or of Windows’ vastly greater
market share? Attackers aren’t stupid; if they’re going to go to the effort of finding an
exploit, they’re likely to prefer one that’s useful against many more victims.

Some people tout the virtues of open-source software. After all, “given enough eye-
balls, all bugs are shallow” [Raymond 2000]. Unfortunately, the adage is at best an over-
simplification and at worse dangerously misleading. First, the eyeballs actually have to
look at the code and not simply download it. Second, they have to be capable, motivated
eyeballs—do they belong to a person who actually knows how to evaluate code? Third,
simply looking at code is far from enough. Secure code is the output of a sophisticated de-
velopment process; lots of tools, testing, and far more go into it than just reading the code.
As I’ve argued elsewhere [Bellovin 2009b], many open-source projects do not have the
resources or the discipline for secure software development. This is arguably the primary
cause of the very public failures in OpenSSL.

All that said, open-source packages do have a crucial advantage: you can look at the
source code, not so much to find specific holes as to get an overall feeling for the quality
of the code.

There’s one important caveat that you should factor into your own analysis: who
is your enemy? If you’re being targeted, it may very well be worth an attacker’s while
to develop an exploit aimed at you, no matter what OS you run. Similarly, a high-end
attacker is likely to have existing frameworks and toolkits into which a new vulnerability
can be plugged. In other words, the further your adversaries are from the origin of our
threat model graph, the less you’re protected by running an unusual operating system
or suite of applications. It is worth remembering that Stuxnet and the remote bugging
exploit in the “Athens Affair” [Prevelakis and Spinellis 2007]—two incidents generally
attributed to intelligence agencies—involved malware running on very unusual platforms
indeed. (The Athens Affair has also been blamed on the United States [Bamford 2015].)
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There are other factors that you can look at beyond reputation. One is how well the
product handles its own security-relevant components. Does it use encryption where it
should or could? If so, is the selection of algorithms reasonable? Does it need root or
Administrator privileges to run? If so, why? If you can examine a trial installation, look
at file permissions—is everything locked down properly? Or are there world-writable files
and directories? Sometimes, there’s a good reason for such things; more often, they’re a
sign of lazy or security-clueless programmers. Does the product use multiple security
contexts when appropriate? Apache, for example, though it runs as user www, is installed
with its files owned by some other userid.

Can you talk to the company’s security group about specific concerns? Do they seem
knowledgeable? Even if the design isn’t perfect from your perspective, do they have good
reasons for it? I had a long email interchange with the top security person at the company
that developed the password manager I use—I’d noted an oddity, and had a few concerns.
He was very responsive—the oddity was my error, and he was already aware of my con-
cerns. It turned out that there were trade-offs that they had to consider, in terms of market
(it’s a multi-platform product), usability, supportability, and legacy code. I don’t know
that I’d have made all of the same decisions, but their choices were not unreasonable, and
they did not compromise the essential security of the product.

Try applying the evaluation methodology described in Section 11.7. How many dif-
ferent components comprise the product? How do they talk to each other? Can an attacker
send or intercept messages on those channels? How does one component of the product
authenticate the source of messages? Consider, for example, a Unix-based system that
uses multiple processes. If they communicate via pipes, the channel is quite safe. If they
use Unix domain sockets, the risk is at most from on-machine attackers, and perhaps not
even them. On the other hand, if Internet-domain sockets are used, there may be a consid-
erable risk—and in one case, that decision led to regulatory action against a company.1

Perhaps most important, what do you know of the company’s development and se-
curity practices? How do they themselves assess security? What sort of security analysis
and testing do they do? Remember that security has to be built in, not bolted on. Do they
do this?

There are some security certifications; however, their relevance to most organizations
is questionable. First and foremost, certifications apply to a given security model. If it
does not match your needs, you will reap few, if any, benefits from software designed to
meet that model, with or without a certification. Years ago, when I was fairly new to the
security business, I tried applying the Department of Defense’s Orange Book’s principles
[DoD 1985a] to a standard commercial setup: multiple users, (non-web) server, database,

1. “In the Matter of HTC AMERICA, Inc., a Corporation,”
http://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htccmpt.pdf.

http://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htccmpt.pdf
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and so on. It didn’t work. It didn’t come close to providing any useful protection because
the Orange Book was designed for the military’s setup for classified information (Top
Secret, Secret, and Confidential, plus compartments), and that wasn’t at all what I was
trying to do. Furthermore, certification takes time (which means you’ll be well behind
the cutting edge—not always a disadvantage!) and often applies only to very particular
hardware configurations.

All that said, and especially if you’re working in a classified environment, you may
need such things. Note that those environments correlate well with serious threat models,
which in turn should affect your choice of software.

Ultimately, you cannot predict what’s going to happen with any given program or
program product. If there is a security problem, there are three questions to ask. How
responsive is the vendor when problems are found? Does your overall system architecture
protect most of your assets, even if this component fails? Finally, how easily and quickly
can you replace it with something else, while not creating more problems for yourself in
the process?
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Chapter 13

Keeping Software Up to Date

A wandering minstrel I—
A thing of shreds and patches,
Of ballads, songs and snatches,

And dreamy lullaby!

Nanki-Poo in The Mikado
—W. S. GILBERT AND ARTHUR SULLIVAN

13.1 Holes and Patches

Of all of the tools in the technical workshop, few are as loathed as the security patch. On
one hand, they’re a nuisance that tends to introduce entropy into the original code base.
On the other hand, patches are utterly necessary. Software is always imperfect; when
imperfections manifest themselves as holes, there are few choices but to spackle them,
sand them, and paint them. The alternative—the sysadmin equivalent of moving some
furniture in front of the hole, if I may continue my metaphor—is not just unattractive, it
reduces architectural flexibility and leaves you vulnerable to attackers who are closer to
the wall than you are.

Let’s skip the flowery imagery. Any time you have a security bug—and if your sys-
tem is at all complex, you do—you can either repair it or mitigate it. Mitigations can in-
clude putting another access mechanism—a firewall or equivalent—between the hole and
would-be attackers; alternately, you can assume that a penetration will occur and prepare
for detection and recovery in the usual way, by taking extra backups, creating specialized
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intrusion detection scripts, and so on. Finally, under extreme circumstances, you can shut
down the vulnerable systems until one of the other alternatives become feasible.

Some would opt for a final alternative: ignore the problem and hope that you’re not
hit. This isn’t a strategy, it’s wishful thinking. Maybe you won’t be hit, but if you’re not
watching carefully you’ll never know if you were right or not.

Deciding between these choices requires complex analyses and calculations, calcula-
tions that are always imperfect because the necessary data is unobtainable. Though there
have been tries at general quantitative solutions—see [Beattie et al. 2002] for an excel-
lent attempt—the answers are at best probabilistic and at worse meaningless because of
inadequate data. Furthermore, the existence of targeted attacks skews the results; you’re
no longer dealing with a random function.

There are a number of factors to consider. Some are generic security questions; other
are specific to the particular hole.

Attacker motivation Are you being targeted? If so, by whom? Answers of “no” are
rarely definitive; answers of “yes” should be taken seriously.

Attacker capability For this specific hole, how much sophistication is needed to launch
an attack? If, say, it reduces the complexity of finding a cryptographic key from
2256 operations to 270, you’re probably safe from all but the Andromedans. On the
other hand, if there’s a kit out there that merely requires a script kiddie to click
“P0wn!”, the risks are considerably higher.

Exploit availability How widespread is exploit code? If the hole was originally reported
on public mailing lists like bugtraq and Full Disclosure, it’s a pretty good bet that
anyone who wants it, has it. Holes that were closely held by the vendor until patch
release are less likely to be exploited initially, but the likelihood goes up with time:
attackers study the patches to learn what new things they can do to unpatched sys-
tems. Indeed, some people use the phrase “Exploit Wednesday” for the day after
Microsoft’s regular monthly “Patch Tuesday” security update [Leffall 2007].

On the other hand, if there’s a report that a 0-day is in active use, that’s a strong
indication that you should move very quickly to install the patch when it becomes
available and to mitigate its impact until then.

Patch quality How good is the patch? Does it really solve the problem? Does it create
new problems? Patches are software; therefore, they can be buggy. Furthermore,
since there is often pressure to ship patches quickly, they may undergo less testing
than base code.

Security and functionality problems with patches are far from unknown. Some-
times, they don’t fix the problem [Greenberg 2012]; other times, they can introduce
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new ones [Gueury and Veditz 2009]. Speed of response to a newly announced hole
is good, but not if it comes at the expense of quality and hence security [Bellovin
2009b].

Patch timing When has the patch become available? At the start of (your) workday early
in the week? 3:00 AM on a holiday weekend? It’s tempting to try to compare that
to the attackers’ work schedule, but that’s probably fruitless. If nothing else, the
Andromedans’ ritual calendar is derived from the rotation of a distant pulsar, the
product of two random twin primes, and the current state of health of Schrödinger’s
cat [Trimmer 1980]. More seriously, attackers can be anywhere in the world; if
they’re serious attackers (and in particular if they’re targeting you), they’ll strike
when they can, and not take the weekend off.

Damage potential What is the potential for damage if a system is hacked? Will sensitive
data be compromised? Does the data on system fall within the ambit of mandatory
breach notification laws?

Importance of availability How vital is it that the system be available? To whom, un-
der what conditions? Is it mission critical—for an online store, the web site is the
business—or is the system just running a background task that is looking for “a
message in eleven dimensions hidden deep inside the number pi” [Sagan 1985]?
Can you do without it for a while? Which is worse, having it unavailable now or
during cleanup and recovery if it’s hacked?

Suppose you can’t patch immediately, either because no patch is available or for any
of the other reasons listed above. Now what? How to proceed next is very situation de-
pendent. Apart from the questions above, how you proceed depends on just how much
you know about the exploit and how it is used.

Under certain circumstances, the right response might be procedural. For example, if
there’s a 0-day PDF exploit in the wild, you might be able to protect yourself by telling
members of the organization not to open suspicious PDFs. It might work, but absent
further instructions or controls it’s a very risky approach. A lot, though, depends on the
precise nature of the attack.

Few people ever knowingly open something that’s boobytrapped. The trick, though, is
telling people how to recognize fraudulent messages. Perhaps most people will recognize
phony airline ticket receipts, package tracking notices, and the like. Skillfully crafted
spear-phishing attachments are much harder to detect, unless all of your employees are
the type to peruse Received: lines on inbound email.

Another approach might be purely technical: drop or reject all messages with attached
PDF files, or strip such attachments from any inbound messages. This is, of course, a
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self-inflicted denial of service; to work around it, employees may try to evade the ban by
shipping around URLs to cloud-based storage services, having PDF-containing email sent
instead to personal accounts and importing the attachments via flash drives, etc. Curiously
enough, under these circumstances and threat model—spear-phishing attacks exploiting a
0-day hole in PDF viewers—this behavior may not create a security hole. Consider: if the
files in question are from known correspondents, it would take two-way communications
to set up the alternate channel. This, though, means that the sender is verified, at least by
email address. The spear-phishing incidents we’ve seen thus far involve passive imper-
sonation, not account hijacking or the like. While one can certainly imagine that MI-31
is reading such emails and can adapt accordingly, that would represent a considerable
escalation in the typical attack effort.

These, as noted, are work-arounds. Really, though, you want to patch holes as soon
as you can. The trick is being able to do so effectively.

13.2 The Problem with Patches

Apart from the issue of whether the patch actually fixes the security problems to which it
is addressed, there are two aspects of patches that merit caution. First, of course, patches
are software and are thus subject to the “thousand unnatural shocks that [code] is heir to”
[Shakespeare 1603]. That is, they themselves can be buggy, insecure, and so on, just as
the base code can be. In fact, patches can be worse. When you’re writing new code, you
have a relatively clean slate and can design appropriate interfaces to do what (you think)
you need to do. By contrast, a patch is a change to a flawed but extant code base; the
structure of that code may not let you easily do what you want. Consider a simple exam-
ple: you realize that a procedure needs to check its inputs more carefully and pass back
an error indication if there’s a problem. It sounds simple enough—unless that procedure
had no provision for returning any status indication; worse yet, it’s invoked from many
places, some of which are not well-suited to error handling. Now what? Any experienced
programmer can think of several solutions in less time than it took me to type this; the fact
remains, though, that the code won’t be as clean as it could have been had the need been
recognized initially. Furthermore, one of the obvious methods—passing back an “impos-
sible” value as its normal output—could cause problems for some of those other pieces
of code, especially if “impossible” turns out to be an overstatement.

A second problem, especially serious in large enterprises, is that often, specialized
(and perhaps locally written) applications are incompatible with the patch: they relied,
implicitly or explicitly, on old, buggy behavior. Your CEO will not be happy if you explain
that the corporation can’t function because you pushed out a security patch. For that
matter, you won’t be happy, either, if one of the affected applications is the payroll system
that writes your paycheck.
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The solution, of course, is testing, by the software vendor and by you in your own
test lab. Historically, the first round of testing has not always been high quality; more
than one patch has caused serious problems [Goodin 2013] or failed to fix the security
hole it was intended to close [Greenberg 2012]. Beyond that, vendor testing is more or
less by definition inadequate for your environment: the vendor doesn’t know your pre-
cise configuration or applications. You have to test things yourself, and make sure that
the applications you care about continue to work; that in turn means that you have to
have a good-enough test lab and the resources to use it. Even that’s not a guarantee, of
course; “Program testing can be used to show the presence of bugs, but never to show
their absence” [Dijkstra 1970].

So: patches can be incomplete or buggy, the vendor may not have tested them well
enough, it’s a nuisance for you to test them, even that won’t show all problems—and
you absolutely have to install them. The bad guys often reverse-engineer patches [Leffall
2007; Naraine 2007] (and the Andromedans certainly do), which means that once the
patch is out you’re at increased risk, though from whom and by how much depends on
the threat model.

There are related issues surrounding new versions of a product: when should you
install them? Any experienced sysadmin has heard and uttered the mantra “never install
.0 of anything;” the advice is quite sound for production systems. In the long run, though,
you don’t have a choice; vendors don’t want to support old codebases forever and will
end of lifetime (EOL) them at some point. Once a product has been EOLed, there will be
no more security patches for it, and the one thing worse than installing security patches is
not having any patches to be installed. If that’s not enough to force your hand, what will
you do when some other upgrade—a new version of your OS, or newer hardware that
isn’t supported by your old OS—forces your hand? You can often get away with skipping
a version, but at some point you will have to upgrade. The proper response is to plan how
to do it (and lobby upper management for the necessary budget and staff), not to deny the
necessity.

13.3 How to Patch

Assuming that a decision to install a security patch has been made, there are three impor-
tant procedural steps:

• Deciding on a per-machine schedule for installation

• Actually installing the patch

• Tracking which machines have or have not had the patch installed
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This applies to all patches. The situation for security patches is different, though, since
there’s a cost to not installing them other than a noticeable loss of functionality from
running on a buggy platform.

Deciding when to install a patch depends on four different factors. The first, of course,
is how much confidence you have that it won’t be harmful. If you’re highly confident that
it won’t break anything (perhaps because of your testing, or perhaps because the affected
modules are not ones that you use), there’s no reason to hold off. Conversely, if the patch
affects mission-critical code and you haven’t tested it, you should hold off.

A second critical factor is whether the security hole is actively being exploited. Often,
this will be in the technical press, for example, [Goodin 2012a] or on social media or
security mailing lists. At other times, you might hear this from colleagues or from some
government agency, as happened with a recent Internet Explorer (IE) bug [Rosenblatt
2014]. Obviously, you have to take remedial action very quickly in a case like this.

You have to be very careful about your threat model, though. A report by Microsoft
gives some figures on when various new holes are exploited and by whom. They looked
at 16 new vulnerabilities found over a two-year period. Only two ever made it into exploit
kits used by ordinary criminals, and that was a rather late development—but nine of them
were used very early in targeted attacks [Batchelder et al. 2013, p. 9]. In other words,
ordinary care in patching, rather than crash programs, will generally suffice, except in
rare cases or if you’re being attacked by MI-31.

Sometimes, you may have other defenses that you can rely on until you’re ready to
patch your system. In the case of that IE exploit, you may be able to configure your web
proxy (which your firewall forces all employees to use) to block external web browsing
by IE users. Microsoft’s Enhanced Mitigation Experience Toolkit (EMET)1 is reputed to
be highly effective at blocking exploits even after they’re downloaded. Relying on this is
a delicate dance, though; you have to be sure that all exploit paths are blocked. You may
know, for example, that your mail gateway will detect and delete some particular nasty
file, but do you know it won’t be downloaded via the web or carried in on a USB drive?

Finally, you may know that your organization isn’t at risk. Perhaps there’s a bug in
the encryption module used by web browsers and an instant messaging program, but it’s
only exploitable in the latter. Your organization doesn’t use instant messaging, so you’re
not at risk; you do rely on encrypted web browsing, though, so you don’t want to risk
breaking it.

Suppose you’ve decided that a given patch should be installed. In an ideal world,
you just tell that to your database-driven sysadmin platform (Section 15.3), good magic
happens, and all is well. (If you don’t have such tools and you’re a large organization—
well, you should. Go read Chapter 15 and then come back here. I’ll wait.) Decentralized

1. “The Enhanced Mitigation Experience Toolkit,” https://support.microsoft.com/kb/2458544.

https://support.microsoft.com/kb/2458544
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or open organizations have a harder time; they’re more reliant on users doing the right
thing, to wit, installing the patches when they’re told to.

The more different platforms in use, the harder job the sysadmin group has. They
need the time, test machines, and expertise to evaluate patches from multiple vendors and
make the right decisions. The usual (and generally correct) response is segmentation: a
small list of fully supported platforms, with others permissible on an at-the-users’-own-
risk basis. Consider the following statement by my own university’s IT group:

Currently, Administrative Applications are not certified to run on Windows 8.
Additionally, Windows 8 is only an install supported product; CUIT does not
support Windows 8 functionality at this time.

They don’t say don’t run Windows 8; they simply say it’s not certified or supported. It
may work (and in fact probably does work very well)—but if there is a problem, it’s
your problem, not theirs. This is a university, about as open an environment as one can
imagine. There’s at least one of every imaginable system here (and some unimaginable
ones as well); there’s an obvious limit to what the IT group can do.

In corporations, there is rarely that much flexibility about what computers are used.
However, there’s one growing exception: the Bring Your Own Device (BYOD) move-
ment, where employees are allowed to use their own equipment, especially smart phones.
The organization is very limited in what it can do about patch installation: the gear is,
after all, employee owned. Often, the best that can be done is to insist that people run
a company-supplied audit tool, one that ensures that the system is fully up to date on
patches and antivirus software before it is allowed to connect to the corporate network.
Such software exists, especially for Windows machines.

The final important aspect of patch installation is tracking which machines have or
have not been patched. Always-on, in-building desktops and servers are the easy case;
they’ll almost always be up to date. Mobile devices, home equipment, and systems that
are out for repair are more challenging. Automated sysadmin tools generally handle this
without undue trouble, but if you’re not using one you need some other recording and
audit mechanism. An unpatched machine, especially a mobile machine that can wander
outside the firewall, is a risk to the entire organization. (The August 2001 IETF meeting
was in the middle of the Code Red worm outbreak. I looked for attacks originating from
the meeting LAN. There were at least a dozen infected laptops there, laptops that were
tunneling back to their home networks and/or would be physically connected to it the
following week. Code Red should not have penetrated any properly designed and admin-
istered firewall, but virtually every corporation had it on the inside of their networks. This
is likely one reason why.) If you can’t track installation automatically, the use of auditing
tools is probably your best option.
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Chapter 14

People

“Uh, yes, well, it turns out that if you face a secured console to an outgoing
console, you can read off Security files from anywhere in the vid net. Of
course, you have to have somebody inside HQ who can and will aim the
consoles and call up the files for you. And you can’t flash-download. But I,
uh, thought you should know, sir.”

“Perfect security,” said Count Vorkosigan in a choked voice. Chortling, Miles
realized in startlement.

Illyan looked like a man sucking on a lemon. “How did you,” Illyan began,
stopped to glare at the Count, started again, “how did you figure this out?”

“It was obvious.”

“Airtight security, you said,” murmured Count Vorkosigan, unsuccessfully
suppressing a wheezing laugh. “The most expensive yet devised. Proof
against the cleverest viruses, the most sophisticated eavesdropping equip-
ment. And two ensigns waft right through it?”

Goaded, Illyan snapped, “I didn’t promise it was idiot-proof!”

Count Vorkosigan wiped his eyes and sighed. “Ah, the human factor. We will
correct the defect, Miles. Thank you.”

The Vor Game
—LOIS MCMASTER BUJOLD
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14.1 Employees, Training, and Education

Some years ago, I gave a talk at a Three-Letter Agency. At lunch, I commented to my
hosts that at least they worked at an organization where people took computer security
seriously. They gave me these pained looks; finally, someone said, “Well, parts of the
organization do.”

A couple of years later, I ran into someone who also worked at TLA.gov and told her
that story. She replied, “Damned straight—I have my job to do.” The security rules were
getting in her way, and she was evaluated on (and took pride in) her actual job, which
had nothing to do with whether or not she followed security rules. She and her colleagues
were right, in that the rules were intrusive and interfered with the important work they
were doing. But this was the TLA, and the Andromedans really were out to get them.
Those rules, for all of their intrusiveness, (probably) helped with security.

In a second corner, we have willful disobedience of security policies. John Deutch,
the former Director of Central Intelligence, was found to have used unclassified Agency-
issued computers to prepare classified materials [Snider and Seikaly 2000]. In addition,
some other family members used the machine; investigators found that “high risk Internet
sites” were visited by someone other than Deutch himself [Snider and Seikaly 2000,
p. 31]. News reports suggest that the computer was used to dial up AOL to contact adult
web sites [Powers 2000]. This incident represents a people problem, not a technology
problem; still, a security policy has to account for such behavior.

In the last corner of our triangular room we have employee mistakes, people click-
ing on things that they should have left alone. That’s how RSA was penetrated [Rich-
mond 2011], via a well-crafted email message that contained a boobytrapped spreadsheet
[Rivner 2011]:

The attacker in this case sent two different phishing emails over a two-
day period. The two emails were sent to two small groups of employees; you
wouldn’t consider these users particularly high profile or high value targets.
The email subject line read “2011 Recruitment Plan.”

The email was crafted well enough to trick one of the employees to re-
trieve it from their Junk mail folder, and open the attached excel [sic] file. It
was a spreadsheet titled “2011 Recruitment plan.xls. [sic]

That attack was probably from an APT—among other things, the attached file really
was a spreadsheet that contained a 0-day exploit—but more mundane examples show up
constantly, ranging from purported nude celebrity pictures to package tracking notices to
vague threats about pictures allegedly posted to social networking sites.

What these incidents all have in common is that there is a human, not technical, link in
the chain of weaknesses that can lead to trouble. It is tempting to try to fix such problems
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via technical means. For better or worse, that’s not always possible. The answer is three-
fold: training, education, and incentives. Sadly, most companies stop after the first.

Let’s look at the OED. Both “train” and “educate” have many definitions; these are
the ones I’m using:

train To cultivate or develop (the mind, the spirit, a faculty, etc.), esp. for a specified
purpose; to accustom to performing a specified function.

educate To help or cause (a person, the mind, etc.) to develop the intellectual and moral
faculties in general; to impart wisdom to; to enlighten.

Training focuses on a “specified purpose”; education is broader. Training says “pick
strong passwords” and tells you how to; education shows you what the attacks are and
how password guessing works, and may teach you to write your own such program.

Education is more time consuming and expensive than is training; perhaps more se-
riously, people who aren’t security geeks are probably uninterested in attack minutiae.
Both are valid objections; there’s a fine line between imparting enough information to
be useful and wasting the time of (and boring) people who have better things to do for a
company than listening to people like me. There’s a third reason, though, one that is not
valid: when it comes to security matters, there seems to be a reflexive urge for secrecy.
After all, if you talk about weaknesses you’ll teach the bad guys how to attack, right?
As was noted long ago [Hobbs 1857], “Rogues are very keen in their profession, and al-
ready know much more than we can teach them respecting their several kinds of roguery.”
It’s counterproductive to hide attacks from your own employees, because doing so pre-
vents them from distinguishing between rules that are desirable and rules that are really
important. There is, of course, a difference; witness the efficacy of rule-book slowdowns.

There’s a well-known historical incident where the lack of appreciation of the im-
portance of security procedures had important consequences: one attack the British used
against the German Enigma machine took advantage of cipher clerks’ ignorance and lazi-
ness [Kahn 1991]:

The cryptanalysts of the Luftwaffe Enigma coined the term “cillies”—either
the name of the girlfriend of an Enigma cipher clerk used as a key or just a
burlesque of “sillies”—for some of the foolish things that Enigma operators
persisted in doing, despite regulations to the contrary. One was to use as
message keys a sequence from their keyboard, such as QWE or NBV, or the
first three letters of a girlfriend’s name, or an obscene word. Another form of
cilly occurred when a lazy encipherer chose as his message key the position
that the rotors were in at the end of the encipherment of the previous message.
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Note carefully that cillies occurred “despite regulations to the contrary.” The clerks (and
more or less everyone else) were kept ignorant of cryptanalytic techniques; consequently,
they didn’t know how serious their errors were.

How could this last problem have been fixed? Today, it’s done technically: the crypto
box picks its own session (“message”) keys, and users have no opportunity to make such
mistakes. Given that the Enigma operated mechanically, that probably wasn’t an option
without a radically different design. They had a people problem; the British were able
to exploit it. The Germans were not sanguine about the risk. Their solution was to have
traffic monitors who looked for procedural violations. It wasn’t a bad approach, but it
couldn’t scale to deal with wartime traffic volumes—and the German traffic was read.

Sometimes, the answer lies in the incentive structure. You can try negative incentives
—punishing people who break the rules—but positive incentives not only work, they im-
prove morale and productivity. Consider the first story in this chapter, about TLA.gov.
You could say, “Let me make it impossible for her to violate security,” or you could im-
pose penalties for noncompliance with the rules. A better approach, though, is to say,
“What technology would improve her productivity without hurting security?” or even
“Can we ease the rules somewhat and concentrate on what’s really important?” The usual
rationale for eschewing the last of these approaches is cost. Often, though, that’s a hang-
over from when computers were expensive. Today, they’re not; people are.

Intentional disregard of rules can be another matter. In the Deutch case, the Inspector-
General found that [Snider and Seikaly 2000, p. 3] “Deutch was aware of prohibitions
relating to the use of unclassified computers for processing classified information. He
was further aware of specific vulnerabilities related to the use of unclassified computers
that were connected to the Internet. Despite this knowledge, Deutch processed a large
volume of highly classified information on these unclassified computers, taking no steps
to restrict unauthorized access to the information and thereby placing national security
information at risk.” This wasn’t just a desire to be more productive, or a case of overly
strict rules [Powers 2000]: “But Deutch’s character also includes impatience, dismissing
the concerns of others, roughness in argument, refusing to listen as soon as he disagrees—
all of those attributes summed up as arrogance by the people who worked with him at the
Pentagon and the C.I.A. Every last one of them said it was arrogance that got him into
trouble: he knew the rules, but he didn’t think they applied to him.” To quote Marcus
Ranum [Cheswick, Bellovin, and Rubin 2003, p. 202], “You can’t solve people problems
with software.”

The hardest problem to deal with is when a user has been tricked. You can say that
more education or training would have helped, or perhaps better adherence to rules. It’s
not that simple. Security is an adversarial process, which means that you’re pitting experts
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in deception—the attackers—against people who may be very competent at their own
jobs but who aren’t security experts. Furthermore, the advantage is with the attacker, who
only has to win once. You can try for improved technical measures—could that infected
spreadsheet have been caught by a better antivirus scanner?—but sometimes (as in the
RSA case) you can get hit by a 0-day. Maybe more training would help—recall that the
employee had to retrieve the email from the Junk folder; was that proper procedure?—but
again, there’s a limit to how far that can take you.

The proper answer here, as in so many other situations, is maintain a sense of balance:
how often will you be penetrated by such schemes, what will those incidents cost you,
and how does that figure compare to what you would spend on more training and gadgetry
(and lost productivity)? If you think that you’re being targeted by the Andromedans and
that the potential losses are high, you need to escalate your defense, including airgaps and
very strict procedures surrounding your crucial assets. In the RSA incident, it seems likely
that keying material for their tokens was taken; this was later used to attack Lockheed
[Drew 2011]. If you assume the inevitability of a failure involving human behavior, the
avoidable flaw was in the protection of this keying material.

14.2 Users

In Section 14.1, I focused on the security aspects of employees. If, however, you have any
customer-facing resources that are security sensitive—and that category includes both
web sites with logins and environments (e.g., ISPs) where your business is providing a
security-sensitive service—you have a very different class of problem to deal with. Make
no mistake—users are people, too—but your relationship to them is very different. In a
nutshell, you need them, and you can’t tell them what to do.

You can send employees to classes. You can insist that they complete (endure?) web-
based training sessions, complete with online quizzes. You can create and often enforce
policies on web sites that they may or may not visit. You can even discipline them for
egregious security violations.

None of that is true for users. You can enforce some minor things, like password
strength. You can make educational material available. However, businesses that persis-
tently annoy their customers are not going to flourish. (Strictly speaking, that’s not com-
pletely true; businesses with an effective monopoly, e.g., broadband ISPs in much of the
United States, can get away with such misbehavior for a while. However, they end up
disliked and as the target of jokes—and very vulnerable to a technological or economic
change that destroys their monopoly. Until that happens, they may also find themselves
in hot water with regulators.)
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To see how to handle this, it’s necessary to divide security issues into three categories:
those that affect the company directly, those that cause indirect economic harm, and those
for which the company is more or less caught in the middle.

One obvious case of direct harm is abuse of user accounts that have stored credit card
numbers. Visa, for example, warns [Visa 2008] that “Many merchant agreements now
include provisions that hold businesses liable for losses resulting from compromised card
data if a business (or its service provider) lacks adequate data security.” In other words,
if your security isn’t strong enough and a customer account is compromised, you may
be responsible for any credit card charges to accounts belonging to your customers. The
onus is on you to provide strong enough security in the face of lack of cooperation or
outright misbehavior from users.

There’s an interesting business decision here. Companies want (need) customers, but
a customer who costs you money is not very attractive. This suggests deploying strong
security up front, especially security mechanisms whose cost is independent of the num-
ber of users. There are two caveats. First, some mechanisms can drive away users, either
because they’re too hard to use or because they’re too intrusive or otherwise unpleas-
ant. Ask your favorite search engine for articles on shopping cart abandonment—most
surveys indicate that one significant cause is requests for too much information, informa-
tion you may need to reduce fraud. Second, some mechanisms do have a significant cost,
especially if human intervention is needed to resolve the issue.

Indirect expense comes from things like users with virus infections. You didn’t do
anything wrong, but you’re being hurt: someone is pounding on your web site (and hence
overloading it), or too much of your bandwidth is being consumed. (Aside: on this last
point, your mileage may vary. Some ISPs see excess bandwidth usage as a benefit: they
get to sell fatter pipes to their customers. That’s up to them, though of course it’s improper
to infect your customers deliberately as a sales tactic.) Again, the biggest expense will
come if humans have to intervene; people are much more expensive than pipes.

The name of the game here is cost avoidance: what can you deploy that will ame-
liorate your problem? Some universities do this very well; they detect infected machines
and relegate them to a recovery VLAN, where all they can do is download instructions,
patches, and antivirus software.1 The economic trade-off is primarily the cost of these
mechanisms versus the expenses they prevent.

The third category is the most annoying: you didn’t do anything to cause the prob-
lem, and you’re not being hurt yourself, but others are asking you to solve it, or at least
to be part of the solution. Consumer ISPs see this constantly: when one of their users
misbehaves or is experiencing security problems, they get to help their customers solve
the problem. If there’s a virus infection that’s causing a user’s machine to attack other
sites, the ISP will get the complaint. What do you do?

1. “PaIRS: Point of contact and Incident Response System,” http://goo.gl/xhroc.

http://goo.gl/xhroc
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One approach, of course, is cost avoidance: do enough filtering to avoid bringing
down the wrath of others. A very important special case of that is port 25-blocking: as an
anti-spam measure, most residential ISPs prevent their customers from talking directly to
other sites’ SMTP servers. Too much of that is a bad idea, though, especially on inbound
traffic; it interferes with the evolution of the Internet [Hagino 2003].

In a competitive market, it’s often possible to use security as a marketing advan-
tage. Supplying antivirus packages at a discount is one popular strategy; indeed, that can
be cost-effective even without competition, simply to decrease the number of help desk
calls and emails. You can’t always use that option—even if your acceptable use policies
prohibit, say, file sharing, users who want to do it won’t perceive filtering or blocking
software as an advantage.

One thing you need to keep an eye on is the legal environment. This will differ in
different countries, of course. The United States imposes very few security requirements
on ISPs, but there is some chance that that will change. [Lichtman and Posner 2006], for
example, say:

Internet service providers control the gateway through which Internet pests
enter and reenter the public computer system. They should therefore bear
some responsibility for stopping these pests before they spread and for help-
ing to identify individuals who originate malicious code in the first place.

They then give legal reasoning showing that “rules that hold one party liable for the
wrongs committed by another are the standard legal response in situations where, as here,
liability will be predictably ineffective if directly applied to a class of bad actors, and
yet there exists a class of related parties capable of either controlling those bad actors or
mitigating the damage they cause.” This is not currently the law in the United States—but
that might change.

Ultimately, the security problem posed by users is much less tractable than the em-
ployee problem. They have no duty to you, nor do you have much influence over them
save for pulling the plug. Annoying your customers is very rarely good business strategy.

14.3 Social Engineering

There’s a particularly nasty variant of attacks called social engineering that is aimed at
humans rather than computers. The attackers may try to tempt you or may try to scare
you; fundamentally, they’re trying to con you.

There are as many variants of social engineering attacks as there are situations where
people can be tricked into doing something that they shouldn’t. Rather, there are more
attacks; for any situation, there are many possible ways to con someone.
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One of the classic examples involves use of an attractive woman. This can range
from a purely fake online presence all the way to all the way. Kahn relates the story of
a spy code-named CYNTHIA [1967], who worked “not for money but for thrills.” She
seduced assorted diplomats, and persuaded them to betray their countries’ naval codes.
The practice isn’t dead; the Soviets loved doing such things. In East Germany, the Stasi
turned it around. Reasoning that many men had been killed during World War II, and
thus leaving many women without prospective partners, they employed attractive male
agents to seduce vulnerable targets [Knightley 2010]. Nor are such shenanigans limited
to heterosexual temptations; in many cultures, a homosexual affair is an even better lever
to use [Milmo 2006].

There are obvious online equivalents. Imagine an online porn site—better yet, a kinky
porn site—set up by would-be blackmailers. Best of all, imagine a legitimate web site that
uses ads and the full panoply of modern web-tracking technologies to identify the habitués
of porn sites. I haven’t heard of this being done for blackmail, but given the incidence of
malware on such sites [Wondracek et al. 2010] it’s hardly a stretch.

Many spam emails employ much more mundane forms of social engineering.
Whether the emails appeal to cupidity, with a promise of the unclaimed riches of a de-
posed dictator, fear (“Click here to see your overdue bill before it’s referred to a collec-
tion agency”), or lust (“Nude pictures!”), the concept is the same: the spammer is trying
to trick someone into doing something they shouldn’t, such as clicking on an attachment
(Figure 14.1). Most of these emails seem too blatant to be plausible, but even very intel-
ligent people have fallen for them [Ellement 2004].

Spear-phishing is even more dangerous. These emails are carefully crafted to appeal
to specific people; they’ll often include very specific details such as knowledge of inter-
nal projects and the recipients’ associates. The attack on RSA, described earlier in this
chapter, was one such case. Many experts fear that the penetration of the US Office of
Personnel Management (OPM) computer systems [Zetter 2015] will lead to more spear-
phishing attacks; the OPM databases included detailed personal information about people
with security clearances. In terms of our threat matrix, ordinary phishing attacks are op-
portunistic, while spear-phishing messages are targeted attacks.

Social engineering still happens offline or by phone, even in the high-tech world. Mit-
nick [2002] relates many such scams that he pulled, back when he was on the wrong side
of the law. Clever con artists can talk people out of amazing amounts of information. In
one recent corporate scandal, private investigators impersonated HP’s board members—a
technique known as pretexting—in order to obtain their phone records [Darlin 2008].

There are no—repeat, no—strong technical defenses against social engineering, espe-
cially when it happens offline. The essence of the problem is an authorized person being
tricked or coerced into doing something permissible but for improper reasons. Some-
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From: American Express Dustin.Quinones@americanexpress.com
Subject: Recent Activity Report - Incident #6B16ME5NBG4J1BD

Date: July 15, 2014 at 8:48 AM
To: smb@machshav.com

As part of our security measures, we deliver appropriate monitoring of transactions and
customers to identify potentially unusual or suspicious activity and transactions in
the American Express online system.

Please review the "Suspicious Activity Report" document attached to this email.

Your Cardmember information is included in the upper-right corner of this document to
help you recognize this as a customer service e-mail from American Express. To learn
more about e-mail security or report a suspicious e-mail, please visit us at
http://www.americanexpress.com/phishing

Thank you for your Cardmembership.

Sincerely,
Dustin.Quinones
Tier III Support
American Express Account Security
Fraud Prevention and Detection Network

Copyright 2014 American Express Company. All rights reserved.

Figure 14.1: An amusing phishing email I recently saw. The link to the American Express phish-
ing web is actually accurate, though that URL actually redirects to one that uses HTTPS. The zip
file, not surprisingly, contains a .exe file rather than the purported malicious activity report.

times, process will help, but if and only if people follow it religiously. I once heard a
story about a general who walked up to an entrance to a sensitive facility. The private
on guard saw his stars, came to attention, and saluted. The general returned the salute,
walked past, then turned around and reamed out the private. “Why didn’t you shoot me?”
he demanded. “Sir?” the private quaked. “I walked past you; you didn’t ask for an ID.
How do you know where I got this uniform?” The general understood the problem; the
private was too afraid of offending a high-ranking officer to do what he knew he should
have done.

Sometimes, logging will help. If someone is accessing resources they shouldn’t, or
accessing many more resources they’re authorized for, that should show up in the log
files. Of course, log files don’t help if you don’t look at them.

Education can help. Once, when I was buying something at a local big box store, I
swiped my credit card in the terminal and put it away. The clerk asked for it; she told
me she needed to see the last four digits. I recited the digits; she compared that to what
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was on her screen and was happy. She was happy—but I could have been scamming her.
Thieves often burn stolen credit card numbers onto cards of the proper brand; the clerk is
supposed to check the embossed digits against what’s on the mag stripe. I knew what was
going on but she didn’t, so she was happy to accept the information rather than actually
carrying out the security check properly.

Ultimately, there is no cure for gullibility. I’ve often repeated that security is a systems
problem; people have to be considered part of the system, too.

14.4 Usability

Humans are incapable of securely storing high-quality cryptographic keys,
and they have unacceptable speed and accuracy when performing crypto-
graphic operations. They are also large, expensive to maintain, difficult to
manage, and they pollute the environment. It is astonishing that these de-
vices continue to be manufactured and deployed, but they are sufficiently
pervasive that we must design our protocols around their limitations.

Network Security: Private Communication in a Public World
—CHARLIE KAUFMAN, RADIA PERLMAN, AND MIKE SPECINER

It’s a fact—perhaps dismaying to some of us computer types, but a fact nevertheless—
that the users of our computer systems are, almost without exception, people. This in turn
implies that our systems (and that includes security systems) should be designed for use
by people. To ignore that is to invite trouble.

Don Norman expressed this very well some years ago in an essay—he called it a
“lecture,” though “rant” might be more accurate—in RISKS Digest [Norman 2003]:

If we assume that the people who use technology are stupid (“Bubbas”)
then we will continue to design poorly conceived equipment, procedures,
and software, thus leading to more and more accidents, all of which can
be blamed upon the hapless users rather than the root cause—ill-conceived
software, ill-conceived procedural requirements, ill-conceived business prac-
tices, and ill-conceived design in general. This appears to be a lesson that
must be repeated frequently, even to the supposedly sophisticated reader/
contributor to RISKS.

It is far too easy to blame people when systems fail. The result is that over
75% of all accidents are blamed on human error. Wake up people! When the
percentage is that high, it is a signal that something else is at fault—namely,
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the systems are poorly designed from a human point of view. As I have said
many times before (even within these RISKS mailings), if a valve failed 75%
of the time, would you get angry with the valve and simply continual [sic] to
replace it? No, you might reconsider the design specs. You would try to figure
out why the valve failed and solve the root cause of the problem. Maybe it is
underspecified, maybe there shouldn’t be a valve there, maybe some change
needs to be made in the systems that feed into the valve. Whatever the cause,
you would find it and fix it. The same philosophy must apply to people.

Precisely. Security systems have the same sorts of failure modes; when they’re not de-
signed for people, failures are inevitable.

We see this most clearly when people, be they customers or employees, are asked to
perform security-sensitive tasks. Will they perform these tasks correctly? Will they realize
they don’t know how to? Or will they, with all of the best intentions in the world, do the
wrong thing?

The classic example, of course, is the entire panoply of rules, customs, and beliefs
surrounding passwords. The specific details are discussed in Chapter 7; what is important
to note here is that the underlying issue is a mismatch between the system design—
reliance on a set of strings that are either guessable or impossible to remember—and
ordinary human abilities. From this perspective, it is clear that the correct solution is to
do away with passwords; as outlined earlier, that notion often runs afoul of economic
constraints.

Interfaces aimed at sophisticated users are no better. Figure 14.2 shows the dialog box
for setting file permissions on Windows 7. The number of errors is staggering. What hap-
pens if neither “Allow” nor “Deny” is checked? What is the difference between “Write”
and “Modify”? Is “Full Control” all of the other permissions shown (including “Special
Permissions,” whatever they are), or is it something different? How do user permissions
interact with group permissions if there’s a conflict? All of these questions have answers,
but I suspect that even most programmers don’t know what they are. An experiment by
Reeder and Maxion [2005] on Windows XP, which had a very similar interface, has shown
just how hard it is to use this interface correctly: a majority of users couldn’t carry out
some relatively simple tasks. By contrast, their redesigned interface, with no changes to
the underlying security mechanisms, achieved a fourfold improvement in the error rate.

This is a relatively simple case, in that the underlying mechanisms are not in question.
That is, Reeder and Maxion showed that a certain task can be accomplished better in one
way than in another, but did not ask, let alone answer, the question of whether the actual
security model can accomplish what is actually necessary. Other situations present that
question more squarely: given human behavioral characteristics, how should information
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Figure 14.2: The dialog box to set file permissions on Windows 7.

be presented when the right answer isn’t completely clear?
To look at that question, it is instructive to compare certificate warning messages from

several popular web browsers: Safari, Firefox, Google Chrome, and Internet Explorer
(IE) 10 on Windows 7; all are shown in Figure 14.3. (To be precise, this is Safari 6.1
and Firefox 25.0 on Mac OS 10.8.5, and Chrome 31.0 on a Chromebook.) The particular
situation is an attempt to visit a site with a self-signed certificate, that is, one signed by
some certificate authority not known to the browser. Comparing them from a usability
perspective seems straightforward.

The Safari message (Figure 14.3(a)) speaks of “certificates,” a concept foreign to
normal people. There is no default action choice, but if you think that certificate-spoofing
is a serious risk (and it sometimes is), “Cancel” should be the default. The only other
choice, other than continuing, is to display the certificate, but the results of that activity
are, shall we say, likely to prove mystifying to most ordinary users.

Firefox’s message box (Figure 14.3(b)) is much better. It speaks of “trusted identifi-
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(a) Safari

(b) Firefox

Figure 14.3: Warning messages for self-signed certificates from some browsers.
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(c) Chrome

(d) Internet Explorer

Figure 14.3: Warning messages for self-signed certificates from some browsers (continued).
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cation,” which is comprehensible to non-cryptographers. It gives you some guidance on
understanding the error message: that if this is abnormal for you for this site, it could be
a sign of trouble. Finally, it presents the three choices—to abort, to look more deeply,
or to continue—in a comprehensible form. “Get me out of here!” is clearly the preferred
choice, “I Understand the Risks” acknowledges the situation, and “Technical Details” is
for those who understand what’s going on. (To be fair, I suspect that most people would
understand “Show Certificate” to mean that something incomprehensible was about to
happen.)

Chrome and IE 10 (and every other version of IE I tried) are about as bad as Safari;
they, too, speak of certificates issued by some entity. They are better in one respect: they
make a clear recommendation about what the user should do. On the other hand, their
text is pure geek-speak, especially in IE. Safari, at least, makes it clear that the issue is
identity verification. Chrome offers a bit of guidance on how to assess the situation.

Chrome will also give a comprehensible explanation of what ” is actually going on if
you click “Help me understand.” The IE “More information” text advises you to check the
URL or to consult the help subsystem for information on “certificate errors”; if you do,
you can read the marvelously illuminating statement that “Certificate errors occur when
there’s a problem with a certificate or a web server’s use of the certificate.”

So far, so good. Firefox wins points for an initial comprehensible message; Chrome,
though more obscure to start, does a better job at presenting the full picture. Safari and IE
trail, the former for giving no explanation and making no recommendation, and the latter
for giving redundant, repetitive, and redundant technobabble and a generally negative
attitude. The “More information” button is even worse, since its suggestions imply that
the issue is a minor configuration or user error. That may very well be, but it’s inconsistent
with the strong warnings against proceeding.

Remember, though, that security is a systems property. The initial warning, though
important, is not the end of the story. What happens if you click through the warnings,
not just once but twice or more? Chrome and Safari let you through on subsequent visits;
IE goes through the same warning dialog. Firefox gives you a choice to make the excep-
tion permanent or not, but the default—which most people will accept—is to accept the
site and its certificate in the future. Which is the right choice? To accept the choice as per-
manent, to persist with the “You cannot pass” attitude [Tolkien 1954, Book II, Chapter 5],
or to ask the user?

Punting to the user has its issues, but per Chapter 8 against a serious adversary the
web’s PKI isn’t even much of a speed bump. How should a browser behave, either on
initial contact or on subsequent attempts?

An initial warning seems correct. The semantic definition of the web’s PKI demands
that something be said, though of course one can argue that the PKI is so weak that it
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doesn’t matter much.
How a browser should behave on subsequent connections is a harder call. One ap-

proach is to go back to our threat matrix: what classes of attackers would be most likely
to engage in behavior that could result in self-signed certificates showing up? The an-
swer, oddly enough, is those of middling competence. A joy hacker might not know what
a certificate was, let alone how to create a bogus one and lure someone to the web site
presenting it; the Andromedans could hack into a trusted root CA and obtain a certificate
that would be accepted without a warning [Galperin, Schoen, and Eckersley 2011]. Our
other axis, targeting, adds little. A web server is out there for all to connect to. A targetier
might know what sites someone would be likely to visit, or be more able to lure someone
there, but this is the usual advantage of a targetier.

Note that there are a significant number of self-signed certificates on the net. One
survey found that more than a quarter of all web sites had technically invalid certificates
[Ristic 2010, p. 23]; 16% of all sites used certificates from “untrusted” CAs. Almost
certainly, the overwhelming majority of these are non-malicious. A change in a site’s
presentation is a stronger indication of malicious behavior than a first occurrence. The
warnings from Firefox and Chrome both get this right. This also justifies their practice
(and Safari’s) of making this override “sticky,” though how to change that status later is
often obscure and of course varies from browser to browser.

Internet Explorer, though, does not offer an option to continue to accept such certifi-
cates except during the current browser session. Microsoft has made a determination that
visiting such sites is inherently unsafe, and while you can do so it won’t make the pro-
cess easy. Users (or their system administrators) can add new root certificates, if desired;
alternately, they can continue to click through the warnings. Doing that, however, has a
human factors cost: it habituates users to clicking through security warnings.

I’ve already mentioned the W3C Wiki defining “Dialog box.” Users will click through
warnings they don’t understand if doing so is necessary to accomplish what they’re trying
to do. The question is not whether Microsoft is right about the dangers of such certifi-
cates, but whether the danger from them is greater than the danger of reinforcing the
click-through habit. This is a very different question, and one that is much harder to an-
swer. It is especially hard to answer because browsers have to operate in very different
environments, ranging from wide-open hotspots to homes to tightly run organizational
networks. The risks from either course vary accordingly.

The rise of mobile devices has made matters worse; the small screen size has resulted
in warnings that are even less informative or less readable. Figure 14.4 shows the initial
and “Details” pop-ups on an iPhone or iPad. Contrast how little information there is com-
pared with Apple’s own desktop browser (Figure 14.3(a)), itself not a model of clarity.
The magic word “certificate” isn’t used, which is good, but users get no sense of just
what the problem is or what the risks may be. (For all of the flaws in Chrome’s and IE’s
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Figure 14.4: The initial and “Details” warning from iOS for an untrusted certificate.

warnings, the dialog boxes they display on phones is the same as on full-size computers.)

14.5 The Human Element

To paraphrase assorted religious texts, computers are made for people and not people for
computers. Our systems—our total systems, including the training and other processes
involved—cannot succeed if we forget this point.

A shift in viewpoint explains this well: people-related security problems represent
bugs in system operation, rather than in architecture or code. Such problems should no
more be ignored than the more traditional bugs that security architects worry about. The
fact that they are probabilistic in nature—not every user will make the same mistake—
does not matter; race condition attacks are probabilistic, too, and have a much lower
success rate than do social engineering scams. It is no more reasonable to ignore the
human element in security designs than it is to ignore buffer overflows. The only real
question is how to find a suitable solution.

The first aspect, of course, is the obvious one: match your system designs to human
capabilities. Unlike technology, these are relatively static; as noted earlier, homo sapi-
ens 2.0 will not be released any time soon. There can be some changes—in some envi-
ronments, education, training, or procedures (Chapter 16) can compensate—but by and
large, people’s reactions and perceptual limits will remain the same.

The second aspect of a solution is not quite as obvious: although there are usability
design principles (and they’re useful and important), blindly following them is not a sub-
stitute for expertise. Face it: most computer types are not experts on what normal people
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find usable. (Me? I think that regular expressions are extremely clear and obvious, and
that vi is user friendly. Who am I to design something that others will find comprehen-
sible?) If you’re not as expert on human factors as on security, find someone who is to
assist you.

Of course, as [Reeder, Kowalczyk, and Shostack 2011] note, neither security nor
usability are the primary purpose of most systems; accordingly, most developers will be
expert in neither, let alone in usable security. They developed a simple set of guidelines
for security warnings known as NEAT: Necessary, Explained, Actionable, and Tested.
That is, warnings should not be presented unless there is no choice, with full information
presented to the user under circumstances where the user can make the right decision.
Furthermore, the particular design selected should be tested rigorously.

Simplistic approaches aren’t likely to succeed. Wrapping a complex interface in a
GUI may (or may not) make the myriad choices more apparent; it won’t, however, neces-
sarily make them comprehensible. The only way to really know is by user studies—and
those take expertise as well.

Finally, remember that usability, like most of the rest of security, is a systems problem.
That is, all parts of it interact, even from a usability perspective. The difference between
employees and users is fairly clear; other aspects are less so. Consider the timing of
password change requests (and ignore for now the follies of password aging discussed
in Section 7.2). On some systems, this happens at login time. The problem with this
was noted long ago by Grampp and Morris [Grampp and Morris 1984]: “Picking good
passwords, while not very difficult, does require a little thought, and the surprise that
comes just at login time is likely to preclude this. There is no hard evidence to support
this conjecture, but it is a fact that the most incredibly silly passwords tend to be found
on systems equipped with password aging.” That is, the timing itself was problematic.

People-centered risks depend to some extent on the threat model. Offline attacks tend
to be more targeted, if only because of their expense. They’re even more serious than
usual if the Andromedans are involved; intelligence agencies have far more skill at ma-
nipulating humans than is generally realized. (Most spies are in fact professionally trained
con artists. They don’t actually break into secure buildings and steal secrets; rather, they
manipulate people who already have the proper access [Bellovin 2014a].) Worse yet, few
sites outside the defense and intelligence communities have anywhere near the expertise
required to detect and counter such attacks.

Often, remote changes can cause usability troubles. More precisely, they can result in
unusable interfaces suddenly becoming visible and important. Mechanisms intended to
cope with spam and unsafe attachments are irrelevant, until the recipients’ email addresses
become “popular.” Desktop firewall and filtering rules matter little at home if Internet
access is solely through a NAT, but when the local ISP turns on IPv6 there will be direct
access. Direct access to home machines is often a good thing, but only if appropriate
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access control mechanisms can be turned on by the users.
All of this needs to be taken into account when assessing the role of humans in a

security setting. It is the people and their background, the technology and when it is used,
and it all changes.
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Chapter 15

System Administration

“He kept asking me stupid questions, was too dumb to learn from his own
mistakes, made work for other people to mop up after him, and held a number
of opinions too tiresome to list. He shouldn’t have been in the course and I
told him to tell Dr. Vohlman, but he didn’t listen. Fred was a waste of airspace
and one of the most powerful bogon emitters in the Laundry.”

“Bogon?”

“Hypothetical particles of cluelessness. Idiots emit bogons, causing machin-
ery to malfunction in their presence. System administrators absorb bogons,
letting the machinery work again. Hacker folklore—”

The Atrocity Archives
—CHARLES STROSS

15.1 Sysadmins: Your Most Important Security Resource

<RANT>
A good system administrator’s value, to misquote a line from Proverbs 31, “is far beyond
that of rubies.” Proper system administration can avert far more security problems than
any other single measure. Your sysadmins apply patches, configure firewalls, investigate
incidents, and more. Being a system administrator is a high-stress but often low-status
position. The job is interrupt-driven; there are generally far too many alligators for them to
even think of draining the swamp, even when they know exactly how to do it. Sysadmins
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typically have too few resources to do the job properly, but are blamed when the inevitable
failures occur. They’re often on call 24×7, but frequently report to someone who equates
running Windows Update on a single computer with keeping a modern data center on the
air. Of course, all of these issues are magnified when it comes to security, since it’s often
very hard to tell whether a given preventive measure actually accomplished anything. But
management wants things to work perfectly, even though the people responsible for that
aren’t given the resources—or respect—necessary.
</RANT>

Rants aside, I’m 100% serious about the importance of system administration. If
nothing else, most security problems are due not just to buggy code, but to buggy code
for which patches already exist. Sysadmins are, of course, the people who install such
patches; per Chapter 13, it’s not a simple process in a mission-critical environment. To
people who have had hands-on involvement in operations, whether of data centers, net-
works, or services—and I’ve done all of these—the importance of doing this well is self-
evident. How to accomplish it is a trickier question.

I do not claim to be a management expert. That said, the single biggest complaint I’ve
heard from sysadmins is lack of respect from their user community and by extension from
upper management. Some of this is inevitable. When something almost always works, it’s
natural to ignore it most of the time, and only pay attention when there’s a failure—and
at that point, people are generally looking for someone to blame. In the same vein, many
users perceive that a similar-seeming service at another location or company works better;
again, the sysadmins play the role of goats, even if the difference is either not present or
is due to factors beyond their control. Strong leadership, including managers who can act
as buffers and shields, is vital, as (of course) are more tangible tokens of recognition such
as good salaries.
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Why is this relevant to this book? It’s quite simple: system administrators are the
front-line soldiers in the fight for security. They implement many of the security mecha-
nisms selected by system architects, and of course take care of patch installation and sys-
tem upgrades. They’re also the people most likely to notice security problems, whether
from looking at logs, noticing performance anomalies, or fielding user complaints. Fur-
thermore (and of necessity), a good system administrator has to know a fair amount about
real-world security issues and threats. (A remarkable number of really good security peo-
ple drifted into the field from the sysadmin world.) The question this chapter is tackling
is how to apply this book’s principles to system administration, and vice versa.

15.2 Steering the Right Path

Aside from setting security policies—the subject of most of the rest of this book—one
of the most crucial decisions a system administrator has to make is how much control to
exercise. Both extremes, the Scylla of complete anarchy and the Charybdis of totalitari-
anism, have disadvantages, including security weaknesses.

The security risks of anarchy—of not setting policies, of too easily acceding to re-
quests for variances, of not enforcing policies—are fairly obvious. In a world where
something as simple as a flash drive can wreak havoc [Falliere, Murchu, and Chien 2011;
Kenyon 2011; Mills 2010], it is clear that first, there must be policies, and sometimes
stringent ones, and second, that these really need to be enforced.

On the other hand, too much stridency about minor matters also has to be avoided.
Sysadmins are (generally speaking) human, too; Lord Acton’s dictum about the corrupt-
ing influence of power is applicable. Far too often, the real need for security is instantiated
as inflexibility, pointless rules, and deafness to legitimate needs. This stereotypical admin-
istrator, depicted by Scott Adams in his Dilbert cartoon strips as “Mordac, the Preventer
of Information Services,” has its roots in the real world, too.

The problem with rules that are too strict is, as I’ve noted before, that people will
evade them. The story on page xiii about the modems is true (yes, I know at which com-
pany it happened, and I know people who were there at the time); it’s an example of
what happens when a security policy is too strict for the culture. A security policy has
to represent a balance between four different interests: the security folk, who understand
the threat models; the system administrators, who know what’s feasible to implement
(and what it will cost); the business managers, who understand what the organization is
supposed to be doing; and the line managers, who understand what employees will and
won’t put up with. (It would be better to ask the employees themselves, but that’s often
infeasible.)

Deciding on the policy is an iterative process, where several people play more than
one role. A sysadmin might say, “Yes, I can enable that function, but only if we upgrade
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the desktops to a newer release of the OS, because that version implements it securely.”
Both sets of managers will object to the budget hit for the upgrade (though the line man-
agers may, on behalf of the employees they manage, endorse bright, shiny new hardware
as long as they don’t have to pay for it), but everyone is in trouble if there’s a major pen-
etration. Too often, the argument will come down to a culture war—the geeks against the
bean counters, the technical folk against the suits—which helps no one, especially since
it’s the sysadmins who take the opprobrium for “needless” restrictions on what people
can do.

There’s no deterministic algorithm for settling this, of course. The best approach is
for all sides to come equipped with numbers and alternatives. What are the benefits—in
dollars, euros, zorkmids, what have you—to the company’s business of the managers’
preferred strategy? What are the costs and risks of the (nominally more secure) alterna-
tives? What assets are at risk if there is a penetration? Who are the possible enemies, and
which of those assets would each group be interested in? What are the odds on one of
those groups attacking, and via which paths? How strong are the defenses? How bad will
the morale hit be if certain measures are implemented? Will this manifest itself in lowered
productivity and/or higher turnover?

As I’m sure you realize, few of these questions can be answered with any degree of ac-
curacy or confidence. The business folk—yes, the much-reviled suits and bean counters—
are likely to have the best numbers, where “best” includes “most accurate.” (There’s a
certain irony in them, and not the geeks, being the most quantitative.) I’m not saying that
their market or development cost projections are always correct—I’m talking about prof-
its, not prophets—but on balance, they do far, far better than security people can on their
projections. Besides, they’re much less likely to view a failure as a sin, rather than as a
simple economic misjudgment. The essence of what they do is taking calculated risks;
security folk, on the other hand, generally live for risk avoidance.

Implicit in the previous paragraphs is that the system administrators are more or less
neutral parties. It’s not their product that will be affected by security-imposed delays, nor
are they responsible for the overall security architecture of the product. Of course, they’ll
get the blame if the upgrade goes badly wrong or if there is a penetration.

/ / /

A recent issue that illustrates this nicely is the so-called Bring Your Own Device
(BYOD) movement: employees purchase and use their own equipment rather than us-
ing company-issued phones, laptops, etc. There may be financial advantages to the
company—employees will often foot much of the bill—and perhaps morale benefits (Mac
aficionados tend to be unhappy when forced to use Windows machines and vice versa)
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and functionality challenges (Does vital corporate software work on random computers
running random releases of random operating systems? How is it to be maintained?), but
in this book let’s restrict our attention to a much simpler question: is BYOD secure? Let’s
look at it.

The first big issue is system administration: who is ensuring that user-owned devices
are administered properly? Penetration by 0-days is rare; the overwhelming majority of
attacks use vulnerabilities for which patches exist. As we’ve seen, patching isn’t easy, but
with company-administered machines there is someone responsible for dealing with the
trade-off. Does the corporate sysadmin group have the right to install patches on employee
machines? Does it even have the ability to do so, especially if they have no competence
in or infrastructure for some kinds of devices? What about antivirus software? Is it in-
stalled? Is it up to date? Is it even necessary or possible? (At the moment, at least, it isn’t
possible for third parties to write functional antivirus software for Apple’s iOS—there
are no kernel or application hooks for it, and the same mechanisms that are intended to
prevent installation of unapproved applications also block AV software. That may or may
not play well with corporate policies that demand the installation of such packages.)

Naturally, threat models have to be considered. If you’re dealing with the
Andromedans, the precise device may not matter as much. A government-controlled
mobile phone company in the United Arab Emirates pushed an update containing spy-
ware out to its BlackBerry customers; presumably, this was intended to work around the
strong encryption used by Research In Motion’s (RIM) devices [Zetter 2009b]. Travelers
to China often eschew laptops and smart phones [Perlroth 2012]. It is hard to see how
corporate system administration would be an adequate counter to this class of attack. It
isn’t even clear that other countries’ equivalents of MI-31 can mount a credible defense,
as the Iranians have learned.

Against lesser threats, though, good administration does make a difference. Most
users do not upgrade their software [Skype 2012]. More subtly, users are not prepared to
assess the comparative risks and benefits of different software packages. Which browser
is most secure, Internet Explorer, Firefox, Safari, Chrome, or Opera? Suppose the com-
parison was between Internet Explorer 6 and Firefox 14? Internet Explorer 9 and Fire-
fox 3? With what patches or service packs installed? On what releases of what operating
systems?

Even assuming that all of the administration is done as well by the user as a pro
would manage, there’s another issue: what else is installed, and what web sites does the
user visit? It’s one thing for corporate policy to say “thou shalt not” for company-owned
machines; it’s quite another to insist on it for employee-owned devices that may be shared
by other family members. Don’t get me wrong; there are legitimate concerns here. It is
not an exaggeration to say that “adult” web sites often host the computer equivalent of
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sexually transmitted diseases [Wondracek et al. 2010]; religious and ideological sites are
even worse [P. Wood 2012].

From the above analysis, it would seem clear that BYOD is a bad idea. It’s not so
simple. Again, recall the distinction between insecurity as a sin and insecurity as a finan-
cial risk. There are monetary and morale benefits to BYOD; this benefit must be weighed
against the potential costs. How to choose?

As always, we cannot do a strict quantitative analysis; the risks are too uncertain. Still,
there are guidelines that are helpful. Start by making two assessments: how strict is your
security policy, and how much knowledge, overall, does your sysadmin group have? Sites
with loose policies, for example, many universities, take relatively little additional risk
by permitting BYOD; by contrast, defense contractors probably should not. Most sites,
though, are somewhere in the middle. That’s where the sysadmin group comes in. Can
you buy or build a tool to do a minimal evaluation of a user’s system, for all variants of
major interest? (This seems daunting, but in reality there are only a handful of choices
for which there will be very much employee demand.) Insist that this tool be installed as
a minimum precondition for connecting to the network, and use it to assess the essential
security state of these devices. (I should note that it is vitally important to be honest
about what such a tool does and to be scrupulously careful to limit its abilities; betraying
employee trust is a surefire route to all sorts of bad outcomes.)

Developing and using such a tool properly isn’t easy. In general, large organizations
will have large-enough sysadmin groups to manage it. Small organizations, unless they’re
supported by honest and reasonably priced consultants, probably cannot. If you can’t,
consider treating employee-owned devices as semitrusted, per the analysis in Section 9.4.
The same suggestion applies to devices where an assessment tool is difficult, such as
many smart phones.

Again, though, remember the threat model. The more serious the threat, the less safe
BYOD is. This should be used as a discount factor to the sysadmin clue quotient. In
particular, an evaluation tool is precisely the sort of atom blaster that can point both ways
[Asimov 1951]; by definition, it detects certain security problems on a computer. This is
wonderfully useful information to an attacker.

15.3 System Administration Tools and Infrastructure

There’s a diagram floating around the net (Figure 15.1) that shows a lot of the trouble
with system administration. Much of it is routine but interrupt-driven: a disk has crashed,
or the print spooler isn’t working right, or some vendor has released an urgent security
patch. At the same time, the background work of upgrading the LAN switch to gigabit
Ethernet, moving Legal to its own VLAN, and installing the new 32-terapixel display in
the CEO’s conference room has to continue.
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Figure 15.1: The advantage of automation.

While there are many facets of system administration that can benefit from automa-
tion, this is a security book, so I’ll restrict my focus to security issues. The importance
of all of these is proportional to the size of the organization; spending the time to write
scripts and build infrastructure is less cost-effective for smaller sites. There are, broadly
speaking, three relevant activities: shipping out patches and software upgrades; routine
log collection and analysis; and sending specific queries to many machines while inves-
tigating or analyzing a (suspected) incident. (More generally, there are a number of good
books on system administration, such as [Limoncelli, Hogan, and Chalup 2007].)

The starting point for all of these efforts is a good database of computers, not just the
ordinary one of machines and IP addresses, but also hardware information and which ver-
sions of which software packages are installed on each. Furthermore, you want each ma-
chine marked by role; you want to be able to differentiate, say, mission-critical machines
from less vital ones. Suppose some vendor releases a critical patch to some package. On
which machines do you install it? You don’t necessarily want to install it everywhere im-
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mediately; as noted earlier, patches carry their own risks (Chapter 13). Instead, your patch
distribution system should do a database dip and select the machines that are at serious
risk. These machines—those of which are up and report successful installation—should
be marked as updated. That last item is important not just to avoid duplicate installation—
quite likely, the machines would reject that themselves—but to make it easy to install an
updated version of the patch should the vendor ship one out.

Perhaps the patch is to a device driver and only affects certain hardware versions.
You don’t want to install it on unaffected machines; you never know when some “harm-
less” update will have bad side effects. (Many, many years ago, when reading the release
notes for an update to a system I was administering—not “administrating”; that’s a dread-
ful neologism—I realized that the previous version of one device driver had never been
tested. It couldn’t have been; for complicated reasons not worth explaining in this book,
it couldn’t even have been loaded into memory; the linker would have rejected it.)

Configuration files are more difficult to handle than are simple software upgrades. For
the latter, the vendor has (probably) done what’s needed to delete the old code and install
the new. Configuration files, though, are per-machine; you cannot just overwrite them.
With a suitable database, though [Bellovin and Bush 2009; Finke 1997a; Finke 2000;
Finke 2003], you can build new config files on your master machine and ship them out to
the right places.

There are many more scenarios possible, but it should be clear by now that you need
a real database as the foundation for your automation system. I’ve described a large,
complex system, but even a much simpler version will go a long way towards simplifying
the task. However, do not confuse a simple GUI form with a database; they’re not the
same. (More generally, there is a persistent but erroneous notion that anything with a full-
screen interface instead of a nasty command line is a priori and ipso facto user friendly.
Good sysadmins are pickier about their friends; they’ll gladly trade a bit more time up
front learning things and in exchange get a lot more power to do what they really want
to do.) When you use a GUI, your options are limited to those anticipated by the forms’
designer. Your configurations and needs may not match.

Building and maintaining the proper database is neither easy nor cheap. Operations
that were once simple, such as installing a single package on a single machine, are now
more complicated and more expensive. You can’t just double-click on the distribution file;
instead, you have to copy the file to your master sysadmin box, update the database to say
where you want it, create templates for the configuration files, and then click the “Make
it so” button. This is clearly not worthwhile if you’re running just a few computers, but if
you’ve got a few hundred to deal with it’s another story.

There are, of course, plenty of large installations where this kind of setup makes
sense. It’s done all too rarely, though, because of the aforementioned interrupts and alli-



15.4 Outsourcing System Administration 275

gators. Put another way, the sysadmin group rarely has the resources—people, money, and
time—to build the infrastructure necessary to operate efficiently. Given that “efficiently”
often translates to “securely,” this is a crucial deficiency. Foresighted management real-
izes this.

Alas, even if you get to build the necessary pieces, short-sightedness in the executive
suite can doom the effort. I know of one group that did such a good job on their database-
driven administration that the sysadmins appeared to be underemployed. The group was
pared back sharply, the database moldered into uselessness—and suddenly, the sysadmins
were overloaded and they had to ramp up again. By this time, though, the really competent
people with vision were long gone. (The company itself? It’s now out of business, though
not because of system administration woes.)

There’s a more subtle advantage to database-driven sysadmin tools: ultimately, you’ll
need less code. Code is bad: it’s buggy, needs maintenance, etc. The more things you do
via special-purpose tools, the more programs you’ll need to maintain. A new kind of de-
vice, or even a new version of an existing device, can require an entirely new program. By
contrast, a database-driven design may require only new templates. If new code is needed,
it’s likely to be small snippets in well-defined places; much of the complex, controlling
logic is in the driver program that can remain unchanged.

As discussed in Section 16.3, automated log file analysis tools are necessary, too. I
won’t belabor the point here, save to note that sysadmins are, as always, on the front lines
when it comes to using these tools and analyzing their output.

15.4 Outsourcing System Administration

Given how vital system administration is to security, and given how difficult it can be
to do it well, the question naturally arises of outsourcing the function. Is it a good idea?
Often, the answer is “yes,” but there are some caveats.

As noted, system administration isn’t easy. If, however, you have the resources to
build the necessary tools and databases, it can be done effectively and efficiently. Note,
though, the conditional: if you have the resources, you can do it well. Note also what I
said at the start of this chapter about the status of system administration in typical orga-
nizations: do you have the resources?

It would seem, then, that for most organizations it would make sense to outsource
system administration. The issue, though, is not so simple, for one reason: policy. What
are the policies of the providing organization? This includes not just security policies,
though those are obviously crucial. The other (and often more important) issue is which
versions of which operating systems and applications are supported, and with which con-
figurations.
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Consider an absurd generalization: a Linux-oriented site will almost certainly be un-
happy with a provider that specializes in Windows. More plausible cases are both more
likely and more problematic. Suppose, for example, that you have a crucial application
that only runs on a particular release of a particular OS. Will the providing company sup-
port that version for long enough to permit you to migrate safely? This is the canonical
example, but it’s almost too easy; you can always repatriate a single machine and run it
yourself. Too much of that, though, and you have the worst of both worlds: expensively
outsourced administration of desktop machines—the ones that are easy to handle with
vendor tools or simple scripts—and homegrown (and probably manual) handling of the
more complex servers. Alternately, consider conundrums like BYOD or telecommuting,
where part of the trade-off is employee productivity or morale versus (perhaps notional)
security: is your evaluation the same as some provider’s?

The trade-offs here are inherent in the problem. System administration at scale re-
quires automated tools; automation, in turn, thrives on uniformity. This is, of course,
as true for home-built automation as for a provider’s. The provider, operating at larger
scale, may even support more flexibility than you can—but is it the right flexibility? Can
they support the trade-offs and compromises that are right for your organization and your
goals?

The decision is even more complex when one looks ahead. For the foreseeable future,
there will be more heterogeneity, not less, in both device choice and configuration options.
Which solution will be better able to adapt? Will you want to move ahead more slowly or
more quickly than the provider?

There cannot be a single answer to any of these questions. What is essential is to un-
derstand the choices. Almost certainly, a good provider of system administration services
can operate more efficiently than all but the largest, most sophisticated organizations can
on their own. On the other hand, that efficiency can come at a serious price in your nec-
essary functionality.

15.5 The Dark Side Is Powerful

No discussion of system administration is complete without a mention of the potential
dangers posed by rogue system administrators. Sysadmins are generally all-powerful; that
means that they’re all-powerful for evil as well as for good. On systems with all-powerful
administrative logins, such as root on Unix-like machines, a sysadmin can access every
single file, no matter the file permissions. Nor will encryption help if the rogue sysadmin
also controls the machine on which decryption will take place; installing a keystroke
logger or other form of key-stealing software is child’s play for any decent superuser. The
threat is exactly the same as described in Section 6.4, only here the enemy is a highly
privileged insider.
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In the absence of other controls, then, one must assume that a system administrator
has access to every file and resource accessible (or potentially accessible) to any member
of the organization. The usual organization solution to protecting high-value resources is
some form of two-person control: make sure that another system administrator approves
any changes. There have been research approaches to this problem [Potter, Bellovin, and
Nieh 2009], though commercial solutions are few and far between. However, even if they
do exist they may be only a theoretical fix; the realities of human behavior may vitiate
the protection, especially in a small organization. Consider: one administrator—a per-
son who, per the above, is probably overworked and underappreciated—is being asked to
assume that a close colleague (who is suffering from the same slings and arrows of out-
rageous management) isn’t trustworthy. Will the (potential) rogue’s changes be checked
carefully, with all the insult that that implies, or will the checker simply click “OK” with-
out reading it? Nor is handing off just the double-checking to another organization’s ad-
ministrators likely to work; too many routine changes require too much context for easy
evaluation by an outsider.

The NSA realized the danger posed by rogue or subverted system administrators long
ago [[Redacted] 1996]:

In their quest to benefit from the great advantages of networked computer
systems, the U.S. military and intelligence communities have put almost all
of their classified information “eggs” into one very precarious basket: com-
puter system administrators. A relatively small number of system adminis-
trators are able to read, copy, move, alter, and destroy almost every piece of
classified information handled by a given agency or organization. An insider-
gone-bad with enough hacking skills to gain root privileges might acquire
similar capabilities. It seems amazing that so few are allowed to control so
much—apparently with little or no supervision or security audits. The system
administrators might audit users, but who audits them?

This is not meant as an attack on the integrity of system administrators
as a whole, nor is it an attempt to blame anyone for this gaping vulnerability.
It is, rather, a warning that system administrators are likely to be targeted—
increasingly targeted—by foreign intelligence services because of their spe-
cial access to information. . .

. . . if the next Aldrich Ames turns out to be a system administrator who
steals and sells classified reports stored on-line by analysts or other users,
will the users be liable in any way? Clearly, steps must be taken to counter
the threat to system administrators and to ensure individual accountability
for classified information that is created, processed, or stored electronically.

Note carefully the part about targeting, and consider which class of enemies might do
this. The NSA, of course, has always worried about APTs.
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If you can’t check the work, can you check the people? That is, will employee back-
ground checks weed out the bad apples? While they may identify the obvious misfits,
they’re by no means a guarantee; even the NSA has had its failures [Drew and Sengupta
2013]. Heath offers an interesting analysis [2005, p. 76], by comparing the societal rate
of disqualifying factors with the rate found by investigators. In the 1960s, the NSA felt
that it had to extirpate homosexuality from its ranks, since such “deviance” was an “ob-
vious” security weakness. Despite an intensive effort, they found about 1% of the people
they should have found. Some of that could, perhaps, be explained by self-selection bias,
but probably not all of it. Furthermore, she notes that there is no good data showing the
predictive value of any of the standard issues of concern such as heavy alcohol use.

The best answer is a combination of remedies. Certainly, for high-security enterprises
some level of background checking is a good idea; banks, for example, are generally well
advised to avoid hiring people with a lengthy criminal record for embezzlement. Simi-
larly, some amount of two-person control can help, even if only done randomly. Finally,
and perhaps most important, there should be some amount of auditing: what changes were
made, and why? This in turn requires that all privileged operations be done in response
to trouble tickets. These may be self-created—a good sysadmin will frequently detect
problems that have not (or not yet) been noticed (or at least identified) by ordinary users;
it’s preposterous to insist that such problems not be fixed—but the entry must exist nev-
ertheless. (Should you insist that another sysadmin fix such problems? Perhaps, but the
learning curve to understand the details of the issue may be steep.) Finally, all privileged
operations must be carried out via an interface that logs precisely what was done. If a
script is run, a copy of the script should be filed away. If new files are used to replace old
ones, save both copies. This sort of structure will permit later analysis by an auditor.

No discussion of rogue system administrators would be complete without mentioning
the most infamous one of all, Edward Snowden. The story isn’t complete; a good sum-
mary up to a certain point can be found in [Landau 2013; Landau 2014]. Without going
into the larger issues raised by Snowden’s activities, there are some purely technical ones:
how did he accomplish what he did, what safeguards should have been in place, and what
could or should have been done by the NSA to prevent or detect such behavior, or at least
figure out after the fact what was taken? None of these are easy. Here, though, it was a
perfect storm of threat models: very sensitive data, a system administrator who turned
to the Dark Side and impersonated other users [Esposito, Cole, and Windrem 2013], and
more.



Chapter 16

Security Process

In the Laundry we pride ourselves on our procedures. We’ve got procedures
for breaking and entering offices, procedures for reporting a shortage of paper
clips, procedures for summoning demons from the vasty deeps, and proce-
dures for writing procedures. We may actually be on track to be the world’s
first ISO-9000 total-quality-certified intelligence agency.

The Atrocity Archives
—CHARLES STROSS

16.1 Planning

Security doesn’t just happen. It takes organized effort, planning ahead, and process. If
you’re a geek like me—and you probably are one (or at least a geek at heart) if you’ve
made it to page 279 of a rather technical book—those words probably strike horror into
your heart. Nevertheless, and very reluctantly, I’ve concluded that process is a very nec-
essary component of secure operation. Sigh. . .

The first issue is very simple: who makes which decisions about security? Even in a
tiny organization, it requires some thought: the sole sysadmin may be the one to imple-
ment a policy, but it’s management that has to set the shape of the policy. Larger organi-
zations, of course, have more complex management structures, and hence more complex
arrangements for creating policies. Actually setting policy is, as outlined in Chapter 15,
an interactive process. There are at least four different players: the manager who sets the
overall flavor, the manager whose bailiwick will be affected by a policy or policy change,
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the security person who knows the threats, and the sysadmin who handles the actual tech-
nical aspects.

In some situations, such as the aftermath of a penetration, many more people have
to get dragged in, up to and including the Legal and Personnel departments. In smaller
organizations, these distinct jobs may not exist; that said, the roles are always there.

A second important issue is the resources—money—to be devoted to security. Secu-
rity is always an expense; it is never a profit center. Worse yet, and unlike expenditures on,
say, machinery, security doesn’t help productivity. In fact, the necessary mechanisms of-
ten hurt. You need to spend money on security, just as you need to spend money on other
parasitic expenses such as insurance, audits, employee background checks, and more. The
problem with security, though, is twofold: as noted, it can hinder and annoy employees,
and you never really know whether the money you’ve spent on it has done you any good.
This is a crucial negotiation: as a security person, you’re the one who best understands
the threat model, but again, security is a parasitic expense.

There are many other aspects of security where advance planning and process can
help. One is the role of employee training—it’s often boring and frequently ignored, but
you can’t do without it. If nothing else, it can be a legal necessity: part of the US Federal
Trade Commission’s settlement with Twitter included several requirements for employee
training.1 Procurement strategy can matter: is it worth paying more for hardware and
software that you think is more secure, or that your sysadmin staff can handle better?
And of course, creating an ongoing mechanism for tracking changes in the threat model
will clearly help, even if the intelligence group does end up annoying the sysadmins by
insisting on constant reevaluation of security mechanisms.

Finally, there’s bookkeeping—keeping track of all the little things that can make or
break security in the real world: what systems have or haven’t been updated, when certifi-
cates are due to expire, where all the external links go, and more. None but the smallest
of sites can do without that, even if it does require more pixelwork by everyone else.

16.2 Security Policies

Where do security policies come from? More precisely, what factors should go into cre-
ating them? I’ll start by showing how to create firewall rules, but the concepts generalize.

It’s an empty truism to say, “Derive them from overall corporate policy” or “Nego-
tiate with all stakeholders.” Apart from the fact that the overall mechanism should have
been established earlier, per Section 16.1, it begs the questions: how are those policies
established, or how are the stakeholders identified? Ultimately, it boils down to balancing

1. “Twitter Settles Charges . . . ,” http://www.ftc.gov/opa/2010/06/twitter.shtm.

http://www.ftc.gov/opa/2010/06/twitter.shtm


16.2 Security Policies 281

opportunities, risks, and the threat model—but that’s almost as empty a truism. A more
structured process is needed.

Most organizations will have a “deny by default” basic policy. Thus, we start by
identifying the desired functionality. Note carefully: “allow inbound connections to TCP
port X” is not “functionality”; rather, it’s a way to achieve it. We’re not up to that decision
yet. Per Section 11.3, there are often several possible mechanisms to achieve the desired
results; at this point, all of them should be on the table.

The next step is to evaluate the different options for both cost and security risks (Sec-
tion 11.7). For large-enough projects, it may pay to bring in Legal: can some of the risks
be ameliorated by a contract with some external party? Should you impose some security
requirements on that party? Remember that the goal is not security at any cost, it’s secu-
rity commensurate with the cost/benefit trade-off. If you never lose your bet—that is, if
you never suffer a breach—perhaps you’re being too conservative.

On the other hand, don’t neglect worst-case analyses. Estimates of penetration proba-
bility have a very high degree of uncertainty, and systems are often far more porous than
anyone would like [Perlroth 2014]. Ask yourself this: what if there is a serious penetration
because of this new hole? Can you contain the resultant damage?

Your threat model comes in here, in a non-obvious way. A sophisticated adversary
(and we’re well into the upper-right quadrant now, though not quite to the level of the
Andromedans) will seek out and exploit indirect paths in. Your security may be top-notch,
but what of your partners? Target was reportedly hacked via a link to the contractor that
ran its HVAC systems [Krebs 2014].

At this point, you can select and start to deploy a solution, but we’re not done with
process yet. You need a process for logging the original request, including requester,
justification, alternatives considered, relevant threat model aspects, and what exceptions
to your normal rules you made to fulfill the request. Why should all this be written down?
At some point, things will change and you’ll need to revisit the exception. Maybe the
project is over and you can remove it all. Alternately, perhaps the threat model or your
own internal topology (and hence defenses) have changed; this may dictate a change in
which solution you should prefer. Yes, changing a deployed system isn’t easy, but that’s
the sort of thing software people do all the time. If there’s a security case for changing it,
compatible with the business case, it can be done.

If your policy is “default accept”—many, though not all, universities are that way—
you need a somewhat different process. Start with the assets to be protected and the threats
to them, then lay out the defensive options. “Install a firewall” isn’t an answer; a firewall
is a way to enforce a certain policy, not a policy in and of itself.

Organizations with a mostly open net generally have a culture to match. That in turn
means that there’s an organizational cost to tightening security: people will resent it, and
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in particular will resent the loss of ability to do things they had been accustomed to
doing. This suggests looking for options that cause minimal disruption: protecting only a
few servers, blocking the most-abused TCP ports, and so on. Unfortunately, one critical
asset isn’t easily isolated: staff time to clean up intrusions. There are no simple answers,
but the basic question and the basic trade-offs are the same as always: is the increase in
security worth the cost? Here, some of the cost is in morale, which is harder to quantify;
it is a cost nevertheless.

The morale issue can easily arise when considering non-firewall security policies,
too, such as software installation and BYOD. The analysis probably starts with the ben-
efits of the technology. We proceed more or less as above: what does the technology
do for the organization, which can include both increasing productivity and improving
morale? Against that, there are the risks and costs, especially whether this will hurt se-
curity. Manageability and staff time are crucial cost factors, too. Suppose someone wants
some non-standard software installed. The benefits to that staffer may be obvious, but is it
secure enough to use? That evaluation, which may be time-consuming, has to be done by
the sysadmins and/or the security group. Is it worth their while to even start the process?

The security issues and cost trade-offs surrounding BYOD are somewhat differ-
ent. Apart from the security question, an employee-owned device is just that: employee
owned. This raises difficult questions about manageability: not just who has what rights
on the device (though that’s a difficult question), but also on the ability of the sysad-
min group to carry out its usual management processes. The classic case, of course, is
Blackberries versus iPhones and later Android phones. Blackberries were designed from
the start for centralized administration: the corporate IT group configures them, decides
what apps users can or cannot use, and so on. (Blackberries have other features intended
for corporate use and centralized management, such as integration with calendar, address
book, and voice mail systems. These are not security issues [though they profoundly af-
fect the sysadmins], so I won’t discuss them further, save to note that their lack may affect
the benefit side of the cost/benefit equation.) By contrast, iPhones and Android phones
were designed for personal use; the central management features, especially initially, sim-
ply weren’t as good. Does this lack affect security? Assuredly. Is this a fatal flaw? That’s
a harder question; there are advantages that have to be considered as well. Morale is one
factor, of course, but many people feel that they are more productive with the newer de-
vices. And of course, if employees are using their own toys the company does not have to
spend the money buying the devices—though prices have dropped so far that the expense
is not a particularly significant increase to the fully loaded cost of a professional-grade
employee.

The most difficult issue, though, is the fact that the organization cannot set or enforce
its normal policies. Some insist on company-supplied software that verifies that patches
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and antivirus software is up to date; this is largely unobjectionable. Other corporate poli-
cies might be seen as more intrusive, such as a ban on visiting adult web sites. As noted
[Wondracek et al. 2010], even from a purely security perspective this isn’t unreasonable—
but it’s also a fact that lots of people visit such sites despite that. There are more problem-
atic issues with personally owned machines. Some games include anti-cheating modules
that appear to spy on other activities on the user’s computer [Ward 2005]:

But Mr Hoglund found that The Warden also scans the text in the title
bars of any Window for any other program.

Writing in his blog about what he found Mr Hoglund said: ”I watched
The Warden sniff down the e-mail addresses of people I was communicating
with on MSN, the URL of several websites that I had open at the time, and
the names of all my running programs.”

It’s easy to see why corporations might find that troubling, but it’s also easy to see why
some employees might want to own computer games.

There are other difficult policy questions that can arise even today, and more will
certainly show up in the future. What’s important is to have a structured methodology
for dealing with them. A reflexive “no” answer can be just as bad as a reflexive “yes,”
and business pressures will make the latter strategy far more plausible than would have
seemed likely even a few years ago.

16.3 Logging and Reporting

Few automated systems work well without feedback, and computer security systems are
no exception. You need to know what’s going on on your systems; the way to learn is
your log files. There are three fundamental questions: what do you log, how do you log
it, and what do you do with your logs?

The two obvious answers to the first question are “security-sensitive events” and “ev-
erything.” Neither is quite correct, though the latter is closer to the mark. The problem
with trying to restrict what you log to security-sensitive information is that you don’t al-
ways know in advance what will be relevant. The limits, then, on collection are primarily
load based, though care should be taken to avoid logging or retaining privacy-sensitive
information without strong operational reasons.

Once upon a time, disk space was the primary bottleneck; obviously, that’s a lot less
true today. CPU time is more of an issue, at least when it comes to fine-grained logging
(e.g., every “open file” operation) on busy hosts. The biggest issue, though, is how much
data you can actually make sense of: do you have enough CPU power, RAM, and so on,
to do the necessary correlations?



284 Security Process

Given all that, the proper strategy is twofold. First, set logging to “high” on all of
your boxes; back off if and as necessary. Second, and equally important, set up your
system administration databases (Section 15.3) to be able to turn things back to “high”
in an emergency. This sort of prepositioning (which I’ll return to in the next section) is
essential for rapid response.

How to log is conceptually more straightforward, though the engineering issues may
require a fair amount of attention. There are two primary requirements: that an attacker
who has penetrated a system be unable to wipe its logs, and that the logs be available in
one place for analysis. Both of these point in the same direction: a centralized logging
machine. Of course, for a large site you can’t do that all in one place; the link and disk
bandwidths are probably inadequate. The trick—that is, the engineering effort—goes into
figuring out the right way to divide things up.

As explained below, log information is best stored in a database, not a flat file. This
suggests that at a minimum, a federated database [Josifovski et al. 2002] be used to permit
access to all records if necessary. More often, you’ll want to limit your queries to single
databases if possible; this in turn means grouping together related records, ones that might
be needed in a single query. An obvious starting point is your service replicas: logs from
all web servers, or all VPN servers, or all authentication servers should go to the same
log database, especially if the replicas are providing identical services.

A diagram is shown in Figure 16.1. Various system elements create log file entries;
these are sent to a parser/demultiplexer. The parser is, I fear, an ugly piece of code: it has
to take text strings—all the myriad types of messages produced by every version of every
box you have—and convert them into useful database entries. Once that’s done, a con-
figuration file specifies which databases should receive which entries—and it’s perfectly
reasonable to replicate some entries to help performance during queries.

Both the parser and the databases need to be replicated. One reason, of course, is
reliability; a second, as we shall see, is to aid in forensic analysis.

How you implement log file queries and polling is very OS dependent. On Unix-
like systems—Linux, Solaris, Mac OS X—the built-in utilities make it easy to do data
reduction on each end system; on Windows, you may find it easier to pull the files back
to your monitoring server and crunch them there. Alternately, you could install a script
language (e.g., Python or Perl) on each machine. The existence of portable application
packages such as Apache makes that an attractive idea.

It’s time for an example. Here’s a (lightly edited) log file entry from a colleague’s
small hosting center:

Jul 23 19:45:17 r0/r0 32773: Jul 23 19:45:16.206:
%SEC-6-IPACCESSLOGP: list serial-out4 denied
tcp 10.13.0.22(65276) -> 69.16.175.10(80)
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Figure 16.1: Putting log file entries into a database.

His routers are configured to block all packets to or from network 10/8, since that ad-
dress block is reserved for intrasite use [Rekhter et al. 1996]; this message was produced
by a Cisco router. Suppose we wanted to investigate the real origin of that packet. What
database queries might we want to issue?

One path would be to try to figure out on which computer the offending packet orig-
inated. To do that, we’d want a query asking all switches if they saw 10.13.0.22 as the
source IP address on any ports. (Some Ethernet switches log that information; others do
not.) If there are other routers in the data center, check their traffic matrices to see whether
they saw any such traffic. Note that these queries presume that other, non-logging infor-
mation has been added to the databases: a network management server should periodically
use SNMP to dump the traffic data from assorted network elements.

We could also check which users were logged in at the time. This is a straightfor-
ward query—whose login times span the period of interest?—but it requires login data
from every machine. Another way the packets could have entered the network is via a
VPN: which VPN sessions were active at that time? It’s generally not reasonable to do
full-packet logging (and a privacy risk besides) and few sites do full process account-
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ing these days, but those are good options to be able to turn on quickly if weird things
are happening. Again, these records need to be added to databases to ease the job of the
investigator.

Let’s consider another example. Suppose, for example, that you believe that a partic-
ular machine’s SQL database has been probed by someone at 192.0.2.42. If you have the
right infrastructure, you can easily check the SQL log files for queries from 192.0.2.42 on
only the machines with SQL servers. (Your SQL servers don’t have such logs? Clearly,
the vendor’s developers haven’t read this book yet. Tell them they need to. In fact, they
should buy several copies of it. Your database system provides logging but you haven’t
enabled it yet on your internal SQL servers? That’s a simple configuration change you
can push out via your sysadmin database; the same database entry will, of course, auto-
matically enable monitoring of that newly created log file.)

Other than investigations, you should do routine automated analysis of your logs to
try to spot anomalies. Again, you’re much better off with a database, for several reasons.
One is because it makes it easier to tailor your monitors to a machine’s role [Finke 1994;
Finke 1997b]. On web servers, for example, you want to check the web logs. A test web
server, though, will have very different contact patterns than a production one; you want
to tune and tag your collection efforts accordingly.

Beyond that, correlating different entries is a powerful technique for detecting attacks;
see, for example, [Abad, J. Taylor, et al. 2003; Abad, Y. Li, et al. 2004; Kruegel and
Vigna 2003]. While the math behind sophisticated intrusion detection systems can be
complicated (Section 5.3), the basic concept is straightforward: combinations of various
activities can be revealing. Proper log file analysis may be the only way that Manning or
Snowden could have been caught. They were authorized to access many and possibly all
of the files they downloaded, but the volume of their activities was certainly suspicious
[Toxen 2014]:

The NSA should monitor how many documents one accesses and at what
rate, and then detect and limit this. It is astonishing, both with the NSA’s
breach and similar huge thefts of data such as Target’s late-2013 loss of data
for 40 million credit cards (including mine), that nobody noticed and did any-
thing. Decent real-time monitoring and automated response to events would
have detected both events early on and could have prevented most of each
breach.

The open source Logcheck and Log-watch programs will generate alerts
of abnormal events in near real time, and the Fail2Ban program will lock out
the attacker. All are free and easily can be customized to detect excessive
quantities of downloads of documents. There are many comparable commer-
cial applications, and the NSA certainly has the budget to create its own.
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The notion of automated examination of log file entries for security monitoring is not
new [S. E. Hansen and Atkins 1992; S. E. Hansen and Atkins 1993]. Too few sites do it,
even today; they treat their log files as something to examine after a breach. Of course, if
they don’t monitor their logs they probably won’t notice that they’ve been hacked.

16.4 Incident Response

What will you do when your site is hacked? Not “if,” “when.” If you run a decent-sized
site, you’ll almost certainly have to face the issue at some point. Planning and preparation
can make a huge difference in how things turn out and in how quickly you’re back on the
air.

Some of the issues are non-technical. When an attack is detected, who should be
notified and when? Note that sometimes, you’re uncertain about whether you’re dealing
with an attack—when do you pass the possibly bad news up the ladder?

Obviously, the details will vary depending on the size of the organization. In large
companies, the Chief Information Security Officer (CISO) will make the hard calls, but
that means looping in the CISO fairly early in the game. In smaller organizations, it will
probably be the head of the IT group (or maybe the one and only sysadmin) who handles
things. However, penetrations are not just a technical issue; a lot of different people (or
roles) have to get involved:

CEO Penetrations can be serious; companies have gone out of business because of them
[Butler 2014]. There can also be major impact on your company’s reputation [Zio-
bro and Yadron 2014] and even on the Board of Directors [Ziobro and Lublin 2014].

Legal Depending on your industry and what happened, breaches may have legal conse-
quences. In most US states, for example, companies are required to notify people
if their personal information has been stolen [Stevens 2012]. If the hack is serious
enough to affect the share price, the public has to be notified [Michaels 2014].

Some companies prefer to delay any public mention of the breach [Yadron 2014];
in at least one, Urban Outfitters, the legal department calls the shots [Yadron 2014]:

After a hack involving consumer data, her first call isn’t to her boss, who
is Urban’s technology chief. Instead, it’s the company’s general counsel,
a shift the company made post-Target to cloak the conversations under
attorney-client privilege. Then, according to the plan, an outside investi-
gator, whom she declined to name, is due at Urban headquarters within
24 hours, Ms. Hutchinson said.
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I’m on record as opposing too much silence [Bellovin 2012], but I’m neither a CEO
nor a general counsel.

Public Relations Expect press inquiries once the story gets out. In fact, if you’re unlucky,
that’s how you’ll find out: an enterprising journalist has turned up evidence of the
hack and will contact your company. (What should you say about the incident? My
advice is honesty; as Shakespeare noted, “truth will out” [1596].) That said, initial
impressions of the problem will almost certainly be wrong; bear that in mind when
crafting your strategy.

Personnel If an all-employee advisory is needed, it’s probably up to the Personnel folks
to handle it. If it’s an inside job, they’ll certainly need to be involved.

Physical Security I’ve seen hacks where every employee’s password had to be reset and
patches installed on their computers. The security guards at the doors were the ones
who handled the logistics of this.

Production Department Heads It may become necessary to shut down certain produc-
tion systems, even ones that are customer facing. That’s probably a joint decision,
but even if it’s strictly up to the CISO, the production folks need to know.

It is instructive to read how complicated the logistics were even in the 1980s [Eichin and
Rochlis 1989; Stoll 1988]. They’re more complicated now.

Both of those papers make another point: it’s important to be able to communicate
when you can’t use email. It may be unavailable (Is your mail server still up? Still reach-
able?), or you may need to refrain from using email to avoid alerting the attackers. Trans-
lation: everyone relevant needs to have a list of phone numbers—printed on paper. The
list should include home and mobile phone numbers, especially if your office phones use
VoIP. Naturally, there needs to be a known, well-defined policy on when this list should
be used—but when it’s needed, it’s really needed.

The larger the company, the more need there is for a notification and reaction flow-
chart, and perhaps even rehearsals. Even small organizations need to think about the
problem in advance; at a minimum, anyone who might be called should be aware of
the possibility.

There are purely technical precautions to take, too. Specifically, you need to know
what to do to monitor an ongoing problem, assess the damage, and restore full, uninfected
functionality. The latter is largely up to your own group; the former two items may be
outsourced, in which case you need to know whom to call. To do it yourself, you’ll likely
need special software and perhaps hardware. Monitoring a network? What computer will
you hook up to the monitoring ports on the relevant switches or routers? How will you
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reconfigure that node to start feeding the right stuff to the monitoring port? How will you
distribute that data or its analyses to all of the right people, when you don’t want to email
it? How will you preserve the data in a form that may be useful in a prosecution?

Find out in advance who the proper legal authorities are for your industry and juris-
diction. Talk to them; find out what they’d want you to do in case of an incident. Your
lawyers should talk to prosecutors about what logging should be like to best preserve
useful evidence. Your local police department may be the wrong choice; many don’t have
the expertise to handle computer intrusions originating from a foreign country. Similarly,
there are often industry-specific information-sharing organizations; these can keep you
apprised of ongoing threats and probably know who the proper law enforcement agencies
are.

Even if you have no interest in prosecution, a full forensic analysis is mandatory:
you need to know what the damage was, how the attackers got in, and whether you’ve
cleaned them out. The canonical advice on disinfecting a system—reformat the disk and
reinstall—is inadequate; if you don’t change something, you’ll end up reinstalling the
vulnerability. To quote the old folk definition, insanity is doing the same thing over and
over again and hoping for a different result. You probably do need to reinstall, but that’s
not sufficient. Reinstallation, though, means that you need access to installation media
and your backups, and you need some way of knowing which backups are clean and
which contain attacker-installed back doors.

This is where your logs will earn their keep: they’re your only way of knowing when
and how the initial penetration took place. A dose of humility is need, as well as con-
firmation by inspecting the systems suggested by the log. Don’t act too hastily, though;
take time to think it through. Recovery is never a fast process. At a minimum, you’re
installing a lot of systems and applications (and possibly using this as an opportunity to
upgrade to new versions), and testing your new setup. If you don’t move to new versions,
you’ll certainly want to install pending patches. You won’t have the usual luxury of time
in a test lab, but you’re also not doing yourself any favors if you don’t take some time
to test. You’ll need spare machines and disks, so you can continue operations while the
rebuilds take place; that, too, requires advance procurement. Recovery is an all-hands-on-
deck event, with plenty of overtime for everyone. (Maybe the CFO should also be on the
notification list?)

Dealing with an intrusion is never easy and is rarely fun. (Bill Cheswick, Avi Rubin,
and I described our experiences in Chapter 17 of [Cheswick, Bellovin, and Rubin 2003].
We were lucky; it was a largely unused experimental machine.) Knowing what to do and
having the necessary hardware and software on hand makes life a lot easier.
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Chapter 17

Case Studies

“You understand these are all hypothetical scenarios,” T.J. had said. “In all
these cases, the net refused to open.”

To Say Nothing of the Dog
—CONNIE WILLIS

Let’s put this all together now and examine a few scenarios. More precisely, let’s look
closely at some quasi-realistic case studies: the high-level paper designs of various sys-
tems and the effects that some equally hypothetical changes in technology, needs, or op-
erating environment can have on the system architecture and in particular on its security.

Don’t take the designs too literally. I’m presenting realistic scenarios, but I’ve often
omitted important details that aren’t relevant to the exact points I’m trying to illustrate.
What is most important is the thought process: How did we arrive at our answer?

17.1 A Small Medical Practice

More than almost any other small businesses, medical practices have critical needs for
secure and rapid access to information, at more or less any time of day; at the same time,
few outside of major hospitals have any dedicated IT staff, let alone security specialists.
In other words, such practices pose a major challenge for today, let alone in the future.

While there are many variations, especially for larger practices, one common setup is
a small, network of computers, usually (but not always) running Windows. Backup is to a
local file server. There is probably Internet connectivity; this is used for email, electronic
prescriptions (via special web sites), and the like. Someday, this link will be used to

293
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transfer electronic health records; right now, though, the various brands of systems don’t
talk to each other very well, so that’s still a ways off [Pear 2015].

There are many ways that a system like this could evolve. Given the increasing com-
plexity of the information environment in medicine, it’s far from clear that such small
networks will remain economically viable. Still, let’s look at one near-term change: the
need for doctors to access patient records remotely, perhaps to deal with aelectronic health
records!remote access patient request or emergency at times when they’re not in the of-
fice.

There are two main constraints here. First, security is crucially important. Even in
the United States, which has comparatively weak privacy laws, the Health Insurance
Portability and Accountability Act (HIPAA) requires doctor’s offices to exercise great
care when handling patient information.1 The technical requirements include access con-
trol, auditing, integrity mechanisms, and transmission security. The rules are so strict that
some companies explicitly prohibit their customers from using their facilities for HIPAA-
covered information. To give just one example, the terms of service for Pair.com’s cloud
offering explicitly states that their clientele may not “[p]ost, store, publish, transmit, re-
produce, or distribute individually identifiable health information or otherwise violate
the USA Health Insurance Portability and Accountability Act (HIPAA) and The Patient
Safety and Quality Improvement Act of 2005 (PSQIA) or the privacy protection equiva-
lent of these USA laws adopted in any other relevant jurisdiction.”2 There’s a reason for
this restriction: regardless of their technical abilities, they almost certainly do not have the
procedures and processes in place to comply with the legal requirements set by HIPAA.

The second major constraint is the technical capability of the practice: they have very
little. Undoubtedly, they rely on contract IT support; this in turn means that sophisticated
solutions are inadvisable. Even if they worked initially, they’re likely to break in short
order. In other words, we need a solution that will be robust without constant care and
attention.

There are two classes of solution that are worth considering: bring the outside ma-
chine to the office network, or store the data in a secure cloud environment. Each has its
advantages and disadvantages.

The first has a conceptually easy solution: set up a VPN gateway on the office net-
work, and set up VPN software on each external client. Setting up the VPN in the first
place can be contracted out; if the client software works well, there shouldn’t be many
problems.

1. “Summary of the HIPAA Security Rule,”
http://www.hhs.gov/ocr/privacy/hipaa/understanding/srsummary.html.

2. “- pair Networks,” https://www.pair.com/company/hosting-policies/paircloud contract.html.

http://www.hhs.gov/ocr/privacy/hipaa/understanding/srsummary.html
https://www.pair.com/company/hosting-policies/paircloud_contract.html
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Alas, life is not that simple. Often, VPN software does not play nicely with the NAT
boxes installed in hotels, hotspots, and the like. I personally have—and need—several
different VPN setups, just to cope with the many different failure modes I’ve encoun-
tered. To give just one example, I sometimes connect to a VPN server running on TCP
port 443, to work around networks that only want to permit web browsing. This isn’t
ideal—running a TCP application on top of a TCP-based VPN can lead to very weird
performance problems—but it’s (often) better than nothing. If the doctors will only be
connecting from a few places that have known characteristics, for example, their homes,
a VPN can work well; otherwise, they’re dicey. We thus have a solution that is secure but
often not usable.

Using a secure cloud storage service can solve this problem. By “secure” I mean
one where the client machines encrypt the data before uploading it and decrypt it after
downloading it. The service itself does not have the decryption keys; thus, data stored
there is protected even if the service itself is hacked. The only issue is configuring the
various medical applications to look for their data in the directories that are shared via the
cloud; generally, this is not a difficult matter.

Cloud storage services are generally simple to use. The hard part is the server, but
that’s managed by the provider, not the end users. Furthermore, the client programs gen-
erally use HTTP or HTTPS to communicate; as noted earlier, those are the universal
solvents that can get through most NATs.

There are two flies in the ointment for either of these solutions; both concern the
client computers that doctors will use. First, are they adequately secured? A computer
used for general-purpose Internet work is probably not safe; there are too many nasties
floating around the Internet. There is guidance on the subject from one US government
agency [Scholl et al. 2008, Appendix I], but it basically boils down to “run your computer
securely.” It’s safer to use a records-only computer—and laptops are cheap enough today
that it’s not an unreasonable burden. (Conversely, of course, the computers in the doctors’
offices should not be used for general work, either.)

The second issue is more problematic: are the doctors using phone apps to access
patient records? In general, phones and phone apps are less configurable than desktop
and laptop equivalents; it may not be possible to play cloud storage games. In that case,
the VPN solution might be the only choice.

17.2 An E-Commerce Site

Let’s consider an e-commerce site of the type discussed in Chapter 11. There is a web
server that is a front end for several databases; one of these databases contains user pro-
file information, including addresses and credit card numbers. There are other important
databases, including ones for billing, order tracking, and inventory.
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The site now wishes to expand dramatically and act as a sales hub for other sites, much
as Amazon and several other companies do. This implies links from this site, which I’ll
dub VeryBigCo.com, to, say, VerySmallCo.com, a representative of its ilk. What changes
should we make to VeryBigCo’s site architecture to do this safely? (Naturally, the dis-
cussion here is only about the security changes and not about things like a mismatch in
database semantics.)

This isn’t the place for a complete design; there are far too many elements and mes-
sages in a real system. Still, by looking at the kinds of events that take place, we can
understand the broad shape of the security issues we must address. In other words, we
look at the boxes and arrows (Chapter 11) of the functional design.

The first question to ask is the usual first question one should ask when doing secu-
rity: “What are you trying to protect, and against whom?” E-commerce sites live and die
by the confidentiality and integrity of their databases; therefore, that’s what we need to
defend most strongly. Furthermore, this is an ordinary e-commerce site, rather than one
selling defense gear; we thus don’t have to worry about MI-31. Our enemies are primarily
opportunistic hackers, though there may be some element of targeting.

Protecting the databases is a matter of application security, not network security. (That
said, per the discussion in Section 11.3 encryption is probably a good idea but not neces-
sarily vital.) The enclave strategy suggested in Chapter 11 is a good start, but here it is not
sufficient; what’s really important here is making sure that the database operations on the
intentionally shared systems are correct. In other words, protecting the database computer
is not enough; we must ensure that only legitimate changes are made to the database.

Another question is which site’s security should have priority. Suppose we can’t come
up with a single design that protects VeryBigCo.com and VerySmallCo.com equally.
Which is more important? There are several possible ways to address this question. One is
to note that that customers are dealing with VeryBigCo.com; therefore, it will be held re-
sponsible for any errors. A second approach is to assume that the larger company is more
technically capable, and hence should make the decisions. That assumption, of course,
is dubious; besides, a big site is more likely to be targeted. We could, of course, use the
pragmatic, power-politics approach: VeryBigCo.com is bigger than VerySmallCo.com
and hence can get its way.

This, however, is a technical book, so we can look at a technical security metric:
which solution is simplest and hence most likely to be secure? Even with that approach,
business considerations do enter into our analysis. As it turns out, the solution we’ll devise
is symmetric. The larger company has more reason to deploy it, and is probably more
capable of doing so, but this design is symmetric.

We start by assuming that the standard precautions—enclaves, encryption, care in
parsing input messages, and so on—are already in place. What more do we need to do to
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protect VeryBigCo.com’s databases, and in particular to protect their contents? Phrased
this way, the goal becomes clear: How do we ensure that only legitimate changes are
made? This translates very directly to a design requirement: some component must as-
sure the semantic consistency of requests from VerySmallCo.com with VeryBigCo.com’s
understanding of the state of transactions. For example, there cannot be a message say-
ing, “We have just shipped 17 widgets; please pay us C437.983¼” unless someone has
actually placed such a order. How is this to be enforced?

The wrong way to do this is to add logic to VeryBigCo.com’s database systems. Those
are already complicated enough; adding more complexity will hurt security. Furthermore,
the last thing you want to do is to allow an untrusted party (VerySmallCo.com) that close
to the crown jewels of the company. Instead, there should be a small proxy gateway that
validates all transactions. This is an application firewall; it is the actual border between
the two companies.

It is tempting to combine this proxy box with whatever code is necessary to translate
between the different parties’ databases. Don’t do it. First, the translation is a difficult but
unprivileged function. If it’s done by the firewall, there is more risk of the firewall being
penetrated. Second, the translation is partner-specific, so it should be closer to the partner.
(If you work for the large company you may even be able to tell your smaller partners,
“Here’s what we’re sending and receiving; if your databases don’t work this way, you can
do the translation, not us.”) Third, the validation logic is not partner-dependent; you want
to be able to use the same module (more precisely, another instance of that module) to do
the proxying for all of your partners. This is much harder to do if the validation logic is
inextricably entwined with the translation logic. A corollary is that you want to do your
validation on concepts that your system understands; these, of course, are actions against
your type of database.

Doing the validations requires that the proxy firewall check the transactions against
your side’s notion of the current state. There is an interesting tradeoff here. If the proxy
queries the master database, it will learn the definitive status of all transactions; on the
other hand, it means that this exposed box has to have very broad access. The alternative,
having a separate transaction status database, eliminates that risk but it means that you
will have the same information in two different places. This is always a dubious practice.
On balance, the first alternative is likely better, since the proxy by intent has to have fairly
broad access if it’s going to pass through validated commands. If, on the other hand, your
database has sensitive fields that will never be used by the proxy, you may feel that the
other approach is better.

There’s one more thing to consider: logging. Per Section 16.3, your proxy should log
all inputs and outputs. Furthermore, its log files should be on a machine outside of the
enclave; this way, they’re protected in case the proxy is penetrated.
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Figure 17.1: The enclave design for linked e-commerce sites.

The final architecture is shown in Figure 17.1. There is an enclave with a VPN to your
partner. Inside the enclave, you have two computers: your database translation computer
and your proxy. Exactly two types of outbound connections are allowed from the enclave:
to the logging server and to your database. If you opt for two databases, you have to permit
access to both or put the state database inside the enclave. That’s a bad idea, for reasons
that should be obvious by now. (Hint: ask yourself two questions: “Who has to write to
this database? What are the consequences if it’s hacked?”)

The important thing about this design is how we arrived at it. Per Section 11.7, we
drew our boxes: initially, these were just your database and the other side’s query module.
We then asked, “What can happen if the other side is evil?” The answer, that your database
could be corrupted, led to the need for a proxy. The protection against its failure is the log
file; the need to protect it leads us to put it outside of the enclave.

17.3 A Cryptographic Weakness

It’s going to happen: no matter how sound your design, no matter how careful your users,
some day you’ll read of a new security hole (e.g., Heartbleed [Bellovin 2014b; Schneier
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2014]) or cryptographic weakness (e.g., the serious attack on RC4 [Vanhoef and Piessens
2015]). What do you do? What should you have done earlier?

The first step is simple: don’t panic [Adams 1980]. Many problems are not nearly
as easily exploitable as the trade press would have you believe; there is no need for an
emergency response. The second step, then, is to get sound technical information on the
problem. Exactly what is wrong, and under exactly what conditions can an attacker use it
against you? Third, consult your sysadmin database (Section 15.3) to learn which of your
computers might be susceptible.

The analysis that follows should not be taken as a recommendation of what you should
do right after reading this section. I’m describing how to respond to a particular attack; by
the time you read this, there may be a more powerful one. Rather, take this as an example
of how to do the necessary analysis when the next break comes along.

Let’s start with a cryptanalytic attack on RC4. RC4 is commonly used in two contexts,
TLS and WPA-TKIP. (The Temporal Key Integrity Protocol [TKIP] is the RC4-based en-
cryption protocol used with WPA. Wireless Protected Access [WPA] is a now-obsolete
standard that replaced WEP, but could run on hardware that is too slow for the newer,
AES-based WPA2 standard.) Where do you use these? Your mail and web servers prob-
ably use TLS; you may also have other software that uses it. WPA-TKIP, of course, was
employed to protect Wi-Fi networks. Your system administration databases should point
you to all of these; for WPA, though, you may find that your employees are using it at
home.

The next part of the analysis is to consider your threat model. Wi-Fi signals have a
normal range of 100 meters; even with a good antenna, it’s still likely that an attacker
would have to be within a couple of kilometers. In other words, a remote attacker, no
matter how skilled, can’t exploit WPA’s use of RC4. The Andromedans could probably
get someone close enough to your building, and a targetier might try, but many targetiers
are insiders anyway, with legitimate access to the wireless LAN. Suppose, though, that
you are being targeted by MI-31. Are they likely to send someone that close, thus risking
physical exposure? It can certainly happen, but one of the big advantages of Internet
espionage is that you don’t have to risk sending people into dangerous environments.

Of course, there’s another place that WPA-TKIP might be used, one that probably
won’t be in your databases: your employees’ home networks. For the most part, the same
logic applies; there is still no remote threat. An employee’s network is somewhat more
likely to be hit by an ambitious joy hacker, one who has found a clever new cryptanalytic
tool. Direct traffic to your company should still be safe—you are using a VPN, right?—
but there may be some risk. Per the analysis in Chapter 9, your employee’s computer
is now sharing a LAN with an attacker. This might expose the machine to on-network
attacks, just as in a public hotspot. Worse yet, the attacker might go after other devices on
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the LAN and use them to attack the employee’s machine indirectly. Imagine, for example,
putting an infected executable file on a home file server. This poses more of a risk than the
same technique used against an organization’s LAN, since the organization’s file server
is probably run much more securely.

We see, then, that the direct risks to a company from the RC4 crack are relatively low.
By all means move away from it (and yes, that may require hardware upgrades), but for
most organizations it isn’t a crisis. Your database will point you at exactly which boxes
need to be replaced. Home networks probably pose more of a risk, though likely only
from attackers in the upper right quadrant of our chart. It is worth considering whether
the company should purchase new gear for employees with insecure home networks.

Our analysis of the risk to TLS proceeds along similar lines. First, though, remember
two things: in general, eavesdropping on communications links isn’t easy (Section 11.3),
and very few attackers other than the Andromedans attack the crypto (page 82). To have
a problem, we need a combination of two circumstances: an attacker good enough to do
cryptanalysis and use of RC4 on a link that this attacker can tap.

There is little doubt that that MI-31 can tap more or less any link, even underwater
cables [Sontag and Drew 1998]. Even lesser attackers can listen to the Wi-Fi traffic in a
public hotspot, though, and that poses a real threat: hotspots are popular places for people
to check their email. An externally available mail server, then, is at risk.

Here’s where a thorough understanding of the attack comes in. As of when I’m writing
this, the best public attack on TLS with RC4 is designed for recovering web cookies,
not for spying on IMAP [Vanhoef and Piessens 2015]. Furthermore, it requires injected
JavaScript and 52 hours of monitored traffic. Even the most hypercaffienated employee
won’t run up that much coffeeshop time overnight. In other words, although the problem
is real, it’s not a critical emergency; you don’t need to turn off your webmail servers
instantly. And that brings up the last point to consider: what is the cost of reacting?

If you turn off a service, people can’t use it. What is the cost to your business if
employees can’t read their email? How much money will you lose if customers can’t
place web orders? How many customers will you lose permanently if you disable RC4,
because their browsers are ancient and don’t support anything better? Will users fall back
to plaintext, thereby making monitoring trivial? Even bad crypto can be better than none;
again, most attackers are stymied by any encryption.

These is the sort of analysis you need to go through when you learn of a new flaw.
Ask what is at risk, from whom, under what conditions, and what the cost of responding
is. Sometimes, there are emergencies, such as when new flaws are found in popular ap-
plications and exploits are loose in the wild [Goodin 2015a; Krebs 2013; Krebs 2015].
More often, though, you do have a bit of time to think.
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17.4 The Internet of Things

“Things flow about so here!” she said at last in a plaintive tone, after she
had spent a minute or so in vainly pursuing a large bright thing, that looked
sometimes like a doll and sometimes like a work-box, and was always in
the shelf next above the one she was looking at. “And this one is the most
provoking of all—but I’ll tell you what—” she added, as a sudden thought
struck her, “I’ll follow it up to the very top shelf of all. It’ll puzzle it to go
through the ceiling, I expect!”

But even this plan failed: the “thing” went through the ceiling as quietly as
possible, as if it were quite used to it.

Through the Looking-Glass, and What Alice Found There
—LEWIS CARROLL

Let’s now try to apply our methodology to something that doesn’t really exist yet in any
final form, the so-called Internet of Things (IoT). The Internet of Things is the name given
to a future where many objects (which I’ll just call “Things”) contain not just micropro-
cessors but networked processors, thus allowing remote monitoring and control. We’re
already seeing its start, what with Internet-enabled thermostats, fitness-tracking devices,
and the like; we’re almost certainly going to see more of it. What should a security archi-
tecture look like for the IoT?

We have to start by understanding the different components. While there are many
possible design choices, in the near term the design space is constrained by current tech-
nologies and current business models. All of that can and will change, of course, but for
my purposes here it suffices to set out a plausible model rather than a prediction.

• Things will have very poor user interfaces, which will complicate their security
setup. Many will speak via a private protocol to a home-resident hub/charger; it
will speak IP for its Things.

• Because of the shortage of globally routable IP addresses, very few, if any, Things
will have their own unique address. Rather, they’ll have local addresses [Rekhter
et al. 1996] and live behind some NAT box such as a home router. The advent of
IPv6 will eliminate this need for it but probably will not eliminate the home NAT;
per the box on page 67, to some extent NATs serve as firewalls. This need will
not go away in the near term. They are thus unable to be contacted directly from
outside the house LAN.
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• Given this, most Things will report up to and be controlled by some vendor’s
(cloud) server complex. Yes, it’s possible to punch holes in NATs. Few people do it
because every home router is different and most people don’t have the skill or the
time. If you’re a vendor, it’s far easier to have your Things phone home frequently.

• Since these vendor-supplied servers will exist and will capture a lot of data, the
temptation to monetize the data will be overwhelming for many such companies.
Ignoring the privacy aspects (at least in this book), this means that a large database
of personally sensitive information will exist, and hence will need to be protected.

• There will be multiple vendors, and hence multiple server complexes. They’ll need
to talk to each other, at least partially as a proxy for the Things talking to each other.
Some static Things in the home may try to communicate directly with each other,
but other Things will be mobile and will have to go via the cloud. (“Hey, Hot Water
Heater—this is Robin’s Phone. Based on her heart rate, speed, and route, she’s
probably out jogging. She’ll be home and ready for a shower in 20 minutes; better
heat up some water.” “Thank you, Phone, but based on the current temperature and
the timing of hot water demand earlier this morning, I think I’m ok.”)

• The consequences of a Thing being hacked may or may not be very serious; it
depends on the Thing. A “smart TV” generally has a microphone and camera; it can
be abused to spy on people in their homes (and we know that some bad guys like
to do things like that [N. Anderson 2013]). A coffee pot is much less dangerous—
unless its protection against overheating is controlled by software. A hacked toy
might be annoying, but if it contains a microphone that talks to cloud servers, like
some dolls do [Halzack 2015], it’s also dangerous. And then there are hacked cars
[Greenberg 2015b] and rifles [Greenberg 2015a]. . .

Our architecture, then, has several levels: Things, hubs, and servers. Things should
speak only to the proper hub. Hubs can speak locally to other hubs or to hubless Things.
All hubs communicate over the Internet with their assigned servers; these servers talk to
each other. What are the security properties we need to worry about?

Let’s start by looking at a hub. A hub has to register with a server; this registration
somehow has to be tied to ownership. I should be allowed to control my thermostat, but
not my neighbor’s. The details of how this is done will vary, but the need to do this
securely will always exist. For that matter, hubs have to be on the home’s (probably Wi-
Fi) network; this means provisioning an SSID and a WPA2 password. There are some
interesting usability challenges here. A compromised hub can attack other local hubs, its
own Things, and the server complex to which it connects. For that matter, since it has
Internet connectivity, it could be turned into a bot and even send spam.
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All connections from the hub should be encrypted, with the possible exception of
very short range wireless connections to its associated Things. Although the link over
the Internet is hard to tap (and Andromeda is probably not interested in monitoring your
laundry cycles), there will be authentication data sent over the home Wi-Fi network; any
compromised computer in the home (including another hub) could grab it.

Server-to-server links should also be encrypted. Per the discussion earlier in this chap-
ter, that’s more for authentication than confidentiality. That said, in the large mass of data
from many people, there might be information of interest to MI-31, such as the location
of a person of interest.

A corrupted server could attack hubs and Things. The most devastating thing it could
do would be to replace the firmware on them, though just what this evil firmware could
do would obviously be Thing-dependent. There are all of the other usual issues involving
servers, such as compromise of its authentication database, its other personal data, and so
on.

There is a delicate architectural question involving server-mediated Thing-to-Thing
communication: who trusts whom? Consider the phone-to-water heater conversation pre-
sented above: how should this message be authenticated? The obvious solution—giving
the phone a login on each Thing to which it may talk—doesn’t work; the administra-
tive hassles for consumers are appalling. If the phone and the water heater both talk to the
same server, perhaps there’s a trust relationship that can be assumed: the server knows that
both belong to Robin. If, though, they’re homed to different companies’ cloud-resident
servers, we have a problem. Communication should be allowed to take place if both
Things belong to the same person, but how is that to be established? Should the servers
trust each other? That might be the simplest answer, assuming suitable contracts (and
suitable liability and indemnification clauses) between the IoT companies. If that doesn’t
work, we need complex cryptographic protocols for hubs to use to authenticate requests,
or share key pairs, or what have you. This issue—how to establish and manage trust,
across the acquisition and disposal of hubs, Things, homes, and servers companies—has
many possible solutions. Most of these will be quite delicate; evaluating the security of
any such architecture will be a considerable challenge.

Managing access control is another issue. Permissions on Things can be complex.
Parents may not want their teenagers to be able to adjust the thermostat; they may want
to permit house guests to do so. They may also want the thermostat to change itself
automatically when a selected set of phones come within a certain radius of the house—
this ability is on the market today. As I’ve discussed, managing access control lists is
hard, but it’s an essential part of the IoT, and vendors can’t ignore usability.

We may find that part of the solution is another box: a household Thing manager.
The manager needs LAN access to all Things, including phones (which will have to have
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Figure 17.2: A possible IoT configuration. Objects drawn in bold may be compromised.
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the proper apps). Maybe the manager is built into some hubs, and contacted by a web
browser; this, of course, means that more passwords need to be set and managed.

Hubs and Things run software; this software will sometimes be buggy and will need
to be updated. This means that there needs to be a bidirectional trust path; servers will
have to authenticate themselves to the devices. This may conflict with some people’s
desire to reprogram their own gadgetry, much like they jailbreak iPhones. How shall this
be handled?

The early returns are distressing. Many current devices don’t do even rudimentary
encryption [Barcena, Wueest, and Lau 2014]; my own analysis of some thermostats show
similar weaknesses. The analytic methods I’ve described here seem adequate, though;
they let us see the sensitivity of different elements and links, and understand where we
need to put defenses.

A topology that fits these constraints is shown in Figure 17.2. Every house has a set
of hubs; houses may or may not have Thing managers. Mobile Things are presumed to be
associated with some hub; alternately, some may be managed directly by an associated
phone, which in turn would likely maintain a quasi-permanent connection to a vendor’s
server. Let’s see what happens if different components are compromised. I’ve drawn a
few in “bold” to reduce ambiguity.

We will assume that all links are cryptographically protected. This prevents both
eavesdropping and impersonation via the net. If the links are not encrypted, the effect
is more or less the same as a compromise of one of its endpoints.

Let’s look first at defending the servers. It turns out that that’s a hard thing to do.
By design, they’re talking to many customer-controlled Things; they’re also talking to
other servers. They’re dealing with a very heterogeneous (and constantly growing) set
of Things; this in turn implies the need for frequent updates, probably by many parties.
Servers are thus quite vulnerable, much more so than, say, manufacturer development
machines.

Suppose that a vendor server has been taken over. What are the implications? Per
the discussion, it has several abilities: it can send malicious commands to its associated
Things, it can send bad firmware to Things, and it can steal authentication data. We need
defenses against each of these threats and against the server itself being compromised.

There is not much that can be done directly about bad commands; by design, Things
will listen unconditionally to their servers. However, it is possible to incorporate hard-
wired limits that prevent dangerous behavior. The Nest thermostat, for example, has
“safety temperatures”: if these values are exceeded, either because it’s too cold or too
warm, the thermostat will activate the appropriate device, even if the thermostat has been
turned off. At least some versions of the device will also ignore requests that seem inap-
propriate:
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Note that your Nest Thermostat [sic] will never cool when the temperature
is below 45°F/7°C or heat when the temperature is above 95°F/35°C. These
limits cannot be changed.

That text appeared in an earlier version of their web site; it is unclear why the current web
site does not say the same thing.3

IoT Design Property 1 Things should reject dangerous requests. To the extent feasible,
these limits should be enforced by hardware, not software.

We can do a better job of defending against nasty firmware. As noted, servers are
vulnerable machines. We’re therefore better off if firmware files are digitally signed by
the manufacturer. This isn’t a perfect defense: Attackers could replay older, and perhaps
buggier firmware versions but they would find it very hard to make arbitrary malicious
changes to the firmware if the server were the only machine compromised. Note that this
is not the same as an “app store only” model. That all firmware be signed is a security
requirement; which signatures should be accepted is a policy decision that is separable
from this requirement.

IoT Design Property 2 All firmware must be digitally signed by the manufacturer; the
signing key must not be accessible to the servers.

Finally, authentication data is at risk. This completely rules out the use of passwords
for Thing-to-server authentication, if for no other reason than that we know that people
will use the same, easy-to-remember passwords for all of their Things (and lots of other
stuff besides). Things, however, are computers, not people; they can remember large num-
bers and do complex calculations. Accordingly, some form of cryptographic authentica-
tion seems best. Users will need to talk to the servers’ web interface, though; there’s not
much that can be done save to follow the advice in Chapter 7. Finally, since Thing-to-
Thing communication will go via the servers, authentication between them should be end
to end; that way, a compromised server can’t interfere with such messages. This in turn
suggests the need for a “house PKI”: issue each customer a certificate; this certificate will
in turn be used to issue certificates to all of her hubs and Things.

IoT Design Property 3 Use cryptographic authentication, and in particular public key-
based cryptographic authentication, to authenticate Thing-to-server and Thing-to-Thing
messages.

3. “How Safety Temperatures Work,” https://web.archive.org/web/20140205203310/http:
//support.nest.com/article/How-do-Safety-Temperatures-work.

https://web.archive.org/web/20140205203310/http://support.nest.com/article/How-do-Safety-Temperatures-work
https://web.archive.org/web/20140205203310/http://support.nest.com/article/How-do-Safety-Temperatures-work
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If servers are compromised, many clients could be at risk. By putting authorization
in the house—that is, at Things and hubs, rather than on vendor servers—this risk is
minimized.

IoT Design Property 4 Authorization is done by Things and hubs, not by the servers.

There is one last line of defense: server complexes are professionally run; as such,
they can be equipped with sophisticated intrusion-detection systems, separate authenti-
cation servers, competent sysadmins, and more. In other words, with a bit of luck and
ordinary competence many breaches will be avoided, and others will be detected and
remedied quickly.

Home devices, such as hubs and Things, do not have those advantages. What if a hub
is compromised? It turns out that there is not much new danger here. A hub is largely a
message relay; if the messages are protected end to end, a compromised hub can’t tamper
with them. Hubs do have another role, though: they act as the agent for newly acquired
Things and perhaps even issue them their certificates. They may also handle authorization
on behalf of their Things—it makes much more sense to have a lighting controller regulate
who can turn on a given lamp than to have to reconfigure access rules every time someone
replaces a burned-out light bulb. For very low-powered Things, the hubs may even be the
endpoint for all encryption. In other words, the Things trust them completely and don’t
even have an alternate communications path over which they can yell for help.

Hubs are on the local LAN and can generally be attacked from within the house
or by a compromised server. They’re generally not reachable directly from the outside,
nor do they engage in risky activities such as browsing the web. The best defense, then,
is intrusion detection: hubs should look for probes or nasty stuff coming at them from
their servers, and alert the device owners if something appears wrong. It is possible that
compromised hubs will need to be replaced; at the least, they’ll need to be reset to the
factory-shipped configuration.

IoT Design Property 5 All hubs should incorporate intrusion detection. They should be
able to upload and download configuration files, even across software versions.

Things themselves may be compromised. A compromised Thing could attack its hub
or associated phone; it could also send attack messages through the hub to its server or
to other Things. Servers, being professionally run, have to protect themselves. The hubs,
though, could perform an intrusion detection function on relayed messages if they’re not
encrypted end to end. However, messages must still be authenticated end to end. This
demands complex key management scenarios, a possible danger point.
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IoT Design Property 6 Thing-to-Thing messages should be authenticated end to end.
However, they are encrypted Thing-to-hub, hub-to-hub, and hub-to-Thing, to permit in-
trusion detection by the Hubs. Messages to servers may or may not be encrypted end to
end.

The last component of interest is the Thing manager, whether it’s a stand-alone box
or a component built into a hub. Managers are controlled by users via web browsers; user
computers are, of course, at great risk of compromise, which in turn puts the manager (or
at least the configurations it manages) at risk. Note that the manager will have to have a
way to authenticate users; this is almost certainly going to be password based and without
the opportunity for external authentication servers. There is also the very thorny issue of
password reset: what should be done with the configurations (including private keys; the
manager is probably the house CA) and authorizations stored in the manager? It seems
likely that they should be retained, since someone who sets a new password could reset
all access permissions anyway, but there may be privacy issues to consider.

IoT Design Property 7 Managers are at great risk of attack from compromised user ma-
chines. The best they can do is strongly protect passwords and keys, and perhaps look for
anomalous change requests—but it is hard to see whom to notify if the apparently autho-
rized user is doing strange things.

Needless to say, a full Internet of Things design would be far more complex than this
sketch. Even at this level, though, looking at each type of box lets us analyze the risks to
each component and some necessary defensive measures.



Chapter 18

Doing Security Properly

“You are ready, children, for everything that will have to be done. You have
not come to your full maturity and power, of course; that stage will come
only with time. It is best for you, however, that we leave you now. Your race
is potentially vastly stronger and abler than ours. We reached some time ago
the highest point attainable to us: we could no longer adapt ourselves to the
ever-increasing complexity of life. You, a young new race amply equipped
for any emergency within reckonable time, will be able to do so. In capability
and in equipment you begin where we leave off.”

Mentor of Arisia in Children of the Lens
—E. E. “DOC” SMITH

18.1 Obsolescence

If you’ve read this far, some of the preceding sections may already be obsolete, and the
book as a whole may be moving towards obsolescence. There’s no choice. Not only is
high-tech a very dynamic field; the threat model also changes. Part of that latter is due to
technical changes—new devices, new services, and so on will continue to appear for the
foreseeable future—but it’s also due to changes in who the attackers are and what they
want. It’s hard to imagine a more serious threat than a major government, but what these
governments are interested in can and will vary. Nevertheless, the primary purpose of this
book is to teach how to think about change; in that sense, its merits should, I hope, outlast
the specific facts cited.

309
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All that said, some changes are more likely than others and deserve specific mention.
That’s not to say that specific ideas will pan out—if I knew for sure what would be hot
in the future, I could make a lot more money consulting for venture capitalists than I
can as a professor—but rather that certain broad technical trends seem all but inevitable.
Hardware, for example, will almost certainly continue to get smaller and cheaper; even
if there are no amazing new gadgets, we almost certainly have a fair number of years
before Moore’s Law is repealed. Similarly, it seems all but certain that five or ten years
from now we will all be using services that haven’t been invented yet. I’m writing this in
2015, when the iPhone was only eight years old, and Twitter and Facebook were nine and
ten, respectively. It is hard to remember when they didn’t exist, but they’re that young.
Nevertheless, they’ve changed the face of computing and with that the threat model. If
you doubt the effect of the latter two, consider how much easier Facebook makes it for an
attacker to answer “security” questions. Twitter, of course has brought down a Congress-
man [Barrett 2011] and arguably entire regimes [Saletan 2011]. Anything that powerful
will attract the interests of governments and their militaries.

Threats change, too, though that evolution is driven as much by economics and poli-
tics as by technology. Stuxnet was developed not just because it was possible, but rather
because some highly skilled, motivated adversaries wanted to damage an Iranian nu-
clear centrifuge plant. Similarly, Shamoon, which attacked Saudi oil company computers
[Goodin 2012c; Leyden 2012], was quite likely a response to cyberattacks on Iran, rather
than the outcome of a new technological development. Commercially motivated attacks
are by definition motivated by money—but where the money is is changing. There are al-
ready reports of sophisticated hacks to steal Bitcoins [Greenberg 2014; Litke and Stewart
2014].

Prophecy is difficult; we cannot say with any confidence what will happen next. What
we can talk about are possible new characteristics that will cause trouble in the future.

18.2 New Devices

Fewer bets are more certain than that hardware will continue to improve for the next
several years. While there may be unpleasant surprises, similar to the heat death of the
megahertz race, it seems clear that substantial progress will continue. Perhaps signifi-
cantly, disk capacity has improved even more than CPU price/performance. There are
several conclusions we can draw from this.

First, cheaper and smaller computers are deployable in more places. Furthermore,
these CPUs will almost certainly be networked, which poses some obvious security is-
sues. Although some of the risks are low—illicit access to the chip in a toothbrush or
bathroom scale raises at most minor privacy concerns—anything that is tied directly or
indirectly to an actuator is more worrisome.
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Small, specialized computers are also harder to manage directly. They won’t have
traditional input or output devices; indeed, even learning the MAC address will often
be challenging. Sometimes, of course, these devices are easily firewalled. Digital tooth-
brushes, for example, will almost certainly have to be placed into a docking station, if
only to recharge their batteries; this docking station can manage access control policies.
Other devices, though, will need broader connectivity, without an obvious chokepoint,
per the discussion of the Internet of Things (Section 17.4).

It would be nice, of course, if the programmers of such devices took proper care for
security. This means not just basic access control—the need for that is generally under-
stood by now—but also proper care in programming and some way to tie the widget into
a larger policy framework. We can’t even count on encryption being used, let alone used
properly [Barcena, Wueest, and Lau 2014]. Experience suggests that this will rarely be
the case, which in turn means that security people are not likely to be out of a job any
time soon.

There is an important corollary here: we don’t get to design the network protocols
used by these new computers. This in turn means that when trying to devise security
mechanisms for them, we have to take them as is, warts and all. This can’t be viewed just
as a bug; rather, it’s likely to be reality.

The future, then, will be even more challenging for security. We can expect orders of
magnitude more computers to protect; many of these will be more difficult to handle than
today’s. The primary challenge will be understanding who is supposed to talk to whom,
and how.

18.3 New Threats

Predicting new threats is hard. It’s not so much the concept that’s difficult to imagine as
the context. Cyberespionage isn’t new; arguably, it existed more than 25 years ago [Stoll
1988; Stoll 1989]. The modern incarnation, though, became possible because the desired
information moved online: you can’t hack into a typewritten page. It was economics that
changed the situation: the productivity advantages of creating and storing industrial and
defense information on networked computers were overwhelming; to refrain would have
made no sense. Nevertheless, the move has had consequences.

It is important to remember that conceptually, most “new” threats aren’t new; rather,
they become real or they become real at scale. Software tinkering with bank accounts, for
example, was described almost 50 years ago in a science fiction book, albeit via a sentient
computer [Heinlein 1966]. Cybersabotage was described by Reed [2004]. Deliberately
destructive viruses were imagined by Gerrold [1972] and as a weapon of war in the myth
of the so-called “Iraqi printer virus” [G. Smith 2003]. None of these are quite how it’s
done today, but the basic concepts are old.
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It is clear that we can think of all sorts of futuristic threats, ones that may never come
to pass. Consider, for example, self-driving cars [R. Wood 2012]. It’s easy to imagine
nightmare scenarios from hacked automobiles, especially when you realize how insecure
today’s car networks are [Koscher et al. 2010]. However, attacks (and especially seri-
ous attacks) don’t happen simply because they’re possible; rather, they happen because
someone somehow gains something from the attack. Recall the definition of a threat cited
in Chapter 3: “an adversary that is motivated and capable of exploiting a vulnerability.”
You need all three to have a problem: the vulnerability, the capability, and the motivation.
Looking at this through a purely technological lens makes you focus on the first two, but
the third is equally critical.

Predicting new threats, then, requires three steps. First, be aware of new services
and gadgets. (Yes, it is indeed a job requirement that you acquire and play with lots of
new toys. You have my permission to tell that to your boss.) Second, follow the security
literature (including, of course, blog posts and newsletters) to learn about the new attacks
and holes, and how easy or difficult they are to exploit. (The press often overhypes new
holes.) Finally, pay attention to the news to see who might benefit from some new attack.
Remember to factor in both the skill level required as well as whether the attack makes
sense in terms of the possible perpetrator’s goals.

18.4 New Defenses

The ultimate goal of security research, of course, is to find some strong, new defenses,
ones that resist attacks old and new. Most likely, some fundamentally new design principle
will be needed. As noted many times in this book, most security problems are due to
buggy code. It is hard to imagine what a defense against that might look like, given that
every other panacea proposed over the last several decades has failed.

Wulf and Jones noted that the security field has not had any really new ideas in quite
a long time [2009]. They’re quite right. Most of our systems are based on what I call
the “walls and doors” principle: a strong wall between security contexts, and a door,
an opening in the wall for selected requests. We’re pretty good (though not perfect) at
building walls, that is, at separating contexts. Doors, though, are problematic. They’re not
supposed to pass just any request; rather, they should do so only in accordance with a
policy. Unfortunately, both specifying and implementing suitable policies is difficult.

Consider a simple web-mediated database search for a person’s name. It sounds like
a simple security policy: accept a name, and nothing else. However (and as memorably
explained by xkcd; see Figure 2.1), it seems to be very hard to get that right. Admit-
tedly, handling names properly is hard [McKenzie 2010], but there is no excuse for SQL
injection attacks today. Nevertheless, they happen and with distressing frequency.
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It is likely, of course, that at some point technology will render SQL attacks a minor
concern. Somewhat greater programmer awareness coupled with new APIs will make
it easier to do the right thing than the wrong one. These attacks will thus decrease in
importance, just as has happened with buffer overflows, what with the development of
improved training and better tools (e.g., Address Space Layout Randomization [ASLR]
[Shacham et al. 2004] and stack canaries [Cowan et al. 2003]). What’s next? There have
been many different kinds of attacks over the years. What is significant is how many
of them are against door wardens, the programs charged with enforcing a safe policy.
In the 1990s, mailers were a popular target, because they had to pass information from
one security context to another. These days, attacks involving active content, notably
JavaScript and Java, are legion. (Microsoft says that about 75% of exploit kits in 2013
targeted Java, and about another 10% went after Flash [Batchelder et al. 2013].)

To complicate things, there are generally no defenses within the walls. This could
be considered a matter of definition; alternately, one could envision an architecture with
interior walls, walls of perhaps lesser strength but still with well-guarded doors. This
would help with the “brittleness” problem [Bellovin 2006a], that our defenses shatter
under attack so that one security bug can result in the complete penetration of a system
and the compromise of everything in it.

How could such a resilient system be built? I outlined one scheme for protecting e-
commerce sites in Chapter 11, involving encrypted database records. This isn’t a complete
solution—e-commerce sites have many more databases than just those holding customer
records, and there are many other types of vulnerable systems—but the approach is illus-
trative.

There are certainly other possibilities. One might use a cryptographic scheme—fully
homomorphic encryption [Gentry 2010]? functional encryption [Boneh, Sahai, and Wa-
ters 2012]?—though care must be taken to avoid simply changing the policy question
from “What may pass through the door?” to “Who can have access to the keys?” If the
underlying logic is the same, the bugs are likely to be the same as well.

It seems clear, though, that relying on walls and doors will not succeed. More pre-
cisely, it has not succeeded despite decades of effort; we need a new paradigm. Naturally,
I hope that the principles explained in this book will help us adapt to such a paradigm if
and when it arises.

18.5 Thinking about Privacy

This book is about computer security, not privacy. Nevertheless, a few comments about
privacy are in order.
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First, privacy is increasingly important. Governments around the world are enforcing
more and more stringent requirements. Companies that fail, even inadvertently, have been
sanctioned.1 Consumers care more and more.

As it turns out, and despite some important differences, many of the design principles
are the same. If nothing else, a system that can’t protect data confidentiality can’t protect
user privacy; anyone who hacks the system can get at all of the data.

More importantly, just as proper security behavior changes with technology and at-
tackers, so, too, do threats to privacy. Once, fairly simple schemes sufficed to anonymize
data; today, deanonymization techniques are sufficiently advanced (see, e.g., [Narayanan
and Shmatikov 2008]) that they have drawn legal attention [Ohm 2010]. The advances in
technology have been accompanied by changes in the threat model: more people, espe-
cially advertisers, are willing to go to great lengths to track consumers [Valentino-DeVries
and Singer-Vine 2012].

This does not by itself call into question such principles as “privacy by design”
[Cavoukian 2009]. It does, however, mean that particular design choices must either be
based on firm mathematical foundations or explicitly evaluated against a given state of
technology and threat. For example, Chapter 2 of [Cavoukian 2009] advocates “biomet-
ric encryption”: converting a biometric to a key to protect personal data. This is fine in
principle; however, as [Ballard, Kamara, and Reiter 2008] points out, it’s hard to evaluate
the security of proposed constructs; indeed, several proposed schemes have later fallen to
attacks. This doesn’t mean that a privacy design based on biometric encryption is a bad
idea; it does mean that the privacy guarantees are not absolute and will undoubtedly grow
weaker over time.

18.6 Putting It All Together

If there is one single principle underlying this book, it is that security designs can only
be evaluated against a particular point in time. Given that, and given the rate of change of
technology, it is vital that we learn to ask, “What next?”

This is a practice that has largely been ignored by the security community, with the
notable exception of (good) cryptographers. I have yet to see a system analysis that makes
explicit what the time- or threat-bound assumptions are. Nevertheless (and as should be
very clear by now), these assumptions underlie the conclusions—and some day, the as-
sumptions will be wrong and the security illusory.

One practice that is, fortunately, becoming more common is to do new security re-
views for major revisions of a product. That’s good, but all too often, these new reviews

1. See, for example, http://www.ftc.gov/opa/2010/06/twitter.shtm, which describes a settlement between the
US Federal Trade Commission and Twitter.

http://www.ftc.gov/opa/2010/06/twitter.shtm
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don’t go far enough. Quite naturally, they focus on the new features, the new compo-
nents, and the new interfaces. This is good as far as it goes, since anything new might
have a wide-open door with a sign saying, “Welcome, Hackers!”; however, it doesn’t go
far enough. These reviews only rarely go back and look at the previous review, and if
they did they’d likely search in vain for explicit upper bounds on the assessed security.
Reviews, like cartons of milk, should come with expiration dates.

Large projects carry their own challenges. A major, enterprise-wide software deploy-
ment can take man years to design, develop, and deploy; see, for example, [R. Stross
2012] and [Israel 2012] for discussions of two failed megaprojects. It is sobering to com-
pare these timescales with how short a time smart phones have been around. Agility is
crucial.

I’ve occasionally muttered about a magic wand that I could wave that would fix all of
today’s security problems. It would have to be a very big wand, of course, carrying a very
potent spell. The image, though, is wrong. The spells would have to be strengthened and
recast continuously, and the wand kept continually in motion. There are and can be no
final answers to security because the problem keeps changing. All we can do is to keep
studying, keep improving our systems—and keep waving that wand.

The old man leaned forward again. “Go, Tony! I throw the torch to you.
Your place is the place I occupied. Lead my people. Fight! Live! Become
glorious!”

After Worlds Collide
—PHILIP WYLIE AND EDWIN BALMER
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Colophon

This book was typeset by the author using LATEX, many packages from Comprehensive
TeX Archive Network (CTAN), and a host of custom macros and environments.

The cover picture, taken on Barrientos Island, is called “Penguin Insecurity.” The
Gentoo penguin on the right is trying to steal a pebble from the other penguin’s nest. (The
PBS show Nature noted in the episode “Penguin Post Office” that “all penguins have
criminal tendencies.”)

(Penguin photos by the author.)

381



This page intentionally left blank 



LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking timely  
and relevant information and tutorials. Looking for expert opinions, advice, and tips?  
InformIT has a solution.

•   Learn about new releases and special promotions by subscribing to a wide 
variety of monthly newsletters. Visit informit.com/newsletters.

•   FREE Podcasts from experts at informit.com/podcasts.

•   Read the latest author ar ticles and sample chapters at  
informit.com/articles.

•  Access thousands of books and videos in the Safari Books Online  
digital library. safari.informit.com.

• Get Advice and tips from expert blogs at informit.com/blogs.

Visit informit.com to find out all the ways you can access the hottest technology content.

Are you part of the IT crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook, Twitter, YouTube 
and more! Visit informit.com/socialconnect .

  InformIT is a brand of Pearson and the online presence for the world’s 
leading technology publishers. It’s your source for reliable and qualified

content and knowledge, providing access to the leading brands, authors, and contributors 
from the tech community.

THE TRUSTED TECHNOLOGY LEARNING SOURCE

http://www.informit.com/newsletters
http://www.informit.com/podcasts
http://www.informit.com/articles
http://www.safari.informit.com
http://www.informit.com/blogs
http://www.informit.com
http://www.informit.com/socialconnect


Register the Addison-Wesley, Exam 
Cram, Prentice Hall, Que, and 
Sams products you own to unlock 
great benefi ts. 

To begin the registration process, 
simply go to informit.com/register 
to sign in or create an account. 
You will then be prompted to enter 
the 10- or 13-digit ISBN that appears 
on the back cover of your product.

informIT.com 
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley  |  Cisco Press  |  Exam Cram   
IBM Press   |   Que   |   Prentice Hall   |   Sams 

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS 
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall 
Professional, Que, and Sams. Here you will gain access to quality and trusted content and 
resources from the authors, creators, innovators, and leaders of technology. Whether you’re 
looking for a book on a new technology, a helpful article, timely newsletters, or access to 
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock 
the following benefi ts:

•  Access to supplemental content, 
including bonus chapters, 
source code, or project fi les. 

•  A coupon to be used on your 
next purchase.

Registration benefi ts vary by product.  
Benefi ts will be listed on your Account 
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd   1aw_regthisprod_7x9.125.indd   1 12/5/08   3:36:19 PM12/5/08   3:36:19 PM

http://www.informit.com/register
http://www.informit.com
http://www.informit.com/register

	Contents
	Preface
	I: Defining the Problem
	1 Introduction
	1.1 Changes
	1.2  Adapting to Change
	1.3 Security Analysis
	1.4  A Few Words on Terminology

	2 Thinking About Security
	2.1 The Security Mindset
	2.2 Know Your Goals
	2.3 Security as a Systems Problem
	2.4 Thinking Like the Enemy

	3 Threat Models
	3.1 Who's Your Enemy?
	3.2 Classes of Attackers
	3.3 Advanced Persistent Threats
	3.4 What's at Risk?
	3.5 The Legacy Problem


	II: Technologies
	4 Antivirus Software
	4.1 Characteristics
	4.2 The Care and Feeding of Antivirus Software
	4.3 Is Antivirus Always Needed?
	4.4 Analysis

	5 Firewalls and Intrusion Detection Systems
	5.1 What Firewalls Don't Do
	5.2 A Theory of Firewalls
	5.3 Intrusion Detection Systems
	5.4 Intrusion Prevention Systems
	5.5 Extrusion Detection
	5.6 Analysis

	6 Cryptography and VPNs
	6.1 Cryptography, the Wonder Drug
	6.2 Key Distribution
	6.3 Transport Encryption
	6.4 Object Encryption
	6.5 VPNs
	6.6 Protocol, Algorithm, and Key Size Recommendations
	6.7 Analysis

	7 Passwords and Authentication
	7.1 Authentication Principles
	7.2 Passwords
	7.3 Storing Passwords: Users
	7.4 Password Compromise
	7.5 Forgotten Passwords
	7.6 Biometrics
	7.7 One-Time Passwords
	7.8 Cryptographic Authentication
	7.9 Tokens and Mobile Phones
	7.10 Single-Sign-On and Federated Authentication
	7.11 Storing Passwords: Servers
	7.12 Analysis

	8 PKI: Public Key Infrastructures
	8.1 What's a Certificate?
	8.2 PKI: Whom Do You Trust?
	8.3 PKI versus pki
	8.4 Certificate Expiration and Revocation
	8.5 Analysis

	9 Wireless Access
	9.1 Wireless Insecurity Myths
	9.2 Living Connected
	9.3 Living Disconnected
	9.4 Smart Phones, Tablets, Toys, and Mobile Phone Access
	9.5 Analysis

	10 Clouds and Virtualization
	10.1 Distribution and Isolation
	10.2 Virtual Machines
	10.3 Sandboxes
	10.4 The Cloud
	10.5 Security Architecture of Cloud Providers
	10.6 Cloud Computing
	10.7 Cloud Storage
	10.8 Analysis


	III: Secure Operations
	11 Building Secure Systems
	11.1 Correct Coding
	11.2 Design Issues
	11.3 External Links
	11.4 Trust Patterns
	11.5 Legacy Systems
	11.6 Structural Defenses
	11.7 Security Evaluations

	12 Selecting Software
	12.1 The Quality Problem
	12.2 Selecting Software Wisely

	13 Keeping Software Up to Date
	13.1 Holes and Patches
	13.2 The Problem with Patches
	13.3 How to Patch

	14 People
	14.1 Employees, Training, and Education
	14.2 Users
	14.3 Social Engineering
	14.4 Usability
	14.5 The Human Element

	15 System Administration
	15.1 Sysadmins: Your Most Important Security Resource
	15.2 Steering the Right Path
	15.3 System Administration Tools and Infrastructure
	15.4 Outsourcing System Administration
	15.5 The Dark Side Is Powerful

	16 Security Process
	16.1 Planning
	16.2 Security Policies
	16.3 Logging and Reporting
	16.4 Incident Response


	IV: The Future
	17 Case Studies
	17.1 A Small Medical Practice
	17.2 An E-Commerce Site
	17.3 A Cryptographic Weakness
	17.4 The Internet of Things

	18 Doing Security Properly
	18.1 Obsolescence
	18.2 New Devices
	18.3 New Threats
	18.4 New Defenses
	18.5 Thinking about Privacy
	18.6 Putting It All Together


	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


