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Preface

ASIACRYPT 2007 was held in Kuching, Sarawak, Malaysia, during December
2–6, 2007. This was the 13th ASIACRYPT conference, and was sponsored by the
International Association for Cryptologic Research (IACR), in cooperation with
the Information Security Research (iSECURES) Lab of Swinburne University of
Technology (Sarawak Campus) and the Sarawak Development Institute (SDI),
and was financially supported by the Sarawak Government. The General Chair
was Raphael Phan and I had the privilege of serving as the Program Chair.

The conference received 223 submissions (from which one submission was
withdrawn). Each paper was reviewed by at least three members of the Program
Committee, while submissions co-authored by a Program Committee member
were reviewed by at least five members. (Each PC member could submit at
most one paper.) Many high-quality papers were submitted, but due to the
relatively small number which could be accepted, many very good papers had
to be rejected. After 11 weeks of reviewing, the Program Committee selected 33
papers for presentation (two papers were merged). The proceedings contain the
revised versions of the accepted papers. These revised papers were not subject
to editorial review and the authors bear full responsibility for their contents.

The Committee selected the following two papers as the best papers: “Crypt-
analysis of Grindahl” by Thomas Peyrin; and “Faster Addition and Doubling on
Elliptic Curves” by Daniel J. Bernstein and Tanja Lange. The authors of these
two papers were invited to submit the full version of their paper to the Journal
of Cryptology. The author of the first paper, Thomas Peyrin, received the Best
Paper Award.

The conference featured invited lectures by Ran Canetti and Tatsuaki
Okamoto. Ran Canetti’s paper “Treading the Impossible: A Tour of Set-Up
Assumptions for Obtaining Universally Composable Security” and Tatsuaki
Okamoto’s paper “Authenticated Key Exchange and Key Encapsulation in the
Standard Model” have been included in this volume.

There are many people who contributed to the success of ASIACRYPT 2007.
I would like to thank many authors from around the world for submitting their
papers. I am deeply grateful to the Program Committee for their hard work to
ensure that each paper received a thorough and fair review. I gratefully acknowl-
edge the external reviewers listed on the following pages. I am also grateful to
Arjen Lenstra, Bart Preneel, and Andy Clark for their advice as the directors
of IACR. Finally, I would like to thank the General Chair, Raphael Phan, for
organizing the conference and Shai Halevi for developing and maintaining his
very nice Web Submission and Review System.

September 2007 Kaoru Kurosawa
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A Kilobit Special Number Field Sieve
Factorization

Kazumaro Aoki1, Jens Franke2, Thorsten Kleinjung2,
Arjen K. Lenstra3,4, and Dag Arne Osvik3

1 NTT, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
2 University of Bonn, Department of Mathematics,

Beringstraße 1, D-53115 Bonn, Germany
3 EPFL IC LACAL, INJ 330, Station 14, 1015-Lausanne, Switzerland

4 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ, USA

Abstract. We describe how we reached a new factoring milestone by
completing the first special number field sieve factorization of a number
having more than 1024 bits, namely the Mersenne number 21039 − 1.
Although this factorization is orders of magnitude ‘easier’ than a fac-
torization of a 1024-bit RSA modulus is believed to be, the methods we
used to obtain our result shed new light on the feasibility of the latter
computation.

1 Introduction

Proper RSA security evaluation is one of the key tasks of practitioning cryp-
tologists. This evaluation includes tracking progress in integer factorization. In
this note we present a long awaited factoring milestone. More importantly, we
consider to what extent the methods we have developed to obtain our result, and
which are under constant refinement, may be expected to enable us or others to
push factoring capabilities even further.

We have determined the complete factorization of the Mersenne number
21039 − 1 using the special number field sieve integer factorization method
(SNFS). The factor 5080711 was already known, so we obtained the new fac-
torization of the composite 1017-bit number (21039 − 1)/5080711. The SNFS,
however, cannot take advantage of the factor 5080711. Therefore, the difficulty
of our SNFS factoring effort is equivalent to the difficulty of the effort that
would be required for a 1039-bit number that is very close to a power of two.
This makes our factorization the first SNFS factorization that reaches the 1024-
bit milestone. The previous SNFS record was the complete factorization of the
913-bit number 6353 − 1 (cf. [1]).

Factoring an RSA modulus of comparable size would be several orders of
magnitude harder. Simply put, this is because RSA moduli require usage of the
general number field sieve algorithm (NFS), which runs much slower than the
SNFS on numbers of comparable size. It is even the case that factoring a 768-bit
RSA modulus would be substantially harder than a 1024-bit ‘special’ one. For

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 1–12, 2007.
c© International Association for Cryptology Research 2007



2 K. Aoki et al.

that reason we chose to first attempt a 1024-bit SNFS factorization, as presented
in this paper, before embarking on a much harder 768-bit RSA modulus using
NFS. We point out that a 768-bit NFS factorization will prove to be more helpful
than our present 1039-bit SNFS factorization to assess the difficulty of factoring
a 1024-bit RSA modulus.

The aspects of our effort where we made most progress, and where our effort
distinguishes itself most from previous factoring work such as the previous (913-
bit) SNFS record, apply equally well to NFS as they apply to SNFS. They
will therefore also have an effect on the assessment of feasibility of NFS-based
factorizations such as those of RSA moduli. This need for re-assessment is the
main reason that we feel that our result should be reported in the cryptologic
literature. For more information on this point see below under ‘Matrix’.

Descriptions of the SNFS and NFS catering to almost all levels of understand-
ing are scattered all over the literature and the web (cf. [16]). There is no need
to duplicate any of these previous efforts for the purposes of the present paper.
Although familiarity with sieving methods is helpful to fully appreciate all de-
tails, for an adequate understanding of the main points it suffices to know that
both SNFS and NFS consist of the following major steps (cf. [10]).

Polynomial selection. Decide on polynomials to sieve with. For SNFS this
does not require any computational effort, for NFS it pays off to spend a
considerable effort to find ‘good’ polynomials. Since we factored 21039 − 1
using the SNFS our choice was easy and is reported in Section 3.

Sieving. For appropriately chosen parameters, perform the sieving step to find
sufficiently many relations. Though finding enough relations is the major
computational task, it can be done in embarrassingly parallel fashion. All
relevant data for our effort are reported in Section 3.

Filtering. Filter the relations to produce a matrix. See Section 4 for the effort
involved in our case.

Matrix. Find linear dependencies modulo 2 among the rows of the matrix. In
theory, and asymptotically, this requires an effort comparable to the sieving
step. For numbers in our current range of interest, however, the amount of
computing time required for the matrix step is a fraction of the time re-
quired for the sieving step. Nevertheless, and to some possibly surprisingly,
the matrix step normally constitutes the bottleneck of large factorization
efforts. This is caused by the fact that it does not seem to allow the same
level of parallelization as the sieving step. So far, the matrix step has, by
necessity, been carried out at a single location and requires many weeks, if
not months, of dedicated computing time on a tightly coupled full cluster
(typically consisting of on the order of a hundred compute nodes). Conse-
quently, our matrix-handling capabilities were limited by accessibility and
availability of large single clusters.

The major point where our effort distinguishes itself from previous work is
that we did the matrix step in parallel as four independent jobs on different
clusters at various locations. This was made possible by using Coppersmith’s
block Wiedemann algorithm [7] instead of the block Lanczos method [6].
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Further work and fine-tuning in this area can have a major impact on what
can realistically be achieved, matrix-wise, and therefore factoring-wise: as
implied by what was mentioned before, the effort required for the sieving step
is not what practically limited our factoring capabilities, it was limited by
the matrix step. The details of the new matrix step are reported in Section 5.

Square root. For each dependency in turn a square root calculation in a cer-
tain number field is performed, until the factorization is found (which hap-
pens for each dependency with probability ≥ 1/2, independent of the other
dependencies). The details, and the resulting factorization, are reported in
Section 6.

Sections 3 through 6, with contents related to our factorization of 21039 − 1 as
indicated above, are followed by a discussion of the wider consequences of our
approach in Section 7. Furthermore, in Section 2 we describe how the number
21039 − 1 was selected as the target number for our kilobit SNFS attempt.

Throughout this paper M and G denote 106 and 109, respectively, and loga-
rithms are natural.

2 Selecting a Kilobit SNFS Target Number

Once the decision had been reached to attempt a kilobit SNFS factorization by a
joint effort, it remained to find a suitable target number to factor. In this section
we describe the process that led to our choice of 21039 − 1.

Regular RSA moduli were ruled out, since in general they will not have the
special form required for SNFS. Special form numbers, however, are not espe-
cially concocted to have two factors of approximately the same size, and have
factors of a priori unknown sizes. In particular, they may have factors that could
relatively easily be found using factoring methods different from SNFS, such
as Pollard’s p − 1 or ρ method, or the elliptic curve method (ECM, cf. [12]).
Thus, for all kilobit special form numbers under consideration, we first spent a
considerable ECM effort to increase our confidence that the number we would
eventually settle for would not turn out to have an undesirably small factor, i.e.,
a factor that could have been found easier using, for instance, ECM.

Of the candidates that we tried, a 304-digit factor of 10371 − 1 turned out
to have a 50-digit prime factor (found by ECM after 2,652 curves with first
phase bound 43M), for a 306-digit factor of the number known as 2,2062M a
47-digit factor was found (by ECM, after 4,094 curves with the same bound),
for a 307-digit factor of 2,2038M a 49-digit factor was found (ECM with 5,490
curves and same bound), and 10311−1 was similarly ruled out after ECM found a
64-digit factor (11,214 curves with 850M as first phase bound and corresponding
GMP-ECM 6.0 default second phase bound 12,530G, cf. [2]).

The 307-digit number (21039−1)/5080711 withstood all our ECM efforts: 1,472
curves with first and second phase bounds 850M and 12,530G, respectively, and
256,599 curves with bounds 1,100M and 2,480G, failed to turn up a factor.
This calculation was carried out on idle PCs at NTT. It would have required
more than 125 years on a single Opteron 2.2GHz with 4GB RAM. Based on
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the number of curves and the bounds used, it is estimated that a 65-digit factor
would be missed with probability about 3.4%, a 70-digit one with probability
53.2%, and an 80-digit factor with probability 98.2%. Given the ECM failure and
the substantial effort spent on it, we settled for the 307-digit factor of 21039 − 1
for our kilobit SNFS factorization attempt.

The software used for the ECM attempt was GMP-ECM 6.0 [19] and Prime95
24.14 [17] on a variety of platforms.

3 Parameter Selection and Sieving

In this section we present the polynomials that we used for the SNFS factoriza-
tion of 21039 − 1 and give a superficial description of the sieving step.

With 1039 = 1 + 6 · 173 it follows that the polynomials g(X) = X − 2173 and
f(X) = 2X6 − 1 have the root 2173 in common modulo 21039 − 1. As customary,
everything related to g(X) is referred to as the ‘rational side’, as opposed to the
‘algebraic side’ for f(X). In the sieving step we find sufficiently many relations:
coprime integers a, b with b ≥ 0 such that both norms bg(a/b) = a − 2173b
and b6f(a/b) = 2a6 − b6 have only small prime factors. Here ‘sufficiently many’
depends on the meaning of ‘small’. What we deem to be ‘small’ depends in the
first place on the memory sizes of the machines used for sieving and on the
matrix size that we should be aiming for given what matrix size we think we can
handle. This means that ‘small’ cannot be too large. In the second place, the
expected time until we have enough relations should be acceptable too, which
implies that ‘small’ cannot be too small either. The choice made always involves
this trade-off and is given below. The theoretical justification, and parameter
choice, can be found in the NFS literature (cf. [10]).

To find relations we used so-called special q’s on the rational side combined
with lattice sieving: primes q dividing bg(a/b), such that each q leads to an index
q sublattice Lq of Z

2. Most of the 40M special q’s between 123M and 911M
were used (though the results of some small regions of q’s were for organizational
reasons not included in the later steps). For most special q’s the rectangular
region of size 216×215 in the upper half plane of Lq was sieved via lattice sieving.
For the special q’s smaller than 300M this was done with factor bases consisting
of all (prime, root) pairs for all primes up to 300M on the algebraic side and all
primes ≤ 0.9q on the rational side, but up to 300M on both sides for the special
q’s larger than 300M . Running our lattice siever with these parameters required
approximately 1GB RAM, which was available on most machines we were using.
A small fraction of the special q’s was used on machines with smaller amounts
of memory with factor base bounds of 120M on both sides. Large primes (i.e.,
factors beyond the factor base bounds) up to 238 were accepted on both sides,
without trying hard to find anything larger than 236 and casting aside cofactors
larger than 2105. Also, cofactor pairs were not considered for which the quotient
of the probability of obtaining a relation and the time spent on factoring was
below a certain threshold, as described in [9].
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After a period of about 6 months, at first using PCs and clusters at NTT and
the University of Bonn, but later joined by clusters at EPFL, we had collected
16, 570, 808, 010 relations. Of these relations, 84.1% were found at NTT, 8.3%
at EPFL, and 7.6% at the University of Bonn. The total CPU time would be 95
years when scaled to a 3GHz (dual core) Pentium D, or about 100 years on a
2.2GHz Athlon64/Opteron. This boils to 190 Pentium D core years and to about
2.5 relations per seconds per core. The relations required more than a terabyte
of diskspace, with copies held at NTT, EPFL, and the University of Bonn.

We used the sieving software from [8].

4 Filtering

Because of the special q’s the raw data as produced by the sieving step will con-
tain a considerable number of duplicates. Before doing the complete sieving step
we had estimated the number of duplicates as follows. We did lattice sieving for a
tiny fraction, say 1

t , of special q’s, uniformly distributed over the special q range
that we roughly expected to process. For each relation r (corresponding to (a, b))
obtained in this way, we computed how often it will be generated in the sieving
step. Denote this number by μ(r). In an ideal situation μ(r) can be calculated
as follows. First, one checks for each prime in the factorization of bg(a

b ) whether
it is in the special q range, i.e., whether it is a potential special q producing this
relation. Secondly, for each such potential special q one checks whether the point
(a, b) would be in the sieving region for this special q, and if it passed this test,
whether the cofactor bounds are kept. Since a lot of approximations are made
in the sieving process, the true μ(r) might be a bit smaller.

The expected number of relations for the complete special q range is t
∑

r 1,
and the estimated number of unique relations is t

∑
r

1
μ(r) . Note that by possibly

overestimating μ(r) we underestimate the number of unique relations. Doing
this calculation for 99 of the special q’s and the sieving parameters that we
actually used, we expected that slightly more than one sixth (16.73%) of the
relations found would be duplicates. It turned out that just a little less than
one sixth of the relations (namely 2, 748, 064, 961 for 16.58%) were identified as
duplicates. This resulted in a uniqued set of 13, 822, 743, 049 relations. Identifying
and removing the duplicates took less than ten days on two 2GHz Opterons with
4GB RAM each.

Next the singletons were removed: these are relations in which a prime or
(prime, root) pair occurs that does not occur in any other relation. This step is
combined with the search for cliques, i.e., combinations of the relations where
the large primes match up, as fully described in [4]. This took less than 4 days
on single cores of 113 3GHz Pentium D processors. Finally, the same hardware
was used for 69 hours for a final filtering step that produced a 66, 718, 354 ×
66, 718, 154 matrix of total weight 9, 538, 688, 635.

Overall the CPU time required to produce the matrix from the raw relations
was less than 2 years on a 3GHz Pentium D. It was completed in less than a
week, since most of the uniqueing was done during the sieving.
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As usual we did some ‘over-sieving’, i.e., a smaller number of relations suf-
ficed to produce an over-square, but harder to solve, matrix. More specifically,
at 14.32G relations (of which 12.34G were unique) we found an 82, 848, 491 ×
82, 848, 291 matrix of weight 10, 003, 376, 265, but this matrix was obtained using
suboptimal settings and the relations involving 38-bit primes were not used. At
15.61G relations (13.22G unique), using better settings and all relations found,
we obtained a 71, 573, 531× 71, 773, 331 matrix of weight 9, 681, 804, 348. We do
not know at which point precisely we had enough relations to build a matrix.
But from our figures it follows that, since 2 ∗ 238/ log(238) ≈ 20.9G, finding
0.68 ∗ 2 ∗ π(238) (non-uniqued) relations sufficed to construct a matrix. This low
value 0.68 compared to previous efforts is due to the relatively large bound 238

on the large primes.

5 The Matrix Step

In the matrix step linear dependencies modulo 2 among the rows of the
66, 718, 354 × 66, 718, 154 matrix were sought. This was done using the block
Wiedemann algorithm with block length 4 times 64. The details of this algo-
rithm are described in Section 5.1 below. It resulted in 50 dependencies which
gave, after quadratic characters tests, 47 useful solutions. A partial explanation
of why we got only 50 dependencies as opposed to the expected 200 ones can be
found in Section 5.2.

The major part of the calculation (the matrix×vector multiplies, cf. steps 2
and 4 in Section 5.1 below) was carried out in parallel on a cluster of 110 3GHz
Pentium D processors (with 2 cores per processor) at NTT and a cluster of 96
2.66 GHz Dual Core2Duo processors (with 4 cores per node) at EPFL. On the
latter cluster one or two jobs were run on a varying number of the 96 processors.
Scaled to the processors involved, the entire computation would have required
59 days on the Pentium cluster, which is 35 Pentium D core years, or 162 days
on 32 nodes of the other cluster, i.e., 56 Dual Core2Duo core years. It should be
noted that each of two parallel jobs running on the Pentium D cluster ran about
1.5 times slower than a single job, whereas the load was about 1. This seems to
indicate that the same wall-clock time can be achieved on a cluster of 110 single
core 3GHz Pentium Prescott processors on a similar network. The relatively poor
performance of the cluster at EPFL is probably caused by the fact that the four
cores per Dual Core2Duo node share a single network connection. The cluster
at NTT has torus topology and the nodes are connected with gigabit ethernet.
Transferring intermediate data between NTT and EPFL took about half a day
over the Internet.

The computation took place over a period of 69 days, due to several periods
of inactivity caused by a variety of circumstances. In principle it could have been
done in less than 59 days: if we would have done everything at NTT under ideal
conditions (no inactivity), it would take 59 days, but if we would have used both
clusters under ideal conditions it should take less time. The software we used for
the matrix step was written by the second and third author.
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A relatively minor step of the calculation (the Berlekamp-Massey step, cf.
step 3 in Section 5.1 below) took 8 hours on 64 cores at the University of Bonn.
On 72 cores at EPFL it took a bit less than 7 hours.

5.1 The Block Wiedemann Algorithm

We give a brief description of the block Wiedemann algorithm (see [7], and
for the Berlekamp-Massey algorithm [18]). Let B be a d × d matrix over F2.
The block Wiedemann algorithm depends on two parameters m, n ∈ N and
heuristically finds n solutions of Bv = 0. For our matrix d = 66, 178, 354 and we
used m = 512 = 64 · 8 and n = 256 = 64 · 4. It consists of the following five steps
(suppressing some technical details):

1. Random vectors x1, . . . , xm and z1, . . . , zn are chosen and yl = Bzl for l =
1, . . . , n are computed. It is possible to choose xi as unit vectors to simplify
the next step.

2. For i = 1, . . . , d
m + d

n + O(1) the scalar products a
(i)
lk = 〈xk, Biyl〉 are com-

puted. We used i ≤ 393, 216. Denote the polynomial
∑

i

a
(i)
lk ti

of n × m matrices over F2 by A.
3. (Berlekamp-Massey step) In this step a polynomial F of n × n matrices is

constructed such that
FA = G + tcE

holds with deg(F ), deg(G) ≤ d
n + O(1) and c = d

m + d
n + O(1). For us the

values were approximately deg(F ) = deg(G) = 260, 600 and c = 391, 000.
Writing F =

∑deg(F )
j=0 f

(j)
lk tj this is equivalent to the orthogonality of the n

vectors ∑

j,k

f
(j)
lk Bdeg(F )−jyk (1 ≤ l ≤ n)

to the vectors (BT )ixk, 0 ≤ i ≤ d
m , 1 ≤ k ≤ m.

4. For k, l = 1, . . . , n the vectors vlk =
∑

j f
(j)
lk Bdeg(F )−jzk are computed.

5. With high probability B ·
∑

k vlk = 0 holds for l = 1, . . . , n. The vectors
vl =

∑
k vlk for which this holds are output as solutions.

For the complexity analysis the first and the last step can be neglected. The
second and the fourth step require (1+ n

m )d+O(1) resp. d+O(1) matrix vector
multiplications. If the vectors xi are chosen as unit vectors the scalar product
calculations in the second step become trivial. In the fourth step additional
computations are required, equivalent to n2d additions in F2. These can be
neglected as long as n is much smaller than the square root of the weight of
B (which we can assume). In both steps we have to store the matrix B and
two auxiliary vectors for doing the multiplications. Additionally, in step four n
vectors need to be stored.
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For the Berlekamp-Massey step we used the sub-quadratic algorithm from [18]
with FFT for polynomial multiplication. Its complexity is O( (m+n)3

n d1+o(1)) and

its space requirement is O( (m+n)2

n d).
For small m and n most of the time is spent in steps 2 and 4. The total

number of matrix vector multiplications, namely (2 + n
m )d, will be minimal for

m → ∞. So, n being chosen, m should be chosen as large as possible such
that the Berlekamp-Massey step does not dominate the run time resp. space
requirements.

The computations in steps 2 and 4 can be parallelized in several ways. First,
the calculation of Biyl can be done simultaneously for different l. These compu-
tations are completely independent. Notice that for current computers there is
almost no difference in doing one or, e.g., 64 such computations. So, we might
set n = 64n′ and do the computations on n′ independent computers or clusters
thereof. We used n′ = 4 and ran the 4 computations on two clusters, sometimes 2
jobs in parallel per cluster. This ability to spread the computation across differ-
ent clusters is the crucial difference between our block Wiedemann approach and
many previous factoring efforts that relied on the block Lanczos method [6,13].
Unlike block Wiedemann, block Lanczos does not allow this type of indepen-
dent distribution, roughly speaking because it requires the inversion of an n × n
matrix modulo 2 per iteration, which would obviously lead to considerable com-
munication and synchronization issues when run at different locations.

Second, the calculation of Bv for a vector v can be parallelized. As opposed
to the above, this requires a lot of communication. More precisely, for a cluster
with n1 × n2 nodes in a torus topology the communication required for one
multiplication is approximately d

n1
+ d

n2
per node. When n1 and n2 are chosen

approximately equal, the communication costs deteriorate as the square root√
n1n2 of the number of participating nodes. At NTT we mostly used n1 = 11

and n2 = 10. At EPFL we used 8 × 8 on 64 cores (sometimes two simultaneous
jobs totalling 128 cores, i.e., 32 processors), 10 × 8 on 80 cores, and 12 × 12 on
144. Lower numbers of cores were noticeably more efficient per core: when going
from 64 to 144 cores we did not get a speed-up of more than 100% (as one would
hope for when increasing the number of cores by more than 100%), but only a
speed-up of approximately 50%. Roughly, in steps 2 and 4, a third of the time
was spend on computation and two-thirds on communication.

A wider collaboration would lead to a larger n′ and thus larger n and m.
Given currently available hardware and the fact that we used a little more than
128GB of memory to run the Berlekamp-Massey step with our parameters, it
might be possible to increase m and n by a factor 4. This would increase the run
time by a factor 16. Given our 8 hours on 64 cores, this would result in slightly
more than 5 days on existing hardware, which is feasible. Unless a much bigger
cluster is used, increasing m and n by larger amounts seems to be difficult at
the moment.

Finally, we mention a promising idea that we have experimented with. If
approximately the same amounts of time are spent on computation and com-
munication, it is possible to run two different jobs simultaneously on a single
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cluster, in such a way that one job is computing while the other is communicat-
ing, and vice versa. If run as independent—but intertwined—jobs (as we did),
this approach requires the matrix to be stored twice. Combining the two chunks
in a single job in such a way that they have non-overlapping computational and
communication needs would require the matrix to be stored just once.

5.2 Only 50 Dependencies

As mentioned above, we expected to find 200 dependencies but found only 50.
Two independent oversights contributed to this phenomenon, but as far as we
currently understand still fail to fully explain it.

In the first place an error was uncovered in the selection of the zl vectors (cf.
Step 1 of the algorithm in Section 5.1) that has a large effect on the number of
solutions one may expect to find and that depends on the cluster configuration
one is using. In our case this led to a reduction of the dimension of the solution
space from 200 to about 34.

Secondly, after close inspection of the input matrix it was found that it con-
tains 37 duplicate rows. Due to the peculiar way their arrangement interacts with
the other error, this leads to 54 expected dependencies. Both these problems are
easily avoided during future computations.

6 The Square Root Step

Each independent solution has a chance of at least 50% to lead to a factorization.
The main calculation per solution involves the computation of a square root
of a huge algebraic number that factors into small prime ideals whose norms
are known. To calculate this square root we used Montgomery’s square root
method [14] as described in [15] and implemented by Friedrich Bahr as part
of his diploma thesis (cf. [3]). The first three solutions all led to the trivial
factorization, the fourth one produced the following 80-digit prime factor

55853666619936291260749204658315944968646527018488637648010052346319853288374753

with prime 227-digit cofactor

20758181946442382764570481370359469516293970800739520988120838703792729090324679
38234314388414483488253405334476911222302815832769652537609141018910524199389933
4109711624358962065972167481161749004803659735573409253205425523689

thereby completing the factorization of 21039 − 1.
Preparing the data for 4 solutions simultaneously took 2 hours, and processing

thereafter took 1.8 hours per solution, all run times on a 2.2GHz Opteron.
Note that our attempt to select a special number with a large smallest factor

was only partially successful: with more luck we would have found the 80-digit
factor using ECM. To some this result is somewhat disappointing, because an
80-digit factor is considered to be ‘small’ given the size of the 307-digit compos-
ite (21039 − 1)/5080711 that we factored. Note, however, that the factor-size is
irrelevant for our result. Also, as may be infered from the figures presented in
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Section 2, one may expect to spend much more computing time to find this factor
using ECM than we spent on SNFS: we estimate it would require about a mil-
lion curves with first phase bound 8G, at a cost of several thousand CPU years
and ignoring the very substantial memory demands for the second phase (much
more than 4GB RAM). If (21039 − 1)/5080711 would have had a 70-digit factor,
we would have been quite unlucky, a 60-digit factor we should have caught with
ECM and we would most likely have selected another ‘special’ number to factor.

7 Discussion

As far as we are aware our factorization is the first kilobit factorization achieved
using the special number field sieve. It must be stressed, and was already pointed
out in the introduction, that our work does not imply that 1024-bit RSA moduli
can now be factored by a comparable effort. Quite on the contrary, according to
all information available to us, and as far as we know to anyone else in the open
community, factoring a 1024-bit RSA modulus is still beyond the capabilities of
anyone with resources a few orders of magnitude larger than ours. We estimate
that the effort we spent would suffice to factor a 700-bit RSA modulus.

Nevertheless, our work showed that one major hurdle is not as unsurmountable
as some thought it would be: unlike previous efforts we managed to distribute the
major computation of the matrix step into 4 chunks whose completion did not
require any interaction. It required a huge data exchange among our three loca-
tions. This was enabled by the advancement of the Internet, allowing relatively
efficient, economical, and convenient communication among geographically dis-
persed locations at speeds up to about 100megabits per second. It remains a
subject of further research how the adverse effects of wider parallelization can
be addressed and how substantially larger chunks could be handled per location.
But, the beginning is there, and without any doubt our work will inspire further
work in this area and lead to more and better results.

Until our work there were two major factoring milestones on our way to 1024-
bit RSA moduli. One of these milestones, a kilobit SNFS factorization, is now be-
hind us. The next one, and the only remaining major milestone before we would
face 1024-bit RSA moduli, is the factorization of a 768-bit RSA modulus. We
have no doubt that 768-bit RSA moduli are firmly within our reach, both as far as
sieving effort and size of the matrix problem are concerned. If it would indeed be
reached, as is now safe to predict, factoring a 1024-bit RSA modulus would begin
to dawn on the horizon of what is practically possible for the open community.

It is unclear how long it will take to get there. But given the progress we keep
making, and given that we consistently keep reaching our factoring milestones,
it would be unwise to have much faith in the security of 1024-bit RSA moduli
for more than a few years to come. To illustrate, substantiate, and quantify this
remark, note that the first published factorization of a 512-bit RSA modulus is
less than a decade ago (cf. [5]) and that

T (1024)
T (768)

<
1
5

× T (768)
T (512)

,
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where
T (b) = exp(1.923 ln(2b)1/3(ln(ln(2b)))2/3)

is a rough growth rate estimate for the run time of NFS when applied to a b-bit
RSA modulus (cf. [11]). A more precise estimate, involving the o(1) which we
omitted in T (b), would result in a value that is even smaller than 1

5 . This means
that by the time we manage to factor a 768-bit RSA modulus—something we
are convinced we are able to pull off—the relative effort of factoring a 1024-bit
RSA modulus will look at least 5 times easier than the relative effort of factoring
a 768-bit RSA modulus compared to a 512-bit one. As a final remark we note
that since 1989 we have seen no major progress in factoring algorithms that can
be run on existing hardware, but just a constant stream of refinements. There
is every reason to expect that this type of progress will continue.
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Abstract. We show that computing e-th roots modulo n is easier than
factoring n with currently known methods, given subexponential access
to an oracle outputting the roots of numbers of the form xi + c.

Here c is fixed and xi denotes small integers of the attacker’s choosing.
The attack comes in two flavors:

– A first version is illustrated here by producing selective roots of the

form xi + c in Ln( 1
3 , 3

√
32
9 ). This matches the special number field

sieve’s (snfs) complexity.
– A second variant computes arbitrary e-th roots in Ln( 1

3 , γ) after a
subexponential number of oracle queries. The constant γ depends on
the type of oracle used.

This addresses in particular the One More rsa Inversion problem,
where the e-th root oracle is not restricted to numbers of a special

form. The aforementioned constant γ is then 3
√

32
9 .

Constraining the oracle to roots of the form e
√

xi + c mod n
increases γ.

Both methods are faster than factoring n using the gnfs

(Ln( 1
3 , 3

√
64
9 )).

This sheds additional light on rsa’s malleability in general and on
rsa’s resistance to affine forgeries in particular – a problem known to be
polynomial for xi > 3

√
n, but for which no algorithm faster than factor-

ing was known before this work.

Keywords: rsa, factoring, nfs, roots.

1 Introduction

The rsa cryptosystem [17] is commonly used for providing privacy and authen-
ticity of digital data. A very common historical practice for signing with rsa
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c© International Association for Cryptology Research 2007
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was to first hash the message, add a padding pattern c and then raise the result
to the power of the decryption exponent. This paradigm is the basis of numerous
standards such as pkcs#1 v1.5 [18].

Let n and e denote usual rsa public parameters (with �log2 n� = N)1.
In this paper we explore rsa signatures with a fixed c but without the hash

function, i.e. modular roots of the form:

e
√

c + x mod n

We call such numbers affine modular roots (amrs).
A thread of publications [15,7,10,14,4,13] stretching over a decade progres-

sively established that given access to an amr-oracle, new amrs could be forged
in polynomial complexity for x > 3

√
n.

No strategies faster than factoring n are known for x < 3
√

n – a case tackled
here at the cost of subexponential complexity. The main novelty in this paper is
that, while subexponential, our method forges new amrs for arbitrarily small x
(down to x < ε

√
n, ∀ε > 0) faster than factoring n.

Moreover, we show that access to an e-th root oracle (in particular, an amr-
oracle) even allows to compute arbitrary e-th roots faster than factoring n. Here,
the arbitrary e-th root to be computed is not known before all oracle queries
have been completed.

We achieve this by tweaking the quadratic sieve (qs) and the number field
sieve (nfs) factoring algorithms.

The Results. Denoting Ln(α, c) = exp
(
c (1 + o(1)) (log n)α (log log n)1−α

)
,

we show that:

– Using a qs-like algorithm, new amrs can be computed in L n
x
(1
2 , 1) instead

of the Ln(1
2 , 1) required for qs-factoring n.

– Using an nfs-like approach, we selectively produce new amrs in Ln(1
3 , 3

√
32
9 ).

This matches the special number field sieve’s (snfs) complexity which is

substantially lower than the Ln(1
3 , 3

√
64
9 ) required to gnfs-factor n.

Our experimental results for N = 512 and a recent snfs-factoring record2,
clearly underline the insecurity of affine-padding rsa.

– We present a procedure for computing arbitrary e-th roots in Ln(1
3 , 3

√
32
9 �

1.53), requiring a general (not only amr) e-th root oracle.
A more practical variant with a slightly higher complexity Ln(1

3 , 1.58) was
used in the experiments reported in this paper.

– Finally, a last variant allows the computation of arbitrary e-th roots given
access to an amr-oracle with complexity Ln(1

3 , 3
√

6). To date, we could not
make this variant practical.

1 Throughout this paper, we will frequently denote by |x| the bitlength of x.
2 [1], factoring a 1039-bit number using � 95 Pentium-D-years at 3 GHz.
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Our algorithms rely on an extension of Montgomery’s square root algorithm
for the number field sieve [16]. If one avoids this algorithm, alternative variants

exist with claim a higher complexity (Ln(1
3 , 3

√
9
2 )).

2 The Strategy – A General Outline

For the sake of simplicity assume that |x| = N
4 (generalization to smaller x sizes

is straightforward). We start by writing c, as a modular ratio3:

c =
a

b
mod n where |a| = (1 − s)N and |b| = sN

for some 0 < s < 1 that will be determined later.
Noting that c+x = a+xb

b mod n, it is easy to derive an index calculus attack4

as in [6]5 on numbers of the form a + xb, that we expect to be smooth with
respect to some factor base B. We can ascertain that a + xb is partially smooth
by applying a special-q strategy. Two options are possible: Either choose different
partial products of size N

4 of primes belonging to B (denote these partial products
ui) and sieve on xi values such that xi = −c mod ui or, select as special-q
primes of size N

4 and use them as the ui in the first option. From an asymptotic
standpoint, the two approaches are equivalent. In practice, the first approach can
produce any given equation more than once and thus require extra bookkeeping.
As for the second approach, each special-q requires one extra equation to cancel
out, thereby resulting in a larger system of equations.

It remains to optimize s. To maximize the smoothness odds of a + xb we
require that |a| = |xb| hence:

(1 − s)N = |a| = |xb| = |x| + |b| =
N

4
+ |b| =

N

4
+ sN ⇒ s =

3
8

In other words, we need to find multiplicative relations between numbers of
size 5N

8 divisible, by construction, by smooth factors of size N
4 . All in all this

amounts to chasing smooth numbers of size 3N
8 which is easier than qs-factoring

n (identical task for numbers of size N
2 = 4N

8 ).
More generally, when x is an N

t bit number, the job boils-down to finding
smooth numbers of size N(t−1)

2t i.e. qs-factoring N(t−1)
t bit rsa moduli.

Hence, the presented strategy approaches the qs’s complexity as t grows, while
remaining below the qs’s complexity curve6.

3 E.g. Using a continued fraction algorithm.
4 Treat b as an extra element of the factor base, together with the primes in the basis

to account for the denominator in the equations.
5 In [6] the signing oracle is used to compute e-th roots whose combination allows to

compute new e-th roots of factor-base elements.
6 To sieve, it suffices to set xi = −c mod ui and consider successively a(xi + jui) + b

for j = 1, 2, . . . (note that this will pollute a logarithmic number of bits in c).
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Given that the quadratic-sieve is not the fastest factoring strategy for usual-
size rsa moduli, the extension of the above strategy to the nfs is a natural
question (that this paper answers positively).

nfs algorithms work by exhibiting relations between objects in two different
“worlds”. In some cases, we have a single number field and consider relations
between integers and elements in that field. In other cases, there are two number
fields. Nonetheless, with both approaches, there are two sides to consider. In this
paper, the amr-oracle is going to replace one of the two sides. Consequently,
our setting is that of a single-sided nfs. This turns out to greatly improve the
smoothness probability and hence the algorithm’s efficiency.

We start by selecting a parameter d and finding a polynomial f of degree
d having sufficiently small coefficients such that f(c) ≡ 0 mod n. Without loss
of generality, we may assume that f is irreducible over Q. Indeed, if f = f1 ×
f2, either gcd(f1(c), n) is a non-trivial factor of n, or we can use the (smaller)
polynomial f1 instead of f .

Once f is chosen, we construct the number field K = Q[α] where α is a
root of f over Q. We now proceed as in the nfs and given integers x, we
construct elements α + x ∈ Q[α] with smooth norm over some factor base
B. We recall that the norm of α + x is the absolute value of f(−x). Note a
major difference with nfs-factoring: indeed, we only need to smooth a single
α +x for each candidate x as there is no second (or rational) side to smooth
in addition. Instead, the second side is given for free by the amr-oracle for
the number corresponding to α + x, i.e. for c + x. When the norm is smooth,
we can decompose α + x into a product of ideals of small norm in the ring
of integers OK of K = Q[α].

Once enough smooth elements are found, we write them down as rows in a
matrix where each row contains the valuation of the corresponding α+x at each
prime ideal occurring in its decomposition. We also add to each row enough
character maps in order to account for the existence of units in the number
field.

Then, using a sparse linear algebra algorithm, we find a linear combination of
rows equal to zero modulo e. This allows us to write an e-th power in Q[α] as a
product of α + xi.

The final step computes the actual e-th root of this e-th power. This yields
a multiplicative relation between amrs corresponding to the α + xi used in the
relation. Thus, querying all these values but one yields a new amr for the missing
value. The e-th root can be computed in a way very similar to the nfs’ square
root computation phase.

Alternatively, the final step can be replaced by a more involved strategy.
Namely, combining the e-th root computation with a descent procedure very
similar to the individual logarithm step of discrete logarithm computations with
the nfs. This enables the calculation of e-th roots of arbitrary values, i.e. not
restricted to the form c + x, by making a small number of additional queries of
the restricted form c + x. This option is presented in Section 4.
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3 A Detailed Step-by-Step Description

3.1 Polynomial Construction

Given a target degree d we first need to construct a polynomial f irreducible
over Q. f will then be used to define the number field K = Q[α]. The two
important constraints on f are that its coefficients should be small and that we
must have f(c) = 0 mod n. Since we want to minimize the average norm f(−x)
of numbers α + x, it is a good idea to use a skewed polynomial. More precisely,
assume that B bounds the absolute value of x, then we want to choose a bound
C such that the coefficient of degree i in f has absolute value smaller than C

Bi .
Assuming7 that Bd(d+1) < n, we choose C = d+1

√
nBd/2 and the polynomial

f can be constructed by reducing the lattice generated by the columns of the
(d + 1) × (d + 1) matrix

L =

⎛
⎜⎜⎜⎝

Λ · · · Λcd Λn
1 0 0

. . .
...

0 Bd 0

⎞
⎟⎟⎟⎠

where Λ is a sufficiently large constant to guarantee that any short vector in
the lattice has zero in its first coordinate. Such a short vector can be easily
interpreted as a polynomial by reading the coefficient of xi in row i + 2 (the
coefficient should be re-normalized by a division by Bi). This polynomial clearly
has c as a root modulo n. Moreover, when evaluating the polynomial at x smaller
than B (in absolute value) we see that each term is bounded by the corresponding
value in the initial short vector.

Since the determinant of L is nBd(d+1)/2, we expect short-vector coefficients
to be of size

C = d+1
√

nB
d
2 2

d
4

3.2 Sieving

From a sieving standpoint, there is an essential difference between our algorithm
and the nfs. Indeed, our sieving has a single degree of freedom instead of two.
More precisely, instead of scanning numbers of the form aα+ b for a fixed α and
arbitrary pairs of small {a, b}, we need to examine numbers of the form α + x.

Luckily, the bound on x is large enough to compensate the absence of the sec-
ond degree of freedom but this restricts our sieving technique options. Indeed, we
cannot use a lattice sieve strategy and have to rely instead on a straightforward
sieve-by-line algorithm. To avoid using large numbers while sieving over x, we
used a special-q approach: for each special-q prime ideal 〈q, α − r〉, we considered
the algebraic integers α + (qx − r), with x ∈ [−S

q , +S
q ].

7 This is necessary to avoid finding zero for high degree coefficients; of course, where
necessary, we can always lower B in this construction and sieve over a smaller x
range (as long as enough equations are found.).
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3.3 Linear Algebra and Characters

Depending on the size of e, one may either use Lanczos/Wiedeman or block
Lanczos/Wiedeman approach. If e is large enough, no self-orthogonal vector
appears (unless we are extremely unlucky) and the simple approach succeeds.
For smaller e, a block approach is required (the block size 2 ≤ z ≤ 32 varies
with e and is a bit lesser when e = 3).

When linear algebra is performed directly on the sieving phase’s output, the
method yields a multiplicative relation between ideals of the form:

∏
i

〈α + xi〉μi =

⎛
⎝∏

j

p
νj

j

⎞
⎠

e

Such a relation, however, is insufficient to ensure that the product
∏

i(α+xi)μi

is an e-th power in K. Obstructions may arise from the e-part of the ideal class
group of OK , as well as from the quotient of the unit group O∗

K/(O∗
K)e. To

annihilate these obstructions we have to add characters. We require that:

χ

(∏
i

(α + xi)μi

)
=

∑
i

μiχ(α + xi)

vanishes, for several (additive) character maps χ : K∗ → Fe. We have the fol-
lowing choices for character maps:

– In [19], an approximation of the e-adic logarithm is used. Such characters
are easy to compute but might fail to account for the full obstruction, as
they cover at most the obstruction stemming from the unit group. Should e
ramify in OK , or eOK be divisible by a prime ideal belonging to the factor
base, technicalities occur but do not prevent from using these characters.

– It is also possible to follow the classical approach used for nfs-factoring [3]
i.e. test for powers modulo primes congruent to 1 mod e. The number of
characters accessible thereby is infinite. To map these multiplicative charac-
ters to additive ones, a discrete logarithm modulo e must be solved, which
is trivial for small e. For larger e values (where this might be a problem)
heuristic arguments indicate that characters of the first kind would suffice
anyway [19].

A typical drawback of characters is that they add a dense part to the relation
matrix, which might cause a slight performance penalty. In the particular case
we are interested in (just as in nfs-factoring) it is possible to perform the linear
algebra without the character columns, produce several row dependencies and
do a second reduction to recombine these dependencies into dependencies with
vanishing characters.

If we elect to adopt the latter idea it becomes particularly advisable to use
block algorithms for the linear algebra, since these algorithms output several
vectors of the null-space simultaneously.



When e-th Roots Become Easier Than Factoring 19

The linear algebra step also gives us the opportunity to check that K’s class
number is co-prime to e (to avoid possible technical problems infra). We do so
by checking that the rank of the relation matrix is not abnormally low modulo
e. This extra check is achieved in the same complexity and is therefore ignored
hereafter. Moreover, when e is a large prime, we do not need to test anything,
since the probability that e divides the class number is negligible.

3.4 Root Extraction

The linear algebra stage yields a product of algebraic integers π =
∏

(α + xi)μi

which is known to be an e-th power in K since χ(π) = 0 for satisfyingly many
characters χ. This allows us to compute an e-th root in Zn for any c + xi′ , as
long as the corresponding exponent μi′ �= 0 mod e. To do so, we first have to
raise π to the power of μ−1

i′ mod e. In other words, we can assume without loss
of generality that μi′ = 1.

When e is small, the computation of the e-th root of π can be done using a
straightforward generalization of Montgomery’s square root algorithm [16].

Once the e-th root R(α) is computed, we have:

(c + xi′ )
∏
i�=i′

(c + xi)μi = R(c)e mod n,

i.e.: (c + xi′)d = R(c)
∏
i�=i′

(c + xi)−μi mod n.

One might question the applicability of Montgomery’s algorithm to very large
values of e. Our computations in appendix a indicate that e = 65, 537 is achiev-
able with no difficulty and tests up to e � 1015 were conducted successfully.
These results lead us to infer that this approach is practical at least for our
range of interest.

However, should this strategy become difficult for larger e, a different (more
expensive) approach might be used: replace the sparse linear algebra modulo e by
exact Gaussian elimination or Hermite normal form and find relations expressing
each ideal as a product (quotient) of smooth elements. This associates to each
ideal a projection8 in Zn and also its e-th root. The drawbacks are higher memory
requirements and a higher exponent in the linear algebra’s complexity.

3.5 Complexity Analysis

Our complexity analysis closely follows the nfs’s one. Let w denote the linear
algebra’s exponent. We write the degree d, the sieving range [−S, +S] and the
factor base bound B as:

d = δ × 3

√
log n

log log n
, S = Ln(

1
3
, wβ) and B = Ln(

1
3
, β).

8 In theory, such a projection can be defined rigorously using the Hilbert class field of
the number field used. Indeed, in the Hilbert class field, all ideals are principal and
sending a generator to Zn is easy; however, since the degree of the Hilbert class field
is extremely large, it cannot be used in practice.
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This particular choice of S and B ensures that the sieving step (which costs
S) and the linear algebra step (which costs Bw) are balanced.

Using the lattice-based construction, the coefficients of f have average size
A = d

√
n = Ln(2

3 , 1
δ ). By choosing a skewed f , we find that the size of f(x) for

x ∈ [−S, +S] is:

A × Sd/2 = Ln(
2
3
,
1
δ

+
w

2
δβ)

The probability that f(x) is B-smooth is Ln(1
3 , −π) with π = 1

3 ( 1
δβ + w

2 δ).
To get enough smooth relations, we need to ensure that wβ − π = β.

For w = 2, these equations lead to the choice {δ = 3

√
2
3 , β = 3

√
4
9}. As a

consequence, the complexity of the sieving and linear algebra steps put together

is Ln(1
3 , 2β) = Ln(1

3 , 3

√
32
9 ). This is equal to the complexity the snfs factoring

algorithm which applies to a restricted class of numbers [12].
Another very important parameter is the number of amr-oracle queries, which

is subexponential but significatively smaller than the algorithm’s runtime. This

number of queries is Ln(1
3 , β) = Ln(1

3 , 3

√
4
9 ).

The alternative using integer linear algebra mentioned above yields a com-
plexity of:

Ln(
1
3
, 3

√
2w4

9(w − 1)2
)

The case w = 3 gives Ln(1
3 , 3

√
9
2 � 1.65). Note that according to [8,9],

the integer linear algebra can be done with exponent w = 2.5, which yields

Ln(1
3 , 3

√
625
162 � 1.57). However this approach requires asymptotically fast matrix

multiplication techniques which might prove too cumbersome for cryptographic
applications.

As our algorithms are subexponential, the assessment of their experimental
behavior is essential. We hence implemented them and actually forged a 512-bit
amr. Details are given in Appendix a.

Open Problem – Potential Improvements: When the number of fixed pad
bits is small enough, the possible sieving range of x when sieving over c + x (or
α + x) may be too large9.

Under such circumstances, we get some additional freedom when constructing
f . Indeed, we may replace c by some c′ � c, thereby reducing the sieving range.
Clearly, amongst all possible c′ values some yield f ′-s whose coefficients are
smaller than average.

We could not find any efficient way of taking advantage of this extra freedom
to build better polynomials and further reduce the attack’s complexity.

9 Cf. To the related footnote in section 3.1.



When e-th Roots Become Easier Than Factoring 21

4 Attacking the One More rsa Inversion Problem

Up to now, we have obtained either an amr-forgery or an adaptive chosen cipher-
text attack (cca2) on plain rsa. In this section, we extend the attack to obtain
a non adaptive chosen ciphertext attack (cca1) on plain rsa. Equivalently, we
attack the One More rsa Inversion Problem, proposed by Bellare et al., in [2].
Again, while subexponential, this attack is faster than gnfs-factoring n. In the
context of the One More rsa Problem it is not really meaningful to assume that
the initial rsa queries have a special form, thus we grant the attacker access to
an unlimited e-th root oracle during the first phase of the attack.

Once the restriction on oracle queries is lifted, we are no longer constrained to
use polynomials with a prescribed root P . Moreover, we are no longer limited to
a single dimensional sieve, but can use a classical nfs sieve with two degrees of
freedom, using a lattice sieving technique. This does not change the asymptotic
complexity but allows us to reuse existing fast sieving code more easily. Not being
restricted to a prescribed root, we may use any polynomial of our choice. Despite
this clear gain, to solve the One More rsa Inversion Problem and become non-
adaptive, we need to devise an algorithm allowing us to compute the e-th root of
an arbitrary number without any additional oracle queries. This requires a new
descent procedure since the technique sketched at the end of Section 2 requires
additional oracle queries. Looking at similar problems arising in the individual
discrete logarithm phase of discrete logarithms computations, we see that such
a non adaptive descent can be done by alternating between two nfs sides. Thus,
we need to introduce a second side into our algorithm. While, at a first glance,
this seems to void our single-sided nfs complexity improvement, it turns out
that this intuitive perception is false since we can initially do the single sided
nfs separately for both sides.

The addition of a second side entails a complication for the descent, however.
To achieve the announced complexity, the initial factor base bound is set to

Ln(1
3 , 3

√
4
9 ). This is well below the Ln(1

3 , 3

√
8
9 ) encountered when computing dis-

crete logarithms. This implies that the descent procedure has to descend below
what is done for computing discrete logarithms. While the impact on the overall
complexity is not visible, this is a clear practical concern. To compensate for
this fact, we add an intermediate phase in our algorithm in order to enlarge the

factor base from Ln(1
3 , 3

√
4
9 ) to Ln(1

3 , 3

√
8
9 ).

4.1 The Inversion Algorithm

Step 0 – Setup. We first set up on the algebraic side a number field K = Q(α)
defined by a polynomial equation f(α) = 0. The easiest (though not unique)
choice for the second side is a rational side given by a polynomial g such that f
and g share a common root P modulo n. The classical base-m technique can be
used for this purpose.

We denote by ρ the rational root of g (we have ρ = m if g is monic).
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Step 1 – Precomputation. The factor base F on the algebraic side consists

of ideals of norm bounded by B � Ln(1
3 , 3

√
4
9 ). By sieving, we obtain coefficient

pairs {x, y} yielding relations of the form:

(x − yα) =
∏
p∈F

pmp , and χ(x − yα) = (λk)k=1,...,c

where χ is a character map onto Fc
e, for some arbitrary dimension c. We con-

catenate the coefficients (mp) and λk to form the rows of a matrix M .

Step 2 – Factor Base Extension. The extended factor base F ′ consists of

ideals of norm bounded by B′ � Ln(1
3 , 3

√
8
9 ). We sieve on the algebraic side only,

using each additional prime ideal that we want to add as a special-q. We ask for
a single relation between this prime ideal and the smaller ones.

Step 3 – Oracle Queries. We query the oracle for the e-th root of the numbers
x− yP for each integers pair {x, y} encountered in steps 1 and 2. We also query
for the e-th root of all prime numbers below B′.

Step 4 – Descent Initialization. In our game, it is only at this point that
the attacker learns the challenge number t whose e-th root he must compute.

The descent mimics individual discrete logarithm computations. The descent
is initialized by picking a random mask m and two integers u and v such that
u
v ≡ met mod n, and which factor simultaneous into primes bounded by Ln(2

3 , •).

Step 5 – Descent. We maintain a set {(σ, ε)} of polynomials σ and exponents
ε such that S =

∏
σε satisfies:

(S(α)) =
∏

p∈F ′

pμp · I1 (algebraic side),

and
u

v
S(ρ) =

∏
p<B′

pνp · I2 (rational side).

Initially S = 1, and the exponents νp mark the prime numbers appearing in
the factorization of u and v.

The remaining terms I1 and I2 factor into ideals (or primes) outside the factor
base. The descent procedure aims at eliminating these ideals. For this purpose,
we iteratively use special-q sieving to trade these ideals for ideals of smaller
norm.

Using the relations obtained from the factor base extension step, we form
another rational fraction T such that the ideal (S(α)T (α)) factors into ideals
belonging to the smaller factor base F .

Step 6 – Linear Algebra. Once we have reached the point where I1 = (1)
and I2 = (1), we seek a linear combination of the rows of the matrix M which
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equals the valuations and character values corresponding to the algebraic number
S(α)T (α).

This inhomogeneous linear system amounts to exhibiting an algebraic number
U(α) obtained as a combination of the numbers x−yα found in step 1, and such
that S(α)T (α)U(α) is an e-th power in K.

Step 7 – End. We use Montgomery’s e-th root algorithm to write the previous
number explicitly as an e-th power of an algebraic number r(α)e.

By construction, the e-th roots of T (P ) and U(P ) are known by the ora-
cle queries. Using the rational side product form and the corresponding oracle
queries, the e-th root of u

v S(P ) is known as well. We infer:

e
√

t =
1
m

·
e
√

u
v S(P )
r(P )

e
√

T (P ) e
√

U(P ).

4.2 Complexity Analysis

Using the same parameters as in Section 3, all steps except steps 2 to 5 are

achieved with complexity Ln(1
3 , 3

√
32
9 ).

The complexity of step 2 depends of course on the choice of β′. The summation
from B = Ln(1

3 , β) to B′ = Ln(1
3 , β′) yields a complexity Ln(1

3 , θ) where θ ranges

from 3

√
32
9 when β′ is chosen close to β, up to 1.577 with the suggested value

β′ = 3

√
8
9 (the detailed calculations, omitted for brevity, will be included in the

iacr ePrint version of this paper).

The number of oracle queries (step 3) is Ln(1
3 , β′ = 3

√
8
9 ).

The descent (steps 4 and 5) is analyzed in [5], and found to have complexity
Ln(1

3 , 3
√

3).
We highlight, however, the complexity of the last descent steps, where ideals

of norm just above B′ = Ln(1
3 , β′) have to be canceled. For each such ideal,

one relation is sought. Using special-q sieving, we can form Ln(1
3 , 2α) candidates

whose algebraic (resp. rational) norm is bounded by Ln

(
2
3 , 1

δ + δ
(
α + β′

2

))

(resp. Ln

( 2
3 , 1

δ

)
). One relation is expected when α satisfies:

2α − 1
3

(
1

δβ′ +
δ

β′

(
α +

β′

2

)
+

1
δβ′

)
= 0.

Substituting β′ = 3

√
8
9 above, we obtain that the last descent steps are

achieved in complexity Ln(1
3 , 0.99), which is not dominating. Using β′ = β

(thereby skipping the factor base extension), this cost would be Ln(1
3 , 1.27) which

is not dominating either.
This implies that we have some flexibility in the tuning of the factor

base extension. In order to match previously completed discrete logarithm
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computations, we chose to extend to β′ = 3

√
8
9 , but this choice should be regarded

as unconstrained.
We conclude that the asymptotic complexity of the arbitrary e-th root com-

putation is either Ln(1
3 , 3

√
32
9 ) or Ln(1

3 , 1.58). We believe the latter to be more
practical, as is illustrated by our experiments (Appendix b).

4.3 Computing e-th Roots with an amr-Oracle

While we have presented and implemented the arbitrary e-th root computation
algorithm using access to a general e-th root oracle, the same can also be achieved
using an amr-oracle only. In this case, the common root P is prescribed, and
it is not possible to use a rational side. Nonetheless, the above approach works
using two algebraic sides; steps 1, 2, 6, and 7 have to be done separately on
both sides. Step 4, however, turns out to have a higher complexity requirement
Ln(1

3 , 3
√

6), and the individual descent steps in step 5 are more expensive. We
could not demonstrate the practicality of such a setting.
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A Implementation Details

As our algorithms are subexponential, the assessment of their experimental
behavior is essential. We hence implemented them and actually computed a
512-bit amr.

We wrote our software chain in C and C++, relying upon the computer
algebra systems pari-gp and magma for a handful of specific tasks. The attacked
instance was c = 10154, e = 65, 537 and n = rsa-155 (rsa Laboratories 512-bit
challenge modulus).

The polynomial selection (section 3.1) was implemented in magma. To obtain
a satisfactory relation yield, we have set B = 222 (i.e a factor base comprising
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circa 300, 000 prime ideals). For S = 250, the polynomial selection program
returned the quartic candidate10 f(x) =

∑4
i=0 aix

i where:

a4 = 8

a3 = 5451802006688119

a2 = - 7344893341388732622814165470437

a1 = 833050630351576525584507524542841090670386803

a0 = - 80690902433251999116158516330020702292190401223994350445959

We worked in K = Q[x]/f and counted 295, 842 prime ideals of degree one (or
dividing the leading coefficient) in K’s integer ring.

The sieving process was run on a heterogeneous set of cpus: amd Opteron
250 at 2.4 GHz and Intel Core-2 at various clock speeds.

For each special-q ideal written as 〈q, α − r〉, we isolated the integers x ∈
[−228, 228] such that the added contribution of factor base ideals to the norm of
the ideal (r + qx − α) exceeded 2145 (out of an order of magnitude just below
2200). This selection process isolated instantaneously11 circa 100 candidates of
which around nineteen yielded relations. Considering the largest 20, 000 ideals
in the factor base as special-q ideals, we obtained 380, 000 relations. The sieving
step was distributed over twenty cpus and claimed a couple of hours. We stress
that we did not use any “large prime” variation.

After pruning the columns corresponding to ideals never encountered in the
factorizations, we were left with a row dependency to be obtained on a
283,355×283,355 matrix. We included four readily computed character columns
in the matrix, to ensure that the computed dependency corresponds to an e-th
power. The dependency was obtained using the block Wiedemann algorithm,
with a “blocking factor” of m = n = 8. This took four cpu

12 hours distributed
on four machines to produce one row dependency.

The e-th root computation was done in magma.
We started with a product formula π whose numerator and denominator had

a norm ≈ e7.6×105
and with a moderate unit contribution, since the logarithms

of the complex embeddings were approximately:

(λ + 45, λ + 45, λ − 155, λ + 65) where λ =
1
d

log Norm(π) � 6710

Here λ is the normalizing term. This is quite small since a unit with logarithms of
complex embeddings equal to (45, 45, −155, 65) would correspond to an algebraic
integer with coefficients of about twenty decimal digits. The first four reduction
steps sufficed to eliminate this unit contribution (i.e. equalling the logarithms
of the complex embeddings with their average). After 2, 000 reduction steps,
we obtained a complete product formula for the root, the remaining e-th power
being −1. It took five minutes to compute this e-th root.

10 Best amongst a set of 1, 000 candidates.
11 2.667 GHz Intel Core-2 cpu.
12 2.667 GHz Intel Core-2.
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The corresponding final multiplicative dependency involved 242, 700 integers
of the form c + xi mod n.

B Example of an e-th Root Computation

As an experimental illustration of the arbitrary e-th root computation, we used
once again n = rsa-155. For a public exponent e = 65, 537, we detail the
computation of an arbitrary e-th root given access to a preliminary e-th root
oracle (the attacker is given the challenge only once all oracle queries have been
performed).

We have chosen a setup resembling a typical nfs factoring experiment or a
computation of discrete logarithms. The polynomials f1 =

∑
aix

i and f2 =∑
bix

i are given by the following coefficients, the polynomial f2 corresponding
to a rational side:

a5 = 28200000

a4 = - 7229989539851

a3 = - 24220733860168568962

a2 = - 6401736489600175386662132

a1 = 4117850270472750057831223534880

a0 = 747474581145576370776244346990929200

b1 = 14507315380338583

b0 = - 207858336487818193824240150287

These two polynomials are easily seen to share a common root P modulo n.
The sieving stage has been performed only on the number field side. We

chose as a small factor base the set of prime ideals of norm below B = 4 × 106

(i.e. 283,042 ideals). For the sieving, we have used the lattice sieving program
lasieve4 of J. Franke and T. Kleinjung included in the ggnfs software suite.
The program was modified to sieve only on one side. Using a double large prime
variation, the sieving step has been completed in two cpu hours on a 2.4GHz
amd Opteron.

We then extended the factor base to the larger bound B′ = 232. After 44
cpu hours, we were able to relate 37% of the ideals of this larger factor base to
ideals of the smaller factor base (the larger factor base comprises approximately
2 × 108 ideals).

Counting oracle queries related to both sides, we need to perform 4 × 108

queries before being able to compute arbitrary e-th roots.
We have implemented the descent procedure using Magma, as well as the

lasieve4 program, modified in order to account for very large special q’s as
used in the descent process. The factorization of the numerous sieve residues
produced was handled by the gmp-ecm program.

The descent was initialized on the rational side. We obtained integers u and
v which factored into primes with at most 35 decimal digits. Each step of the
descent procedure involved a lasieve4 call, in order to select several candidate
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polynomials. Amongst the possible polynomials, our strategy selected the one
leading to the fewest ideals outside the factor base (taking into account the large
ideals coming from the factor base extension). After 42 descent steps, we obtained
a product formula involving 594 prime numbers and ideals below B′ = 232. Some
(19) ideals in this product formula belonged to the set of “missed” ideals from
the larger factor base. With 21 extra descent steps, these ideals were eliminated.
The descent procedure took roughly one hour.

The schedule time for solving the resulting inhomogeneous linear system and
computing the algebraic e-th root compares in every respect to the data given
for the previous example (Appendix a).
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1 Introduction

The core operations in elliptic-curve cryptography are single-scalar multiplica-
tion (m, P �→ mP ), double-scalar multiplication (m, n, P, Q �→ mP + nQ), etc.
Miller, in his Crypto ’85 paper introducing elliptic-curve cryptography, pro-
posed carrying out these operations on points represented in Jacobian form:
“Each point is represented by the triple (x, y, z) which corresponds to the point
(x/z2, y/z3)” on a curve y2 = x3 + a4x + a6. See [37, page 424]. One can add
two points using 16 field multiplications, specifically 11M+ 5S, with the fastest
algorithms known today; here we keep separate tallies of squarings S and general
multiplications M. A mixed addition — this means that one input has z = 1 —
takes only 7M+4S. A doubling takes 1M+8S+1D, where D denotes the cost
of multiplying by a4; a doubling takes 3M + 5S in the special case a4 = −3.

Several subsequent papers analyzed the performance of other forms of elliptic
curves proposed in the mathematical literature. See, e.g., [18] for the speed of
several dialects of the Weierstrass form, [34] for the speed of Jacobi intersections,
[28] for the speed of Hessians, and [9] for the speed of Jacobi quartics; see also
[38] and [23], which introduced the Montgomery and Doche/Icart/Kohel forms
and analyzed their speed. These alternate forms attracted some interest— in
particular, many of them simplify protection against side-channel attacks, and
the speed records in [7] for single-scalar multiplication were set with the Mont-
gomery form — but the Jacobian form remained the overall speed leader for
multi-scalar multiplication.

A new form for elliptic curves was added to the mathematical literature a few
months ago: Edwards showed in [25] that all elliptic curves over number fields
could be transformed to the shape x2 + y2 = c2(1 + x2y2), with (0, c) as neutral
element and with the surprisingly simple and symmetric addition law

(x1, y1), (x2, y2) �→
(

x1y2 + y1x2

c(1 + x1x2y1y2)
,

y1y2 − x1x2

c(1 − x1x2y1y2)

)
.

Similarly, all elliptic curves over non-binary finite fields can be transformed to
Edwards form. Some elliptic curves require a field extension for the transfor-
mation, but some elliptic curves have transformations defined over the original
number field or finite field.

To capture a larger class of elliptic curves over the original field, we expand
the notion of Edwards form to include all curves x2 + y2 = c2(1 + dx2y2) where
cd(1 − dc4) �= 0. More than 1/4 of all isomorphism classes of elliptic curves
over a finite field — for example, the curve “Curve25519” previously used to set
speed records for single-scalar multiplication — can be transformed to Edwards
curves over the same field. See §2 and §3 of this paper for further background
on Edwards curves.

Our main goal in this paper is to analyze the impact of Edwards curves upon
cryptographic applications. Our main conclusions are that the Edwards form
(1) breaks solidly through the Jacobian speed barrier, (2) is competitive with
the Montgomery form for single-scalar multiplication, and (3) is the new speed
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leader for multi-scalar multiplication. Specifically, we present explicit formulas
(i.e., sequences of additions, subtractions, and multiplications) that

• compute an addition (X1 : Y1 : Z1), (X2 : Y2 : Z2) �→ (X1 : Y1 : Z1) + (X2 :
Y2 : Z2) using 10M + 1S + 1D— here D is the cost of multiplying by a
selectable curve parameter;

• compute a mixed addition (X1 : Y1 : Z1), (X2 : Y2 : 1) �→ (X1 : Y1 :
Z1) + (X2 : Y2 : 1) using 9M + 1S + 1D; and

• compute a doubling (X1 : Y1 : Z1) �→ 2(X1 : Y1 : Z1) using 3M + 4S.

See §4 for details of these computations; §5 for a comparison of these speeds
to the speeds of explicit formulas for Jacobian, Hessian, etc.; §6 and §7 for an
analysis of the resulting speeds of single-scalar multiplication and general multi-
scalar multiplication; and §8 for a discussion of side-channel attacks.

An Edwards curve with a unique point of order 2 has the extra feature that
the addition formulas are complete. This means that the formulas work for all
pairs of input points on the curve, with no exceptions for doubling, no exceptions
for the neutral element, no exceptions for negatives, etc. Some previous addi-
tion formulas have been advertised as unified formulas that can handle generic
doublings, simplifying protection against side-channel attacks; our addition for-
mulas are faster than previous unified formulas and have the stronger property
of completeness. See §3, §5, and §8 for further discussion.

Acknowledgments. We thank Harold M. Edwards for his comments and en-
couragement, and of course for finding the Edwards addition law in the first
place. We thank Marc Joye for suggesting using the curve equation to accelerate
the computation of the x-coordinate of 2P ; see §4.

2 Transformation to Edwards Form

Fix a field k of characteristic different from 2. Let E be an elliptic curve over k
having a point of order 4. This section shows that some quadratic twist of E is
birationally equivalent over k to an Edwards curve: specifically, a curve of the
form x2 + y2 = 1+dx2y2 with d /∈ {0, 1}. (Perhaps this twist is E itself; perhaps
not.) §3 shows that the Edwards addition law on the Edwards curve corresponds
to the standard elliptic-curve addition law.

If E has a unique point of order 2 then some quadratic twist of E is birationally
equivalent over k to an Edwards curve having non-square d. If k is finite and E
has a unique point of order 2 then the twist can be removed: E is birationally
equivalent over k to an Edwards curve having non-square d. §3 shows that the
Edwards addition law is complete in this case.

All of these equivalences can be computed efficiently. The proof of
Theorem 2.1 explicitly constructs d given a Weierstrass-form elliptic curve, and
explicitly maps points between the Weierstrass curve and the Edwards curve.

As an example, consider the elliptic curve published in [7] for fast scalar mul-
tiplication in Montgomery form, namely the elliptic curve v2 = u3+486662u2+u
modulo p = 2255 − 19. This curve “Curve25519” is birationally equivalent over
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Z/p to the Edwards curve x2 + y2 = 1 + (121665/121666)x2y2. The transforma-
tion is easy: simply define x =

√
486664u/v and y = (u − 1)/(u + 1); note that

486664 is a square modulo p. The inverse transformation is just as easy: simply
define u = (1 + y)/(1 − y) and v =

√
486664u/x.

Every Edwards curve has a point of order 4; see §3. So it is natural to con-
sider elliptic curves having points of order 4. What about elliptic curves that
do not have points of order 4 — for example, the NIST curves over prime fields?
Construct an extension field k′ of k such that E(k′), the group of points of E
defined over k′, has an element of order 4. Then replace k by k′ in Theorem
2.1 to see that some twist of E is birationally equivalent over k′ to an Edwards
curve defined over k′.

Theorem 2.1. Let k be a field in which 2 �= 0. Let E be an elliptic curve over
k such that the group E(k) has an element of order 4. Then

(1) there exists d ∈ k − {0, 1} such that the curve x2 + y2 = 1 + dx2y2 is
birationally equivalent over k to a quadratic twist of E;

(2) if E(k) has a unique element of order 2 then there is a nonsquare d ∈ k
such that the curve x2 + y2 = 1 + dx2y2 is birationally equivalent over k to
a quadratic twist of E; and

(3) if k is finite and E(k) has a unique element of order 2 then there is a
nonsquare d ∈ k such that the curve x2 + y2 = 1 + dx2y2 is birationally
equivalent over k to E.

Proof. Write E in long Weierstrass form s2 + a1rs + a3s = r3 + a2r
2 + a4r + a6.

Assume without loss of generality that a1 = 0 and a3 = 0; to handle the general
case, define s = s + (a1r + a3)/2.

Write P for the hypothesized point of order 4 on E. Assume without loss of
generality that 2P = (0, 0) and thus a6 = 0; to handle the general case, define
r = r − r2 where 2P = (r2, s2).

The elliptic curve E now has the form s2 = r3+a2r
2+a4r. Write P as (r1, s1).

The next step is to express a2 and a4 in terms of r1 and s1.
Note that s1 �= 0, as otherwise P has order 2. Consequently r1 �= 0. The

equation 2P = (0, 0) means that the tangent line to E at P passes through
(0, 0), i.e., that s1 − 0 = (r1 − 0)λ where λ is the tangent slope (3r2

1 + 2a2r1 +
a4)/2s1. Thus 3r3

1 + 2a2r
2
1 + a4r1 = 2s2

1. Also 2s2
1 = 2r3

1 + 2a2r
2
1 + 2a4r1 since

P is on the curve. Subtract to see that r3
1 = a4r1, i.e., r2

1 = a4. Furthermore
a2 = (s2

1 − r3
1 − a4r1)/r2

1 = s2
1/r2

1 − 2r1. Putting d = 1 − 4r3
1/s2

1 we obtain
a2 = 2((1 + d)/(1 − d))r1.

Note that d �= 1 since r1 �= 0. Note also that d �= 0: otherwise the right hand
side of E’s equation would be r3 + a2r

2 + a4r = r3 + 2r1r
2 + r2

1r = r(r + r1)2,
contradicting the hypothesis that E is elliptic. Note also that if d is a square
then there is another point of order 2 in E(k), namely

(
r1(

√
d+1)/(

√
d− 1), 0

)
.

Consider two quadratic twists of E, namely the elliptic curves E′ and E′′

defined by (r1/(1−d))s2 = r3 +a2r
2 +a4r and (dr1/(1−d))s2 = r3 +a2r

2 +a4r.
If k is finite and d is nonsquare then either r1/(1−d) or dr1/(1−d) is a square

in k so E is isomorphic to either E′ or E′′.
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Substitute u = r/r1 and v = s/r1 to see that E′ is isomorphic to the elliptic
curve (1/(1 − d))v2 = u3 + 2((1 + d)/(1 − d))u2 + u and that E′′ is isomorphic
to (d/(1 − d))v2 = u3 + 2((1 + d)/(1 − d))u2 + u.

We now show that the curve x2 + y2 = 1 + dx2y2 is birationally equivalent to
(1/(1 − d))v2 = u3 + 2((1 + d)/(1 − d))u2 + u, and therefore to E′. The rational
map (u, v) �→ (x, y) is defined by x = 2u/v and y = (u−1)/(u+1); there are only
finitely many exceptional points with v(u + 1) = 0. The inverse rational map
(x, y) �→ (u, v) is defined by u = (1+ y)/(1− y) and v = 2(1+ y)/(1− y)x; there
are only finitely many exceptional points with (1 − y)x = 0. A straightforward
calculation, included in [8], shows that the inverse rational map produces (u, v)
satisfying (1/(1 − d))v2 = u3 + 2((1 + d)/(1 − d))u2 + u.

Substitute 1/d for d and −u for u to see that x2 + y2 = 1 + (1/d)x2y2 is
birationally equivalent to the curve (1/(1 − 1/d))v2 = (−u)3 + 2((1 + 1/d)/(1 −
1/d))(−u)2 + (−u), i.e., to (d/(1 − d))v2 = u3 + 2((1 + d)/(1 − d))u2 + u, and
therefore to E′′.

To summarize: (1) The curve x2 + y2 = 1+ dx2y2 is equivalent to a quadratic
twist E′ of E. (2) If E has a unique point of order 2 then d is a nonsquare and
x2 + y2 = 1 + dx2y2 is equivalent to a quadratic twist E′ of E. (3) If k is finite
and E has a unique point of order 2 then d is a nonsquare so E is isomorphic
to E′ or to E′′; thus E is birationally equivalent to x2 + y2 = 1 + dx2y2 or to
x2 + y2 = 1 + (1/d)x2y2. ��

Notes on Isomorphisms. If d = dc4 then the curve x2 + y2 = 1 + dx2y2 is
isomorphic to the curve x2+y2 = c2(1+dx2y2): simply define x = cx and y = cy.
In particular, if k is a finite field, then at least 1/4 of the nonzero elements of k are
4th powers, so d/d is a 4th power for at least 1/4 of the choices of d ∈ k − {0};
the smallest qualifying d is typically extremely small. But for computational
purposes we do not recommend minimizing d as a general strategy: a small c is
more valuable than a small d. See §4.

3 The Edwards Addition Law

This section presents the Edwards addition law for an Edwards curve x2 + y2 =
c2(1+dx2y2). We show (1) that the Edwards addition law produces points on the
curve, (2) that the Edwards addition law corresponds to the standard addition
law on a birationally equivalent elliptic curve, and (3) that the Edwards addition
law is complete when d is not a square. Proofs appear at the end of the section.

Fix a field k of characteristic different from 2. Fix c, d ∈ k such that c �= 0,
d �= 0, and dc4 �= 1. Consider the Edwards addition law

(x1, y1), (x2, y2) �→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1 − dx1x2y1y2)

)

on the Edwards curve x2 + y2 = c2(1 + dx2y2) over k.
Examples: for each point P = (x1, y1) on the curve, P is the sum of (0, c) and

P , so (0, c) is a neutral element of the addition law; the only neutral element
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is (0, c); (0, c) is the sum of P and −P = (−x1, y1); in particular, (0, −c) has
order 2; (c, 0) and (−c, 0) have order 4.

The next theorem states that the output of the Edwards addition law is on
the curve when the output is defined, i.e., when dx1x2y1y2 /∈ {−1, 1}.

Theorem 3.1. Let k be a field in which 2 �= 0. Let c, d be nonzero elements of k
with dc4 �= 1. Let x1, y1, x2, y2 be elements of k such that x2

1 +y2
1 = c2(1+dx2

1y
2
1)

and x2
2 + y2

2 = c2(1 + dx2
2y

2
2). Assume that dx1x2y1y2 /∈ {−1, 1}. Define x3 =

(x1y2 + y1x2)/c(1 + dx1x2y1y2) and y3 = (y1y2 − x1x2)/c(1 − dx1x2y1y2). Then
x2

3 + y2
3 = c2(1 + dx2

3y
2
3).

The next theorem states that the output of the Edwards addition law cor-
responds to the output of the standard addition law on a birationally equiva-
lent elliptic curve E. One can therefore perform group operations on E (or on
any other birationally equivalent elliptic curve) by performing the correspond-
ing group operations on the Edwards curve, at the expense of evaluating and
inverting the correspondence once for each series of computations.

Theorem 3.2. In the situation of Theorem 3.1, let e = 1 − dc4 and let E be
the elliptic curve (1/e)v2 = u3 + (4/e − 2)u2 + u. For each i ∈ {1, 2, 3} define
Pi as follows: Pi = ∞ if (xi, yi) = (0, c); Pi = (0, 0) if (xi, yi) = (0, −c); and
Pi = (ui, vi) if xi �= 0, where ui = (c+yi)/(c−yi) and vi = 2c(c+yi)/(c−yi)xi.
Then Pi ∈ E(k) and P1 + P2 = P3.

Here P1 + P2 means the sum of P1 and P2 in the standard addition law on
E(k). Note that xi �= 0 implies yi �= c.

The group operations could encounter exceptional points where the Edwards
addition law is not defined. One can, in many applications, rely on randomization
to avoid the exceptional points, or one can switch from the Edwards curve back
to E when exceptional points occur.

The next theorem states that, when d is not a square, there are no exceptional
points: the denominators in the Edwards addition law cannot be zero. In other
words, when d is not a square, the Edwards addition law is complete: it is defined
for all pairs of input points on the Edwards curve over k. The set E(k), with the
standard addition law, is isomorphic as a group to the set of points (x1, y1) ∈ k×k
on the Edwards curve, with the Edwards addition law. The Edwards addition
law can carry out any sequence of group operations, without risk of failure.

Theorem 3.3. Let k be a field in which 2 �= 0. Let c, d, e be nonzero elements
of k with e = 1 − dc4. Assume that d is not a square in k. Let x1, y1, x2, y2 be
elements of k such that x2

1 + y2
1 = c2(1 + dx2

1y
2
1) and x2

2 + y2
2 = c2(1 + dx2

2y
2
2).

Then dx1x2y1y2 �= 1 and dx1x2y1y2 �= −1.

Example: d = 121665/121666 is not a square in the field k = Z/(2255 − 19).
The Edwards addition law is defined for all (x1, y1), (x2, y2) on the Edwards
curve x2 + y2 = 1 + dx2y2 over k, and corresponds to the standard addition
law on “Curve25519,” the elliptic curve v2 = u3 + 486662u2 + u over k. The
point at ∞ on Curve25519 corresponds to the point (0, 1) on the Edwards curve;
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the point (0, 0) on Curve25519 corresponds to (0, −1); any other point (u, v)
on Curve25519 corresponds to (

√
486664u/v, (u − 1)/(u + 1)); a sum of points

on Curve25519 corresponds to a sum of points on the Edwards curve. One can
therefore perform a sequence of group operations on points of the elliptic curve
v2 = u3 + 486662u2 + u by performing the same sequence of group operations
on the corresponding points of the Edwards curve.

The reader might wonder why [11, Theorem 1] (“The smallest cardinality of
a complete system of addition laws on E equals two”) does not force exceptional
cases in the addition law for the curve x2 + y2 = c2(1+dx2y2). The simplest an-
swer is that [11, Theorem 1] is concerned with exceptional cases in the algebraic
closure of k, whereas we are concerned with exceptional cases in k itself.

The reader might also wonder why we ignore the two projective points
(0 : 1 : 0) and (1 : 0 : 0) on the Edwards curve. The answer is that, although
these points might at first glance appear to be defined over k, they are actually
singularities of the curve, and resolving the singularities produces four points
that are defined over k(

√
d), not over k.

Proof (of Theorem 3.1). The special case d = 1 is equivalent to [25, Theorem
8.1]. We could deduce the general case from the special case, but to keep this
paper self-contained we instead give a direct proof.

The first ingredient in the proof is a mechanically verifiable polynomial iden-
tity. Define T = (x1y2+y1x2)2(1−dx1x2y1y2)2+(y1y2−x1x2)2(1+dx1x2y1y2)2−
d(x1y2 + y1x2)2(y1y2 − x1x2)2. The identity says that T = (x2

1 + y2
1 − (x2

2 +
y2
2)dx2

1y
2
1)(x

2
2 + y2

2 − (x2
1 + y2

1)dx2
2y

2
2).

The second ingredient is the curve equation, i.e., the hypotheses on (x1, y1)
and (x2, y2). Subtract the equation (x2

2 + y2
2)dx2

1y
2
1 = c2(1 + dx2

2y
2
2)dx2

1y
2
1 from

the equation x2
1 + y2

1 = c2(1 + dx2
1y

2
1) to see that x2

1 + y2
1 − (x2

2 + y2
2)dx2

1y
2
1 =

c2(1 − d2x2
1x

2
2y

2
1y

2
2). Similarly x2

2 + y2
2 − (x2

1 + y2
1)dx2

2y
2
2 = c2(1 − d2x2

1x
2
2y

2
1y

2
2).

Thus T = c4(1 − d2x2
1x

2
2y

2
1y

2
2)

2.
The third ingredient is the Edwards addition law, i.e., the definition of

(x3, y3) in terms of x1, x2, y1, y2. We have x2
3 + y2

3 − c2dx2
3y

2
3 = (x1y2+y1x2)2

c2(1+dx1x2y1y2)2
+

(y1y2−x1x2)2

c2(1−dx1x2y1y2)2
− c2d(x1y2+y1x2)2(y1y2−x1x2)2

c4(1+dx1x2y1y2)2(1−dx1x2y1y2)2
= T

c2(1+dx1x2y1y2)2(1−dx1x2y1y2)2

= T
c2(1−d2x2

1x2
2y2

1y2
2)2 = c2. Thus x2

3 + y2
3 = c2(1 + dx2

3y
2
3) as claimed. ��

Proof (of Theorem 3.2). First we show that each Pi is in E(k). If (xi, yi) = (0, c)
then Pi = ∞ ∈ E(k). If (xi, yi) = (0, −c) then Pi = (0, 0) ∈ E(k). Otherwise
Pi = (ui, vi) ∈ E(k) by essentially the same calculations as in Theorem 2.1,
omitted here.

All that remains is to show that P1 + P2 = P3. There are several cases in the
standard addition law for E(k); the proof thus splits into several cases.

If (x1, y1) = (0, c) then (x3, y3) = (x2, y2). Now P1 is the point at infinity
and P2 = P3, so P1 + P2 = ∞ + P2 = P2 = P3. Similar comments apply if
(x2, y2) = (0, c). Assume from now on that (x1, y1) �= (0, c) and (x2, y2) �= (0, c).

If (x3, y3) = (0, c) then (x2, y2) = (−x1, y1). If (x1, y1) = (0, −c) then also
(x2, y2) = (0, −c) and P1 = (0, 0) = P2; otherwise x1, x2 are nonzero so u1 =
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(c + y1)/(c − y1) = u2 and v1 = 2cu1/x1 = −2cu2/x2 = −v2 so P1 = −P2. In
both cases P1 + P2 = ∞ = P3. Assume from now on that (x3, y3) �= (0, c).

If (x1, y1) = (0, −c) then (x3, y3) = (−x2, −y2). Now (x2, y2) �= (0, −c) (since
otherwise (x3, y3) = (0, c)) and (x2, y2) �= (0, c) so x2 �= 0. Thus P1 = (0, 0) and
P2 = (u2, v2) with u2 = (c+y2)/(c−y2) and v2 = 2cu2/x2. The standard addition
law says that (0, 0) + (u2, v2) = (r3, s3) where r3 = (1/e)(v2/u2)2 − (4/e − 2) −
u2 = 1/u2 and s3 = (v2/u2)(−r3) = −v2/u2

2. Furthermore P3 = (u3, v3) with
u3 = (c + y3)/(c − y3) = (c − y2)/(c + y2) = 1/u2 = r3 and v3 = 2cu3/x3 =
−2c/u2x2 = −v2/u2

2 = s3. Thus P1 + P2 = P3. Similar comments apply if
(x2, y2) = (0, −c).

Assume from now on that x1 �= 0 and x2 �= 0. Then P1 = (u1, v1) with u1 =
(c+ y1)/(c− y1) and v1 = 2cu1/x1, and P2 = (u2, v2) with u2 = (c+ y2)/(c− y2)
and v2 = 2cu2/x2.

If (x3, y3) = (0, −c) then (x1, y1) = (x2, −y2) so u1 = (c + y1)/(c − y1) =
(c − y2)/(c + y2) = 1/u2 and v1 = 2cu1/x1 = v2/u2

2. Furthermore P3 = (0, 0)
so the standard addition law says as above that −P3 + P2 = (0, 0) + P2 =
(1/u2, −v2/u2

2) = (u1, −v1) = −P1, i.e., P1 + P2 = P3.
Assume from now on that x3 �= 0. Then P3 = (u3, v3) with u3 = (c+ y3)/(c−

y3) and v3 = 2cu3/x3.
If P2 = −P1 then u2 = u1 and v2 = −v1, so x2 = −x1 and y2 = c(u2 −

1)/(u2 + 1) = c(u1 − 1)/(u1 + 1) = y1, so (x3, y3) = (0, c), which is already
handled above. Assume from now on that P2 �= −P1.

If u2 = u1 and v2 �= −v1 then the standard addition law says that (u1, v1) +
(u2, v2) = (r3, s3) where λ = (3u2

1 + 2(4/e − 2)u1 + 1)/((2/e)v1), r3 = (1/e)λ2 −
(4/e−2)−2u1, and s3 = λ(u1 −r3)−v1. A straightforward calculation, included
in [8], shows that (r3, s3) = (u3, v3).

The only remaining case is that u2 �= u1. The standard addition law says that
(u1, v1)+(u2, v2) = (r3, s3) where λ = (v2 −v1)/(u2 −u1), r3 = (1/e)λ2 − (4/e−
2) − u1 − u2, and s3 = λ(u1 − r3) − v1. Another straightforward calculation,
included in [8], shows that (r3, s3) = (u3, v3).

Conclusion: P3 = P1 + P2 in every case. ��

Proof (of Theorem 3.3). Write ε = dx1x2y1y2. Suppose that ε ∈ {−1, 1}. Then
x1, x2, y1, y2 �= 0. Furthermore dx2

1y
2
1(x

2
2 + y2

2) = c2(dx2
1y

2
1 + d2x2

1y
2
1x

2
2y

2
2) =

c2(dx2
1y

2
1 + ε2) = c2(1 + dx2

1y
2
1) = x2

1 + y2
1 so

(x1 + εy1)2 = x2
1 + y2

1 + 2εx1y1 = dx2
1y

2
1(x

2
2 + y2

2) + 2x1y1dx1x2y1y2

= dx2
1y

2
1(x

2
2 + 2x2y2 + y2

2) = dx2
1y

2
1(x2 + y2)2.

If x2+y2 �= 0 then d = ((x1+εy1)/x1y1(x2+y2))2 so d is a square, contradiction.
Similarly, if x2 − y2 �= 0 then d = ((x1 − εy1)/x1y1(x2 − y2))2 so d is a square,
contradiction. If both x2 + y2 and x2 − y2 are 0 then x2 = 0 and y2 = 0,
contradiction. ��
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4 Efficient Group Operations in Edwards Form

This section presents fast explicit formulas and register allocations for doubling,
mixed addition, etc. on Edwards curves with arbitrary parameters c, d.

As usual we count the number of operations in the underlying field. We keep
separate tallies of the number of general multiplications (each costing M), squar-
ings (each costing S), multiplications by c (each costing C), multiplications
by d (each costing D), and additions/subtractions (each costing a). The costs
M,S,C,D,a depend on the choice of platform, on the choice of finite field, and
on the choice of c and d.

Every Edwards curve can easily be transformed to an isomorphic Edwards
curve over the same field having c = 1 and thus C = 0; see “Notes on isomor-
phisms” in §2. In subsequent sections we assume that c = 1. However, we can
imagine applications in which c �= 1 (for example, a curve with a fairly small c
and with d = 1 could have smaller C + D than an isomorphic curve with c = 1
and d = c4), so we allow arbitrary (c, d) in our explicit formulas.

Addition. To avoid the inversions in the original Edwards addition formulas,
we homogenize the curve equation to (X2 + Y 2)Z2 = c2(Z4 + dX2Y 2). A point
(X1 : Y1 : Z1) satisfying (X2

1 +Y 2
1 )Z2

1 = c2(Z4
1 +dX2

1Y 2
1 ) and Z1 �= 0 corresponds

to the affine point (X1/Z1, Y1/Z1). The neutral element is (0 : c : 1), and the
inverse of (X1 : Y1 : Z1) is (−X1 : Y1 : Z1).

The following formulas, given (X1 : Y1 : Z1) and (X2 : Y2 : Z2), compute the
sum (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2):

A = Z1 · Z2; B = A2; C = X1 · X2; D = Y1 · Y2; E = d · C · D;

F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2) − C − D);

Y3 = A · G · (D − C); Z3 = c · F · G.

One readily counts 10M + 1S + 1C + 1D + 7a. We have saved operations here
by rewriting x1y2 + x2y1 as (x1 + y1)(x2 + y2) − x1x2 − y1y2 and by exploiting
common subexpressions.

The following specific sequence of operations starts with registers R1, R2, R3
containing X1, Y1, Z1 and registers R4, R5, R6 containing X2, Y2, Z2, uses just
two temporary registers R7, R8 and constants c, d, ends with registers R1, R2, R3
containing X3, Y3, Z3 and untouched registers R4, R5, R6 containing X2, Y2, Z2,
and uses 10M + 1S + 1C + 1D + 7a:

R3 ← R3 · R6; R7 ← R1 + R2; R8 ← R4 + R5; R1 ← R1 · R4; R2 ← R2 · R5;

R7 ← R7 · R8; R7 ← R7 − R1; R7 ← R7 − R2; R7 ← R7 · R3; R8 ← R1 · R2;

R8 ← d · R8; R2 ← R2 − R1; R2 ← R2 · R3; R3 ← R2
3; R1 ← R3 − R8;

R3 ← R3 + R8; R2 ← R2 · R3; R3 ← R3 · R1; R1 ← R1 · R7; R3 ← c · R3.

We emphasize that these formulas work whether or not (X1 : Y1 : Z1) = (X2 :
Y2 : Z2). There is no need to go to extra effort to unify the addition formulas
with separate doubling formulas; the addition formulas are already unified. If d
is not a square then the addition law works for all pairs of input points. See §3
for further discussion of the scope of validity of the addition formulas.
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As an alternative, one can obtain A(B−E) and A(B+E) and (B−E)(B+E)
as linear combinations of A2, B2, E2, (A + B)2, (A + E)2. This change replaces
10M+1S by 7M+5S, presumably saving time on platforms where S/M < 0.75.
Note that S/M ≈ 0.67 in [7].

Mixed Addition. “Mixed addition” refers to the case that Z2 is known to be
1. In this case the multiplication A = Z1 · Z2 can be eliminated, reducing the
total costs to 9M + 1S + 1C + 1D + 7a.

Doubling. “Doubling” refers to the case that (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
are known to be equal. In this case we rewrite c(1 + dx2

1y
2
1) as (x2

1 + y2
1)/c using

the curve equation, and we rewrite c(1 − dx2
1y

2
1) as (2c2 − (x2

1 + y2
1))/c:

2(x1, y1) =
(

2x1y1

c(1 + dx2
1y

2
1)

,
y2
1 − x2

1

c(1 − dx2
1y

2
1)

)
=

(
2x1y1c

x2
1 + y2

1
,

(y2
1 − x2

1)c
2c2 − (x2

1 + y2
1)

)
.

We thank Marc Joye for suggesting rewriting c(1+dx2
1y

2
1) as (x2

1+y2
1)/c. We save

further operations by rewriting 2x1y1 as (x1 + y1)2 − x2
1 − y2

1 and by exploiting
common subexpressions. The resulting formulas (with 2H computed as H + H)
use only 3M + 4S + 3C + 6a:

B = (X1 + Y1)2; C = X2
1 ; D = Y 2

1 ; E = C + D; H = (c · Z1)2;

J = E − 2H ; X3 = c · (B − E) · J ; Y3 = c · E · (C − D); Z3 = E · J.

The following specific sequence of operations, starting with X1, Y1, Z1 in
registers R1, R2, R3, changes registers R1, R2, R3 to contain X3, Y3, Z3, using
3M + 4S + 3C + 6a and using just two temporary registers R4, R5:

R4 ← R1 + R2; R3 ← c · R3; R1 ← R2
1; R2 ← R2

2; R3 ← R2
3; R4 ← R2

4;

R3 ← R3 + R3; R5 ← R1 + R2; R2 ← R1 − R2; R4 ← R4 − R5; R3 ← R5 − R3;

R1 ← R3 · R4; R3 ← R3 · R5; R2 ← R2 · R5; R1 ← c · R1; R2 ← c · R2.

The following alternate sequence of operations uses one more addition, totalling
3M + 4S + 3C + 7a, but uses just one additional register R4:

R3 ← c · R3; R4 ← R2
1; R1 ← R1 + R2; R1 ← R2

1; R2 ← R2
2; R3 ← R2

3; R3 ← 2R3;

R4 ← R2 + R4; R2 ← 2R2; R2 ← R4 − R2; R1 ← R1 − R4; R2 ← R2 · R4;

R3 ← R4 − R3; R1 ← R1 · R3; R3 ← R3 · R4; R1 ← c · R1; R2 ← c · R2.

Another option is to scale (X3 : Y3 : Z3) to (X3/c : Y3/c : Z3/c), replacing
two multiplications by c with one multiplication by 1/c; typically 1/c can be
precomputed. Of course, all three multiplications by c can be skipped if c = 1.

Compression. Given x one can easily recover ±y =
√

(c2 − x2)/(1 − c2dx2).

5 Comparison to Previous Addition Speeds

This section compares the speeds of the algorithms in §4 to the speeds of previous
algorithms for elliptic-curve doubling, elliptic-curve mixed addition, etc. The
next three sections perform similar comparisons for higher-level elliptic-curve
operations relevant to various cryptographic applications.
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Level of Detail of the Comparison. We follow most of the literature in ignor-
ing the costs of additions, subtractions, and multiplications by small constants.
We recognize that these costs (and the costs of non-arithmetic operations) can
be quite noticeable in practice, and we plan a more detailed cost evaluation of
the Edwards form along the lines of [7], but for this paper we ignore the costs.

Consider, for example, the usual doubling algorithm for Jacobian coordinates
in the case a4 = −3: there are 4 squarings, 4 general multiplications, 5 additions
and subtractions, and 5 multiplications by the small constants 2, 3, 4, 8, 8. We
summarize these costs as 4M + 4S.

Some algorithms involve multiplications by curve parameters, such as the
parameter d in Edwards curves. Some applications can take advantage of multi-
plying by a constant d, and some applications can choose curves where d is small,
but other applications cannot. To cover both situations we separately tally the
cost D of multiplying by a curve parameter; the reader can substitute D = 0,
D = M, or anything in between.

Each of our tables includes a column “(1, 1)” that substitutes (S,D)≈(M,M),
a column “(0.8, 0.5)” that substitutes (S,D) ≈ (0.8M, 0.5M), and a column
“(0.8, 0)” that substitutes (S,D) ≈ (0.8M, 0M). We sort each table using the
standard, but debatable, approximations (S,D) ≈ (0.8M, 0M). We do not claim
that these approximations are valid for most applications. The order of entries
in our tables can easily be affected by small changes in the S/M ratio, the D/M
ratio, etc.

Algorithms in the Literature. We have built an “Explicit-Formulas
Database” [8] containing, in computer-readable format, various algorithms for
operations on elliptic curves. EFD currently consists of 123 scripts for the Magma
computer-algebra system checking the correctness of algorithms for elliptic
curves in the following forms:

• Projective: A point (x, y) on an elliptic curve y2 = x3 + ax + b, with
neutral element at infinity, is represented as (X : Y : Z) satisfying Y 2Z =
X3 + aXZ2 + bZ3. Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ.

• Jacobian: A point (x, y) on an elliptic curve y2 = x3 + ax + b, with neutral
element at infinity, is represented as (X : Y : Z) satisfying Y 2 = X3 +
aXZ4 + bZ6. Here (X : Y : Z) = (λ2X : λ3Y : λZ) for all nonzero λ.

• Jacobi quartic (with leading and trailing coefficients 1): A point (x, y) on
an elliptic curve y2 = x4+2ax2+1, with neutral element (0, 1), is represented
as (X : Y : Z) satisfying Y 2 = X4 + 2aX2Z2 + Z4. Here (X : Y : Z) =
(λX : λ2Y : λZ) for all nonzero λ.

• Jacobi intersection: A point (s, c, d) on an elliptic curve s2 + c2 = 1,
as2 + d2 = 1, with neutral element (0, 1, 1), is represented as (S : C : D : Z)
satisfying S2 + C2 = Z2, aS2 + D2 = Z2. Here (S : C : D : Z) = (λS : λC :
λD : λZ) for all nonzero λ.

• Hessian: A point (x, y) on an elliptic curve x3 +y3+1 = 3axy, with neutral
element at infinity, is represented as (X : Y : Z) satisfying X3 + Y 3 + Z3 =
3aXY Z. Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ.
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• Doubling-oriented Doche/Icart/Kohel: A point (x, y) on an elliptic
curve y2 = x3 + ax2 + 16ax, with neutral element at infinity, is represented
as (X : Y : Z : Z2) satisfying Y 2 = ZX3 + aZ2X2 + 16aZ3X . Here (X : Y :
Z : Z2) = (λX : λ2Y : λZ : λ2Z2) for all nonzero λ.

• Tripling-oriented Doche/Icart/Kohel: A point (x, y) on an elliptic
curve y2 = x3 + 3a(x + 1)2, with neutral element at infinity, is repre-
sented as (X : Y : Z : Z2) satisfying Y 2 = X3 + 3aZ2(X + Z2)2. Here
(X : Y : Z : Z2) = (λ2X : λ3Y : λZ : λ2Z2) for all nonzero λ.

• Edwards (with c = 1): A point (x, y) on an elliptic curve x2 + y2 = 1 +
dx2y2, with neutral element (0, 1), is represented as (X : Y : Z) satisfying
(X2 + Y 2)Z2 = Z4 + dX2Y 2. Here (X : Y : Z) = (λX : λY : λZ) for all
nonzero λ.

We copied formulas from several sources in the literature; see [24] for an
overview. One particularly noteworthy source is the 1986 paper [16] by Chud-
novsky and Chudnovsky, containing formulas and operation counts for several
forms of elliptic curves: projective, Jacobian, Jacobi quartic, Jacobi intersec-
tion, and Hessian. Liardet and Smart in [34] presented faster algorithms for
Jacobi intersections. Billet and Joye in [9] presented faster algorithms for Ja-
cobi quartics. Joye and Quisquater in [28] pointed out that the Hessian addition
formulas (dating back to Sylvester) could also be used for doublings after a per-
mutation of input coordinates, providing a weak form of unification: specifically,
2(X1 : Y1 : Z1) = (Z1 : X1 : Y1)+(Y1 : Z1 : X1). Brier and Joye in [13] presented
unified addition formulas for projective (and affine) coordinates; see also [12]. Of
course, we also include our own algorithms for Edwards curves.

Chudnovsky and Chudnovsky also pointed out, in the case of Jacobian coor-
dinates, that readdition of a point is less expensive than the first addition. The
addition formulas for (X1 : Y1 : Z1) + (X2 : Y2 : Z2) use 1M + 1S to compute
Z2

2 and Z3
2 ; by caching Z2

2 and Z3
2 one can save 1M + 1S in computing any

(X ′ : Y ′ : Z ′)+ (X2 : Y2 : Z2). We comment that similar savings are possible for
Jacobi intersections and Jacobi quartics.

(Rather than distinguishing readditions from initial additions, Chudnovsky
and Chudnovsky reported speeds for addition and doubling of points repre-
sented as (X : Y : Z : Z2 : Z3). But this representation is wasteful, as pointed
out by Cohen, Miyaji, and Ono in [18]: if (X1 : Y1 : Z1) is used only for a
doubling and not for a general addition then there is no need to compute Z3

1 .
Sometimes coordinates (X : Y : Z : Z2 : Z3) are called “Chudnovsky coordi-
nates” or “Chudnovsky-Jacobian coordinates,” and computing Z2 and Z3 only
when they are needed is called “mixing Chudnovsky coordinates with Jacobian
coordinates.” We prefer to describe the same speedup using the simpler concept
of readditions).

Our operation counts for previous systems are often better than the opera-
tion counts reported in the literature. One reason is that a multiplication can
often be replaced with a squaring, saving M−S. For example, as pointed out in
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[5, pages 16–17], Jacobian doubling with a = −3 uses 3M + 5S rather than the
usual 4M + 4S. As another example, Doche/Icart/Kohel doubling uses 2M +
5S + 2D rather than 3M + 4S + 2D. The Explicit-Formulas Database contains
full justification for each of our operation counts.

Comparison Charts. The following table reports speeds for addition of two
points:

System ADD (1, 1) (0.8, 0.5) (0.8, 0)
Doche/Icart/Kohel 2 12M + 5S + 1D 18M 16.5M 16M
Doche/Icart/Kohel 3 11M + 6S + 1D 18M 16.3M 15.8M
Jacobian 11M + 5S 16M 15M 15M
Jacobi intersection 13M + 2S + 1D 16M 15.1M 14.6M
Projective 12M + 2S 14M 13.6M 13.6M
Jacobi quartic 10M + 3S + 1D 14M 12.9M 12.4M
Hessian 12M 12M 12M 12M
Edwards 10M + 1S + 1D 12M 11.3M 10.8M

Readdition of a point already used in an addition:

System reADD (1, 1) (0.8, 0.5) (0.8, 0)
Doche/Icart/Kohel 2 12M + 5S + 1D 18M 16.5M 16M
Doche/Icart/Kohel 3 10M + 6S + 1D 17M 15.3M 14.8M
Projective 12M + 2S 14M 13.6M 13.6M
Jacobian 10M + 4S 14M 13.2M 13.2M
Jacobi intersection 11M + 2S + 1D 14M 13.1M 12.6M
Hessian 12M 12M 12M 12M
Jacobi quartic 9M + 3S + 1D 13M 11.9M 11.4M
Edwards 10M + 1S + 1D 12M 11.3M 10.8M

Mixed addition (i.e., addition assuming that Z2 = 1):

System mADD (1, 1) (0.8, 0.5) (0.8, 0)
Jacobi intersection 11M + 2S + 1D 14M 13.1M 12.6M
Doche/Icart/Kohel 2 8M + 4S + 1D 13M 11.7M 11.2M
Projective 9M + 2S 11M 10.6M 10.6M
Jacobi quartic 8M + 3S + 1D 12M 10.9M 10.4M
Doche/Icart/Kohel 3 7M + 4S + 1D 12M 10.7M 10.2M
Jacobian 7M + 4S 11M 10.2M 10.2M
Hessian 10M 10M 10M 10M
Edwards 9M + 1S + 1D 11M 10.3M 9.8M

Doubling:

System DBL (1, 1) (0.8, 0.5) (0.8, 0)
Projective 5M + 6S + 1D 12M 10.3M 9.8M
Projective if a = −3 7M + 3S 10M 9.4M 9.4M
Hessian 7M + 1S 8M 7.8M 7.8M
Doche/Icart/Kohel 3 2M + 7S + 2D 11M 8.6M 7.6M
Jacobian 1M + 8S + 1D 10M 7.9M 7.4M
Jacobian if a = −3 3M + 5S 8M 7M 7M
Jacobi quartic 2M + 6S + 2D 10M 7.8M 6.8M
Jacobi intersection 3M + 4S 7M 6.2M 6.2M
Edwards 3M + 4S 7M 6.2M 6.2M
Doche/Icart/Kohel 2 2M + 5S + 2D 9M 7M 6M

Unified addition:
System UNI (1, 1) (0.8, 0.5) (0.8, 0)
Projective 11M + 6S + 1D 18M 16.3M 15.8M
Projective if a = −1 13M + 3S 16M 15.4M 15.4M
Jacobi intersection 13M + 2S + 1D 16M 15.1M 14.6M
Jacobi quartic 10M + 3S + 1D 14M 12.9M 12.4M
Hessian 12M 12M 12M 12M
Edwards 10M + 1S + 1D 12M 11.3M 10.8M

Most of the addition formulas in this last table are strongly unified : they work
without change for doublings. The Hessian addition algorithm is an exception: it
works for doublings only after a permutation of input coordinates. As mentioned
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earlier, the addition algorithm for Edwards curves with non-square d has the
stronger feature of being complete: it works without change for all inputs.

6 Single-Scalar Variable-Point Multiplication

This section compares Edwards curves to previous curve forms for single-scalar
variable-point multiplication: computing nP given an integer n and a curve
point P . This is one of the critical computations in elliptic-curve cryptography;
for example, if n is a secret key and P is another user’s public key then nP is a
Diffie-Hellman secret shared between the two users. The next section considers
variations of the same problem: fixed points P (allowing precomputation of, e.g.,
2128P ), more scalars and points, etc.

See [2] and [22] for surveys of the classic algorithms for scalar multiplication.
We focus on “signed sliding window” algorithms, specifically with “window width
1” (also known as “non-adjacent form” or “NAF”) or “window width 4.” We
also discuss the “Montgomery ladder.”

We make the standard assumption that the input point P has Z = 1. All
additions of P can thus be computed as mixed additions. By scaling other points
to have Z = 1 one can create more mixed additions at the expense of extra field
inversions; for the sake of simplicity we ignore this option in our comparison.

The NAF algorithm, for an average b-bit scalar n, uses approximately b
doublings and approximately (1/3)b mixed additions. So we tally the cost of
1 doubling and 1/3 mixed additions:

System 1 DBL, 1/3 mADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 8M + 6.67S + 1D 15.7M 13.8M 13.3M
Projective if a = −3 10M + 3.67S 13.7M 12.9M 12.9M
Hessian 10.3M + 1S 11.3M 11.1M 11.1M
Doche/Icart/Kohel 3 4.33M + 8.33S + 2.33D 15M 12.2M 11M
Jacobian 3.33M + 9.33S + 1D 13.7M 11.3M 10.8M
Jacobian if a = −3 5.33M + 6.33S 11.7M 10.4M 10.4M
Jacobi intersection 6.67M + 4.67S + 0.333D 11.7M 10.6M 10.4M
Jacobi quartic 4.67M + 7S + 2.33D 14M 11.4M 10.3M
Doche/Icart/Kohel 2 4.67M + 6.33S + 2.33D 13.3M 10.9M 9.73M
Edwards 6M + 4.33S + 0.333D 10.7M 9.63M 9.47M

The “signed width-4 sliding windows” algorithm involves, on average, approx-
imately b − 4.5 doublings, 7b/48 + 5.2 readditions, b/48 + 0.9 mixed additions,
and 0.9 non-mixed additions; e.g., approximately 251.5 doublings, 42.5 readdi-
tions, 6.3 mixed additions, and 0.9 non-mixed additions for b = 256. (Different
variants of the algorithm have slightly different costs; we chose one variant and
measured it for 10000 uniform random 256-bit integers n.) So we tally the cost
of 251.5/256 ≈ 0.98 doublings, 42.5/256 ≈ 0.17 readditions, 6.3/256 ≈ 0.025
mixed additions, and 0.9/256 ≈ 0.0035 non-mixed additions:

System 0.98 DBL, 0.17 reADD, etc. (1, 1) (0.8, 0.5) (0.8, 0)
Projective 7.17M + 6.28S + 0.982D 14.4M 12.7M 12.2M
Projective if a = −3 9.13M + 3.34S 12.5M 11.8M 11.8M
Doche/Icart/Kohel 3 3.84M + 7.99S + 2.16D 14M 11.3M 10.2M
Hessian 9.16M + 0.982S 10.1M 9.94M 9.94M
Jacobian 2.85M + 8.64S + 0.982D 12.5M 10.3M 9.77M
Jacobian if a = −3 4.82M + 5.69S 10.5M 9.37M 9.37M
Doche/Icart/Kohel 2 4.2M + 5.86S + 2.16D 12.2M 9.96M 8.88M
Jacobi quartic 3.69M + 6.48S + 2.16D 12.3M 9.95M 8.87M
Jacobi intersection 5.09M + 4.32S + 0.194D 9.6M 8.64M 8.54M
Edwards 4.86M + 4.12S + 0.194D 9.18M 8.26M 8.16M
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Another approach to high-speed single-scalar multiplication is Montgomery’s
algorithm in [38] for x-coordinate operations on curves in Montgomery form
y2 = x3 +ax2 +x. This algorithm does not support fast addition P, Q �→ P +Q,
does not support arbitrary addition chains, and does not fit into our previous
tables; but it does support fast “differential addition” P −Q, P, Q �→ P +Q, and
therefore fast computation of “differential addition-subtraction chains.”

In particular, the “Montgomery ladder” uses 5M + 4S + 1D per bit of n
to compute P �→ nP . For comparison, the NAF algorithm for Edwards curves
with our formulas takes 6M + 4.33S + 0.333D per bit of n, clearly slower than
5M + 4S + 1D per bit. But signed width-4 sliding windows take only 4.86M +
4.12S + 0.194D per bit for b = 256, saving 0.14M − 0.12S + 0.806D per bit.
Note that Edwards form is less sensitive to a large D than Montgomery form.
Larger b’s favor larger window widths, reducing the number of additions per bit
and making Edwards curves even more attractive.

7 Multiple Scalars, Fixed Points, etc.

General multi-scalar multiplication means computing
∑

niPi given integers ni

and curve points Pi. Specific tasks are obtained by specifying the number of
points, by specifying which points are known in advance, by specifying which
integers are known in advance, etc. See generally [2] and [22].

We focus on four specific algorithms: the popular “joint sparse form” (“JSF”)
algorithm for computing n1P1+n2P2, given b-bit integers n1, n2 and curve points
P1, P2; the accelerated ECDSA verification algorithm in [1, page 9]; batch veri-
fication of elliptic-curve signatures, using the “Small Exponents Test” from [4,
§3.3] and the multi-scalar multiplication algorithm that de Rooij in [20, §4]
credits to Bos and Coster; and computation of nP for a fixed point P , using
a standard “comb” table containing 90 precomputed multiples of P , essentially
2{0,1,2,3,4,5}b/6({0, 1}P+{0, 1}2b/24P +{0, 1}22b/24P+{0, 1}23b/24P ), normalized
to have Z = 1.

The JSF algorithm uses about b doublings, about (1/4)b mixed additions (for
average n1, n2), and about (1/4)b readditions. So we tally the cost of 1 doubling,
1/4 mixed additions, and 1/4 readditions:

System 1 DBL, 1/4 mADD, 1/4 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 10.2M + 7S + 1D 18.2M 16.4M 15.8M
Projective if a = −3 12.2M + 4S 16.2M 15.4M 15.4M
Doche/Icart/Kohel 3 6.25M + 9.5S + 2.5D 18.2M 15.1M 13.8M
Hessian 12.5M + 1S 13.5M 13.3M 13.3M
Jacobian 5.25M + 10S + 1D 16.2M 13.8M 13.2M
Jacobian if a = −3 7.25M + 7S 14.2M 12.8M 12.8M
Doche/Icart/Kohel 2 7M + 7.25S + 2.5D 16.8M 14.1M 12.8M
Jacobi intersection 8.5M + 5S + 0.5D 14M 12.8M 12.5M
Jacobi quartic 6.25M + 7.5S + 2.5D 16.2M 13.5M 12.2M
Edwards 7.75M + 4.5S + 0.5D 12.8M 11.6M 11.3M

The accelerated ECDSA verification algorithm uses about (1/3)b doublings,
about (1/4)b mixed additions, and about (1/4)b readditions. So we tally the cost
of 1/3 doublings, 1/4 mixed additions, and 1/4 readditions:
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System 1/3 DBL, 1/4 mADD, 1/4 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 6.92M + 3S + 0.333D 10.2M 9.48M 9.32M
Projective if a = −3 7.58M + 2S 9.58M 9.18M 9.18M
Doche/Icart/Kohel 2 5.67M + 3.92S + 1.17D 10.7M 9.38M 8.8M
Doche/Icart/Kohel 3 4.92M + 4.83S + 1.17D 10.9M 9.37M 8.78M
Jacobi intersection 6.5M + 2.33S + 0.5D 9.33M 8.62M 8.37M
Jacobian 4.58M + 4.67S + 0.333D 9.58M 8.48M 8.32M
Jacobian if a = −3 5.25M + 3.67S 8.92M 8.18M 8.18M
Hessian 7.83M + 0.333S 8.17M 8.1M 8.1M
Jacobi quartic 4.92M + 3.5S + 1.17D 9.58M 8.3M 7.72M
Edwards 5.75M + 1.83S + 0.5D 8.08M 7.47M 7.22M

The batch-verification algorithm is not as well known as it should be, so
we summarize it here for one variant of the ElGamal signature system. Fix
a hash function H and a base point B on an elliptic curve over a 256-bit
field. Define (R, s) as a signature of a message m under a public key K if
R, K are curve points, s is a 256-bit integer, and sB = H(R, m)R + K. The
batch-verification algorithm is given (e.g.) 100 alleged signatures (Ri, si) of 100
messages mi under 100 keys Ki. The algorithm checks the equations siB =
H(Ri, mi)Ri +Ki by choosing random 128-bit integers vi and checking that the
combination (

∑
i visi)B −

∑
i viH(Rimi)Ri −

∑
i viKi is zero. Computing this

combination — a 201-scalar multiplication with 101 256-bit scalars and 100 128-
bit scalars — takes about 0.8·256 mixed additions and about 24.4·256 readditions
with the Bos-Coster algorithm. So we tally the cost of 0.8 mixed additions and
24.4 readditions:

System 0.8 mADD, 24.4 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Doche/Icart/Kohel 2 299M + 125S + 25.2D 450M 412M 399M
Doche/Icart/Kohel 3 250M + 150S + 25.2D 424M 382M 369M
Projective 300M + 50.4S 350M 340M 340M
Jacobian 250M + 101S 350M 330M 330M
Jacobi intersection 277M + 50.4S + 25.2D 353M 330M 318M
Hessian 301M 301M 301M 301M
Jacobi quartic 226M + 75.6S + 25.2D 327M 299M 286M
Edwards 251M + 25.2S + 25.2D 302M 284M 271M

The 90-point-comb algorithm computes a b-bit fixed-point single-scalar mul-
tiplication as a 24-scalar multiplication with about b/24 doublings and about
15b/64 = 5.625(b/24) mixed additions. So we tally the cost of 1/24 doublings
and 15/64 mixed additions:

System 1/24 DBL, 15/64 mADD (1, 1) (0.8, 0.5) (0.8, 0)
Jacobi intersection 2.7M + 0.635S + 0.234D 3.57M 3.33M 3.21M
Projective 2.32M + 0.719S + 0.0417D 3.08M 2.91M 2.89M
Projective if a = −3 2.4M + 0.594S 2.99M 2.88M 2.88M
Doche/Icart/Kohel 2 1.96M + 1.15S + 0.318D 3.42M 3.03M 2.88M
Jacobi quartic 1.96M + 0.953S + 0.318D 3.23M 2.88M 2.72M
Doche/Icart/Kohel 3 1.72M + 1.23S + 0.318D 3.27M 2.87M 2.71M
Jacobian 1.68M + 1.27S + 0.0417D 2.99M 2.72M 2.7M
Jacobian if a = −3 1.77M + 1.15S 2.91M 2.68M 2.68M
Hessian 2.64M + 0.0417S 2.68M 2.67M 2.67M
Edwards 2.23M + 0.401S + 0.234D 2.87M 2.67M 2.56M

Montgomery’s x-coordinate algorithm in [38] can also be used for multi-scalar
multiplication, but does not seem to provide competitive performance as the
number of scalars increases, despite recent differential-addition-chain improve-
ments in [6] and [14].

8 Countermeasures Against Side-Channel Attacks

The scalar-multiplication algorithms discussed in §6 and §7 are often unaccept-
able for cryptographic hardware and embedded systems. Many secret bits of the
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integers ni are leaked, through the pattern of doublings and mixed additions
and non-mixed additions, to side-channel attacks such as simple power analysis.
See generally [27], [33], and [36].

One response is to use a fixed pattern of doublings, mixed additions, etc., inde-
pendent of the integers ni. Another response is to hide the pattern of doublings,
mixed additions, etc. Some of these responses still leak the Hamming weight in
the single-scalar case, and the total number of operations in the general case, but
this information can be shielded at low cost in other ways. Of course, at a lower
level, field operations must be individually shielded. In particular, an operation
counted as M must be carried out by a multiplication unit whose time, power
consumption, etc. do not depend on the inputs. Even if the inputs happen to
be the same, and even if a faster squaring unit is available, the multiplication
must not be carried out by the squaring unit. An operation counted as S can
be carried out by a faster squaring unit whose time, power consumption, etc. do
not depend on the input.

We focus on four specific side-channel countermeasures: non-sliding windows
with digits {1, 2, 3, 4, 5, 6, 7, 8}; signed width-4 sliding windows with unified
addition-or-doubling formulas; width-4 sliding windows with atomic blocks; and
the Montgomery ladder. For concreteness we consider two examples of primi-
tives: first single-scalar multiplication and then triple-scalar multiplication. Ex-
tra scalars produce extra additions, reducing the importance of doublings, as in
§7; in particular, extra scalars make unified formulas more attractive.

We also discuss differential attacks at the end of the section.

Single-Scalar Multiplication. Non-sliding windows with digits {1, 2, 3, . . . , 8}
use, on average, approximately b−1.9 doublings and b/3+6 readditions for single-
scalar multiplication: e.g., 254.1 doublings and 91.4 readditions for b = 256. So
we tally the cost of 254.1/256 ≈ 0.99 doublings and 91.4/256 ≈ 0.36 readditions:

System 0.99 DBL, 0.36 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 9.27M + 6.66S + 0.99D 16.9M 15.1M 14.6M
Projective if a = −3 11.2M + 3.69S 14.9M 14.2M 14.2M
Doche/Icart/Kohel 3 5.58M + 9.09S + 2.34D 17M 14M 12.9M
Jacobian 4.59M + 9.36S + 0.99D 14.9M 12.6M 12.1M
Hessian 11.2M + 0.99S 12.2M 12M 12M
Doche/Icart/Kohel 2 6.3M + 6.75S + 2.34D 15.4M 12.9M 11.7M
Jacobian if a = −3 6.57M + 6.39S 13M 11.7M 11.7M
Jacobi quartic 5.22M + 7.02S + 2.34D 14.6M 12M 10.8M
Jacobi intersection 6.93M + 4.68S + 0.36D 12M 10.9M 10.7M
Edwards 6.57M + 4.32S + 0.36D 11.2M 10.2M 10M

Signed width-4 sliding windows with unified addition-or-doubling formulas
use, on average, 7b/6+2.5 unified operations for single-scalar multiplication: e.g.,
301.2 unified operations for b = 256. So we tally the cost of 301.2/256 ≈ 1.18
unified operations:

System 1.18 UNI (1, 1) (0.8, 0.5) (0.8, 0)
Projective 13M + 7.08S + 1.18D 21.2M 19.2M 18.6M
Projective if a = −1 15.3M + 3.54S 18.9M 18.2M 18.2M
Jacobi intersection 15.3M + 2.36S + 1.18D 18.9M 17.8M 17.2M
Jacobi quartic 11.8M + 3.54S + 1.18D 16.5M 15.2M 14.6M
Hessian 14.2M 14.2M 14.2M 14.2M
Edwards 11.8M + 1.18S + 1.18D 14.2M 13.3M 12.7M
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Next we consider signed width-4 sliding windows with atomic blocks. In [15],
Chevallier-Mames, Ciet, and Joye presented Jacobian-coordinate formulas using
10 atomic blocks for doubling and 16 atomic blocks for addition. Each block
costs 1M and consists of one field multiplication, one field addition, one field
negation, and another field addition; many of the additions and negations are
dummy operations. Barbosa and Page in [3] presented automatic tools that turn
arbitrary explicit formulas using mM + sS into formulas using m + s atomic
blocks, each consisting of one field multiplication and some number of field ad-
ditions and negations, thus costing 1M. So we tally the cost of 0.98 doublings,
0.17 readditions, 0.025 mixed additions, and 0.0035 non-mixed additions, as in
§6, except that we insist on S = M:

System 0.98 DBL, 0.17 reADD, etc., S = M (1, 1) (1, 0)
Projective 13.5M + 0.982D 14.4M 13.5M
Projective if a = −3 12.5M 12.5M 12.5M
Doche/Icart/Kohel 3 11.8M + 2.16D 14M 11.8M
Jacobian 11.5M + 0.982D 12.5M 11.5M
Jacobian if a = −3 10.5M 10.5M 10.5M
Jacobi quartic 10.2M + 2.16D 12.3M 10.2M
Hessian 10.1M 10.1M 10.1M
Doche/Icart/Kohel 2 10.1M + 2.16D 12.2M 10.1M
Jacobi intersection 9.41M + 0.194D 9.6M 9.41M
Edwards 8.99M + 0.194D 9.18M 8.99M

The Montgomery ladder for single-scalar multiplication naturally uses a fixed
double-add pattern costing only 5M + 4S + 1D per bit. This combination of
side-channel resistance and high speed has already attracted interest; see, e.g.,
[13, §4], [29], and [7].

We comment that, in some situations, the dummy operations in atomic blocks
can be detected by fault attacks. Non-sliding windows (with nonzero digits),
unified formulas, and the Montgomery ladder have the virtue of avoiding dummy
operations.

Triple-Scalar Multiplication. Non-sliding windows with digits {1, 2, 3, . . . , 8}
use approximately 0.99 doublings and 1.08 readditions per bit for triple-scalar
multiplication:

System 0.99 DBL, 1.08 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 17.9M + 8.1S + 0.99D 27M 24.9M 24.4M
Projective if a = −3 19.9M + 5.13S 25M 24M 24M
Doche/Icart/Kohel 3 12.8M + 13.4S + 3.06D 29.2M 25M 23.5M
Doche/Icart/Kohel 2 14.9M + 10.3S + 3.06D 28.4M 24.8M 23.2M
Jacobian 11.8M + 12.2S + 0.99D 25M 22.1M 21.6M
Jacobian if a = −3 13.8M + 9.27S 23M 21.2M 21.2M
Hessian 19.9M + 0.99S 20.9M 20.7M 20.7M
Jacobi intersection 14.9M + 6.12S + 1.08D 22.1M 20.3M 19.7M
Jacobi quartic 11.7M + 9.18S + 3.06D 23.9M 20.6M 19M
Edwards 13.8M + 5.04S + 1.08D 19.9M 18.3M 17.8M

Signed width-4 sliding windows with unified addition-or-doubling formulas
use approximately 1.54 unified operations per bit:

System 1.54 UNI (1, 1) (0.8, 0.5) (0.8, 0)
Projective 16.9M + 9.24S + 1.54D 27.7M 25.1M 24.3M
Projective if a = −1 20M + 4.62S 24.6M 23.7M 23.7M
Jacobi intersection 20M + 3.08S + 1.54D 24.6M 23.3M 22.5M
Jacobi quartic 15.4M + 4.62S + 1.54D 21.6M 19.9M 19.1M
Hessian 18.5M 18.5M 18.5M 18.5M
Edwards 15.4M + 1.54S + 1.54D 18.5M 17.4M 16.6M
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Signed width-4 sliding windows with atomic blocks use approximately 0.98
doublings and 0.56 readditions per bit:

System 0.98 DBL, 0.56 reADD, S = M (1, 1) (1, 0)
Projective 18.6M + 0.98D 19.6M 18.6M
Doche/Icart/Kohel 3 17.8M + 2.52D 20.3M 17.8M
Projective if a = −3 17.6M 17.6M 17.6M
Jacobian 16.7M + 0.98D 17.6M 16.7M
Doche/Icart/Kohel 2 16.4M + 2.52D 18.9M 16.4M
Jacobian if a = −3 15.7M 15.7M 15.7M
Jacobi quartic 14.6M + 2.52D 17.1M 14.6M
Hessian 14.6M 14.6M 14.6M
Jacobi intersection 14.1M + 0.56D 14.7M 14.1M
Edwards 13M + 0.56D 13.6M 13M

The Montgomery ladder can be generalized to a multi-scalar multiplication
method using a fixed pattern of doublings and additions, as discussed in [6] and
[14], but the performance of the generalization degrades rapidly as the number
of scalars increases, as mentioned in §7.

Countermeasures Against Differential and Correlation Side-Channel
Attacks. Curves in Edwards form are compatible with countermeasures against
differential and correlation side-channel attacks:

• Randomized representations of scalars as addition-subtraction chains; see,
e.g., [42] and [34, §4]. Our point representation supports arbitrary additions
and subtractions.

• Randomized scalars; see, e.g., [19, §5.1].
• Randomized coordinates; see, e.g., [19, §5.3]. Our point representation is

redundant and can be scaled freely: (X1 : Y1 : Z1) = (λX1 : λY1 : λZ1) for
any λ �= 0.

• Randomized points, for example computing nP as n(P + Q) − nQ; see,
e.g., [19, §5.2]. Our point representation supports arbitrary additions and
subtractions.

• Randomized curves; see, e.g., [33, §29.2]. Using the generalized addition law
involving c and d one can easily transfer the computation to an isomorphic
curve with c̄ and d̄ satisfying dc4 = d̄c̄4. As another example, one can perform
computations on a 3-isogenous curve.

We suggest using a combination of these countermeasures. In particular, point
randomization or scalar randomization appears to be vital to counteract Goubin-
type attacks.

Curves in Edwards form are also compatible with countermeasures to other
types of attacks discussed in [36].
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13. Brier, É., Joye, M.: Weierstrass elliptic curves and side-channel attacks, in [39], pp.
335–345 (2002), www.geocities.com/MarcJoye/publications.html (Cited in §5,
§8)

14. Brown, D.R.L.: Multi-dimensional Montgomery ladders for elliptic curves (2006),
www.eprint.iacr.org/2006/220 (Cited in §7, §8)

15. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Transactions on Computers 53,
760–768 (2004), www.bcm.crypto.free.fr/pdf/CCJ04.pdf (Cited in §8)

16. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Applied
Mathematics 7, 385–434 (1986), MR 88h:11094. (Cited in §5)

17. Cohen, H., Frey, G. (eds.): Handbook of elliptic and hyperelliptic curve cryptogra-
phy. CRC Press, Boca Raton (2005), MR 2007f:14020. See [22], [24], [33]

18. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates, in [41], pp. 51–65 (1998), MR 1726152, www.math.u-bordeaux.fr/∼
cohen/asiacrypt98.dvi (Cited in §1, §5)

19. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems, in [32], pp. 292–302 (1999) (Cited in §8, §8, §8)

20. de Rooij, P.: Efficient exponentiation using precomputation and vector addition
chains, in [21], pp. 389–399 (1995), MR 1479665. (Cited in §7)

21. De Santis, A. (ed.): Advances in cryptology: EUROCRYPT 1994. LNCS, vol. 950.
Springer, Heidelberg (1995), MR 98h:94001. See [20]

22. Doche, C.: Exponentiation, in [17], pp. 145–168 (2005) MR 2162725. (Cited in §6,
§7)

www.eprint. iacr.org/2002/154
www.eprint.iacr.org/2005/174
file:www.cr.yp.to/talks.html#2001.10.29
file:www.cr.yp.to/talks.html#2001.10.29
file:www.cr.yp.to/papers.html#diffchain
file:www.cr.yp.to/papers.html#diffchain
www.cr.yp.to/papers.html#curve25519
www.eprint.iacr.org/2002/125
www.geocities.com/MarcJoye/publications.html
www.eprint.iacr.org/2006/220
www.bcm.crypto.free.fr/pdf/CCJ04.pdf
file:www.math.u-bordeaux.fr/~cohen/asiacrypt98.dvi
file:www.math.u-bordeaux.fr/~cohen/asiacrypt98.dvi


Faster Addition and Doubling on Elliptic Curves 49

23. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-
positions, in [45], pp. 191–206 (2006) (Cited in §1)

24. Doche, C., Lange, T.: Arithmetic of elliptic curves, in [17], pp. 267–302 (2005), MR
2162729. (Cited in §5)

25. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the Ameri-
can Mathematical Society 44, 393–422 (2007), www.ams.org/bull/2007-44-03/
S0273-0979-07-01153-6/home.html (Cited in §1, §3)

26. Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.): Applied Algebra, Algebraic Algo-
rithms and Error-Correcting Codes. LNCS, vol. 2643. Springer, Heidelberg (2003).
ISBN 3-540-40111-3. MR 2004j:94001. (Sec [9])

27. Joye, M.: Defences against side-channel analysis, in [10], pp. 87–100 (2005) (Cited
in §8)

28. Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks,
in [31], pp. 402–410 (2001). MR 2003k:94032, www.geocities.com/MarcJoye/
publications.html (Cited in §1, §5)

29. Joye, M., Yen, S.-M.: The Montgomery powering ladder, in [30], pp. 291–302 (2003),
www.gemplus.com/smart/rd/publications/pdf/JY03mont.pdf (Cited in §8)
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Abstract. A shuffle is a permutation and re-encryption of a set of ciphertexts.
Shuffles are for instance used in mix-nets for anonymous broadcast and voting.
One way to make a shuffle verifiable is to give a zero-knowledge proof of
correctness. All currently known practical zero-knowledge proofs for correctness
of a shuffle rely on interaction. We give the first efficient non-interactive
zero-knowledge proof for correctness of a shuffle.
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1 Introduction

A shuffle is a permutation and re-encryption of a set of ciphertexts. Shuffles are used
for instance in mix-nets [Cha81], which in turn are used in protocols for anonymous
broadcast and electronic voting. In a typical construction of a mix-net, the users encrypt
messages that they want to publish anonymously. They send the encrypted messages to
a set of mix-net servers that will anonymize the messages. The first server permutes
and re-encrypts the incoming set of messages, i.e., it carries out a shuffle. The next
server takes the output from the first server and shuffles these ciphertexts. The protocol
continues like this until all servers have permuted and re-encrypted the ciphertexts.
After the mixing is complete, the mix-servers may now perform a threshold decryption
operation to get out the permuted set of messages. The idea is that if just one mix-server
is honest, the messages will be randomly permuted and because of the re-encryption
step nobody will know the permutation. The messages therefore appear in random order
and cannot be traced back to the senders.

The mix-net protocol we just described is not secure if one of the mix-servers is
dishonest. A dishonest mix-server could for instance discard some of the ciphertexts and
inject new ciphertexts of its own choosing. It is therefore desirable to make the shuffle
verifiable. An obvious way to make the mix-net verifiable is to ask each mix-server to
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provide a zero-knowledge proof of its shuffle being correct. The zero-knowledge proof
guarantees that the shuffle is correct, yet reveals nothing about the permutation or the
re-encryption and therefore preserves the privacy of the mix-net.

Much research has already been done on making shuffles verifiable by providing in-
teractive proofs of correctness [SK95, Abe99, AH01, Nef01, FS01, Gro03, NSNK06,
NSNK05, Fur05, Wik05, GL07]. The proofs in these papers are all interactive and rely
on the verifier choosing random challenges. Using the Fiat-Shamir heuristic, where the
verifier’s challenges are computed through the use of a cryptographic hash-function,
it is possible to make these proofs non-interactive. As a heuristic argument for the se-
curity of these non-interactive proofs, one can prove them secure in the random oracle
model [BR93], where the cryptographic hash-function is viewed as a random oracle that
outputs a random string. However, Goldwasser and Kalai [GK03] demonstrate that the
Fiat-Shamir heuristic sometimes yields insecure non-interactive proofs. Other works
casting doubt on the Fiat-Shamir heuristic are [CGH98, Nie02, BBP04, CGH04].

It is still an open problem to construct efficient non-interactive zero-knowledge
(NIZK) proofs or arguments for the correctness of a shuffle that do not rely on the ran-
dom oracle model in the security proof. Such NIZK arguments can be used to reduce
the round-complexity of protocols relying on verifiable shuffles. Moreover, interactive
zero-knowledge proofs are usually deniable [Pas03]; a transcript of an interactive proof
can only convince somebody who knows that the challenges were chosen correctly.
NIZK arguments on the other hand are transferable. They consist of a single message
that can be distributed and convince anybody that the shuffle is correct.

Obviously, one can apply general NIZK proof techniques to demonstrate the cor-
rectness of a shuffle. However, reducing the shuffle proof to a general NP statement
and applying a general NIZK to it is very inefficient. Using NIZK techniques devel-
oped by Groth, Ostrovsky and Sahai [GOS06b, GOS06a, Gro06, GS07] one can get
better performance. Some existing interactive zero-knowledge arguments for correct-
ness of a shuffle naturally fit this framework. For example, it is possible to achieve
non-interactive shuffle proofs of size O(n log n) group elements for a shuffle of n ci-
phertexts by using Abe and Hoshino’s scheme [AH01]. This kind of efficiency still falls
short of what can be achieved using interactive techniques and the interactive proofs
or arguments that grow linearly in the size of the shuffle do not seem easy to make
non-interactive using the techniques of Groth, Ostrovsky and Sahai.

OUR CONTRIBUTION. We offer the first (efficient) non-interactive zero-knowledge ar-
gument for correctness of a shuffle. The NIZK argument is in the common reference
string model and has perfect zero-knowledge. The security proof of our scheme does
not rely on the random oracle model. Instead we make use of recently developed tech-
niques for making non-interactive witness-indistinguishable proofs for bilinear groups
by Groth and Sahai [GS07], which draws on earlier work by Groth, Ostrovsky and Sahai
[GOS06b, GOS06a, Gro06].

The NIZK argument we suggest is for the correctness of a shuffle of BBS ciphertexts.
This cryptosystem, suggested by Boneh, Boyen and Shacham [BBS04], has ciphertexts
that consist of 3 group elements for each group element that they encrypt. We consider
statements consisting of n input ciphertexts and n output ciphertexts and the claim
that the output ciphertexts are a shuffle of the input ciphertexts. Our NIZK arguments
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consist of 15n group elements, which is reasonable in comparison with the statement
size, which is 6n group elements.

2 Preliminaries and Notation

In this paper, we work over prime order bilinear groups. In other words, we assume
there is probabilistic polynomial time algorithm G that takes a security parameter k as
input and outputs (p, G, GT , e, g), where:

1. p is a prime
2. G and GT are cyclic groups of order p
3. g is a random generator of G
4. e : G × G → GT is a map with the following properties

– Bilinearity: e(ga, gb) = e(g, g)ab for all a, b ∈ Zp

– Non-degeneracy: e(g, g) generates GT

5. Group operations and the bilinear map are efficiently computable and group mem-
bership is efficiently decidable.

We will for notational simplicity assume that group membership always is checked
when appropriate without writing this explicitly.

2.1 BBS Encryption

The BBS cryptosystem was introduced by Boneh, Boyen and Shacham [BBS04]. We
work in a bilinear group (p, G, GT , e, g). The public key is of the form (f = gx, h =
gy). The secret key is (x, y) ∈ (Z∗

p)
2. To encrypt m ∈ G, we choose random s, t ∈ Zp

and let the ciphertext be

(u, v, w) := (fs, ht, gs+tm).

To decrypt a ciphertext (u, v, w) ∈ G3, we compute

m = u−1/xv−1/yw.

The BBS cryptosystem is semantically secure under chosen plaintext attack if the Deci-
sional Linear Problem is hard in the bilinear group. We refer to Section 3.1 for a formal
definition of this assumption.

2.2 Shuffling BBS Ciphertexts

The BBS cryptosystem is homomorphic in the sense that entrywise multiplication of
two ciphertexts yields an encryption of the product of the plaintexts. We have:

(fs, ht, gs+tm) · (fS , hT , gS+T M) = (fs+S , ht+T , gs+S+t+T mM).

It is easy to make a random shuffle of BBS ciphertexts. Given n input ciphertexts,
we permute them randomly and then re-encrypt them by multiplying them with random
encryptions of 1. Multiplication with encryptions of 1 preserves the plaintexts by the
homomorphic property, but the plaintexts now appear in permuted order. If the Deci-
sional Linear Assumption holds, the BBS cryptosystem is semantically secure and thus
the permutation is hidden. For notational purposes, we will let {xi} denote {xi}n

i=1.
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Definition 1. A shuffle of n BBS ciphertexts {(ui, vi, wi)} is a list of output cipher-
texts {(Ui, Vi, Wi)} such that there exists some permutation π ∈ Sn and randomizers
{(Si, Ti)} so:

(∀i) Ui = uπ(i)f
Si ∧ Vi = vπ(i)h

Ti ∧ Wi = wπ(i)g
Si+Ti .

2.3 Non-interactive Zero-Knowledge Arguments

We will construct non-interactive zero-knowledge (NIZK) arguments for correctness of
a shuffle of n BBS ciphertexts. Informally, such an argument will demonstrate that the
shuffle is correct, but will not reveal anything else, in particular the permutation will
remain secret. We will now define NIZK arguments with perfect completeness, perfect
zero-knowledge and Rco-soundness. The notion of co-soundness in NIZK arguments
for NP-languages was introduced in the full paper of [GOS06b, GOS06a]. Since it is
quite new we will give some further intuition after the formal definitions.

An NIZK argument for R with Rco-soundness consists of six probabilistic polyno-
mial time algorithms: a setup algorithm G, a CRS generation algorithm K , a prover
P , a verifier V and simulators (S1, S2). The setup algorithm G outputs some initial
information gk. The CRS generation algorithm produces a common reference string σ
corresponding to the setup. The prover takes as input (gk, σ, x, w) and produces a proof
ψ. The verifier takes as input (gk, σ, x, ψ) and outputs 1 if the proof is acceptable and 0
if the proof is rejected. The simulator S1 takes as input gk and outputs a simulated com-
mon reference string σ as well as a simulation trapdoor τ . S2 takes as input gk, σ, τ, x
and simulates a proof ψ.

Definition 2. We call (G, K, P, V, S1, S2) an NIZK argument for R with Rco-
soundness if for all non-uniform adversaries A we have completeness, soundness and
zero-knowledge as described below.

Perfect completeness:

Pr
[
gk ← G(1k) ; σ ← K(gk) ; (x, w) ← A(gk, σ) ;

ψ ← P (gk, σ, x, w) : (gk, x, w) /∈ R ∨ V (gk, σ, x, ψ) = 1
]

= 1.

Computational Rco-soundness:

Pr
[
gk ← G(1k) ; σ ← K(gk) ; (x, ψ, wco) ← A(gk, σ) :

V (gk, σ, x, ψ) = 1 ∧ (gk, x, wco) ∈ Rco

]
≈ 0.

Perfect zero-knowledge:

Pr
[
gk ← G(1k) ; σ ← K(gk) ; (St, x, w) ← A(gk, σ) ;

ψ ← P (gk, σ, x, w) : (gk, x, w) ∈ R ∧ A(St, ψ) = 1
]

= Pr
[
gk ← G(1k) ; (σ, τ) ← S1(gk) ; (St, x, w) ← A(gk, σ) ;

ψ ← S2(gk, σ, τ, x) : (gk, x, w) ∈ R ∧ A(St, ψ) = 1
]
.
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We remark that if R ignores gk then R defines a language in NP. The definition given
here generalizes the notion of NIZK arguments by allowing R to depend on a setup.
The setup we have in mind in this paper, is to let gk be a description of a bilinear
group. Given gk describing a bilinear group, the relation R defines a group-dependent
language L. It is common in the cryptographic literature to assume an appropriate finite
group or bilinear group has already been chosen and build protocols in this setting, so
it is natural to consider NIZK arguments for setup-dependent languages as we do here.

Our definition also differs in the definition of soundness, where we let Rco be a
relation that specifies what it means to break soundness. Informally, computational Rco-
soundness can be interpreted as it being infeasible for the adversary to prove x ∈ L if it
knows x ∈ Lco. We remark that the standard definition of soundness is a special type of
Rco-soundness. If R ignores gk and Rco ignores gk, wco and contains all x /∈ L, then
the definition given above corresponds to saying that it is infeasible to construct a valid
proof for x /∈ L.

Let us explain further, why it is worthwhile to consider Rco-soundness in the context
of non-interactive arguments with perfect zero-knowledge instead of just using the stan-
dard definition of soundness. The problem with the standard definition appears when the
adversary produces a statement x and a valid NIZK argument without knowing whether
x ∈ L or x /∈ L. In these cases it may not be possible to reduce the adversary’s output
to a breach of some underlying (polynomial) cryptographic hardness assumption. Abe
and Fehr [AF07] give a more formal argument for this. They consider NIZK arguments
with direct black-box reductions to a cryptographic hardness assumption and show that
only languages in P/poly can have direct black-box NIZK arguments with perfect zero-
knowledge. Since all known constructions of NIZK arguments rely on direct black-box
reductions this indicates that the “natural” definition of soundness is not the right defi-
nition of soundness for perfect NIZK arguments. We note that for NIZK proofs there is
no such problem since they are not perfect zero-knowledge except for trivial languages;
and in the case of interactive arguments with perfect zero-knowledge this problem does
not appear either because the security proofs rely on rewinding techniques which make
it possible to extract a witness for the statement being proven.

The generalization to Rco-soundness makes it possible to get around the problem we
described above. The adversary only breaks Rco-soundness when it knows a witness
wco for x ∈ Lco. By choosing Rco the right way, this witness can make it possible to
reduce a successful Rco-soundness attack to a breach of a standard polynomial crypto-
graphic complexity assumption.

At this point, one may wonder whether it is natural to consider a soundness defini-
tion where we require the adversary to supply some wco. It turns out that many crypto-
graphic schemes assume a setup where such a wco is given automatically. One example
is shuffling that we consider in this paper: when setting up a mix-net using a homomor-
phic threshold cryptosystem, the threshold decryption keys can be used to decrypt the
ciphertexts and check whether indeed they do constitute a shuffle or not.

In our paper, the setup algorithm will be G that outputs a description of a bilinear
group. The relation R will consist of statements that contain a public key for the BBS
cryptosystem using the bilinear group and a shuffle of n ciphertexts. The witness will be



56 J. Groth and S. Lu

the permutation used in the shuffle as well as the randomness used for re-randomizing
the ciphertexts. In other words:

R =
{ (

(p, G, GT , e, g) , (f, h, {(ui, vi, wi)}, {(Ui, Vi, Wi)}) , (π, {(Si, Ti)})
) ∣∣∣

π ∈ Sn ∧ ∀i : Ui = uπ(i)f
Si ∧ Vi = vπ(i)h

Ti ∧ Wi = wπ(i)g
Si+Ti

}
.

The relation Rco will consist of non-shuffles. The witness wco will be the decryption
key, which makes it easy to decrypt and check that there is no permutation matching the
input plaintexts with the output plaintexts. As we remarked above, NIZK arguments for
correctness of a shuffle are usually deployed in a context where such a decryption key
can be found. It is for instance common in mix-nets that the mix-servers have a threshold
secret sharing of the decryption key for the cryptosystem used in the shuffle. NIZK
arguments with Rco-soundness for correctness of a shuffle therefore give us exactly the
guarantee we need for the shuffle being correct.

Rco =
{ (

(p, G, GT , e, g) , (f, h, {(ui, vi, wi)}, {(Ui, Vi, Wi)}) , (x, y)
) ∣∣∣

x, y ∈ Z
∗
p ∧ f = gx ∧ h = gy ∧

∀π ∈ Sn∃i : WiU
−1/x
i V

−1/y
i 
= wπ(i)u

−1/x
π(i) v

−1/y
π(i)

}
.

2.4 Non-interactive Witness-Indistinguishable Proofs for Bilinear Groups

We will employ the non-interactive proof techniques of Groth and Sahai [GS07]. They
allow a prover to give short proofs for the existence of group elements which satisfy
a list of so-called pairing product equations. With their techniques, one can prove that
there exists x1, . . . , xn ∈ G and φ1, . . . , φn ∈ Zp such that they simultaneously satisfy
a set of pairing product equations, for instance

∏n
i=1e(ai, xi) = 1 and

∏n
i=1x

φi

i =
1. One instantiation of their scheme works over bilinear groups where the Decisional
Linear Assumption holds.

Their scheme has the following properties. It has a key generation algorithm that
outputs a common reference string consisting of 8 group elements. These 8 group ele-
ments specify the public key for two commitment schemes: one for group elements in
G and one for exponents in Zp. In their proof, the prover commits to the witness by
committing to the group elements x1, . . . , xn ∈ G and the exponents φ1, . . . , φn ∈ Zp.
After that the prover makes non-interactive proofs that the committed elements satisfy
all the pairing product equations.

There are two ways of setting up the commitment schemes. One can choose the
common reference string such that both commitment schemes are perfectly binding, in
which case the proof has perfect completeness and perfect soundness. With a perfect
binding key, the commitments to group elements are BBS ciphertexts, so we can decrypt
the commitments to learn x1, . . . , xn.

Another way to choose the common reference string is to have perfectly hiding
commitment schemes. In this case, we can set up the commitment to the exponents
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φ1, . . . , φn as a perfect trapdoor commitment scheme. We can create a commitment
and two different openings to respectively 0 and 1 for instance. When we have per-
fectly hiding keys in the common reference string, the non-interactive proof has
perfect completeness and perfect witness-indistinguishability. In other words, an ad-
versary that sees a proof for a statement for which two or more witnesses exist, gets
no information whatsoever as to whether one witness or the other was used in the
non-interactive proof.

We write (σbinding, ξextraction) ← Kbinding(p, G, GT , e, g), when creating a per-
fectly binding common reference string with extraction key ξextraction for the commit-
ments to group elements in G. We write (σhiding, τtrapdoor) ← Khiding(p, G, GT , e, g)
when creating a perfect hiding common reference string with trapdoor τtrapdoor for
the commitments to exponents in Zp. Perfect binding common reference strings and
perfect hiding common reference strings are computationally indistinguishable if the
Decisional Linear Assumption holds for the bilinear group we are working over.

3 Cryptographic Assumptions

The security of our NIZK argument for correctness of a shuffle will be based on three as-
sumptions: the Decisional Linear Assumption, the Permutation Pairing Assumption and
the Simultaneous Pairing Assumption. The BBS cryptosystem and the non-interactive
proofs of Groth and Sahai rely on the Decisional Linear Assumption. The other two
assumptions are needed for the NIZK argument for correctness of a shuffle. We will
now formally define these assumptions and for the two new assumptions give heuristic
reasons for believing them by showing that they hold in the generic group model.

3.1 Decisional Linear Assumption

We first recap the Decisional Linear Problem introduced by Boneh, Boyen and Shacham
[BBS04]: Given gk = (p, G, GT , e, g) and f, h, g, fs, ht, gz ∈ G, decide if z = s + t.

Definition 3. The Decisional Linear Assumption holds for G if for all non-uniform
polynomial time adversaries A we have:

Pr
[
gk := (p, G, GT , e, g) ← G(1k) ; f, h

R← G ;

s, t
R← Zp : A(gk, f, h, fs, ht, gs+t) = 1

]

≈ Pr
[
gk := (p, G, GT , e, g) ← G(1k) ; f, h

R← G ;

s, t, z
R← Zp : A(gk, f, h, fs, ht, gz) = 1

]
.

3.2 Permutation Pairing Assumption

The Permutation Pairing Problem is: Given (p, G, GT , e, g) and g1 := gx1 , . . . , gn :=
gxn , γ1 := gx2

1 , . . . , γn := gx2
n for random x1, . . . , xn ∈ Zp find elements

a1, . . . , an, b1, . . . , bn ∈ G such that the following holds:
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n∏
i=1

ai =
n∏

i=1

gi

n∏
i=1

bi =
n∏

i=1

γi

e(ai, ai) = e(g, bi) for i = 1 . . . n

{ai} is not a permutation of {gi}

Note that if {ai} is a permutation of {gi}, then by the third equation {bi} is {γi}
permuted in the same way.

Observe that permutations trivially satisfy the first three conditions and not the
fourth, but one could imagine some particular choice of the {ai} and {bi} would satisfy
all four conditions. The Permutation Pairing Assumption holds if finding such a clever
choice is computationally infeasible.

Definition 4. The Permutation Pairing Assumption holds if for all non-uniform poly-
nomial time adversaries A we have:

Pr
[
gk := (p, G, GT , e, g) ← G(1k) ; x1, . . . , xn

R← Zp ;

{gi} := {gxi} ; {γi} := {gx2
i } ; ({ai}, {bi}) ← A(gk, {gi}, {γi}) :

n∏
i=1

aig
−1
i = 1 ∧

n∏
i=1

biγ
−1
i = 1 ∧ (∀i) e(ai, ai) = e(g, bi) ∧

{ai} is not a permutation of {gi}
]

≈ 0

3.3 Simultaneous Pairing Assumption

The Simultaneous Pairing Problem is: Given (p, G, GT , e, g) and g1 := gx1 , . . . , gn :=
gxn , γ1 := gx2

1 , . . . , γn := gx2
n for random x1, . . . , xn ∈ Zp find a non-trivial set of

elements μ1, . . . , μn ∈ G such that the following holds:
n∏

i=1

e(μi, gi) = 1 ∧
n∏

i=1

e(μi, γi) = 1.

The intuition behind this problem is that it may be hard to find a set of non-trivial ele-
ments to simultaneously satisfy two pairing products of “independent” sets of elements.
The Simultaneous Pairing Assumption holds if this problem is hard.

Definition 5. The Simultaneous Pairing Assumption holds if for all non-uniform poly-
nomial time adversaries A we have:

Pr
[
gk := (p, G, GT , e, g) ← G(1k) ; x1, . . . , xn

R← Zp ; {gi} := {gxi} ;

{γi} := {gx2
i } ; {μi} ← A(gk, {gi}, {γi}) :

n∏
i=1

e(μi, gi) = 1 ∧
n∏

i=1

e(μi, γi) = 1 ∧ ∃i : μi 
= 1
]

≈ 0
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3.4 Our Assumptions in the Generic Group Model

We will provide heuristic evidence for our new assumptions by showing that they hold
in the generic group model [Sho97]. In this model the adversary is restricted to using
only generic bilinear group operations and evaluating equality of group elements.

We accomplish this restriction of the adversary by using a model of the bilinear group
where we encode the group elements (or equivalently we encode their discrete loga-
rithms) as unique random strings and letting the adversary see only this representation
of the group elements. We then provide the adversary with a bilinear group operation
oracle such that it can still perform group operations.

Let us give a few more details. We start by picking a random bilinear group
(p, G, GT , e, g) ← G(1k), which the adversary gets as input. We also pick random
bijections [·] : Zp → G and [[·]] : Zp → GT . We give the adversary access to an oracle
that operates as follows:

– On input (exp, a) return [a].
– On input (mult, [a], [b]) return [a + b].
– On input (mult, [[a]], [[b]]) return [[a + b]].
– On input (map, [a], [b]) return [[ab]].

This oracle corresponds to the effect exponentiations, group operations and using the
bilinear map have on the discrete logarithms of group elements. Please note that other
operations such as inversion of a group element for instance can be easily computed
using these group operations since the group order p is known to the adversary.

Theorem 1. The Permutation Pairing Assumption holds in the generic group model.

Proof. Let us first formulate the Permutation Pairing Assumption in the generic group
model. We generate (p, G, GT , e, g) ← G(1k). We pick [·] : Zp → G and [[·]] : Zp →
GT as random bijective functions. We pick x1, . . . , xn ← Zp. We now give the ad-
versary A the following input: (p, G, GT , e, g, {[xi]}, {[x2

i ]}) and access to the bilinear
group operation oracle. A is computationally unbounded but can only make a polymo-
mial number of queries to the bilinear group operation oracle. The challenge for A is to
find {([ai], [bi])} so:

n∑
i=1

ai =
n∑

i=1

xi ∧
n∑

i=1

bi =
n∑

i=1

x2
i ∧ ∀i : a2

i = bi ∧ ∀π∃i : ai 
= xπ(i).

In the generic group model we can without loss of generality assume the adversary
computes [ai], [bi] via repeated calls to the group operation oracle. This means we have

ai =
n∑

j=1

xjaij +
n∑

j=1

x2
jαij + ri, bi =

n∑
j=1

xjbij +
n∑

j=1

x2
jβij + si

for values {aij}, {αij}, {ri}, {bij}, {βij}, {si} that can be deduced from the calls to
the group operation oracle.
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Consider now the first conditions on the adversary being successful:

n∑
i=1

ai −
n∑

i=1

xi = 0 ∧
n∑

i=1

bi −
n∑

i=1

x2
i = 0 ∧ ∀i : a2

i = bi.

These are polynomials over unknowns x1, . . . , xn that are randomly chosen. The ad-
versary only has indirect access to them by using the bilinear group operation oracle.
The adversary can choose two strategies for satisfying the equations. It can pick the
values aij , αij , ri, bij , βij , si so the polynomials are identical zero in Zp[x1, . . . , xn] or
it can hope to be lucky that the polynomials evaluate to zero on the random choice of
x1, . . . , xn ← Zp. The Schwartz-Sippel theorem tells us that a guess according to the
latter strategy has only negligible probability of being successful. Since the adversary
can access the bilinear group operation oracle only a polynomial number of times, it
can only verify a polynomial number of guesses, so the latter strategy has negligible
success probability.

Let us now see what happens if the adversary follows the first strategy. The first
equation gives us:

n∑
i=1

⎛
⎝

n∑
j=1

xjaij +
n∑

j=1

x2
jαij + ri

⎞
⎠ −

n∑
i=1

xi = 0.

Viewed as a multivariate polynomial equation over vairables x1, . . . , xn we must have
for all j,

∑n
i=1aij = 1 and

∑n
i=1αij = 0 and

∑n
i=1ri = 0.

Next, if
∏n

i=1bi =
∑n

i=1x
2
i then it must be the case that

n∑
i=1

⎛
⎝

n∑
j=1

xjbij +
n∑

j=1

x2
jβij + si

⎞
⎠ −

n∑
i=1

x2
i = 0.

When viewed as a polynomial in x1, . . . , xn, we see that we must have for all j,∑n
i=1bij = 0 and

∑n
i=1βij = 1 and

∑n
i=1si = 0.

Finally, if (∀i) a2
i = bi then it must be the case that

n∑
j=1

n∑
k=1

xjxkaijaik +
n∑

j=1

n∑
k=1

x2
jx

2
kαijαik + r2

i

+2
n∑

j=1

n∑
k=1

xjx
2
kaijαik + 2

n∑
j=1

xjaijri + 2
n∑

j=1

x2
jαijri

=
n∑

j=1

xjbij +
n∑

j=1

x2
jβij + si

Once again by viewing this as a polynomial equation, for all i we must have that
aijαik = 0. Also aijaik = 0 when j 
= k, r2

i = si, bij = 2aijri, βij = a2
ij + 2αijri.

We now consider what the matrix A = (aij) must be. Each row A has at most one
non-zero entry by the fact that aijaik = 0 when j 
= k. Also, each column must sum
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to 1 by
∑n

i=1aij = 1. These two facts combined implies A to have exactly one 1 in each
column and each row, thus A is a permutation matrix. Since permutation matrices are in-
vertible, from the equations

∑n
i=1aijαik =

∑n
i=10 = 0,

∑n
i=1aijri = 1

2

∑n
i=1bij = 0,

we obtain that αik = 0 and ri = 0. Therefore, the {ai} are a permutation of
the {xi}. ��

Theorem 2. The Simultaneous Pairing Assumption holds in the generic group model.

Proof. Let us first formulate the Simulatenous Pairing Assumption in the generic
group model. We generate (p, G, GT , e, g) ← G(1k). We pick [·] : Zp → G and
[[·]] : Zp → GT as random bijective functions. We pick x1, . . . , xn ← Zp. We now
give the adversary A the following input: (p, G, GT , e, g, {[xi]}, {[x2

i ]}) and access to
the bilinear group operation oracle. A is computationally unbounded but can only make
a polymomial number of queries to the bilinear group operation oracle. The challenge
for A is to find non-trivial {[mui]} so

∑n
i=1 μixi = 0 and

∑n
i=1 μix

2
i = 0. The Si-

multaneous Pairing Assumption in the generic model says that any adversary A has
negligible probability of succeeding in this game.

Without loss of generality we can think of A as being restricted to computing {[μi]}
using the bilinear group operation oracle only. This means it chooses

μi =
n∑

j=1

xjaij +
n∑

j=1

x2
jαij + ri

for known aij , αij and ri.
A successful adversary chooses these values so both of these equations are satisfied:

n∑
i=1

⎛
⎝

n∑
j=1

xjaij +
n∑

j=1

x2
jαij + ri

⎞
⎠ xi = 0

n∑
i=1

⎛
⎝

n∑
j=1

xjaij +
n∑

j=1

x2
jαij + ri

⎞
⎠ x2

i = 0

We can view them as multi-variate polynomials in x1, . . . , xn which are chosen at ran-
dom. The adversary never sees x1, . . . , xn, it only has indirect access to them through
the group operation oracle. There are two strategies the adversary can use: It can select
aij , αij , ri so the two polynomials have zero-coefficients or it can hope to be lucky that
the random choice of x1, . . . , xn actually evaluates zero. The Schwartz-Sippel theorem
tells us that a guess has negligible chance of being correct when x1, . . . , xn are chosen
at random from Zp. Since the adversary can access the bilinear group operations oracle
only a polynomial number of times, it can only verify the correctness of a polynomial
number of guesses. The latter strategy therefore has negligible success-probability.

Let us now consider the former strategy, where the adversary chooses the coefficients
of the polynomials in Zp[x1, . . . , xn] so they are the zero-polynomials. Looking at the
coefficients for the first polynomial we see that we must have ri = 0 and αij = 0.
Looking at the coefficients of the second polynomial we see that aij = 0. The adversary
can therefore only find the trivial solution μ1 = . . . = μn = 0. ��
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4 NIZK Argument for Correctness of a Shuffle

We will now present an NIZK argument for correctness of a shuffle of BBS ciphertexts.
The common reference string contains 2n elements {gi := gxi} and {γi := gx2

i } for
random x1, . . . , xn ∈ Zp. The statement contains a public key (f, h) and a set of n
input ciphertexts {(ui, vi, wi)} and a set of output ciphertexts {(Ui, Vi, Wi)} that may
be a shuffle of the input ciphertexts.

The first part of the NIZK argument consists of setting up pairing product equations
that can only be satisfied if indeed we are dealing with a shuffle. The prover will use
a set of variables {ai} and {bi} in these pairing product equations. She will set up
a Permutation Pairing Problem over these variables to guarantee that {(ai, bi)} are a
permutation of {(gi, γi)}.

Assume now that {(ai, bi)} are a permutation of {(gi, γi)}. Let {mi} be the plain-
texts of {(ui, vi, wi)} and {Mi} be the plaintexts of {(Ui, Vi, Wi)}. The prover also
sets up equations such that

∏n
i=1e(ai, Mi) =

∏n
i=1e(gi, mi) and

∏n
i=1e(bi, Mi) =∏n

i=1e(γi, mi). Since {(ai, bi)} are a permutation of {(gi, γi)}, then there exists a per-
mutation π ∈ Sn so

n∏
i=1

e(gi, Mπ−1(i)m
−1
i ) = 1 ∧

n∏
i=1

e(γi, Mπ−1(i)m
−1
i ) = 1.

This is a Simultaneous Pairing Problem, and assuming the hardness of this problem we
will have Mπ−1(i) = mi for all i.

To give further intuition of the construction, consider a naı̈ve protocol where the
prover sends the permutation directly to the verifier. Denote ai := gπ(i) and bi := γπ(i).
With Ui = uπ(i)f

Si , Vi = vπ(i)h
Ti , Wi = wπ(i)g

Si+Ti we have:

n∏
i=1

e(ai, uπ(i)f
Si) = e(

n∏
i=1

aSi

i , f)
n∏

i=1

e(gπ(i), uπ(i)) = e(cu, f)
n∏

i=1

e(gi, ui)

n∏
i=1

e(ai, vπ(i)h
Ti) = e(

n∏
i=1

aSi

i , h)
n∏

i=1

e(gπ(i), vπ(i)) = e(cv, h)
n∏

i=1

e(gi, vi)

n∏
i=1

e(ai, wπ(i)g
Si+Ti) = e(

n∏
i=1

aSi

i , g)
n∏

i=1

e(gπ(i), wπ(i)) = e(cw, g)
n∏

i=1

e(gi, wi),

where cu =
∏n

i=1a
Si

i , cv =
∏n

i=1a
Ti

i and cw =
∏n

i=1a
Si+Ti

i . By construction, cw =
cucv . In addition, we may look at the equations by pairing the {bi} with the Ui, Vi,
and Wi. From this we obtain another three equations, and we define new elements
c′u =

∏n
i=1b

Si

i , c′v =
∏n

i=1b
Ti

i , c′w = c′uc′v. In total we have six equations:
∏n

i=1e(ai, Ui) =e(cu, f)
∏n

i=1e(gi, ui)
∏n

i=1e(bi, Ui) =e(c′u, f)
∏n

i=1e(γi, ui)∏n
i=1e(ai, Vi) =e(cv, h)

∏n
i=1e(gi, vi)

∏n
i=1e(bi, Vi) =e(c′v, h)

∏n
i=1e(γi, vi)∏n

i=1e(ai, Wi)=e(cucv, g)
∏n

i=1e(gi, wi)
∏n

i=1e(bi, Wi)=e(c′uc′v, g)
∏n

i=1e(γi, wi)

A naı̈ve non-interactive argument would be to let the prover sends π, cu, cv, c
′
u, c′v to the

verifier. The verifier can check the six above equations himself for the verification step.
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The naive protocol described is complete by observation. We also have the following
lemma:

Lemma 1. The naı̈ve protocol is Rco-sound.

Proof. The idea behind Rco-soundness is to look at the underlying messages. If a dis-
honest prover were to convince a verifier with a non-shuffle as well as produce a witness
(decryption key) wco = (x, y), we can “decrypt” the equations checked by the verifier.

Namely, if we let mi = u
−1/x
i v

−1/y
i wi and Mi = U

−1/x
i V

−1/y
i Wi, then by applying

the same algebraic manipulations to the equations, we obtain:

[ n∏
i=1

e(ai, Ui)
]−1/x

·
[ n∏

i=1

e(ai, Vi)
]−1/y

·
[ n∏

i=1

e(ai, Wi)
]

=
[
e(cu, f)

n∏
i=1

e(gi, ui)
]−1/x

·
[
e(cv, h)

n∏
i=1

e(gi, vi)
]−1/y

·
[
e(cucv, g)

n∏
i=1

e(gi, wi)
]
.

This gives us
∏n

i=1e(ai, Mi) = e(c−1
u , g)e(c−1

v , g)e(cucv, g)
∏n

i=1e(gi, mi) =∏n
i=1e(gi, mi).
In a similar way we can show that

∏n
i=1e(bi, Mi) =

∏n
i=1e(γi, mi). Observe that

the equations may be rearranged to be
∏n

i=1e(μi, gi) = 1 and
∏n

i=1e(μi, γi) = 1
where μi = mi/Mπ−1(i). By the Simultaneous Pairing Assumption, it it is infeasible
for the prover to find non-trivial μi satisfying these two equations and thus we reach a
contradiction. ��

The downfall of the naı̈ve protocol is that it completely reveals the permutation. In the
actual NIZK argument, we will instead argue that there exist elements {ai} and {bi}
that satisfy the equations above rather than revealing them directly. We accomplish this
by making a GS proof for the set of pairing product equations given earlier. Our NIZK
argument is described in Figure 1.

Theorem 3. The protocol in Figure 1 is a non-interactive perfectly complete, com-
putationally Rco-sound, perfect zero-knowledge argument of a correct shuffle of BBS
ciphertexts under the Decisional Linear Assumption, Permutation Pairing Assumption,
and Simultaneous Pairing Assumption.

Proof. As we see in the protocol, the prover can generate the witness for the GS proof
herself. Perfect completeness follows from the perfect completeness of the GS proofs.

We will now prove that we have perfect zero-knowledge. The simulator S = (S1, S2)
will generate a transcript as described in Figure 2. By construction, the common refer-
ence strings are generated in the same way. The only difference between a real proof
and a simulated proof is the witness given to the GS proof. By the perfect witness-
indistinguishability of the GS proof, real proofs and simulated proofs are perfectly in-
distinguishable.

It remains to prove that we have computational Rco-soundness. The adversary is
trying to output a public key (f, h) and a non-shuffle of n input ciphertexts and n output
ciphertexts, a convincing NIZK argument ψ of it being a shuffle, and a decryption key
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Setup: Generate a bilinear group gk := (p, G, GT , e, g) ← G(1k).
Common reference string: Generate a perfectly hiding common reference string

(σhiding, τtrapdoor) ← Khiding(p,G, GT , e, g) to get perfectly
witness-indistinguishable GS proofs. Pick random x1, . . . , xn ← Zp and compute

∀i : gi := gxi , γi := gx2
i .

The common reference string is σ := (σhiding, {gi}, {γi}).
Shuffle statement: Public key (f, h) for the BBS cryptosystem. Input ciphertexts

{(ui, vi, wi)} and output ciphertexts {(Ui, Vi, Wi)}.
Prover’s input: Permutation π ∈ Sn and randomizers {(Si, Ti)} so

Ui = uπ(i)f
Si , Vi = vπ(i)h

Ti and Wi = wπ(i)g
Si+Ti for all i.

Proof: The prover sets up the following pairing product equations:

φ = 1 mod p, dφ
u = 1, dφ

v = 1, dφ
w = 1, (d′

u)φ = 1, (d′
v)φ = 1, (d′

w)φ = 1,

n∏
i=1

aφ
i g−φ

i = 1,
n∏

i=1

bφ
i γ−φ

i = 1, (∀i) e(ai, ai) = e(g, bi)

e(du, g)
∏

e(ai, Ui)=e(cu, f)
∏

e(gi, ui) e(d′
u, g)

∏
e(bi, Ui)=e(c′

u, f)
∏

e(γi, ui)
e(dv, g)

∏
e(ai, Vi) = e(cv, h)

∏
e(gi, vi) e(d′

v, g)
∏

e(bi, Vi) = e(c′
v, h)

∏
e(γi, vi)

e(dw, g)
∏

e(ai, Wi) = e(cucv, g)
∏

e(gi, wi)
e(d′

w, g)
∏

e(bi, Wi) = e(c′
uc′

v, g)
∏

e(γi, wi)

A witness for satisfiability of the equations can be computed as:

φ := 1, cu :=
n∏

i=1

aSi
i , cv :=

n∏
i=1

aTi
i , c′

u :=
n∏

i=1

bSi
i , c′

v :=
n∏

i=1

bTi
i ,

∀i : ai := gπ(i), bi := γπ(i),

and setting the remaining variables to 1. The prover generates a GS proof ψ that there
exists an exponent φ ∈ Zp and group elements
{ai}, {bi}, cu, cv , c′

u, c′
v, du, dv, dw, d′

u, d′
v, d′

w that satisfy the equations.
Verification: The verifier accepts the non-interactive argument if and only if the GS proof

ψ is valid.

Fig. 1. NIZK Argument for Correct Shuffle of BBS Ciphertexts

(x, y). The relation Rco is a polynomial time decidable relation that tests that (x, y) is
the decryption key for (f, h) and that indeed we do have a non-shuffle.

We will change the way we construct the common reference string for the NIZK
argument. Instead of generating σ = (σhiding, {gi}, {γi}) as in the scheme, we return
σ := (σbinding, {gi}, {γi}) where (σbinding, ξextraction) ← Kbinding(p, G, GT , e, g).
By the Decisional Linear Assumption, perfect binding and perfect hiding common ref-
erence strings for the GS proofs are computationally indistinguishable, so the adver-
sary’s success probability only changes negligibly.

The commitment with trivial randomness is now a perfectly binding commitment
to the exponent φ = 1. The GS proof is a perfect proof of knowledge of variables
cu, cv, c

′
u, c′v, du, dv, dw, d′u, d′v, d′w, {ai}, {bi} satisfying the equations, which can be

extracted using ξextraction. Since φ = 1, the equations demonstrate that du = dv =
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dw = d′u = d′v = d′w = 1. The elements {ai}, {bi} satisfy a Permutation Pairing
problem and the hardness of this problem tells us that with overwhelming probability
they are a permutation of {(gi, γi)}. Lemma 1 now gives us that there is negligible
probability of cu, cv, c

′
u, c′v, {ai}, {bi} satisfying the equations and at the same time the

input and output ciphertexts not being a shuffle. ��

Simulated common reference string: The simulator S1 runs the common reference string
generation protocol. It sets τ := (τtrapdoor, x1, . . . , xn) and outputs (σ, τ ).

Shuffle statement: Public key (f, h) for the BBS cryptosystem. Input ciphertexts
{(ui, vi, wi)} and output ciphertexts {(Ui, Vi, Wi)}.

Simulator’s input: The simulator S2 receives the shuffle statement and (σ, τ ).
Simulated proof: Create a trapdoor commitment with double opening to φ = 0 and φ = 1.

Compute

du :=
n∏

i=1

uxi
i , dv :=

n∏
i=1

vxi
i , dw :=

n∏
i=1

wxi
i ,

d′
u :=

n∏
i=1

u
x2

i
i , d′

v :=
n∏

i=1

v
x2

i
i , d′

w :=
n∏

i=1

w
x2

i
i .

Set the remaining variables to 1 and create a perfect witness indistinguishable GS proof
ψ that there exists an exponent φ ∈ Zp and group elements
{ai}, {bi}, cu, cv , c′

u, c′
v, du, dv, dw, d′

u, d′
v, d′

w that satisfy the required equations.

Fig. 2. Simulated Argument for Correct Shuffle of BBS Ciphertexts

SIZE OF THE NIZK ARGUMENT. To commit to φ = 1 we can use trivial randomness,
so the commitment to φ does not have to be included in the proof – the verifier can
compute it himself. There are 2n + 10 variables in G and it takes 3 group elements for
each commitment, so the commitments contribute a total of 6n + 30 group elements
towards the proof size.

The first 6 equalities cost 9 group elements each for a total of 54 group elements.
The next two multi-exponentiation equations cost 9 group elements each for a total of
18 group elements. We then have n pairing product equations of the form e(ai, ai) =
e(g, bi) which cost a total of 9n group elements. Finally, we have 6 pairing product
equations, where one side of the pairings is publicly known and one side is committed.
They each cost 3 group elements for a total of 18 group elements.

The total size of the proof is 15n + 120 group elements. The size of the common
reference string is 2n + 8 group elements.1

We remark that the cost of shuffling multiple sets of ciphertexts with the same per-
mutation may be amortized to a constant number of group elements. The first set of
ciphertexts costs 15n + 120 group elements. But we only need to commit to ai, bi and
prove e(ai, ai) = e(g, bi) once. Regardless of n, the subsequent shuffles under the same
permutation only cost 120 group elements each.

1 One could wish for a common reference string that has only a constant number of group
elements, but currently even all known 3-move zero-knowledge arguments have common ref-
erence strings of size Ω(n).



66 J. Groth and S. Lu

5 Remark on Shuffling BGN Ciphertexts

Another homomorphic cryptosystem over bilinear groups was introduced by Boneh,
Goh and Nissim [BGN05]. This cryptosystem is based on the Subgroup Decision As-
sumption over composite order bilinear groups. The ciphertexts consist of one group
element each, so with n input ciphertexts and n outputs ciphertexts, the shuffle state-
ment contains 2n group elements and another group elements to describe the public
key. The techniques we have presented in this paper can also be used to shuffle BGN
ciphertexts. Assuming the Subgroup Decision Assumption holds and assuming suitable
variants of the Permutation Pairing and the Simultaneous Pairing Assumptions hold,
we can make an NIZK argument for correctness of a shuffle consisting of 3n + O(1)
group elements. Since the Subgroup Decision Assumption only holds when factoring
the group order is hard, the group elements in this scheme are quite large though.

While this scheme may have applications, we note that there is one subtle issue that
one must be careful about. The GS proofs can be instantiated with bilinear groups of
composite order where the Subgroup Decision Problem is hard, but they are only secure
if the factorization of the composite group is unknown. The decryption key for the
cryptosystem is the factorization of the group order. The Rco-soundness of the scheme
therefore only holds as long as the adversary does not know the decryption key for the
cryptosystem. The NIZK argument is therefore not Rco-sound as defined in this paper,
albeit it will satisfy a suitably weakened Rco-soundness definition.
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Abstract. We provide a formal model for identification schemes. Under
this model, we give strong definitions for security and privacy. Our model
captures the notion of a powerful adversary who can monitor all commu-
nications, trace tags within a limited period of time, corrupt tags, and get
side channel information on the reader output. Adversaries who do not
have access to this side channel are called narrow adversaries. Depending
on restrictions on corruption, adversaries are called strong, destructive,
forward, or weak adversaries. We derive some separation results: strong
privacy is impossible. Narrow-strong privacy implies key agreement. We
also prove some constructions: narrow-strong and forward privacy based
on a public-key cryptosystem, narrow-destructive privacy based on a
random oracle, and weak privacy based on a pseudorandom function.

1 The Privacy Issue in RFID Schemes

RFID protocols are used to identify cheap tags through wireless channels. How-
ever, putting tags in wearable items leads to privacy concerns. Although several
privacy models exist so far, all have their own limitations, and finally, the classes
of protocols that achieve privacy for one model or the other are not always com-
parable. A widely accepted flexible model permitting to establish a common
measure of the performance of identification protocol is still under construction.
We aim at contributing to this effort. To do so, we propose formal definitions
of RFID schemes and adversaries and consider a twofold characterization of a
scheme in terms of security and privacy. The former assesses the soundness of
tag authentication. The latter property is for the ability to resist to adversaries
aiming at identifying, tracing, or linking tags.

In a nutshell, we formalize several types of privacy and study inherent limi-
tations for RFID applications. We discuss which restrictions we can assume re-
garding tag corruption and availability of side channels. We show how to achieve
those levels of privacy and what must be used in terms of conventional vs. public-
key cryptography or stateless vs. rewritable tags. We show that the strongest
possible level of privacy implies key agreement, thus mandating the use of some
public-key cryptography techniques. We present a simple protocol for that.

We assume a powerful adversary who can control all communications and
interfere with the system. Cheap tags are not tamper-resistant so we analyze
the ability to assure privacy and security even when an adversary is allowed to
corrupt tags and retrieve the internal state. One novelty of our models is that
they provide some kind of “exposure slots”. Namely, adversaries can trace a tag
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within a limited time period during which this tag remains at the vicinity of the
adversary. During this period, they can refer to the tag by using a temporary
identity. In practice, this temporary identity can be the 32-bit number that is
used in ISO/IEC 14443-3 norm [22] in singulation protocols for collision avoid-
ance [4]. It can also be some tag named from its radiation pattern signature [21].
Exposure time periods are indeed unavoidable.

We consider several types of restrictions regarding tag corruption. The weak-
est model does not allow corruption. The relevant model for the so-called forward
privacy allows corruption, but only at the end of the attack so that no further ac-
tive action happens after corruption.1 One less restrictive (thus stronger) model
tolerates corruption at any time, but assumes that opening a tag destroys it
so that it no longer circulates in nature. This model is called destructive. Our
strongest model allows corruption at any time and even to put the tag back to
nature so that tracing it is still considered as a threat. Although the purpose for
distinguishing those two latter models is not clear, we prove that they separate.

Another question, as studied in Juels-Weis [24], is whether the adversary has ac-
cess to the protocol partial output or not. Namely, can we consider that the adver-
sary knows whether a reader succeeded to identify a legitimate tag or not? We call
narrow adversaries those who do not have access to this information while “wider”
adversaries can get it from side channels (e.g. the question whether a door opens
or not). It is well known that security or privacy can collapse in such a case (e.g. for
the HB+ protocol [17,23,25] or the OSK protocol [24,30]). It happens to be quite
orthogonal to the corruption variants so that we obtain an array of 4 × 2 = 8 ad-
versarial models. We prove that those privacy models are pairwise different.

Related Work. Many simple challenge-response protocols have been proposed
without addressing corruption [14,28,39]. The Ohkubo-Suzuki-Kinoshita pro-
tocol (OSK) [30,31] (see also [3,12,32]) made forward privacy possible. A few
attempts have been made to really formalize privacy in RFID protocols. One
of the first attempts was made by Avoine-Dysli-Oechslin [3], later extended in
the Thesis of Avoine [2]. Following their model, privacy is formalized by the
ability to distinguish two known tags. The model excludes the availability of
side-channel information such as whether a protocol instance on the reader did
succeed. Juels and Weis [24] extended this model using side-channel information
and making the two target tags chosen by the adversary. Another model was
proposed by Burmester, van Le, and de Medeiros [8,26]. In all these models,
corrupted tags cannot be the target of privacy adversaries. Another approach by
Damg̊ard-Østergaard [10] studies RFID schemes “with symmetric cryptography
only” to focus on the tradeoffs between complexity and security.

Our Contribution. In this paper we present a complete formalism for defining
RFID schemes, their security, and build a hierarchy of privacy models. Our
definition for security is equivalent to Damg̊ard-Østergaard [10]. We prove that
security against strong adversaries can be easily achieved using a pseudorandom
1 Note that some authors call this notion backward privacy [27]. Their notion of forward

privacy is included in our notion of strong privacy.
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function family. We prove that strong privacy is impossible. We show that an
RFID scheme that achieves narrow-strong privacy can efficiently be transformed
into a key agreement protocol, meaning that this type of privacy essentially
needs public-key cryptography techniques. On the other hand, we show that a
public-key cryptosystem that resists to adaptively chosen ciphertext attacks can
be used to define a simple narrow-strong private and forward private protocol.
We further prove the narrow-destructive privacy of an OSK-like protocol [31] in
the random oracle model and the weak privacy of a classical challenge-response
protocol based on a pseudorandom function. This work follows up some joint
work during the Thesis of Bocchetti [7].

2 Definitions

In the sequel, a function in terms of a security parameter s is said polynomial
if there exists a constant n such that it is O(sn). Similarly, a function is said
negligible if there exists a constant x > 0 such that it is O(x−s). For the sake of
readability we concentrate on asymptotic complexities and security although all
our results can be written with more precise bounds.

The tag is a passive transponder identified by a unique ID. We typically fo-
cus on a cheap tag which is passive: it has no batteries, it can operate just
when interrogated by a reader and only for a short time. It has limited memory:
each tag has only a few Kbit of memory on board. It has limited computational
abilities. Each tag can perform only basic cryptographic calculations: hash cal-
culations [15], pseudorandom generation [35], symmetric encryption [14]. Some
elliptic-curve arithmetic [5] and zero-knowledge identification [9,18,19] may fit,
as well as public-key cryptography [1,16,38], but remain expensive so far. It is not
tamper proof. It communicates at up to a limited distance: the communication
Tag→Reader is limited to a few meters (if not centimeters).

The reader is a device composed by one or more transceivers and a backend
processing subsystem. Security issues within the reader are not addressed in this
work, moreover we focus on single backend readers. Note however that sometimes
in literature “reader” denotes the transceiver alone. The purpose of the reader
is to interact with tags so that it can tell legitimate tags (i.e. tags which are
registered in the database) and unknown tags apart, and further identify (i.e.
infer their ID) legitimate tags.

Definition 1 (RFID Scheme). An RFID scheme is composed by

– a setup scheme SetupReader(1s) which generates a private/public key pair
(KS , KP ) for the reader depending on a security parameter s. The key KS is
to be stored in the reader backend. The key KP is publicly released. Through-
out this paper we assume that s is implicitly specified in KP so that there is
no need to mention s any longer.

– a polynomial-time algorithm SetupTagKP
(ID) which returns (K, S): the tag

specific secret K and the initial state S of the tag. The pair (ID, K) is to be
stored in the reader backend when the tag is legitimate.
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– a polynomial-time interactive protocol between a reader and a tag in which
the reader ends with a tape Output.

An RFID scheme is such that the output is correct except with a negligible probabil-
ity for any polynomial-time experiment which can be described as follows.
1: set up the reader
2: create many tags including a subject one named ID
3: execute a complete protocol between reader and tag ID

The output is correct if and only if Output =⊥ and tag ID is not legitimate, or
Output = ID and ID is legitimate.

When Output =⊥ but tag ID is legitimate, we have a false negative. When
Output �=⊥ but tag ID is not legitimate, we have a false positive. When Output �∈
{ID, ⊥} and tag ID is legitimate, we have an incorrect identification.

The RFID scheme is stateless if the tag state S is not allowed to change in
time. Note that we do not a priori assume that tags know their ID nor their
secret K: this is up to the protocol specification to make them extractable from
S. We assume that a reader can run several concurrent instances of a protocol
but that tags cannot. In this paper, we do not consider reader authentication so
we do not consider any output on the side of the tag.2

In practice, some information about Output may leak from a side channel (e.g.
by observing a door opening at a tag transit and deducing that authentication
was successful). Having access to such an information could allow an adversary to
gather information about tag identities. For simplicity, we focus here on passive
tags which are exempt of side channel except by full corruption.

2.1 Adversaries

The characterization of the adversary is essentially done by specifying the actions
that she is allowed to perform (i.e. the oracles she can query), the goal of her
attack (i.e. the game she plays) and the way in which she can interact with
the system (i.e. the rules of the game). We consider that, at every time, a tag
can either be a free tag or a drawn tag. Drawn tags are the ones within “visual
contact” to the adversary so that she can communicate while being able to link
communications. Free tags are all the other tags. Two oracles are defined below
to draw or free tags. We call virtual tag a unique reference (e.g. using a drawing
sequence number or a nonce) to the action of drawing a tag. This plays the same
role as a temporary identity. Note that two different virtual tags may refer to
the same tag that has been drawn, freed, and drawn again.

Definition 2 (Adversary). An adversary is an algorithm which takes a public
key KP as input and runs by using the eight following oracles.

– CreateTag
b(ID): creates a free tag, either legitimate (b = 1) or not (b = 0),

with unique identifier ID. This oracle uses SetupTagKP
algorithm to set up

the tag and (for b = 1 only) to update the system database. By convention,
b is implicitly 1 when omitted.

2 This model was extended for mutual authentication in the Thesis of Paise [33].
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– DrawTag(distr) → (vtag1, b1, . . . , vtagn, bn): moves from the set of free tags
to the set of drawn tags a tuple of tags at random following the probability
distribution distr (which is specified by a polynomially bounded sampling al-
gorithm). The oracle returns a vector of fresh identifiers (vtag1, . . . , vtagn)
which allows to anonymously designate these tags. Drawing tags already
drawn or not existing provoke the oracle to return ⊥ in place of the respec-
tive virtual tag. We further assume that this oracle returns bits (b1, . . . , bn)
telling whether the drawn tags are legitimate or not.3 This oracle keeps a
hidden table T such that T (vtag) is the ID of vtag.

– Free(vtag): moves the virtual tag vtag back to the set of the free tags. This
makes vtag unreachable. (That is, using vtag in oracle calls is no longer
allowed.)

– Launch → π: makes the reader launch a new protocol instance π.
– SendReader(m, π) → m′ (resp. SendTag(m, vtag) → m′): sends a mes-

sage m to a protocol instance π for the reader (resp. to virtual tag vtag)
and receives the answer m′ (that is meant to be sent to the counterpart). By
convention we write Execute(vtag) → (π, transcript) to group one Launch

query and successive use of SendReader and SendTag to execute a com-
plete protocol between the reader and the tag vtag. It returns the transcript
of the protocol, i.e. the list of successive protocol messages.

– Result(π) → x: when π is complete, returns 1 if Output �=⊥ and 0
otherwise.

– Corrupt(vtag) → S: returns the current state S of the tag. If vtag is no
longer used after this oracle call, we say that vtag is destroyed.

The adversary plays a game which starts by setting up the RFID system and
feeding the adversary with the public key. The adversary uses the oracle following
some rules of the game and produces an output. Depending on the rules, the
adversary wins or looses.

Definition 3 (Strong, destructive, forward, weak, and narrow adver-
sary). We consider polynomial-time adversaries. Let STRONG be the class of
adversaries who have access to the above oracles. Let DESTRUCTIVE be the class
of adversaries who never use vtag again after a Corrupt(vtag) query (i.e. who
destroy it). Let FORWARD be the class of adversaries in which Corrupt queries
can only be followed by other Corrupt queries. Let WEAK be the class of ad-
versaries who do no Corrupt query. Let NARROW be the class of adversaries
who do no Result query.

Clearly, we have WEAK ⊆ FORWARD ⊆ DESTRUCTIVE ⊆ STRONG.

2.2 Security of RFID Schemes

Definition 4 (Security). We consider any adversary in the class STRONG.
We say the adversary wins if at least one protocol instance π on the reader iden-
tified an uncorrupted legitimate tag ID but π and ID did not have any matching
3 Namely, we assume that adversaries always have means to deduce whether a tag is

legitimate or not by side channels.
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conversation, i.e. they exchanged well interleaved and faithfully (but maybe with
some time delay) transmitted messages until π completed. We call ID a target tag
and π a target instance. We say that the RFID scheme is secure if the success
probability of any such adversary is negligible.

All protocols that we study here are two-pass protocols in which the reader
starts by sending a random challenge a and the tag produces a response c de-
pending on a. This way, attacks leading to matching protocol transcripts but
badly interleaved messages have negligible probability of success.

We use the following lemma to prove security of RFID schemes in our paper.

Lemma 5 (Simple security for special RFID scheme). We consider an
RFID scheme for which the reader protocol satisfies the following structure. First,
the communication messages from the reader do not depend on the database.
Second, there is a predicate R and a sampling algorithm S such that the output
is computed by running S on the set E of all ID corresponding to a database entry
(ID, K) verifying R(ID, K; τ), where τ is the protocol transcript. We assume that
R and S do not use the database (but may use the secret key KS). Third, the
selected database entry may be updated by an extra algorithm not depending on
other database entries or KS. The algorithm S is such that

– if E = ∅ then S(E) =⊥
– if E �= ∅ then S(E) outputs an element of E.

Finally, we assume that there exists an easily computable predicate R′ such that
if a tag ID and the reader have a matching conversation with transcript τ and if
(ID, K) is a database entry then R(ID, K; τ) ⇐⇒ R′(n) where n is the number
of previously completed protocol executions on the tag ID side since the last suc-
ceeded one. (A protocol execution with ID is called succeeded if it has a matching
conversation with the reader with output ID.) We consider adversaries who

– create (and draw) a single tag ID
– use Launch, SendReader, SendTag

– use an oracle who checks the predicate R on inputs different from ID
– use an oracle simulating S
– end on a final SendReader to an instance π.

The adversary wins if the protocol instance π on the reader identified tag ID but
has no matching conversation. We say that the scheme is simply secure if the
success probability of any such adversary is negligible. If the scheme is simply
secure, then it is secure.

Proof (Sketch). Let A be a strong adversary playing the security game. We can
simulate DrawTag and Free queries and reduce to adversaries who draw tags
once for all upon creation. Next, we can reduce to an adversary who guesses
the first target tag ID upon creation, as well as the first target instance π.
(The success probability is divided by a polynomially bounded factor.) Then,
we can simulate all tags except ID so that only tag ID is really created. We show



74 S. Vaudenay

by induction that Output can be generated with same distribution (except on
π) when the adversary knows all database entries except (ID, K). To compute
R(ID, K; τ) without knowing K, if τ is non-matching then R is not satisfied,
otherwise R′ can be used. We can thus simulate the reader and Result queries.
One trick is not to send the last message to a reader instance if the simulated
output is not ID and to send it otherwise so that the database entry can be
updated. By using the simple security we deduce that A has negligible success
probability. The scheme is thus secure. 
�

2.3 Privacy of RFID Schemes

RFID schemes are given three cryptographic properties: correctness, security,
and privacy. Depending on the application, not all properties may be required.
Correctness is part of the definition of RFID schemes and is implicitly assumed.
Security (i.e. soundness of tag identification) is defined in Section 2.2. We define
privacy in terms of ability to infer non-trivial ID relations from protocol mes-
sages. This generalizes the notion of anonymity (for which the ID of tags cannot
be inferred) and untraceability (for which the equality of two tags cannot be
inferred).

Definition 6 (Privacy). We consider adversaries who start with an attack
phase allowing oracle queries then pursuing an analysis phase with no ora-
cle query. In between phases, the adversary receives the hidden table T of the
DrawTag oracle then outputs either true or false. The adversary wins if the
output is true. We say that the RFID scheme is P -private if all such adversaries
which belong to class P are trivial following Def. 7.

Definition 7 (Blinder, trivial adversary). A Blinder B for an adversary A
is a polynomial-time algorithm which sees the same messages as A and simulates
the Launch, SendReader, SendTag, and Result oracles to A. The blinder
does not have access to the reader tapes so does not know the secret key nor
the database. A blinded adversary AB is itself an adversary who does not use
the Launch, SendReader, SendTag, and Result oracles. An adversary A
is trivial if there exists a B such that | Pr[A wins] − Pr[AB wins]| is negligible.

Informally, an adversary is trivial if it makes no effective use of protocol mes-
sages. Namely, these messages can be simulated without significantly affecting
the success probability of the adversary. We stress that our privacy notion mea-
sures the privacy loss in the wireless link but not through tag corruption (since
Corrupt queries are not blinded). In other words, we assume that corrupting
a tag always compromise privacy and we only focus on wireless leakage.

Clearly, we have the following links between privacy notions.

strong ⇒ destructive ⇒ forward ⇒ weak
⇓ ⇓ ⇓ ⇓

narrow-strong ⇒ narrow-destructive ⇒ narrow-forward ⇒ narrow-weak

We will show separation between all those notions. We summarize below the
non-implications with a reference to the appropriate notes.
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strong destructive
Note 10

�⇐ forward
Note 14

�⇐ weak
�⇑ Note 10 �⇑ Note 18 �⇑ Note 18 �⇑ Note 18

narrow-strong
Note 16

�⇐ narrow-destructive
Note 17

�⇐ narrow-forward
Note 14

�⇐ narrow-weak

Some non-implication results may assume the existence of standard primitives
such as IND-CCA public-key cryptosystems, random oracles, or pseudorandom
functions. The non-implication of destructive privacy to strong privacy is equiv-
alent to the feasibility of destructive privacy which is open so far.

In this model, corrupted tags can be the victims of tracing attacks, contrar-
ily to the model of Juels-Weis [24] and Burmester-van Le-de Medeiros [8]. For
instance, the protocol O-TRAP provides privacy in the sense of [8]. In this pro-
tocol, the reader sends a rt

sys challenge to the tag and the tag answers with
some random ri and hKi(rt

sys, ri) where h is a keyed hash function and Ki is
a key which is permanently stored in the tag state. Clearly, corrupting the tag
reveals Ki that was used in former protocols and enables to identified the tag in
previous sessions. Hence, O-TRAP is not narrow-forward private.

We provide a useful lemma to get rid of Result queries.

Lemma 8. We consider an RFID scheme with the property that whenever a
legitimate tag and the reader have some matching conversation, the reader does
not output ⊥. If the scheme is secure, then narrow-forward (resp. narrow-weak)
privacy implies forward (resp. weak) privacy.

Proof (Sketch). Let A be a forward (resp. weak) adversary for privacy. W.l.o.g.
we can assume that there is no Result query related to an instance that has a
matching conversation with a legitimate tag (in such a case the answers is 1, due
to the hypothesis). Since corruption (if any) are lately done, remaining Result

queries are most likely to yield 0 due to security. Let B be a partial blinder
for A who blinds all Result queries: for all such queries, the simulated answer
0 is returned. We further define an adversary A′ playing the security game by
simulating A and ending before the Corrupt queries. Let E be the event that
one of the Result queries in A would answer 1. When E does not occur, A and
AB produce the same result. Since the scheme is secure, E occurs with negligible
probability. We obtain that A is as effective as the narrow-forward (resp. narrow-
weak) adversary AB . By blinding AB due to the privacy hypothesis, we obtain
that A is as effective as AC for some blinder C. 
�

3 Separation Results

3.1 Strong Privacy Is Impossible

Theorem 9. A destructive-private RFID scheme is not narrow-strong private.

Namely, no RFID scheme can achieve privacy with respect to the class

DESTRUCTIVE ∪ (NARROW ∩ STRONG).
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Note 10. As a consequence, strong privacy cannot be achieved. As another con-
sequence, narrow-strong privacy (which is achieved by the scheme of Th. 19)
does not imply strong privacy. Similarly, forward privacy (which is achieved by
the same scheme) does not imply destructive privacy.

Proof. Let us consider the following destructive adversary A who simulates to
the reader a tag with state Sb which is either forged (S0) or the one of a corrupted
legitimate tag (S1). The adversary yields true if and only if the reader recognizes
the right case (from Result).

1: (·, S0) ← SetupTagKP
(ID0)

2: CreateTag(ID1)
3: (vtag1, ·) ← DrawTag(ID1)
4: S1 ← Corrupt(vtag1) (destroy it)
5: flip a coin b ∈ {0, 1}

6: π ← Launch

7: simulate tag of state Sb with π
8: x ← Result(π)
9: output whether x = b

The complexity of this adversary is polynomial. Clearly, if the protocol execution
is correct, the adversary succeeds. Thus, 1−Pr[A wins] is negligible. Hence, if we
have destructive privacy, there must exist a blinder B such that 1−Pr[AB wins] is
negligible as well. If we now look at a privacy game from the blinder perspective,
it works as follows:

– blinder receives a public key KP

– blinder gets one tag state S1 (by looking at the answer from Corrupt)
– blinder impersonates a reader to a tag whose state is either S1 or some

unknown S0 depending on some unknown bit b
– with high probability, blinder guesses b

Indeed, a blinder is a distinguisher who never uses the secret key of the reader
between a tag with known state and a random one. This means that for a
destructive-private scheme, it must be possible to identify tags whose states
are known a priori. We can use this blinder to construct the following narrow-
strong adversary. Basically, the adversary creates and corrupt two legitimate
tags, feeds the previous distinguisher with one of the tag states, and makes one
of the two tags interact with it. If the distinguisher distinguishes well, the output
is true.
1: create tag ID0 and tag ID1
2: draw both tags
3: corrupt both tags and get their states S0 and S1
4: free both tags
5: draw a random tag: (vtag, ·) ← DrawTag(Pr[ID0] = Pr[ID1] = 1

2 )
6: simulate B with input KP , S1, and interacting with vtag and get bit x
7: get T and output whether T (vtag) = IDx

This adversary A′ has polynomial complexity and 1 − Pr[A′ wins] is negligible.
Clearly, for any blinder B′ we have Pr[A′B′

wins] = 1
2 . Hence the scheme is not

narrow-strong private. 
�
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3.2 Narrow-Strong Privacy Requires Key Agreement

A key agreement protocol [11] is an interactive protocol between two participants
Alice and Bob with common public input set to the security parameter s which
ends with a common output bit (the key), except with negligible probability. We
assume that Alice initiates the protocol and that Bob responds. The protocol is
secure (against passive adversary) if the probability that any polynomial-time
algorithm that is fed with the common input and the protocol transcript has a
negligible advantage over 1

2 to guess the key bit.
We recall that a 2-round key agreement protocol can define a public-key cryp-

tosystem. Rudich [36] proved a separation between key agreement in k+1 rounds
and key agreement in k rounds, for any k. That is, a separation exists between
key agreement in k rounds (for k �= 2) and a public-key cryptosystem. Neverthe-
less, we do not know any efficient key agreement protocol based on conventional
cryptography only. We use this fact to show that RFID schemes which achieve
narrow-strong privacy need more than conventional cryptography techniques.

Theorem 11. A narrow-strong private RFID scheme can be transformed (in
polynomial time) into a secure key agreement protocol with same number of
rounds in which Alice simulates SetupTag and the reader and Bob simulates
the tag.

This means that any RFID scheme based on a pseudorandom function or a digital
signature scheme only is unlikely to be narrow-strong private. Indeed, the tag
workload should be at least the same as a responder Bob in a key agreement
protocol of same number of rounds. For two-round protocols, this is equivalent
to a public-key encryption algorithm (the reader does the decryption).

Proof. We construct a protocol that securely sends a key bit b from Bob to Alice.
Intuitively, Alice first creates two legitimate tags and sends their initial states to
Bob. Then, Alice simulates the reader and Bob simulates either tag depending
on the key bit. By identifying the tag, Alice gets b.
1: Alice: (KP , KS) ← SetupReader(1s)
2: Alice: (K0, S0) ← SetupTagKP

(ID0), (K1, S1) ← SetupTagKP
(ID1)

3: Alice sends (KP , S0, S1) to Bob and simulates the reader protocol with
database {(ID0, K0), (ID1, K1)}

4: Bob simulates the tag protocol with state Sb and interact with Alice
5: Alice sets a such that IDa = Output

If the instance of the protocol is correct, Alice obtains a = b. This proves the
correctness of the key agreement. Note that the number of message rounds
is the same as in the RFID protocol. An adversary is an algorithm P which
takes (KP , S0, S1) and the transcript τ of the RFID protocol and returns a
bit P(KP , S0, S1, τ). We can now define an adversary A against the RFID
scheme.
1: create tag ID0 and tag ID1, draw them, corrupt them, get their states S0 and

S1, and free them
2: draw a random tag (vtag, ·) ← DrawTag(Pr[ID0] = Pr[ID1] = 1

2 )
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3: (·, τ) ← Execute(vtag)
4: set a = P(KP , S0, S1, τ)
5: get T and output whether T (vtag) = IDa

Clearly, this is a narrow-strong adversary such that Pr[A wins] = Pr[P wins].
There must exist a blinder B such that Pr[A wins] − Pr[AB wins] is negli-
gible. Clearly, AB gets no information on whether ID0 or ID1 is drawn, so
Pr[AB wins] = 1

2 . Hence, Pr[P wins] − 1
2 is negligible: the key agreement proto-

col is secure. 
�

We can similarly prove the following result.

Theorem 12. A narrow-forward private stateless RFID scheme can be trans-
formed into a secure key agreement with same number of rounds.

This is why protocols like OSK [30] require tags to update their states.

Proof. We proceed as before and use the following adversary A.
1: create tag ID0 and tag ID1
2: draw one tag at random (vtag, ·) ← GetTag(Pr[ID0] = Pr[ID1] = 1

2 )
3: (·, τ) ← Execute(vtag)
4: Free(vtag)
5: draw tag ID0 and tag ID1, corrupt them, get their states S0 and S1
6: set a = P(KP , S0, S1, τ)
7: get T and output whether T (vtag) = IDa

We observe that Execute does not modify the state of vtag. 
�

4 Case Studies

4.1 Weak Privacy Based on a Pseudorandom Function

We first construct a weak-private and secure protocol based on a pseudoran-
dom function family (PRF). Let (Fs,K)K∈{0,1}k(s) be a family of functions from
{0, 1}δ(s) to {0, 1}γ(s). We say it is a PRF if k, δ, γ are polynomially bounded,
if 2−δ(s), and 2−γ(s) are negligible, if Fs,K(x) is computable in polynomial time,
and if any distinguisher with polynomial complexity has a negligible advantage
for distinguishing an oracle simulating Fs,K initialized with a random K from
an oracle initialized with a truly random function. For more readability we omit
the parameter s.

We construct an RFID scheme as depicted on Fig. 1 with α = β = δ
2 . The

algorithm SetupTag(ID) simply picks a random k-bit key K and sets S = K.

1. Reader picks a random α-bit string a and sends it to tag.
2. Tag with state S sends a random β-bit string b and c = FS(a, b) to reader.
3. Reader looks for (ID, K) in the database such that c = FK(a, b) and gets ID.

This protocol is essentially equivalent to the ISO/IEC 9798-2 3-pass mutual
authentication protocol that is used in [14] and to the CR building block of [28],
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Tag System
state: S (S = K) {. . . , (ID, K), . . .}

pick b ∈ {0, 1}β a←−−−−−−−−−−−−−−− pick a ∈ {0, 1}α

c = FS(a, b)
b,c−−−−−−−−−−−−−−−→ find (ID, K) s.t. c = FK(a, b)

output: ID or ⊥ if not found

Fig. 1. A Weak-Private RFID Scheme based on PRF

both without their third pass (the reader authentication pass). The randomized
Hash-Lock identification scheme [39] is this one with no a. But this opens the
door to delay attacks where the reader protocol is launched after the tag protocol
completed (so conversation are no longer matching). ISO/IEC 9798-2 2-pass
unilateral authentication is this protocol with no b [14]. But this opens the door
to privacy threats by replaying a.

Theorem 13. If F is a PRF, the above RFID scheme is secure and weak
private.

Note 14. The scheme is clearly not narrow-forward private since afterward cor-
ruption makes it possible to link tags. So, as corollary of this theorem, weak
privacy does not imply forward privacy and narrow-weak privacy does not im-
ply narrow-forward privacy.

Proof. Correctness. No false negative is possible here. False positives and incor-
rect identifications are possible when given the selected tag key K and (a, b)
values, there exists K ′ �= K in the database such that FK(a, b) = FK′(a, b).
Let us assume that we have n legitimate tags in addition to a subject tag. We
construct a distinguisher that simulates the creation of the n tags and simulates
a protocol between the subject tag and the reader. To compute FK on a given
input with the subject tag, A sends the input to an oracle which returns the
output. If the subject tag is correctly identified in the simulation, A answers 1,
otherwise it answers 0. This is a distinguisher for F , so it has a negligible advan-
tage. When the oracle implements a random function, the probability of incorrect
identification is bounded by n2−γ which is negligible. Hence, the probability of
incorrect identification with the right oracle is also negligible.

Security. We first note that the protocol suits the special form in Lemma 5
where R(ID, K; a, b, c) ⇐⇒ FK(a, b) = c and R′ is always true. We can thus
prove simple security and apply Lemma 5.

Let A be an adversary for simple security with a single tag ID. W.l.o.g. we
assume that A does not call R since R can be simulated. Since database entries
are never modified we can reduce to the case where only the target π is launched
and others are simulated. A calls SendReader(π) → â at time t and ends by
SendReader((b̂, ĉ), π). A further calls SendTag(ai, ID) → (bi, ci) at time t′i. A
wins if ĉ = FK(â, b̂) and for every i such that t < t′i we have (ai, bi, ci) �= (â, b̂, ĉ)
(namely: conversations are not matching). As for correctness, let A′ be an algo-
rithm who simulates A and all oracles then looks whether the attack succeeded.
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To simulate SendTag(ai, ID), A′ simply picks a random bi and queries an oracle
F with (ai, bi) to get ci and returns (bi, ci). To determine whether the attack
succeeded, A′ queries the oracle F again. Clearly, A and A′ interacting with an
oracle simulating FK have the same success probability. A′ can be considered as
a distinguisher between F and a truly random function. Since F is pseudoran-
dom, the distinguisher has negligible advantage, so A′ interacting with an oracle
simulating a random function has similar success probability as A. If t′i < t,
Pr[â = ai] is negligible. If now t < t′i, wining cases are for (ai, bi, ci) �= (â, b̂, ĉ),
ci = F (ai, bi), ĉ = F (â, b̂), thus (ai, bi) �= (â, b̂). However, if (ai, bi) �= (â, b̂), the
value for F (â, b̂) before the final query is free so Pr[ĉ = F (â, b̂)] = 2−k, which is
negligible. Therefore, A succeeds with negligible probability. This proves simple
security. Lemma 5 concludes.

Weak Privacy. Thanks to Lemma 8, we only have to prove narrow-weak privacy.
We want to prove that, for any narrow-weak adversary A, there exists a blinder
B such that A has no significant advantage over AB. Let B be the blinder who
simulates SendTag(a, vtag) by answering with a random (b, c).

Clearly, all Launch and SendReader queries can be perfectly simulated
so we assume w.l.o.g. that these oracles are no longer used. We use the proof
methodology of Shoup [37]. Let game0 = game1(0) be the privacy game.

Let game1(i) be the same game as game1(i−1) in which the ith created tag is
simulated using an ad-hoc random oracle Fi from {0, 1}α+β to {0, 1}γ to compute
FKi(a, b) = Fi(a, b). Clearly, | Pr[A wins game1(i)] − Pr[A wins game1(i − 1)]|
can be expressed as a distinguisher advantage for F so it is negligible. Let
game1 = game1(n) where n is the number of tags. Since n is polynomial,
| Pr[A wins game1] − Pr[A wins game0]| is negligible.

Let game2 be the same game as game1 in which the adversary wins when
SendTag never picked a duplicate b. This duplication happens with probability
bounded by q2 ·2−β where q is the number of SendTag queries. Clearly, this prob-
ability is negligible. Hence | Pr[A wins game2] − Pr[A wins game0]| is negligible.

Using B, | Pr[AB wins game2] − Pr[AB wins game0]| is negligible as well.
Clearly, the B simulation is perfect when there is no duplicate b. This leads
us to | Pr[AB wins game2] − Pr[A wins game2]| being negligible. Finally, we ob-
tain that | Pr[AB wins game0] − Pr[A wins game0]| is negligible. Hence, A is a
trivial adversary. 
�

4.2 Narrow-Destructive Privacy in the Random Oracle Model

We now consider a new scheme based on two oracles F and G running random
functions from {0, 1}α+k and {0, 1}k to {0, 1}k, respectively. The tag generation
algorithm SetupTag(ID) picks a random k-bit key K and sets the initial state to
S = K. The protocol works as depicted on Fig. 2.

1. Reader picks a random α-bit string a and sends it to tag.
2. Tag with state S sends c = F (S, a) then refreshes its state S with G(S).
3. Reader looks for (ID, K) in the database such that c = F (Gi(K), a) with

i < t, gets ID, and replaces (ID, K) by (ID, Gi(K)) in the database.
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Note that after t iterations without the reader a tag can no longer be identified.
Thus, this scheme does not satisfy the hypothesis of Lemma 8. (See also Note 18.)
As opposed to the previous construction, F and G cannot be just PRFs since
the adversary can get the code of F and G by corrupting a tag.

Tag System
state: S (S = K) {. . . , (ID, K), . . .}

a←−−−−−−−−−−−−−−− pick a ∈ {0, 1}α

c = F (S, a) c−−−−−−−−−−−−−−−→ find (ID, K) and i s.t.
replace S by G(S) c = F (Gi(K), a) and i < t

replace K by Gi(K)
output: ID or ⊥ if not found

Fig. 2. A Narrow-Destructive-Private RFID Scheme based on a Random Oracle

The OSK protocol [30,31] uses no a, so delay attacks can be made. Avoine et al.
[3] proposed to add a random a and use c = F (S ⊕ a). Dimitriou [12] proposed
to add a (useless) b and to send F (S) and b in addition to c = F (S, a, b).4

Theorem 15. Assuming that k and t are polynomially bounded and that 2−k

is negligible, the above scheme is a secure and narrow-destructive private RFID
scheme in the random oracle model.

Note 16. This is not narrow-strong private since early corruption enables to link
tags. So, narrow-destructive privacy does not imply narrow-strong privacy.

Note 17. We can artificially tweak the protocol of Th. 15 to get narrow-forward
privacy but not narrow-destructive privacy, which separates the two models.
To do so, we add in all tag states a common secret Ks such that when a tag
receives a = Ks it outputs c = S. Readers should not select a = Ks but narrow-
destructive adversaries could do so after a tag is sacrificed to leak Ks. Obvi-
ously, the scheme is no longer narrow-destructive private. Nevertheless, it is still
narrow-forward private since corruption output cannot be used in interaction.

Note 18. As pointed out in Juels-Weis [24], a weak adversary against the scheme
of Fig. 2 could run a sort of denial of service. The adversary proceeds as follows.

1: CreateTag(ID0), CreateTag(ID1)
2: vtag0 ← DrawTag(ID0)
3: for i = 1 to t + 1 do
4: pick a random x
5: SendTag(x, vtag0)
6: end for
7: Free(vtag0)

4 Sending F (S) is used to decrease the workload in optimistic cases.
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8: (vtag, ·) ← DrawTag(Pr[ID0] = Pr[ID1] = 1
2 )

9: (π, ·) ← Execute(vtag)
10: x ← Result(π)
11: get T and output whether T (vtag) = IDx

Clearly, Pr[A wins] = 1, but for any blinder B, we have Pr[AB wins] = 1
2 . So

this weak adversary is not trivial. Hence, narrow-destructive privacy does not
imply weak privacy.

Proof. Correctness. False negatives are not possible. False positives and wrong
identifications are possible when given K, a, b, and i, there exist K ′ and j < t
such that K ′ �= K and F (Gi(K), a, b) = F (Gj(K ′), a, b). In the random oracle
model, the probability of such event is at most nt22−k, which is negligible.

Security. We apply Lemma 5 where oracle R(ID, K; a, c) simply checks that there
exists i < t such that F (Gi(K), a) = c and R′(n) ⇐⇒ n < t. By using standard
random oracle techniques, we can assume that A never queries F with Gi(K)
for i = 0, . . . , t + n − 1 and n is the number of SendTag queries.

We proceed as in the proof of Th. 13 with same notations. If t′i < t, Pr[â = ai]
is negligible. If t < t′i, wining cases are for (ai, ci) �= (â, ĉ) and ĉ = F (Gj(K), â)
for some j smaller than t. Since A never queried F with any Gj(K) and the
tag did not query it with any (Gj(K), â), the values of F (Gj(K), â) are free so
Pr[ĉ = F (Gj(K), â); j < t] = t2−k, which is negligible.

Narrow-Destructive Privacy. Clearly, all Launch and SendReader queries are
trivial to simulate since no Result query is allowed. So, we assume w.l.o.g. that
no such query is made. We want to prove that, for any adversary A there exists
a blinder B such that A has no significant advantage over AB.

Let E (resp. E′) be the event that at least one of the queries by A to the F
or the G oracles equals one query made (resp. that should have been made if it
was not blinded) by some SendTag(a, vtag) query.

SendTag queries are simulated by B by returning a random c. Note that there
is no SendTag query to corrupted tags since adversaries are destructive. This
simulation is perfect (in the sense that the adversary and the blinded adversary
recover the same information about the virtual tag from the protocol transcript)
when the event E does not occur. Namely, Pr[A wins|¬E] = Pr[AB wins|¬E′]
and Pr[E] = Pr[E′].

Hence, | Pr[A wins] − Pr[AB wins]| ≤ Pr[E]. If q queries to F and G were
made by A, in the worst case A knows that all Gi(K)’s are in a set of 2k − q
values. Note that no Corrupt query gives information on any Gi(K) that can
be used by any SendTag query. The probability to pick one is at most tn

2k−q

where n is the number of tags. Hence, E occurs with probability at most tnq
2k−q ,

which is negligible. 
�

4.3 Narrow-Strong and Forward Privacy Based on a PKC

We now achieve narrow-strong and forward privacy using public-key cryptog-
raphy. We use the standard definitions of public-key cryptosystems (PKC),
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IND-CPA and IND-CCA security [6,13,20,29,34]. A PKC consists of a key gen-
erator, a probabilistic encryption algorithm, and a deterministic decryption al-
gorithm. It must be correct in the sense that the decryption of the encryption
of any x is always x. The scheme is IND-CPA-secure (resp. IND-CCA-secure) if
all polynomial-time adversaries win the IND-CPA (resp. IND-CCA) with neg-
ligible advantage. In the IND-CPA game, the adversary receives a public key,
submits two plaintexts, receives the encryption of one of the two, and tries to
guess which plaintext was encrypted. In the IND-CCA game, the adversary can
query a decryption oracle, except on the received ciphertext.

Tag System
state: KP , ID, K (K = FKM (ID)) secret keys: KS , KM

a←−−−−−−−−−−−−−−− pick a ∈ {0, 1}α

c = EncKP (ID||K||a) c−−−−−−−−−−−−−−−→ parse DecKS (c) = ID||K||a′

check a = a′

check K = FKM (ID)
output: ID or ⊥ if failed

Fig. 3. A Narrow-Strong and Forward -Private RFID Scheme based on a PKC

We initialize the scheme by generating a private/public key pair (KS , KP ) for
the Enc/Dec PKC. The tag generation algorithm SetupTag(ID) picks a random
k-bit key K and sets the initial state to S = (KP , ID, K). We assume that k and
α are polynomial. The protocol works as depicted on Fig. 3.

1. Reader sends an identification request with an α-bit random a.
2. Tag calculates c = EncKP (ID||K||a) and sends c to the reader.
3. Reader gets ID||K||a = DecKS (c) and checks that a is correct and that

(ID, K) is in database.5

Theorem 19. If the public-key cryptosystem is IND-CPA-secure then the above
RFID scheme is narrow-strong private. If the cryptosystem is IND-CCA-secure
and 2−k is negligible, the RFID scheme is further secure and forward private.

Namely, with an IND-CCA PKC, this RFID scheme achieves privacy with re-
spect to the class

FORWARD ∪ (NARROW ∩ STRONG).

Due to Th. 9, this scheme is not strong private so narrow-strong privacy does
not imply strong privacy and forward privacy does not imply strong privacy.

Proof. Correctness. This comes from the correctness of the cryptosystem.

Narrow-Strong Privacy. We prove that for any narrow-strong adversary A there
exists a blinder B such that A has no significative advantage over AB. Since the
5 Using K = FKM (ID) as depicted on Fig. 3 given a PRF F and a master secret KM

does not modify our result. The same simplification could apply to the scheme of
Fig. 1 as well, in order to shrink the database.
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reader just sends random a and no Result query is allowed, every Launch and
SendReader query can be simulated in a trivial way so we can assume without
loss of generality that no such query is done. We construct the blinder by using
standard hybrid arguments. We consider the hybrid blinder Bi which works as
follows: any of the i first SendTag queries with input a, returns the encryption
c of a random r of same length as ID||K||a. Other SendTag queries by A are
forwarded to the SendTag oracle.

The adversary, hybrid blinders, and tags can be simulated without using KS .
Let Si be a simulator for the ABi attack except for the ith SendTag query which
is indeed released. We use Si to play the IND-CPA game. At the beginning, Si

receives KP and runs the simulator for ABi . At the moment of the ith query
a, Si computes m0 = ID||K||a as Bi−1 would do to simulate the tag, computes
m1 = r as Bi would do, and submits m0 and m1 to the IND-CPA game. Si

receives an encrypted value c of either m0 or m1 that is used to respond the
query and continues the simulation. At the end, Si looks whether ABi won the
privacy game or not. If it won, Si outputs 0. Otherwise, Si outputs 1. Clearly
A = AB0 , AdvIND(Si) = Pr[ABi−1 wins] − Pr[ABi wins], and B = BqT is a full
blinder where qT is the number of SendTag queries. The complexity of Si is
polynomial. Due to IND-CPA security, | Pr[A wins]−Pr[AB wins]| is negligible.

Security. The protocol suits the special form in Lemma 5 where R(ID, K; a, c)
means DecKS (c) = ID||K||a and R′ is always true. We can thus prove simple
security and apply Lemma 5.

Let A be an adversary for the simple security game with a single tag ID and
a single instance π (others are simulated). W.l.o.g. A does not query R(·; ·, c)
when there is a protocol transcript (·, c). (The first input of R queries cannot
be ID thus R cannot be satisfied.) A queries SendReader(π) → â at time
t, SendTag(ai, ID) → ci at time t′i, and ends by SendReader(ĉ, π). If t′i < t,
Pr[ai = â] is negligible. If t < t′i, wining cases are for (â, ĉ) �= (ai, ci), DecKS (ĉ) =
ID||K||â, and DecKS (ci) = ID||K||ai. Hence, w.l.o.g. we can assume that ĉ �= ci

for all i.
We construct a partial blinder Bi as before. We construct a simulator Si

for ABi playing the IND-CCA game as before. Si terminates by determining
whether A succeeded by calling ĉ to a decryption oracle. Finally, by using the
IND-CCA security, we obtain a blinded adversary AB such that | Pr[A wins] −
Pr[AB wins]| is negligible. Clearly, if the tag is no longer used and the reader
leaks no information, making it identify the tag reduces to guessing the tag key
K which can only happen with probability 2−k, which is negligible.

Forward Privacy. Narrow-forward privacy implies forward privacy thanks to
Lemma 8. 
�

5 Conclusion

We have proven that public-key cryptography can assure the highest level of
feasible privacy in RFID: narrow-strong and forward privacy, even with stateless



On Privacy Models for RFID 85

protocols. We have shown narrow-destructive privacy for an OSK-like protocol
in the random oracle model. Finally, we have proven weak privacy for a simple
challenge-response protocol. The problem of achieving destructive privacy or
forward privacy without public-key techniques are left open.

Acknowledgment. I thank Gildas Avoine for providing many useful references.
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Obtaining Universally Compoable Security:
Towards the Bare Bones of Trust�

Ran Canetti

IBM T.J. Watson Research Center

Abstract. A desirable goal for cryptographic protocols is to guarantee
security when the protocol is composed with other protocol instances.
Universally Composable (UC) security provides this guarantee in a strong
sense: A UC-secure protocol maintains its security properties even when
composed concurrently with an unbounded number of instances of arbi-
trary protocols. However, many interesting cryptographic tasks are prov-
ably impossible to realize with UC security, unless some trusted set-up
is assumed. Impossibility holds even if ideally authenticated communi-
cation channels are provided.

This survey examines and compares a number of set-up assumptions
(models) that were recently demonstrated to suffice for constructing
UC-secure protocols that realize practically any cryptographic task. We
start with the common reference string (CRS) and key registration (KR)
models. We then proceed to the “sunspot” models, which allow for some
adversarial control over the set-up, a number of models which better
captures set-up that is globally available in the system, and a timing
assumption. Finally, we briefly touch upon set-up models for obtaining
authenticated communication.

1 Introduction

Designing protocols that guarantee security in open, multi-protocol,
multi-party execution environments is a challenging task. In such environ-
ments a protocol instance is executed concurrently with an unknown number
of instances of the protocol, as well as arbitrary other protocols. Indeed, it
has been demonstrated time and again that adversarially-coordinated interac-
tions between different protocol instances can compromise the security of pro-
tocols that were demonstrated to be secure when run in isolation (see, e.g.,
[gk89, ddn00, ksw97, dns98, klr06, Can06]). A natural way for guarantee-
ing security of protocols in such complex execution environments is to require
that protocols satisfy a notion of security that provides a general secure com-
posability guarantee. That is, it should be guaranteed that a secure protocol
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Science Foundation Grant 2006317.
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maintains its security even when composed with (i.e., runs alongside) arbitrary
other protocols. Such a general notion of security is provided by the universally
composable (UC) security framework [c01], which provides a very general compos-
ability property: A UC secure protocol is guaranteed to maintain its security
(in the sense of emulating an ideally trusted and secure service) even when run
concurrently with multiple copies of itself, plus arbitrary network activity.

Which cryptographic tasks are realizable by protocols that guarantee UC se-
curity? Are existing protocols, which are known to be secure in a stand-alone
setting, UC secure? When the majority of the parties are honest (i.e., they are
guaranteed to follow the protocol), the general feasibility results for stand-alone
secure computations can be extended to the case of UC security. In fact, some
known protocols for general secure function evaluation turn out to be UC secure.
For instance, the [bgw88] protocol (both with and without the simplification of
[grr98]), together with encrypting each message using non-committing encryp-
tion [cfgn96], is universally composable as long as less than a third of the parties
are corrupted, and authenticated and synchronous communication is available.
Using [rb89], any corrupted minority is tolerable. Asynchronous communication
can be handled using the techniques of [bcg93, bkr94]. Note that here some
of the participants may be “helpers” (e.g., dedicated servers) that have no local
inputs or outputs; they only participate in order to let other parties obtain their
outputs in a secure way.

However, things are different when honest majority of the parties is not guar-
anteed, and in particular in the case where only two parties participate in the
protocol and either one of the parties may be corrupted: It turns out that many
interesting tasks are impossible to realize in the “bare” model of computation.
Impossibility holds even if ideally authenticated communication is guaranteed.
(In keeping with common terminology, we use the terms plain protocols and proto-
cols in the plain model to denote protocols that assume ideally authenticated com-
munication but no other set-up.) For instance, basic cryptographic tasks such as
Bit Commitment, Coin-Tossing, Zero-Knowledge, or Oblivious Transfer cannot
be realized by plain protocols, when naturally translated to the UC framework.
Impossibility also extends to many other tasks [cf01, c01, ckl03, ddmrs06],
including multi-party extensions of these primitives, whenever the honest parties
are not in majority.

One potential approach for circumventing these impossibility results is to
come up with relaxed notions of security that would still guarantee meaningful
composable security, and at the same time would be realizable by plain pro-
tocols. It turns out, however, that such an approach will necessarily result in
notions of security that either do not provide general composability guarantees,
or alternatively are too weak to guarantee even stand-alone security as in, say,
[c00] (see e.g. [l03, l04, Can06]). Still, some meaningful such relaxations exist,
see e.g. [ps04, bs05, mmy06].

Another approach is to stick with UC security, but consider protocols that
rely on some trusted set-up assumption on the system. Here the meaningfulness
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of the security guarantee hinges on the “reasonability” of the set-up assumption,
or in other words on the ability to realize the assumed set-up in actual systems.

This survey studies some set-up assumptions (or, models) that were recently
proposed and shown to suffice for realizing essentially any cryptographic task in
a universally composable way. The various set-up models are compared to each
other, and the relative strengths and weaknesses are discussed.

The survey is organized as follows. Section 2 provides a brief review of the
UC security framework. Section 3 reviews the basic impossibility result for ob-
taining UC commitment in the plain model. Section 4 reviews the common ref-
erence string (CRS) set-up. Section 5 reviews the key registration (KR) set-up.
Section 6 reviews the adversarially controlled CRS (Sunspot) set-up. Section 7
reviews the augmented CRS (ACRS) set-up. Section 8 reviews the first set-up
assumption, which relates to the delays on message delivery. Section 9 briefly
discusses st-up assumptions for the purpose of obtaining authenticated commu-
nication. Section 10 concludes and discussed some open problems.

2 UC Security: A Brief Review

This section briefly reviews the UC framework. As in many other frameworks
(e.g., [gl90, mr91, b91, c00, pw00, pw01]), the security of protocols with re-
spect to a given task is defined via the “trusted party paradigm” [gmw87], where
the protocol execution is compared with an ideal process where the outputs are
computed by a trusted party that sees all the inputs. That is, a protocol is said
to securely carry out a given task if running the protocol with a realistic ad-
versary amounts to “emulating” the ideal process with the appropriate trusted
party. We call the algorithm run by the trusted party an ideal functionality.

The UC framework substantiates this approach as follows. First, the process of
executing a protocol in the presence of an adversary and in a given computational
environment is substantiated. Next, the “ideal process” for carrying out the
task is substantiated. Finally, one defines what it means for an execution of the
protocol to “mimic” the ideal process. We sketch these three steps.

The Model of Protocol Execution. The model for executing an multiparty
protocol π consists of a system of computing elements (modeled as interactive
Turing machines, or ITMs) (Z, A, M1, M2, ...) where Z and A are adversar-
ial entities called the environment and adversary, respectively, and the machines
M1, M2, ... represent parties that run an “extended instance” of π. (An instance
of protocol π is a set of ITMs that run π and in addition have a common iden-
tifier, called the session ID. The number of parties in an instance may vary
from instance to instance, as well as during the lifetime of an instance.) Intu-
itively, the environment represents all the other protocols running in the system,
including the protocols that provide inputs to, and obtain outputs from, the
protocol instance under consideration. The adversary represents adversarial ac-
tivities that are directly aimed at the protocol execution under consideration,
including attacks on protocol messages and corruption of protocol participants.
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An execution of the system consists of a sequence of activations of the individ-
ual elements, where the environment is activated first, and in each activation the
active element determines the next element to be active, by sending information
to it. This information may be labeled as either input, output, or protocol mes-
sage. We impose the following restrictions on the way in which the above system
runs. The environment Z is allowed to provide only inputs to other machines.
A party of π may send messages to A, or give inputs to the environment. The
adversary A may give output to Z or send messages to other parties.

Let execπ,A,Z(z) denote the random variable (over the local random choices
of all the involved machines) describing the output of environment Z when inter-
acting with adversary A and parties running protocol π on input z as described
above. Let execπ,A,Z denote the ensemble {execπ,A,Z(z)}z∈{0,1}∗ . We restrict
attention to the case where the environment outputs only a single bit; namely,
the ensemble execπ,A,Z is an ensemble of distributions over {0, 1}.

Subroutines. For the purpose of formulating the ideal process and the notion
of protocol composition it will be convenient to allow designating an ITM as
a subroutine of another ITM. If an ITM M is a subroutine of M ′ then M ′

can give input to M and M can give output to M ’. Note that M and M may
have different session ID and run different codes. The above model of protocol
execution is then extended in the natural way to protocols where the parties have
subroutines, with the important restriction that the environment only provides
inputs to and receives outputs from the parties of a single instance of π. In
particular, it does not directly communicate with any subroutine of a party of
that single instance.

Ideal Functionalities and Ideal Protocols. Security of protocols is defined
via comparing the protocol execution to an ideal process for carrying out the
task at hand. For convenience of presentation, we formulate the ideal process
for a task as a special protocol within the above model of protocol execution.
(This avoids formulating an ideal process from scratch.) A key ingredient in this
special protocol, called the ideal protocol, is an ideal functionality that captures
the desired functionality, or the specification, of the task by way of a set of
instructions for a “trusted party”.

That is, let F be an ideal functionality (i.e., an algorithm for the trusted
party). Then an instance of the ideal protocol idealF consists of dummy parties,
plus a party F that’s a subroutine of all the main parties. Upon receiving an input
v, each dummy party forwards v as input to the subroutine F . Any subroutine
output coming from F is forwarded by the dummy party as subroutine output for
the environment. We note that F can model reactive computation, in the sense
that it can maintain local state and its outputs may depend on all the inputs
received and all random choices so far. In addition, F may receive messages
directly from the adversary A, and may contain instructions to send messages
to A. This “back-door channel” of direct communication between F and A
provides a way to relax the security guarantees provided F . Specifically, by
letting F take into account information received from A, it is possible to capture
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the “allowed influence” of the adversary on the outputs of the parties, in terms
of both contents and timing. By letting F provide information directly to A it
is possible to capture the “allowed leakage” of information on the inputs and
outputs of the parties.

Protocol Emulation. It remains to define what it means for a protocol to
“mimic” or “emulate” the ideal process for some task. As a step towards this
goal, we first formulate a more general notion of emulation, which applies to
any two protocols. Informally, protocol π emulates protocol φ if, from the point
of view of any environment, protocol π is “just as good” as φ, in the sense
that no environment can tell whether it is interacting with π and some (known)
adversary, or with φ and some other adversary. More precisely:

Definition (protocol emulation): Protocol π UC-emulates protocol φ if for
any adversary A there exists an adversary S such that, for any environment
Z the ensembles execπ,A,Z and execφ,S,Z are indistinguishable. That is, on
any input, the probability that Z outputs 1 after interacting with A and parties
running π differs by at most a negligible amount from the probability that Z
outputs 1 after interacting with S and φ.

Once the general notion of protocol emulation is defined, the notion of realizing
an ideal functionality is immediate:

Definition (realizing functionalities): Protocol π UC-realizes an ideal func-
tionality F if π emulates idealF , the ideal protocol for F .

2.1 The Universal Composition Theorem

As in the case of protocol emulation, we present the composition operation and
theorem in the more general context of composing two arbitrary protocols. The
case of composing ideal protocols follows as a special case.

The Universal Composition Operation. The universal composition oper-
ation is a natural generalization of the “subroutine substitution” operation for
sequential algorithms to the case of distributed protocols. That is, let ρ be a pro-
tocol that contains instructions to call protocol protocol φ as a subroutine, and
let π be a protocol that UC-emulates φ. The composed protocol, denoted ρπ/φ,
is the protocol that is identical to ρ, except that each instruction to call protocol
φ is replaced with an instruction to call protocol π with the same parameters an
inputs. Similarly, any output from a party running π is treated as an input form
a party running φ. In particular, if some party running ρ calls multiple instances
of φ, differentiated via their session IDs, then the corresponding instance of πρ/φ

will use multiple instances of ρ.

The Composition Theorem. In its general form, the composition theorem
says that if protocol π UC-emulates protocol φ then, for any protocol ρ, the
composed protocol ρπ/φ emulates ρ. This can be interpreted as asserting that
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replacing calls to φ with calls to π does not affect the behavior of ρ in any
distinguishable way.

There is one caveat: For this result to hold we need that protocols π and
ρ are “nice” in that only the main parties of the protocol have I/O with the
outside world. More precisely, say that a protocol π is subroutine respecting if
only the main parties of any instance of π receive input from external parties and
send output to external parties. In particular, subroutines of the main parties,
and subroutines thereof, do not directly get inputs from or send outputs to an
external party. Then:

Theorem (universal composition): Let ρ, φ, π be subroutine respecting pro-
tocols such that ρ uses φ as subroutine and π UC-emulates φ. Then protocol ρπ/φ

UC-emulates ρ. In particular, if ρ UC-realizes an ideal functionality G then so
does ρπ/φ.

A first, immediate corollary of the general theorem states that if protocol π
UC-realizes an ideal functionality F , and π uses as subroutine protocol idealF ,
the ideal protocol for F , then the composed protocol ρπ/φF

UC-emulates ρ.1

Another corollary states that if π UC-realizes an ideal functionality G, then so
does ρπ/φ.

Remark: On the Universality of Universal Composition. Many different
ways of “composing together” protocols into larger systems are considered in the
literature. Examples include sequential, parallel, and concurrent composition, of
varying number of protocol instances, where the composed instances are run
either by the same set of parties or by different sets of parties, use either the
same program or different programs, and have either the same input or different
inputs. A more detailed discussion appears in [Can06].

We observe that all of these composition methods can be captured as special
cases of universal composition. That is, any such method for composing together
protocol instances can be captured by an appropriate “calling protocol” ρ that
uses the appropriate number of protocol instances as subroutines, provides them
with appropriately chosen inputs, and arranges for the appropriate synchroniza-
tion in message delivery among the various subroutine instances. Consequently,
it is guaranteed that a protocol that UC-realizes an ideal functionality F con-
tinues to UC-realize F even when composed with other protocols using any of
the composition operations considered in the literature.

2.2 Generalized UC Security

In the UC framework the UC theorem holds only for protocols which are subrou-
tine respecting. This simplifies the model and the analysis of protocols within it,
but it does not allow to guarantee security in interesting cases where the same
computational entity is used as a subroutine within multiple protocol instances.

1 We say that an instance of protocol ρ uses an instance of protocol φ as a subroutine
if each party in the instance of φ is a subroutine of some party of the instances of ρ.
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To get around this limitation, the generalized UC (GUC) framework [cdpw07]
modifies the model of protocol execution by allowing the environment to create
and interact with other entities, in addition to the adversary and the parties of
a single instance of the analyzed protocol, π. These additional entities may in
turn provide inputs to and get outputs from participants in π. Say that protocol
π GUC-emulates protocol φ if π UC-emulates φ with the modified protocol
execution model. Now it can be seen that, within the GUC framework, the UC
theorem holds even with respect to protocols that are not subroutine respecting:

Theorem (generalized universal composition): Let ρ, φ, π be protocols such
that ρ uses φ as subroutine and π GUC-emulates φ. Then protocol ρπ/φ UC-
emulates ρ. In particular, if ρ GUC-realizes an ideal functionality G then so
does ρπ/φ.

Two results surveyed here use this generalized model, for different purposes. One
is the modeling of the augmented CRS model in [cdpw07], with the purpose of
modeling set-up that’s available to more than one protocol instance. The other
is the modeling of adversarially controlled reference strings in [cps07].

3 Prologue: Impossibility of UC Commitment

We recall some basic results regarding realizability of functionalities in the UC
framework. These results motivate and shape the search for better set-up as-
sumptions.

In a nutshell, the natural formulations of Commitment, Zero-Knowledge, Coin
Tossing, or Oblivious Transfer as ideal functionalities within the UC framework
turn out to be “complete” for UC realizability. That is, UC-realizing any one of
these functionalities is necessary and sufficient for obtaining general realizability
results for practically any ideal functionality.

In other words, there exist ideal functionalities, Fcom, Fzk, Fcoin, Fot, that
naturally capture the security requirements from the corresponding primitives,
and such that it is possible to UC-realize any one of these ideal functionalities
by protocols that make use of any one of these ideal functionalities as a sub-
routine (see [c01] for more details). Furthermore, there exist constructions for
UC-realizing any “well-formed” ideal functionality via protocols that use, say,
Fzk as subroutine (see e.g. [clos02]).

Furthermore, it is impossible to UC-realize any one of these functionalities
via two-party plain protocols.

Here we briefly recall the impossibility result for UC-realizing the ideal com-
mitment functionality, Fcom. Impossibility for the other primitives follow similar
lines. First, however, let us recall the formulation of Fcom.

The Ideal Commitment Functionality. The ideal commitment function-
ality, Fcom, formalizes the “sealed envelope” intuition in a straightforward way.
That is, when receiving from the committer C an input requesting to commit
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to value x to a receiver R, Fcom records (x, R) and notifies R and the adversary
that C has committed to some value. (Notifying the adversary means that the
fact that a commitment took place need not be hidden.) The opening phase is
initiated by the committer inputting a request to open the recorded value. In
response, Fcom outputs x to R and the adversary. (Giving x to the adversary
means that the opened value can be publicly available).

In order to correctly handle adaptive corruption of the committer during the
course of the execution, Fcom responds to a request by the adversary to corrupt
C by first outputting a corruption output to C, and then revealing the recorded
value x to the adversary. In addition, if the Receipt value was not yet delivered
to R, then Fcom allows the adversary to modify the committed value. This last
stipulation captures the fact that the committed value is fixed only at the end
of the commit phase, thus if the committer is corrupted during that phase then
the adversary might still be able to modify the committed value. (Corruption of
the receiver does not require any move).

Fcom is described in Figure 1. For brevity, we use the following terminology:
The instruction “send a delayed output x to party P” should be interpreted as
“send (x, P ) to the adversary; when receiving ok from the adversary, output x
to P .”

Functionality Fcom

1. Upon receiving an input (Commit, x) from party C, record (C, R, x)
and generate a delayed output (Receipt) to R. Ignore any subsequent
(Commit...) inputs.

2. Upon receiving an input (Open) from C, do: If there is a recorded value
x then generate a delayed output (Open, x) to R. Otherwise, do nothing.

3. Upon receiving a message (Corrupt, C) from the adversary, output a
Corrupted value to C, and send x to the adversary. Furthermore, if the
adversary now provides a value x′, and the (Receipt) output was not
yet written on R’s tape, then change the recorded value to x′.

Fig. 1. The Ideal Commitment functionality, Fcom

Impossibility of Realizing Fcom in the Plain Model. Roughly speaking, the
requirements from a protocol that UC-realizes Fcom boil down to the following
two requirements from the ideal-process adversary (simulator) S. (a). When the
committer is corrupted (i.e., controlled by the adversary), S must be able to
“extract” the committed value from the commitment. That is, S has to come up
with a value x such that the committer will almost never be able to successfully
decommit to any x′ �= x. This is so since in the ideal process S has to explicitly
provide Fcom with a committed value. (b). When the receiver is uncorrupted, S
has to be able to generate a “simulated commitment” c that looks like a real
commitment and yet can be “opened” to any value, to be determined at the
time of opening. This is so since S has to provide adversary A and environment
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Z with the simulated commitment c before the value committed to is known.
All this needs to be done without rewinding the environment Z.

Intuitively, these requirements look impossible to meet: A simulator that has
the above abilities can be used by a dishonest receiver to “extract” the com-
mitted value from an honest committer. This intuition can indeed be formalized
to show that in the plain model it is impossible to UC-realize Fcom by a two-
party protocol. Essentially, the proof proceeds as follows. Let π be a protocol
that UC-realizes Fcom. Consider an execution of π by an adversarially controlled
committer C and an honest receiver R, and assume that the adversary merely
sends messages that are generated by the environment, and delivers to the en-
vironment any message received from R. The environment, ZC , secretly picks
a random bit b at the beginning and generates the messages for C by running
the protocol of the honest committer for b and R’s answers. Once ZC received
a “receipt” output from R, it starts running the honest opening protocol in the
name of C. Finally, ZC outputs 1 iff the b′ that R outputs equals the secret bit
b. We know that the in an execution of π with honest receiver and committer,
in the opening stage the receiver always outputs the bit committed to by the
committer. However, since π UC-realizes Fcom, there should exist an ideal-model
adversary S that interacts with Fcom and generates a view for ZC that is indis-
tinguishable from a real execution with π. In particular, it must also be the case
that b = b′ almost always even in the ideal process. For this to hold, it must be
that S must have given to Fcom the correct bit b at the commitment stage. Now,
given S, we can construct another environment, ZR, and a corrupted receiver
AR, such that ZR successfully distinguishes between an execution of π and an
interaction with Fcom and any adversary SR. ZR and AR proceed as follows:
ZR chooses a random bit b and hands b as input to the honest committer C. It
then waits to receive a bit b′ from AR (which controls the receiver). ZR outputs
1 iff b = b′. AR proceeds as follows: Recall that S can “extract” the committed
bit b via simple interaction with the committers messages, without rewinding
or any additional information. Therefore, AR can simply run S and guess b al-
most always. In contrast, when ZR interacts with Fcom, the adversary’s view is
independent of b, and thus b = b′ with probability exactly one half.

4 The Common Reference String Model

The common reference string model, first proposed in [bfm88] and used exten-
sively since, assumes that the parties have access to a common string that is
guaranteed to come from a pre-specified distribution. Furthermore, it is guaran-
teed that the string was chosen in an “opaque” way, namely that no information
related to the process of choosing this string is available to any party. A very
natural distribution for the common string, advocated in [bfm88], is the uniform
distribution over the strings of some length. Still, it is often useful to consider
reference strings that are taken from other distributions.

In the Zero-Knowledge context of [bfm88], the fact that the reference string
comes from an external source that is unrelated to the actual computation is
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captured by allowing the simulator to choose the reference string as it wishes —
as long as the adversary cannot distinguish this “simulated string” from a “real
string” taken from the prescribed distribution. Indeed, it is this extra freedom
given to the simulator which makes this model powerful.

Within the present framework, the CRS model can be captured in a natural
way by modeling the reference string as coming from an appropriate ideal func-
tionality. More specifically, we formulate functionality Fcrs, presented in Figure
2 below. The functionality is parameterized by a distribution D and a set P of
recipients of the reference string. Upon invocation, it first draws a value r from
distribution D. Next, on input from a party P ∈ P , FD

crs
returns r to P .

Letting the adversary know r models the fact that r is public, and cannot be
assumed secret. Prohibiting parties not in P from obtaining r directly from Fcrs

models the fact that r is treated as local to a specific protocol instance, and is
intended to be used only within this protocol instance. (This point is elaborated
on in Section 7.) Other protocol instances should use different “draws” from
distribution D. This restriction on the use of the reference string limits the
applicability of the CRS model: To realize Fcrs in reality, the participants of
each protocol execution need to somehow “get together” and obtain a reference
string that they all trust to be taken from the specified distribution. The next
sections discuss set-up assumptions that are aimed at mitigating this limitations
in a number of different ways.

Functionality FD,P
crs

1. When receiving input (CRS,sid) from party P , first verify that P ∈
P ; else ignore the input. Next, if there is no value r recorded then
choose and record a value r

R← D. Finally, send a public delayed output
(CRS,sid, r) to P .

Fig. 2. The Common Reference String functionality

From Fcrs to Fcom. Several protocols that UC-realize Fcom given access to
Fcrs are known. Here we briefly sketch the protocol of [cf01]. What “saves” the
simulator in the CRS model from the above impossibility result is the following
observation, which parallels the original CRS model of [bfm88]: When interact-
ing with a commitment protocol that used Fcrs, the environment learns about
the value of the reference string only from the adversary. This means that, the
ideal process for Fcom, the simulator can choose the reference string on its own.
Consequently, the simulator can know some “trapdoor information” associated
with the reference string, and even change its distribution slightly.

The [cf01] commitment protocol uses this observation as follows. The ref-
erence string will consist of a public key e of an encryption scheme and a
claw-free pair of permutations f0, f1 with trapdoor. (That is, given only the
description f0, f1 it is infeasible to find x0, x1 such that f0(x0) = f1(x1), but
given a trapdoor t one can efficiently invert, say, f0.) Now, to commit to bit
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b, the committer chooses a random value r and sends the commitment message
(fb(r), Ee(r0, id), Ee(r1, id)) where rb = r, r1−b = 0, and id is an identifier for the
session. (Typically, id would include the identities of the committer and receiver,
plus additional commitment-specific information.) To open to bit b, the commit-
ter sends r and the randomness used for encrypting r; this is the first or second
encryption, depending on b.2 Now, in a standard execution of the protocol the
commitment is committing (due to the claw-freeness of f0, f1), and hiding (due
to the security of the encryption scheme). However, in a simulated execution
the simulator can know both t and the decryption key associated with e. It can
thus easily generate commitment strings that can be opened both ways, and at
the same time it can easily extract the hidden value committed in an honestly
generated commitment. When the encryption scheme is secure against chosen
ciphertext attacks, it can be shown that the simulator can successfully extract
the hidden value even when the commitment string is chosen adversarially. This
ideas are at the basis of the proof of security of the protocol.

We note that the above protocol can generate multiple commitments using
a single reference string. In other words, it actually realizes a “multi-session
version” of Fcom, where a single instance allows multiple parties can commit and
open multiple commitments. (This multi-session version is called Fmcom in the
literature.) This somewhat alleviates the need to agree on a different reference
string for each protocol instance, since a single instance of the above protocol
suffices for generating commitments for an entire system. However, the solution
is far from satisfying: First, strictly speaking, all protocol instances that use
the same commitment protocol now have some joint state and can no longer
be analyzed separately and be composed later. Second, no security guarantee
is given with respect to other protocols that use the same reference string in
other ways than via that global instance of the commitment protocol. The first
issue is handled by the Universal Composition with Joint State (JUC) theorem
of [cr03]. The second issue is more subtle and is addressed in Section 7.

5 The Key Set-Up Model

The CRS set-up assumption has the advantage that it only requires knowledge
of a single short string. In particular, it does not require parties to identify them-
selves or to go through a registration process before participating in a protocol.
Thus, in settings where it is reasonable to assume existence of trusted reference
string, this assumption is very attractive. However, when the reference string is
being generated by a computational entity that may be corrupted or subverted,
the CRS modeling is somewhat unsatisfactory, in that it puts complete trust
in a single entity. In fact, this entity, if subverted, can completely undermine
the security of the protocol by choosing the reference string from a different
distribution, or alternatively by leaking to some parties some secret information
related to the string. Furthermore, it can do so without being detected.

2 The actual protocol is slightly different, to account for adaptive corruptions.
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The key set-up functionality, Fks, formulated in [bcnp04] and presented in
Figure 3, is written in a way that can be realized by real-world mechanisms
that do not require all participants to put full trust in a single string. At the
same time, it can be realized even in the CRS model itself. We first describe the
functionality and its use, and then discuss how it can be realized.

Fks is parameterized by a set P of parties and a deterministic function
f : {0, 1}∗ → {0, 1}∗, that represents a method for computing a public key
given a secret (and supposedly random) key. The functionality allows parties to
register their identities together with an associated “public key”. However, Fks

provides only relatively weak guarantees regarding this public key, giving the
adversary considerable freedom in determining this key. (This freedom is what
makes Fks so relaxed.) Specifically, the “public key” to be associated with a
party upon registration is determined as follows. The functionality keeps a set R
of “good public keys”. Upon receiving a registration request from party P ∈ P ,
the functionality first notifies the adversary that a request was made and gives
the adversary the option to set the registered key to some key p that is already
in R. If the adversary declines to set the registered key, then the functionality
determines the key on its own, by choosing a random secret r from a given do-
main (say, {0, 1}k for a security parameter k) and letting p = f(r). Once the
registered key p is chosen, the functionality records (P, p) and returns p to P
and to the adversary. Finally, if p was chosen by the functionality itself then p
is added to R. If the registering party is corrupted, then the adversary can also
specify, if it chooses, an arbitrary “secret key” r. In this case, P is registered
with the value f(r) (but r is not added to R).

A retrieval request, made by a party in P , for the public key of party P is
answered with either an error message ⊥ or one of the registered public keys of
P , where the adversary chooses which registered public key, if any, is returned.
(That is, the adversary can prevent a party from retrieving any of the registered
keys of another party).

Notice that the uncorrupted parties do not obtain any secret keys associated
with their public keys, whereas the corrupted parties may know the secret keys
of their public keys. Furthermore, Fks gives the adversary a fair amount of
freedom in choosing the registered keys. It can set the keys associated with
corrupted parties to be any arbitrary value (as long as the functionality received
the corresponding private key). The adversary can also cause the keys of both
corrupted and uncorrupted parties to be identical to the keys of other (either
corrupted or uncorrupted) parties. Still, Fks guarantees two basic properties: (a)
the public keys of good parties are “safe” (in the sense that their secret keys were
chosen at random and kept secret from the adversary), and (b) the public keys
of the corrupted parties are “well-formed”, in the sense that the functionality
received the corresponding private keys.

In [bcnp04] it is shown how to UC-realize Fmcom given access to Fks. A non-
interactive protocol for realizing Fzk given access to ks is also shown. The protocol
for realizing Fmcom is essentially identical to the [cf01] protocol described above;
the only difference is that the claw-free pair f0, f1 is now the public key of the
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Functionality FP,f
ks

Ff
ks

proceeds as follows, given set P of identities, function f and security
parameter k. At the first activation a set R of strings is initialized to be
empty.

Registration: When receiving input (Register, sid) from a party P , ver-
ify that that P ∈ P ; else ignore the input. Next, send (Register, sid, P)
to the adversary, and receive a value p′ from the adversary. Then, if
p′ ∈ R then let p ← p′. Else, choose r

R← {0, 1}k, let p ← f(r), and
add p to R. Finally, record (P, p) and return (sid, p) to P and to the
adversary.

Registration by a corrupted party: When receiving input
(Register, sid, r) from a corrupted party P ∈ P , record (P, f(r)). In
this case, f(r) is not added to R.

Retrieval: When receiving a message (Retrieve, sid, P) from party P ′ ∈
P , send (Retrieve, sid, P, P ′) to the adversary and obtain a value p in
return. If (P, p) is recorded then return (sid, P, p) to P ′. Else, return
(sid, P, ⊥) to P ′.

Fig. 3. The Key Registration functionality

receiver, whereas the encryption key e is now the public key of the committer.
Intuitively, this works since the committer is only concerned that the secret
decryption key associated with e remains unknown, whereas the receiver is only
concerned that the trapdoor t of f0, f1 remains unknown. We note, however,
that this protocol remains secure only for non-adaptive party corruption.

Realizing Fks. Fks can be realized in a number of different ways. First, we
observe that FP,f

ks can be realized in the FP,D
crs -hybrid model, where D = Dk is

the distribution of f(r) for r that is uniform in {0, 1}k. The protocol is straight-
forward: On input either (Register, sid) or (Retrieve, sid, P ), party P sends
(CRS, sid) to Fcrs and returns the obtained value.

Realizing Fks Given a Distributed Registration Service. Consider a set-
ting where the parties have access to registration servers where parties can reg-
ister and obtain public keys that were chosen at random according to a given
distribution (i.e., the public key is f(r) for an r

R← {0, 1}k). Alternatively, parties
can choose their keys themselves and provide them to the server. Note that here
each party needs to put full trust (to keep its key secret) only in the server it
registers with. The trust put in other servers is much lower - it only needs to be
trusted that the public keys obtained from these servers are “well formed”.

Realizing Fks Using Traditional Proofs of Knowledge. Finally, it is pos-
sible to realize Ff

krk (and thus also Ff
ks) via traditional (non-UC) proofs of

knowledge of the private key, under the assumption that the proofs of knowl-
edge occur when there is no related network activity. (Intuitively, in this case it is
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ok to “rewind” the environment, as necessary to prove security of the traditional
proof of knowledge.

6 Adversarially Controlled Set-Up

The common reference string model provides the guarantee that the reference
string is drawn from a pre-specified distribution. This is a very convenient ab-
straction for the purpose of designing protocols. Indeed, all existing protocols
use this guarantee in a crucial sense: Security analyses quickly fall apart as soon
as distribution of the reference string is changed even slightly.

This property is quite limiting. In particular, it seems to rule out “physical
implementations” where the reference string is taken to be the result of joint
measurement of some physical phenomenon such as astronomic measurements,
fluctuations of the stock market, or even network delays across the Internet.
Indeed, while it is reasonable to believe that such phenomena are largely unpre-
dictable and uncontrollable, namely they have “high entropy”, it is a stretch of
the imagination to believe that they are taken from a distribution that is known
to and useful for the protocol designer.

Can composable security be obtained if we only have an imperfect reference
strings, or alternatively a reference string that are adversarially controlled to
some extent? More specifically, are there protocols that UC-realize, say, Fcom in
such a setting?

A first indication that this might not be an easy task is the result of
Dodis et al. [dops04] that demonstrates the impossibility of NIZK in a relaxed
variant of the CRS model in which the distribution of the reference string can be
arbitrary subject to having some minimal min-entropy. However, this result does
not rule rule out composable protocols; more importantly, it does not consider
the case where the reference string is guaranteed to be taken from an efficiently
samplable distribution. Indeed, for such distributions deterministic extractors
are known to exist (under computational assumptions) [tv00]. Thus, one might
expect it to be possible to “compile” any protocol in the CRS model (or at
least protocols that can do with a uniformly distributed reference string) into a
protocol that uses a reference string that is taken from any efficiently samplable
distribution that has sufficient min-entropy: First have the parties use a deter-
ministic extractor to transform the reference string into a string that is almost
uniformly distributed. Next, run the original protocol. Since the extracted string
is almost uniform, one might expect the original analysis to work in the same way.

However, deterministic extractability turns out to be insufficient for this pur-
pose. In fact, it turns out that if one relaxes Fcrs so as to allow the distribu-
tion to be adversarially determined, then UC-realizing Fcom becomes impossible
[cps07]. Impossibility holds even if the chosen distribution is guaranteed to have
full min-entropy minus a polynomially vanishing fraction, even if the distribution
is guaranteed to be sampled via an algorithmic process, namely via a sampling
process that has a relatively succinct description, and even when this process is
guaranteed to be computationally efficient.
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As a recourse, one may restrict attention to the case where the algorithm for
sampling the reference string is known to the adversaries involved. (Still, it is of
course unknown to the protocol.) Here it turns out to be possible to UC-realize
Fcom, as long as the reference string is taken from a distribution that is guar-
anteed to have a polynomial time sampling algorithm, a short description, and
super-logarithmic min-entropy. Furthermore, all three conditions are simultane-
ously necessary, in the sense that impossibility holds as soon as any one of the
conditions is relaxed [cps07].

Discussion. It may appear over-optimistic to assume that the physical (or
man-made) phenomena used to generate the reference string are governed by
distributions where the sampling algorithm is computable in polynomial time.
Indeed, why should Nature be governed by succinct and efficient algorithms?
However, beyond the technical fact that these restrictions are necessary, one can
view our analysis as a proof that any successful attack against the proposed
protocols demonstrates that either the underlying hardness assumptions are vi-
olated, or else that the process for choosing the reference string is not efficiently
computable, or has long description. This might be an interesting revelation in
itself. Alternatively, the positive result may be interpreted as addressing situa-
tions where the process of choosing the reference string is influenced by an actual
attacker. Here the guarantee that the distribution has some min-entropy repre-
sents the fact that the attacker’s influence on the sampling process is limited.

The [cps07] Results in More Detail. Three relaxations of FP,D
crs are formu-

lated. The first relaxation, called Fbbsun, proceeds as follows. (Here sun stands
for “sunspots”, which is the term used in the first works that propose the CRS
model when referring to astronomic observations [bfm88, f88] and bb stands for
“black-box”). Instead of treating the distribution D as a fixed, public parame-
ter, let the environment determine the distribution by providing a description
of a sampling algorithm for D. Then, Fbbsun chooses a sufficiently long random
string ρ and computes the reference string r = D(ρ). In addition, Fbbsun lets
the adversary (and simulator) obtain additional independent samples from the
distribution “on the side”. These samples are not seen by the environment or
the parties running the protocol.

Three parameters of Fbbsun turn out to be salient. First is the min-entropy,
or “amount of randomness” of the reference string (measured over the random
choices of both the environment and the sunspot functionality). Next is the
runtime, or computational complexity of the sampling algorithm D. Last is
the description-size of D (namely, the number of bits in its representation as
a string); this quantity essentially measures the amount of randomness in the
reference string that comes from the random choices of the environment. All
quantities are measured as a function of the length n of the reference string;
that is, we treat n as the security parameter.

Theorem: There exist no two-party protocols that UC-realize Fcom when given
access to of Fbbsun. This holds even if the distribution of the reference string
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is guaranteed to have min-entropy greater than n − nε, and even if both the
description size and the computational complexity of the provided sampling
algorithm are guaranteed to be at most nε, for any ε > 0.

Next a more restricted setting is considered, where the adversary has access to
the “code”, or description of the sampling algorithm D. This is modeled by hav-
ing the set-up functionality explicitly send the description of D to the adversary.
(Note that this relaxation is meaningful only for sampling algorithms that can
be described in poly(n) bits, else the adversary cannot read the description.) Call
this functionality Fgbsun (for “gray box”). The third variant, called Fsun, gives
to the adversary also the local random choices used to generate the reference
string. It turns out that this variant provides an incomparable setup guarantee
to that of Fgbsun. (This is so since the setup functionality is invoked directly by
the environment. Consequently, the functionality exists both in the real-life and
in the ideal models).

Theorem: There exist no two-party protocols that UC-realize Fcom when given
access to either Fgbsun or Fsun. This holds even if either one of the following
holds

1. The computational complexity of the sampling algorithm can be super-
polynomial in n, as long as the distribution of the reference string is guar-
anteed to have min-entropy n − poly log n, and the description size of the
provided sampling algorithm is guaranteed to be at most poly logn (assum-
ing one-way functions with sub-exponential hardness).

2. The description size of the sampling algorithm is at least μ(n)−log n, as long
as the distribution of the reference string is guaranteed to have min-entropy
μ(n) = n and the computational complexity is guaranteed to be at most
O(n).

3. The distribution of the reference string has min-entropy at most log n, as
long as the description length is O(1) and the computational complexity is
O(n).

On the other hand, we have:

Theorem: Assume there exist collision-resistant hash functions, dense crypto-
systems and one-way functions with sub-exponential hardness. Then there exists
a two-party protocol that UC-realizes Fmcom, when given access to O(1) instances
of either Fgbsun or Fsun, as long as it is guaranteed that the min-entropy of the
reference string is at least μ(n) = poly log n the computational complexity of
the provided sampling algorithm is at most poly(n) and its description size is at
most μ(n) − poly log n.

Furthermore, the protocol from Theorem 3 withstands even adaptive party cor-
ruptions, with no data erasure, whereas Theorems 1 and 2 apply even to protocols
that only withstand static corruptions.

In other words, under computational assumptions, Theorem 2 and 3 provide
an essentially tight characterization of the feasibility of UC protocols, in terms
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of the min-entropy, computational complexity and description length of the ref-
erence string. Informally,

UC-security of non-trivial tasks is possible if and only if the reference
string has min-entropy at least μ(n) = poly log n, and is generated by a
computationally-efficient sampling algorithm with description length at
most μ(n) − poly log n.

Techniques for the Impossibility Results. The impossibility results com-
bine the [cf01] proof of impossibility of UC-realizing Fcom in the plain model
with techniques from [gk89]. Recall that the model does not let the environ-
ment see the reference string directly, which in principle allows the simulator to
present the environment with any string of its choosing and claim that this is the
reference string chosen in the execution. To mitigate this freedom, the environ-
ment chooses a special distribution D that makes sure that the string presented
by the simulator as the actual reference string can only be one of the strings that
the simulator received as “extra samples” from the set-up functionality. Since
the simulator can only ask for a polynomial number of such samples, it can be
seen that a dishonest verifier can still use the simulator to extract the committed
bit from an honest committer, much as in the proof of [cf01], and with only
polynomial degradation in success probability. All impossibility results use this
idea, with different techniques or choosing the distribution D so as to obtain the
desired effect.

Protocol Techniques. To explain the main idea behind the protocol, it is
useful to first sketch a simpler protocol that is only secure with respect to static
corruptions. Also, the protocol aims to realize the zero-knowledge functionality,
Fzk, rather than Fmcom. The idea is to use a variation on Barak’s protocol [b01]:
Let L be an NP language and assume that a prover P wishes to prove to a
verifier V that x ∈ L, having access to a reference string r that is taken from
an unknown distribution with min-entropy at least μ = nε . Then, P and V will
engage in a witness-indistinguishable proof that “either x ∈ L or the reference
string r has a description of size μ/2”. (As in Barak’s protocol, the description
size is measured in terms of the Kolmogorov complexity, namely existence of a
Turing machine M with description size μ/2 that outputs r on empty input.
Also, in order to guarantee that the protocol is simulatable in polynomial-time
M should be polynomial time.) Soundness holds because in a real execution of
the protocol, r is taken from a distribution with min-entropy at least μ, so the
second part of the “or” statement is false with high probability. To demonstrate
zero-knowledge, the simulator generates a simulated reference string r̃ by running
the sampling algorithm D for the distribution on a pseudorandom random-input.
That is, the simulator chooses a random string ρ̃ of length, say, μ/2−|D| (where
|D| denotes the description size of D) and computes r̃ = D(G(ρ̃)), where G is
some length-tripling pseudo-random generator. Now, r̃ indeed has description of
size μ/2 (namely, ρ̃ plus |D| plus the constant-size description of G); furthermore,
the simulator knows this description. Also, since both D and the environment
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are polynomial time, the simulated string r̃ is indistinguishable from the real
string r.

The above protocol allows for straight-line simulation. It is not yet straight-
line extractable, but it can be modified to be so using the techniques of [bl04].
Still, it is only secure against static corruptions of parties. In order to come up
with a protocol that withstands adaptive corruptions a somewhat different tech-
nique is used, which combines the above idea with techniques from [cdpw07].
First, they move to realizing Fmcom. They then proceed in several steps: The first
step is to construct a commitment scheme that is equivocal and adaptively secure.
This is done using Feige and Shamir’s technique [fs89] for constructing equivocal
commitments from Zero-Knowledge protocols such as the one described above.
Next, the constructed equivocal commitment scheme is used in a special type of
a coin-tossing protocol, and use the obtained coin tosses as a reference string for
a standard UC commitment protocol such as [cf01].

The protocol allows two parties to perform multiple commitment and decom-
mitment operations between them, using only two reference strings —one for
the commitments by each party. This means that in a multi-party setting it
is possible to realize any ideal functionality using one reference string for each
(ordered) pair of parties, regardless of the number of commitments and decom-
mitment performed. Furthermore, each reference string needs to be trusted only
by the two parties who use it.

7 Globally Available Set-Up

All the set-up models considered so far model the set-up information as infor-
mation that’s available only to the participants of a single protocol instance.
This means that, in order to implement such a model, one has to generate a
fresh reference string (or fresh public keys) for each instance of a protocol that
uses it. Furthermore, this has to be done in a way that makes the reference
string available only to the protocol participants. While such implementations
are possible (say, via joint measurements of physical phenomena at the onset of
an execution), this is a severe limitation. In particular, this modeling stands in
contrast with the prevalent intuitive perception of the reference string (or public
key infrastructure ) as a “global” construct that is chosen in advance and made
available to all throughout the lifetime of the system.

Furthermore, this limitation turns out to be not only “academic”. For in-
stance, all existing protocols designed in the CRS model turn out to be insecure
in a setting where the reference string can be used by multiple, arbitrary pro-
tocols. In fact, as shown in [cdpw07], this limitation is inherent: No set-up
assumption that only gives out public set-up information can suffice for realiz-
ing, say, Fcom, if the same set-up information can be used by all protocols in the
system.

To exemplify this point, consider the “non-transferability” (or, “deniability”)
concern, namely allowing party A to interact with party B in a way that prevents
B from later “convincing” a third party, C, that the interaction took place.
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Indeed, if A and B interact via an idealized “trusted party” that communicates
only with A and B then deniability is guaranteed in a perfect, idealized way.
Thus, intuitively, if A and B interact via a protocol that emulates the trusted
party, then deniability should hold just the same. When the protocol in question
uses no set-up, or alternatively set-up that’s local to each protocol instance, this
intuition works, in the sense that UC-realizing such a trusted party automatically
implies non-transferability. However, when a global set-up is used, this is no
longer the case: There are protocols that emulate such a trusted party but do
not guarantee non-transferability.

For instance, consider the case of Zero-Knowledge protocols, namely protocol
that emulate the trusted party for the “Zero-Knowledge functionality”: Zero-
Knowledge protocols in the plain model are inherently deniable, but all existing
Zero-Knowledge protocols in the CRS model are completely undeniable whenever
the reference string is public knowledge (see [p03]).

Non-transferability is not the only concern that remains un-captured in the
present formulation of security in the CRS model. For instance, the protocol
in [cf01] for realizing the single-instance commitment functionality becomes
malleable as soon as two instances use the same reference string; indeed, to
avoid this weakness a more involved protocol was developed, where multiple
commitments can explicitly use the same reference string in a specific way. Other
demonstrations of this point are given in [yyz07a].

The Global CRS Model. Taking a second look at the way we modeled set-up
so far, the main reason for the inability to capture such global set-up is the fact
that so far the set-up was modeled as an ideal functionality that interacts only
with the parties of a given protocol execution. In particular, the set-up does
not explicitly take part in the ideal process. A natural way to capture global
set-up is thus to model the set-up as an ideal functionality that interacts not
only with the parties running the protocol, but also with other parties (or, in
other words, with the external environment). This in particular means that the
set-up functionality exists not only as part of the protocol execution, but also in
the ideal process, where the protocol is replaced by the trusted party.

More precisely, modify the CRS functionality, Fcrs, as follows: Instead of
giving the reference string only to the adversary and the parties running the
actual protocol instance, the new “global CRS” functionality, Fgcrs, will give the
reference string to all parties and in particular to the environment. (Technically,
in order to model Fgcrs one has to use the generalized UC security notion, as
sketched in Section 2.2. Indeed, it is for this reason that the generalized model
was first formulated).

Technically, the effect of this modeling is that now the simulator (namely, the
adversary in the ideal process) cannot choose the reference string or know related
trapdoor information. In a way, proofs of security in the new modeling, even
with set-up, are reminiscent of the proofs of security without set-up, in the sense
that the only freedom enjoyed by the simulator is to control the local random
choices of the uncorrupted parties. Indeed, as mentioned above, in [cdpw07]
the argument of [cf01] is extended to show that no two-party protocol can
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UC-realize Fcom. The proof extends to rule out any set-up functionality that
makes all of its inputs and outputs available to the environment.

New Set-Up Assumptions and Constructions. It turns out, however, that
it is possible to come up with global set-up functionalities that lend to reasonable
implementation and are still sufficient for UC-realizing Fcom. We briefly sketch
three such functionalities.

The first functionality is reminiscent of the key set-up functionality from Sec-
tion 5, Fks, with the exception that here the registration is done once per party
throughout the lifetime of the system, and the public key can be used in all
instances of all the protocols that the party might run. In particular, public keys
are directly accessible by the environment, even in the ideal process. It turns out
that one of the [bcnp04] protocols for UC-realizing Fcom given Fks continues
to work even when Fks is replaced by the global variant, Fgks, as long as party
corruptions are non-adaptive. However, when party corruptions can be adap-
tive, and the adversary can observe the past internal data of corrupted parties,
this protocol becomes insecure. To address this concern, a more sophisticated
protocol is constructed in [cdpw07].

A second functionality, called Facrs for “augmented CRS (ACRS)”, is remi-
niscent of the CRS set-up, but is somewhat augmented so as to circumvent the
impossibility result for plain CRS. That is, as in the case of Fgcrs, all parties
and the environment have access to a short reference string that is taken from
a pre-determined distribution. In addition, the ACRS set-up allows corrupted
parties to obtain “personalized” secret keys that are derived from the reference
string, their public identities, and some “global secret” that’s related to the
public string and remains unknown. It is stressed that in the formal model only
corrupted parties may obtain their secret keys. This effect of this modeling is
that protocol may not include instructions that require knowledge of the secret
keys, and yet corrupted parties are assumed to have access to their secret keys.
A protocol for UC-realizing Fcom (in fact, Fmcom) given Facrs is constructed in
[cdpw07]. The main additional technique on top of the protocol using Fgks is a
new identity-based trapdoor commitment (IBTC) protocol. (IBTC protocols in
the Random Oracle model appear in [zss03, am04]).

“Real world implementations” of Fgks and Facrs can involve a trusted entity
(say, a “post office”) that only publicizes the public value. The trusted entity
will also agree to provide the secret keys to the corresponding parties upon
request, with the understanding that once a party gets hold of its key then it
alone is responsible to safeguard it and use it appropriately (much as in the case
of standard PKI). In light of the impossibility of a completely non-interactive
set-up (CRS), this seems to be a minimal “interactiveness” requirement from
the trusted entity.

Another global set-up assumption, formulated in Hofheinz et al. [hmu06],
provides each party p with a public “verification key” Vp (chosen by the func-
tionality). Next, the functionality provides p with unforgeable signatures on mes-
sages of p’s choice, where the signatures can be publicly verified using Vp. It is
stressed that the signing keys are not made available to the parties, even to
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corrupted ones. A protocol for realizing Fcom given access to this functionality,
for non-adaptive corruptions, is given in [hmu06]. This functionality is much
more interactive than Facrs or Fgks. Still, as suggested in [hmu06], in reality it
can be implemented by a tamper-proof signing device such as a smart-card.

8 A Timing Assumption

Last but not least, we consider an alternative approach for making assumptions
on the the system in order to guarantee composable security. Specifically, rather
than assuming that parties have access to some trusted information, some mini-
mal assumptions are made regarding the synchrony of the system at some point
in its execution. More precisely, it is assumed that all messages sent are even-
tually delivered unmodified within some time bound, and in addition there is a
bound on the amount of relative “drift” between local clocks of parties in the
system. In [lpt04] it is shown how to UC-realize Fcrs and Fcom in such a setting.

The fact that a timing assumption suffices for UC-realizing, say, Fcrs, is not
surprising in of itself: Assume for instance that the network is completely syn-
chronous, and furthermore no party (not even corrupted ones) receives messages
sent in round i before the last chance to send out its messages for round i. Then
a simple, unconditionally secure two-party protocol for UC-realizing Fcrs would
be to simply have each of the two parties send a random string of the appropriate
length at a certain round, and then let the reference string be the bitwise xor
of the two strings. In [lpt04] it is shown, via a sophisticated protocol and un-
der standard hardness assumptions, how to obtain a similar effect while making
(much) weaker synchronization assumptions on the system.

It is interesting to note that the timing assumptions have to hold only during
the execution of the protocol for UC-realizing Fcrs. Once the reference string is
fixed, no timing assumptions are needed. Also, since there is no trusted piece of
information to be passed around, this approach bypasses the “transferability”
issues of the other set-up assumptions and provides complete deniability.

9 Realizing Authenticated Communication

The treatment of Sections 3 through 8 concentrates on the case of ideally au-
thenticated networks, where messages are not modified en route and arrive with
an authentic sender identity. More precisely, the parties are assumed to have
access to multiple copies of an ideal functionality, Fauth, that, roughly, takes
input (sid, B, m) from party A, and provides output (sid, A, m) to B, where sid
is a session identifier.

It is interesting to note that the above ideal authentication guarantee implic-
itly carries with it a non-transferability guarantee: The above ideally authenti-
cated communication setting does not provide the recipient of a message sent
by party A with any means to convince a third party that a message was indeed
sent by A. Fauth provides a similar guarantee. This means that communication
via Fauth is in effect “non-transferable”, or in other words “deniable”.
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As observed in [c04], it is impossible to UC-realize Fauth in the “bare” model
with no set-up assumptions. Still, Fauth can be UC-realized, via standard au-
thentication mechanisms, when given access to an ideal functionality that al-
lows parties to register public values associated with their identities [c04]. It is
stressed that this functionality, Freg, does not verify knowledge of any secret in-
formation associated with the registered value; it merely provides a registration
(or, “bulletin-board”) service.

However, akin to the formulation of the traditional CRS model, the formula-
tion of Freg in [c04] is that of a “local” set-up that is available only to the parties
that run the specific protocol instance. Implementing Freg is thus susceptible
to the same limitations that apply to implementing Fcrs (see Section 7): Essen-
tially, a new instance of the registration service is needed for each new protocol
instance. In particular, similarly to the case of Fcrs, when the [c04] protocol for
UC-realizing Fauth uses a “global” registration service that’s available to arbi-
trary protocols, authentication becomes “transferable”. (In fact, a publicly verifi-
able signature by the sender on the transmitted information becomes available).

Modeling authenticated communication in the presence of global set-up is an
interesting challenge. One direction is to model the security guarantees provided
by standard authentication mechanisms (such as the simple signature-based
mechanism studied in [c04]) in the presence of global set-up. These guarantees
are naturally described by means of an ideal authentication functionality that
allows for transferability even in ideal process. Another direction is to study pro-
tocols that UC-realize the original, non-transferable version of Fauth even when
given only globally available set-up. This is an interesting venue for current and
future research.

10 Conclusion and Open Problems

We have exemplified the need for trusted set-up models in order to obtain com-
posable security, and have studied a variety of set-up models. These models have
very different characteristics, both from the point of view of the guarantees pro-
vided to protocols designed in these models, and from the point of view of the
requirements from practical implementations of the models.

While some progress has been made in the past few years towards under-
standing how to formulate models that allow bypassing the strong impossibility
results regarding composable security, how to develop protocols in these models,
and how to implement such models in practice, much remains to be understood.
Some specific challenges and questions include:

1. Finding protocols that use current set-up models more efficiently. Finding
easier and more secure ways to implement existing set-up models in practice.
Finding new set-up models that allow for more efficient protocols and/or
easier implementations.

2. Finding a characterization of the set-up models that allow for UC-realizing,
say, Fcom (or any other ideal functionality that allows for UC-realizing gen-
eral ideal functionalities). We’ve seen that set-up functionalities can have
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very different flavors and characteristics. Are there some salient properties
that are common to all and are necessary and/or sufficient for UC-realizing
Fcom?

3. More specifically, are there global set-up models that allow for adversar-
ial control over the set-up information akin to Fsun, and still allow for
UC-realizing Fcom? Are there set-up models that allow for adversarial con-
trol over the set-up information, and at the same time allow for UC-realizing
authenticated communication?

4. Are there general relationships between set-up models that allow for
UC-realizing authenticated communication and set-up models that allow
for UC-realizing Fcom?

5. More generally, how can we better model the information shared between
protocol instances in arbitrary systems? Is global set-up information the only
information that can be shared, or are there other ways to share state and
information? How to capture these? An indication that in some situations
protocols indeliberately (but inevitably) share more information than just
the set-up is given in [yyz07b].
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Abstract. We propose a new composition scheme for hash functions.
It is a variant of the Merkle-Damg̊ard construction with a permutation
applied right before the processing of the last message block. We ana-
lyze the security of this scheme using the indifferentiability formalism,
which was first adopted by Coron et al. to the analysis of hash func-
tions. And we study the security of simple MAC constructions out of
this scheme. Finally, we also discuss the random oracle indifferentiability
of this scheme with a double-block-length compression function or the
Davies-Meyer compression function composed of a block cipher.

1 Introduction

Background. Merkle-Damg̊ard [19,12] is an iterative hash function construction.
Given a fixed-input-length (FIL) compression function, it combines the output of
the compression function in a serial fashion to produce a hash function that can
process strings of arbitrary length.1 While it is a clean design with proven col-
lision resistance, it suffers the extension property; one can compute H(M1‖M2)
from H(M1) even without the knowledge of M1.

Suppose that we try to use a Merkle-Damg̊ard (MD) hash function for message
authentication. There are many proposals for hash-based MACs, but currently
the most popular hash-based MAC is definitely HMAC [3,2]. It has a simple
structure, and also it has rigorous security proofs. But, given a hash function
H(·), one of the best ways to make a MAC out of H is the prefix construction [22]:

MK(x) def= H(K‖x).

Indeed, the efficiency of the above construction would be almost twice than that
of the HMAC, for short messages, and we know that if H(·) is a random oracle,
rather than a concrete hash algorithm, then the construction gives a secure
MAC. Unfortunately, due to the extension property, the prefix construction is
not secure when the underlying hash function is an MD hash function; given a
1 Or up to some large number (264 in case of SHA-1, for example) depending on the

padding and other specific details.
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message x and its MAC MK(x) = H(K‖x), the attacker can easily forge another
message x′, which has x as its prefix, and compute the MAC MK(x′).

The goal of HMAC was to design an efficient MAC with security proofs, out of
already widely deployed MD hash functions. Therefore the designers of HMAC
had to ‘fix’ the extension property of the underlying MD hash function, at the
upper MAC construction level.

But then we may consider another way, namely, to start freshly with a hash
function design without such structural flaws like the extension property. Then
perhaps we may use much simpler hash-based MACs such as the prefix construc-
tion H(K‖M). Indeed, after Wang’s attacks on many popular hash functions,
there are renewed interests in the design of hash functions. So this would be a
good opportunity to consider an alternative to the MD scheme.

In CRYPTO 2005, Coron et al. introduced new methodology for assessing
generic, structural properties of hash function constructions [11]. They applied
the notion of indifferentiability, which was first introduced by Maurer et al. [16],
to the analysis of hash functions. Coron et al. analyzed the structural property
of hash function constructions by first swapping the underlying compression
function with a FIL random oracle, then comparing the resulting hash function
with a true random oracle. If no efficient distinguisher can tell the two objects
apart, then the construction is considered secure, i.e., it has no structural flaws.
The notion of indifferentiability is an appropriate framework to express these
ideas rigorously. In fact, Coron et al. showed that the MD scheme is not indif-
ferentiable from a random oracle, and suggested a few modifications for the MD
scheme so that all of these are indifferentiable from a random oracle.

Hence, we now have a rigorous methodology for assessing the structural flaws
of a hash function, such as the extension property of MD scheme, which was
the main obstacle for adopting the simple constructions like the prefix construc-
tion instead of HMAC. Now all we need is an actual design for hash function
composition scheme which is efficient and structurally sound (in the sense of
random oracle indifferentiability), and which admits a direct and efficient us-
age as a MAC. Then in the future hash function design, we may adopt such a
construction as an alternative to the MD scheme.

Our Contribution. We propose a simple and efficient hash composition scheme.
We call it Merkle-Damg̊ard with a permutation (MDP). It is almost identical
to the plain Merkle-Damg̊ard scheme, but just before the last message block is
processed, a permutation π is applied: for a message M = M1M2 · · · Mk,

H(M) = F (π(F (· · · F (F (IV , M1), M2) · · · , Mk−1)), Mk).

In this paper, we describe the MDP composition scheme, and prove that it
satisfies many desirable security properties:

– It is collision resistant if the underlying compression function is.
– It is indifferentiable from a random oracle when a FIL random oracle is used

as the compression function.
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– It is also a PRF when keyed via the IV if the compression function is a PRF,
secure against a (very mild) related-key attack when keyed via the chaining
variable. In addition, if the compression function is also a PRF when keyed
via the input message block, then MDP yields a PRF when key is prepended
to the message: M �→ H(K‖M) for a secret key K.

– It is unforgeable if the underlying compression function is an unforgeable
FIL MAC with a dedicated key input.

Despite the miniscule modification MDP makes to the original MD scheme, we
see that it has many benefits. MDP loses essentially none of the efficiency of the
MD scheme. As categorized above, MDP preserves collision resistance, random
oracle and unforgeability. Furthermore it ‘almost’ preserves PRF property, with
a weak related-key assumption. So not only it gives a strong hash function, as
a PRF it also gives a secure MAC mechanism which is twice as fast as HMAC
for short messages.

We also study the random oracle indifferentiability of MDP when the underly-
ing compression function has some structure; we consider MDP with two specific
type of compression functions. The one is a double-block-length (DBL) com-
pression function of the form F (s‖x) = f(s‖x)‖f(p(s)‖x), where f is a smaller
compression function and p is a permutation. The other is the Davies-Meyer
compression function. We show that MDP emulates a VIL random oracle if

– f is a random oracle and π and p are chosen appropriately in the DBL
compression function F ; or

– F is the Davies-Meyer compression function in the ideal cipher model.

Related Works. A hash function composition scheme very similar to MDP was
suggested before; in a public comment to a FIPS 180-2 draft, Kelsey [14] pro-
posed a simple enhancement to SHA-2 hash functions, which was originally sug-
gested by Ferguson. Their scheme is a special case of MDP, when the permutation
π is equal to π(x) = x⊕C, where C is a fixed, non-zero offset. Their motivation
was to eliminate the extension property of MD hash functions with least modi-
fication. But, as far as the authors know, the security of this proposal was never
rigorously proven before.

While proposing indifferentiability from a random oracle as an important se-
curity goal for a hash function, Coron et al. also proposed four constructions
which satisfy indifferentiability from a random oracle [11], thereby proving that
such schemes exist. Also, Bellare and Ristenpart proposed the EMD construc-
tion [6]. Probably it is the first paper that succeeded in finding a serious practical
alternative to the MD scheme which meets the raised security goals (like, indif-
ferentiability to a random oracle, among others). Similar to MDP, EMD is also
a variant of the MD scheme. Also, EMD achieves essentially the same goals as
MDP, but there are a few differences:

– The structure of MDP is simpler than that of EMD; this is reflected in
the fact that MDP is slightly more efficient than EMD, especially for short
messages.
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– When used as a MAC by key-via-IV strategy, MDP needs slightly stronger
assumption than in the case of EMD; assuming that the compression function
is secure as PRF under a very weak related-key attack, we prove that the
keyed MDP is secure as a PRF. Therefore, at least for PRFness, MDP is not
a ‘multi-property-preserving’ transform like EMD.

– On the other hand, MDP needs only one key in the above situation, while
EMD needs two separate keys, while achieving the security of only one key
due to the divide-and-conquer attack. One may consider a one-key version
of EMD by employing some key derivation function similar to the case of
HMAC, but then one would need additional assumption on the compres-
sion function, namely PRF-security under some related-key attacks, which
is essentially the same type of assumption needed for MDP.

– Given an MDP hash function H , one can use H as a black-box to obtain a
secure MAC, by prefix construction H(K‖M). This seems to be difficult in
the case of EMD.

Chang et al. [9] further discussed the indifferentiability from the random ora-
cle for the MD scheme with prefix-free encoding. They considered compression
functions consisting of a block cipher [21] and DBL compression functions of the
same form we considered. Nandi [20] introduced this formalization of a class of
DBL compression functions and discussed the collision-resistance of hash func-
tions composed of them.

In studying MAC properties of MDP, we follow two directions. First, we show
that MDP gives a very efficient MAC by showing its pseudorandomness under
the assumption that the compression function is a PRF-security against a mild
form of related-key attacks. For this, we use a restricted version of the notion of
PRF-security against related-key attacks formalized and studied by Bellare and
Kohno [5]. Essentially, the proof can be considered as a related-key version of
the proof for prefix-free PRF security of the cascade construction given in [4].

We are also interested in seeing whether security of MDP as MAC can be
proved under weaker assumptions, similar to the security of HMAC under a
weaker-than-PRF assumption on the compression function [2]. After An and
Bellare [1] initiated such investigations, Maurer and Sjödin [17] provided sev-
eral transforms as well as a general security proof technique. As stated in [6],
these works consider the setting where compression functions and hash functions
are families indexed by a dedicated key, and only focus on MAC preservation
when the underlying compression function is a MAC itself, namely, that it is an
unforgeable FIL MAC.

Recently, Bellare and Ristenpart [7] further considered several hash func-
tion constructions in the dedicated-key setting, and provided a multi-property-
preservation oriented treatment of them.

Organization of the Paper. In Section 2, we provide basic definitions of PRFs,
RKA-secure PRFs, indifferentiability, and unforgeability. We also fix notational
conventions in this section. In Section 3, we formally define the MDP construc-
tion. In Section 4, we analyze the security of MDP. Section 4 consists of three
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parts; first, we prove that MDP is indifferentiable from a random oracle, and
then prove that MDP gives a secure PRF under necessary assumptions. And we
prove that MDP yields a secure MAC under a weaker-than-PRF assumption. In
Section 5, we focus on the indifferentiability of MDP based on two specific types
of compression function: one is a DBL compression function and the other is the
Davies-Meyer compression function composed of a block cipher. Detailed proofs
for several lemmas and theorems in Section 4 are described in the full version of
this paper [13].

2 Definitions

Pseudorandom Functions. Let F : K × D → R be a function family from D to
R indexed by keys K ∈ K. Usually we’ll use FK(x) as shorthand for F (K, x).
Let Maps(D, R) denote the set of all functions f : D → R. Given an adversary
A(g) with access to an oracle g(·), we define its PRF-advantage over F as

Advprf
F (A) = Pr

[
A(FK) ⇒ 1 | K $← K

]
− Pr

[
A(ρ) ⇒ 1 | ρ $← Maps(D, R)

]

Informally, we say that F is a PRF when no efficient adversary A can have
any significant PRF-advantage over F .

RKA-Secure PRFs. Related-key attacks were considered in cryptanalysis of
block ciphers, and many modern block ciphers are designed against such at-
tacks. Bellare and Kohno [5] first gave a formal definition to related-key attacks
and provided a theoretical treatment. They extended the formal definition of
PRFs to PRFs secure against related-key attacks (RKA-secure PRFs).

According to the definition given by Bellare and Kohno, they consider a set Φ
of related-key-deriving (RKD) functions φ : K → K. As in the case of the plain
PRFs, an adversary cannot access the given secret key K directly, but she can
query the PRF with respect to other keys φ(K) by selecting a RKD function φ
from Φ. The set Φ is a parameter of the definition, and it formalizes the varying
capabilities of related-key adversaries on different situations.

In this paper, we need only a very weak adversary in terms of related-key
attacks: the RKD function set Φ consists of only two functions: Φ = {id , π},
where id : K → K is the identity function, and π : K → K is a permutation. We’ll
refer this type of related-key attacks as the π-related-key attacks and formalize
in the following way. Given an adversary A(g, g′) with access to a pair of oracles
g(·) and g′(·), we define its PRF-advantage over F with respect to π-related-key
attacks as

Advprf-rka
π,F (A) =

Pr
[
A(FK , Fπ(K)) ⇒ 1 | K $← K

]
− Pr

[
A(ρ, ρ′) ⇒ 1 | ρ, ρ′ $← Maps(D, R)

]
.

Note that this formalism is equivalent to that of Bellare and Kohno, when
Φ = {id , π} is used.
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Again informally, we say that F is a π-RKA-secure PRF when no efficient ad-
versary A can have any significant advantage over F . Since π-related-key attack
is the only kind of related-key attacks that we consider in this paper, sometimes
we’ll abuse the terminology and call F simply as a RKA-secure PRF.

Indifferentiability. We use the indifferentiability framework [16,11] to assess the
security of the MDP. Consider a cryptosystem C = C(F) with oracle access
to an ideal primitive F . Also consider an ideal primitive H and a simulator
S = S(H) which has oracle access to H. C is supposed to be a ‘construction’
involving F . For example, F could be a FIL random oracle, and C then could
be the MD hash function using F as the compression function. The goal of the
simulator S(H) is to mimic F in order to convince an adversary that H is C.
Let A be an adversary with access to two oracles. We define the differentiability
advantage of A against C with respect to S as:

Advdiff
C,S(A) = Pr [A(C(F), F) ⇒ 1] − Pr [A(H, S(H)) ⇒ 1] .

Informally, we say that C(F) is indifferentiable from H if there exists a simula-
tor S(H) so that no efficient adversary A can have any significant differentiability
advantage against C with respect to S.

Unforgeability. A MAC is a family of functions F : K × M → C. The security
of a MAC is measured via its resistance to existential forgery under an adaptive
chosen-message attack. The MAC-advantage of a forger A over F is

Advmac
F (A) = Pr

[
A(FK , VfFK ) forges | K $← K

]
.

A forger A queries to the oracle FK(·) for adaptively chosen messages and
learns the corresponding tag values. It then returns a forgery (M, τ). The forger
A is considered successful if it makes a verification query (M, τ) to the oracle
VfFK (·, ·), and confirms that FK(M) = τ but M was not queried to FK(·). We
refer to a forger A of this kind as a (t, q, l, ε)-forger if Advmac

F (A) ≥ ε, where t, q
and l are upper bounds on the running time, the number of messages, and the
maximal length (in bits) of each oracle query including the forgery message M ,
respectively. Informally, a MAC is considered secure against existential forgery
under an adaptive chosen-message attack, if there is no (t, q, l, ε)-forger, even for
very high values of t, q and l, and very small values of ε.

Notation. Let b be the size of the message blocks, and c the size of the chaining
variables. As usually is in popular hash functions, we assume that c ≤ b. Then
the compression function F (s, x) has the following form:

F : {0, 1}c × {0, 1}b → {0, 1}c.

Let C = {0, 1}c and B = {0, 1}b to abbreviate the above as F : C × B → C.
We denote by M1‖M2 the concatenation of bitstrings M1 and M2. We will

often abbreviate M1‖M2‖ · · · ‖Mk simply as M1M2 · · · Mk. Let Bi be the set of
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all messages of form M1M2 · · · Mi, where Mj ∈ B for all j = 1, . . . , i. Clearly,
B0 = {ε}, where ε means the null bitstring, the bitstring of length 0. Let’s define
B∗ = ∪∞

i=0Bi, B+ = ∪∞
i=1Bi, and B≤k = ∪k

i=1Bi.
We will process messages block by block. The notation M1M2 · · ·Mk ←

parse(M) will mean that M = M1‖M2‖ · · · ‖Mk and |Mi| = b for all i = 1,
. . . , k − 1, and |Mk| ≤ b. We denote by s

$← S the operation of selecting a ran-
dom element from S (the uniform probability distribution over S is assumed).

We sometimes use the O-notation. This is not about asymptotics, but we
use this notation to hide unimportant small constants which are dependent on
specific machine formalisms, and whose values can be determined from the proof.

3 The MDP Construction

Given F : C × B → C, we define F ∗ : C × B∗ → C as follows:

F ∗(s, M) def=

{
s if k = 0, i.e., M = ε,

F (F ∗(s, M1M2 · · · Mk−1), Mk) otherwise,

for M = M1M2 · · · Mk (Mi ∈ B for all i). This is the plain Merkle-Damg̊ard
iteration of F . Now we define F ◦

π : C × B+ → C as follows:

F ◦
π (s, M1M2 · · ·Mk) def= F (π(F ∗(s, M1 · · · Mk−1)), Mk).

where π is a permutation applied right before the last iteration. π is a fixed
permutation given as a parameter of the definition. We require both π and π−1

to be efficiently computable. Often we omit π from the notation F ◦
π and simply

write F ◦.
The domain of F ◦ is B+ = ∪∞

i=1Bi = ∪∞
i=1{0, 1}bi. In order to let MDP

process messages of arbitrary lengths (up to 2l, for some large number l satisfying
0 < l ≤ b), we have to use a padding function pad : ∪2l

i=0{0, 1}i → B+ with the
following property: the last block of pad(M) encodes the l-bit representation of
the length |M | of M . For example, the SHA-1’s padding rule could be used.

Finally, given a compression function F : C × B → C, a padding function
pad, a permutation π, and a fixed IV IV ∈ C, we formally define the MDP
(Merkle-Damg̊ard with a Permutation) hash function as

MDP(M) def= F ◦
π (IV , pad(M)).

When we want to emphasize the dependency of MDP(M) to F and π, we
sometimes use the notation MDP[F, π](M).

Figure 1 illustrates the structure of MDP. One can consider the MDP con-
struction as a minor variant of the MD scheme with the MD strengthening.
Therefore the efficiency of the MDP is exactly the same as the Strengthened
MD (SMD).

More precisely, let’s write the number of compression function invocations
needed to compute the hash value of an �-bit string as N(�). Suppose that we
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πF F F F

M1 M2 Mk-1 Mk

IV H(M)

Fig. 1. The structure of MDP

use the padding function similar to the padding function of SHA-1: given a
message M of length �, append the bit ‘1’ to the end of the message, followed
by k zero bits, where k is the smallest non-negative solution to the equation
� + 1 + k ≡ b − l (mod b). Then append the l-bit representation of the number
�. In case of SHA-1, we have b = 512, and l = 64. Then for MDP (and SMD),
the following holds:

N(�) =

{
 �

b� if � mod b < b − l,

 �
b� + 1 otherwise.

For comparison, this is slightly better than the efficiency of EMD; for EMD
the following holds:

N(�) =

{
 �

b� if � mod b < b − c − l,

 �
b� + 1 otherwise

Concretely, if we take the parameters of SHA-1, that is, b = 512, c = 160,
and l = 64, then for messages of length between 288 and 447, EMD needs one
more invocation than MDP. On the average, EMD needs c/b more invocations
of the compression function than MDP. Again with the parameters of SHA-1,
c/b ≈ 0.31.

4 Security of MDP

In this section, we study the security of MDP and prove that MDP indeed meets
all the security goals that we wanted.

4.1 Collision Resistance

First, MDP is collision-resistant. Given a collision-resistant compression function
F , MDP construction from F is also collision-resistant. The proof is trivial; since
the structure of MDP is very similar to the MD scheme, we may follow the proof
of collision resistance of the MD almost verbatim.

4.2 Indifferentiability from Random Oracle

We show that MDP is indifferentiable from a random oracle H, when a FIL ran-
dom oracle F is used as the compression function. Therefore we need a simulator
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Initialize:

V ← S ← {IV }

Interface F(s, x):

100: V ← V ∪ {s}
101: if F (s, x) = ⊥ then
102: if s ∈ S then
103: t

$← C \
(
V ∪ π(S) ∪ π−1(V) ∪ Pπ

)
104: S ← S ∪ {t}
105: F (s, x) ← t
106: else if π−1(s) ∈ S then
107: F (s, x) ← H(M‖x), where F ∗(IV , M) = π−1(s)
108: else
109: F (s, x) $← C
110: V ← V ∪ {F (s, x)}
111: return F (s, x)

Fig. 2. Pseudocode for the simulator SF

SF so that no efficient adversary can distinguish (or rather, differentiate) the pair
(MDP[F , π], F) from the pair (H, SF ). We will use the simulator illustrated in
Figure 2.

SF maintains a structure F (s, x) where it stores previously selected value
of the query SF (s, x). Initially F (s, x) = ⊥ for all s and x, where ⊥ means
undefined. SF also maintains two sets V and S. Both are initially set to the
singleton set {IV }. As more queries are inquired, new elements are added to the
sets. Note that elements never leave the sets.

When queried SF(s, x), if F (s, x) = ⊥, SF will choose a value t randomly
depending on the algorithm in Figure 2, and define F (s, x) ← t. If we consider
the labeled directed graph G whose edges are s

x→ F (s, x) for all F (s, x) �= ⊥,
then we can see that V denotes the set of all vertices of G. On the other hand,
S is then the set of all vertices that can be reached by following a path from
the vertex IV . In order to prove the indifferentiability of MDP, we need a few
lemmas about the simulator SF :

Lemma 1. At any time during the execution of the simulator SF , if s ∈ S for
some s, then F ∗(IV , M) = s for some M . Conversely, if F ∗(IV , M) �= ⊥, then
F ∗(IV , M) ∈ S.

Lemma 2. Suppose that both F ∗(IV , M) and F ∗(IV , M ′) are defined. Then,
F ∗(IV , M) = F ∗(IV , M ′) if and only if M = M ′.

Lemma 3. Suppose that both F ∗(IV , M) and F ∗(IV , M ′) are defined. Then,
F ∗(IV , M) �= π(F ∗(IV , M ′)) and F ∗(IV , M) �= π−1(F ∗(IV , M ′)).

Lemmas 1 and 2 essentially say that the subgraph S of V is in fact a rooted tree
with IV as the root. Note that, because these three lemmas are only about the
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subgraph S, as long as the lines 102 to 105 are intact, the lines 106 to 109 do
not change the validity of the lemmas. Also, due to Lemma 1 and 2, the line 107
in the pseudocode in Figure 2 works correctly. We will omit the proofs of the
three lemmas since they are straightforward.

The basic intuition involved in the pseudocode of SF is this: the permutation
π disrupts the extension property of the MD scheme if it has only a small number
of fixed points and IV is not a fixed point. Now, the best strategy of an adversary
seems to be computing F ∗(IV , M) for various messages M (by querying the FIL
oracle), until one of the following happens:

– The adversary finds two distinct messages M , M ′ such that F ∗(IV , M) =
F ∗(IV , M ′): in this case, we have H(M‖P ) = H(M ′‖P ) for any message
block P , if H is the MDP. But the probability of this equality is very low, if
H is a true random oracle.

– The adversary finds two distinct messages M , M ′ such that F ∗(IV , M) =
π(F ∗(IV , M ′)): in this case, we have H(M‖P‖Q) = F (π(H(M ′‖P )), Q) for
any message block P and Q, if H is the MDP. But similarly the probability of
this equality is very low, if H is a true random oracle, because the simulator
which selects the value F (π(H(M ′‖P )), Q) has information about Q, but it
doesn’t have access to the adversarial choice of P .

Other minor strategy is to find a message M such that F ∗(IV , M) is a fixed
point of π or a part of a previous query to F .

The simulator SF is designed so that Lemmas 1, 2, and 3 hold, which delays
the above failing situations as late as possible. This is achieved by careful ex-
pansion of the tree S at line 103. Note that by birthday attack, the attacker can
eventually find the message pair M , M ′ satisfying F ∗(IV , M) equals F ∗(IV , M ′)
or π(F ∗(IV , M ′)). Therefore, MDP can be indifferentiable from a random oracle
only up to the birthday bound.2

Now, the indifferentiability of MDP is expressed in the next theorem.

Theorem 1. Let A be an adversary distinguishing the pairs (MDP[F , π], F) and
(H, SF), where the simulator SF is defined in Fig. 2. Let π be a permutation on
C and Pπ be the set of its fixed points such that IV �∈ Pπ. Then,

Advdiff
MDP[F ,π],SF (A) ≤ 5(lqV + qF )(3lqV + qF + 1)

2c+1 +
lqV qF

2c
+

|Pπ |(2lqV + qF )
2c

,

where qF is the number of queries to the FIL oracle, and qV the number of
queries to the VIL oracle. l is the maximum number of message blocks for each
VIL query. c is the size of the chaining variables. Moreover, SF makes at most
qF queries and runs in time O(qF

2).

2 MDP, being random-oracle indifferentiable, prevents the extension property. But
once a colliding message pair due to an internal MD collision is found, for example
by birthday attack, or by insecurity of the compression function, any common suffix
can be added to the message pair. This serious effect of extension attacks is not
resolved by MDP (nor by other similarly proposed composition schemes).
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4.3 MDP Yields Secure PRFs

In this section, we show that when the compression function F is a PRF secure
against π-related-key attack, then MDP yields a secure PRF. This construction
could be used as an alternative to HMAC or NMAC.

In order to use MDP as a PRF, we need to provide a keying strategy to MDP.
We may consider at least two straightforward such approaches3.

– Keyed-MDP: We may use a secret key K
$← C instead of the fixed IV, and

define a MAC scheme out of MDP by KMDPK(M) = F ◦(K, pad(M)).
– Prefix-MDP: Given a message M and a key K

$← B, we define PMDPK(M) =
MDP(K‖M), i.e., the secret prefix construction. Note that PMDPK(M) =
KMDPF (IV ,K)(M). Although less efficient than Keyed-MDP, this has a ben-
efit that it may use the underlying hash function as a black-box.

Remark 1. If KMDPK(M) were a secure PRF whenever F is a secure PRF, then
we may say that MDP preserves the PRF property, in the sense of Bellare and
Ristenpart [6]. Unfortunately this is not the case; if, for example, F satisfies
FK(x) = Fπ(K)(x) for any K and x, then the MDP construction reduces to the
plain Merkle-Damg̊ard scheme, which is vulnerable to the extension attack.

Related-Key Multi-oracles. In order to prove the security of the two MAC
schemes, first we need to introduce the notion of multi-oracle distinguishers.
This was first given in [4] in order to prove that, if the MD scheme is keyed via
IV, then the resulting iterated construction is PRF with respect to prefix-free
adversaries. What we actually need is not this notion itself, but an extension of
it, which we call the related-key multi-oracle distinguisher.

Given a π-RKA-secure PRF F , consider the problem of distinguishing a 2m-
tuple of instances of F , from a 2m-tuple of independent random functions. But,
for the 2m-tuple of F , we choose m of the keys K1, . . . Km randomly and inde-
pendently, and use π(K1), . . . , π(Km) as the other m keys. That is, we would
like to distinguish the distribution of the following 2m-tuple of functions:

(FK1 , Fπ(K1), . . . , FKm , Fπ(Km))

from that of 2m-tuple of independent random functions.
We define the advantage of a distinguisher A(g1, g

′
1, . . . , gm, g′m) with access

to 2m oracles g1, g′1, g2, g′2, . . . , gm, g′m as follows:

Advm-prf-rka
π,F (A) = Pr

[
A(FK1 , Fπ(K1), . . . , FKm , Fπ(Km)) ⇒ 1 | K1, . . . , Km

$← C
]

− Pr
[
A(ρ1, ρ

′
1, . . . , ρm, ρ′

m) ⇒ 1|ρ1, ρ
′
1, . . . , ρm, ρ′

m
$← Maps(B, C)

]

3 We may consider Keyed-MDP as analogous to NMAC, and Prefix-MDP as analogous
to HMAC.
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Lemma 4 (Related-Key Multi-oracle Lemma). Suppose that A is a distin-
guisher with access to 2m oracles g1, g

′
1, . . . , gm, g′m as above, and suppose that

A has time-complexity at most t, and makes at most q queries. Then we can
construct an adversary B(g, g′) attacking the π-RKA-security of F such that

Advm-prf-rka
π,F (A) = m · Advprf-rka

π,F (B).

B makes at most q queries. And the running time of B is bounded by

t + O(q · Time(F ) + qb log q + qc).

Security of Keyed-MDP. Now that we have Lemma 4, we prove the following
lemma which connects the PRF-security of the Keyed-MDP with the related-key
multi-oracles:

Lemma 5 (Reduction to the Related-Key Multi-oracle). Let A be a
PRF-adversary against KMDP. Suppose that A has time-complexity at most t,
and makes at most q queries, and each query has the length at most l. Then we
can construct a related-key multi-oracle distinguisher B(g1, g

′
1, . . . , gq, g

′
q) with

access to 2q oracles so that the following holds:

Advprf
KMDP(A) = l · Advq-prf-rka

π,F (B).

B makes at most q queries, and the running time of B is bounded by

t + O(q((l − 1)(b log q + Time(F )) + c)).

Combining Lemma 4 and 5, we obtain the following theorem:

Theorem 2 (PRF-Security of Keyed-MDP). Let A be a PRF-adversary
against KMDP. Suppose that A has time-complexity at most t, and makes at
most q queries, and each query has the length at most l. Then we can construct
an adversary B(g, g′) against the π-RKA-secure PRF F such that

Advprf
KMDP(A) = lq · Advprf-rka

π,F (B).

B makes at most q queries, and the running time of B is bounded by

t + O(lq(b log q + Time(F ) + c)).

Security of Prefix-MDP. We prove the security of the Prefix-MDP scheme
by lifting the security proof for the Keyed-MDP. Remember that

PMDPK(M) = MDP(K‖M) = KMDPF (IV ,K)(M).

Hence, here we have to regard F (s, x) as a function family indexed by the data
input x. We express this formally by defining a dual function family F̄ : B×C → C
of F :

F̄ (K, x) def= F (x, K).

In order to prove the security of the Prefix-MDP, in addition to the previous
assumption that F is a π-RKA-secure PRF, we also need to assume that F is a
PRF when keyed by its data input, i.e., F̄ is a PRF. Then we have:
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Lemma 6. Let A be a PRF-adversary against PMDP that has time-complexity
at most t. Then we can construct a PRF-adversary BF̄ (g) against the dual PRF
F̄ such that

Advprf
PMDP(A) = Advprf

KMDP(A) + Advprf
F̄

(BF̄ ).

Furthermore, BF̄ has time complexity at most t, and makes only 1 oracle query.

Theorem 3 (PRF-Security of Prefix-MDP). Let A be a PRF-adversary
against PMDP. Suppose that A has time-complexity at most t, and makes at
most q queries, and each query has the length at most l. Then we can construct
an adversary BF (g, g′) against the π-RKA-secure PRF F , and a PRF-adversary
BF̄ (g) against the dual PRF F̄ so that

Advprf
PMDP(A) = lq · Advprf-rka

π,F (BF ) + Advprf
F̄

(BF̄ ).

Furthermore, BF̄ has time complexity at most t, and makes only 1 oracle query.

Remark 2. Even if F is a secure PRF, it could be vulnerable to a π-related-key
attack. For example, Contini and Yin [10] exhibited a related-key distinguish-
ing attack on the keyed MD5 compression function using pseudo-collisions of
MD5 [8]. This attack shows that the keyed MD5 compression function is not a
good π-RKA-secure PRF, when π(x) = x ⊕ Δ.

Remark 3. Kim et al. [15], and also Contini and Yin [10], showed how to con-
struct various attacks on HMAC and NMAC using weakness of keyed compres-
sion functions like MD4. The same attacks will work against PMDP under the
same keyed compression functions.

4.4 Unforgeability Preservation

We may use MDP as a MAC under a different keying strategy from the above
section. Now, we consider MDP in the dedicated-key setting, where a compres-
sion function is a MAC F : K × C × B → C with a dedicated key input.

Theorem 4. Let π be a permutation on C with no fixed point. Let A be a
(t, q, l, ε)-forger of MDP[F, π]. Then we can construct a (t′, q′, l′, ε′)-forger B
attacking the FIL MAC F , where q′ = qN(l) + N(l) − 1, l′ = b + c, and
ε′ = 2ε/(3q′2 + 3q′ + 2). Also, the running time t′ is essentially that of A with
some small overhead that is obvious from the construction of B [17].

5 Further Results on Indifferentiability

5.1 MDP with a Double-Block-Length Compression Function

A compression function F is called double-block-length (DBL) if it is composed
of a smaller compression function f and the output length of F is twice as large
as that of f . We consider a DBL compression function of the form defined in the
following definition.
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Definition 1. Let c be an even integer, and f : C×B → {0, 1}c/2. F : C×B → C
is a DBL compression function such that F (s, x) = f(s, x)‖f(p(s), x), where
s ∈ C, x ∈ B, and p is an involution on C with no fixed points.

The following theorem states that MDP[F, π] is indifferentiable from a VIL ran-
dom oracle if f is a FIL random oracle and π is chosen appropriately.

Theorem 5. Let F be a DBL compression function defined in Definition 1. Let
π be a permutation on C and Pπ,p = {u | u ∈ C, and π(u) = u or p(u)}. Let A
be an adversary distinguishing the pairs (MDP[F , π], F) and (H, SF ), where the
simulator SF is defined in Fig. 3. Suppose that IV �∈ Pπ,p. Then,

Advdiff
MDP[F ,π],SF (A)≤ 7(lqV + qF )(3lqV + qF + 1) + lqV qF + |Pπ,p|(2lqV + qF )

2c
,

where qF is the number of queries to the FIL oracle, and qV the number of
queries to the VIL oracle. l is the maximum number of message blocks for each

Initialize:

V ← S ← {IV }

Interface F(s, x):

100: V ← V ∪ {s, p(s)}
101: if F (s, x) = ⊥ then
102: if s ∈ S then
103: t

$← C \
(
V ∪ π(S) ∪ π−1(V) ∪ p(V) ∪ p(π(S)) ∪ π−1(p(V)) ∪ Pπ,p

)
104: S ← S ∪ {t}
105: F (s, x) ← t
106: F (p(s), x) ← swap(t)
107: else if p(s) ∈ S then
108: t

$← C \
(
V ∪ π(S) ∪ π−1(V) ∪ p(V) ∪ p(π(S)) ∪ π−1(p(V)) ∪ Pπ,p

)
109: S ← S ∪ {t}
110: F (p(s), x) ← t
111: F (s, x) ← swap(t)
112: else if π−1(s) ∈ S then
113: F (s, x) ← H(M‖x), where F ∗(IV , M) = π−1(s)
114: F (p(s), x) ← swap(F (s, x))
115: else if π−1(p(s)) ∈ S then
116: F (p(s), x) ← H(M‖x), where F ∗(IV , M) = π−1(p(s))
117: F (s, x) ← swap(F (p(s), x))
118: else
119: F (s, x) $← C
120: F (p(s), x) ← swap(F (s, x))
121: V ← V ∪ {F (s, x), F (p(s), x)}
122: return F (s, x)

Fig. 3. Pseudocode for the simulator SF . swap(t1‖t2) = t2‖t1 for every t1, t2 ∈
{0, 1}c/2.
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VIL query. c is the size of the chaining variables. SF makes at most qF queries
and runs in time O(qF

2).

In Theorem 5, a simulator is prepared for F instead of f . Let p̂ be a permutation
on C × B such that p̂(s, x) = (p(s), x). Since p has no fixed points and p ◦ p is an
identity permutation, so does p̂. Since p̂ ◦ p̂ is an identity permutation, f(s, x)
and f(p̂(s, x)) are only used for F (s, x) and F (p̂(s, x)) for every (s, x) ∈ C × B.
Thus, F (s, x) and F (s′, x′) are random and independent of each other if (s′, x′) �=
p̂(s, x), since f is a random oracle. Moreover, since p̂ has no fixed points and
F (s, x) = f(s, x)‖f(p̂(s, x)), the first half and the second half of F (s, x) are also
random and independent of each other. Thus, as is shown in Fig. 3, SF can
randomly select an output of F for each query.

5.2 MDP with the Davies-Meyer Compression Function

In this section, we consider the case that F is the Davies-Meyer compression
function [18] composed of a block cipher. We show that MDP[F , π] is indifferen-
tiable from a VIL random oracle if the underlying block cipher is ideal.

Initialize:

V ← S ← {IV }
P(x) ← Q(x) ← C

Interface E(x, s):

100: V ← V ∪ {s}
101: if Ex(s) = ⊥ then
102: if s ∈ S then
103: Ex(s) $← Q(x) \ Sbad

104: S ← S ∪ {Ex(s) ⊕ s}
105: else if π−1(s) ∈ S then
106: u ← H(M‖x) ⊕ s, where

F ∗(IV , M) = π−1(s)
107: if u 	∈ Q(x) then
108: return fail
109: else
110: Ex(s) ← u

111: else
112: Ex(s) $← Q(x)
113: V ← V ∪ {Ex(s) ⊕ s}
114: P(x) ← P(x) \ {s}
115: Q(x) ← Q(x) \ {Ex(s)}
116: return Ex(s)

Interface D(x, u):

200: if Dx(u) = ⊥ then
201: for every s ∈ S do
202: if u ⊕ H(M‖x) = π(s)

then
203: N ← N ∪ {s}, where

F ∗(IV , M) = s

204: if |N| ≥ 2 then
205: return fail
206: else if |N| = 1 then
207: if π(s) 	∈ P(x) then
208: return fail
209: else
210: Dx(u) ← π(s)
211: else
212: Dx(u) $← P(x) \

(S ∪ π(S))
213: V ← V ∪ {Dx(u), Dx(u) ⊕ u}
214: P(x) ← P(x) \ {Dx(u)}
215: Q(x) ← Q(x) \ {u}
216: return Dx(u)

Fig. 4. Pseudocode for the simulator SE and SD. Sbad = {u⊕s | u ∈ V∪π(S)∪π−1(V)∪
Pπ}.
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A block cipher with the block length c and the key length b is called a (c, b)
block cipher. Let E : B × C → C be a (c, b) block cipher. Then, E(K, ·) = EK(·)
is a permutation for every K ∈ B, and D(K, ·) = DK(·) = EK

−1(·). E is called
an ideal cipher if EK is a truly random permutation for every K ∈ B.

Theorem 6. Let F : C × B → C be the Davies-Meyer compression function
with an ideal (c, b) block cipher E, that is, F (s, x) = Ex(s) ⊕ s. Let A be an
adversary that asks at most qV queries to the VIL oracle, qF0 queries to the
FIL encryption oracle and qF1 queries to the FIL decryption oracle. Let l be the
maximum number of message blocks for each VIL query. Suppose that lqV +
qF0 + qF1 ≤ 2c−1. Then,

Advdiff
MDP[F,π],SE ,SD (A) ≤ 13(lqV + qF0 + qF1)(2lqV + qF0 + qF1) + |Pπ |(3lqV + qF0)

2c+1 ,

where the simulators SE and SD are given in Fig. 4. SE is a simulator for
the encryption oracle, and SD for the decryption oracle. SE makes at most qF0

queries and runs in time O(qF0 (qF0 + qF1)). SD makes at most qF0 · qF1 queries
and runs in time O(qF1(qF0 + qF1)).
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Abstract. Nearly all modern hash functions are constructed by iter-
ating a compression function. At FSE’04, Rogaway and Shrimpton [28]
formalized seven security notions for hash functions: collision resistance
(Coll) and three variants of second-preimage resistance (Sec, aSec, eSec)
and preimage resistance (Pre, aPre, ePre). The main contribution of this
paper is in determining, by proof or counterexample, which of these
seven notions is preserved by each of eleven existing iterations. Our
study points out that none of them preserves more than three notions
from [28]. As a second contribution, we propose the new Random-Oracle
XOR (ROX) iteration that is the first to provably preserve all seven
notions, but that, quite controversially, uses a random oracle in the iter-
ation. The compression function itself is not modeled as a random oracle
though. Rather, ROX uses an auxiliary small-input random oracle (typ-
ically 170 bits) that is called only a logarithmic number of times.

1 Introduction

Cryptographic hash functions, publicly computable maps from inputs of arbi-
trary length to (short) fixed-length strings, have become a ubiquitous building
block in cryptography. Almost all cryptographic hash functions are iterative:
given a compression function F that takes (n + b) bits of input and produces
n bits of output, they process an arbitrary length input by dividing it into b-bit
blocks and iterating F appropriately. The widely used Strengthened Merkle-
Damg̊ard (SMD) construction [21,11] is known to yield a collision-resistant iter-
ated hash function if the underlying compression function is collision resistant;
in other words, SMD preserves collision resistance of the compression function.

Unfortunately, designing collision resistant compression functions seems quite
hard: witness the recent collision attacks on several popular hash functions by
Wang et al. [33,32]. One way out is to aim for a weaker security notion for the
compression function, but not so weak as to make the resulting hash function
useless in practice. A natural question to ask is whether these weaker proper-
� Extended abstract; we refer to the full version [1] for more details and proofs.
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ties are also preserved by SMD. For example, does it preserve second-preimage
resistance? One may think so, because SMD preserves collision resistance, and
collision resistance can be shown to imply second-preimage resistance, but this
says nothing about what happens if you start with a compression function that is
only second-preimage resistant. Lai and Massey [16] claimed that finding second
preimages for an iterated hash is equally as hard as finding second preimages
for the compression function, but this was found to be incorrect by Dean [12]
and Kelsey and Schneier [15], who show that (for the case of SMD) efficient
collision-finding attacks immediately give rise to second-preimage attacks that
beat the anticipated security bound.

Contributions. We took as a starting point a paper by Rogaway and Shrimp-
ton [28] that provides a unifying framework of seven security notions for hash
functions and the relations among them. Our work explores in detail which of the
seven properties of [28] are preserved by several published hash constructions.
Of the eleven schemes we consider (see Table 1), we found that in fact none pre-
served all seven. This raises the question whether it is possible at all to preserve
all seven properties. We answer this question in the affirmative, in the ran-
dom oracle model [6], by presenting a construction that builds on previous work
by Bellare, Rogaway, Shoup and Mironov [7,30,23]. Our construction iterates a
real-world compression function but, in the iteration, makes a logarithmic (in
the message length) number of calls to an auxiliary small-input random oracle;
we will say more in a moment to justify this choice. The existence of seven-
property-preserving iterations in the standard model is left as an open problem.

Relevance of the Seven Properties. Apart from collision-resistance, Rog-
away and Shrimpton consider three variants of second-preimage resistance (Sec)
and preimage resistance (Pre). The standard variants of Sec and Pre are re-
stricted to randomly chosen preimages, and have important applications like the
Cramer-Shoup cryptosystem [10] for Sec and Unix-like password storage [18,31]
for Pre. The stronger everywhere variants (eSec, ePre) consider adversarially cho-
sen preimages. The notion of eSec is equivalent to the universal one-way hash
functions of Naor and Yung [25] and to the target collision resistance of Bellare
and Rogaway [7]. Bellare and Rogaway show that eSec is sufficient to extend the
message space of signature schemes that are defined for small messages only.

Following the standard convention established by Damg̊ard [11], and Bellare
and Rogaway [7], these notions were formalized for hash function families, in-
dexed by a (publicly known) key K. Current practical hash functions however
do not have explicit keys. In fact, it is not even clear what the family is that
they belong to, so it is rather contrived to regard SHA-256 as a randomly drawn
member of such a family. Instead, the always-notions aSec and aPre capture
the intuition that a hash function ought to be (second-)preimage resistant for
all members of the family, so that it doesn’t matter which one is actually used.
Alternatively, one could see the aSec and aPre notions as the the natural exten-
sions to (second-)preimage resistance of Rogaway’s human-ignorance approach to
collision-resistant hashing with unkeyed compression functions [27]. (See [2] for a
subsequent work on property preservation for iterations of unkeyed compression
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Table 1. Overview of constructions and the properties they preserve. Each row in the
table represents a hash function construction, each column a security notion of [28].
The symbol “Y” means that the notion is provably preserved by the construction; “N”
means that it is not preserved, in the sense that we come up with a counterexample;
“?” means that neither proof nor counterexample are known. Underlined entries were
known, all other results are new.

Scheme Coll Sec aSec eSec Pre aPre ePre

Strengthened MD [22,11] Y N N N N N Y

Linear [7] N N N N N N Y

XOR-Linear [7] Y N N Y N N Y

Shoup’s [30] Y N N Y N N Y

Prefix-free MD [9] N N N N N N Y

Randomized [13] Y N N N N N Y

HAIFA [8] Y N N N N N Y

Enveloped MD [4] Y N N N N N Y

Strengthened Merkle Tree [20] Y N N N N N Y

Tree Hash [7] N N N N N N Y

XOR Tree [7] ? ? N ? Y N Y

ROX Y Y Y Y Y Y Y

functions.) In this sense, the aSec and aPre notions strengthen the standard no-
tions of second-preimage resistance and preimage resistance, respectively, in the
way needed to say that a fixed function such as SHA-256 is Sec and Pre secure.
They therefore inherit the practical applications of Sec and Pre security, and are
thus the right notions to consider when instantiating Cramer-Shoup encryption
or Unix-like password storage with a fixed function like SHA-256. The formal
definitions of all seven notions are recalled in Section 2.

Existing Constructions. Let us now take a closer look at a number of existing
constructions to see which of the seven notions of [28] they preserve. Our findings
are summarized in Table 1, which we see as the main research contribution
of our paper. Except for the few entries in the table with question marks, we
come up with either proofs or counterexamples in support of our claims. We
found for example that the ubiquitous SMD construction preserves Coll and
ePre security, but surprisingly fails to preserve any of the other notions. Of the
eleven schemes in the table, none preserves all seven notions. In fact, the best-
performing constructions in terms of property preservation are the XOR Linear
hash and Shoup’s hash, which still preserve only three of the seven notions (Coll,
eSec, and ePre). The XOR Tree hash is the only iteration to preserve Pre, and
none of the schemes preserve Sec, aSec or aPre. Remember that the latter two
are particularly relevant for the security of practical hash functions because they
do not rely on the compression functions being chosen at random from a family.

Preserving All Properties: The ROX Construction. This rather poor
state of affairs may leave one wondering whether preserving all seven notions
is possible at all. We answer this question in the affirmative, but, quite contro-
versially, were only able to do so in the random oracle model. We explicitly do
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not model the compression function itself as a random oracle however. While
we view the main interest of our construction to be a feasibility result for seven-
property-preserving hashing, we do have reasons to believe that our construction
makes very “reasonable” use of the random oracle. Allow us to explain.

Our Random-Oracle-XOR (ROX) construction draws largely on the XOR-
linear hash [7] and Shoup’s hash [30]. The latter is an extension of SMD where
a logarithmic (in the message length) number of masks are XORed into the
chaining value. We take the same approach, but have the masks generated by
applying a random oracle to 170-bit inputs, for a security level of 80 bits. To
hash an �-block message, we query the random oracle on a number of domain
points that is logarithmic in �. This limited use of the random oracle has the
important practical ramification that the function instantiating it need not be
as efficient as the compression function, and can therefore be made with large
security margins. We’ll come back to candidate instantiations in Section 4.

The idea of generating the masks through a random oracle is not new; in fact,
it was explicitly suggested at two separate occasions by Mironov [23,24]. The
idea was discarded in [23] for trivializing the problem, but was revisited in [24]
as a viable way to obtain shorter keys for eSec-secure hashing. Indeed, if one
assumes the existence of random oracles with very large domains, then one can
simply use the random oracle to do the hashing. The ROX construction, on the
other hand, still uses a real compression function in the chaining, and uses a
small-domain random oracle to preserve all seven notions of [28] using a very
short key, including the important aSec and aPre notions.1 Moreover, we do
so without changing the syntax of the compression function [8] or doubling its
output size [19], both of which can come at a considerable performance penalty.

What About Other Properties? The seven security notions formalized
by [28] are certainly not the only ones that are of interest. Kelsey and Kohno [14]
suggest chosen-target forced-prefix security, which can be seen as a special form
of multi-collision resistance, as the right goal to stop Nostradamus attacks.
Bellare and Ristenpart [4], following previous work by Coron et al. [9] and
Bellare et al. [3], formalize pseudorandom oracle preservation (PRO-Pr) and
pseudorandom function preservation (PRF-Pr) as goals. Their EMD construc-
tion is shown to be PRO-Pr, PRF-Pr and to preserve collision resistance. More
recently, and independently of this work, Bellare and Ristenpart [5] study the
Coll, eSec, PRO, PRF, and MAC (unforgeability) preservation of various itera-
tions, including the SMD, Prefix-free MD, Shoup, and EMD iterations that we
study. Their work does not cover the five other notions of [28], while our work
does not cover the PRO, PRF, and MAC properties. We leave the study of the
preservation of these properties by our ROX construction to future work.

1 While ROX itself is an explicitly keyed construction, its preservation of aSec/aPre
implies that the instantiating compression function need not be. Indeed, when in-
stantiated with a fixed aSec/aPre-secure compression function like SHA-256, then
the resulting iterated hash is aSec/aPre-secure and therefore also Sec/Pre-secure.
ROX thereby provides a secure way of iterating unkeyed (second-)preimage resis-
tant compression functions.



134 E. Andreeva et al.

2 Security Definitions

In this section, we explain the security notions for hash functions of [28]. Let
us begin by establishing some notation. Let N = {0, 1, . . .} be the set of natural
numbers and {0, 1}∗ be the set of all bit strings. If k ∈ N, then {0, 1}k denotes
the set of all k-bit strings and {0, 1}k×∗ denotes the set of all bit strings of
length an integer multiple of k. The empty string is denoted ε. If b is a bit then
b denotes its complement. If x is a string and i ∈ N, then x(i) is the i-th bit
of x and xi is the concatenation of i copies of x. If x, y are strings, then x‖y is
the concatenation of x and y. If k, l ∈ N then 〈k〉l is the encoding of k as an
l-bit string. We occasionally write 〈k〉 when the length is clear from the context.
If S is a set, then x

$← S denotes the uniformly random selection of an element
from S. We let y ← A(x) and y

$← A(x) be the assignment to y of the output of
a deterministic and randomized algorithm A, respectively, when run on input x.

An adversary is an algorithm, possibly with access to oracles. To avoid trivial
lookup attacks, it will be our convention to include in the time complexity of an
adversary A its running time and its code size (relative to some fixed model of
computation).

Security Notions for Keyed Hash Functions. Formally, a hash function
family is a function H : K×M → Y where the key space K and the target space
Y are finite sets of bit strings. The message space M could be infinitely large;
we only assume that there exists at least one λ ∈ N such that {0, 1}λ ⊆ M.
We treat (fixed input length) compression functions and (variable input length)
hash functions just the same, the former being simply a special case of the latter.

The seven security notions from [28] are the standard three of collision resis-
tance (Coll), preimage resistance (Pre), and second-preimage resistance (Sec),
and the always- and everywhere-variants of (second-)preimage resistance (aPre,
aSec, ePre, and eSec). The advantage of an adversary A in breaking H under secu-
rity notion atk is given by Advatk

H (A) = Pr[Expatk : M 	= M ′ and H(K, M) =
H(K, M ′)] if atk ∈ {Coll, Sec[λ], eSec, aSec[λ]}, and by Advatk

H (A) = Pr[Expatk :
H(K, M ′) = Y ] if atk ∈ {Pre[λ], ePre, aPre[λ]}, where the experiments Expatk
are given below.

atk Expatk

Coll K
$← K ; (M, M ′) $← A(K)

Sec[λ] K
$← K ; M

$← {0, 1}λ ; M ′ $← A(K, M)
eSec (M, St) $← A ; K

$← K ; M ′ $← A(K, St)
aSec[λ] (K, St) $← A ; M

$← {0, 1}λ ; M ′ $← A(M, St)
Pre[λ] K

$← K ; M
$← {0, 1}λ ; Y ← H(K, M) ; M ′ $← A(K, Y )

ePre (Y, St) $← A ; K
$← K ; M ′ $← A(K, St)

aPre[λ] (K, St) $← A ; M
$← {0, 1}λ ; Y ← H(K,M) ; M ′ $← A(Y, St)

We say that A is (t, ε) atk-secure if no adversary running in time at most t has
advantage more than ε. When giving results in the random oracle model, we
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will talk about (t, qRO, ε) atk-secure schemes, where qRO is the total number of
queries that A makes to its random oracles.

Note that the security notions above do not insist that the colliding message
M ′ be of length λ. It is our conscious choice to focus on arbitrary-length security
here, meaning that adversaries may find collisions between messages of varying
lengths. In practice, the whole purpose of hash iterations is to extend the domain
of a compression function to arbitrary lengths, so it makes perfect sense to require
that the hash function withstands attacks using messages of different lengths.

3 Properties Preserved by Existing Constructions

In this section we take a closer look at eleven hash iterations that previously
appeared in the literature, and check which of the seven security properties
from [28] they preserve. The algorithms are described in Fig. 1, the results of
our analysis are summarized in Table 1.

As mentioned in the previous section, we focus on arbitrary-length security
in this paper. Allowing for arbitrary-length message attacks invariably seems
to require some sort of message padding (unstrengthened MD does not pre-
serve collision resistance), but care must be taken when deciding on the padding
method: one method does not fit all. This was already observed by Bellare and
Rogaway [7], who proposed an alternative form of strengthening where a final
block containing the message length is appended and processed with a different
key than the rest of the iteration. This works fine in theory, but since current
compression functions are not keyed, it is not clear how this construction should
be instantiated in practice. In absence of a practical generic solution, we chose
to add standard one-zeroes padding and length strengthening to all chaining it-
erations that were originally proposed without strengthening. For tree iterations
we use one-zeroes padding for the message input at the leaves, and at the root
make one extra call to the compression function on input the accumulated hash
value concatenated with the message length. (Standard length strengthening at
the leaves fails to preserve even collision resistance here.) These strengthening
methods sometimes help but never harm for property preservation.

Strengthened Merkle-Damgård. The Strengthened Merkle-Damg̊ard
(SMD) construction is known to preserve collision resistance [11] and to not
preserve eSec security [7]. In the following two theorems we prove that it also
preserves ePre security, but does not preserve Sec, aSec, Pre, and aPre secu-
rity. τF is the time required for an evaluation of F and � = 
(λ + 2n)/b� where
λ = |M |.

Theorem 1. If F is (t′, ε′) ePre-secure, then SMDF is (t, ε) ePre-secure for ε =
ε′ and t = t′ − � · τF.

Proof. Given an ePre-adversary A against SMDF, consider the following ePre-
adversary B against F. B runs A to obtain the target value Y and outputs the
same string Y . When it gets a random key K it runs A on the same key to obtain
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Algorithm SMDF(K, M): Algorithm LH F(K1‖ . . . ‖K� , M):
m1‖ . . . ‖m� ← ls-pad(M) ; h0 ← IV m1‖ . . . ‖m� ← ls-pad(M) ; h0 ← IV
For i = 1 . . . � do hi ← F(K, mi‖hi−1) For i = 1, . . . , � do hi ← F(Ki, mi‖hi−1)
Return h� Return h�

Algorithm XLH F(K‖K1‖ . . . ‖K� , M): Algorithm SH F(K‖K1‖ . . . ‖K�log ��, M):
m1‖ . . . ‖m� ← ls-pad(M) ; h0 ← IV m1‖ . . . ‖m� ← ls-pad(M) ; h0 ← IV
For i = 1, . . . , � do For i = 1, . . . , � do

hi ← F(K, mi‖(hi−1 ⊕Ki−1)) hi ← F(K, mi‖(hi−1 ⊕Kν(i)))
Return h� Return h�

Algorithm PfMDF(K, M): Algorithm EMDF(K, M):
m1‖ . . . ‖m� ← pf-pad(M) ; h0 ← IV m1‖ . . . ‖m� ← emd-pad(M) ; h0 ← IV1
For i = 1, . . . , � do hi ← F(K, mi‖hi−1) For i = 1 . . . �− 1 do hi ← F(K, mi‖hi−1)
Return h� Return h� ← F(K, h�−1‖m�‖IV2)

Algorithm HAIFAF(K, M): Algorithm RH F(K‖R, M):
m1‖ . . . ‖m� ← oz-pad(M, i · b) ; h0 ← IV m1‖ . . . ‖m� ← sf-pad(M)

ctr ← 0 ; S
$← {0, 1}s // S is a salt h0 ← F(K, R‖IV )

For i = 1 . . . �− 1 do For i = 1 . . . � do
ctr ← ctr + b ; hi ← F(K, mi‖〈ctr〉l‖S‖hi−1) hi ← F(K, (mi ⊕ R)‖hi−1)

h� ← F(K, m�‖〈|M|〉‖S‖h�−1) Return h�

Return S, h�

Algorithm SMT F(K, M): Algorithm TH F(K1‖ . . . ‖Kd+1 , M):
m1‖ . . . ‖m� ← tpad(M) m1‖ . . . ‖m� ← tpad(M)
For j = 1, . . . , ad−1 do For j = 1, . . . , ad−1 do
h1,j ← F(K, m(j−1)a+1‖ . . . ‖mja) h1,j ← F(K1, m(j−1)a+1‖ . . . ‖mja)
For i = 2, . . . , d and j = 1, . . . , ad−i do For i = 2, . . . , d and j = 1, . . . , ad−i do

hi,j ← F(K, hi−1,(j−1)a+1‖ . . . ‖hi−1,ja) hi,j ← F(Ki, hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)
hd+1,1 ← F(K, hd,1‖〈|M|〉n(a−1)) hd+1,1 ← F(Kd+1, hd,1‖〈|M|〉n(a−1))
Return hd+1,1 Return hd+1,1

Algorithm XTH F(K‖K1‖ . . . ‖Kd+1 , M): Padding algorithms:
m1‖ . . . ‖m� ← tpad(M) oz-pad(M, x) = M‖100x−|M|−2

For j = 1, . . . , ad−1 do ls-pad(M) = oz-pad(M, x)‖〈|M|〉b
h1,j ← F(K, (m(j−1)a+1‖ . . . ‖mja)⊕K1) where x = 
(|M| + 2)/b� · b

For i = 2, . . . , d and j = 1, . . . , ad−i do emd-pad(M) = oz-pad(M, x)‖〈|M|〉64
hi,j ← F(K, (hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)⊕Ki) where x = 
(|M| + 66)/b� · b − 64

hd+1,1 ← F(K, (hd,1‖〈|M|〉n(a−1))⊕Kd+1) tpad(M) = oz-pad(M, x)
Return hd+1,1 where x = a�loga |M|� · n

Fig. 1. Some existing iterative hash constructions. Chaining iterations SMD, LH , XLH ,
SH , PfMD, RH , and EMD use a compression function F : {0, 1}k ×{0, 1}b+n → {0, 1}n;
HAIFA uses a compression function F : {0, 1}k×{0, 1}b+l+s+n → {0, 1}n. Tree iterations
SMT , TH , and XTH use a compression function F : {0, 1}k ×{0, 1}an → {0, 1}n. Strings
IV , IV 1, IV 2 ∈ {0, 1}n are fixed initialization vectors. Padding algorithms are given on
the bottom right; pf-pad(M) and sf-pad(M) are any prefix-free padding and suffix-
free padding algorithms, respectively. The function ν(i) is the largest integer j such
that 2j |i.

a preimage message M ′. Let m′1‖ . . . ‖m′� ← ls-pad(M ′) and let h′�−1 be the one-
but-last chaining value computed in an execution of SMDF(K, M ′). Algorithm
B outputs m′�‖h′�−1 as its own preimage.

While at first sight the above proof may seem to go through for Pre and aPre
security as well, this is not the case. The target point Y in a Pre attack on F is
distributed as F(K, m‖h) for a random m‖h

$← {0, 1}b+n. But the target point
for the iterated structure SMDF is generated as SMDF(K, M) for a random M

$←
{0, 1}λ. These two distributions can actually be very different, as is illustrated
by the following counterexample.
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Theorem 2. For atk ∈ {Sec, aSec, Pre, aPre}, if there exists a (t, ε) atk-secure
compression function G : K × {0, 1}b+n → {0, 1}n−1, then there exists a (t, ε −
1/2n) atk-secure compression function CE1 : K × {0, 1}b+n → {0, 1}n and an
adversary A running in one time step with atk[λ]-advantage one in breaking
SMDCE1 .

Proof. For any compression function G, consider CE1 given by

CE1(K, m‖h) = IV if h = IV
= G(K, m‖h) ‖ IV

(n)
otherwise .

If G is (t, ε) atk secure, then CE1 is (t, ε − 1/2n) atk secure; we refer to the
full version [1] for the proof. From the construction of CE1, it is clear that
SMDCE1(K, M) = IV for all M ∈ {0, 1}∗. Hence, the adversary can output any
message M ′ as its (second) preimage.

Linear Hash. The Linear Hash (LH ) [7] uses � different keys for �-block mes-
sages, because it calls the compression function on a different key at every it-
eration. The Linear Hash is known to preserve eSec-security for same-length
messages, but Bellare and Rogaway claim [7] that length-strengthening does
not suffice to preserve eSec for different-length messages. The following theorem
confirms their claim, and also shows that LH does not preserve Coll. The coun-
terexample CE1 of Theorem 2 can be used to disprove the preservation of Sec,
aSec, Pre and aPre-security. A proof similar to that of Theorem 1 can be used
to show that LH does preserve ePre-security.

Theorem 3. For any atk ∈ {Coll, eSec}, if there exists a (t, ε) atk-secure com-
pression function G : {0, 1}k × {0, 1}b+n → {0, 1}n−2, then there exists a (t, ε)
atk-secure compression function CE2 : {0, 1}k × {0, 1}b+n → {0, 1}n and an ad-
versary A running in one step time with atk-advantage 1/4 in breaking LH CE2 .

Proof. For any compression function G, consider CE2 given by

CE2(K, m‖h) = IV if m‖h = 010b−2‖IV
= 0n−1 ‖ IV

(n)
if (K(1) = 0 and m‖h = 〈1〉b‖IV )
or (K(1) = 1 and m‖h = 〈b + 1〉b‖IV )

= G(K, m‖h) ‖ 1 ‖ IV
(n)

otherwise ,

In the full version [1] we prove that if G is (t, ε) atk-secure for atk ∈ {Coll, eSec},
then CE2 is (t, ε) atk-secure. When iterating CE2 through LH CE2 with indepen-
dent keys K1‖K2‖K3, one can easily see that if K

(1)
2 = 0 and K

(1)
3 = 1, then

messsages M = 0 and M ′ = 010b−1 both hash to 0n−1‖IV
(n)

. Since in the
Coll and eSec games this case happens with probability 1/4, we have attacks
satisfying the claim in the theorem.

XOR-Linear Hash. The XOR-Linear Hash (XLH ) [7] uses keys that consist
of a compression function key K and � masking keys K1, . . . , K� ∈ {0, 1}n. It
is known to preserve eSec security [7]. It can also be seen to preserve Coll and
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ePre by similar arguments as used for SMD and LH . Counterexample CE1 can
be used to show that aSec and aPre are not preserved: the adversary gets to
choose the key in these notions, so it can choose K1 = . . . = K� = 0n so that
XLH boils down to SMD. In the following we show that the XLH construction
does not preserve Sec or Pre security either.

Theorem 4. For any atk ∈ {Sec, Pre}, if there exists a (t, ε) atk-secure com-
pression function G : K × {0, 1}b+n → {0, 1}n−1, then there exists a (t, ε + 1/2b)
atk-secure compression function CE3 : K×{0, 1}b+n → {0, 1}n and an adversary
A running in one step time with atk[λ]-advantage one in breaking XLH CE3 .

Proof. For any λ ≤ 2b and compression function G, consider CE3 given by

CE3(K, m‖h) = 0n if m = 〈λ〉b

= G(K, m‖h)‖1 otherwise .

In the full version [1] we prove that if G is (t, ε) Sec or Pre-secure, then CE3
is (t, ε + 1/2b) Sec or Pre-secure. It is easy to see that, when iterated through
XLH CE3 , the hash of any λ-bit message is 0n. A Pre[λ] adversary can therefore
simply output any M ′ ∈ {0, 1}λ, a Sec[λ] adversary can output any M ′ 	=M ∈
{0, 1}λ.

Shoup’s Hash. The iteration due to Shoup (SH ) [30] is similar to the XOR-
Linear hash but uses a different key scheduling that reduces the key length to
logarithmic in the message length, rather than linear. Shoup’s hash is known
to preserve eSec-security [30], and it can be shown to preserve Coll and ePre-
security as well. The proofs are very similar to the case of SMD, and hence
omitted. Counterexample CE1 disproves preservation of aSec and aPre-security,
and counterexample CE3 disproves preservation of Sec and Pre.

Prefix-Free Merkle-Damg̊ard. Bellare and Ristenpart showed [4] that the
prefix-free Merkle-Damg̊ard construction (PfMD) [9] does not preserve Coll secu-
rity. The counterexample of [7] can also be used to show that it does not preserve
eSec, and counterexample CE1 can be used to disprove the preservation of Sec,
aSec, Pre and aPre. Finally, using a proof similar to that for SMD, one can show
that ePre-security is preserved.

Another variant of PfMD by [9] prepends the message length encoding to the
message in advance. The security results of this scheme easily follow from the
ones for the SMD construction.

Randomized Hash. The Randomized Hash (RH ) [13] XORs each message block
with a random value R ∈ {0, 1}b. The construction was originally proved to
be eSec secure by making stronger assumptions on the underlying compression
function. Its pure security preservation characteristics (i.e., assuming only the
eSec security of the compression function) were never studied. In our security
analysis of RH treating the value R as either randomness per message or fixed
long term key yields identical results with respect to seven property preservation.

By arguments similar to the case of SMD, one can show that RH preserves Coll
and ePre security, but none of the other notions are preserved. Counterexample



Seven-Property-Preserving Iterated Hashing: ROX 139

CE1 can be used to contradict preservation of Sec, aSec, Pre, and ePre, and the
counterexample of [7] can be used to contradict preservation of eSec.

HAIFA. While the newly proposed HAsh Iterative FrAmework (HAIFA) [8] does
preclude a number of specific attacks [12,15,14] to which SMD admits, they per-
form exactly the same in terms of preservation of our security notions. Similar
proofs as for SMD can be used to show that HAIFA preserves Coll and ePre-
security, counterexample CE1 can be used to contradict the preservation of Sec,
aSec, Pre, and aPre, and the counterexample of [7] applies to contradict preser-
vation of eSec.

Enveloped Merkle-Damg̊ard. The enveloped Merkle-Damg̊ard (EMD) con-
struction [4] is known to preserve collision resistance, pseudo-random-oracle, and
pseudo-random function behavior. For the seven security notions that we con-
sider, however, it does not perform better than SMD. Counterexample CE1 of
Theorem 2 can be used (setting IV = IV 2) to show that neither of Sec, aSec,
Pre, or aPre are preserved. An adaptation of the counterexample of [7] shows
that eSec is not preserved either. Preservation of ePre on the other hand can be
proved in a similar way as done in Theorem 1.

Strengthened Merkle Tree. We consider here the strengthened Merkle
tree [20], the Tree Hash [7], and the XOR Tree Hash [7]. For conciseness we do not
cover other tree iterations that have appeared in the literature (e.g. [17,29]). The
Merkle tree [20] in its most basic form (i.e., without length strengthening) suffers
from a similar anomaly as basic Merkle-Damg̊ard in that it does not preserve Coll
for arbitrary-length messages. We therefore consider the strengthened variant
SMT here, depicted in Fig. 1. We believe SMT is commonly known to preserve
Coll, but we reprove this in the full version [2] for completeness. The notion of
ePre is easily seen to be preserved as well. It can be seen not to preserve eSec
by a counterexample similar to that of [7] given in the full version [2]. SMT also
fails to preserve Sec, aSec, Pre, and aPre however, as shown in the following
theorem.

Theorem 5. For any atk ∈ {Sec, aSec, Pre, aPre}, if there exists a (t′, ε′) atk-
secure compression function G : K × {0, 1}an → {0, 1}n−2, then there exists a
(t, ε) atk-secure compression function CE4 : K × {0, 1}an → {0, 1}n for ε =
ε′ + 1/2n−1, t = t′, and an adversary A running in one step time with atk[λ]
advantage 1 in breaking SMT CE4 .

Proof. For any compression function G, consider CE4 given by

CE4(K, m1‖ . . . ‖ma) = 0n if ma = 0n

= 1n if ma−1 = 0n and ma 	= 0n

= G(K, m1‖ . . . ‖ma) ‖ 10 otherwise .

We prove in the full version [1] that the bounds mentioned above hold for the
atk security of CE4. It is easy to see that, due to the one-zeroes padding to ad

bits, any message of length ad−1 −1 ≤ λ ≤ ad −1 hashes to 1n, leading to trivial
constant-time attacks for any such length λ.
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Tree Hash. The unstrengthened Tree Hash (TH ) was proposed in [7] for same-
length messages; we consider the strengthened variant here. It is a variant of SMT
where at each level i of the tree the compression functions use an independent key
Ki. It can be seen to preserve ePre for the same reasons as the SMT construction.
Our counterexample CE4 can be used to exhibit the non-preservation of Sec,
aSec, Pre and aPre security. The case of Coll and eSec are a bit more subtle,
but the counterexample below shows that TH does not preserve these either.

Theorem 6. For any atk ∈ {Coll, eSec}, if there exists a (t′, ε′) atk-secure com-
pression function G : {0, 1}k × {0, 1}an → {0, 1}n−1, then there exists a (t, ε)
atk-secure compression function CE5 : {0, 1}k × {0, 1}an → {0, 1}n for ε = ε′,
t = t′, such that there exists an eSec-adversary breaking the eSec security of
TH CE5 in constant time with advantage 1/4.

Proof. For any compression function G, consider CE5 given by

CE5(K, M) = 10n−1 if M = (10n−1)a

= 1n if
(
K(1) = 0 and M = (10n−1)a−1‖〈(a − 1)n〉n

)

or
(
K(1) = 1 and M = (10n−1)a−1‖〈(a2 − 1)n〉n

)

= 0 ‖ G(K, M) otherwise .
(1)

We prove in the full version [2] that CE5 is (t, ε) atk-secure whenever G is (t, ε)
atk-secure, for atk ∈ {Coll, eSec}.

Let M = (10n−1)a−1 and M ′ = (10n−1)a2−1. Note that tpad(M) = (10n−1)a

and tpad(M ′) = (10n−1)a2
, where tpad is the tree padding algorithm of Fig. 1.

If TH CE5 is instantiated with keys K1‖K2‖K3 such that K
(1)
2 = 0 and K

(1)
3 = 1,

then one can verify that TH CE5(K1‖K2‖K3, M
′) = TH CE5(K1‖K2‖K3, M) =

1n. Hence, the adversary that outputs M and M ′ as colliding message pair has
advantage 1/4 in winning the Coll and eSec games.

XOR Tree. The unstrengthened XOR Tree (XTH ) was proposed in [7] for fixed-
length messages; we consider the strengthened variant here. It is again a variant
of the Merkle tree, where the inputs to the compression functions on level i are
XORed with a key Ki ∈ {0, 1}an. As for all other iterations, it is straightforward
to see that XTH preserves ePre; we omit the proof. Quite remarkably, the masking
of the entire input to the compression function makes it the only iteration in
the literature that preserves Pre, while at the same time it seems to stand in
the way of even proving preservation of Coll. It does not preserve aSec or aPre
because the adversary can choose Ki = 0an and apply counterexample CE4. We
were unable to come up with either proof or counterexample for Coll, Sec, and
eSec, leaving these as an open question. The proof of preservation of Pre is given
in the full version [1].

4 The ROX Construction

We are now ready to present in detail our Random-Oracle-XOR (ROX) construc-
tion. Let F : {0, 1}k×{0, 1}b+n → {0, 1}n be a fixed-length compression function.
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m1 m2

h�
FK

FKFK
IV

μν(1)μν(1) μν(�)

m�‖RO2(m, 〈λ〉, 〈1〉)‖...

. . . .

Fig. 2. The ROX Construction. The message is padded with bits generated by
RO2(K, m, 〈λ〉, 〈i〉), where m are the first k bits of M . The last block must contain
at least 2n padding bits, otherwise an extra padding block is added. In the picture
above, IV is the initialization vector, ν(i) is the largest integer j such that 2j |i, and
the masks μi ← RO1(K, m, 〈i〉).

Let 2l be the maximum message length in bits; typically one would use k = 80
and l = 64. The construction uses two random oracles RO1 : {0, 1}k × {0, 1}k ×
{0, 1}
log l� → {0, 1}n and RO2 : {0, 1}k ×{0, 1}l ×{0, 1}
log b� → {0, 1}2n. These
random oracles can be built from a single one by adding an extra bit to the input
that distinguishes calls to RO1 and RO2. Our construction can be thought of as
a variant of Shoup’s hash, but with the masks being generated by RO1 and the
padding being generated by RO2. More precisely, on input a message M , our
padding function rox-pad outputs a sequence of b-bit message blocks

m1‖ . . . ‖m� = M ‖ RO2(m, 〈λ〉, 〈1〉) ‖ RO2(m, 〈λ〉, 〈2〉) ‖ . . . ,

where m are the first k bits of M and λ = |M |. The padding adds a number
of bits generated by RO2 such that the final block m� contains at least 2n
bits generated by RO2, possibly resulting in an extra block consisting solely
of padding. It is worth noting though that we do not have a separate length
strengthening block. We assume that λ ≥ k because aPre security, and therefore
seven-property-preservation as a whole, do not make sense for short messages.
Indeed, the adversary can always exhaustively try the entire message space. To
hash shorter messages, one should add a random salt to the message.

Let ν(i) be the largest integer j such that 2j divides i, let IV ∈ {0, 1}n

be an initialization vector, and let m be the first k bits of the message M .
Our construction is described in pseudocode below; a graphical representation
is given in Fig. 2.

Algorithm ROX RO1,RO2
F (K, M):

m1‖ . . . ‖m� ← rox-padRO2(M) ; h0 ← IV
For i = 0, . . . , �log2(�)� do μi ← RO1(K, m, 〈i〉)
For i = 1 . . . � do gi ← hi−1 ⊕ μν(i) ; hi ← F(K, mi‖gi)
Return h� .

We want to stress that that the ROX construction does not require that the
compression function accept an additional input that might be influenced by the
attacker (such as a salt or a counter). We see this as an important advantage,
since imposing additional requirements on the compression function may make
compression functions even harder to design or less efficient.
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It is quite standard in cryptography for new primitives to first find instantia-
tions in the random oracle model, only much later to be replaced with construc-
tions in the standard model. It is interesting to see how the random oracles in the
ROX construction can be instantiated if one were to implement it in practice.
For an 80-bit security level, our results suggest that we should take k = 80 and
n = 160. This means that we need a random oracle that reduces about 170 bits
to 160 bits. A first suggestion might be to re-use the compression function with,
say, three times as many rounds as normal, and with some different values of the
constants. This approach violates good cryptographic hygiene, however, by hav-
ing the design of the random oracle depend on that of the surrounding scheme.
Perhaps a better solution would be to use one or more calls to a blockcipher like
AES that was designed independently of the compression function.

5 Properties Preserved by the ROX Construction

The following theorem states that the ROX construction preserves all seven
security properties that we consider here. We give a proof sketch for the preser-
vation of Coll and a full proof for aSec below; the other proofs can be found in
the full version [2]. We only note that the proofs for Sec, aSec and eSec are in
the programmable random oracle model [26]; that for the case of Pre and aPre
non-programmable random oracles suffice; and that Coll and ePre are preserved
in the standard model.

Theorem 7. For atk ∈ {Coll, Sec, eSec, aSec, Pre, ePre, aPre}, if the compres-
sion function F : {0, 1}k × {0, 1}b+n → {0, 1}n is (t′, ε′) atk-secure, then the
iterated function ROX F is (t, qRO, ε) atk-secure in the random oracle for

ε = ε′ +
q2
RO

22n
, t = t′ − 2� · τF for atk = Coll (2)

ε = � · ε′ + q2
RO

22n
, t = t′ − 2� · τF for atk = Sec (3)

ε = � · ε′ + qRO

2k
+

q2
RO

22n
, t = t′ − 2� · τF for atk = eSec (4)

ε = � · ε′ + qRO

2k
+

q2
RO

22n
, t = t′ − 2� · τF for atk = aSec (5)

ε = ε′ , t = t′ − � · τF for atk ∈ {Pre, ePre} (6)
ε = ε′ +

qRO

2k
, t = t′ − � · τF for atk = aPre (7)

Here, τF is the time required for an evaluation of F and � = 
(λ + 2n)/b� where
λ = |M |.

We repeat that above we do not model the compression function as a random
oracle, but it is worth considering what the equations tell us if we do. Assum-
ing for simplicity that τF = 1, we know that a collision adversary running in
t′ = 2n/2 steps has probability about 1/2 to find collisions in F, due to the
birthday paradox, but only has probability ε′ = 2−n/2 to find preimages or
second preimages. Nevertheless, existing iterations cannot guarantee (second)
preimage resistance against 2n/2-time adversaries, because they merely inherit
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their (second) preimage resistance by implication from collision resistance.2 The
ROX construction, on the other hand, can. Assuming that queries to RO1, RO2
take unit time and taking k = n, Equations (2), (3), (6) imply that an ad-
versary running in time t = 2n/2 − 2� ≈ 2n/2 steps has probability at most
ε = � · 2−n/2 + 2n/2−k + 2−n ≈ (� + 1) · 2−n/2 to find second preimages, and has
probability at most ε′ = 2−n/2 + 2n/2−n ≈ 2−n/2+1 to find preimages.

Proof (Equation (2) (Sketch)). If M, M ′ is a pair of colliding messages, then
consider the two chains of compression function calls in the computation of
ROX F(K, M) = ROX F(K, M ′). If the inputs to the final call to F are different for
M and M ′, then these inputs form a collision on F and we’re done. If they are
the same, then remember that at least 2n bits of these inputs are the output of
RO2(m, 〈λ〉, 〈i〉) and RO2(m′, 〈λ′〉, 〈j〉), respectively. If these are different queries
to RO2, yet their outputs are the same, then the adversary must have found a
collision on RO2; the odds of it doing so are bounded by q2

RO/22n. If these queries
are the same, however, then we have that m = m′ and λ = λ′, and therefore that
the masks in both chains μi = μ′i = RO1(K, m, 〈i〉). Identical chaining inputs to
�-th call to F must therefore be caused by identical outputs of the (� − 1)-st call
to F. If the inputs to the (� − 1)-st call are different then we have a collision on
F here, otherwise we repeat the argument to the (� − 2)-nd call, and so on. A
collision on F will be found unless M = M ′. We refer to the full version [2] for
a more detailed proof.

Proof (Equation (5)). Given an aSec[λ] adversary A against ROX F for any λ ∈ N,
we will construct an aSec adversary B against F. The overall strategy will be
that B “embeds” his own challenge message at a random point in the chain, and
hopes that A’s output yields a second preimage at exactly the point in the chain
where B has embedded his challenge.

Algorithm B runs A to obtain a key K ∈ {0, 1}k, responding to its random
oracle queries by maintaining associative arrays T1[·], T2[·]. B outputs the same
key K and is then given as input a random challenge message m‖g ∈ {0, 1}b+n.
It chooses a random index i∗ $← {1, . . . , � = 
(λ + 2n)/b�}. We first explain how
B can construct a message M of length λ so that mi∗ = m in m1‖ . . . ‖m� ←
rox-padRO2(M); the rest of the message blocks are randomly generated. After
that, we will show how g can be embedded into the chain such that gi∗ = g. If
i∗ = 1 then B sets m to the first k bits of m, otherwise it chooses m

$← {0, 1}k

and sets the first k bits of M to m. We distinguish between Type-I message
blocks that only contain bits of M , Type-II message blocks of which the first
λb = (λ mod b) bits are the last λb bits of M and the remaining bits are generated
by RO2, and Type-III message blocks that consist entirely of bits generated by
RO2. Embedding m in a Type-I message block can simply be done by setting b

2 For the Prefix-free MD [9] and EMD [4] iterations this is a bit paradoxical, because
they were designed to preserve “random oracle behavior”. Surely, (second) preimage
resistance should fall under any reasonable definition of “random oracle behavior”?
The caveat here is that the proof [4, Theorem 5.2] bounds the distinguishing prob-
ability to O(q2

RO/2n), so that the theorem statement becomes moot for qRO = 2n/2.
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bits of M to m starting at bit position (i∗ − 1)b + 1. To embed m in a Type-
II message block, B sets the last λb bits of M to the first λb bits of m, and
programs the first (b − λb) bits of T2[m, 〈λ〉, 〈1〉] ‖ T2[m, 〈λ〉, 〈2〉] ‖ . . . to be the
last (b − λb) bits of m. For Type-III blocks, B chooses M completely at random
and sets b bits of T2[m, 〈λ〉, 〈1〉] ‖ T2[m, 〈λ〉, 〈2〉] ‖ . . . to m, starting at the
(b − λb + 1)-st bit position. Bits of M and T2[m, ·] that are still undefined are
chosen at random. If any of these table entries were already defined during A’s
first run, then B aborts. Notice however that A’s view during the first run is
independent of m, so its probability of making such a query is at most qRO/2k.

To enforce that gi∗ = g in the computation of ROX RO1,RO2
F (K, M), algo-

rithm B runs the reconstruction algorithm of [30,23] that, given message blocks
m1, . . . , mi∗ and chaining value gi∗ , outputs random mask values μ0, . . . , μt such
that the chaining input to the i∗-th compression function call is gi∗ . B’s goal is
to program these masks into RO1 by setting T1[K, m, 〈i〉] ← μi for 0 ≤ i ≤ t,
such that it is possible to check that the value for gi∗ obtained during the hash
computation is indeed g. However, if any of the hash table entries T1[K, m, 〈i〉]
for 0 ≤ i ≤ t has already been defined, then B aborts. This can only occur when
A asked a query RO1(K, m, 〈i〉) during its first phase, but again, the probability
of it doing so is at most qRO/2k because its view is independent of m.

Algorithm B then runs A again on input target message M , responding to
its random oracle queries as before, until it outputs a second preimage M ′. Let
m′0‖ . . . ‖m′�′ ← rox-padRO2(M ′) be the parsed messages. For the same argu-
ments as in the proof of Equation (2) above, there must exist an index I > 0
such that hI = h′I but mI‖gI 	= m′I‖g′I , unless A found a collision in the random
oracle RO2. If i∗ = I, then B outputs m′I‖g′I .

B wins the game whenever A does and i∗ = I, unless A succeeded in causing
a collision in RO2 or any of the values that are programmed in RO1, RO2 were
already queried. Let E1 be the event that at least one of the preprogrammed
values is queried by A on a different input and E2 be the event that A manages
to find at least one collision in RO2. Let abort be the event that B aborts, then

Pr [abort ] = Pr [ E1 ] + Pr
[
E2 : E1

]
≤ Pr [ E1 ] + Pr [ E2 ].

Since B perfectly simulates A’s environment, the advantage of B is given by

ε′ ≥ Pr [ A wins ∧ i∗ = I : abort ] · Pr [abort ]

≥ ε

�

(
1 −

(
qRO

2k
+

q2
RO

22n

))
≥ 1

�

(
ε − qRO

2k
− q2

RO

22n

)
.

The running time of B is that of A plus at most 2� evaluations of F. Equation (5)
follows.

Possible Tweaks. The scheme can be simplified not all seven properties need
to be preserved. For example, if the key K is dropped from the input to RO1,
the ROX construction fails to preserve eSec and ePre, but still preserves all other
notions. Dropping the message bits m from the input of either RO1 or RO2
destroys the preservation of aSec and aPre, but leaves the preservation of other
notions unharmed.
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Abstract. Recent collision-finding attacks against hash functions such
as MD5 and SHA-1 motivate the use of provably collision-resistant (CR)
functions in their place. Finding a collision in a provably CR func-
tion implies the ability to solve some hard problem (e.g., factoring).
Unfortunately, existing provably CR functions make poor replacements
for hash functions as they fail to deliver behaviors demanded by prac-
tical use. In particular, they are easily distinguished from a random
oracle. We initiate an investigation into building hash functions from
provably CR functions. As a method for achieving this, we present the
Mix-Compress-Mix (MCM) construction; it envelopes any provably CR
function H (with suitable regularity properties) between two injective
“mixing” stages. The MCM construction simultaneously enjoys (1) prov-
able collision-resistance in the standard model, and (2) indifferentiability
from a monolithic random oracle when the mixing stages themselves are
indifferentiable from a random oracle that observes injectivity. We in-
stantiate our new design approach by specifying a blockcipher-based
construction that appropriately realizes the mixing stages.

1 Introduction

Background. SHA-1, a Merkle-Damg̊ard style [24, 15] iterated function, is
provably collision resistant under the assumption that its underlying compres-
sion function is collision resistant. But the recent collision-finding attacks against
SHA-1 (and related hash functions) [37, 38] have made clear the point that as-
sumptions of collision resistance are often unfounded in practice.

Rather than assuming collision resistance outright, several works [12, 22, 26,
33, 14] build functions for which the guarantee of collision resistance rests, in a

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 147–163, 2007.
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148 T. Ristenpart and T. Shrimpton

provable way, on the hardness of some well-studied computational problem. As a
simple example, consider the function H(m) = xm mod n where x is some fixed
base and n is a (supposedly) hard-to-factor composite [26, 33]. This function is
(what we shall call) provably CR since there exists a formal reduction showing
that the ability to find collisions in H implies the ability to efficiently factor n.

But such a collision-resistant function is not a hash function, at least not
when one attempts to define a hash function by its myriad uses in practice1. For
example, hash functions are frequently used as a way to compress and ‘mix-up’
strings of bits in an ‘unpredictable’ way; here it seems clear that the intent is for
the hash function to mimic a random oracle, a publicly available random function
with a large domain. Unfortunately, the provably CR function H is a poor real-
world instantiation of a random oracle. Note, for example, that H(2m) ≡ H(m)2

(mod n), which would be true with exceedingly small probability if H were
instead a random oracle. The very structure that gives H and other provably CR
functions their collision-resistance thus renders them useless for many practical
applications of hash functions [12, 36].

On the other hand, recent results [13,2,11] offer constructions that ‘behave’ as
random oracles (and are called pseudorandom oracles, or PROs) when the under-
lying primitives are themselves idealized objects, like fixed-input length random
oracles or ideal ciphers. In theory then, a PRO is a secure hash functions in a
very broad sense. But the security guarantees offered by a PRO only hold in an
idealized model. When one steps outside of the ideal model in which the security
proofs take place, the actual security guarantees are much less clear. As an ex-
ample, Bellare and Ristenpart [2] have pointed out that the PRO constructions
from [13] fail to be collision resistant when the underlying compression function
is only assumed to be CR (rather than being a fixed-input-length random oracle).

This paper. We begin an investigation into methods for building functions
that are both provably CR in the standard model and provably pseudorandom
oracles in idealized models. In particular, we offer a generic construction that
we call Mix-Compress-Mix, or MCM; See Figure 1. Essentially MCM is a way to
encapsulate a provably CR function in such a way that the resulting object is
a PRO when the encapsulation steps behave ideally, and yet remains provably
collision resistant in the standard model (i.e., when the encapsulation steps are
only complexity theoretic objects).

The construction is simple: first apply an injective “mixing” step E1 to the
input message, then compress the result using a provably CR function H , and
finally apply a second injective “mixing” step E2 to produce the output. Here H
and E1 can accept variable-input-lengths. Note that since MCM is building a
hash function, the mixing steps E1 and E2 are necessarily deterministic and
publically computable functions. By demanding that they also be injective, we
have immediately that collisions against MCM imply collisions against H . We
stress that no cryptographic assumptions about the mixing steps are needed to
prove collision resistance of MCM.

1 This viewpoint is not ours alone. One of the designers of VSH [12], Arjen Lenstra,
once publicly stated “VSH is not a hash function.”
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E1 E2HM MCM(M)

Fig. 1. The MCM construction: H is a collision resistant hash function, and E1, E2 are
mixing functions. All three components of MCM must be deterministic and publically
computable.

At the same time, MCM behaves like a random oracle when E1, E2 are PROs,
and the CR hash function is close to regular (i.e., the preimage set of any par-
ticular output isn’t too large). In fact, we will actually construct E1, E2 to be
pseudorandom injective oracles, or PRIOs; we’ll say more about these in a mo-
ment. To make precise our use of the word “behaves” above, we use the indif-
ferentiability framework of Maurer et al. [23]. We’ll prove that MCM is indiffer-
entiable from a monolithic random oracle when the mixing steps E1 and E2 are
indifferentiable from random oracles (that observe injectivity). While the formal
results are quite technical, the practical intuition behind the security of MCM is
straightforward: the mixing steps obfuscate input-output relationships of the un-
derlying compressing step. Recall our provably CR example H(m) = xm mod n
and the associated attack that distinguished it from a random oracle. Adapting
that attack for use against H(M) = E2(H(E1(M))) requires that the adversary
determine non-trivial input-output relationships across both E1 and E2, too.

One might be tempted to think a construction even simpler than MCM meets
our goals. In Section 4 we discuss natural simplifications of MCM (e.g., drop-
ping E1 or lifting our stringent injectivity requirements), showing that these fall
short in one way or another. Moreover, we review in more detail why existing
approaches for building hash functions also fail.

Although we have just described MCM in the variable-input-length setting, we
note that it also works for building a dual-property compression function (i.e., a
fixed-input-length function) from any CR compression function. The result could
be then be used inside a multi-property-preserving domain extension transform
such as EMD [2].

A new approach to hash function design. By generically composing
appropriate mixing and compressing stages, MCM allows the following separa-
tion of design tasks. First, design a function with strong guarantees of collision-
resistance, inducing whatever structure is necessary. Second, design an injective
function that destroys any structure present in its input. This approach is a sig-
nificant departure from traditional hash function designs, in which one typically
constructs a compression function that must necessarily (and simultaneously) be
secure in various ways. With MCM, we instead build a hash function by designing
components to achieve specific security goals. The benefits of such specialized
components are immediate: MCM allows building a single hash function that has
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very strong CR guarantees while simultaneously being suitable for instantiating
a random oracle.

Secure mixing steps. Remaining is the question of how to build mixing steps
sufficient for the goals of MCM. As we’ve said, we require the mixing steps to be
both injective and indifferentiable from a random oracle that observes injectivity.
At first glance these requirements might seem overly burdensome. Can’t the re-
quirement simply be for the mixing steps to realize pseudorandom oracles, which
we already know (via [13, 11, 2]) how to build? No: while a PRO would satisfy
the second constraint, albiet with some additive birthday-bound loss in concrete
security, it would not at the same time suffice for MCM’s crucial standard-
model CR guarantee. This is because a PRO provides no guarantees of collision-
resistance outside of an idealized model. In fact, simultaneously satisfying both
requirements, injectivity and indifferentiability, is technically challenging.

To our knowledge, building a PRIO has never been considered before. Dodis
and Puniya [17,16] consider a similar goal, that of building random permutations
from random functions, but these are invertible by construction, whereas PRIOs
are not. Moreover, their proofs of security only hold for honest-but-curious ad-
versaries. We therefore present the Tag-and-Encipher (TE) construction for re-
alizing a PRIO (see Section 5). It is a blockcipher mode of operation (which
also employs a single trapdoor one-way permutation call) that is injective by
construction. In the ideal cipher model and under the assumption of trusted
setup of the trapdoor permutation, the TE construction is indifferentiable from
an injective random oracle. While not particularly efficient, we view the TE con-
struction as a proof-of-concept, and hope it fosters future efforts to build these
novel primitives.

Notes on indifferentiability and composability. In order to accomplish
our task of building a hash function with both strong standard model and ideal
model guarantees, we exercise the indifferentiability framework in novel ways.
First, both MCM and TE are a combination of complexity-theoretic objects (the
CR function H and the trapdoor permutation) and information-theoretic ob-
jects (the idealized components). Previous indifferentiability results have been
solely information-theoretic. Second, our model allows the simulator to choose
the trapdoor permutation utilized in TE. These two facts imply limitations on
the generic composability of our schemes. Composability refers to the guarantee
that any cryptographic scheme proven secure using an ideal object remains se-
cure when this object is replaced by a construction that is indifferentiable from
it. In practice the limited composability of our constructions means that they
might not be suitable for all applications of random (injective) oracles. We dis-
cuss this matter in more detail, and pose some interesting open questions raised
by it, in Section 6.

2 Preliminaries

Basics. Let X, Y ∈ {0, 1}∗. We denote the concatenation of X and Y by X || Y
or simply XY . The ith bit of X is X [i] and so X = X [1]X [2] · · ·X [|X |]. We
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write X |n (resp. X |n) to represent the substring consisting of the last (resp.
first) n bits of X for any n ≤ |X |. For a set S we often write S ∪← x, which
means S ← S ∪ {x}. We define Timef (μ) as the worst-case time to compute f
on a message of length at most μ.

Following [8, 13] we utilize Interactive Turing Machines (ITM) for our com-
putational model. Cryptographic primitives, schemes, and adversaries are all
interactive Turing machines.

Random functions and injections. Let Dom and Rng be sets. Recall that
a function f : Dom → Rng is injective if f(X) = f(X ′) implies that X = X ′.
(Necessarily for an injection |Dom| ≤ |Rng|.) For simplicity, we only consider
injections with constant stretch τ . Particularly if X ∈ Dom then |f(X)| =
|X | + τ . The following algorithms implement a random function and a random
injection.

Algorithm RFDom,Rng(X):
If R[X ] �= ⊥ then Ret R[X ]
Ret R[X ] $← Rng

Algorithm RIDom,Rng(X):
� ← |X | + τ
If I[X ] �= ⊥ then Ret I[X ]
I[X ] $← {0, 1}�\R�

R�
∪← I[X ]

Ret I[X ]

The tables R and I are initially everywhere set to ⊥ and the set R� is initially
empty for every �. We write f = RFDom,Rng to signify that f is an ITM map-
ping points from Dom to Rng according to the algorithm specified above. We
write RFd,r if Dom = {0, 1}d and Rng = {0, 1}r for some numbers d, r. We
write I = RIDom,Rng for an ITM mapping points from Dom to Rng as per the
algorithm specified above. (The other notational conventions lift to RI in the ob-
vious ways.) A random oracle is a random function that is publically accessible
by all parties. Similarly an random (or ideal) injection is a publically-accessible
random function that respects injectivity.

Ideal ciphers. For integers k, n > 0, a blockcipher E: {0, 1}k×{0, 1}n→{0, 1}n

is a function for which E(K, ·) = EK(·) is a permutation for every K ∈ {0, 1}k.
The inverse of E is D and is defined such that D(K, Y ) = M iff E(K, M) = Y .
An ideal cipher is a blockcipher uniformly selected from BC(k, n), the space of
all blockciphers with k-bit keys and n-bit blocksize. In the ideal cipher model,
both an ideal cipher E and its inverse are given to all parties as oracles.

Security notions. Let f : K × Dom→Rng be a function family indexed by
a non-empty key space K. Then we define the collision-finding advantage of an
adversary A against f as

Advcr
f (A) = Pr

[
fK(X) = fK(X ′) : K

$← K; (X, X ′) $← A(K)
]

where the probability is over the random choice of K and the random coins
utilized by A.

A function f : Dom→{0, 1}η is regular if each image has an equal number of
preimages. A function family f : K×Dom→{0, 1}η is regular if fK is regular for
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each K ∈ K. Associated to a function family f is the set PreIm(K, �, Y ) that, for
each K ∈ K, � such that {0, 1}� ⊆ Dom, and Y ∈ {0, 1}η, is the set of preimages
(under K) of Y that are of length �. That is, PreIm(K, �, Y ) = {X : X ∈
Dom ∧ |X | = � ∧ fK(X) = Y }. We also define the following function related
to f

δ(K, �, Y ) =
|PreIm(K, �, Y )| − 2�−η

2�
.

The δ function measures how much bigger (or smaller) a particular preimage set
is than it would be if fK were regular. We define ΔK = max{δ(K, �, Y )}, where
the maximum is taken over all choices of � and Y , and we say a function family
f is Δ-regular if ∑

K∈K ΔK

|K| ≤ Δ.

Intuitively, this measures on average (over keys) how far f is from regular.
Let F be a trapdoor permutation generator : on input 1k it outputs a trapdoor

permutation pair (f, f−1) where f : {0, 1}k→{0, 1}k and f−1(f(X)) = X . The
one-way advantage of an adversary A against F for security parameter k is
defined by

Advowf
F

(A) = Pr

[
f(X) = f(X ′) :

(f, f−1) $← F(1k); X $← {0, 1}k;
Y ← f(X); X ′ $← A(f, Y )

]
.

The RSA and Rabin function families are conjectured to allow generation of
secure trapdoor permutations [32, 28, 29].

PROs and PRIOs. The notion of indifferentiability [23] is a generalization of
conventional indistinguishability [18].] It facilitates reasoning about the ability of
constructions to emulate some idealized functionality (e.g., a random oracle) in
settings where the construction itself utilizes public, idealized components (e.g.,
an ideal cipher or fixed-input-length (FIL) random oracle). We follow the for-
malization of indifferentiability from [13,2] to define security for pseudorandom
oracles and pseudorandom injective oracles. First, a simulator S = (S1, . . . , Sl)
is an interactive Turing machine with l interfaces S1, . . . , Sl. The interfaces share
common state, i.e. all variables defined in one interface are available to all other
interfaces. Let C be some cryptographic scheme utilizing primitives f1, . . . , fl

and let Dom and Rng be non-empty sets. We define the pro and prio advantage
of an adversary A against C with respect to simulator S as

Advpro
C,S(A) = Pr

[
ACf1,...,fl ,f1,...,fl⇒1

]
− Pr

[
AF ,SF ⇒1

]

Advprio
C,S(A) = Pr

[
ACf1,...,fl ,f1,...,fl⇒1

]
− Pr

[
AI,SI⇒1

]

where F = RFDom,Rng and I = RIDom,Rng and the probabilities are over the
random coins used by the appropriate objects. We emphasize that the simulator
has oracle access to the idealized object (F or I), but does not see the queries A
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makes to it. In the case that the construction uses publically-keyed components
(e.g., the key for a CR function), all three entities (C, S, A) have access to the
key. We disallow A from making pointless queries, which in this setting means
querying an oracle twice.

Informally we call a cryptographic scheme C a pseudorandom oracle (PRO),
or say it is indifferentiable from a random oracle, if there exists an “efficient”
simulator against which all adversaries have “small” pro advantage. Likewise we
call a cryptographic scheme C a pseudorandom injective oracle (PRIO) if there
exists an “efficient” simulator against which all adversaries have “small” prio
advantage. We do not formalize “efficient” or “small”, giving concrete running
times and bounds, instead.

We formalize trusted setup of a trapdoor permutation generator F via an in-
teractive Turing machine TGen that behaves as follows. When called, it computes
(f, f−1) $← F(1k) and returns f . Subsequent calls return the same f . Construc-
tions that utilize a trapdoor permutation are given oracle access to TGen, for
example in the pro and prio definitions fi = TGen for some i ∈ [1 .. l]. We also
allow the simulator to run the oracle corresponding to TGen. This means, in
particular, that the simulator knows the trapdoor f−1, while the adversary does
not. See Section 6 for a discussion of the repercussions of this modeling decision.

3 The MCM Construction

Fix numbers η and τ . Let H : K × MH → {0, 1}η be a function family with key
space K and domain MH = {0, 1}≤L for some large number L (e.g., 264). Let
E1: M → MH be an injective function where M = {0, 1}≤L′

for L′ = L − τ .
For any X ∈ M we have that |E1(X)| = |X | + τ , hence τ is the stretch of E1.
Finally let E2: {0, 1}η → {0, 1}η+τ be an injective function. Then we define the
hash function H = MCM[E1, H, E2] with key space K, domain M, and range
{0, 1}η+τ by HK(M) = H(K, M) = E2(HK(E1(M))). Overloading our notation,
if I1 = RIM,MH and I2 = RIη,η+τ then we write H = MCM[I1, H, I2] where
now H is itself an ITM using oracle access to I1 and I2 to calculate HK(M) =
I2(HK(I1(M))).

Here τ is also the stretch of H — it’s the number of bits beyond η needed
to hold a hash value. Ideally τ = 0, in which case E1 and E2 would be a per-
mutations. We have the following theorem, which states that H inherits the
collision-resistance of H .

Theorem 1. Fix η > 0 and τ ≥ 0. Let H : K × MH → {0, 1}η be a func-
tion and E1: M → MH and E2: {0, 1}η → {0, 1}η+τ be injections. Let H =
MCM[E1, H, E2]. Let A be an adversary that runs in time t and outputs messages
each of length at most μ. Then there exists an adversary B such that

Advcr
H(A) = Advcr

H(B)

where B runs in time t′ ≤ t + 2(cμ + TimeE1(μ)) for an absolute constant c. �
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Proof. Let B be the adversary that behaves as follows. On input key K It runs
A(K), which eventually outputs (X, X ′). Then B outputs (E1(X), E1(X ′)). We
have that if HK(X) = HK(X ′) then because E1 and E2 are injections, necessarily
HK(E1(X)) = HK(E1(X ′)). Adversary B runs in time t′ ≤ t+2(cμ+TimeE1(μ))
where c is an absolute constant.

We point out that similar theorems can be given for several other hash function
properties, including target collision-resistance (TCR, or eSec), preimage resis-
tance, and always preimage resistance (aPre) [34]2. The next theorem captures
that MCM is a PRO if both E1 and E2 are modeled as random injections.

Theorem 2. Fix η > 0 and τ ≥ 0. Let H : K × MH → {0, 1}η be a Δ-regular
function, I1 = RIM,MH , and I2 = RIη,η+τ . Let H = MCM[I1, H, I2]. Let ν be
the minimal message length of H. Let A be an adversary that runs in time t and
making at most (q1, q2, q3) queries with the combined length of all queries being
at most μ. Then there exists an adversary B such that

Advpro
H,S(A) ≤ Advcr

H(B) +
(q1 + q3)2

2η+τ
+

(q1 + q2)2

2ν+τ
+ (q1 + q2)q3

(
1
2η

+ Δ

)

where the simulator S, specified below, runs in time tS ≤ cμ(q1 + q1q3) for some
absolute constant c and makes at most min{q2, q3} oracle queries. Adversary B
runs in time at most tB ≤ t + tS + c′μ for some absolute constant c′. �

The proof of this theorem is given in the full version of the paper [31], though be-
low we give a sketch highlighting the main aspects of the proof. First, we discuss
the theorem statement. As long as E1 and E2 are PRIOs we can securely replace
them by actual random injections (as per the composition theorem of [23]). Then,
Theorem 2 states that no adversary can differentiate between a real random or-
acle and the construction unless it is given sufficient time to break the collision-
resistance of H or allowed to make approximately 2(τ+min{η,ν})/2 queries. Here ν
could in fact be small, since this is the minimal message length in the domain of
our hash function (and we’d certainly want to include short messages). However,
in practice, H will have some minimal message length νH (e.g., the blocksize of
an underlying compression function) to which short messages would necessarily
be padded anyway. Thus, H can ‘aggressively’ pad short strings to a minimal
length ν = νH − τ , recovering our security guarantee.

Proof (Sketch). We first fix a simulator S = (S1, S2), which has access to
the random oracle R. The first interface S1 implements a random injection
Î1 = RIM,MH without ever using its access to R. The second interface works as
described below (recall that it has access to all of the values defined for Î1):

2 Although it is unclear how one would prove that MCM preserves the other notions
from [34], specifically everywhere preimage resistance (ePre), second-preimage resis-
tance (Sec) and always second-preimage resistance (aSec).
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procedure S2(Y )

If ∃M s.t. Y = HK(Î1(M)) then
Ret R(M)

Ret C
$← {0, 1}η

This interface checks if Î1 already maps a string M to a preimage under HK

of the queried value Y . In the case that multiple such M exist, then the lexico-
graphically first is used. If such an M exists, then the simulator queries R on M
and the output of S2(Y ) is “programmed” to match this value.

Now we argue that no adversary A, given K, can differentiate between or-
acles (H, I1, I2) and (R, S1, S2). Let O1, O2, O3 be the oracles given to A. By
the construction of the simulator, the adversary gains no advantage by querying
messages in the order of the construction, i.e. a query X ← O2(M) and then
O3(HK(X)). On the other hand, there do exist sequences of queries that can
cause the simulator to fail (with high probability) to respond in a manner con-
sistent with the responses of (H, I1, I2). We argue that these “bad” sequences
are hard for any adversary to generate.

The first is if two messages M and M ′ are queried to S1 and the returned
values are such that HK(Î1(M)) = HK(Î1(M ′)) = Y . In this case the adversary
can query Y to S2 and the simulator can at best guess whether to return R(M)
or R(M ′) (which are distinct with high probability). But note that since Î is
an injection, this actually implies that A has found a collision against HK . This
reflects the first term in the bound of the theorem statement.

The second “bad” sequence occurs if A queries S2(Y ), forcing the simulator to
commit to a return value Z, and then later queries S1(M) which returns a value X
such that HK(X) = Y . Since the probability is low that R(M) = Z, there exists
little chance that S answered the original query consistently. But the probabil-
ity that S1(M) returns Y is in fact the probability of choosing a random domain
point X such that HK(X) = Y . Indeed the Δ-regularity of H gives that this can
only happen with low probability. This accounts for the last term in the bound.

The remaining two unexplained terms correspond to birthday-bounds for mov-
ing between random injections and random functions. For a complete proof see
the full version of the paper [31].

4 Insecurity of Other Approaches

Here we give just a brief investigation of several alternative approaches to MCM.
In all cases, either the resulting object is not provably collision-resistant in the
standard model or not provably a PRO in an ideal model.

Using existing Blockcipher-based hash functions. Let E: {0, 1}n ×
{0, 1}n → {0, 1}n be a blockcipher, modeled as ideal. Let f be a 2n-bit to n-bit
compression function. Fix some suitable domain extension transform, for exam-
ple Merkle-Damg̊ard with a prefix-free encoding. That is H(M) = f+(g(M)),
where f+(M1 · · · Mm) is equal to Ym defined recursively by Y0 = IV (some con-
stant) and Yi = f(Yi−1, Mi), and g: {0, 1}∗→({0, 1}n)+ is a prefix-free padding
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function. For simplicity let g(M) simply split M into blocks of n−1 bits (M hav-
ing been appropriately padded), and then appending a zero to each block except
the last and appending a one to the last block. If f is one of the twenty group-1/2
schemes from [5], then H is collision-resistant in the ideal cipher model. More-
over, a recent paper by Chang et al. [11] shows that sixteen of these twenty yield
a PRO H.

However as soon as one leaves the ideal cipher model, H is not provably CR.
For example let E′ be the blockcipher defined as follows:

E′(K, M) =
{

M if K = 0k

E(K, M) otherwise .

where, now, E is no longer ideal. Let f(Yi−1, Mi) = E′(Mi, Yi−1)⊕Yi−1. We can
see that an adversary can trivially find collisions against H built using E′. This
is true even though E′ is a good pseudorandom permutation (the usual standard
model security property of blockciphers) whenever E is also.3

Removing injectivity requirements. If either E1 or E2 are not injective,
then the MCM construction looses its provable collision-resistance. Assuming
they are built from using blockciphers (as we suggest), then one can, in spirit
similar to the counter-example above, construct a collision resistant function H ′

and a good PRP E′ that, when utilized in MCM, would lead to a trivial collisions.
Note that one might imagine replacing E1 and E2 with objects that are not injec-

tive, yet have some other standard model guarantees to ensure provable collision-
resistance in MCM. Short of establishing their collision-resistance, its not clear
what properties could achieve this goal. Additionally, this approach would seem
to violate the separation of design tasks intrinsic to the MCM approach.

Omitting E1 from MCM. If one omits the first “mixing” step E1 of MCM, then
the construction no longer results in a PRO. This result is essentially equivalent
to the Coron et al. insecurity result regarding the composition of a CR and one-
way function H with a random oracle [13], but we state a version of it here for
completeness. Let H = CM[H, I2] be this modified construction for I2 = RIη,η+τ ,
i.e. H(M) = I2(H(M)). Now we show that H is easily differentiable from a true
random oracle R = RFMH ,η+τ . Let A be an adversary that queries it’s first oracle
on a uniformly selected message of length M ∈ MH of some length �. Let the
returned value be C. Now the adversary queries its second oracle (representing
either I2 or a simulator) on HK(C). Let the returned value be C′. If C = C′ then
A returns one, guessing that it’s interacting with the construction. Otherwise it
returns zero, guessing that it’s interacting with the true random oracle. We have
that Pr

[
AH,I2⇒1

]
= 1. On the other hand, Pr

[
AR,S⇒1

]
is bounded by the

advantage of a related adversary in breaking the one-wayness of H .

Allowing E1, E2 to be invertible. Our formalization of PRIOs ensure that
constructions meeting the goal are not invertible. Thus, objects that are invert-

3 Hopwood and Wagner noted (in postings on sci.crypt) that one could exhibit good
PRPs that would make finding collisions in the twenty [5] functions trivial.
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ible do not meet the goal. It remains an open question whether MCM is, in fact,
secure under easy-to-invert mixing steps.

5 Secure Mixing Steps: The TE Construction

Pseudorandom injective oracles. We now turn to showing the feasibility of
instantiating the mixing steps E1 and E2 starting from blockciphers. We note that
our eventual construction also works starting from a suitable fixed-input-length
random oracle. This would have slight theoretical benefits because of a lack of
implication between the ROM and ICM [17]. However, one might want to utilize
blockciphers and the proofs are only rendered more complex when considering
invertible components, thus we stick to the former.

We specify a construction that is a PRIO, i.e. indifferentiable from a random
injection. Under the composability guarantees of the indifferentiability frame-
work [23] (though see Section 6), the security of schemes (e.g., MCM) proven
secure while modeling components as ideal injections remains when these ob-
jects are replaced by PRIOs.

At first glance the notion of a PRIO might appear to be essentially equivalent
to that of a pseudorandom oracle. The distinction is analogous to the difference
between PRPs and PRFs. Indeed, random injections and random functions behave
similarly up to a birthday-bound, which implies that any PRIO is a good PRO and
vice versa. But the more important (and subtle) concern is that the closeness of the
definitions might lead one to the conclusion that there are trivial constructions for
our mixing steps, utilizing any PRO. However, this would be entirely insufficient
for our application because, while a PRO appears injective with high probability,
it is not necessarily injective by construction. Once we step outside of idealized
models we would then have a standard model object that does not suffice for the
collision-resistance guarantee of Section 3. So for clarity of exposition and analysis,
we found it useful to draw a distinction between the two objects.

Building a PRIO that is injective by construction from a blockcipher (modeled
as ideal) proves a challenging task. Our object must be publically computable,
so no secret keys are allowed. A minimum intuitive security requirement for the
object is that the outputs resulting from applying it to two messages that differ
in a single bit must appear to have been chosen independently at random, even
when adversaries have direct access to the underlying blockcipher. This rules
out the straightforward use of existing blockcipher modes of operation, such as
CBC, with a public key and fixed IV or even the more complex variable-length
enciphering schemes (e.g. [21, 20, 30, 19]).

The TE construction. Our construction utilizes two blockciphers and a
trapdoor one-way permutation. Note that in the ideal cipher model one can eas-
ily derive two ciphers from a single cipher Ê at the cost of one bit of keying
material: E(K, M) ≡ Ê(1 || K, M) and E′(K, M) ≡ Ê(0 || K, M). For sim-
plicity then we assume access to two ciphers E: {0, 1}k × {0, 1}n→{0, 1}n and
E′: {0, 1}k × {0, 1}n→{0, 1}n. The cipher E will be used in a blockcipher mode
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Algorithm E(M):
T ← F(M)
M1M2 · · · Mm

n← M
For i = 1 to m do

Yi ← E(T, i) ⊕ Mi

Y0 ← f(T )
Ret Y0 || Y1 || · · · || Ym

Algorithm F(M):

M1M2 · · · Ml
n← PadPF(M)

X0 ← IV 1
For i = 1 to l do

Xi ← E′(Mi, Xi−1) ⊕ Xi−1
Ret Xl

F

M1

E + +E +E
T T T

<1> <2> <3>

f

M2 M3

Y0 Y1 Y2 Y3

Fig. 2. (Left) Algorithm E = TE[E, F , f ] and the description of function F . (Right) A
diagram of E applied to a message M for which |M | = 3n.

much like CTR mode encryption. The cipher E′ will be utilized to build a func-
tion F for generating tags that will be (with high probability) unique to each
input message. A message’s tag then serves as the key for the CTR-mode-like en-
ciphering step. In fact our function F will realize a blockcipher-based construc-
tion of a pseudorandom oracle, originally suggested in [13] and proven secure
in [11]. Finally, a trapdoor one-way permutation f is applied to the tag value,
the result being the first portion of the output. This step ensures the injectivity
of the construction, while the one-wayness “hides” the tag. We will require the
trapdoor property in the proof.

Formally, we define the injection E = TE[E, F , f ] by the algorithms in
Figure 2. The padding function PadPF: {0, 1}∗→({0, 1}n)+ is any prefix-free
encoding function: for any two messages M, M ′ ∈ {0, 1}∗ with |M | �= |M ′| the
string PadPF(M) is not a prefix of PadPF(M ′). (Such functions are simple, one
example is to unambiguously pad M to sequence of n − 1 bit blocks. Then ap-
pend a zero to all the blocks except the last, to which a one is appended.) The
domain of E is M = {0, 1}≤L′

where L′ = n ·2128. It maps a string X to a string
of length |X | + k.
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The security of TE. To analyze the security of TE, we start by treating
the function F as a random oracle. This is justified by the proof that F is a
PRO, found in [11], and the composability guarantees of the indifferentiability
framework established in [23]. Thus from now on F = RFM,n. We overload our
notation to define TE in terms of idealized components. Let E be an ideal cipher,
i.e. E

$← BC(k, n), let F = RFM,n, and let TGen be the trusted setup oracle
described in Section 2. Now let E = TE[E, F , TGen] be the ITM that follows
Algorithm E of Figure 2 except it utilizes TGen to get f initially and queries E
and F oracles where appropriate. The next theorem captures the main result of
this section.

Theorem 3. Let E: {0, 1}k×{0, 1}n → {0, 1}n be an ideal cipher, F = RFM,k,
and TGen be the oracle described above. Let E = TE[E, F , TGen]. Let A be an
adversary that asks at most (q1, q2, q3, q4, 1) oracle queries, each of length at most
μ bits, and runs in time at most t. Then there exists an adversary C such that

Advprio
E,S (A) ≤ q1Advowf

F
(C) +

(q1σ + q2 + q3)2

2n
+

q2
1 − q1

2k+1

where σ = �μ/n� and S, the simulator defined in Figure 3, runs in time at most
tS ≤ c(μ+q2q4) for some absolute constant c and makes qS = q4 queries. Adver-
sary C runs in time t′ ≤ t+tS+(q2+q4)Timef +(q1+q2+q4) log(q1+q2+q4)+c′μ
for some absolute constant c′.

A proof of the theorem is provided in the full version of the paper [31], here
we just provide a brief proof sketch. An adversary is given either the oracles
(E , E, D, F , TGen) or the oracles (I, SE , SD, SF , STGen). Recall that D is the
oracle implementing the inverse of E. Intuitively the structure of TE ensures
that an adversary, attempting to discover information about the tag and via it
the random pad created for some message M , must reveal M to the simulator
(by querying the fourth oracle). Knowing M , the simulator can ‘program’ the
random pad to be consistent with output of the ideal injection I.

The simulator will fail if either of two events occurs. The first event corre-
sponds to when two tags collide in the course of simulating the construction. If
this happens the CTR mode must generate the same pad, and no longer hides
relationships between input and output bits. Such an event will occur with low
probability because F is a RO. The second kind of event is if the adversary infers
a tag value without utilizing its fourth oracle (F or SF). If it can do so, then
it can compute the pad using the second oracle (E or SE) before the simulator
knows the message the tag corresponds to. This event should happen with low
probability because it requires the adversary inverts f on some image returned
as the first k bits of a query to the first oracle. We can bound the probability
of A inverting f on some point in terms of its ability to invert on a particular
point (hence the q1Advowf

F
(C) term). Since neither event occurs with high prob-

ability, we achieve a bound on the adversary’s ability to differentiate the two
sets of oracles.

Discussion. One might wonder if we can dispense with the one way permutation.
In fact it is requisite: omitting it would result in a construction easily differentiable
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procedure SE(K, C):
If ∃j s.t. Γ j = K and C ≤ |M j |/n then

Ret M j
C ⊕ Y j

C+1

Ret Y
$← {0, 1}n

procedure SD(K, Y )
Return D

$← {0, 1}n

procedure SF (M)
j ← j + 1; M j ← M
Y j

0 || Ỹ j ← I(M j)
Γ j ← f−1(Y j

0 )
Ret Γ j

procedure STGen()
(f, f−1) $← F(1k)
Return f

Fig. 3. The simulator S used in proof of Theorem 3. Initially j = 0.

from a random injective oracle. An adversary could simply query its first oracle on
a random message M1, receiving T || Y1. Then the adversary could query its third
oracle (either D or SD) on (T, Y1). At this point the simulator has no knowledge
about M1 and will therefore only respond correctly with low probability.

The TE construction is a proof-of-concept: it is the first object to achieve our
new goal of being simultaneously constructively injective and indifferentiable
from a random injection. On the other hand it has several drawbacks when
considering it for practical use. It is length-increasing (outputs are larger than
the inputs by at least the number of key bits of the underlying blockcipher). This
means that when utilized in MCM the output hash values will be larger compared
to the outputs of the provably CR function H . Further, the construction requires
two passes over the data and the application of a trapdoor permutation. In
settings where speed is not essential (e.g., contract signing), the extra expense of
using TE over that already incurred by hashing with a standard-model, provably
collision-resistant function H might not be prohibitive. All this said, the TE
construction does show that the MCM approach is feasible. We hope that future
research will surface improvements.

6 Composability Limitations and Open Problems

Recall that the key benefit of indifferentiability results is the guarantee of com-
posability, as discussed in depth in [23]. For example, a cryptographic scheme
E proven secure when utilizing a (monolithic) random oracle R remains secure
if the random oracle is replaced by a PRO construction C. When we say “re-
mains secure” we mean that the existence of an adversary breaking the security
of ER implies the existence of an adversary that breaks the security of EC . This
means we can safely argue about the security of EC in two steps: show that C is
indifferentiable from R and then that ER is secure. Enabling this approach is a
significant benefit of simulation-based definitions (the UC framework is another
example [8]). Our results also allow for secure composition, but with important
(and perhaps subtle) qualifications.
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First, we note that both Theorem 2 and Theorem 3 differ from previous in-
differentiability results because they are complexity-theoretic in nature. Specifi-
cally, the indifferentiability of MCM from a random oracle (Theorem 2) relies on
an adversary’s inability to find collisions under H . The indifferentiability of TE
from a random injection (Theorem 3) relies on an adversary’s inability to in-
vert the trapdoor permutation f . We must bound the computational power of
the adversary in both results, since an unbounded adversary can always find
collisions against H or invert f . This means that EMCM, for example, is secure
only against computationally-bounded adversaries, even if ER is information-
theoretically secure. This is a problem for random-oracle-based constructions E
that require information-theoretic security (see, e.g. [7]).

Second, Theorem 3 relies on a simulator that knows the trapdoor of the one-
way permutation (i.e., it gets to control generation of the permutation). Effec-
tively then, instantiating TE requires a trusted party to publish a description
of f , which can be considered a common reference string (CRS). We allow the
simulator to choose the CRS in the proof. Recent results by Pass and Canetti et
al. [6,9] call into question the (wide) use of such powerful simulators, in that com-
posability of some security properties might be lost. For example, Pass discusses
how deniability of non-interactive zero-knowledge proofs (the prover can assert
that he never even proved a statement) does not hold if the proof relies on the
zero-knowledge simulator choosing the CRS [6]. Indeed interpreting the compos-
ability theorem for the indifferentiability framework [23, Thm. 1] in the context
of TGen implies that some security properties (e.g., deniability) of constructions
using TE will not hold in settings where other parties are allowed to know f .

These subtle nuances of our results lead to a host of provocative open ques-
tions. What other properties, beyond deniability, are compromised by the weak
composability guarantees of TE? Is it (im)possible to build PRIOs without re-
lying on such strong simulators? Can we strengthen the MCM security result,
or find other constructions, that simultaneously are provably CR and yet have
information-theoretic indifferentiability from a RO?
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Abstract. We construct a new group signature scheme using bilinear groups. The
group signature scheme is practical, both keys and group signatures consist of a
constant number of group elements, and the scheme permits dynamic enrollment
of new members. The scheme satisfies strong security requirements, in particular
providing protection against key exposures and not relying on random oracles in
the security proof.

Keywords: Group signatures, certified signatures, bilinear groups.

1 Introduction

Group signatures make it possible for a member of a group to sign messages anony-
mously so that outsiders and other group members cannot see which member signed
the message. The group is controlled by a group manager that handles enrollment of
members and also has the ability to identify the signer of a message. Group signatures
are useful in contexts where it is desirable to preserve the signer’s privacy, yet in case
of abuse we want some authorities to have the means of identifying her.

Group signatures were introduced by Chaum and van Heyst [CvH91] and have been
the subject of much research. Most of the proposed group signatures have been proven
secure in the random oracle model [BR93] and now quite efficient schemes exist in the
random oracle model [ACJT00, BBS04, CL04, CG04, FI05, KY05]. The random oracle
model has been the subject of criticism though. Canetti, Goldreich and Halevi [CGH98]
demonstrated the existence of an insecure signature scheme that has a security proof in
the random oracle model. Other works showing weaknesses of the random oracle model
are [Nie02, GK03, BBP04, CGH04].

There are a few group signature schemes that avoid the random oracle model. Bel-
lare, Micciancio and Warinschi [BMW03] suggested security definitions for group sig-
natures and offered a construction based on trapdoor permutations. Their security model
assumed the group was static and all members were given their honestly generated keys
right away. Bellare, Shi and Zhang [BSZ05] strengthened the security model to include
dynamic enrollment of members. This security model also separated the group man-
ager’s role into two parts: issuer and opener. The issuer is responsible for enrolling
members, but cannot trace who has signed a group signature. The opener on the other
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c© International Association for Cryptology Research 2007
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hand cannot enroll members, but can open a group signature to see who signed it. More-
over, it was required that this opener should be able to prove that said member made
the group signature to avoid false accusations of members. [BSZ05] demonstrated that
trapdoor permutations suffice also for constructing group signatures in this model. Both
of these schemes use general and complicated primitives and are very inefficient. Groth
[Gro06] used bilinear groups to construct a group signature scheme in the BSZ-model,
with nice asymptotic performance, where each group signature consists of a constant
number of group elements. Still the constant is enormous and a group signature consists
of thousands or perhaps even millions of group elements.

There are also a few practical group signature schemes with security proofs in the
standard model. Ateniese, Camenisch, Hohenberger and de Medeiros [ACHdM05] give
a highly efficient group signature scheme, where each group signature consists of 8
group elements in prime order bilinear groups. This scheme is secure against a non-
adaptive adversary that never gets to see private keys of honest members. If a member’s
key is exposed, however, it is easy to identify all group signatures she has made, so their
scheme is not secure in the BMW/BSZ-models.

Boyen and Waters [BW06, BW07] suggest group signatures that are secure against
key exposure attacks. Their constructions are secure in a restricted version of the BMW-
model where the anonymity of the members relies on the adversary not being able to
see any openings of group signatures. In the latter scheme [BW07], the group signatures
consist of 6 group elements in a composite order bilinear group. The public key in
[BW07] grows logarithmically in the size of the message space though and will for
practical purposes typically contain a couple of hundred group elements.

OUR CONTRIBUTION. We propose a new group signature scheme based on prime order
bilinear groups. All parts of the group signature scheme, including the group public key
and the group signatures, consist of a constant number of group elements. The constants
are reasonable for practical purposes; for instance using 256-bit prime order bilinear
groups, a group public key would be less than 1kB and a group signature less than 2kB.

We prove under some well-known assumptions, the strong Diffie-Hellman assump-
tion [BB04] and the decisional linear assumption [BBS04], as well as a new assumption
that the scheme is secure in the BSZ-model. This means the scheme permits dynamic
enrollment of members, preserves anonymity of a group signature even if the adversary
can see arbitrary key exposures or arbitrary openings of other group signatures, and
separates the role of the issuer and opener such that they can operate independently.

TECHNIQUE. We use in our group signature scheme a certified signature scheme. Cer-
tified signatures, the notion stemming from Boldyreva, Fischlin, Palacio and Warinschi,
allow a user to pick keys for a signature scheme and use them to sign messages. The
user can ask a certification authority to certify her public verification key for the sig-
nature scheme. The verification algorithm checks both the certificate and the signature
and accepts if both of them are acceptable. A trivial way to build a certified signature
schemes is just to let the certification authority output a standard signature on the user’s
public verification key. Non-trivial solutions such as for instance using an aggregate
signature scheme [BGLS03] also exist. Certified signature schemes may be more effi-
cient though since the certificate does not have to be unforgeable. In a certified signature
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scheme, the requirement is just that it is infeasible to forge a certificate together with a
valid signature. We refer to Section 3 for a formal definition.

In our group signature scheme, enrolling members will create a key for a signature
scheme and ask the issuer to issue a certificate on their verification key. To make a
group signature, the member will make a certified signature. To be anonymous she
will encrypt the certified signature and use non-interactive witness-indistinguishable
and non-interactive zero-knowledge proofs to demonstrate that the ciphertext contains
a valid certified signature.

In order to have efficient non-interactive proofs, it is essential to preserve as much
of the bilinear group structure of the encrypted certified signature as possible. In partic-
ular, using cryptographic hash-functions or using group elements from one part of the
certified signature as exponents in other parts of the certified signature does not work.
We will combine the signature scheme of Boneh and Boyen [BB04] with the signature
scheme of Zhou and Lin [ZL06] to get a certified signature scheme that is both efficient
and relies only on generic group operations.

2 Setup

Let G be a probabilistic polynomial time algorithm that generates (p, G, GT , e, g) ←
G(1k) such that:

– p is a k-bit prime.
– G, GT are groups of order p.
– g is a randomly chosen generator of G.
– e is a non-degenerate bilinear map, i.e., e(g, g) is a generator of GT and for all

a, b ∈ Zp we have e(ga, gb) = e(g, g)ab.
– Group operations, evaluation of the bilinear map, and membership of G, GT are all

efficiently computable.

We will now present some of the security assumptions that will be used in the paper.

DLIN ASSUMPTION. The decisional linear assumption was introduced by Boneh,
Boyen and Shacham [BBS04]. The DLIN assumption holds for G, when it is hard
to distinguish for randomly chosen group elements and exponents (f, g, h, fr, gs, ht)
whether t = r + s or t is random.

q-SDH ASSUMPTION. The strong Diffie-Hellman assumption was introduced by
Boneh and Boyen [BB04]. The q-SDH assumption holds for G, when it is hard to find
a pair (m, g

1
1+x ) ∈ Zp × G when given g, gx, gx2

, . . . , gxq(k)
as input. In the paper, it

suffices to have q being a polynomial.

q-U ASSUMPTION. We will now define the unfakeability assumption. The q-U assump-
tion holds for G if for any non-uniform polynomial time adversary A we have:

Pr
[
(p, G, GT , e, g) ← G(1k) ; x1, r1, . . . , xq(k), rq(k) ← Zp ;

f, h, z ← G ; T := e(f, z) ; ai := f ri ; bi := hrigxiriz ;
(V, A, B, m, S) ← A(p, G, GT , e, g, f, h, T, x1, a1, b1, . . . , xq(k), aq(k), bq(k)) :

V /∈ {gx1, . . . , gxq(k)} ∧ e(A, hV )e(f, B) = T ∧ e(S, V gm) = e(g, g)
]

≈ 0.
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The q-U assumption is implied by a stronger assumption from Zhou and Lin [ZL06]
that is similar in nature. A heuristic argument for the assumption is that it holds in the
generic group model; see the full paper for a proof.

3 Certified Signatures

Typically, using a signature in a public key infrastructure works like this: A user that
wants to set up a signature scheme, generates a public verification key vk and a secret
signing key sk. She takes the public key to a certification authority that signs vk and
possibly some auxiliary information such as name, e-mail address, etc. We call this the
certificate. Whenever the user wants to sign a message, she sends both the certificate
and the signature to the verifier. The verifier checks that the certification authority has
certified that the user has the public key vk and also checks the user’s signature on the
message.

In the standard way of certifying verification keys described above, the process of is-
suing certificates and verifying certificates is separate from the process of signing mes-
sages and verifying signatures. Boldyreva, Fischlin, Palacio and Warinschi [BFPW07]
show that combining the two processes into one can improve efficiency. As they ob-
serve, we do not need to worry about forgeries of the certificate itself, we only need to
prevent the joint forgery of both the certificate and the signature.

A certified signature scheme [BFPW07], is a combined scheme for signing messages
and producing certificates for the verification keys. We will give a formal definition that
is tailored to our purposes and slightly simpler than the more general definition given
by Boldyreva, Fischlin, Palacio and Warinschi. Formally, a certified signature scheme
consists of the following probabilistic polynomial time algorithms.

Setup: G takes a security parameter as input and outputs a description gk of our setup.
Certification key: CertKey on input gk outputs a pair (ak, ck), respectively a public

authority key and a secret certification key.
Key registration: This is an interactive protocol 〈User, Issuer〉 that generates keys

for the user together with a certificate. User takes gk, ak as input, whereas
Issuer takes gk, ck as input. If successful User outputs a triple (vk, sk, cert),
whereas Issuer outputs (vk, cert). We write ((vk, sk, cert), (vk, cert)) ←
〈User(gk, ak), Issuer(gk, ck)〉 for this process. We call vk the verification key, sk
the signing key and cert the certificate. Either party outputs ⊥ if the other party
deviates from the key registration protocol.

Signature: Sign gets a signing key and a message m as input. It outputs a signature σ.
Verification: Ver takes as input gk, ak, vk, cert, m, σ and outputs 1 if accepting the

certificate and the signature on m. Otherwise it outputs 0.

The certified signature scheme must be correct, unfakeable and unforgeable as defined
below.

Perfect correctness: For all messages m we have

Pr
[
gk ← G(1k) ; (ak, ck) ← CertKey(gk) ;
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((vk, sk, cert), (vk, cert)) ← 〈User(gk, ak), Issuer(gk, ck)〉 ;

σ ← Signsk(m) : Ver(gk, ak, vk, cert, m, σ) = 1
]

= 1.

Unfakeability: We want it to be hard to create a signature with a faked certificate. Only
if the verification key has been generated correctly and been certified by the certi-
fication authority should it be possible to make a certified signature on a message.
For all non-uniform polynomial time adversaries A we require:

Pr
[
gk←G(1k); (ak, ck)←CertKey(gk); (vk, cert, m, σ)←AKeyReg(gk, ak) :

vk /∈ Q and Ver(gk, ak, vk, cert, m, σ) = 1
]

≈ 0,

where KeyReg is an oracle that allows A to sequentially start up new key
registration sessions and lets A act as the user. That is in session i we run
(∗, (vki, certi)) ← 〈A, Issuer(gk, ck)〉 ; Q := Q ∪ {vki} forwarding all mes-
sages to and from A through the oracle.

Existential M -unforgeability: Let M be a stateful non-uniform polynomial time al-
gorithm. We say the certified signature scheme is existentially M -unforgeable if
for all non-uniform polynomial time adversaries A we have:

Pr
[
gk ← G(1k) ; (St1, ak) ← A(gk) ;

((vk, sk, cert), St2) ← 〈User(gk, ak), A(St1)〉 ;
(cert′, m, σ) ← AMessageSign(·)(St2) :

m /∈ Q and Ver(gk, ak, vk, cert′, m, σ) = 1
]

≈ 0,

where MessageSign(·) is an oracle that on input ai runs (mi, hi) ←
M(gk, ai) ; σi ← Signsk(mi) ; Q := Q ∪ {mi} and returns (mi, hi, σi).

Adaptive chosen message attack corresponds to letting M be an algorithm that
on input mi outputs (mi, ε). On the other hand, letting M be an algorithm that
ignores A’s inputs corresponds to a weak chosen message attack, where messages
to be signed by the oracle are chosen without knowledge of vk. In a weak chosen
message attack, the hi’s may contain a history of how the messages were selected.
In this paper, we only need security against weak chosen message attack.

4 A Certified Signature Scheme

We will construct a certified signature scheme from bilinear groups that is existentially
unforgeable under weak chosen message attack. There are two parts of the scheme:
certification and signing. For signing, we will use the Boneh-Boyen signature scheme
that is secure under weak chosen message attack. In their scheme the public key is
v := gx and the secret signing key is x. A signature on message m ∈ Zp \ {x} is

σ = g
1

x+m . It can be verified by checking e(σ, vgm) = e(g, g). Boneh and Boyen
[BB04] proved that this signature scheme is secure against weak chosen message attack
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under the q-SDH assumption. The existential unforgeability of our certified signature
scheme under weak chosen message attack will follow directly from the security of the
Boneh-Boyen signature scheme under weak chosen message attack.

What remains is to specify how to generate the verification key v and how to certify
it. This is a 2-step process, where we first generate a random v = gx such that the issuer
learns v but only the user learns x. In Section 4.1 we describe in detail the properties
we need this key generation protocol to have. In the second step, we use a variation of
the signature scheme of Zhou and Lin [ZL06] to certify v.1

To set up the certified signature scheme, the certification authority picks random
group elements f, h, z ∈ G. The authority key is (f, h, T ) and the secret certification
key is z so T = e(g, z). To certify a Boneh-Boyen key v the authority picks r ← Zp and
sets (a, b) := (f−r, (hv)rz). The certificate is verified by checking e(a, hv)e(f, b) =
T . We remark that this is not a good signature scheme, since given v, a, b it is easy
to create a certificate for v′ := v2h as (a′, b′) := (a

1
2 , b). For certified signatures it

works fine though since we cannot use the faked verification keys to actually sign any
messages. The nice part about the certified signature scheme we have suggested here
is that a certificate consists of only two group elements and is created through the use
of generic group operations. These two properties of the certified signature scheme are
what enable us to construct a practical group signature scheme on top of it.

Setup(1k)
Return gk := (p,G, GT , e, g) ← G(1k)

CertKey(gk)
f, h, z ← G
T := e(f, z)
Return (ak, ck) := ((gk, f, h, T ), (ak, z))

Signsk(m)
If x = −m return ⊥
Else return σ := g

1
x+m

〈User(gk, ak), Issuer(gk, ck)〉
(x, v) ← 〈User(gk), Issuer(gk)〉
r ← Zp

a := f−r

b := (vh)rz
vk := v ; sk := x ; cert := (a, b)
User output: (vk, sk, cert)
Issuer output: (vk, cert)

Ver(gk, ak, vk, cert, m,σ)
Return 1 if

e(a, vh)e(f, b) = T
e(σ, vgm) = e(g, g)

Else return 0

Fig. 1. The certified signature scheme

Theorem 1. The scheme in Figure 1 is a certified signature scheme with perfect
correctness for messages in Zp \ {x}. It is unfakeable under the q-U assumption
and is existentially unforgeable under weak chosen message attack under the q-SDH
assumption.

1 The signature scheme of Zhou and Lin [ZL06] can be used to sign exponents. As they observe,
however, it is sufficient to know v = gx to sign x. In our notation, their scheme computes a
signature on x by setting v = gx and computing the signature (a, b) as a := fr, b := (hv)rz,
where z = hlogf g so T = e(g, h).
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Sketch of proof. Perfect correctness follows from the perfect correctness of the key
generation protocol.

We will now argue that the certified signature scheme is unfakeable. Part of the key
registration protocol is the interactive key generation protocol. We can black-box sim-
ulate the view of the adversarial user in each of these key generation protocols. We
can therefore pick x1, . . . , xq(k) in advance and simulate the key generation such that
the adversarial user i get the signing key xi (or gets no key at all in case it deviates
from the protocol). With this modified key registration, A only sees certificates on
v1 := gx1 , . . . , vq(k) := gxq(k) . These certificates are of the form ai := f−ri and
bi := hrigxiriz. It therefore follows directly from the q-U assumption that it is hard to
come up with a certified signature using a new public verification key.

We will now ague that the certified signature scheme is existentially unforgeable
under weak chosen message attack. By definition th key generation protocol has the
property that it is possible to choose v := gx in advance and black-box simulate the
malicious issuer’s view in a protocol that gives it v as output. Now we are in a situation,
where v is an honestly chosen Boneh-Boyen verification key and A only has access
to a weak chosen message attack. Existential unforgeability of the certified signature
scheme therefore follows from the existential unforgeability of Boneh-Boyen signatures
under weak chosen message attack. �

4.1 Key Generation

In the certified signature scheme, we require that the user generates her signing key
honestly. We will use an interactive protocol between the user and the issuer that gives
the user a uniformly random secret key x ∈ Zp, while the issuer learns v := gx. In
case either party does not follow the protocol or halts prematurely, the other party will
output ⊥. We will now give a more precise definition of the properties the protocol
should have. For notational convenience, define g⊥ = ⊥.

Write (x, v) ← 〈User(gk), Issuer(gk)〉 for running the key generation protocol
between two probabilistic polynomial time interactive Turing machines User, Issuer
on common input gk giving User output x and Issuer output v. We require that the
protocol is correct in the following sense:

Pr
[
gk ← G(1k) ; (x, v) ← 〈User(gk), Issuer(gk)〉 : v = gx

]
= 1.

We require that the view of the issuer, even if malicious, can be simulated. More
precisely, for any δ > 0 and polynomial time Issuer∗ there exists a polynomial time
(in k and the size of the input to Issuer∗) black-box simulator SI , such that for all
non-uniform polynomial time adversaries A we have:

Pr
[
gk ← G(1k) ; y ← A(gk) ; x ← Zp ; v := gx ; (gu, i) ← S

Issuer∗(y)
I (gk, v) :

A(u, i) = 1
]

− Pr
[
gk ← G(1k) ; y ← A(gk) ; (x, i) ← 〈User(gk), Issuer∗(y)〉 :

A(u, i) = 1
]

< k−δ,

where SI outputs gu so u ∈ {⊥, x}.
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We also require that the view of the user, even if malicious, can be simulated. For
any δ > 0 and any polynomial time User∗ there exists a polynomial time (in k and
the size of the input to User∗) black-box simulator SU , such that for all non-uniform
polynomial time adversaries A we have:

Pr
[
gk ← G(1k) ; y ← A(gk) ; x ← Zp ; v := gx ; (u, i) ← S

User∗(y)
U (gk, x) :

A(u, i) = 1
]

− Pr
[
gk ← G(1k) ; y ← A(gk) ; (u, i) ← 〈User∗(y), Issuer(gk)〉 :

A(u, i) = 1
]

< k−δ,

where SU outputs i ∈ {⊥, v}.
There are many ways in which one can construct a key generation protocol with

these properties. One example of a simple 5-move key generation protocol is given in
the full paper.

5 Defining Group Signatures

In a group signature scheme there is a group manager that decides who can join the
group. Once in the group, members can sign messages on behalf of the group. Members’
signatures are anonymous, except to the group manager who can open a signature and
see who signed the message. In some scenarios it is of interest to separate the group
manager into two entities, an issuer who enrolls members and an opener who traces
signers.

We imagine that enrolled member’s when joining have some identifying informa-
tion added to a registry reg. This registry may or may not be publicly accessible. The
specifics of how the registry works are not important, we just require that reg[i] only
contains content both the issuer and user i agrees on. One option could be that the issuer
maintains the registry, but the user has to sign the content of reg[i] for it to be consid-
ered a valid entry. User i stores her corresponding secret key in gsk[i]. The number i
we associate with the user is simply a way to distinguish the users. Without loss of gen-
erality, we will assume users are numbered 1, . . . , n according to the time they joined
or attempted to join.

Key generation: GKg generates (gpk, ik, ok). Here gpk is a group public key, while
ik and ok are respectively the issuer’s and the opener’s secret key.

Join/Issue: This is an interactive protocol between a user and the issuer. If successful,
the user and issuer register a public key vki in reg[i] and the user stores some
corresponding secret signing key information in gsk[i].
[BSZ05] specify that communication between the user and the issuer in this proto-
col should be secret. The Join/Issue protocol in our scheme works when all mes-
sages are sent in clear though. In our scheme, we will assume the issuer joins users
in a sequential manner, but depending on the setup assumptions one is willing to
make, it is easy to substitute the Join/Issue protocol for a concurrent protocol.
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Sign: Group member i can sign a message m as Σ ← Gsig(gpk, gsk[i], m).
Verify: To verify a signature Σ on message m we run GVf(gpk, m, Σ). The signature

is valid if and only if the verification algorithm outputs 1.
Open: The opener has read-access to the registration table reg. We have (i, τ) ←

Open(gpk, ok, reg, m, Σ) gives an opening of a valid signature Σ on message m
pointing to user i. In case the signature points to no member, the opener will assume
the issuer forged the signature and set i := 0. The role of τ is to accompany i �= 0
with a proof that user i did indeed sign the message.

Judge: This algorithm is used to verify that openings are correct. We say the opening
is correct if Judge(gpk, i, reg[i], m, Σ, τ) = 1.

[BSZ05] define four properties that the group signature must satisfy: correctness,
anonymity, traceability and non-frameability. We will here give a quick informal de-
scription of the properties. We refer to [BSZ05] for details and a discussion of how
these security definitions cover and strengthen other security definitions that have ap-
peared in the literature.

Non-frameability: Non-frameability protects the user against being falsely accused of
making a group signature, even if both the issuer and the opener are corrupt.

Traceability: When the issuer is honest and the opening algorithm is applied correctly,
albeit the opener’s key may be exposed, traceability guarantees that a group signa-
ture always can be traced back to a member who made it.

Anonymity: An opener knows who made a particular group signature, but provided
the opener is honest and the opener’s key is kept secret, nobody else should be able
to identify the member. Anonymity gives this guarantee even in an environment
where all users’ keys are exposed and the issuer is corrupt. In the definition, the
adversary is also permitted to ask the opener to open group signatures, except the
group signature where it is trying to guess who signed it.

A weaker variant of anonymity called CPA-anonymity does not permit the adversary
to see openings of other group signatures. The difference between full anonymity and
CPA-anonymity is analogous to the difference between security under chosen ciphertext
attack and chosen plaintext attack for public-key encryption.

6 Tools

To construct our group signature scheme, we will use the certified signature scheme
from Section 4. We will also use several other tools in our construction, namely
collision-free hash functions, non-interactive proofs for bilinear groups, strong one-time
signatures secure against weak chosen message attack and selective-tag weak CCA-
secure cryptosystems.

6.1 Collision-Free Hash-Functions

H is a generator of collision free hash-functions Hash : {0, 1}∗ → {0, 1}�(k) if for all
non-uniform polynomial time adversaries A we have:

Pr
[
Hash ← H(1k) ; x, y ← A(Hash) : Hash(x) = Hash(y)

]
≈ 0.
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We will use a collision-free hash-function to compress messages before signing them.
For this purpose we will require that we can hash down to Zp, so we want to have
2�(k) < p. We remark that collision-free hash-functions can be constructed assuming
the discrete logarithm problem is hard, so the existence of collision-free hash-functions
follows from our assumptions on the bilinear group.

6.2 Strong One-Time Signatures

We will use a one-time signature scheme that is secure against an adversary that has
access to a single weak chosen message attack. We say the one-time signature scheme is
strong, if the adversary can neither forge a signature on a different message nor create a
different signature on the chosen message she already got signed. An obvious candidate
for such a scheme is the Boneh-Boyen signature scheme [BB04], since this signature
scheme is deterministic and hence automatically has the strongness property.

6.3 Non-interactive Proofs for Bilinear Groups

Groth and Sahai [GS07] suggest non-interactive proofs that capture relations for bi-
linear groups. They look at sets of equations in our bilinear group (p, G, GT , e, g) over
variables in G and Zp such as pairing product equations, e.g. e(x1, x2)e(x3, x4) = 1, or
multi-exponentiation equations, e.g. xδ1

1 xδ2
2 = 1. They suggest non-interactive proofs

for demonstrating that a set of equations of the form described above has a solution
x1, . . . , xI ∈ G, δ1, . . . , δJ ∈ Zp so all equations are simultaneously satisfied. Their
proofs are in the common reference string model. There are two types of common ref-
erence strings that yield respectively perfect soundness and perfect witness indistin-
guishability/perfect zero-knowledge. The two types of common reference strings are
computationally indistinguishable and they both give perfect completeness. We now
give some further details.

[GS07] show that there exists four probabilistic polynomial time algorithms
(K, P, V, X), which we call respectively the key generator, the prover, the verifier and
the extractor. The key generator takes (p, G, GT , e, g) as input and outputs a common
reference string crs = (F, H, U, V, W, U ′, V ′, W ′) ∈ G8 as well as an extraction key
xk. Given a set of equations, the prover takes crs and a witness x1, . . . , xI , δ1, . . . , δJ

as input and outputs a proof π. The verifier given crs, a set of equations and π outputs
1 if the proof is valid and else it outputs 0. Finally, the extractor on a valid proof π will
extract x1, . . . , xI ∈ G, in other words it will extract part of the witness.

The proofs of [GS07] have perfect completeness: on a correctly generated CRS and
a correct witness, the prover always outputs a valid proof. They have perfect soundness:
on a correctly generated CRS it is impossible to create a valid proof unless the equations
are simultaneously satisfiable. Further, they have perfect partial knowledge: given xk
the algorithm X can extract x1, . . . , xI from the proof, such that there exists a solution
for the equations that use these x1, . . . , xI .

There exists a simulator S1 that outputs a simulated common reference string crs and
a simulation trapdoor key tk. These simulated common reference strings are computa-
tionally indistinguishable from the common reference strings produced by K assuming
the DLIN problem is hard. On a simulated common reference string, the proofs created
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by the prover are perfectly witness-indistinguishable: if there are many possible wit-
nesses for the equations being satisfiable, the proof π does not reveal anything about
which witness was used by the prover when creating the proof. Further, let us call a set
of equations tractable, if it is possible to find a solution, where x1, . . . , xI are the same
in all equations, but δ1, . . . , δJ are allowed to vary from equation to equation. Tractable
equations have perfect zero-knowledge proofs on simulated reference strings: there ex-
ists a simulator S2 that on a simulated reference string crs and a simulation trapdoor
key tk produces a simulated proof π for the tractable equations being satisfiable. If the
equations are satisfiable, then simulated proofs are perfectly indistinguishable from the
proofs a real prover with a witness would form on a simulated reference string.

It will be useful later in the paper to know some technical details of the con-
struction. The values F, H, U, V, W will be used to commit to the variables x as
(c1, c2, c3) := (F rU t, HsV t, gr+sW tx) for randomly chosen r, s, t ∈ Zp. On a real
common reference string, they are set up so U = FR, V = HS , W = gR+S so
the commitment can be rewritten as (F r+Rt, Hs+St, gr+s+(R+S)tx). The extraction
key is xk := (φ, η) so F = gφ, H = gη. This permits decryption of the commit-
ment as x = c3c

−φ
1 c−η

2 . On the other hand, on a simulation reference string, we use
U = FR, V = HS , W = gT with T �= R +S, which makes the commitment perfectly
hiding.

To commit to a variable δ ∈ Zp using randomness r, s we use the commitment
(d1, d2, d3) := (F r(U ′)δ, Hs(V ′)δ, gr+s(W ′)δ). On a normal common reference
string, we pick U ′ = FR, V ′ = HS , W ′ = gT for T �= R + S. This makes the
commitment perfectly binding. On a simulated common reference string, on the other
hand, we pick U ′ = FR, V ′ = HS , W ′ = gR+S . The simulation trapdoor key is
tk := (R, S), which permits us to trapdoor open a commitment to 0 to any value δ
since (F r, Hs, gr+s) = (F r−Rδ(U ′)δ, Hs−Sδ(V ′)δ, gr+s−(R+S)δ(W ′)δ).

6.4 Selective-Tag Weakly CCA-Secure Encryption

We will use a tag-based cryptosystem [MRY04] due to Kiltz [Kil06]. The public key
consists of random non-trivial elements pk = (F, H, K, L) ∈ G4 and the secret key is
sk = (φ, η) so F = gφ, H = gη. We encrypt m ∈ G using tag t ∈ Zp and randomness
r, s ∈ Zp as (y1, . . . , y5) := (F r, Hs, gr+sm, (gtK)r, (gtL)s). The validity of the
ciphertext is publicly verifiable, since valid ciphertexts have e(F, y4) = e(y1, g

tK) and
e(H, y5) = e(y2, g

tL). Decryption can be done by computing m = y3y
−φ
1 y−η

2 . In the
group signature scheme, we will set up the cryptosystem with the same F, H as in the
common reference string of the non-interactive proofs.

[Kil06] shows that under the DLIN assumption this cryptosystem is selective-tag
weakly CCA-secure. By this we mean that it is indistinguishable which message we
encrypted under a tag t, even when we have access to a decryption oracle that decrypts
ciphertexts under any other tag. Formally, for all non-uniform polynomial time adver-
saries A we have:

Pr
[
gk ← G(1k) ; t ← A(gk) ; (pk, sk) ← K(gk) ; (m0, m1) ← ADsk(·,·)(pk) ;

y ← Epk(t, m0) : ADsk(·,·)(y) = 1
]
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≈ Pr
[
gk ← G(1k) ; t ← A(gk) ; (pk, sk) ← K(gk) ; (m0, m1) ← ADsk(·,·)(pk) ;

y ← Epk(t, m1) : ADsk(·,·)(y) = 1
]
,

where the oracle returns Dsk(ti, yi) if ti �= t.

7 The Group Signature Scheme

The core of our group signature scheme is the certified signature scheme from Section 4.
The issuer acts as a certification authority and whenever a new member i wants to enroll,
she needs to create a verification key vi for the Boneh-Boyen signature scheme and get
a certificate from the issuer. In the group signature scheme, the verification key and the
corresponding secret key is generated with an interactive key generation protocol as
defined in Section 4.1. This way both user and issuer know that vi is selected with the
correct distribution and that the user holds the corresponding secret key xi.

When making a group signature, the member will generate a key pair (vksots, sksots)
for a strong one-time signature that is secure under weak chosen message attack. She
will sign the message using sksots and use xi to sign vksots. The combination of cer-
tified signatures and strong one-time signatures is what makes it hard to forge group
signatures.

Group signatures have to be anonymous and therefore we cannot reveal the
certified signature. Instead, a group signature will include a non-interactive witness-
indistinguishable (NIWI) proof of knowledge of a certified signature on vksots.
Witness-indistinguishability implies that a group signature does not reveal which group
member has signed the message. The opener will hold the extraction key for the NIWI
proof of knowledge and will be able to extract the certified signature. Whenever an
opening is called for, she extracts the signature on vksots, which points to the mem-
ber who signed the message. In case no member has certified signed vksots, the opener
points to the issuer since the certified signature has a valid certificate.

The ideas above suffice to construct a CPA-anonymous group signature scheme. To
get anonymity even when the adversary has access to the Open oracle, we will encrypt
the signature on vksots with Kiltz’ cryptosystem using vksots as a tag. We will also give
an NIZK proof that the encrypted signature is the same as the one used in the NIWI
proof of knowledge.

We present the full group signature scheme in Figure 2. Let us explain the non-
interactive proofs further. The NIWI proof of knowledge, will demonstrate that there
exists a certified signature (a, b, v, σ) on vksots so

e(a, hv)e(f, b) = T ∧ e(σ, vgHash(vksots)) = e(g, g).

In the terminology of [GS07], these are two pairing product equations over three vari-
ables b, v, σ. The last element a will be public, since we can rerandomize the certificate
such that a does not identify the member. [GS07] gives us an NIWI proof of knowledge
for these two equations being simultaneously satisfiable that consists of 27 group ele-
ments. This proof consists of three commitments to respectively b, v, σ, which consist
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of 3 group elements each, and two proofs for the committed values satisfying the two
equations consisting of 9 group elements each.

In the NIZK proof we have a ciphertext y under tag Hash(vksots) and a commitment
c to σ from the NIWI proof of knowledge. We wish to prove that the plaintext of y and
the committed value in c are the same. The ciphertext is of the form (y1, . . . , y5) =
(F ry , Hsy , gry+sy σ, (gHash(vksots)K)ry , (gHash(vksots)L)sy) and the commitment is of
the form (c1, c2, c3) = (F rcU t, HscV t, grc+scW tσ). Setting r := rc−ry, s := sc−sy

we have (c1y
−1
1 , c2y

−1
2 , c3y

−1
3 ) = (F rU t, HsV t, gr+sW t). On the other hand, if the

plaintext and the committed value are different, then no such r, s, t exist. Proving that
the plaintext and the committed value are the same, therefore corresponds to proving
the simultaneous satisfiability of the following equations over φ, r, s, t ∈ Zp:

φ = 1 ∧ (c−1
1 y1)φF rU t = 1 ∧ (c−1

2 y2)φHsV t = 1 ∧ (c−1
3 y3)φgr+sW t.

This set is tractable, i.e., if we allow φ to take different values in the equations, then
there is a trivial solution φ = 1 in the first equation and φ = r = s = t = 0 in the
other three equations. Since the set of equations is tractable, there is an NIZK proof for
the 4 equations being simultaneously satisfiable. The proof consists of commitments to
φ, r, s, t, but since the first equation is straightforward we can simply use (U ′, V ′, W ′)
as the commitment to φ, which makes it easy to verify that the first equation holds. The
three commitments to r, s, t each consist of 3 group elements. The three last equations
are multi-exponentiations of constants and using the proof of [GS07] each equation
costs 2 group elements to prove. The NIZK proof therefore costs a total of 15 group
elements.

Theorem 2. The scheme in Figure 2 is a group signature scheme with perfect
correctness. Under the DLIN, q-SDH and q-U assumption and assuming the strong
one-time signature scheme is secure against weak chosen message attack and the hash-
function is collision resistant, the group signature has anonymity, traceability and non-
frameability.

Sketch of proof. Perfect correctness follows by inspection and the fact that the con-
stituent protocols have perfect correctness and perfect completeness. We will sketch a
proof that the group signature is secure, we refer to the full paper for more details.

To argue anonymity we consider a situation where the issuer may be corrupt and
the members’ keys are exposed. Since the adversary controls the issuer, she can let
both corrupt users and honest users join the group. She can also ask the opener to open
arbitrary valid group signatures. At some point she will choose two honest members
and a message and get a group signature from one of the members. We want to show
that she cannot tell which of the honest members made the group signature, as long as
she does not ask the opener to open the challenge group signature.

The NIZK proof implies that the ciphertext y contains the same Boneh-Boyen sig-
nature σ as the NIWI proof of knowledge. The opener can therefore use the decryption
key for the tag-based cryptosystem to track down the user instead of extracting it from
the NIWI proof of knowledge. This means we do not need the extraction key for the
NIWI proof, so we can switch to using a common reference string that gives perfect
witness-indistinguishability. The only information about the member now resides in the
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GKg(1k)
gk ← G(1k) ; Hash ← H(1k)
((f, h, T ), z) ← CertKey(gk)
(crs, xk) ← KNI(gk) ; K, L ← G
(F, H, the rest) ← Parse(crs) ; pk := (F, H,K, L)
(gpk, ik, ok) := ((gk, Hash, f, h, T, crs, pk), z, xk)

Join/Issue(User i : gpk , Issuer : gpk, ik)
((vi, xi, ai, bi), (vi, ai, bi)) ← 〈User, Issuer〉
User: If e(ai, hvi)e(f, bi) = T set

reg[i] := vi ; gsk[i] := (xi, ai, bi)

GSig(gpk, gsk[i], m)
(vksots, sksots) ← KeyGensots(1

k)
(Repeat until Hash(vksots) �= −xi)

ρ ← Zn ; a := aif
−ρ ; b := bi(hvi)ρ

σ := g
1

xi+Hash(vksots)

π ← PNIWI(crs, (gpk, a, Hash(vksots)), (b, vi, σ))
y ← Epk(Hash(vksots), vi)
ψ ← PNIZK(crs, (gpk, y, π), (r, s, t))
σsots ← Signsksots

(vksots, m, a, π, y, ψ)
Return Σ := (vksots, a, π, y, ψ, σsots)

GVf(gpk,m, Σ)
Return 1 if these verifications pass:
Vervksots((vksots, m, a, π, y, ψ), σsots)
VNIWI(crs, (gpk, a, Hash(vksots)), π)
VNIZK(crs, (gpk, π, y), ψ)
ValidCiphertext(pk, Hash(vksots), y)
Else return 0

Open(gpk, ok, m,Σ)
(b, v, σ) ← Xxk(crs,

(gpk, a, Hash(vksots)), π)
Return (i, σ) if there is i so v = vi

Else return (0, σ)

Judge(gpk, i, reg[i],m, Σ, σ)
Return 1 if
i �= 0 ∧ e(σ, vig

Hash(vksots)) = e(g, g)
Else return 0

Fig. 2. The group signature scheme

ciphertext. The existential unforgeability of the one-time signature under weak chosen
message attack and the collision-freeness of the hash-function make it infeasible for the
adversary to query the opener with a valid group signature that recycles vksots from
the challenge or that collides with Hash(vksots). Since Hash(vksots) is the tag for the
cryptosystem and is never recycled in a query to the opener, the ciphertext does not
reveal which member made the group signature.

We have to argue that a user cannot be framed. We consider an unfriendly environ-
ment where both the issuer and the opener are corrupt. They are trying to come up with
a proof that the user signed a message, a proof that consists of a Boneh-Boyen signature.
When joining the group, the user and the issuer engage in a key registration protocol.
This protocol gives the user a uniformly random x and a Boneh-Boyen verification key
v = gx, without the issuer learning x. Even if the user makes group signatures on arbi-
trary messages, this just corresponds to signing randomly chosen verification keys for
the strong one-time signature scheme. The weak chosen message attack security of the
Boneh-Boyen signature scheme is therefore sufficient to guarantee that the adversary
cannot falsely accuse the user of having signed a message that she did not sign.

Finally, we consider an honest issuer that keeps her issuer key secret and an honest
opener with an exposed opener key. We have to argue that a valid group signature can
always be traced back to a member of the group. By the perfect extractability of the
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NIWI proof of knowledge, we can extract a valid certified signature on Hash(vksots)
from the NIWI proof π. The key registration protocol guarantees that all members have
correctly generated signing keys. The unfakeability of the certified signature scheme
therefore implies that a member has made the group signature. The Boneh-Boyen
signature σ is sufficient to trace this member, since it matches a unique verification
key vi. �

EFFICIENCY. If we instantiate the strong one-time signature with the Boneh-Boyen
signature scheme a verification key is one group element and a one-time signature is
also one group element. We make the element a public. The NIWI proof of knowledge
consists of 27 group elements. The ciphertext consists of 5 group elements. The NIZK
proof consists of 15 group elements. The total size of a group signature is therefore 50
group elements in G. This is of course much better than the many thousand elements
required for a group signature in [Gro06].

In case CPA-anonymity is sufficient, we can consider a lighter version of our group
signature, where we omit the ciphertext y and the NIZK proof ψ. This CPA-anonymous
group signature scheme would consist of 30 group elements. We observe that regular
anonymity implies that the group signature is strong, i.e., even when seeing a message
m and a group signature Σ on it, it is not possible to create a different group signature
Σ′ on m such that it still points to the same member. In CPA-anonymity, however, we
do not give the adversary access to an opening oracle and thus mauling signatures is
no longer a problem. If we do not care about the group signature being strong, we do
not need the strong one-time signature key and we can simply sign Hash(m) instead
of Hash(vksots). This reduces the size of the group signatures further to 28 group ele-
ments. In comparison, the CPA-anonymous group signature scheme of [BW07] consists
of 6 group elements in a composite order group. Since composite order groups rely on
the hardness of factoring, these groups are very large and our CPA-anonymous group
signatures are therefore comparable in size for practical parameters, perhaps even a bit
smaller. However, our CPA-anonymous group signature scheme still supports dynamic
enrollment of members and has a group public key gpk consisting of a constant number
of group elements.

KEY GENERATION. Since the [BSZ05]-model assumes a trusted key generator it is
worth considering how the key generation should be carried out in practice. The trust in
our scheme relies on the bilinear group (p, G, GT , e, g) being generated so the crypto-
graphic assumptions hold and it relies on the hash-function being collision-free. We re-
mark that an advantage of our scheme is that we work over prime order bilinear groups,
so it may be possible to use a uniform random string to set up (p, G, GT , e, g). Also,
since the trust is based on a very elementary setup, a bilinear group and a hash-function,
it is possible that suitable public standards can be found. One could for instance use
SHA-256 as the hash-function.

The non-frameability of the user relies only on the collision-freeness of the hash-
function and the cryptographic assumptions in (p, G, GT , e, g). The rest of the group
public key gpk can be generated jointly by the issuer and the opener. The issuer gen-
erates the authority key for the certified signature scheme. The opener generates crs
and pk, anonymity follows from the opener generating these keys correctly. Since the
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opener can break anonymity anyway, it is quite reasonable to trust the opener with pro-
tecting anonymity. The opener will have to make a zero-knowledge proof of knowledge
of the corresponding extraction key to the issuer, since the security proof for traceability
relies on the opener being able to actually extract a signature from the NIWI proof of
knowledge.
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Abstract. We present group encryption, a new cryptographic primitive
which is the encryption analogue of a group signature. It possesses similar
verifiability, security and privacy properties, but whereas a group signa-
ture is useful whenever we need to conceal the source (signer) within a
group of legitimate users, a group encryption is useful whenever we need
to conceal a recipient (decryptor) within a group of legitimate receivers.

We introduce and model the new primitive and present sufficient as
well as necessary conditions for its generic implementation. We then de-
velop an efficient novel number theoretic construction for group encryp-
tion of discrete logarithms whose complexity is independent of the group
size. As part of achieving this we construct a new public-key encryp-
tion for discrete logarithms that satisfies CCA2-key-privacy and CCA2-
security in the standard model (this gives the first Pailler-based system
with the above two properties proven in the standard model).

Applications of group encryption include settings where a user wishes
to hide her preferred trusted third party or even impose a hidden hi-
erarchy of trusted parties while being required to assure well-formed
ciphertexts, as well as oblivious storage settings where the set of retriev-
ers need to be verifiable but the storage distribution should be oblivious
to the server.

1 Introduction

Group signatures were introduced in [22] and further developed in a line of works,
e.g., [23,20,17,18,11,36,4,3,14,6,33,8,16,7,34,2,43,9,35,30]. In a nutshell a group
signature allows a registered member of a PKI (a.k.a. a group of registered users)
to issue a signature on behalf of the group so that the issuer’s identity is assured
to be valid but is hidden from the verifier. After its introduction, the primitive
has found numerous applications.

In this work we introduce a novel cryptographic primitive that is the en-
cryption analogue of a group signature; we call it group encryption (not to be
confused with group-oriented cryptography as in [26,12], which is essentially
threshold cryptosystems). A group encryption scheme allows a sender to pre-
pare a ciphertext and convince a verifier that it can be decrypted by a member
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of a given PKI group. As in group signature, in a group encryption there can be
an opening authority that can, reveal the identity of the group member who is
the recipient of the ciphertext when the appropriate circumstances are triggered.
Note that group encryption provides “receiver anonymity” in the same way that
group signature provides “sender anonymity.” Nevertheless, this primitive was
never considered in the group-signature literature before, even though public-key
encryption and signatures are typically dual primitives that have been developed
in parallel in many other settings.

A Motivating Typical Scenario: In many protocols that attempt to maintain
privacy/ anonymity and employ trusted parties, it has been often naturally ad-
vocated as a flexible service to allow a user to choose its recipient trustee (e.g., a
trusted third party for conditionally opening the ciphertext) among a set of avail-
able authorized parties. However, the choice of a third party, while increasing flex-
ibility, might also reveal some preference of the user, thus reducing privacy. Group
encryption is motivated by such applications. As observed by Chaum [21] the fact
that the trustee is hidden within a large set of trusted parties makes attempts to
bribe officials harder, thus contributing to secrecy of individuals as well.

Let us investigate whether it is possible to implement the above typical sce-
nario by employing existing primitives. The notion of key-privacy was introduced
in [5] (also [31]) who showed that there exist encryption schemes where it is im-
possible for an adversary to distinguish what public-key has been used for the
message encryption. If we attempt to use these encryption schemes, a user may
make his own trustee’s public key (without even publishing this public key) and
use that one for encryption, thus faking an encryption to a trustee. Note that
this amounts to attacking the application, since this user’s encryption cannot be
opened by any valid trustee. Key privacy for users who encrypt with their own
key was given in [13], but this means that the user has to be his own trustee,
which, again, is insufficient for the application above. Finally, the notion of ver-
ifiable encryption allows the sender to prove certain properties of the encrypted
message (cf. e.g., [1,12,44,19]). If we employ verifiable encryption for the above
application, it only assures verifiability when the public key employed is known
to the verifier. Knowledge of the public key employed, in turn, is an attack on
the anonymity of the trustee in the above application.

Our Major Contributions. In this work, motivated by the above examples,
we first contribute the definition, formalization and generic feasibility of group
encryption. We then construct an efficient concrete implementation and investi-
gate its related number theoretic properties.

– Definition and Model. The group encryption primitive (GE) involves a public-
key encryption scheme with special properties, a group joining protocol (involv-
ing public-key certification) and a message space that may have a required struc-
ture. Besides correctness, there are three security properties that pertain to GE
schemes. The first two of these properties, called Security and Anonymity
protect the sender from a hostile environment that tries to either extract
information about the message (security) or to extract information about who the
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recipient is (anonymity). We require both properties to have the strongest notion
of immunity to attack, namely CCA2 [27,41]. The third property, that we call
Soundness protects the verifier from a hostile environment in which the sender,
the group manager and the recipients collude against him, so that he accepts a
ciphertext (e.g., an encrypted record to be stored) that either does not have the
required structure or cannot be decrypted by a registered group member.

– Necessary and Sufficient Conditions and Generic Design. We identify the nec-
essary cryptographic components of a GE scheme that include: a digital signa-
ture with adaptive chosen message security, a public-key encryption scheme that
satisfies both CCA2-key-privacy and CCA2-security, and zero-knowledge proofs
for NP statements. Using such components we demonstrate how a generic GE
scheme can be implemented and how, in turn, the scheme implies these compo-
nents (where encryption is derived directly with a relatively tight reduction).

– Efficient Design. We design a GE scheme for the discrete logarithm relation,
which is one of the most useful relations in cryptography. To this end we employ
the modular design as a guide. However, in order to get an efficient scheme,
we need to design, exploit and combine primitives that algebraically suit the
primitive’s structure so that the ciphertext and the interaction associated with
it has size independent of the size of the group of potential receivers. Given the
large multitude of strong security requirements the model possesses, we found
the task of designing and proving the properties to be quite challenging.

– Efficient Encryption of Discrete Logarithm with CCA2-Security and CCA2-
key-privacy. As our first step in the overall group encryption design, we point
out that no existing public-key encryption scheme is suitable for designing a
GE for discrete logarithm relations, since the compound set of the requirements
that include verifiability, CCA2-security and CCA2-key-privacy for anonymity
has not been achieved before and requires special attention. We then design a
public-key encryption with CCA2 key-privacy suitable for CCA2 secure verifiable
encryption of discrete-logarithms. The security of the scheme is based on the
Decisional Composite Residuosity (DCR) assumption of [40] (and its design is
motivated by earlier works of [24,28,19,10]). We note that our encryption is the
first Paillier-based scheme proven to satisfy key-privacy, a fact which may be of
independent interest.

– Algebraic Structure and Intractability Assumption. A new intractability as-
sumption is required for proving the key-privacy property of our encryption
scheme: Decisional Diffie Hellman assumption for the subgroup of square
(quadratic) n-th residues (DDHSQNR). We explain why this is a natural varia-
tion of DDH over a cyclic subgroup of Z

∗
n2 that has order without small prime

divisors and moreover, to strengthen the claim of intractability, we prove that the
DCR (which is needed for arguing the security of the scheme anyway) implies the
computational Diffie Hellman (CDH) assumption in this subgroup. Note that we
know of no arithmetic cyclic group without a partial discrete-log trapdoor, where
CDH holds but where DDH does not and thus the assumption seems reasonable.
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Applications of Group Encryption. The combination of CCA2 security of
ciphertexts, CCA2 anonymity of receivers and verifiability is a strong one and
supports some enhanced properties of known constructions as well as opens the
door for new applications.

– Anonymous Trusted Third Party Applications. Many protocols such
as Fair Encryption, Escrow Encryption, Group Signatures, Fair Exchange, etc.
employ a trustee, namely a trusted third party who is off-line during the pro-
tocol and gets invoked in case something goes wrong. For these primitives it is
expected and has been advocated that there will be a multitude of these trustees.
In this case the identity of a chosen trustee may reveal certain aspects of the
user, whereas the user prefers to retain her privacy. For example, imagine an
“International Key Escrow” scenario where a user wants to deposit (decrypt)
a key with her own national trusted representative (and needs to do this in a
verifiable way). However, such a choice, if made public, may reveal the user’s
nationality (in violation of privacy). The new group encryption primitive enables
the user to trust her own representative, but without revealing its identity, yet
to assure others that indeed a designated trustee has been chosen (and not a
“faked trustee”). We believe this enhanced privacy while allowing flexibility of
choice of trustee is an important step forward in privacy primitives. In this new
setting two models are possible for taking keys off escrow: In the first one, each
trustee tries to retrieve all the keys from the available ciphertext repository, and
will be successful only when the ciphertext is his to open. In the second model,
there is an opening authority which can open the identity of the trustee (but
not the encrypted key, due to separation of duties). The opening authority, in
turn, directs the ciphertext to the chosen trustee to be decrypted. Our primitive
supports both opening models. Another scenario that is similar to the above, is
proxy voting where users deposit their votes encrypted under the public-key of
a proxy of their choice. A proxy is a designated trustee in this case and each
user may prefer (or even be required due to legislation) to hide her choice when
depositing her vote. In this manner, the proxies can be called upon later, in the
tallying phase, to recover the votes entrusted to them. Recall that, as motivated
above when contrasting the notion of group encryption with mere key privacy
or verifiable encryption, if any of the security properties of group encryption is
missing, the application loses its effectiveness, and only the combination of prov-
ability (soundness), CCA2 security and CCA2 key privacy delivers the desired
effect on the overall escrow system.

– Ad-Hoc Access Structure Group Signature. We may implement the
opening authority in group encryption as a multitude of trustees and use it to
encrypt a signing credential. In this way we can build a group signature where
signers can organize the set of trustees to open their signature by acting on it in a
predetermined order following an ad-hoc structure that is only partially revealed
to the verifier (e.g., a tree or other graph). This can be achieved by cascading the
group encryption primitive so that a sequence of hops (identity discoveries and
transfers) will be required to recover the identity of the signer in the signature
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opening step. This notion generalizes “hierarchical group signatures” a primitive
introduced in [43] where the trustee access structure was determined as a fixed
tree. This application demonstrates the power of our primitive in organizing hid-
den structures of decrypting parties with CCA2 hiding and securing properties.

– Secure Oblivious Retriever Storage. In the area of ubiquitous comput-
ing, secure and anonymous credentials may move between computing elements
(computer, mobile unit, embedded device, etc.). A user may want to pass a
credential secretly and anonymously between devices (either between her own
devices, or devices of her peers, all belonging to the same group). Asynchronous
transfer that does not require all devices to be present at the same time requires
a storage server (similar to a mail server). We can employ group encryption in
implementing such a storage server safely, where it is guaranteed that (1) the
server only stores valid credentials (i.e., well formed ones that can be delivered
to a legitimate retriever and avoid being tricked into storing garbage); (2) the
credentials are encrypted and thus the server (or anyone who may compromise
it) cannot employ them; and (3) the identity of retrievers of credentials is hidden
(even under active attacks, i.e. CCA2 security conditions are needed). A device
reading the storage can recover its credentials by scanning the storage sequen-
tially and being successful in decrypting the credentials directed to it (with or
without the aid of an opening authority).

We note that group encryption is naturally related to the notion of “custodian-
hiding verifiable encryption” that was investigated in [38,37] and may apply in
similar application scenarios. From the construction point of view, the focus of
the present work is in attaining constant complexity in the group size as opposed
to linear that was the case in this previous work.

2 Group Encryption: Model and Definitions

The parties involved in a GE scheme are the sender, the verifier, a group manager
(GM) that manages the group of receivers and an opening authority (OA) that
is capable of discovering the identity of the receiver. Formally, a GE scheme that
is verifiable for a public-relation R is a collection of procedures and protocols
that are denoted as: SETUP, JOIN, 〈Gr, R, sampleR〉, ENC, DEC, OPEN, 〈P , V , recon〉
The functionality of the above procedures is as follows: the SETUP is a set of
intialization procedures for the system, one for the GM, one for the OA and one
to produce public-parameters (denoted by SETUPGM, SETUPOA, SETUPinit respec-
tively). Using their respective setup procedures, the GM and the OA will produce
their public/secret-key pairs 〈pkGM, skGM〉 and 〈pkOA, skOA〉; JOIN = 〈Juser, JGM〉
is a protocol between a prospective group member and the GM. After an exe-
cution of a JOIN protocol the group member will output his public/secret-key
pair (pk, sk); the new member’s public-key pk along with a certificate cert will be
published in the public directory database by the GM. We will denote by Lparam

pk

the language of all valid public-keys where param is a public parameter produced
by the SETUPinit procedure.
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To employ GE in a transaction, it is assumed that the sender (call her Al-
ice) has obtained a pair (x, w) that is sampled according to the procedure
sampleR(pkR, skR), where pkR, skR are produced by the generation procedure
Gr(1ν) that samples the public/secret parameters for the relation R. We remark
that the secret-parameter skR may be empty depending on the relation (e.g., in
the case of discrete logarithm the relation is typically publicly samplable, hence
skR is empty – but this is not be the case in general). The polynomial-time
testing procedure R(x, w) returns true iff (x, w) belongs to the relation based
on the public-parameter pkR. We note that given the relation R(·, ·) it will be
useful that it is hard to extract a “witness” w given an instance x; however this
need not be included in the formal requirements for a GE scheme. Note that if
verifiability is not desired from the GE, the relation R will be set to be the trivial
relation that includes any string of a fixed size as a witness (and in such case x
will be simply equal to 1|w|).

Alice possessing the pair (x, w), she wishes to encrypt w for her chosen
receiver, call him Bob. She obtains Bob’s certified public-key 〈pk, cert〉 from
database, and employing the public-keys pkGM and pkOA she encrypts w as
ENC(pkGM, pkOA, pk, w, L) to obtain the ciphertext ψ with a certain label L (L is a
public string bound to the ciphertext that may contain some transaction related
data or be empty; we call it the “context” of ψ). Alice will give x, ψ, L to the
verifier. Subsequently, Alice and the verifier will engage in the proof of knowl-
edge 〈P , V〉 that will ensure the following regarding the ciphertext ψ and label L:
there exists a group member whose key is registered in the database (i.e., Bob in
this case) that is capable of decrypting ψ in context L and obtaining a value w′

for which it holds that if w ← recon(w′) we have that (x, w) ∈ R. Note that, for
P , V , the input to the verifier will be the values param, pkGM, pkOA, pkR, x, ψ, L,
whereas the prover (Alice) will have as additional input the values pk, cert, w
as well as the coin tosses used for the formation of ψ. The function recon(·)
reconstructs a witness based on the decryption of ψ and may be the identity
function.

In the remaining of the section we give four definitions, correctness and the
three security related properties of GE, security, anonymity, and soundness.
For simulating two-party protocols we use the following notation: 〈outputA |
outputB〉 ← 〈A(inputA), B(inputB)〉(common input).

Definition 1. (Correctness) A GE scheme is correct if the following “correct-
ness game” returns 1 with overwhelming probability.

1. param ← SETUPinit(1ν); 〈pkR, skR〉 ← Gr(1ν); (x, w) ← sampleR(pkR, skR).
2. 〈pkGM, skGM〉 ← SETUPGM(param); 〈pkOA, skOA〉 ← SETUPOA(param);
3. 〈pk, sk, cert | pk, cert〉 ← 〈Juser, JGM(skGM)〉(pkGM). If pk �∈ Lparam

pk then abort;
4. ψ ← ENC(pkGM, pkOA, pk, cert, w, L).
5. out1 ← w

?= recon(DEC(sk, ψ, L)).
6. out2 ← pk ?= OPEN(skOA, [ψ]oa, L).
7. 〈done | out3〉 ← 〈P(w, ψ, coinsψ), V〉(param, pkGM, pkOA, pkR, x, ψ, L).
8. if (out1 = out2 = out3 = true) return 1.
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As shown above the opening procedure OPEN may not operate on the ciphertext
ψ but on a substring of the ciphertext ψ that is denoted by [ψ]oa; we make the
distinction explicit as it is relevant in terms of chosen ciphertext security.

There are three “security notions” for GE schemes: security, anonymity and
soundness (that includes verifiability). Security and anonymity are properties
that protect Alice (the prover) against a system that acts against her.

Formulation of the Security Property. In our definitions we use a number
of traditional oracles that express the nature of the interaction of the adversary
and the system. Accordingly, we employ oracles that are stateless (those that
maintain no state across queries) and those that are stateful. Next, we introduce
the decryption oracle, the challenge procedures and the prover simulator oracle.

DEC(sk, ·): This is a decryption oracle for the GE decryption function DEC. The
value sk is a secret-key that will be clarified from the context. If ψ is some
“forbidden” ciphertext with label L that the oracle must reject we will write
DEC¬〈ψ,L〉(sk, ·).

CHb
ror(1

ν , pk, w, L): This a real-or-random challenge procedure for the GE encryp-
tion scheme. It returns two values denoted as 〈ψ, coinsψ〉 so that if b = 1 then
ψ ← ENC(pkGM, pkOA, pk, cert, w, L), whereas if b = 0, ψ ← ENC(pkGM, pkOA, pk,
cert, w′, L) where w′ is a plaintext sampled at random from the space of all pos-
sible plaintexts of length 1ν for the encryption function (it is assumed at least
two plaintexts exist). In either case coinsψ are the random coin tosses that are
used for the computation of ψ.

PROVEb
P,P′(pkGM, pkOA, pk, cert, pkR, x, w, ψ, L, coinsψ): This is an oracle that if

b = 1, it simulates an execution of the prover procedure of P of the GE scheme
(i.e., Alice), on pkGM, pkOA, pk, cert, pkR, x, w, ψ, L, coinsψ. On the other hand,
if b = 0, it simulates the protocol P ′ that takes the same input as P with the
exception of the values of w and coinsψ (the design of P ′ is part of proving the
security property).

Based on the above three procedures we are ready to give the security def-
inition, which is reminiscent of a real-or-random attack on the underlying en-
cryption scheme. In the game below the adversary controls the GM and OA and
all group members except the member that Alice chooses as her recipient, i.e.,
Bob. In fact, the adversary is the entity that introduces Bob into the group and
issues a certificate for his public-key. Moreover, the adversary has CCA2 access
to Bob’s secret-key. The adversary also selects some public relation R based on
pkR as well as a pair (x, w). Subsequently a coin is tossed and the adversary
either receives the encryption of w and engages with Alice in the proof of ci-
phertext validity or the adversary receives an encryption of a random plaintext
and engages in a simulated proof of validity. A GE would satisfy security if the
adversary is unable to tell the difference. More formally (note that negl(ν) is a
function that for any c, is less than ν−c for sufficiently large ν):
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Definition 2. A GE scheme satisfies security if there exists a protocol P ′ s.t.
the “security game” below when instantiated by any PPT A, returns 1 with
probability less or equal to 1/2 + negl(ν).

1. param ← SETUPinit(1ν); 〈aux, pkGM, pkOA〉 ← A(param);
2. 〈pk, sk, cert | aux〉 ← 〈Juser, A(aux)〉(pkGM);
3. 〈aux, x, w, L, pkR〉 ← ADEC(sk,·)(aux); if (x, w) �∈ R then abort;
4. b

r← {0, 1}; 〈ψ, coinsψ〉 ← CHb
ror(1

ν , pk, w, L);
5. b∗ ← APROVEb

P,P′ (pkGM,pkOA,pk,cert,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,·)(aux, ψ)
6. if b = b∗ return 1 else 0.

Formulation of the Anonymity Property. In the anonymity attack the
adversary controls the system except the opening authority. Anonymity can be
thought of as a CCA2 attack against the encryption system of the OA. The ad-
versary registers the two possible recipients into the PKI database and provides
the relation and the witness to Alice. Alice will encrypt the same witness always
as provided by the adversary but will use the key of one of the two recipients
at random. The adversary, who has CCA2 decryption access to both recipients
as well as the OA, will have to guess which one of the two is Alice’s choice. We
define the following procedures:

CHb
anon(pkGM, pkOA, pk0, pk1, w, L): The challenge procedure receives a plaintext

w and two public-keys pk0, pk1, and returns two values, 〈ψ, coinsψ〉 so that ψ ←
ENC(pkGM, pkOA, pkb, certb, w, L) and coinsψ are the random coin tosses that are
used for the computation of ψ.

USER(pkGM): This is an oracle that simulates two instantiations of Juser, i.e., it is
given pkGM and simulates two users that wish to become members of the group;
the oracle has access to a string denoted by keys in which USER will write the
output of the two Juser instances.

OPEN(skOA, ·): This is an oracle that simulates the OPEN operation of the opening
authority; recall that OPEN may not operate on the whole ciphertext ψ but rather
on substring of it that will be denoted by [ψ]oa.

Definition 3. A GE scheme satisfies anonymity if the following game instanti-
ated for any PPT A, it returns 1 with probability less or equal 1/2 + negl(ν).

1. param ← SETUPinit(1ν); 〈pkOA, skOA〉 ← SETUPOA(param);
2. 〈pkGM, skGM〉 ← SETUPGM(param); aux ← AUSER(pkGM),OPEN(skOA,·)(skGM);
3. if keys �= 〈pk0, sk0, cert0, pk1, sk1, cert1〉 then abort;
4. 〈aux, x, w, L, pkR〉 ← AOPEN(skOA,·),DEC(sk0,·),DEC(sk1,·)(aux);
5. if (x, w) �∈ R then abort; b

r← {0, 1};
6. 〈ψ, coinsψ〉 ← CHb

anon(pkGM, pkOA, pk0, pk1, w, L);
7. tb ← 〈pkGM, pkOA, pkR, pkb, certb, x, w, ψ, L, coinsψ〉;
8. b∗ ← AP(tb),OPEN¬〈[ψ]oa,L〉(skOA,·),DEC¬〈ψ,L〉(sk0,·),DEC¬〈ψ,L〉(sk1,·)(aux, ψ);
9. if b = b∗ return 1 else 0;
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This completes the security definition as far as Alice is concerned. From the
point of view of the verifier, the goal of a malicious environment in which the
verifier operates is to provide him with a ciphertext that encrypts a witness for
a public relation that does not open to a witness even if all the group members
apply their decryption function to it. Immunity to this attack, which we call
soundness, guarantees that at least one group key will open to a valid witness.

Formulation of the Soundness Property. A soundness attack proceeds as
follows: the adversary will create adaptively the group of recipients communi-
cating with the GM. In this attack game, the adversary wins if, while playing
the role of Alice, she convinces the verifier that a ciphertext is valid with re-
spect to a public-relation R of the adversary’s choice, but it holds that either
(1) if the opening authority applies skOA to the ciphertext the result is a value
that is not equal to a public-key of any group member, or (2) the revealed key
satisfies pk �∈ Lparam

pk . To formalize soundness we introduce the following group
registration oracle:

REG(sik, ·): this is an oracle that simulates JGM, i.e., it is given skGM and registers
users in the group; the oracle has access to a string database that stores the
public-keys and their certificates.

Definition 4. A GE scheme satisfies soundness if the following “soundness
game”, when instantiated with any PPT adversary A, the probability it returns
1 is negligible.

1. param ← SETUPinit(1ν); 〈pkOA, skOA〉 ← SETUPOA(param);
2. 〈pkGM, skGM〉 ← SETUPGM(param);
3. 〈pkR, x, ψ, L, aux〉 ← AREG(skGM,·)(param, pkGM, pkOA, skOA);
4. 〈aux, out〉 ← 〈A(aux), V〉(param, pkGM, pkOA, pkR, x, ψ, L);
5. pk ← OPEN(skOA, [ψ]oa, L) ;
6. if pk �∈ database or pk �∈ Lparam

pk or ψ �∈ Lx,L,pkR,pkGM,pkOA,pk
ciphertext then ret. 1 else 0;

Note that Lx,L,pkR,pkGM,pkOA,pk
ciphertext = {ENC(pkGM, pkOA, pk, cert, w, L) | w : (x, w) ∈

R, 〈pk, cert〉 ∈ Valid}. This means that the soundness adversary wins if the key
obtained by OA after opening is either not in the database, or is invalid, or
the ciphertext ψ is not a valid ciphertext under pk encrypting a witness for x
under R.

A GE scheme should satisfy correctness, security, anonymity and soundness.
Note that: (1) By defining the oracles USER and REG one can allow concurrent
attacks or force sequential execution of the group registration process. (2) CPA
variants of the security and anonymity definition w.r.t. either group members
or the OA can be obtained by dropping the corresponding DEC oracles. (3)
Soundness and security assume a trusted setup; extension to malicious setup
can be done by enforcing trustworthy initialization by standard methods (e.g.
threshold cryptography or ZK proofs).
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3 Necessary and Sufficient Conditions for GE Schemes

Given that a GE scheme is a complex primitive it would be helpful to break down
its construction to more basic primitives and provide a general methodology for
constructing GE schemes. The necessary components for building a GE scheme
will be the following:

1. Adaptively Chosen Message Secure Digital Signature. It will be used to gen-
erate the public-key certificates by the GM during the JOIN procedure.

2. Public-key Encryption with CCA2 Security and Key-Privacy. We will em-
ploy an encryption scheme 〈Ge, E , D〉 that satisfies (1) CCA2-security and (2)
CCA2-Key-privacy. We note that in public-key encryption with key-privacy
the key-generation has two components, one called Ze that produces public-
parameters shared by all key-holders and the key-generation Ge that given the
public-parameter of the system produces a public/secret-key pair. Note that us-
ing Ze is mandatory since some agreement between the receivers is necessary for
key-privacy (at minimum all users should employ public-keys of the same length).

3. Proofs of Knowledge. Such protocols in the zero-knowledge setting satisfy three
properties: completeness, soundness with knowledge extraction and zero-
knowledge. These proofs exist for any NP language assuming one-way functions by
reduction, e.g., to the graph 3-colorability proof of knowledge [29]. In certain set-
tings, zero-knowledge proofs can be constructed more efficiently by starting with
a honest-verifier zero-knowledge (HVZK) proof of language membership protocol
(i.e., a protocol that requires no knowledge extraction and it is only zero-knowledge
against honest verifiers) and then coupling such protocol with an extractable com-
mitment scheme (to achieve knowledge extraction) and with an equivocal commit-
ment (to enforce zero-knowledge against dishonest verifiers, cf. [25]).

Modular Design of GE schemes. Consider an arbitrary relation R that
has an associated paramter generation procedure Gr and a witness sampler
sampleR. In the modular construction we will employ: (1) a digital signature
scheme 〈Gs, S, Vs〉 that is adaptively chosen message secure; (2) a public-key en-
cryption scheme 〈Ze, Ge, E , D〉 that satisfies CCA2 security and Key-privacy; (3)
two zero-knowledge proofs of language membership (defined below); to facilitate
knowledge extraction we will employ also an extractable commitment scheme
〈Zc,1, C1, T1〉. Without loss of generality we will assume that all employed primi-
tives operate over bitstrings. The construction of a GE scheme 〈SETUP, JOIN, 〈Gr,
R, sampleR〉, ENC, DEC, OPEN, 〈P , V〉, recon〉 is as follows:

SETUP. The SETUPinit procedure will select the parameters param by performing
a sequential execution of Ze, Zc,1. The SETUPGM procedure will be the signature-
setup Gs and the SETUPOA will be the encryption-setup Ge.

JOIN. Each prospective user will execute Ge to obtain pk, sk and then engage in a
protocol 〈Ppk, Vpk〉 which is proof of language membership with the GM for the
language Lparam

pk = {pk | ∃sk, ρ : 〈pk, sk〉 ← Ge(param; ρ)}. The GM will respond
with the signature cert ← S(skGM, pk).
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ENC. The procedure ENC, given a witness w for a value x such that (x, w) ∈
R and a label L, it will return the pair ψ =df 〈ψ1, ψ2, ψ3, ψ4〉 where ψ1 ←
E(pk, w, L1), ψ2 ← E(pkOA, pk, L2), ψ3 ← C1(cpk, pk) ψ4 ← C1(cpk, cert) where
L1 = ψ2||ψ3||ψ4||L and L2 = ψ3||ψ4||L.

DEC. Given sk, a ciphertext 〈ψ1, ψ2, ψ3, ψ4〉 and a label L, it will return D(sk, ψ1,
ψ2||ψ3||ψ4||L).

OPEN. Given skOA, a ciphertext 〈ψ2, ψ3, ψ4〉 =df [ψ]oa and a label L it will return
D(skOA, ψ2, ψ3||ψ4||L).

Finally, the protocol 〈P , V〉 is a zero-knowledge proof of language membership
for the language:

{〈param, pkGM, pkOA, pkR, x, ψ1, ψ2, ψ3, ψ4, L〉 | ∃ (coinsψ1 , coinsψ2 ,

coinsψ3 , coinsψ4 , pk, cert, w) :

∧(C1(cpk, pk; coinsψ3) = ψ3)∧(C1(cpk, cert; coinsψ4) = ψ4)∧(Vs(pk, cert) = true)

∧(E(pk, w, (ψ2||ψ3||ψ4||L); coinsψ1) = ψ1)

∧(E(pkOA, pk, (ψ3||ψ4||L); coinsψ2) = ψ2) ∧ ((x, w) ∈ R)

Note that the reconstruction procedure recon will be set to simply the identity
function.

Theorem 1. The GE scheme above satisfies (i) Correctness, given that all in-
volved primitives are correct and 〈Ppk, Vpk〉, 〈P , V〉 satisfy completeness. (ii)
Anonymity, given that the encryption scheme for users satisfies CCA2-key-
privacy, the encryption scheme for OA satisfies CCA2-security, the commitment
scheme C1 is hiding and 〈Ppk, Vpk〉 and 〈P , V〉 are zero-knowledge. (iii) Security,
given that the employed encryption scheme for users satisfies CCA2-security, the
commitment scheme C1 is hiding and 〈Ppk, Vpk〉, 〈P , V〉 are zero-knowledge. (iv)
Soundness, given that the employed digital signature scheme satisfies adaptive
chosen message security, the commitment scheme C1 is binding and extractable
and 〈Ppk, Vpk〉 and 〈P , V〉 satisfy soundness.

Necessity of the basic primitives. We consider the reverse of the above
results: the existence of GE would imply public-key encryption that is CCA2
secure and private as well as digital signature and zero-knowledge proofs for any
NP-language. More details are given in the full version [32].

4 Efficient GE of Discrete-Logarithms

In this section we will consider the discrete-logarithm relation 〈Gdl, Rdl, sampledl〉:
Gdl given 1ν samples a description of a cyclic group of ν-bits order and a generator
γ of that group; R contains pairs of the form (x, w) where x = γw; note that
pkR = 〈desc(G), γ〉 and skR is empty. Finally sampledl on input pkR selects a
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witness w and returns the pair (x = γw, w). In this section we will present a GE
scheme for the above relation. Note that the results of this section can be easily
extended to other relations based on discrete-logs such as a commitment to w.

Design of a public-key encryption for discrete-logarithms with key-
privacy and security. One of the hurdles in designing a GE for discrete-
logarithms is finding a suitable encryption scheme for the group members. In this
section we will present a public-key encryption scheme that is suitable for veri-
fiable encryption of discrete-logarithms while it satisfies CCA2-key-privacy and
CCA2-security. The scheme is related to previous public-key encryption schemes
of [24,40,28,19,10] and it is the first Paillier-based public-key encryption that is
proven to satisfy key-privacy and security against chosen ciphertext attacks. Be-
low we give a detailed description of our public-key encryption 〈Ze, Ge, E , D〉 and
of the accompanying intractability assumptions that ensure its properties.

Public-parameters. The parameter selection function Ze, given 1ν selects a com-
posite modulus n = pq so that n is a ν-bit number, p = 2p′ + 1, q = 2q′ + 1 and
p, p′, q, q′ are all prime numbers with p, q of equal size at least 	ν/2
+1. Then it
samples g ← Z

∗
n2 and computes g1 ← g2n(modn2). Observe that 〈g1〉 with very

high probability is a subgroup of order p′q′ within Z
∗
n2 . In such case 〈g1〉 is a

group that contains all square n-th residues of Z
∗
n2 and we will call this group

Xn2 . We note further that all elements of Z
∗
n2 can be written in a unique way

in the form gr
1(1 + n)v(−1)α(p2p − q2q)β where r ∈ [p′q′], v ∈ [n], α, β ∈ {0, 1}

(in this decomposition, p2, q2 are integers that satisfy p2p
2 ≡q2 1, q2q

2 ≡p2 1).
We will denote by Qn2 the subgroup of quadratic residues modulo n2 which can
be easily seen to contain all elements of the form gr

1(1 + n)v with r ∈ Zp′q′ and
v ∈ Zn and has order np′q′ (precisely one fourth of Z

∗
n2 and is generated by

g1(1 + n)). Note that we will use the notation h =df 1 + n. Finally, a second
value g2 is selected as follows: w is sampled at random from [n

4 ] =df {0, . . . , 	n
4 
}

and we set g2 ← gw
1 . A random member H of a universal one-way hash function

family UOWHF is selected [39]; the range of H is assumed to be [0, 2ν/2−2). The
global parameters of the cryptosystem that will be shared by all recipients are
equal to param = 〈n, g1, g2, descH〉, where descH is the description of H.

Key-Generation. The key-generation algorithm Ge receives the parameters 〈n,

g1, g2, descH〉, samples x1, x2, y1, y2 ←R [n2

4 ] and sets pk = 〈c, d, y〉 where c =
gx1
1 gx2

2 , d = gy1
1 gy2

2 and y = gz
1 ; the secret-key is sk = 〈x1, x2, y1, y2, z〉. Note that

below we may include the string param as part of the pk and sk strings to avoid
repeating it, nevertheless it should be recalled in all cases that n, g1, g2, descH
are global parameters that are available to all parties.

Encryption. The encryption function E operates as follows: given the pk, a mes-
sage w and a label L it samples r ←R [n

4 ] and outputs the triple 〈u1, u2, e, v〉
computed as follows: u1 ← gr

1 mod n2, u2 ← gr
2 mod n2, e ← yr(1+n)w mod n2,

v ← ||crdrH(u1,u2,e,L) mod n2|| where || · || : Z
∗
n2 → Z

∗
n2 is defined as follows

||x|| = x if x ≤ n2/2 and ||x|| = −x if x > n2/2. We note that the “absolute
value” function || · || is used to disallow the malleability of a ciphertext with
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respect to multiplication with −1 (cf. the decryption test below). To summarize,
encryption works as follows:

r ←R

[n

4

]
: u1 ← gr

1 u2 ← gr
2 e ← yrhm v ← ||crdrH(u1,u2,e,L)||

Decryption. The decryption function D given a ciphertext (u1, u2, e, v) and a
label L it performs the following checks:

v
?= ||v|| ∧ v2 ?= (ux1

1 ux2
2 )2(uy1

1 uy2
2 )2H(u1,u2,e,L)

if all tests pass it computes m′ = e2u1
−2z −1( mod n2) and returns (m′ ·2−1 mod

n)/n, otherwise it returns ⊥.
This completes the description of the cryptosystem. Observe that the cryp-

tosystem is correct, i.e., encryption inverts decryption: indeed, assuming that
〈u1, u2, e, v〉 ← E(pk, w, L), we have that m′ = e2u−2z

1 − 1 ≡n2 h2w − 1 and due
to the fact that hx ≡n2 1+xn for all x ∈ Zn we have that w′ ≡n2 (2m mod n)·n.
It follows that (w′ · 2−1 mod n)/n = w.

We will next argue about the security of the cryptosystem. We note that the
above cryptosystem has a “double trapdoor” property: for each public-key, c, d, y,
based on parameters n, g1, g2, descH, one trapdoor is the discrete-logarithm of y
base g1, whereas the the other trapdoor is the factorization of n. Indeed given
the factorization of n, one can easily decrypt any ciphertext 〈u1, u2, e, v〉 by
computing ep′q′ ≡n2 hp′q′m. Subsequently m can be computed easily similarly to
the regular decryption function. In GE the global trapdoor will not be used and
the factorization of n will be assumed unknown by all parties. The intractability
assumption that will be employed is the following:

Definition 5. The Decisional Composite Residuosity DCR assumption [40]: It
is computationally hard to distinguish between: (i) tuples of the form (n, un mod
n2) where n is a composite RSA modulus and u ←R Z

∗
n2 , and (ii) tuples of the

form (n, v) where v ←R Z
∗
n2 .

Next, we prove IND-CCA2 security under the DCR.

Theorem 2. The cryptosystem 〈Ze, Ge, E , D〉 defined above satisfies CCA2 secu-
rity under the DCR assumption and the target collision resistance of the employed
UOWH family.

Interestingly, it is not clear whether the DCR can be used for proving the key-
privacy of the cryptosystem. To see why this is the case consider the following:
Consider the CPA version of the cryptosystem using only a single generator
over Xn2 : in the CPA case the cryptosystem is similar to ElGamal, with cipher-
texts pairs of the form 〈gr mod n2, yrhm mod n2〉. Note that IND-CPA security
can be easily shown under the DCR assumption. On the other hand, to show
CPA-key-privacy one has to (essentially) establish the indistinguishability of the
distributions 〈g, y0, y1, g

r, yr
0h

m〉 and 〈g, y0, y1, g
r, yr

1h
m〉. It is not apparent how

to apply DCR to prove this indistinguishability; ultimately this is because the
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message m is the same in both of these distributions and its randomization (eas-
ily provided by DCR) appears to be immaterial to the indistinguishability of the
two distributions. It should be noted that since the adversary is not interested in
the hm portion of the ciphertext he can easily cancel it out by raising everything
to n. For this reason the power of DCR seems of little use in this case, and a
Diffie-Hellman-like assumption in Xn2 would seem more appropriate.

Based on the above we employ the Decisional Diffie Hellman assumption over
the group Xn2 , denoted as DDHSQNR. Regarding the relationship between Diffie
Hellman type of problems and the DCR we show the following theorem:

Theorem 3. DCR =⇒ CDHSQNR

Based on the above we formulate our key-privacy theorem for the cryptosystem:

Theorem 4. The cryptosystem 〈Z, Ge, E , D〉 defined above satisfies CCA2-key-
privacy under the DDHSQNR assumption and the target collision resistance of the
employed UOWH family.

Proof of Public-Key Validity. We will employ the public-key encryption
scheme above to build the public-key database of the GE scheme. When a user
joins the group he will be allowed to generate a public-key and he will be re-
quired to show that the public-key is valid. For our new cryptosystem the lan-
guage of valid public-keys is Lparam

pk = {〈c, d, y〉 | c, d, y ∈ Xn2} where param =
〈n, g1, g2, H〉. It follows that joining will require three instances of a proof of lan-
guage membership to the subgroup Xn2 of Z

∗
n2 . The validity of an element y can

be performed by executing the following steps where k0, k1 ∈ IN are parameters
that affect the soundness and zero-knowledge properties of the proof of language
membership below:

1. [User:] Select t
r← {0, 1}k0 and transmit a ← gt mod n2.

2. [GM:] Select c
r← {0, 1}k1 and transmit c.

3. [User:] Compute s ← t − cz ∈ Z and transmit s.
4. [GM:] Verify a2 ≡n2 (g2

1)sy2c.

It is easy to verify that given any prover that produces a value y and then
executes the proof above, it must be the case that y2 ∈ Xn2 with probability
1 − 2−k1 . Note that this still allows for a slight misbehavior on the part of the
user as he can multiply y with an element of order 2 inside Z

∗
n2 ; while it is easy

to add an additional step in the above proof to avoid this slight misbehavior we
will not do so as we will show the security properties of our GE scheme without
such guarantee.

Construction of GE of Discrete-logarithms. We proceed to the description
of the GE scheme SETUP, JOIN, 〈Gdl, Rdl, sampledl〉, ENC, DEC, OPEN, 〈P , V , recon〉.
First recall that from the discrete-logarithm relation, Gdl given 1ν samples a
description of a cyclic group of ν-bits order and a generator γ of that group;
Rdl contains pairs of the form (x, w) where x = γw. Finally sampledl on input
pkR = 〈desc(G), γ〉 selects a witness w and returns the pair (x = γw, w).
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Parameter Selection. The procedure SETUP selects the following parameters:

◦ Integer values k0, k1.
◦ A safe composite n of �n bits and generators g, ğ, g1, g2 of the group Xn2 .
◦ The description of a hash function H drawn at random from a UOWH family.
◦ A prime number Q of the form λ · n2 + 1 and F, H generators of the order n2

subgroup of Z
∗
Q.

◦ A safe composite n̂ of �N bits and two generators ĝ, ŷ of the group Xn̂2 .
◦ A sequence of integers G, Y1, Y2, Y3 ∈ IN of length �N .

We stress that the above parameters are part of the trusted setup of the
system (also referred to as the common reference string, and no participant of
the system, including the GM, OA, or any user will know any private information
about these values).

SETUPOA. The procedure selects x1, x2, y1, y2, z ←R [n2

4 ] and set pkOA = 〈y̆, c̆, d̆〉 =
〈gz, gx1 ğx2 , gy1 ğy2〉.
SETUPGM. The GM will employ a digital signature 〈Gs, S, Vs〉 that must satisfy
adaptive chosen message security and be suitable for engaging in proofs of knowl-
edge of signed messages when the signature is committed. In our design will em-
ploy the block signature of Camenisch and Lysyanskaya [15] as the underlying
digital signature scheme (hence referred to as CL-signature). The choice of the
digital signature is not unique to our design and other signature schemes can be
employed as well. The key-generation procedure Gs (that will be used by GM in
SETUPGM) samples a pair 〈skGM, pkGM〉 where pkGM = 〈A0, A1,c, A1,d, A1,y, A2, N〉
with N a safe composite of �N bits and A0, A1,c, A1,d, A1,y, A2 ∈ Z

∗
N are random

quadratic residues in QN . The signing key skGM is the factorization of N . In
addition to �N we have the parameters �m where [0, 2�m)× [0, 2�m)× [0, 2�m) will
be the message space for the signature such that n2 < 2�m (this is because we
want to use the signature to sign public-keys of the encryption scheme).

JOIN. The prospective group member submits c, d, y as generated by the en-
cryption system 〈Ge, E , D〉 given in the beginning of the section. In particu-
lar, recall that 〈c, d, y〉 is defined as c ← gx1

1 gx2
2 mod n2, d ← gy1

1 gy2
2 mod n2,

y ← gz
1 and x1, x2, y1, y2, z ←R [n2

4 ]. The secret key of the user is set to the
values x1, x2, y1, y2, z. The user engages with the GM in a proof of membership
for the validity of c, d, y. Upon acceptance the GM will use the signing proce-
dure S for CL-signatures that is as follows: given the message M = 〈c, d, y〉,
the GM will sample R ← [0, 2�N+�m+�) where � is a security parameter and
a random prime E > 2�m+1 of length �m + 2 bits; then it will compute A =
(A0A

c
1,cA

d
1,dA

y
1,yA

R
2 )1/E(modN) (recall that the factorization of N is the sign-

ing key). Finally the signature to M is the triple 〈A, E, R〉.
Finally, the GM will enter 〈c, d, y〉 into the public database followed by the

signature. Note that the GM should not allow a user to enter into database a key
〈c, d, y〉 such that there is some 〈ci, di, yi〉 in the database already for which it
holds that c2 = c2

i , or d2 = d2
i or y2 = y2

i . Recall that the verification algorithm Vs

given a message M = 〈c, d, y〉 and a signature 〈A, E, R〉 on it, checks whether it
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holds that AE = A0A
c
1,cA

d
1,dA

y
1,yA

R
2 mod N and verifies all the range constraints

on c, d, y, E, R as stated above.

ENC, DEC and recon. Following our modular design methodology of section 3
the GE encryption function consists of the encryption of the witness w under
a recipient’s public-key 〈c, d, y〉 and a sequence of commitments to the public-
key used and commitments to the certificate of this public-key. More specifically
when Alice wants to encrypt her witness w for her public-value x = γw under
label L she computes the following:

1. Commitment to Certificate of Public-key. The commitment to the certificate
of the public-key of the recipient that Alice selected is formed as follows: for
the certificate 〈A, E, R〉 the following values are computed B̃ = G2u mod N ,
Ã = Y 2u

1 A mod N , Ẽ = Y 2u
2 G2E mod N , R̃ = Y 2u

3 G2R mod N .

2. Bridge Commitments. The “bridge commitments” will assist in the efficient
proof of ciphertext validity. In particular Alice includes the commitments Ê =
ĝE(l1)n̂ mod n̂2, R̂ = ĝR(l2)n̂ mod n̂2 and lj

r← Zn for j = 1, 2. Moreover she
includes the commitments ỹ = Hu′

y F y mod Q, c̃ = Hu′

c F c mod Q, d̃ = Hu′

d F d

mod Q.

3. Encryption of the recipient’s public-key. Encryption of the public-key that Al-
ice selected is formed as three ciphertexts: 〈fc, f̆c, ḟc, f̈c〉, 〈fd, f̆d, ḟd, f̈d〉, 〈fy, f̆y, ḟy,

f̈y〉, where each is selected as 〈gua , ğua , y̆uaa, c̆ua d̆uaH(L′
a)〉 where ua

r← [n
4 ], a ∈

{y, c, d}, a ∈ {y, c, d} and L′
a = 〈fa, f̆a, ḟa, f̈a, L〉.

4. Encryption of the witness. The encryption of witness w is as follows: 〈u1, u2, e,

v〉 ← 〈gr
1, g

r
2, y

rhw, ||crdrH(u1,u2,e,L′
c,L

′
d,L

′
y)||〉.

DEC is the decryption process as defined in the beginning of the section for the
new encryption scheme. recon is simply the identity function.

OPEN. The opening procedure applies to the three ciphertext excluding the wit-
ness ciphertext (item 4, above). In particular, it returns 〈c, d, y〉 = 〈fcḟ

−z
c , ḟdf

−z
d ,

ḟyf
−z
y 〉 or ⊥ depending on the outcome of the tests f x1+y1

a f̆
(x2+y2)H(L′)
a

?= f̈a for
a ∈ {y, c, d}. The owner of the public-key is identified by comparing 〈c2, d2, y2〉
to all entries 〈c2

i , d
2
i , y

2
i 〉 that are inside the database database.

The proof of validity 〈P , V〉. This protocol will be constructed as an AND
composition of four sub-protocols that due to lack of space presented in the full
version [32]. These protocols belong to a class of efficient proofs for discrete log
relations that are very common in the design of cryptographic primitives and
their concrete and efficient instantiation has become quite standard in the liter-
ature. An exception perhaps is protocol # 2 which is a more complex protocol
and is related to the “double-decker” proof of knowledge for discrete-logarithms
[42,20]. This protocol is the least efficient as it requires parallel repetition for
decreasing the knowledge-error. Still, we stress that the overall communication
is independent of the size of the group and well within practical limits.
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Based on the above, the theorem below follows as a corollary of theorem 1:

Theorem 5. The GE scheme for discrete-logarithms defined above satisfies (i)
Correctness; (ii) Anonymity and (iii) Security, under the DDHSQNR, DDH over
QN , DCR and the collision resistance of the UOWH family; (iv) Soundness,
under the Strong-RSA and the DLOG assumptions.
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Abstract. This paper describes the first identity-based broadcast en-
cryption scheme (IBBE) with constant size ciphertexts and private keys.
In our scheme, the public key is of size linear in the maximal size m of
the set of receivers, which is smaller than the number of possible users
(identities) in the system. Compared with a recent broadcast encryption
system introduced by Boneh, Gentry and Waters (BGW), our system
has comparable properties, but with a better efficiency: the public key
is shorter than in BGW. Moreover, the total number of possible users in
the system does not have to be fixed in the setup.

1 Introduction

Broadcast Encryption. The concept of Broadcast Encryption (BE) was intro-
duced by Fiat and Naor in [16]. In BE schemes, a broadcaster encrypts messages
and transmits them to a group of users who are listening to a broadcast chan-
nel and use their private keys to decrypt transmissions. At encryption time, the
broadcaster can choose the set S of identities that will be able to decrypt mes-
sages. A BE scheme is said to be fully collusion resistant when, even if all users
that are not in S collude, they can by no means infer information about the
broadcast message.

Many BE systems have been proposed [23,20,19,10,15]. The best known fully
collusion systems are the schemes of Boneh, Gentry and Waters [10] which
achieve O(

√
n)-size ciphertexts and public key, or constant size ciphertexts,

O(n)-size public key and constant size private keys in a construction that we
denote by BGW1 in the following. A lot of systems make use of the hybrid
(KEM-DEM) encryption paradigm where the broadcast ciphertext only encrypts
a symmetric key used to encrypt the broadcast contents. We will adopt this
methodology in the following.

Dynamic Broadcast Encryption. The concept of Dynamic Broadcast Encryption
(DBE) was introduced by Delerablée, Paillier and Pointcheval in [15]. A DBE
scheme is a BE in which the total number of users is not fixed in the setup, with
the property that any new user can decrypt all previously distributed messages.
Thus a DBE scheme is suitable for some applications, like DVD encryption.

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 200–215, 2007.
c© International Association for Cryptology Research 2007
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Nevertheless, some applications like Video on Demand (VOD) need forward
secrecy. This paper address this problem, in the identity-based setting.

ID-based Encryption. In 1984, Shamir [24] asked for a public key encryption
scheme in which the public key can be an arbitrary string.

Since the problem was posed in 1984, there have been several proposals for
Identity-Based Encryption (IBE) schemes. However, we can considerer that the
first practical IBE scheme was introduced by Boneh and Franklin in 2001 [9].
Since 2001, several schemes have been introduced [14,26,12,8,7,6,17]. Concerning
the security, there are mainly two definitions:

1. Full security, which means that the attacker can choose adaptively the iden-
tity he wants to attack (after having seen the parameters);

2. Selective-ID security, which means that the attacker must choose the iden-
tity he wants to attack at the beginning, before seeing the parameters. The
Selective-ID security is thus weaker than full security.

Since the scheme in [9] is proved secure in the random oracle model, several
papers have proposed systems secure without random oracles. In [6], one of
the systems has short parameters and tight security reduction, in the standard
model (proved secure against selective-ID adversaries). In [17], Gentry proposed
the first IBE system that is fully secure without random oracles, has short public
parameters and has a tight security reduction.

Multi-receiver ID-based Key Encapsulation (mID-KEM). A multi-receiver key
encapsulation scheme (mKEM) is an efficient key encapsulation mechanism for
multiple parties. This notion was introduced in [25]. Note that this notion is
different from multi-recipient public key encryption [4,5,22], where the sender
wants to send one (different) message to each receiver.

Later, in [2] and [3], the notion of mKEM was extended to multi-receiver
identity-based key encapsulation (mID-KEM), i.e. mKEM in the identity-based
setting. In [2] and [3], the ciphertext size grows with the number of receivers.
In [13], Chatterjee and Sarkar achieved a controllable trade-off between the ci-
phertext size and the private key size: ciphertexts are of size |S|/N , and private
keys are of size N where S is the set of receivers and N a parameter of the
protocol (which also represents, in the security reduction, the maximum number
of identities that the adversary is allowed to target). Thus they introduced the
first mID-KEM protocols to achieve sub-linear ciphertext sizes. Very recently,
Abdalla et al. proposed in [1] a generic construction that achieves ciphertexts of
constant size, but private keys of size O(nmax

2).
In the following, we do not employ the term “mID-KEM” anymore, but we

talk about “identity-based broadcast encryption” (IBBE), to emphasize that this
notion is close to broadcast encryption and ID-based encryption. We consider
IBBE as a natural generalization of IBE. Indeed, in IBE schemes, one public key
can be used to encrypt a message to any possible identity. In an IBBE scheme,
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one public key can be used to encrypt a message to any possible group of s
identities. Consequently, if we set s = 1, the resulting IBBE scheme is an IBE
scheme. The trivial solution to construct an IBBE scheme would be to use an IBE
scheme to encrypt the message once for each identity. The resulting ciphertext
would be of size linear in s. We also see IBBE as a way to make broadcast
encryption more practical.

Motivations. We focus on schemes with ciphertexts of constant size. In BGW1,
as we said before, the public key is linear in the total number of decryption keys
that can be distributed. Moreover, this number is fixed in the setup. Thus one
of our motivations is to introduce a system in which the number of possible
decryption keys is not fixed in the setup, and thus does not have any impact on
the size of the public key. In [13] and [1], the trade-off between the ciphertext
size and the private key size implies that if we want to have short ciphertexts,
the private keys cannot be of constant size. Thus we would like to have both
ciphertexts and private keys of constant size (as in BGW1). Note that in some
systems like the HIBE scheme in [8], the size of the public key can be reduced
by using a hash function, viewed as a random oracle in the security proof, but
this is not the case in BGW1, because all the elements of the public depend on
a single value.

Our contributions. In this paper, we propose the first identity-based broad-
cast encryption scheme with constant size ciphertexts and private keys. Our
construction is a Key Encapsulation Mechanism (KEM), thus long messages can
be encrypted under a short symmetric key. In our solution, ciphertexts and pri-
vate keys are of constant size, and the public key is linear in the maximal value of
s. Moreover, in our scheme, the Private Key Generator (PKG) can dynamically
add new members without altering previously distributed information (as in IBE
schemes). We also note that there is no hierarchy between identities, contrary
to HIBE (Hierarchical IBE [21,18,8]). No organization of the users is needed to
have short ciphertexts. Note that the public key is linear in the maximal size
of S, and not in the number of decryption keys that can be distributed, which
is the number of possible identities. The following framework is an example to
show the benefits of our solution: The PKG can send short term decryption
keys. Then sending a new decryption key could be conditional (each month, if
the user pays his bill for example), without affecting the performances of the
system. Indeed, there is no need to revoke previous keys, because the encryption
takes into account the set of users who can decrypt. We can compare our scheme
with BGW1 in such a situation: if we consider that the number of users who
can decrypt is s, and that each user receives a new key at the end of each time
period, then the size of the public key in BGW1 would be λPK = s · t with t the
number of time periods for example. In our scheme, we have λPK = s. Thus one
can note that BGW1 is not really suited to such an situation (the public key
would grow linearly with the number of time periods). In other words, in BGW1,
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the public key is linear in the number of private keys that can be distributed,
whereas in our construction, the public key is linear in the maximal number of
receivers of a ciphertext, which is independent of the number of private keys that
can be distributed. Indeed, in our case, the number of possible private keys is the
number of possible identities. Note that if there are n receivers and it happens
that n > m, we can just concatenate several encryptions together and get n/m
size ciphertexts (as in [13]), still with constant size private keys. Moreover, in
our construction, ciphertext size is deterministic whereas [13] makes probabilistic
efficiency claims.

2 Preliminaries

We propose a formal definition of an identity-based broadcast encryption scheme
and security notions that we associate to it. We basically include an Extract
procedure in the definition of Broadcast Encryption given in [10]. Our formal
model can also be viewed as a generalization of classical IBE systems. Concerning
the security, we follow the definition of the classical security notions for BE
(security against static adversaries) [10], which is close to the notion of selective-
ID security, used in [6,11].

2.1 Identity-Based Broadcast Encryption (IBBE)

An IBBE scheme involves an authority: the Private Key Generator (PKG). The
PKG grants new members capability of decrypting messages by providing each
new member (with identity IDi) a decryption key skIDi. The generation of skIDi

is performed using a master secret key MSK. The broadcaster encrypts mes-
sages and transmits these to the group of users via the broadcast channel. In
a (public-key) IBBE encryption scheme, the broadcaster does not hold any pri-
vate information and encryption is performed with the help of a public key PK
and identities of the receivers. Following the KEM-DEM methodology, broad-
cast encryption is viewed as the combination of a specific key encapsulation
mechanism (a Broadcast-KEM) with a symmetric encryption (DEM) that shall
remain implicit throughout the paper. More formally, an identity-based broad-
cast encryption scheme IBBE with security parameter λ and maximal size m of
the target set, is a tuple of algorithms IBBE = (Setup, Extract, Encrypt, Decrypt)
described as follows:

Setup(λ, m). Takes as input the security parameter λ and m the maximal size
of the set of receivers for one encryption, and outputs a master secret key
MSK and a public key PK. The PKG is given MSK, and PK is made public.

Extract(MSK, IDi). Takes as input the master secret key MSK and a user identity
IDi. Extract generates a user private key skIDi.

Encrypt(S, PK). Takes as input the public key PK and a set of included identities
S = {ID1, . . . , IDs} with s ≤ m, and outputs a pair (Hdr, K), where Hdr is
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called the header and K ∈ K and K is the set of keys for the symmetric
encryption scheme.

When a message M ∈ {0, 1}∗ is to be broadcast to users in S, the
broadcaster generates (Hdr, K) ← Encrypt(S, PK), computes the encryption
CM of M under the symmetric key K ∈ K and broadcasts (Hdr, S, CM ). We
will refer to Hdr as the header or broadcast ciphertext, (Hdr, S) as the full
header, K as the message encryption key and CM as the broadcast body.

Decrypt(S, ID, skID, Hdr, PK). Takes as input a subset S = {ID1, . . . , IDs} (with
s ≤ m), an identity ID and the corresponding private key skID, a header
Hdr, and the public key PK. If ID ∈ S, the algorithm outputs the message
encryption key K which is then used to decrypt the broadcast body CM and
recover M .

Remark. This model defines, when m = 1, an IBE system.

2.2 Security Notions for IBBE

The standard notion for BE schemes is Chosen Ciphertext Security against Static
Adversaries. For IBE, one standard notion is selective-ID security (weaker than
full security), where the adversary must choose at the beginning of the game the
set of identities he wants to attack.

Remark. Note that for m = 1 the following security model fits with IND-sID-
CCA security for IBE schemes, that is used in [6] for example.

IND-sID-CCA Security. We define IND-sID-CCA security of an IBBE system.
Security is defined using the following game between an adversary A and a
challenger. We basically refine the definition of [10], by adding extraction queries.
Both the adversary and the challenger are given as input m, the maximal size
of a set of receivers S.

Init: The adversary A first outputs a set S∗ = {ID∗
1, . . . , ID

∗
s} of identities that

he wants to attack (with s ≤ m).
Setup: The challenger runs Setup(λ, m) to obtain a public key PK. He gives A

the public key PK.
Query phase 1: The adversary A adaptively issues queries q1, . . . , qs0 , where

qi is one of the following:
• Extraction query (IDi) with the constraint that IDi /∈ S∗: The challenger

runs Extract on IDi and forwards the resulting private key to the adver-
sary.

• Decryption query, which consists of a triple (IDi, S, Hdr) with S ⊆ S∗ and
IDi ∈ S. The challenger responds with Decrypt(S, IDi, skIDi, Hdr, PK).

Challenge: When A decides that phase 1 is over, the challenger runs Encrypt
algorithm to obtain (Hdr∗, K) = Encrypt(S∗, PK) where K ∈ K. The chal-
lenger then randomly selects b ← {0, 1}, sets Kb = K, and sets K1−b to a
random value in K. The challenger returns (Hdr∗, K0, K1) to A.
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Query phase 2: The adversary continues to issue queries qs0+1, . . . , qs where
qi is one of the following:

• Extraction query (IDi), as in phase 1.
• Decryption query, as in phase 1, but with the constraint that Hdr �= Hdr∗.

The challenger responds as in phase 1.
Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game

if b = b′.

We denote by qD the total number of Decryption queries and by t the total
number of extraction queries that can be issued by the adversary during the
game. Viewing t, m, qD as attack parameters, we denote by Advind

IBBE(t, m, qD, A)
the advantage of A in winning the game:

Advind
IBBE(t, m, qD, A)= |2 × Pr[b′=b] − 1| = |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|

where the probability is taken over the random coins of A, the challenger and
all probabilistic algorithms run by the challenger.

Definition 1. Let Advind
IBBE(t, m, qD) = maxA Advind

IBBE(t, m, qD, A) where the
maximum is taken over all probabilistic algorithms A running in time poly(λ).
An identity-based broadcast encryption scheme IBBE is said to be (t, m, qD)-
IND-sID-CCA secure if Advind

IBBE(t, m, qD) = negl(λ).

IND-sID-CPA. Analogously to [10], we define semantic security for an IBBE
scheme by preventing the attacker from issuing decryption queries.

Definition 2. We say that an identity-based broadcast encryption system is
(t, m)-IND-sID-CPA secure if it is (t, m, 0)-IND-sID-CCA secure.

Remark. In [10], the choice of S∗ implies a choice of corrupted users, because
the total number of users is fixed in the setup. In the model we described before,
the corrupted users are not chosen at the beginning but adaptively. We describe
below a modification of our model which does not allow adaptive corruptions,
as in [10].

Definition 3. (t, m, qD)-IND-na-sID-CCA security (non adaptive sID): at ini-
tialization time, the attacker outputs a set S∗ = {ID∗

1, . . . , ID
∗
s} of identities that

he wants to attack, and a set C = { ¯ID1, . . . , ¯IDt} of identities that he wants to
corrupt (i.e. to obtain the corresponding private key). Thus the attacker issues t
extraction queries only at the beginning of the game.

Definition 4. We say that an identity-based broadcast encryption system is
(t, m)-IND-na-sID-CPA secure if it is (t, m, 0)-IND-na-sID-CCA secure.

Full collusion resistance. In an IBBE system, the number of possible users (iden-
tities) does not have to be fixed at the beginning, thus we cannot really talk about
full collusion resistance. If the number n of possible users was fixed, as in [10] for
example, our construction would be fully collusion resistant.
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2.3 Bilinear Maps

We briefly review the necessary facts about bilinear maps. Let G1, G2 and GT be
three cyclic groups of prime order p. A bilinear map e (·, ·) is a map G1×G2 → GT

such that for any generators g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp,

• e
(
g1

a, g2
b
)

= e (g1, g2)
ab (Bilinearity)

• e (g1, g2) �= 1 (Non-degeneracy).

A bilinear map group system B is a tuple B = (p, G1, G2, GT , e (·, ·)), composed
of objects as described above. B may also include group generators in its de-
scription. We impose all group operations as well as the bilinear map e (·, ·) to
be efficiently computable, i.e. in time poly(|p|).

As seen later, we make use of an arbitrary bilinear map group system in our
constructions. In particular, we do not need G1 and G2 to be distinct or equal.
Neither do we require the existence of an efficient isomorphism going either way
between G1 and G2, as it is the case for some pairing-based systems.

2.4 The General Diffie-Hellman Exponent Assumption

As in [15], we make use of the generalization of the Diffie-Hellman exponent as-
sumption due to Boneh, Boyen and Goh [8]. They introduced a class of assump-
tions which includes a lot of assumptions that appeared with new pairing-based
schemes. It includes for example DDH (in GT ), BDH, q−BDHI, and q−BDHE
assumptions.

We give an overview in the symmetric case. Let then B=(p, G1, G2, GT , e (·, ·))
be a bilinear map group system such that G1 = G2 = G. Let g0 ∈ G be a
generator of G, and set g = e (g0, g0) ∈ GT . Let s, n be positive integers and
P, Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp. Thus,
P and Q are just two lists containing s multivariate polynomials each. We write
P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) and impose that p1 = q1 = 1. For
any function h : Fp → Ω and vector (x1, . . . , xn) ∈ F

n
p , h(P (x1, . . . , xn)) stands

for (h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs. We use a similar notation
for the s-tuple Q. Let f ∈ Fp[X1, . . . , Xn]. It is said that f depends on (P, Q),
which we denote by f ∈ 〈P, Q〉, when there exists a linear decomposition

f =
∑

1≤i,j≤s

ai,j · pi · pj +
∑

1≤i≤s

bi · qi , ai,j , bi ∈ Zp .

Let P, Q be as above and f ∈ Fp[X1, . . . , Xn]. The (P, Q, f)-General Diffie-
Hellman Exponent problems are defined as follows.

Definition 5 ((P, Q, f)-GDHE). Given the tuple

H(x1, . . . , xn) =
(
g0

P (x1,...,xn), gQ(x1,...,xn)
)

∈ G
s × G

s
T ,

compute gf(x1,...,xn).
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Definition 6 ((P, Q, f)-GDDHE). Given H(x1, . . . , xn) ∈ Gs × Gs
T as above

and T ∈ GT , decide whether T = gf(x1,...,xn).

We refer to [8] for a proof that (P, Q, f)-GDHE and (P, Q, f)-GDDHE have generic
security when f �∈ 〈P, Q〉. We will prove our constructions are secure based on
the assumption that (P, Q, f)-GDDHE is intractable for any f �∈ 〈P, Q〉 and
polynomial parameters s, n = poly(λ). We just have to determine P , Q and f ,
such that we can perform our simulation, and then proving the condition on the
polynomials will prove the intractability of our problem (because as seen before,
the (P, Q, f)-GDDHE problem is hard for any choice of P , Q and f which satisfy
the aforementioned condition).

3 Our Construction

3.1 Description

In this section, we present our new IBBE, with constant size ciphertexts and
private keys.

Setup(λ, m). Given the security parameter λ and an integer m, a bilinear map
group system B = (p, G1, G2, GT , e (·, ·)) is constructed such that |p| = λ.
Also, two generators g ∈ G1 and h ∈ G2 are randomly selected as well as a
secret value γ ∈ Z�

p. Choose a cryptographic hash function H : {0, 1}� → Z�
p.

The security analysis will view H as a random oracle. B and H constitute
system public parameters. The master secret key is defined as MSK = (g, γ).
The public key is PK =

(
w, v, h, hγ , . . . , hγm)

where w = gγ , and v = e (g, h).

Extract(MSK, ID). Given MSK = (g, γ) and the identity ID, it outputs

skID = g
1

γ+H(ID)

Encrypt(S, PK). Assume for notational simplicity that S = {IDj}s
j=1, with s ≤

m. Given PK =
(
w, v, h, hγ , . . . , hγm)

, the broadcaster randomly picks k ←
Z�

p and computes Hdr = (C1, C2) and K where

C1 = w−k , C2 = hk·∏s
i=1(γ+H(IDi)) , K = vk .

Encrypt outputs (Hdr, K). (Then K is used to encrypt the message)
Decrypt(S, IDi, skIDi, Hdr, PK). In order to retrieve the message encryption key

K encapsulated in the header Hdr = (C1, C2), user with identity IDi and the
corresponding private key skIDi = g

1
γ+H(IDi) (with IDi ∈ S) computes

K =
(
e
(
C1, h

pi,S(γ)
)

· e (skIDi, C2)
) 1∏s

j=1,j �=i
H(IDj)

with

pi,S(γ) =
1
γ

·

⎛

⎝
s∏

j=1,j �=i

(γ + H(IDj)) −
s∏

j=1,j �=i

H(IDj)

⎞

⎠
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Correctness: Assuming C is well-formed for S:

K ′ := e
(
C1, h

pi,S(γ)
)

· e (skIDi, C2)

= e
(
g−k.γ , hpi,S(γ)

)
· e

(
g

1
γ+H(IDi) , hk·∏s

j=1(γ+H(IDj))
)

= e (g, h)−k·(∏s
j=1,j �=i(γ+H(IDj))−

∏s
j=1,j �=i H(IDj)) · e (g, h)k·

∏s
j=1,j �=i(γ+H(IDj))

= e (g, h)k
∏s

j=1,j �=i H(IDj)

= K
∏s

j=1,j �=i H(IDj)

Thus K
′ 1∏s

j=1,j �=i
H(IDj) = K.

Efficiency. Our construction achieves O(1)-size ciphertexts, O(m)-size public
keys and constant size private keys. Note that public key is linear in the maximal
size of S, and not in the number of decryption keys that can be distributed. If
we would like to fix the total number n of users, and set m = n, then we would
reduce the public key size by a factor of two from BGW. Note also that as we
said before, the broadcaster has to send the set S of identities that are included
in the ciphertext. This set is needed to decrypt, as in previous schemes, thus it
is counted in the full header, but not in the header.

3.2 Security Analysis

We prove the IND-sID-CPA security of our system by using the GDDHE
framework of [8]. We start by defining the following intermediate decisional
problem.

Definition 7 ((f, g, F )-GDDHE). Let B = (p, G1, G2, GT , e (·, ·)) be a bilinear
map group system and let f and g be two coprime polynomials with pairwise
distinct roots, of respective orders t and n. Let g0 be a generator of G1 and h0 a
generator of G2. Solving the (f, g, F )-GDDHE problem consists, given

g0 , g0
γ , . . . , g0

γt−1
, g0

γ·f(γ) , g0
k·γ·f(γ) ,

h0 , h0
γ , . . . , h0

γ2n

, h0
k·g(γ) ,

and T ∈ GT , in deciding whether T is equal to e (g0, h0)
k·f(γ) or to some random

element of GT .

We denote by Advgddhe(f, g, F, A) the advantage of an algorithm A in distinguish-
ing the two distributions and set Advgddhe(f, g, F ) = maxA Advgddhe(f, g, F, A)
over poly(|p|)-time A’s.

The following statement is a corollary of Theorem 2 which can be found in
Appendix A. This corollary concerns the case where the polynomials are of the
form described above (see the reformulation of the problem in Appendix A).
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Corollary 1 (Generic security of (f, g, F )-GDDHE). For any probabilistic
algorithm A that totalizes of at most q queries to the oracles performing the
group operations in G1, G2, GT and the bilinear map e (·, ·),

Advgddhe(f, g, F, A) ≤ (q + 2(n + t + 4) + 2)2 · d
2p

with d = 2 · max(n, t + 1).

IND-sID-CPA Security. Let IBBE denote our construction as per Section 3. We
state:

Theorem 1. For any n, t, we have Advind
IBBE(t, n) ≤ 2 · Advgddhe(f, g, F ).

The rest of this section is dedicated to proving Theorem 1. To establish the
semantic security of IBBE against static adversaries, we assume to be given
an adversary A breaking it under a (t, n)-collusion and we build a reduction
algorithm R that distinguishes the two distributions of the (f, g, F )-GDDHE
problem.

Both the adversary and the challenger are given as input n, the maximal size
of a set of included users S, and t the total number of extraction queries and
random oracle queries that can be issued by the adversary.

Algorithm R is given as input a group system B = (p, G1, G2, GT , e (·, ·)), and
a (f, g, F )-GDDHE instance in B (as described in Definition 7). We thus have f
and g two coprime polynomials with pairwise distinct roots, of respective orders
t and n, and R is given

g0 , g0
γ , . . . , g0

γt−1
, g0

γ·f(γ) , g0
k·γ·f(γ) ,

h0 , h0
γ , . . . , h0

γ2n

, h0
k·g(γ) ,

as well as T ∈ GT which is either equal to e (g0, h0)
k·f(γ) or to some random

element of GT .
For simplicity, we state that f and g are unitary polynomials, but this is not

a mandatory requirement.

Notations

• f(X) =
∏t

i=1(X + xi), g(X) =
∏t+n

i=t+1(X + xi)
• fi(x) = f(x)

x+xi
for i ∈ [1, t], which is a polynomial of degree t − 1

• gi(x) = g(x)
x+xi

for i ∈ [t + 1, t + n], which is a polynomial of degree n − 1

Init: The adversary A outputs a set S∗ = {ID∗
1, . . . , ID

∗
s∗} of identities that he

wants to attack (with s∗ ≤ n).
Setup: To generate the system parameters, R formally sets g = g0

f(γ) (i.e. with-
out computing it) and sets
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h = h0

∏ t+n
i=t+s∗+1(γ+xi) , w = g0

γ·f(γ) = gγ ,

v = e (g0, h0)
f(γ)·∏ t+n

i=t+s∗+1(γ+xi) = e (g, h) .

R then defines the public key as PK =
(
w, v, h, hγ , . . . , hγn)

. Note that R
can by no means compute the value of g. R runs A on the system parameters
(B, H) and PK, with H a random oracle controlled by R described below.

Hash Queries: At any time the adversary A can query the random oracle
on any identity IDi (at most t − qE times, with qE the number of extrac-
tion queries). To respond to these queries, R maintains a list LH of tuples
(IDi, xi, skIDi) that contains at the beginning:

{(∗, xi, ∗)}t
i=1 , {(IDi, xi, ∗)}t+s∗

i=t+1

(we choose to note “∗” an empty entry in LH). When the adversary issues
a hash query on identity IDi,
1. If IDi already appears in the list LH, R responds with the corresponding

xi.
2. Otherwise, R sets H(IDi) = xi, and completes the list with (IDi, xi, ∗).

Query phase 1: The adversary A adaptively issues queries q1, . . . , qm, where
qi is an Extraction query (IDi): The challenger runs Extract on IDi /∈ S∗ and
forwards the resulting private key to the adversary. To generate the keys,

• if A has already issued an extraction query on IDi, R responds with the
corresponding skIDi in the list LH.

• else, if A has already issued a hash query on IDi, then R uses the corre-
sponding xi to compute

skIDi = g0
fi(γ) = g

1
γ+H(IDi)

One can verify that skIDi is a valid private key. R then completes the list
LH with skIDi for IDi.

1. Otherwise, R sets H(IDi) = xi, computes the corresponding skIDi exactly
as above, and completes the list LH for IDi.

Challenge: When A decides that phase 1 is over, algorithm R computes Encrypt
to obtain (Hdr∗, K) = Encrypt(S∗, PK)

C1 =g0
−k·γ·f(γ) , C2 = h0

k·g(γ) , K = T
∏ t+n

i=t+s∗+1 xi ·e
(
g0

k·γ·f(γ), h0
q(γ)

)

with q(γ) = 1
γ ·

(∏t+n
i=t+s∗+1(γ + xi) −

∏t+n
i=t+s∗+1 xi

)
.

One can verify that:

C1 = w−k , C2 = h0
k·∏ t+n

i=t+s∗+1(γ+xi)·
∏ t+s∗

i=t+1(γ+xi) = hk·∏ t+s∗
i=t+1(γ+H(ID∗

i )) .

Note that if T = e (g0, h0)
k·f(γ), then K = vk.
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The challenger then randomly selects b ← {0, 1}, sets Kb = K, and sets
K1−b to a random value in K. The challenger returns (Hdr∗, K0, K1) to A.

Query phase 2: The adversary continues to issue queries qm+1, . . . , qE where
qi is an extraction query (IDi) with the constraint that IDi /∈ S∗ (identical
to phase 1).

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

One has

Advgddhe(f, g, F, R) = Pr[b′ = b| real] − Pr[b′ = b| rand]

=
1
2

× (Pr[b′ = 1|b = 1 ∧ real] − Pr[b′ = 1|b = 0 ∧ real])

− 1
2

× (Pr[b′ = 1|b = 1 ∧ rand] + Pr[b′ = 1|b = 0 ∧ rand]) .

Now in the random case, the distribution of b is independent from the adversary’s
view wherefrom

Pr[b′ = 1|b = 1 ∧ rand] = Pr[b′ = 1|b = 0 ∧ rand] .

In the real case however, the distributions of all variables defined by R per-
fectly comply with the semantic security game since all simulations are perfect.
Therefore

Advind
IBBE(t, n, A) = Pr[b′ = 1|b = 1 ∧ real] − Pr[b′ = 1|b = 0 ∧ real] .

Putting it altogether, we get that Advgddhe(f, g, F, R) = 1
2 · Advind

IBBE(t, n, A).

Remark. Note that if the attacker makes less key derivation queries than random
oracle queries, we generate keys that we never give out, but this is not a problem.

About chosen-ciphertext attacks. The Cannetti, Halevi, and Katz [12] result
applies here. Just making one of the identities that we broadcast to derive from
a verification key of a strong signature scheme. Then it can be used to sign the
ciphertext.

Removing the Random Oracle Model. One way to remove the random
oracle model could be to randomize the private key extraction as follows: For
an identity IDi, skIDi = g

1
γ+IDi could be replaced by Ai = g

1
γ+IDi+ri.α , with α an

element of MSK and ri chosen by the PKG. Note that this randomization has
already been employed in [6].

Note also that we could easily obtain IND-na-sID-CPA without random or-
acles by using an assumption which is not fully non-interactive. Indeed, dur-
ing the setup, if the algorithm is given a (f, g, F )-GDDHE instance, with g that
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corresponds to the target set and f to the corrupted set (chosen by the attacker
at initialization), then the rest of the proof can be done without any oracle.

4 Conclusion

We introduced the first identity-based broadcast encryption (IBBE) scheme with
constant size ciphertexts and private keys. One interesting open problem would
be to construct an IBBE system with constant size ciphertexts and private keys
that is secure under a more standard assumption, or which achieves a stronger
security notion, equivalent to full security in IBE schemes.
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A Intractability of (f, g, F )-GDDHE

In this section, we prove the intractability of distinguishing the two distributions
involved in the (f, g, F )-GDDHE problem (cf. Corollary 1, section 3.2). We first
review some results on the General Diffie-Hellman Exponent Problem, from [8].
In order to be the most general, we assume the easiest case for the adversary:
when G1 = G2, or at least that an isomorphism that can be easily computed in
either one or both ways is available.

Theorem 2 ([8]). Let P, Q ∈ Fp[X1, . . . , Xm] be two s-tuples of m-variate poly-
nomials over Fp and let F ∈ Fp[X1, . . . , Xm]. Let dP (resp. dQ, dF ) denote the
maximal degree of elements of P (resp. of Q, F ) and pose d = max(2dP , dQ, dF ).
If F /∈ 〈P, Q〉 then for any generic-model adversary A totalizing at most q queries
to the oracles (group operations in G, GT and evaluations of e) which is given
H(x1, . . . , xm) as input and tries to distinguish gF (x1,...,xm) from a random value
in GT , one has

Adv(A) ≤ (q + 2s + 2)2 · d
2p

.

Proof (of Corollary 1). In order to conclude with Corollary 1, we need to prove
that the (f, g, F )-GDDHE problem lies in the scope of Theorem 2. As already
said, we consider the weakest case G1 = G2 = G and thus pose h0 = g0

β . Our
problem can be reformulated as (P, Q, F )-GDHE where

P =
(

1, γ, γ2, . . . , γt−1, γ · f(γ), k · γ · f(γ)
β, β · γ, β · γ2, . . . , β · γ2n, k · β · g(γ)

)

Q = 1
F = k · β · f(γ),

and thus m = 3 and s = t + n + 4. We have to show that F is indepen-
dent of (P, Q), i.e. that no coefficients {ai,j}s

i,j=1 and b1 exist such that F =
∑s

i,j=1 ai,jpipj +
∑2

k=1 b1q1 where the polynomials pi and q1 are the one listed
in P and Q above. By making all possible products of two polynomials from P
which are multiples of k ·β, we want to prove that no linear combination among
the polynomials from the list R below leads to F :

R =

⎛

⎝
k · β · γ · f(γ), k · β · γ2 · f(γ), . . . , k · β · γn+1 · f(γ),
k · β · g(γ), k · β · γ · g(γ), . . . , k · β · γt−1 · g(γ)
k · β · γ · f(γ)g(γ)

⎞

⎠ .

Note that the last polynomial can be written as k ·β ·γ ·f(γ)g(γ) =
∑i=n

i=0 νi ·k ·
β ·γi+1 ·f(γ), and thus as a linear combination of the polynomials from the first
line. We therefore simplify the task to refuting a linear combination of elements
of the list R′ below which leads to f(γ):

R′ =
(

γ · f(γ), γ2 · f(γ), . . . , γn+1 · f(γ),
g(γ), γ · g(γ), . . . , γt−1 · g(γ)

)
.
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Any such linear combination can be written as

f(γ) = A(γ) · f(γ) + B(γ) · g(γ)

where A and B are polynomials such that A(0) = 0, deg A ≤ n + 1 and deg B ≤
t − 1. Since f and g are coprime by assumption, we must have f | B. Since
deg f = t and deg B ≤ t − 1 this implies B = 0. Hence A = 1 which contradicts
A(0) = 0. �
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Abstract. This paper presents a novel mode of operation of compres-
sion functions, intended for dedicated use as a message authentication
code (MAC.) The new approach is faster than the well-known Merkle-
Damg̊ard iteration; more precisely, it is (1 + c/b)-times as fast as the
classical Merkle-Damg̊ard hashing when applied to a compression func-
tion h : {0, 1}c+b → {0, 1}c. Our construction provides a single-key
MAC with provable security; we show that the proposed scheme yields a
PRF(pseudo-random function)-based MAC on the assumption that the
underlying compression function h satisfies certain PRF properties. Thus
our method offers a way to process data more efficiently than the conven-
tional HMAC without losing formal proofs of security. Our design also
takes into account usage with prospective compression functions; that is,
those compression functions h with relatively weighty load and relatively
large c (i.e., “wide-pipe”) greatly benefit from the improved performance
by our mode of operation.

Keywords: Merkle-Damg̊ard, pseudo-random function, related-key at-
tack, message authentication code, hash function, compression function,
mode of operation, NMAC, HMAC.

1 Introduction

The Merkle-Damg̊ard iteration [16,10] is a popular and classical mode of op-
eration for cryptographic hash functions. It is widely used not only for key-
less hash functions but also for randomized hash functions, message authen-
tication codes (MACs) and pseudo-random functions (PRFs.) It is popular,
widespread and successful in some respects, but nowadays some problems are be-
coming more and more evident, which initiates investigation into better modes of
operation [14,9].

Inspired by this trend, in this paper we free ourselves from the traditional
Merkle-Damg̊ard iteration and devise a novel mode of operation that can be
used exclusively as a secure, single-keyed MAC. Our method is the first of its
kind that can process a message more efficiently than the conventional Merkle-
Damg̊ard iteration and that can be provided with formal proofs of security. More
precisely, the proposed scheme is (1 + c/b)-times faster than the conservative
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Merkle-Damg̊ard hashing (and hence HMAC [2]), when applied to a compression
function h : {0, 1}c+b → {0, 1}c. For example, with the compression function
sha256 : {0, 1}256+512 → {0, 1}256 the new method yields a 50% increase in
performance as compared to HMAC. As to the security of our new scheme,
we obtain results that are similar to the recent ones of NMAC and HMAC
[2]; namely, we prove that the proposed mode of operation results in a PRF-
based MAC whose security relies on the pseudo-randomness properties of the
underlying compression function.

Brief Outline of Our Construction and Its Security. Our construction
can be regarded as a derivative of NMAC. Recall that NMAC is based on a
nested structure consisting of an inner part of hashing and an outer part of en-
cryption. In our construction we boost up the performance of the inner hashing
by introducing a novel method of iteration, where each invocation to the un-
derlying compression function h : {0, 1}c+b → {0, 1}c processes more input bits.
It takes c + b bits of a message, rather than just b bits as in the conventional
Merkle-Damg̊ard iteration.

The inner hashing should satisfy a certain form of collision resistance, in order
for the nested MAC to be secure. NMAC fulfills this requirement by assuming
that the underlying compression function is a PRF [3,2]. On the other hand,
in our construction it turns out that we need to impose an extra condition on
the underlying compression function in order to ensure the desired property of
the inner hashing. The additional condition is a type of pseudo-randomness in
a mild form of related-key setting; in fact, our proofs of security can be viewed
as a related-key version of those in [3].

Backgrounds. A motive for this work originates from the recent degrada-
tion of existing hash functions such as MD5 and SHA-1. These algorithms are
first shown to be vulnerable to collision attacks as keyless hash functions, but
the techniques are then extended to forgery and key-recovery attacks against
NMAC/HMAC constructed of these hash functions [8,13]. These attacks tell us
that it is high time to move toward new compression functions. In fact, NIST
announces ending its support for SHA-1 and recommends migrating to SHA-2
family by the year 2010 [17,18]. Since SHA-2 family are slower than SHA-1, the
replacement would result in lowering performance and losing an advantage of
hash-based MACs (as compared to MACs of other types, say block-cipher-based
or universal-hash-based ones.) One way to overcome this problem is to use a
more efficient mode of operation, absorbing the decrease in performance caused
by the new compression function.

Another reason to propose the new mode comes from a security principle of
iterated functions that the size c of a chaining variable be relatively large. This
requirement is particularly evident for MACs, due to the birthday attack [20]
showing that half the size of c of the chaining variable corresponds to a security
parameter. Having a large size c of a chaining variable is a good design principle
also in the context of keyless hash functions, as illustrated by the “wide-pipe”
argument [14]. Such design with large c, unfortunately, results in a performance
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disadvantage of the traditional Merkle-Damg̊ard iteration. On the other hand,
in our approach the size c is irrelevant in terms of efficiency, and indeed large c is
welcomed; such large c increases relative performance of our scheme as compared
to the conventional Merkle-Damg̊ard iteration.

Organization of This Paper. In the following section we review some of
the previous results concerning modes of operation of compression functions
and identify the position of this work among them. Section 3 introduces design
principles of our approach and a two-key prototype of our MAC construction.
In Sect. 4 and 5 we define security notions utilized in this paper and discuss
some aspects of them. Section 6 is devoted to security proofs of the two-key
construction. In Sect. 7 and 8 we show techniques of constructing a single-key
version and those of using a shorter key, respectively. Section 9 summarizes this
paper.

2 Related Work

Merkle-Damg̊ard. The Merkle-Damg̊ard iteration gives a way to extend the
domain of a compression function, having an attractive property that collision
resistance of the compression function extends to the entire hash function (in
either a keyless or keyed context) [16,10]. Owing to standardization and lack of
regulation on export control, hash functions such as MD5 and SHA-1 are widely
available in software libraries today. The widespread use of these keyless hash
functions implemented with the Merkle-Damg̊ard iteration also influences design
principles for randomized hash functions and hash-based MACs/PRFs.

Randomized Hash Functions. The question of domain extension of target-
collision-resistant (TCR) functions is intensively studied [7,21], where several
modes of operation are suggested, which extend a TCR compression function to
TCR hash functions. The common problem of these schemes is that the key size
grows as a message length does. This obstacle is resolved in [12], where proposed
is a mode of operation that runs as efficiently as the Merkle-Damg̊ard iteration
and that requires only a constant-size key. The trick is that its security is based
on the assumption that the compression function satisfies new (but reasonable)
properties, which are different from the notion of TCR.

MACs and PRFs. The NI and CS constructs [1,15] provide domain extension
of MACs. The problem is that these modes are slower than the Merkle-Damg̊ard
iteration. This drawback is absent from HMAC, which achieves the same effi-
ciency as the Merkle-Damg̊ard iteration. This is a natural outcome since HMAC
gives domain extension of PRFs, not MACs.1

In this paper we push ahead with this idea in order to obtain a PRF via a
mode of operation that is even more efficient than HMAC. The trick is that
1 Recall that a PRF is a secure MAC. There is another construct based on a PRF,

called XOR-MAC [4]. XOR-MAC is capable of parallel processing, yet without it
XOR-MAC is in general slower than the Merkle-Damg̊ard iteration.
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Table 1. Comparison of modes of operation for MAC/PRF

Performance Goal Assumptions2 Reference

NI / CS < Merkle-Damg̊ard MAC MAC [1,15]
NMAC / HMAC = Merkle-Damg̊ard MAC pp-MAC, 2PRF [3,2]

PRF PRF
Proposed > Merkle-Damg̊ard MAC pp-MAC, Δ-2PRF —

construction PRF PRF, Δ-2PRF

our security result is based on the assumption that the underlying compression
function satisfies, in addition to the usual PRF, a new (but reasonable) PRF
property (which we call Δ-2PRF).

Our construction is dedicated to MAC/PRF use. In return, our approach ac-
complishes higher performance than the Merkle-Damg̊ard iteration, which seems
to be hard to realize in the context of keyless or randomized hash functions —
we may consider the circumstances as evidence that our mode of operation fully
takes advantage of the presence of a “secret” key in the MAC/PRF situation.
See Table 1 for comparison of these MAC/PRF modes.

Multi-property Preservation. EMD [5] and ESh [6] are modes of operation
that preserve multiple properties (e.g., collision resistance, pseudo-randomness,
etc..) These are integrative approaches, taking the converse point of view to the
problem of domain extension; our goal is to construct a mode of operation that is
specific to MAC/PRF property. While EMD or ESh offers a single program that
can be used for multiple purposes (and hence a small source code, less confusion
and a safety net), it may not perform the best with respect to a specific property
(e.g., pseudo-randomness.) It should be noted that the code size of our mode of
operation is much smaller than that of the compression function: The description
of our construction requires only a loop, an XOR and a concatenation.

ENMAC. ENMAC [19] is an improvement over NMAC/HMAC, which is effi-
cient particularly with short messages. This technique is also orthogonal to our
approach, but it is so in a compatible way. That is, both ENMAC and our MAC
in principle conform to the nested construction of NMAC (Recall that NMAC
consists of outer encryption and inner hashing.) While ENMAC is an improve-
ment on the outer function of NMAC, our construction is an improvement on the
inner function. Hence ENMAC and our approach can coexist, but throughout
the paper we base our construction upon the conventional NMAC for the sake
of simplicity.3

2 “pp-MAC” stands for privacy-preserving MAC, and “2PRF” for PRF against just
two oracle queries.

3 Intuitively, ENMAC improves performance mainly for short messages while our con-
struction does so mainly for long messages. To a greater or lesser degree, each scheme
alone improves performance essentially for all messages.
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3 Design Principles

Merkle-Damg̊ard. Figure 1 depicts the traditional Merkle-Damg̊ard iteration
using a compression function h : {0, 1}c+b → {0, 1}c. In this classical hashing, a
message M is divided into b-bit blocks as M = m1‖m2‖ · · · , and it is processed
via the iteration xi

def= h(xi−1‖mi). Note that each invocation to h processes
b-bits of M in this conservative mode of operation.
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Fig. 1. Usual Merkle-Damg̊ard iteration

Boosting. We start by trying to “maximize” the efficiency of each invocation
to the compression function h. Note that h has (c + b)-bit input; we devise
a mode of iteration we call “hyper-Merkle-Damg̊ard,” in which each invoca-
tion to h disposes of c + b bits of a message M . We do this by XOR-ing the
chaining variable xi and the next c bits of M on each input. This is illustrated
in Fig. 2. In the hyper-Merkle-Damg̊ard iteration, a message M is divided as
M = m1‖m2‖ · · · so that |m1| = |m3| = · · · = c and |m2| = |m4| = · · · = b. We
refer to the (c + b)-bit segment m2i−1‖m2i as a “chunk.” The iteration works as
xi

def= h
(
(xi−1⊕m2i−1)‖m2i

)
. Thus, the hyper-Merkle-Damg̊ard iteration is c/b

as fast again as the usual Merkle-Damg̊ard.
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Fig. 2. Hyper-Merkle-Damg̊ard iteration

Keying. We adopt the popular approach of keying a compression function h
via its chaining variable. Namely, we obtain hK : {0, 1}b → {0, 1}c by defining

hK(·) def= h(K‖·) where K
$← {0, 1}c. Also, let {0, 1}(c+b)∗ denote the set of bit

strings whose lengths are multiples of c + b bits and define HK : {0, 1}(c+b)∗ →
{0, 1}c as x1 ← hK⊕m1(m2), xi ← hxi−1⊕m2i−1(m2i), HK(M) def= xn, for an
n-chunk message M = m1‖ · · · ‖m2n.
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Nesting. The keyed function HK constructed above as it is cannot be used
as a secure MAC/PRF. In order to turn it into secure construction, we em-
ploy the “nested approach” of the NI and NMAC construction. Namely, define
BNMACK,K′ : {0, 1}(c+b)∗ → {0, 1}c via BNMACK,K′(·) def= hK′

(
HK(·)‖1b−c

)
.4

See Fig. 3 for a pictorial definition of our BNMAC construction. As already
pointed out in [2], the conventional NMAC construction can be viewed as a com-
putational version of the Carter-Wegman paradigm. Similarly, our result can be
viewed as a related-key version of the result for the conventional NMAC. Since
our assumptions concerning the function h include a related-key, non-standard
one, we try to base the assumption upon as weak a condition as possible. We
successfully do this; the condition only allows an adversary to make just two
(related-key) oracle queries in a non-adaptive way.
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Fig. 3. Proposed MAC construction, double-key version (BNMAC)

Padding. The above BNMACK,K′(·) accepts only messages whose lengths are
multiples of c + b bits. In order for the scheme to process a message of arbitrary
length, the message M needs to be somehow padded. It turns out that any (one-
to-one) padding {0, 1}∗ → {0, 1}(c+b)∗ works with our BNMAC construction, so
hereafter we assume that a message always has a length multiple of c + b bits
(As an example of padding, just append 10 · · · 0).

4 Definitions

Notation. The concatenation x‖y of strings x and y is sometimes written simply
xy. We say that a string x is a prefix of another string y and write x ⊂ y if there
exists a string e such that xe = y. We write x

$← X to denote the operation of
choosing an element uniformly at random from a set X and assigning its value
to a variable x. An adversary A is a probabilistic machine that may have access
to an oracle O. The notation AO ⇒ x indicates the event that, when run with
the oracle O, the adversary A outputs x. An oracle O is often defined by a game
G. In such a case we write AG in place of AO. We also write A ⇐ x to denote
the operation of inputting the value x into A.
4 Here we assume that b ≥ c. Although we could get around this requirement by

extending the outer function via Merkle-Damg̊ard iteration [22], yet for simplicity
we assume this condition throughout the paper.
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Notion of PRF. Let
{
fK : M → X

}
be a family of functions with K ∈

{0, 1}k. A prf-adversary A tries to distinguish between two oracles, the “real”

oracle being fK(·), K
$← {0, 1}k and the “random” oracle being f(·), f

$←
{
f :

M → X
}

(Fixing K fixes the real oracle, and fixing f fixes the random oracle.)
Succinctly, define the advantage function of A as

Advprf
f (A) def= Pr

[
Af ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
,

where by f we denote the real oracle and by $ the random oracle. The first
probability is defined over the coins of A and K

$← {0, 1}k, and the second

probability over the coins of A and f
$←

{
f : M → X

}
.

New Notion of Δ-2PRF. Let
{
fK : M → X

}
be a family of functions with

K ∈ {0, 1}k. A Δ-2prf adversary A tries to distinguish between two games,
as defined in Table 2. Namely, at the beginning of each game the adversary
A queries once (m, Δ, m′) with m, m′ ∈ M and Δ ∈ {0, 1}k. Then the oracle
answers (x, x′) to the adversary A, whose values are determined differently in
each game as described. Finally A outputs 1 or 0. Succinctly define

AdvΔ-2prf
f (A) def= Pr

[
Af ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
,

where again by f we denote the real oracle and by $ the random oracle.

Table 2. Real and random games for Δ-2PRF

Real Random

A ⇒ (m,Δ, m′) A ⇒ (m,Δ, m′)

K
$← {0, 1}k x, x′ $← X

x ← hK(m); x′ ← hK⊕Δ(m′) If Δ = 0 and m = m′ then x′ ← x EndIf
A ⇐ (x, x′) A ⇐ (x, x′)

Resource Parameters. An adversary A’s resources are quantified with re-
spect to its time complexity t, the number q of oracle queries and the length
� (in chunks, if applicable) of each query. We adopt the convention that the
time complexity t includes the total execution time of an overlying game (the
maximum of each game) plus the code size of A. Define

Advgoal
f (t, q, �) def= max

A
Advgoal

f (A),

where max is taken over adversaries A, each having time complexity at most t
and making at most q oracle queries, each query being at most � chunks. Often
one or two of t, q, � are inappropriate to be quantified, in which case they are
omitted from the notation. Here, “goal” indicates the property in question, e.g.,
“prf.” We write Tf (�) to denote the time complexity that takes to compute a
function f on a input whose length is � chunks (and again, � may be omitted).
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5 Discussion on Δ-2PRF Property

Since we introduce the new notion Δ-2PRF on which our proofs of security are
based, in this section we take a closer look at this requirement on the underlying
compression function h. Intuitively, we can view the Δ-2PRF condition as a
form of pseudo-randomness under a related-key attack. Yet, it is so in one of
the weakest forms possible; namely, in Δ-2PRF, an adversary is limited to ask
only two queries, and these queries must be performed non-adaptively. In other
words, he must submit his entire queries (two messages m, m′ and a relation Δ)
together at the beginning of the game.

So the notion of Δ-2PRF itself is not a demanding requirement, though it
cannot be deduced from the standard PRF (against q queries) assumption. We
remark that the condition that h be a Δ-2PRF and the condition that h be a
PRF (against q queries) are independent; neither one implies the other.

To get the feel of handling the notion of Δ-2PRF, we give an example of
MD5. Let md5 : {0, 1}128+512 → {0, 1}128 be the compression function of MD5.
It is known [11] that md5 is vulnerable to so called a “pseudo-collision” attack.
That is, for Δ

def= 8000 0000 8000 0000 8000 0000 8000 0000 the condition
md5K(m) = md5K⊕Δ(m) (K $← {0, 1}128, m

$← {0, 1}512) holds with a proba-
bility of about 1/246 
 1/2128. Using this technique, an adversary A can attack

md5 in the Δ-2PRF sense: A queries (m, Δ, m) (m $← {0, 1}512) and receives
(x, x′); if x = x′, then A outputs 1; otherwise, A outputs 0. Such an A has ad-
vantage AdvΔ-2prf

md5 (A) ≈ 1/246 −1/2128. Thus, md5 does not satisfy the Δ-2PRF
property.

This characteristic of md5 is rather critical in its architecture. We expect that
this sort of attack be precluded by structural designs of forthcoming compression
functions, and certainly we would hope for designs without such a flaw in more
“matured” compression functions such as sha256.

At the end of this discussion, we emphasize the point that breaking Δ-2PRF
is easier than finding pseudo-collisions. Our proofs of security require that h be
a Δ-2PRF, and h just being resistant to pseudo-collisions would not suffice for
our purpose according to the current reduction.

6 Security Proofs (Double-Key Version)

This section proves the following:

Theorem 1. Let BNMAC be the two-key construction as defined in Sec. 3. If
the underlying compression function h is a PRF and a Δ-2PRF, then BNMAC
is a PRF. More concretely, we have

Advprf
BNMAC(t, q, �) ≤ Advprf

h (t, q) +
(

q

2

)
·
(

2(� + 1) · AdvΔ-2prf
h (t′) +

1
2c

)
,

where t′ = (4� + 1) · Th.
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BNMAC: PRF 

H: cAU + h: PRF 

h: ∆#∆
′-2PRF

h: ∆∆
′-2PRF 

h: ∆-2PRF 

H: pf-2PRF 

Lemma 2

Lemma 3

Lemma 1

Lemma 4

Lemma 5

Fig. 4. A proof map

The reduction in the above theorem is essentially tight, due to the birthday
attack [20]. For more discussion on the gap from the exactly tight bound, see [2].

In order to prove this theorem, we need the following five lemmas. The five
lemmas sequentially reduce the PRF condition on the BNMAC scheme to the
PRF and Δ-2PRF conditions on the underlying compression function. Along the
proofs, we need several intermediate security notions, which are defined when
they first appear. See Fig. 4 for a guide map.

For stating the first lemma, we need to define the notion of cAU (com-
putational almost-universality.) An au-adversary A against a keyed function
HK : {0, 1}(c+b)∗ → {0, 1}c (with K ∈ {0, 1}c) simply outputs a pair of messages
(M, M ′) with M, M ′ ∈ {0, 1}(c+b)∗; define

Advau
H (A) def= Pr

[
HK(M) = HK(M ′) ∧ M �= M ′ ∣∣A ⇒ (M, M ′), K $← {0, 1}c

]
.

Here note that such an adversary is non-adaptive. It also means that we can
disregard the time complexity of au-adversaries (and often it is set to 2 · TH(�)).

Lemma 1. Let HK : {0, 1}(c+b)∗ → {0, 1}c and hK′ : {0, 1}b → {0, 1}c be
keyed functions with K, K ′ ∈ {0, 1}c. If HK is cAU and hK′ a PRF, then the
composition h◦H(K′,K) defined by hK′

(
HK(M)‖1b−c

)
is a PRF. More concretely

written, the following holds:

Advprf
h◦H(t, q, �) ≤ Advprf

h (t, q) +
(

q

2

)
· Advau

H (t′, �),

where t′ = 2 · TH(�).
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Table 3. Real and random games for 2PRF

Real Random

A ⇒ (M, M ′) A ⇒ (M, M ′)

K
$← {0, 1}c x, x′ $← {0, 1}c

x ← HK(M); x′ ← HK(M ′) If M = M ′ then x′ ← x EndIf
A ⇐ (x, x′) A ⇐ (x, x′)

Table 4. Real and random games for Δ#Δ′-2PRF

Real Random

A ⇒ (Δ, m,#, Δ′, m′) A ⇒ (Δ, m, #, Δ′, m′)

K, K′ $← {0, 1}c x, x′ $← {0, 1}c

If # = 1 then If # = 1 and
x ← hK⊕Δ(m); x′ ← hK⊕Δ′(m′) (Δ, m) = (Δ′, m′) then

Else (i.e., # = 2) x′ ← x
x ← hK⊕Δ(m); x′ ← hK′⊕Δ′(m′) EndIf

EndIf; A ⇐ (x, x′) A ⇐ (x, x′)

Proof. This lemma (along with its pp-MAC version) is proved in [2]. ��

The next lemma relates cAU to pseudo-randomness property, utilizing the it-
erative structure of the hyper-Merkle-Damg̊ard. See Table 3 for the notion of
2PRF. We say that a 2prf-adversary A is “prefix-free” (pf-2prf) if M �⊂ M ′ and
M �⊃ M ′, where (M, M ′) is the query output by A. Note that in particular,
prefix-freeness implies M, M ′ �= ε (null) and M �= M ′.

Lemma 2. Let h : {0, 1}c+b → {0, 1}c be a compression function and HK :
{0, 1}(c+b)∗ → {0, 1}c the hyper-Merkle-Damg̊ard iteration constructed of h,
keyed via its initial chaining variable. If HK is prefix-free 2PRF, then it is cAU.
More concretely,

Advau
H (t, �) ≤ Advpf-2prf

H (t, � + 1) +
1
2c

.

Proof. This can be easily proven by using the well-known “extension
trick” [2]. ��

Now we reduce the condition that H be a prefix-free 2PRF to the condition that
h be a Δ#Δ′-2PRF, whose definition can be found in Table 4.

Lemma 3. If h is a Δ#Δ′-2PRF, then its hyper-Merkle-Damg̊ard iteration H
is a prefix-free PRF. More concretely, we have

Advpf-2prf
H (t, �) ≤ � · AdvΔ#Δ′-2prf

h (t′),

where t′ = t + 2 · TH(�).
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Game Gi Adversary Bi

A ⇒ (M, M ′) A ⇒ (M, M ′)
If m1 · · · m2i = m′

1 · · · m′
2i then

(x, x′) ← O(m2i+1, m2i+2, 1, m′
2i+1, m

′
2i+2)

x, x′ $← {0, 1}c Else (i.e., m1 · · · m2i �= m′
1 · · · m′

2i)
(x, x′) ← O(m2i+1, m2i+2, 2, m′

2i+1, m
′
2i+2)

EndIf
Define (y, y′) as in Table 5 Define (y, y′) as in Table 6
A ⇐ (y, y′) A ⇐ (y, y′)

Output whatever A outputs

Fig. 5. Intermediate games Gi and adversaries Bi

Table 5. Definition of (y, y′) in game Gi

n′ ≤ i n′ ≥ i + 1

n ≤ i y ← x y ← x
y′ ← x′ y′ ← Hx′(m′

2i+1 · · · m′
2n′)

n ≥ i + 1 y ← Hx(m2i+1 · · · m2n) If m1 · · · m2i = m′
1 · · · m′

2i then
y′ ← x′ y ← Hx(m2i+1 · · · m2n)

y′ ← Hx(m′
2i+1 · · · m′

2n′)
Else (i.e., m1 · · · m2i �= m′

1 · · · m′
2i)

y ← Hx(m2i+1 · · · m2n)
y′ ← Hx′(m′

2i+1 · · · m′
2n′)

Proof. Let A be a pf-2prf adversary attacking H , having time complexity at most
t and querying messages each of at most � chunks. We would like to bound the
advantage Advpf-2prf

H (A). Let (M, M ′) denote the pair of messages that A out-
puts, and write M = m1 · · · m2n (n chunks) and M ′ = m′

1 · · · m′
2n′ (n′ chunks).

Note that n, n′ ≤ �. Consider the intermediate games Gi defined in Fig. 5 for
i = 0, · · · , �. Note that running AG0 can be identified with running AH , treating
the condition m1 · · · m2i = m′

1 · · · m′
2i to be true when i = 0. Also, running AG�

coincides with the random game for A. Hence

Advpf-2prf
H (A) = Pr

[
AH ⇒ 1

]
− Pr

[
A$ ⇒ 1

]

= P0 − P�

=
�−1∑

i=0

(Pi − Pi+1),

where Pi
def= Pr

[
AGi ⇒ 1

]
for i ∈ {0, . . . , �}.

Now for each i = 0, . . . , � − 1 we define an adversary Bi that uses A as a
subroutine and attacks h in the Δ#Δ′-2PRF sense, as described in Fig. 5. It
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Table 6. Definition of (y, y′) in adversary Bi

n′ ≤ i n′ ≥ i + 1

n ≤ i y ← x y ← x
y′ ← x′ y′ ← Hx′(m′

2i+3 · · · m′
2n′)

n ≥ i + 1 y ← Hx(m2i+3 · · · m2n) y ← Hx(m2i+3 · · · m2n)
y′ ← x′ y′ ← Hx′(m′

2i+3 · · · m′
2n′)

Table 7. Real and random games for ΔΔ′-2PRF

Real Random

A ⇒ (Δ, m, Δ′, m′) A ⇒ (Δ, m, Δ′, m′)

K
$← {0, 1}c x, x′ $← {0, 1}c

x ← hK⊕Δ(m) If (Δ, m) = (Δ′, m′) then
x′ ← hK⊕Δ′(m′) x′ ← x EndIf
A ⇐ (x, x′) A ⇐ (x, x′)

can be directly verified that Pr
[
Bh

i ⇒ 1
]

= Pr
[
AGi ⇒ 1

]
= Pi and Pr

[
B$

i ⇒ 1
]

= Pr
[
AGi+1 ⇒ 1

]
= Pi+1. Hence

Advpf-2prf
H (A) =

�−1∑

i=0

(Pi − Pi+1)

=
�−1∑

i=0

(
Pr

[
Bh

i ⇒ 1
]
− Pr

[
B$

i ⇒ 1
])

=
�−1∑

i=0

AdvΔ#Δ′-2prf
h (Bi)

≤
�−1∑

i=0

AdvΔ#Δ′-2prf
h (t′)

= � · AdvΔ#Δ′-2prf
h (t′). ��

Next we reduce the condition that h be a Δ#Δ′-2PRF to the condition that
h be a ΔΔ′-2PRF, whose definition can be found in Table 7. The notion of
ΔΔ′-2PRF is simpler than that of Δ#Δ′-2PRF, and it is also closer to that of
Δ-2PRF.

Lemma 4. If a compression function h is ΔΔ′-2PRF, then it is Δ#Δ′-2PRF.
More concretely, we have

AdvΔ#Δ′-2prf
h (t) ≤ 2 · AdvΔΔ′-2prf

h (t′),

where t′ = t + Th.
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Adversary C Adversary C′

B ⇒ (Δ, m, #, Δ′, m′) B ⇒ (Δ, m, #, Δ′, m′)

If # = 1 then K
$← {0, 1}c; x ← hK⊕Δ(m)

(x, x′) ← O(Δ, m, Δ′, m′) If # = 1 then
Else (i.e., # = 2) x′ ← hK⊕Δ′(m′)

(x, x) ← O(Δ, m, Δ, m) Else (i.e., # = 2)

x′ $← {0, 1}c EndIf (x′, x′) ← O(Δ′, m′, Δ′, m′) EndIf
B ⇐ (x, x′) B ⇐ (x, x′)
Output whatever B outputs Output whatever B outputs

Fig. 6. Adversaries C, C′

Proof. Let B be a Δ#Δ′-2prf adversary against h having time complexity at
most t. We create ΔΔ′-2prf adversaries C and C′, each using B as its subroutine,
as described in Fig. 6. It can be directly verified that Pr

[
Ch ⇒ 1

]
= Pr

[
C′$ ⇒ 1

]
,

Pr
[
C$ ⇒ 1

]
= Pr

[
B$ ⇒ 1

]
and Pr

[
C′h ⇒ 1

]
= Pr

[
Bh ⇒ 1

]
. Therefore

AdvΔ#Δ′-2prf
h (B) = Pr

[
Bh ⇒ 1

]
− Pr

[
B$ ⇒ 1

]

= Pr
[
C′h ⇒ 1

]
− Pr

[
C′$ ⇒ 1

]
+ Pr

[
Ch ⇒ 1

]
− Pr

[
C$ ⇒ 1

]

= AdvΔΔ′-2prf
h (C′) + AdvΔΔ′-2prf

h (C)

≤ 2 · AdvΔΔ′-2prf
h (t′). ��

Finally, we are ready to reach the condition of Δ-2PRF. The last lemma gives
us straight-forward reduction of ΔΔ′-2PRF to Δ-2PRF:

Lemma 5. If a compression function h is Δ-2PRF, then it is ΔΔ′-2PRF. More
concretely, we have

AdvΔΔ′-2prf
h (t) ≤ AdvΔ-2prf

h (t).

Proof. Let C be a ΔΔ′-2prf adversary against h having time complexity at most
t. We construct a Δ-2prf adversary D against h that uses C as its subroutine,
as follows.

D runs C and obtains the query (Δ, m, Δ′, m′). Then D asks its oracle a query
and receives (x, x′) ← O(m, Δ⊕Δ′, m′). D forwards (x, x′) to C and outputs
whatever C outputs.

Here observe that Pr
[
Dh ⇒ 1

]
= Pr

[
Ch ⇒ 1

]
and that Pr

[
D$ ⇒ 1

]
=

Pr
[
C$ ⇒ 1

]
. Hence we have

AdvΔΔ′-2prf
h (C) = AdvΔ-2prf

h (D)

≤ AdvΔ-2prf
h (t),

neglecting the increase in D’s time complexity. ��
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The above five lemmas prove Theorem 1. Recall that, without loss of generality
we can estimate the time complexity of a cAU adversary to be 2·TH(�). So for the
time complexity t′ in Theorem 1 we get t′ = 2·TH(�)+2·TH(�)+Th = (4�+1)·Th.

7 Single-Key Versions

Our BNMAC construction so far requires two independent keys K, K ′ ∈ {0, 1}c,
which may be an undesirable feature in some cases in practice. However, this
problem is easily resolved through the pseudo-randomness of h. We show two
solutions.

The first method is a trivial way of deriving two keys. Let K∗ ∈ {0, 1}c be a
master key. From K∗ derive two keys as K ← hK∗

(
0b

)
and K ′ ← hK∗

(
1b

)
. We

then use these two keys in place of K, K ′ ∈ {0, 1}c in the BNMAC construction.
See Fig. 7 for a pictorial description. The only difference between the original
double-key version and this single-key variant lies in the way how the two keys
K and K ′ are produced (in the former K, K ′ $← {0, 1}c, whereas in the latter

these keys are derived via h from K∗ $← {0, 1}c.) Hence distinguishing between
the two versions amounts to breaking the pseudo-randomness of h (with two
constant queries 0b and 1b to the oracle.) It should be noted that if we replace
the PRF assumption with that of pp-MAC in Lemma 1, then the pp-MAC
version of Theorem 1 still holds for this single-key variant. This is because the
2PRF requirement on h for key derivation is absorbed into Δ-2PRF of h, not
PRF (against q queries).

The second method takes the idea from [22]. See Fig. 8 for the description
of this variant. While this version saves one extra block of invocation to the
compression function, there are two points to be attended to. One is that now
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we need the condition b ≥ c + 1 (rather than b ≥ c.) The other is that the
pp-MAC version appears to be infeasible in this case.

8 Using a Shorter Key

Recall that the size c of a chaining variable may be larger than one’s desired
security parameter, depending on a choice of compression functions. This means
that in practice the desired size k of the master key K∗ may be smaller than c,
disabling the above single-key construction.

This difficulty can be settled in several ways. One is to use only the first k
bits of c in the above single-key variant (and the remaining c − k bits may be
padded with zeros.) Another is to fill out the c bits by multiple copies of a k-bit
key, as K∗‖K∗‖ · · · . In either example, note that we still do not lose our formal
proofs of security with the first version of the single-key construction, assuming
additionally that the newly keyed function is a 2PRF against corresponding two
oracle queries.

9 Summary

This paper proposes a novel mode of operation of compression functions, called
hyper-Merkle-Damg̊ard, which can process a message faster than the conven-
tional Merkle-Damg̊ard iteration and can be used exclusively as a MAC/PRF.
The proofs of security are based on the assumption that the underlying com-
pression function satisfies some PRF properties. These PRF properties include
a new notion which we call Δ-2PRF. We carefully take a look at this property
and identify it as not a demanding condition. We first give proofs of security of a
double-key version, called BNMAC, and then show that single-key versions can
be easily derived, along with flexibility of the key size.

Acknowledgments. The author would like to thank ASIACRYPT 2007 anony-
mous reviewers for their valuable comments, insightful questions and useful sug-
gestions. The feedback helps the author improve the quality of the paper in its
various aspects.
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Abstract. In an effort to design a MAC scheme that is built using
block cipher components and runs faster than the modes of operation for
message authentication, Daemen and Rijmen have proposed a generic
MAC construction ALRED and a concrete ALRED instance Pelican.
The Pelican MAC uses four rounds of AES as a building block to com-
pute the authentication tag in a CBC-like manner. It is about 2.5 times
faster than a CBC-MAC with AES, but it is not proven secure. Mine-
matsu and Tsunoo observed that one can build almost universal (AU2)
hash functions using differentially uniform permutations (e.g., four AES
rounds with independent keys), and hence, provably secure MAC schemes
as well. They proposed two MAC schemes MT-MAC and PC-MAC.
MT-MAC hashes the message using a Wegman-Carter binary tree. Its
speedup for long messages approaches 2.5, but it is not very memory
efficient. PC-MAC hashes the message in a CBC-like manner. It is more
memory efficient. However, its speedup over the message authentication
modes is about 1.4.

We notice that using a non-linear permutation as a building block,
one can construct almost XOR universal (AXU2) hash functions whose
security is close to the maximum differential probability of the underly-
ing non-linear permutation. Hence, using four AES rounds as a building
block will lead to efficient Wegman-Carter MAC schemes that offer much
better security than the modes of operation for message authentication.
If the target security is that of the message authentication modes with
AES, then one can use non-linear permutations defined on 64-bit blocks
and achieve greater speedup and better key agility. For instance, the ide-
ally achievable speedup when using the 64-bit components we suggest is
3.3 to 5.0 as opposed to the 2.5 speedup when using four AES rounds.

Keywords: Message authentication, Wegman-Carter construction, uni-
versal hash functions, block ciphers, maximum differential probability.

1 Introduction

Message Authentication. Message authentication is one of the basic infor-
mation security goals, and it addresses the issues of source corroboration and
� This work was funded in part by NSF CT grant number: 0627688 and US Army

ARDEC/Picattiny Arsenal.
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improper or unauthorized modification of data. The message authentication
model usually involves three participants: a sender, a receiver and an adver-
sary. The sender and the receiver have agreed on a secret key. Prior to sending
a message, the sender uses a signing algorithm that given the message and the
secret key outputs an authentication tag (or MAC). The sender sends the tag
along with the message to the receiver. On receipt, the receiver uses a verifica-
tion algorithm that given the secret key, the message and the tag returns 1 if
the MAC is valid, or returns 0 otherwise. The goal of the adversary is to trick
the receiver into accepting a message that was not sent by the sender.

Message authentication has been heavily addressed in the literature. We
briefly overview some of the results. There are three common approaches to
message authentication. One approach involves using cryptographic hash func-
tions. The first such schemes were proposed by Tsudik [49] and Kaliski and
Robshaw [29], and later analyzed by Preneel and Van Oorschot [44,45]. A popu-
lar hash function based MAC is the HMAC construction of Bellare, Canetti and
Krawczyk [3,5].

Another approach to message authentication involves secure block ciphers
modeled as pseudorandom permutations. The CBC MAC [20,25] is probably
the most studied MAC construction based on block ciphers. Bellare, Kilian and
Rogaway proved its security for fixed-length messages [2]. Petrank and Rackoff
[43] (another proof was provided by Vaudenay [50]) showed that EMAC [6],
a CBC MAC variant using additional encryption, is secure when the message
length is a multiple of the block size. Black and Rogaway [13] proposed a solution
for arbitrary message lengths that uses three keys and only one key scheduling
of the underlying block cipher. Jaulmes, Joux and Valette proposed RMAC [27],
which is an extension of EMAC using two keys and a randomness. Iwata and
Kurosawa provided solutions that use only two [37] and one key [27]. There are
also block cipher based MAC constructions that do not follow the CBC paradigm
(e.g., the PMAC construction of Black and Rogaway [14]).

The third approach is the universal hash function approach. Wegman and
Carter were the first to propose the notion of universal hash functions [16] and
their use in message authentication [51]. The construction proposed by Wegman
and Carter provides unconditional security. A computationally secure scheme
can be obtained if the random keys are replaced by pseudorandom keys. This
approach was first studied by Brassard [15]. The topics related to universal hash
functions and unconditional message authentication have been studied a lot in
the past years. Some of the results include the following. Unconditional mes-
sage authentication was first considered by Gilbert, Williams and Sloane [22].
Simmons [47] developed the theory of unconditional authentication and derived
some lower bounds on the deception probability. The use of universal hashing to
construct unconditionally secure authentication codes has also been studied by
Stinson [48] and by Bierbrauer et al.[9]. The notion of almost XOR universal hash
functions is due to Krawczyk [29]. A bucket hashing technique for constructing
an AXU2 families of universal hash functions and their use to construct compu-
tationally secure MACs were proposed by Rogaway [46]. Afanassiev, Gehrmann



234 G. Jakimoski and K.P. Subbalakshmi

and Smeets [1] proposed an efficient procedure for polynomial evaluation that
can be used for fast message authentication. MMH, proposed by Halevi and
Krawczyk [23], and SquareHash, proposed by Etzel, Patel and Ramzan [19], are
examples of fast universal hash functions. An efficient universal hash function
family NH and a message authentication code UMAC based on NH were also
proposed by Black et al.[12]. Another fast message authentication scheme and
stronger bounds for Wegman-Carter-Shoup authenticators were recently pro-
vided by Bernstein [8,7].

Differential Probability Bounds. Since the publication of the differential
cryptanalysis attacks on DES (Biham and Shamir [10]), differential cryptanaly-
sis has become one of the most studied general attacks on block ciphers, and the
resistance to differential cryptanalysis has become one of the basic block cipher
design criteria. The round keys used by block ciphers are derived from a single
key using a key scheduling algorithm. However, in order to augment the belief
that certain block cipher structures are secure against differential cryptanalysis,
some researchers have provided security proofs assuming random and indepen-
dent round keys. The provable security against differential cryptanalysis of some
Feistel structures has been studied by Matsui [38]. Hong et al. [24] proved an
upper bound on the maximum differential probability for 2 rounds of a substi-
tution permutation network with highly diffusive linear transformation. Kang
et al. [30] provided a bound for any value of the branch number of the linear
transformation. Keliher, Meijer and Tavares [31,32] proposed a new method for
finding the upper bound on the maximum average linear hull probability for sub-
stitution permutation networks (SPN) and applied their method to AES. Park
et al. proved that the maximum differential probability of four rounds of AES is
upper bounded by 1.06×2−96 [41], and later proved a better bound 1.144×2−111

in [42]. A slightly better bound (2−113) was provided by Keliher and Sui [33].

Closely Related Work. Daemen and Rijmen [17] have recently proposed a new
heuristic MAC construction ALRED, and a concrete MAC scheme Pelican [18].
The Pelican MAC uses four rounds of AES as a building block to compute the
authentication tag in a CBC-like manner, and it is about 2.5 times faster than a
CBC-MAC with AES. However, it is not proven secure. Minematsu and Tsunoo
[40] observe that one can obtain provably secure almost universal hash functions
(AU2) by using differentially uniform permutations such as four rounds of AES
with independent keys in a Wegman-Carter binary tree. They also propose a
message authentication scheme MT-MAC that makes use of the proposed AU2
hash function. However, they note that such construction is not memory efficient,
and suggest a CBC-like AU2 hash PCH (Periodic CBC Hash) and a proven secure
MAC scheme PC-MAC based on PCH. The speedup of PC-MAC over the modes
with AES is 1.4.

Our Contribution. We propose a CBC-like AXU2 hash UHC (Universal Hash
Chaining) and a variant of a Wegman-Carter binary tree AXU2 hash (the MACH
hash). Both constructions use a non-linear invertible transformation as a building
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block. Their proven security is somewhat smaller than the maximum differential
probability of the underlying non-linear permutation, and it does not change
with the message length as in the polynomial constructions or PCH. Hence,
if one uses four rounds of AES with independent keys as a building block one
can obtain a message authentication scheme that is more time efficient and offers
significantly greater security compared to the message authentication modes with
AES. If the target security is that of the message authentication modes with AES,
then one can use non-linear permutations defined on 64-bit strings (blocks). This
allows for greater speedup and better key agility. For instance, the non-linear
transformations that we suggest use 128- and 192-bit keys as opposed to the
512-bit key required by four rounds of AES. If these components are used in a
Wegman-Carter single-binary-tree hash, then the achievable speedup for lengthy
messages approaches 4.5 on 8-bit architectures, 3.3 on 32-bit architectures and
5 on 64-bit architectures with relatively large L1 cache as opposed to the 2.5
speedup achievable when the non-linear permutation is four rounds of AES.
In order to improve the memory efficiency, MACH, the message authentication
scheme we propose, uses the modified Wegman-Carter tree AXU2 hash function
(the MACH hash) instead of a single tree. The estimated speedup of the resulting
scheme is somewhat smaller, but still significant (see Section 4.3 for more details).

2 Basic Building Blocks

In this section, we propose some basic AXU2 and AU2 hash functions. We use
these functions as building blocks to construct efficient message authentication
schemes.

2.1 AXU2 Hash Functions Based on Block Cipher Design
Techniques

Given a (keyed) non-linear function F , one can construct an AXU2 hash function
as follows. To hash a message x, two keys K and Kr are chosen randomly. The
hash of x is F (K, x ⊕ Kr). If F is not a keyed transformation, then the hash of
x is F (x ⊕ Kr). The role of the key Kr is to randomize the input of F since the
maximum differential probability is defined for a randomly selected input and a
constant input difference. The AXU2 definition on the other hand requires both
the input and the input difference to be constant. A more formal analysis is
given below.

Lemma 1. Let F : {0, 1}k × {0, 1}m → {0, 1}n be a mapping that maps a
pair of a k-bit key and a message (block) of length m into an n-bit string. The
family of hash functions H = {hK,Kr : {0, 1}m → {0, 1}n|K ∈ {0, 1}k, Kr ∈
{0, 1}m, hK,Kr(x) = F (K, x⊕Kr)} is ε-AXU2, where ε is equal to the maximum
(expected) differential probability of F

DPF = max
Δx �=0,Δy

#{(K, x) ∈ {0, 1}k × {0, 1}m|F (K, x ⊕ Δx) ⊕ F (K, x) = Δy}
2m+k

.
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The non-linear function defined by four rounds of AES is a good candidate
for constructing AXU hash functions. To hash a 128-bit block x, one selects
four uniformly random keys and “encrypts” x using the four keys as round keys.
Here, we assume that the key addition is at the beginning of the rounds, not
at the end of the rounds. We also assume that the fourth round is a final AES
round. It was shown in [33] that the maximum differential probability of four
rounds of AES is at most about 2−113 when the round keys are independent.
Hence, the hash function family HAES consisting of the transformations defined
by four rounds of AES for all possible values of the round keys is ε-AXU2, where
ε ≈ 2−113. We propose two additional constructions.

The first AXU2 family of hash functions that we suggest is defined by the
Feistel structure depicted in Fig. 1. The 64-bit input is transformed into a 64-bit
hash using three Feistel rounds. Each round uses a new 64-bit key. The round
function is depicted in Fig. 1(b). It is constructed using AES components. That
is, the S-box and the mixing transformation used in the round function are same
as those used in AES. Each key defines a hash function that maps a 64-bit
string (message) into a 64-bit hash, and we denote by HFES the family of hash
functions defined by the 2192 possible keys.
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Fig. 1. A Feistel AXU construction: (a) the 64-bit message is hashed using three Feistel
rounds with independent keys, (b) The round function is an SPN structure. The S-box
and the mixing transformation are those used in AES.

The security of HFES is provided by the following lemma.

Lemma 2. The HFES family of hash functions is ε-AXU2, where ε = 1.52 ×
2−56.

The second AXU2 family of hash functions that we suggest is defined by the
keyed nonlinear transformation shown in Fig. 2. It is a two-round SPN structure
that transforms a 64-bit input into a 64-bit output. The S-box that is used in the
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construction is same as the one used in AES. The mixing transformation is given
by the circulating-like MDS matrix proposed in [28] (p. 167). The multiplication
and addition are over GF(256) modulo the irreducible polynomial x8 +x4 +x3 +
x2 + 1 over GF(2). The coefficients are given by the following polynomials over
GF(2): a = x + 1, b = x3 + 1, c = x3 + x2, d = x, e = x2 and f = x4. Each key
defines a hash function that maps a 64-bit message into a 64-bit hash, and we
denote by HF64 the family of 2128 hash functions whose members are determined
by the possible key values.
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Fig. 2. An SPN AXU construction: (a) The global structure, (b) The 8×8 matrix used
in the linear mixing layer. The multiplication and addition are over GF(256) modulo
x8 +x4 +x3 +x2 +1 over GF(2). The coefficients are a = x+1, b = x3 +1, c = x3 +x2,
d = x, e = x2 and f = x4.

The following lemma establishes the security of HF64.

Lemma 3. The HF64 family of hash functions is ε-AXU2, where ε = 1.25 ×
2−54.

2.2 The AU2 Hash Functions

Given a keyed non-linear function that can be represented as a composition of
two non-linear transformations whose keys1 are independent (see Fig. 3(a)), one
can construct an AU hash function (see Fig. 3(b)) as follows.

Lemma 4 (Twisting Lemma). Let F (K, x) be defined as F (K, x) =
F2(K2, F1(K1, x)⊕Ks), where K = K1|Ks|K2, F1 : {0, 1}k1 ×{0, 1}l → {0, 1}n,
and F2 : {{0, 1}k2 × {0, 1}n → {0, 1}n} is a bijection for any key value K2.
1 We consider a more general case. However, F1 and F2 does not have to be keyed

transformations (i.e., the lengths of the keys K1 and K2 can be zero as well).
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Then, the family of hash functions H = {hK1,Kr1,K2,Kr2 : {0, 1}l × {0, 1}n →
{0, 1}n|hK1,Kr1,K2,Kr2(x1, x2) = F1(K1, x1 ⊕ Kr1) ⊕ F−1

2 (K2, x2 ⊕ Kr2)} is an
ε-AU2, where K1 ∈ {0, 1}k1; K2 ∈ {0, 1}k2; x1, Kr1 ∈ {0, 1}l; x2, Kr2 ∈ {0, 1}n,
and ε = DPF .

The structure of the function F depicted in Fig. 3(a) can be found in almost
any block cipher and allows for a variety of AU2 hash function constructions
by “twisting” block ciphers. One such example is the construction proposed in
[40], which is depicted in Fig. 3(c). The function F in this case is a composition
of an identity map and the inverse of a differentially uniform permutation. The
twisting lemma is slightly abused since no key is added to the first block. Such
key addition will be canceled when we consider differences and increases the time
complexity since one has to generate a random key Kr1.

x2

Kr

F1

Ks

F2

K1

K2

(a) (b) (c)

y

x1

K2 F−1
2F1

K1

x

FK

x1 x2

Fig. 3. AU2 construction by “twisting” block ciphers: (a) the original non-linear trans-
formation F , (b) the non-linear transformation F ′ obtained by “twisting” F , (c) AU2

construction proposed in [40]

The general construction of Lemma 4 offers a somewhat greater level of paral-
lelism than the one of Fig. 3(c) (one can evaluate F1 and F2 in parallel). However,
the overall impact on the schemes proposed in this paper is not significant, and
we use a variant of Fig. 3(c) which is derived by extending its domain to include
messages of length 0 and 1 blocks:

gF (x1, x2) =

⎧
⎨

⎩

λ if x1 = x2 = λ
x1 if x1 �= λ, x2 = λ
x1 ⊕ F (K, x2 ⊕ Kr) if x1 �= λ, x2 �= λ

where λ is the empty string, x1, x2 ∈ {0, 1}n
⋃

{λ}, Kr ∈ {0, 1}n and F is a
(keyed) non-linear permutation on {0, 1}n.

Let GF be the family of the hash functions defined as above. We have the
following lemma.

Lemma 5. The family of hash functions GF is ε-AU2, where ε = DPF .
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The AU2 families that we use are obtained when the AXU2 hash function
F (K, Kr ⊕ x) is realized using the transformations discussed in Section 2.1. We
denote by GAES , GFES and GF64 the families of hash functions when F (K, Kr⊕x)
is realized using four AES rounds, the Feistel structure of Fig. 1 and the SPN
structure of Fig. 2 respectively. According to the previous discussion, GAES ,
GFES and GF64 are ε-AU2 with ε being 2−113, 1.52 × 2−56 and 1.25 × 2−54

correspondingly.

3 AXU2 Hash Functions Defined for Arbitrary-Length
Messages

The universal hash functions introduced in the previous section operate on mes-
sage blocks. In this section, we consider some techniques for extending the do-
mains to include arbitrary-length messages. The proposed constructions use a
large number of keys. However, these keys are derived from a single 128-bit key
in the message authentication scheme we propose in Section 4.

3.1 A CBC-Like Construction

CBC is a popular approach to MAC design. The Pelican MAC of [18] and the
PCH (Periodic CBC Hash) of [40] resemble CBC as well. Here, we present an-
other CBC-like family of hash functions HUHC (Universal Hash Chaining). The
advantage of UHC over the Pelican construction is that it is proven secure. Its
advantage over PCH is that the security does not decrease with the message
length. Assuming small differential probabilities, the provided upper bound on
the collision probability of PCH is roughly l2/2n, where l is the message length
and n is the block length. If the message length is about 240, this results in about
2−50 proven security when using four rounds of AES as a building block. The
proven security of UHC in this case will be about 2−112.

HUHC is depicted in Fig. 4. We assume that F is a permutation on the set
of n-bit strings for a given key. To hash a message consisting of l segments of m
blocks, we select randomly m−2 randomization keys Kr

3 , . . . , Kr
m and m−1 keys

K2, K3, . . . , Km for the non-linear map F . These keys are used for all segments of
the message. In addition, two fresh randomization keys Kr

i,1, K
r
i,2 and a fresh key

Ki,1 for the non-linear map are selected anew for each segment of the message.
The message is “digested” in a CBC-like manner using these keys as depicted in
Fig. 4. The resulting family of hash functions is AXU2.

Lemma 6. HUHC is ε-AXU2, where ε = 2DPF .

3.2 A Modified Wegman-Carter Binary Tree Construction

MACH, the MAC scheme that we propose, uses the following variant of the
Wegman-Carter binary tree hash.
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Fig. 4. A CBC-like AXU construction. Fresh keys are used only for the first two blocks
of each segment.

To hash a message M consisting of l blocks2, we first “append” λ-“blocks” 3

so that the number of blocks in the message is a multiple of 2N . The resulting
λ-padded message is partitioned into segments consisting of 2N blocks. Each
segment is hashed using the same secret member of GF in a binary hash tree
of height N . Recall that that the members of GF were defined as gF (x1, x2) =
x1 ⊕ F (K, Kr ⊕ x2) if x2 is not λ, gF (x1, λ) = x1, and gF (λ, λ) = λ, where F
is a (keyed) non-linear permutation on n-bit strings. The output of each binary
tree is hashed using F as in Lemma 1, and the resulting n-bit blocks are xor-
ed to give the final hash value. The keys used in the last step are generated
independently for different segments of the message. We use HF

MACH(N) to
denote the family of hash functions described above. An example when N = 2
is given in Fig.5.

The time complexity of the MACH hash is determined by the time to generate
the required keys, and the time to hash the message. Assuming that the keys are
already generated, the time to hash the message is one F evaluation per n-bit
block of the message, and it is same as that of UHC. The same levels of the
binary trees in the MACH hash use the same key. So, one has to generate and
memorize N keys that will be used by the binary trees. In addition, one has to
generate one potentially large key per segment for the last step of the hashing
procedure. Since the length of the segments is 2N blocks, the MACH hash is
advantageous over the UHC hash where one has to generate fresh keys every N
blocks.

Using a single binary tree will lead to greater speedup for long messages.
However, one will have to memorize a large number of keys to allow hashing
of lengthy messages. In the MACH hash, the fresh keys can be “thrown away”

2 We assume that the message length is a multiple of the block length.
3 The sole purpose of the λ padding is to simplify our description and analysis. In

practice, the λ padding will be omitted.
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Fig. 5. An AXU2 construction using a modification of the Wegman-Carter binary tree
(N = 2)

after their use. So, by carefully selecting the value of N , one can achieve close
to a single-binary-tree speed while significantly improving the key agility and
memory efficiency compared to the single-binary-tree construction.

HF
MACH(N) is basically a composition of an AU2 hash function (the binary

trees in parallel) and an AXU2 hash function (the xor of the AXU2 hash func-
tions). As it was case with the HUHC , the security of HF

MACH(N) does not
decrease with the message length.

Lemma 7. HF
MACH(N) is an ε-AXU2 family of hash functions, where ε =

(N + 1) × DPF .

The message authentication schemes that we propose in this paper use
the HAES

MACH(5), HFES
MACH(7) and HF64

MACH(7) hash function families. Here,
HAES

MACH(5) is the MACH hash functions where the binary trees are of height
5, the AU hash function family used in the binary trees is GAES of Section 2.2,
and the AXU hash function family used in the last step is the HAES hash func-
tion family described in Section 2.1. Similarly, HFES

MACH(7) (resp., HF64
MACH(7))

is the MACH hash function family that uses binary trees of height 7, and whose
non-linear function F is implemented using the Feistel (resp., SPN) structure of
Fig. 1 (resp., Fig. 2).
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4 MACH: An Efficient Wegman-Carter MAC Scheme
Based on Block Cipher Design Techniques

In this section, we present MACH. MACH, where H stands for the use of hash
functions, is a Wegman-Carter MAC scheme that is obtained by applying the
technique presented in [46] to HF

MACH .

4.1 The Signing (Tagging) and Verifying Algorithms of MACH

Signing. A pseudo-code of the MACH signing algorithm is given in Algorithm 1.
It takes as input a secret key K, a 64-bit counter value Cntr < MAX CNTR
associated with that key and a message M of bit length |M | < MAX LEN. The
secret key K and the counter value Cntr are used as an input to a pseudorandom
generator that outputs two keys Kh and KT . The key Kh specifies which member
HF

MACH will be used to hash the messages, and the key KT is used to encrypt
the hash of the message. Given the key Kh, a hash h = hKh

(M |10i) of the
10i padded message is computed using the HF

MACH family of hash functions.
The authentication tag τ is the pair consisting of the counter value Cntr and
hτ = h ⊕ KT .

Algorithm 1. MACH.Sign(K,Cntr,M)
Input: A (128-bit) secret key K, a 64-bit counter value Cntr and a message M .
Output: An authentication tag τ .

Cntr + +
len ← |M | // len is the bit length of the message M .
Kh, KT ← Gen(Cntr, K)

i ← (n − ((len + 1) mod n)) mod n
h ← hKh(M |10i)
hτ ← h ⊕ KT

return τ ≡ (Cntr, hτ )

The keys Kh and KT can be generated using a pseudorandom generator
(i.e., a stream cipher). The key generation in this case will be faster than
using a block cipher, and the resulting scheme will be more competitive for
small message lengths. However, there are some practical advantages of gen-
erating the keys using a block cipher in a counter-like mode. So, we suggest
the keys to be generated using AES as follows. The key KT is computed as
KT = trun(AESK(1|063|Cntr)), where Cntr is a 64-bit counter value, and trun(·)
selects the first |h| bits of AESK(1|063|Cntr). The words of the key Kh are com-
puted as Kh[i] = AESK(064|〈i〉), where 〈i〉 is a 64-bit representation of i. If the
length of Kh is not a multiple of 128, then the last “word” Kh[K BLCKS] of Kh

is derived by selecting the first |Kh[K BLCKS]| bits of AESK(064|〈K BLCKS〉).
Here, K BLCKS is the number of blocks in Kh, and it is determined by the
length of the key material we need to hash a message of length MAX LEN.
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Remark. To simplify our description and security analysis, we have assumed that
the key Kh is generated at the beginning, and that it is long enough to hash
messages of maximum length. Clearly, such implementation is not practical at
all. In practice, to avoid expensive key setup and increase the memory efficiency
of the scheme, the keys will be generated on the fly, and only a small portion
of the keys (e.g., the keys used by the binary trees) will be memorized when
computing the hash of the message.

Verifying. Given a message M , an authentication tag τ = (Cntr, hτ ) asso-
ciated with the message and the secret key K, the verifier computes the keys
Kh, KT , and recomputes the authentication tag using these keys. If the recom-
puted tag (Cntr, KT ⊕ hKh

(M |10i)) is equal to the one that was sent, then the
verifier accepts the message M as authentic. Otherwise, the verifier rejects the
message M .

4.2 Security of MACH

The security of MACH is established by the following theorem.

Theorem 1. The advantage of any forger of MACH that runs in at most t time
and makes at most qv forgery attempts is upper bounded by

Advwuf−cma
MACH (t, qv) ≤ Advprp

AES(c1t + c2, Qe) + qv(1 − Qe − 1
2128 )−Qe/2(N + 1)DPF ,

where c1 and c2 are small implementation dependent constant, Qe = K BLCKS+
MAX CNTR, N is the height of the binary trees used by the hash function, DPF

is the maximum differential probability of the nonlinear permutation F used by
the hash function, and Advprp

AES(c1t + c2, Qe) is the advantage of distinguishing
AES from a random permutation when running in at most c1t + c2 time and
querying an encryption oracle at Qe distinct message blocks.

4.3 MACH Variants, Security and Performance Comparison

We suggest three MACH variants MACH-AES, MACH-FES and MACH-F64.
As their names suggest, the proposed MACH variants are obtained when the
messages are hashed using HAES

MACH(5), HFES
MACH(7) and HF64

MACH(7) respectively
(see Section 3.2 for a description of these hash functions). In the following, we
briefly discuss the security and performance of these schemes.

Security. A comparison of the proposed variants in terms of their security
and the speedup over the modes for message authentication that use AES as
a building block is given in Table 1. The security expressions are derived us-
ing Theorem 1. We assume that both K BLCKS and MAX CNTR are 264. The
number of encryption queries in this case will be Qe = 265, and δ is the ad-
vantage of distinguishing AES from a random permutation given Qe pairs of
plaintext/ciphertext blocks.
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Table 1. Security and performance comparison of the MACH variants

Speedup over message authentication modes
Scheme 8-bit c.a. 32-bit c.a. 64-bit c.a. Security

1 KB ∞ 1 KB ∞ 1 KB ∞
MACH-AES 1.25 2.10 1.19 1.90 1.19 1.90 δ + qv × 1.28 × 2−110

MACH-FES 2.37 3.76 1.99 2.88 1.99 2.88 δ + qv × 1.30 × 2−52

MACH-F64 1.85 2.10 1.51 1.86 2.10 – 2.94 2.81 – 4.64 δ + qv × 1.07 × 2−50

The tag length and the security of MACH-FES and MACH-F64 are compa-
rable to those of the modes of operation for message authentication using AES
as a building block. Note that the security of MACH-FES and MACH-F64 is
determined by the number of forgery attempts. If the application allows the
verifier to limit the number of forgery attempts, then one can achieve good se-
curity for a large number of very long messages. For example, assume that the
verifier keeps a track of the number of invalid message/tag pairs. If this num-
ber exceeds 220, then the verifier assumes it is under attack and rejects any
subsequent message. Under these circumstances, we can use MACH-FES and
MACH-F64 to authenticate 264 messages of length � 264 blocks with ≈ 2−30

forgery probability. However, using 264 signing queries and a single forgery at-
tempt, one can easily break most of the existing modes of operation for message
authentication. If the maximum allowed message length is relatively large, then
the security of MACH-FES and MACH-F64 is comparable or better than that of
the polynomial-based constructions too. For example, if one allows messages of
length > 252 blocks, then the proven security of Poly1305-AES becomes smaller
than that of MACH-FES and MACH-F64.

Assuming that the advantage of distinguishing AES from a random permu-
tation given 265 plaintext/ciphertext pairs is small, MACH-AES provides sig-
nificantly better security than MACH-FES and MACH-F64. The tag length
(including the counter) of MACH-AES is 192 bits, and it is larger than that of
the modes of operations for message authentication.

Performance. Performance evaluation of a given message authentication
scheme is not an easy task since it depends on the specific platform, the imple-
mentation of the algorithms and the message length distribution. The speedup
estimates given in Table 1 are computed by making the following assumption:
the algorithms are implemented using basic arithmetic and memory reference
instructions available on RISC computer architectures. The speedup is com-
puted by dividing the time needed to compute the tag using AES in a message
authentication mode and the time needed to compute the tag using the pro-
posed schemes. The execution time on the other hand is estimated based on the
number of arithmetic and memory reference instructions required to compute
the tag.

We have considered two cases. In the first case, which is denoted 1 KB, the
message length is 1024 bytes as in [7]. The speedup in this case approximates
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the speedup when the message length distribution follows the IP packet size dis-
tribution on the Internet. The time to compute the tag in this case includes the
time needed to generate all the keys that are required to hash the message. In
the second case, which is denoted ∞, we assume that the keys used by the binary
trees of the hash function are already generated and memorized. The time to
compute the tag includes the time needed to generate the fresh keys used for
the different segments of the message, but it does not include the time to gen-
erate the keys used by the binary trees in the MACH hash. The speedup in the
second case approximates the speedup when authenticating a single long mes-
sage or authenticating a relatively long sequence of short messages (e.g., stream
authentication, authenticating the packets exchanged between two routers in
a VPN, authenticating the packets exchanged during a single communication
session, etc.).

MACH-AES and MACH-FES use AES components as building blocks. Hence,
the estimation of their speedups is easier. The key generation cost is one AES
encryption per 128 bits of the key material. Given the keys, the cost of hashing
per 128-bit block is about 4 AES rounds for MACH-AES and 3 AES rounds for
MACH-FES on 32-bit and 64-bit architectures. The AES matrix multiplication
is relatively costly on 8-bit architectures (about 40 arithmetic operations). The
mixing transformation is omitted in the fourth round of the non-linear func-
tion used by MACH-AES. Thus, on 8-bit architectures, the cost of hashing is
about 3.5 AES rounds per 128-bit block when using MACH-AES. For similar
reasons, the cost of hashing is about 2.2 AES rounds per 128-bit block on 8-bit
architectures when using MACH-FES.

MACH-F64 uses an 8 × 8 multiplication matrix which is not a component of
AES. Hence, the computation of the speedup is more complicated. A detailed dis-
cussion on implementing this matrix multiplication on various platforms can be
found in [28]. We will only note that the largest speedup values on 64-bit architec-
tures are computed assuming that the non-linear transformation of MACH-F64
is implemented using 8 look-up tables each one containing 256 64-bit entries.
The memory required to store these tables is 16 KB, which is a relatively small
portion of the L1 cache of many processors. For example, AMD Athlon, Ultra-
Sparc III and Alpha 21264 have 64 KB L1 cache, PowerPC G4 and G5 have 32
KB L1 cache, etc.

Summary. MACH-AES is less time and memory efficient than MACH-FES
and MACH-F64. However, it provides much better security, and the achievable
speedup over the message authentication modes is significant in some settings.
MACH-F64 and MACH-FES provide security and tag lengths that are compa-
rable to those of the message authentication modes. The target computer archi-
tecture of the MACH-F64 design was a 64-bit architecture with large L1 cache,
and it is extremely efficient on these architectures. MACH-FES on the other
hand is very efficient on 8-bit architectures, and achieves a significant speedup on
32- and 64-bit architectures as well. Both MACH-AES and MACH-FES are built
using AES components. So, they have the advantage of reusing AES software
and hardware.
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Abstract. GPUs offer a tremendous amount of computational band-
width that was until now largely unusable for cryptographic computa-
tions due to a lack of integer arithmetic and user-friendly programming
APIs that provided direct access to the GPU’s computing resources. The
latest generation of GPUs, which introduces integer/binary arithmetic,
has been leveraged to create several implementations of the AES and
DES symmetric key algorithms. Both conventional and bitsliced imple-
mentations are described that achieve data rates on the order of 3-30
Gbps from a single AMD HD 2900 XT graphics card, yielding speedups
of 6-60x over equivalent implementations on high-performance CPUs.

1 Introduction

In recent years, there has been significant interest from both academia and in-
dustry in applying commodity graphics processing units (GPUs) toward gen-
eral computing problems [1]. This trend toward general-purpose computation on
GPUs (GPGPU) is spurred by the large number of arithmetic units and the high
memory bandwidth available in today’s GPUs. In certain applications, where
there is a high compute to memory bandwidth ratio (a.k.a., arithmetic intensity)
the GPU has the potential to be orders of magnitude faster than conventional
CPUs due to the parallel nature of GPUs versus CPUs, which are inherently
optimized for sequential code. In addition, the computational power of GPUs is
growing at a faster rate than what Moore’s Law predicts for CPUs (Figure 1).

With the introduction of native integer and binary operations in the latest
generation of GPUs, we believe that bulk encryption and its related applications
(e.g., key searching) are ideally suited to the GPGPU programming model. In
this paper we demonstrate the viability of the GPGPU programming model
for implementing symmetric key ciphers on GPUs. We examine high-efficiency
bitsliced implementations of the AES and DES algorithms, as well as compare
conventional block-based implementations of AES on previous/current genera-
tion GPUs. We demonstrate AES and DES running on an AMD HD 2900 XT
GPU to be up to 16 and 60 times faster respectively than high end CPUs.

The following section describes previous work related to implementing sym-
metric cryptographic algorithms on GPUs and vector-based processors. Next we
describe GPU hardware architecture and programming APIs to provide context
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Fig. 1. GPU vs. CPU GFLOPS performance over time

for the GPGPU programming model. Bitsliced implementations of DES and
AES are then described in the context of high-performance GPGPU-accelerated
key searching applications that demonstrate the potential speedup of GPUs over
conventional CPUs in certain classes of problems. Lastly, a comparison of a con-
ventional block-based implementation of AES on both the current and previous
generations of GPUs is presented to illustrate the computational advantages of
the latest generation of GPUs.

2 Previous Work

Cook et al. [2] were the first to investigate the feasibility of using GPUs for
symmetric key encryption. Using OpenGL they implemented AES on various
previous-generation GPUs. Unfortunately, the limited capability of the graphics
programming model they used limited their performance and prevented them
from exploiting some of the programmable features of their hardware. Instead
they were forced to use a fixed-function pipeline, rely on color maps to transform
bytes, and exploit a hardware XOR unit in the output-merger stage. A complete
execution of AES required multiple passes through the pipeline, which signifi-
cantly impacted their performance. Their experiments found that the GPU could
only perform at about 2.3% of the CPU rate when both were running code op-
timized for their individual instruction sets. A recent OpenGL implementation
[3] on a NVIDIA Geforce 8800 GTS achieves rates of almost 3 Gbps.

Vector processors have been considered for implementation of symmetric al-
gorithms such as DES [4], and cryptography in general [5], which yielded some
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performance increase. Recently, Costigan and Scott [6] implemented RSA using
the vector units of the Cell processor. They were able to achieve rates up to 7×
faster using 6 vector units (SPU) over the onboard PowerPC unit (PPU).

3 GPGPU Programming Model

The latest generation of GPUs (e.g., Nvidia’s 8000 series or AMD’s HD 2000
series) has adopted the unified shader programming model pioneered by AMD
in the Xbox 360’s GPU [7]. In the unified shader model, all graphics functions
are executed on programmable ALUs that can handle the different types of pro-
grams (i.e., shader programs) that need to be run by the different stages of
the conventional graphics pipeline. The programmable nature of these ALUs
can be exploited to implement non-graphics functions using a virtualized SIMD
processing programming model that operates on streams of data. In this pro-
gramming model, arrays of input data elements stored in memory are mapped
one-to-one onto the virtualized SIMD array, which executes a shader program
to generate one or more outputs that are then written back to output arrays
in memory. Each instance of a shader program running on a virtualized SIMD
array element is called a thread. The GPU and its components map the array of
threads onto a finite pool of physical shader processors (SPs) by scheduling the
available resources in the GPU such that each element of the virtual SIMD array
is eventually processed, at which point additional shader programs can also be
executed until the application has completed. A simplified view of the GPGPU
programming model and mapping of threads to the GPUs processing resources
is shown in Figure 2.
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Table 1. GPU characteristics

X1950 XTX HD 2900 XT

# of SP Units 48 64
# of ALU Units 192 320
# of Memory Fetch Units 16 16
SP Frequency 650 MHz 750 MHz
Memory Frequency 1 GHz 825 MHz
Memory Bandwidth 64 GB/s 105.60 GB/s
Local Memory Size 1 GB 1 GB

Modern GPUs are designed to be very efficient at running large numbers of
threads (e.g., thousands/millions) in a manner that is transparent to the appli-
cation/user. The GPU uses the large number of threads to hide memory access
latencies by having the resource scheduler switch the active thread in a given
SP whenever the current thread finds itself stalled waiting for a memory access
to complete. Time multiplexing is also used in the SPs’ ALUs to execute multi-
ple threads concurrently and hide the latency of ALU operations via pipelining.
Both of these techniques require that a thread contains a large number of calcula-
tions to improve the ability of the resource scheduler to hide the aforementioned
latencies. When that condition is satisfied, the entire computational bandwidth
of the GPU can be utilized to help GPGPU applications achieve performance
increases on the order of 10 − 100× over conventional CPUs.

DirectX [8] and OpenGL [9] are the standard programming APIs for GPUs
and provide high-level languages for writing shader programs (e.g., HLSL and
GLSL). However, these APIs are optimized for graphics and are difficult to use
for non-graphics developers. Recently several projects have begun to try and
abstract away the graphics-specific aspects of traditional GPU APIs ([10], [11],
[12]). In this paper we use both DirectX and CTM [13], AMD’s GPU hardware
interface API, which treats the GPU as a data parallel virtual machine. CTM
allows shader programs to be written in both high-level (e.g., HLSL) and low-
level (e.g., native GPU ASM) languages. Writing high-level shaders is similar to
writing C code, except there are additional vector data types with multiple (up
to four) accessible components. See [14] for a more complete description. Our
implementations written in DirectX can run on any DirectX capable hardware.
The bitsliced implementations described in the following sections could also be
implemented on most modern graphics hardware.

All of the experiments in this work were conducted on either an AMD Radeon
X1950 XTX or an AMD Radeon HD 2900 XT GPU. The HD 2900 XT is the
latest generation of AMD GPUs and uses a unified, superscalar shader processing
architecture. Shader processors also share a limited number of memory fetch
units, which are the physical devices that access memory. Table 1 summarizes
the relevant GPU feature sets. With significantly more ALUs than memory fetch
units, GPUs perform better on applications with high arithmetic intensity.
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4 High-Performance Bitsliced DES Key Searching
Application

Bitslicing was first suggested by Biham in [15] as a means of exploiting large word
widths in conventional CPUs to increase the bandwidth of software implementa-
tions of symmetric algorithms. The HD 2900 XT can be utilized in a variety of
configurations due to its flexible superscalar architecture. For this application we
utilized it as a 2 × 64−bit wide processor with 64 individual processing cores to
implement a bitsliced implementation of DES [16] for use in a key search applica-
tion implemented using AMD’s CTM GPGPU programming infrastructure. The
full width of the GPU (160-bits) was not used as the resulting register require-
ments to store the entire cipher state and key vector would limit the number of
threads executing at any given time, reducing overall program performance.

The key search application partitions the key space of size 256 into 222 inde-
pendent jobs that each check 234 keys. Each job is composed of 212 (64 × 64)
individual program invocations (threads), each of which is run on a shader pro-
cessor using an optimized bitsliced DES shader program written in the GPUs
native assembly language. Each shader program computes 64 DES calculations in
parallel, and iterates a total of 216 times, for a total of 222 key checks per thread.
In general such a brute force searching application is of limited use, but combined
with a directed, template-based approach, such as that used in popular password
recovery utilities, or in conjunction with side channel techniques that are used to
find a subset of the secret key bytes, it can prove to be a very potent tool capable
of operating substantially faster than conventional CPU implementations.

The bitsliced DES shader program utilizes the XOR, AND, OR, and NOT in-
structions of the GPU to implement the necessary functions, which are primarily
the eight DES S-boxes. Matthew Kwan’s optimized DES S-box implementations
[17] were utilized as the basis for our implementation. Modifications were made
to both the data format and S-box functions to enable two S-boxes to be com-
puted concurrently (e.g., sbox15 = sbox1 and sbox5) as a means of reducing the
execution time by almost a factor of 2. Table 2 compares the performance of
the conventional and parallelized S-box implementations. The even/odd round
distinction is required due to the alternating write-back of the left and right
cipher states in the even/odd rounds when you leave the cipher state in place
to eliminate DES’ right/left state swapping. The difference in instruction counts
between the even/odd versions is due to the insertion of NOPs to avoid write
conflicts within the ALU/register interface.

S-box parallelization, combined with a reduction in the number of registers
needed by the shader program, more than offset the fact that we are only able to
use less than half of the full 160-bit width available in the shader processor for
bitslicing. The net effect is approximately 2.5× increase in overall performance
using the 64-bit solution with S-box parallelization compared to a full-width
(i.e., 128-bit) bitsliced solution.

The resulting bitsliced implementation is shown graphically in Figure 3. The
main loop consists of 16 rounds of S-box applications, along with short setup
functions that mix in the necessary key bits for each round. The InitCipherState
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Table 2. Comparison of DES S-box instruction counts

Odd Round Even Round
Instruction Instruction Instruction

S-box Count Count S-box Count

sbox15 69 72 sbox1 67
sbox26 65 64 sbox2 60
sbox37 63 63 sbox3 61
sbox48 61 61 sbox4 46
Total 258 260 sbox5 66

sbox6 61
sbox7 61
sbox8 58
Total 480

function loads IP-permuted plaintext(s) into the GPU using constants as they
don’t change during the shader program’s execution. The CheckResult function
compares the pre-IP−1 permuted output to a similarly formatted reference ci-
phertext, generating a 64-bit bitmask of each bitsliced calculation where a “1”
indicates a match was found (i.e., the reference plaintext encrypted with the key
corresponding to that slice generated the reference ciphertext). Note that mul-
tiple plaintexts and ciphertexts can be utilized as those values are passed in as
simple parameters. When a match is found the necessary information required
to reconstruct the corresponding key is written to the output array where it can
be scanned by the application running on the CPU while the next job is being
processed by the GPU, thereby incurring no overall result-checking performance
penalty. The IncrementKey function increments the bitsliced key vector stored
within the GPU using a simple bitsliced bit-serial addition on the 16 key bits
that track the iteration number.

The theoretical peak bandwidth of the GPU for the bitsliced DES calculation
can be determined by computing the maximum rate that can be achieved by all
64 SPs operating at their peak rate, ignoring any degradation in performance
due to memory accesses and overhead:

PeakRate =
64 SPs × 750 Minstructions/s × 64 blocks/iteration

4691 instructions/iteration

= 654.9 Mblocks/s

The execution time of the shader program is key-invariant. The performance
measured on HD 2900 XT hardware is shown in Figure 4. All measurements were
based on timing the program across multiple iterations for several minutes of real
time execution. The implementation achieves a maximum device utilization of
83% for a maximum key checking rate of 545 Mkeys/s (i.e., encrypting 545M DES
blocks per second, or 34.9 Gbps of data, though memory read/write bandwidth
limitations may constrain this general case). The remaining 17% of the available
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performance is lost to the overhead associated with the scheduling and execution
of the shader program on the GPU, along with the costs of reading/writing
memory during execution.

Figure 4 also shows the performance advantage of using the HD 2900 XT
compared to a comparable bitsliced DES key search program using Matthew
Kwan’s optimized S-boxes executing on a dual-core AMD 2.8 GHz Athlon FX-
62 system. The CPU-based solution had a measured key checking rate of 9
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Mkeys/s. Hence, a single-GPU solution can deliver on the order of a 19 − 60×
increase in performance over a single-CPU solution for this application.

Lastly, Figure 4 demonstrates the effect of amortizing a portion of the fixed-
cost overhead of processing on the GPU across multiple iterations, indicating
that over 87% of the application’s maximum performance can be realized with
as few as 32 iterations.

5 High-Performance Bitsliced AES Key Searching
Application

A more relevant algorithmic exploration was undertaken to implement an efficient
bitsliced AES [18] version of the aforementioned DES key search application. The
AES key search application partitions the key space of size 2128 into 295 indepen-
dent jobs that each check 233 keys. Each job is composed of 212 (64×64) individual
threads, each of which executes an optimized bitsliced AES shader program writ-
ten in the GPU’s native assembly language. Each shader program computes 32
AES calculations in parallel, and iterates a total of 216 times, for a total of 221

key checks per thread. With such an enormous key space of 2128, the only real-
istic use of a brute-force AES-based key search application is as a component of
the aforementioned directed, template-based key searching utilities, or helping to
find missing key bytes in side channel attacks. In this sort of application having
an accelerated AES engine can prove very beneficial to greatly reduce the search
times over conventional CPU-based solutions.

For bitsliced AES the HD 2900 XT shader processor is utilized as a 4×32−bit
wide processor that processes four columns of 32 bitsliced AES state arrays in
parallel. The bitsliced implementation computes the encryption key schedule on-
the-fly using a transposed key array stored in the register file. The transposition
is required to maximize the performance of the round key generation function.
The bitsliced state and key array to register mappings are shown in Figure 5.

The bitsliced AES shader program utilizes an optimized AES ByteSub/Shift-
Row implementation that computes four columns in parallel, requiring four in-
vocations to process the entire state array (i.e., 4 ByteSub/ShiftRow operations
= SubBytes/ShiftRows operation defined in [18]). The AES S-boxes were im-
plemented using the optimized normal basis composite S-box implementation
described in [19] and shown in Figure 6. Additional optimizations to eliminate
redundant calculations/storage were used to yield a final implementation requir-
ing 126 instructions, which is substantially less than previously reported bitsliced
AES S-box solutions (e.g., 205 instructions in [20]).

The round key update function (Figure 7) exploits the transposed key array
and optimized ByteSub/ShiftWord function to yield a 160 instruction operation.
The transposition of the key array is undone when the round key is XORed into
the state array using a transposed XOR operation that has no performance
penalty since the transposition is done via register addressing.

The resulting bitsliced AES implementation is summarized graphically in
Figure 8. The main loop adds some additional initialization as both state and
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key arrays need to be reset. The ByteSub/ShiftRow, UpdateRoundKey, and
AddRoundKey functions have already been discussed. The MixColumns func-
tion processes all four columns in parallel, in-place, and in a single invocation.
The CheckResult and IncrementKey functions are functionally equivalent to
previously described bitsliced DES functions. As in the case of DES, arbitrary
plaintexts and ciphertexts can be used, and, as previously mentioned, the key
schedule is computed on-the-fly. With pre-generated keys, the performance could
be increased by 23%.

The theoretical peak bandwidth of the GPU for bitsliced AES calculations
can be computed as with DES using the formula:

PeakRate =
64 SPs × 750 Minstructions/s × 32 blocks/iteration

8560 instructions/iteration

= 179.4 Mblocks/s (w/key generation)
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The execution time of the shader is key-invariant. The performance measured
on HD 2900 XT hardware is shown in Figure 9. All measurements were based
on timing the program across multiple iterations for several minutes of real time
execution. The implementation achieves a maximum device utilization of 81% for
a maximum key checking rate of 145 Mkeys/s (i.e., encrypting 145M blocks per
second, or 18.5 Gbps of data, though memory read/write bandwidth limitations
may constrain the general case).

Key Array
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Fig. 7. Round key update function
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Figure 9 also compares the performance on the GPU to two previously re-
ported software implementations ([20], [21]). The authors of [20] describe a non-
bitsliced implementation on an AMD Athlon 64 3500+ CPU running @ 2.2 GHz
at a rate of 2200 MHz / 170 cycles/block ∼ 13 Mblocks/s. The authors of [21]
describe a non-bitsliced implementation on an AMD Opteron 64 CPU running
@ 2.4 GHz at a rate of 2400 MHz / 254 cycles/block ∼ 9 Mblocks/s. Unfortu-
nately, simple comparisons to our work aren’t possible as neither implementation
generates their key schedule on the fly, which is required in a key searching ap-
plication. Figure 9 attempts to normalize the key generation process out of the
equation by removing the key generation portion of our implementation since
we don’t have the necessary information to derate the results of [20] and [21].
Hence Figure 9 shows GPU implementation’s results prorated by the aforemen-
tioned 23% attributed to round key generation. Hence, a single-GPU solution
can deliver on the order of 6 − 16× increase in performance over a single-CPU
solution for this application.

As with the bitsliced DES implementation, Figure 9 demonstrates the amorti-
zation effect of running multiple loop iterations, indicating that over 85% of the
application’s maximum performance can be realized with as few as 8 iterations.

6 Conventional Block-Based AES Implementation

In this section, we describe the implementation of a conventional block-based
AES decryption implementation on both the previous-generation X1950 XTX
GPU, which only has floating point ALU units, and the current HD 2900 XT
GPU that features an enhanced instruction set with full integer support. Even
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with the availability of full integer support, it is still important to understand
implementations on earlier GPUs because they are still used in low-cost graphics
cards.

6.1 Implementation Using Only Floating Point Hardware

The entire 128-bit state array is transformed in parallel using four registers
containing 4 bytes each stored in the transposed, unpacked format shown in
Figure 10. When reading in an integer value, floating point GPU hardware nor-
malizes the input to range from 0 to 1, which is accounted for in the shader
program that implements AES.

s0,0s1,0s2,0s3,0

s0,1s1,1s2,1s3,1

s0,2s1,2s2,2s3,2

s1,3s2,3s3,3 s0,3

Ri

Ri+1

Ri+2

Ri+3

X componentY componentZ componentW component

128 bits
32 bits

Fig. 10. AES state array register storage mapping

The internal floating-point representation introduces complications with the
required XOR operation. [2] proposed using XORs in the output stage which
incurs a steep penalty due to the overhead involved with issuing multiple passes
through the GPU’s pipeline. One alternative is to use the GPU’s native in-
struction set to implement a XOR function at the cost of 20 instructions per
4 × 8−bit row of the state array. A more economical solution is to utilize a
256× 256 table-lookup in local memory to implement each 8-bit XOR operation
in a single instruction. The cost of this approach is the memory latency associ-
ated with performing the lookup, but GPUs are optimized to hide these latencies
by efficiently switching to other threads whenever a stall occurs due to fetching
data from memory. However, a 256× 256 (64 KB) lookup table is actually quite
large, so a hybrid approach can also be used that processes the 8-bit XOR as
two 4-bit XORs through a combination of a 16 × 16 (256 bytes) lookup table
or ALU instructions. Table 3 compares the performance of the different XOR
alternatives; however, actual performance in the full AES implementation will
depend on shader instruction ordering.
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Table 3. Performance of 8-bit XOR operations on the X1950 XTX

Shader Type XORs per sec

ALU Only 6307 M
256x256 Table 778 M
16x16 Table 2980 M

Hybrid 4877 M

The GPU-based AES implementation is performed using the T-box approach
described in the original Rijndael submission [22] to the AES contest:

Tround[x] Tround[x] Tround[x] Tround[x]
s′0,c = (0E·Sbox[s0,c]) ∧ (0B·Sbox[s1,c]) ∧ (0D·Sbox[s2,c]) ∧ (09·Sbox[s3,c])
s′1,c = (09·Sbox[s0,c]) ∧ (0E·Sbox[s1,c]) ∧ (0B·Sbox[s2,c]) ∧ (0D·Sbox[s3,c])
s′2,c = (0D·Sbox[s0,c]) ∧ (09·Sbox[s1,c]) ∧ (0E·Sbox[s2,c]) ∧ (0B·Sbox[s3,c])
s′3,c = (0B·Sbox[s0,c]) ∧ (0D·Sbox[s1,c]) ∧ (09·Sbox[s2,c]) ∧ (0E·Sbox[s3,c])
Using the above implementation, each column of the state array would require

4 lookups to compute the GF(28) multiplications (each fetch can return 4×8−bit
values simultaneously) and 12 lookups for computing the 8-bit XORs, assuming
1 fetch per XOR, for a total of 64 lookups per round. The number of lookups
can be reduced to 24 by combining two GF(28) multiplications and XORs into
a single lookup table. Hence, every lookup of Tround[x, y] would return a 4-tuple
containing [0E· x ∧ 0B· y, 09· x ∧ 0E· y, 0D· x ∧ 09· y, 0B· x ∧ 0D· y] which reduces
each state array column update to 6 lookups (2 for the multiplications and 4 for
the XORs), or 24 MixColumns lookups per round. With swizzling, the ability for
hardware to arbitrarily access register components, only one table is required.

AddRoundKey is implemented using a similar lookup based technique that
requires us to pre-process the key expansion table and XOR it with the range of
8-bit values forming a 2D lookup table that can be accessed using 16 lookups.
Every byte in every round maps to a specific entry in the key expansion, so every
table access is of the form Tkeyadd[byte value, key entry]. For the last round,
which has no MixColumns operation, the S-Box transform is also included.

The following shader program pseudo-code processes one complete column of
the round function:

float4 a, b, t, c0;
a = Tround[r0.w, r3.z];
b = Tround[r2.y, r1.x];
t = XOR(a, b);
c0.w = Tkeyadd[t.x, round offset];
c0.z = Tkeyadd[t.y, round offset + 1];
c0.y = Tkeyadd[t.z, round offset + 2];
c0.x = Tkeyadd[t.w, round offset + 3];

Assuming a single lookup per 8-bit XOR, the complete round function is 40
lookups.



262 J. Yang and J. Goodman

When the shader program has processed all 10 rounds the 128-bit state array
is written out to memory. The hardware can write four outputs simultaneously,
which is used to write back the state as four, 4×8−bit values, each representing
a row in the transposed state array (e.g., sc,0, sc,1, sc,2, or sc,3 in Figure 10).

The measured performance of this straightforward implementation is approx-
imately 315 Mbps on a X1950 XTX and 380 Mbps on a HD 2900 XT. This
assumes all input blocks use the same key and does not include the key ex-
pansion which can be computed on the CPU in parallel with previous GPU
computations such that it can be effectively hidden in a well-balanced imple-
mentation. The performance is limited due to the number of lookups, which can
be a penalty if there are not enough threads and ALU instructions to hide the
associated memory access latencies. This is why performance does not scale by
the number of ALU units, because both GPUs have the same number of mem-
ory fetch units. In addition, the random nature of the fetches due to the mixing
properties of the AES algorithm impacts the ability of the GPU to use caching
to minimize the memory access latencies of the lookups.

One possible optimization replaces the 2D round processing lookup tables with
a 3D table that incorporates three GF(28) multiplies and two XORs, as well as
a 2D table that incorporates the fourth GF(28) multiply and round key XOR.
This reduces the entire round function to 24 lookups. In this mode, performance
increases to 770 Mbps. However, the memory requirements are greatly increased
as we now need a 256 × 256 × 256 (16 MB) lookup table.

Taking advantage of latency hiding, a fully optimized shader using hybrid
XORs performs at 840 Mbps on a X1950 XTX and 990 Mbps on a HD 2900 XT.

6.2 Implementation on the HD 2900 XT

AMD’s HD 2900 XT allows for native integer operations and data types, as well
as the ability to access data structures in memory (i.e., lookup tables) using
integer values. XORs can be computed using the native XOR instruction of
the GPU, so all 256× 256 byte lookup tables with precomputed XORs from the
previous section can be replaced with much smaller 256×4 byte tables (similar to
CPU implementations) and their results summed using explicit XOR operations.
Hence, the round operation shader code can be greatly simplified:

float4 c0, r0;
c0 = txMCol[r0.w].wzyx ∧ txMCol[r3.z].xwzy ∧

txMCol[r2.y].yxwz ∧ txMCol[r1.x].zyxw;
r0 = c0 ∧ Tkeyadd[round offset];

With swizzling, only a single table is needed to represent an entire state array col-
umnupdate (e.g., four S-Box transforms and fourGF(28)multiplies) in one lookup.

The AddRoundKey step requires the key expansion to be stored as a separate
lookup table and the XOR is performed in the shader. In the very last round,
SubBytes must be performed without the MixColumns. Previously we would
have to precompute this into a dedicated lookup table, but now we perform sep-
arate lookups for all the S-Box transform values and then a final AddRoundKey.
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With these changes, we can achieve rates of 3.5 Gbps on the HD 2900 XT
compared to an optimized bitsliced implementation on a CPU running at 1.6
Gbps [20] and the floating point versions on X1950 XTX and HD 2900 XT GPUs
running at 840 Mbps and 990 Mbps respectively. This is about 2× faster than
a CPU and 3.5× faster than the floating point implementation. This is also
comparable to the performance achieved by [3] using OpenGL on a NVIDIA
Geforce 8800. Although the floating point implementation runs at half the rate
of the CPU, this is still considerably better than 2.3% found by [2].

7 Conclusion and Future Work

In this work we have demonstrated both that GPUs can execute symmetric key
ciphers, and that that they can perform significantly faster than CPUs in certain
applications. Bitsliced DES on a single HD 2900 XT was shown to operate up
to 60 times faster than on a CPU, and bitsliced AES was shown to run up to 16
times faster.

We also demonstrated the advantages of the latest generation of GPUs over
the previous generation. A block-based GPU implementation of AES runs 4×
faster on the latest generation of GPUs versus the previous generation and 2×
faster than a CPU version.

It should be noted that the GPU is optimized for algorithms that are parallel
in nature with high arithmetic intensity. Hence, when programs must be executed
serially, such as when there are dependencies between threads, then CPUs will
outperform GPUs. This will be the case for certain block cipher operating modes
such as CBC encryption due to the dependencies between successive blocks,
unless there are a sufficient number of streams that can be processed in parallel
to provide the large number of independent threads required to extract the
performance in the GPU.

We believe that the entire gamut of cryptography is waiting to be explored with
current and future GPU hardware. Algorithmic exploration awaits on the sym-
metric algorithm front with investigations of efficient implementations of other
block/stream ciphers, particularly those amenable to bitsliced implementations
that can leverage the large datapath width inherent in modern GPUs. In addi-
tion, the word-level integer support should be exploitable in conventional hashing
algorithms to achieve significant performance increases over conventional CPUs.
One particularly interesting area of potential research is finding efficient mappings
of the integer support on the latest generation of GPUs to DH/RSA/ECC, and
other generic integer arithmetic algorithms. With processor design trending to-
wards multi-core, and combining CPU(s) and GPU(s) on a single die, the GPU
would appear to be a good research platform for future algorithm development.
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Abstract. In an identity-based encryption (IBE) scheme, there is a key
extraction protocol where a user submits an identity string to a master
authority who then returns the corresponding secret key for that identity.
In this work, we describe how this protocol can be performed efficiently
and in a blind fashion for several known IBE schemes; that is, a user can
obtain a secret key for an identity without the master authority learning
anything about this identity.

We formalize this notion as blind IBE and discuss its many practi-
cal applications. In particular, we build upon the recent work of Ca-
menisch, Neven, and shelat [12] to construct oblivious transfer (OT)
schemes which achieve full simulatability for both sender and receiver.
OT constructions with comparable efficiency prior to Camenisch et al.
were proven secure in the weaker half-simulation model. Our OT schemes
are constructed from the blind IBE schemes we propose, which require
only static complexity assumptions (e.g., DBDH) whereas prior compa-
rable schemes require dynamic assumptions (e.g., q-PDDH).

1 Introduction

In an oblivious transfer (OTN
k ) protocol, introduced by Rabin [41] and general-

ized by Even, Goldreich and Lempel [25] and Brassard, Crépeau and Robert [10],
a Sender with messages M1, . . . , MN and a Receiver with indices σ1, . . . , σk ∈
[1, N ] interact in such a way that at the end the Receiver obtains Mσ1 , . . . , Mσk

without learning anything about the other messages and the Sender does not
learn anything about σ1, . . . , σk. Naor and Pinkas were the first to consider an
adaptive setting, OTN

k×1, where the sender may obtain Mσi−1 before deciding
on σi [36]. Oblivious transfer is a useful, interesting primitive in its own right,
but it has even greater significance as OT4

1 is a key building block for secure
multi-party computation [46,28,32]. Realizing efficient protocols under modest
complexity assumptions is therefore an important goal.

The definition of security for oblivious transfer has been evolving. Informally,
security is defined with respect to an ideal-world experiment in which the Sender
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and Receiver exchange messages via a trusted party. An OT protocol is secure if,
for every real-world cheating Sender (resp., Receiver) we can describe an ideal-
world counterpart who gains as much information from the ideal-world interac-
tion as from the real protocol. Bellare and Micali [1] presented the first practical
OT2

1 protocol to satisfy this intuition in the honest-but-curious model. This was
followed by practical OT protocols due to Naor and Pinkas [35,36,37] in the “half-
simulation” model where the simulation-based model (described above) is used
only to show Sender security and Receiver security is defined by a simpler game-
based definition. Almost all efficient OT protocols are proven secure with respect
to the half-simulation model, e.g., [36,35,37,24,38,31]. Unfortunately, Naor and
Pinkas demonstrated that this model permits selective-failure attacks, in which a
malicious Sender can induce transfer failures that are dependent on the message
that the Receiver requests [36].

Recently, Camenisch, Neven, and shelat [12] proposed practical OTN
k×1 pro-

tocols that are secure in the “full-simulation” model, where the security of both
the Sender and Receiver are simulation-based. These simulatable OT protocols
are particularly nice because they can be used to construct other cryptographic
protocols in a simulatable fashion. More specifically, Camenisch et al. [12] pro-
vide two distinct results. First, they show how to efficiently construct OTN

k×1
generically from any unique blind signature scheme in the random oracle model.
The two known efficient unique blind signature schemes due to Chaum [19]
and Boldyreva [2] both require interactive complexity assumptions: one-more-
inversion RSA and chosen-target CDH, respectively. (Interestingly, when instan-
tiated with Chaum signatures, this construction coincides with a prior one of
Ogata and Kurosawa [38] that was analyzed in the half-simulation model.) Sec-
ond, they provide a clever OTN

k×1 construction in the standard model based on
dynamic complexity assumptions, namely the q-Power Decisional Diffie-Hellman
(i.e., in a bilinear setting e : G × G → GT , given (g, gx, gx2

, . . . , gxq

, H) where
g ← G and H ← GT , distinguish (Hx, Hx2

, . . . , Hxq

) from random values) and q-
Strong Diffie-Hellman (q-SDH) assumptions. (Unfortunately, Cheon showed that
q-SDH requires larger than commonly used security parameters [21]). These dy-
namic (including interactive) assumptions seem significantly stronger than those,
such as DDH and quadratic residuosity, used to construct efficient OT schemes
in the half-simulation model. Thus, a well-motivated problem is to find efficient,
fully-simulatable OT schemes under weaker complexity assumptions.

Our Contributions. In this work, we provide, to our knowledge, the first efficient
and fully-simulatable OTN

k and OTN
k×1 schemes secure under static complexity

assumptions (e.g., DBDH, where given (g, ga, gb, gc), it is hard to distinguish
e(g, g)abc from random). We summarize our results as follows.

First, we introduce a building block, which is of independent interest. In
identity-based encryption (IBE) [43], there is an extraction protocol where a
user submits an identity string to a master authority who then returns the cor-
responding decryption key for that identity. We formalize the notion of blindly
executing this protocol, in a strong sense; where the authority does not learn the
identity nor can she cause failures dependent on the identity, and the user learns
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nothing beyond the normal extraction protocol. This concept has similarities to
recent work by Goyal [29], in which a user wishes to hide certain characteristics
of an extracted IBE key from the authority. In §3.1, we describe efficient blind
extraction protocols satisfying this definition for the IBE schemes due to Boneh
and Boyen [3] and Waters [44] (using a generalization proposed independently
by Naccache [34] and Chatterjee and Sarkar [17]). The latter protocol is similar
to a blind signature scheme proposed by Okamoto [39]. We call IBE schemes
supporting efficient blind extraction protocols: blind IBE, for short.

Second, we present an efficient and fully-simulatable OTN
k protocol con-

structed from any of the proposed blind IBE schemes (without requiring ad-
ditional assumptions), and thus our constructions are secure under only DBDH.
Intuitively, consider the following OTN

k construction. The Sender runs the IBE
setup algorithm and sends the corresponding public parameters to the Receiver.
Next, for i = 1 to N , the Sender encrypts Mi under identity “i” and sends this
ciphertext to the Receiver. To obtain k messages, the Receiver blindly extracts
k decryption keys for identities of his choice and uses these keys to decrypt and
recover the corresponding messages. While this simple protocol does not appear
to be simulatable, we are able to appropriately modify it. (Indeed, one must
also be cautious of possibly malformed ciphertexts, as we discuss later.) Our
constructions from blind IBE are inspired by the Camenisch et al. [12] generic
construction from unique blind signatures. Indeed, recall that the secret keys
sk id of any fully-secure IBE can be viewed as signatures by the authority on the
message id [6]. Camenisch et al. [12] require unique blind signatures, whereas we
do not; however, where they require unforgeability, we require that our “blind
key extraction” protocol does not jeopardize the semantic security of the IBE.

Third, we present an efficient and fully-simulatable OTN
k×1 protocol con-

structed from our proposed blind IBE schemes in the random oracle model.
We discuss how to remove these oracles at an additional cost. This improves on
the complexity assumptions required by the comparable random-oracle scheme
in Camenisch et al. [12], although we leave the same improvement for their adap-
tive construction without random oracles as an open problem. Finally, in §5, we
discuss the independent usefulness of blind IBE to other applications, such as
blind signatures, anonymous email, and encrypted keyword search.

2 Technical Preliminaries

Let BMsetup be an algorithm that, on input the security parameter 1κ, outputs
the parameters for a bilinear mapping as γ = (q, g, G, GT , e), where g generates
G, both G and GT have prime order q, and e : G × G → GT . In our schemes,
we will require that the correctness of these parameters be publicly verifiable
(Chen et al. [20] describe efficient techniques for verifying these parameters in
a typical instantiation). We will refer to the following complexity assumption
made in these groups.

Decisional Bilinear Diffie-Hellman (DBDH) [6]: Let BMsetup(1κ) → (q, g,
G, GT , e). For all p.p.t. adversaries Adv, the following probability is strictly less
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than 1/2 + 1/poly(κ): Pr[a, b, c, d ← Zq; x0 ← e(g, g)abc; x1 ← e(g, g)d; z ←
{0, 1}; z′ ← Adv(g, ga, gb, gc, xz) : z = z′].

Known Discrete-Logarithm-Based, Zero-Knowledge Proofs. We use known tech-
niques for proving statements about discrete logarithms, such as (1) proof of
knowledge of a discrete logarithm modulo a prime [42], (2) proof that a com-
mitted value lies in a given integer interval [16,11,8], and also (3) proof of the
disjunction or conjunction of any two of the previous [23]. These protocols are
secure under the discrete logarithm assumption, although some implementations
of (2) require the Strong RSA assumption.

When referring to the proofs above, we will use the notation of Camenisch
and Stadler [13]. For instance, PoK{(x, r) : y = gxhr ∧ (1 ≤ x ≤ n)} denotes a
zero-knowledge proof of knowledge of integers x and r such that y = gxhr holds
and 1 ≤ x ≤ n. All values not in enclosed in ()’s are assumed to be known to
the verifier. We can apply the Fiat-Shamir heuristic [26] to make such proofs
non-interactive in the random oracle model.

Commitments. Let (CSetup, Commit, Decommit) be a commitment scheme where
CSetup generates public parameters ρ; on input a message M , Commit(ρ, M)
outputs a pair (C, D); and Decommit(ρ, M, C, D) outputs 1 if D decommits C
to M , or 0 otherwise. Our subsequent constructions require an efficient proto-
col for proving knowledge of a decommitment D with respect to (ρ, M, C). We
recommend using the Pedersen commitment scheme [40] based on the discrete
logarithm assumption, in which the public parameters are a group of prime or-
der q, and random generators (g0, . . . , gm). In order to commit to the values
(v1, . . . , vm) ∈ Zm

q , pick a random r ∈ Zq and set C = gr
0
∏m

i=1 gvi

i and D = r.
Schnorr’s technique [42] is used to efficiently prove knowledge of the value D = r.

3 Blind Identity-Based Encryption

An identity-based encryption (IBE) scheme supports two types of players: a
single master authority and multiple users; together with the algorithms Setup,
Encrypt, Decrypt and the protocol Extract. Let us provide some input/output
specification for these protocols with intuition for what they do.

Notation: Let I be the identity space and M be the message space. We write
P (A(a), B(b)) → (c, d) to indicate that protocol P is between parties A and B,
where a is A’s input, c is A’s output, b is B’s input and d is B’s output.

– In the Setup(1κ, c(κ)) algorithm, on input a security parameter 1κ and a
description of an the identity space |I| ≤ 2c(κ) where c(·) is a computable,
polynomially-bounded function, the master authority P outputs master pa-
rameters params and a master secret key msk .

– In the Extract(P(params ,msk), U(params , id)) → (id , sk id ) protocol, an hon-
est user U with identity id ∈ I obtains the corresponding secret key sk id from
the master authority P or outputs an error message. The master authority’s
output is the identity id or an error message.
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– In the Encrypt(params , id, m) algorithm, on input identity id ∈ I and mes-
sage m ∈ M, any party can output ciphertext C.

– In the Decrypt(params , id, sk id , C) algorithm, on input a ciphertext C, the
user with sk id outputs a message m ∈ M or the distinguished symbol φ.

Definition 1 (Selective-Identity Secure IBE (IND-sID-CPA) [15]). Let κ be
a security parameter, c(·) be a polynomially-bounded function, |I| ≤ 2c(κ) and M
be the message space. An IBE is IND-sID-CPA-secure if every p.p.t. adversary
A has an advantage negligible in κ for the following game: (1) A outputs a
target identity id∗ ∈ I. (2) Run Setup(1κ, c(κ)) to obtain (params ,msk), and
give params to A. (3) A may query an oracle Oparams,msk(·) polynomially many
times, where on any input id �= id∗ in I, the oracle returns sk id , and on any
other input, the oracle returns an error message. (4) A outputs two messages
m0, m1 ∈ M where |m0| = |m1|. Select a random bit b and give A the challenge
ciphertext c∗ ← Encrypt(params , id∗, mb). (5) A may continue to query oracle
Omsk (·) under the same conditions as before. (6) A outputs b′ ∈ {0, 1}. We
define A’s advantage in the above game as |Pr [b′ = b] − 1/2|.
On stronger notions of ciphertext security for IBE. A stronger notion of cipher-
text security for IBE schemes is adaptive-identity security (IND-ID-CPA) [6],
which strengthens the IND-sID-CPA definition by allowing A to select the target
identity id∗ at the start of step (4) in the above game. In §3.1, we show blind
IBE schemes satisfying both IND-sID-CPA and IND-ID-CPA security. Fortunately,
our oblivious transfer applications in §4 require only IND-sID-CPA-security (be-
cause the “identities” will be fixed integers from 1 to poly(κ)), some additional
applications in §5 require the stronger IND-ID-CPA-security.

Blind IBE. So far, we have only described traditional IBE schemes. A blind IBE
scheme consists of the same players, together with the same algorithms Setup,
Encrypt, Decrypt and yet we replace the protocol Extract with a new protocol
BlindExtract which differs only in the authority’s output:

– In the BlindExtract(P(params ,msk), U(params , id)) → (nothing, sk id ) proto-
col, an honest user U with identity id ∈ I obtains the corresponding secret
key sk id from the master authority P or outputs an error message. The
master authority’s output is nothing or an error message.

We now define security for blind IBE, which informally is any IND-sID-CPA-
secure IBE scheme with a BlindExtract protocol that satisfies two properties:

1. Leak-free Extract: a potentially malicious user cannot learn anything by
executing the BlindExtract protocol with an honest authority which she could
not have learned by executing the Extract protocol with an honest authority;
moreover, as in Extract, the user must know the identity for which she is
extracting a key.

2. Selective-failure Blindness: a potentially malicious authority cannot
learn anything about the user’s choice of identity during the BlindExtract pro-
tocol; moreover, the authority cannot cause the BlindExtract protocol to fail
in a manner dependent on the user’s choice.
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Of course, a protocol realizing the functionality BlindExtract (in a fashion
that satisfies the properties above) is a special case of secure two-party compu-
tation [46,28,32]. However, using generic tools may be inefficient, so as in the
case of blind signature protocols, we seek to optimize this specific computation.
Let us now formally state these properties.

Definition 2 (Leak-Free Extract). A protocol BlindExtract = (P , U) associ-
ated with an IBE scheme Π = (Setup, Extract, Encrypt, Decrypt) is leak free if
for all efficient adversaries A, there exists an efficient simulator S such that for
every value κ and polynomial c(·), no efficient distinguisher D can distinguish
whether A is playing Game Real or Game Ideal with non-negligible advantage:

Game Real: Run (params ,msk)←Setup(1κ, c(κ)). As many times as D wants,
A chooses an identity id and executes the BlindExtract protocol with P:
BlindExtract(P(params ,msk), A(params , id)).

Game Ideal: Run (params ,msk)←Setup(1κ, c(κ)). As many times as D wants,
S chooses an identity id and queries a trusted party to obtain the output of
Extract(params ,msk , id), if id ∈ I and ⊥ otherwise.

Here D and A (or S) may communicate at any time. Also, params defines I.

This definition implies that the identity id (for the key being extracted) is ex-
tractable from the BlindExtract protocol, since S must be able to interact with
A to learn which identities to submit to the trusted party. We will make use
of this observation later. Another nice property of this definition is that any
key extraction protocol with leak-freeness (regardless of whether blindness holds
or not) composes into the existing security definitions for IBE. (This would not
necessarily be true of a blind signature protocol for the same type of signatures.)
We state this formally below.

Lemma 1. If Π = (Setup, Extract, Encrypt, Decrypt) is an IND-sID-CPA-secure
(resp., IND-ID-CPA) IBE scheme and BlindExtract associated with Π is leak-free,
then Π ′ = (Setup, BlindExtract, Encrypt, Decrypt) is an IND-sID-CPA-secure
(resp., IND-ID-CPA) IBE scheme.

Next, we define the second property of blindness. We use a strong notion of
blindness called selective-failure blindness proposed recently by Camenisch et
al. [12], ensuring that even a malicious authority is unable to induce BlindExtract
protocol failures that are dependent on the identity being extracted.

Definition 3 (Selective-Failure Blindness (SFB) [12]). A protocol P (A(·),
U(·, ·)) is said to be selective-failure blind if every p.p.t. adversary A has a neg-
ligible advantage in the following game: First, A outputs params and a pair of
identities id0, id1 ∈ I. A random b ∈ {0, 1} is chosen. A is given black-box access
to two oracles U(params , idb) and U(params , idb−1). The U algorithms produce
local output skb and sk b−1 respectively. If skb �= ⊥ and sk b−1 �= ⊥ then A re-
ceives (sk0, sk1). If skb = ⊥ and sk b−1 �= ⊥ then A receives (⊥, ε). If skb �= ⊥
and sk b−1 = ⊥ then A receives (ε, ⊥). If skb = ⊥ and sk b−1 = ⊥ then A receives
(⊥, ⊥). Finally, A outputs its guess b′. We define A’s advantage in the above
game as |Pr [b′ = b] − 1/2|.
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We thus arrive at the following definition.

Definition 4 (Secure Blind IBE). A blind IBE Π = (Setup, BlindExtract,
Encrypt, Decrypt) is called IND-sID-CPA-secure (resp. IND-ID-CPA) if and only
if: (1) Π is IND-sID-CPA-secure (resp. IND-ID-CPA), and (2) BlindExtract is leak
free and selective-failure blind.

3.1 IBE Schemes with Efficient BlindExtract Protocols

In this section, we describe efficient BlindExtract protocols for: (1) the IND-sID-
CPA-secure IBE due to Boneh and Boyen [3] and (2) the IND-ID-CPA-secure IBE
proposed independently by Naccache [34] and Chatterjee-Sarkar [17] which is a
generalized version of Waters IBE [44]. Note that in §3.3 we will be adding some
additional features to these IBE schemes; these will help us to construct oblivious
transfer protocols in §4. Since all of these schemes share a similar structure, we’ll
begin by describing their common elements.

Setup(1κ, c(k)): Let γ = (q, g, G, GT , e) be the output of BMsetup(1κ). Choose
random elements h, g2 ∈ G and a random value α ∈ Zq. Set g1 = gα. Finally,
select a function F : I → G that maps identities to group elements. (The
descriptions of F and I will be defined specific to the schemes below.) Output
params = (γ, g, g1, g2, h, F ) and msk = gα

2 .
Extract: Identity secret keys are of the form: sk id = (d0, d1) = (gα

2 · F (id)r, gr),
where r ∈ Zq is randomly chosen by the master authority. Note that the
correctness of these keys can be publicly verified using a test described below.

Encrypt(params , id, M): Given an identity id ∈ I, and a message M ∈ GT , select
a random s ∈ Zq and output the ciphertext C = (e(g1, g2)s · M, gs, F (id)s).

Decrypt(params , id, sk id, cid): On input a decryption key sk id = (d0, d1) ∈ G2

and a ciphertext C = (X, Y, Z) ∈ GT ×G2, output M = X ·e(Z, d1)/e(Y, d0).

Next, we’ll describe the precise format of the secret keys sk id and corresponding
BlindExtract protocols for particular IBEs.

A BlindExtract Protocol for an IND-sID-CPA-Secure IBE. In the Boneh-
Boyen IBE [3], I ⊆ Zq and the function F : I → G is defined as F (id) = h · gid

1 .
A secret key for identity id , where r ∈ Zq is random, is:

sk id = (d0, d1) = (gα
2 · F (id)r, gr) = (gα

2 · (h · gid
1 )r, gr).

The protocol BlindExtract(P(params ,msk), U(params , id)) is described in Fig-
ure 1. Recall that U wants to obtain sk id without revealing id , and P wants to
reveal no more than sk id . Let Π1 be the blind IBE that combines algorithms
Setup, Encrypt, Decrypt with the protocol BlindExtract in Figure 1.

Theorem 1. Under the DBDH assumption, blind IBE Π1 is secure (according
to Definition 4); i.e., BlindExtract is both leak-free and selective-failure blind.

A proof of Theorem 1 is presented in the full version of this work [30].
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P(params,msk) U(params, id)

1. Choose y
$← Zq.

2. Compute h′ ← gygid
1 and send h′ to P.

3. Execute PoK{(y, id) : h′ = gygid
1 }.

4. If the proof fails to verify, abort.

5. Choose r
$← Zq.

6. Compute d′
0 ← gα

2 · (h′h)r.
7. Compute d′

1 ← gr.
8. Send (d′

0, d
′
1) to U .

9. Check that e(g1, g2) · e(d′
1, h

′h) = e(d′
0, g).

10. If the check passes, choose z
$← Zq;

otherwise, output ⊥ and abort.
11. Compute d0 ← (d′

0/(d′
1)y) · F (id)z

and d1 ← d′
1 · gz.

12. Output sk id = (d0, d1).

Fig. 1. A BlindExtract protocol for the Boneh-Boyen IBE

A BlindExtract Protocol for an IND-ID-CPA-Secure IBE. In the general-
ized version of Waters IBE [44], proposed independently by Naccache [34] and
Chatterjee and Sarkar [17], the identity space I is the set of bit strings of length
N , where N is polynomial in κ, represented by n blocks of 
 bits each. The
function F : {0, 1}N → G is defined as F (id) = h ·

∏n
j=1 u

aj

j , where each uj ∈ G

is randomly selected by the master authority and each aj is an 
-bit segment of
id . Naccache discusses practical IBE deployment with N = 160 and 
 = 32 [34].
A secret key for identity id , where r ∈ Zq is random, is:

sk id = (d0, d1) = (gα
2 · F (id)r, gr) = (gα

2 · (h ·
n∏

j=1

u
aj

j )r , gr).

The protocol BlindExtract(P(params ,msk), U(params , id)) is described in Fig-
ure 1, with the following alterations. Parse the identity as id = (a1, . . . , an),
where each ai is 
 bits. In line 2, compute h′ as gy ·

∏n
j=1 u

aj

j . In line 3, execute
the proof PoK {(y, a1, . . . , an) : h′ = gy ·

∏n
j=1 u

aj

j ∧ 0 ≤ ai < 2�, for i = 1 to n}.
The range part of this proof (e.g., 0 ≤ ai < 2�) can be performed exactly
or, by shortening each ai by a few bits, can be done at almost no additional
cost [16,11,8]. Follow the rest of the protocol as is. Let Π2 be the blind IBE
that combines Setup, Encrypt, Decrypt with the BlindExtract protocol described
above.

Theorem 2. Under the DBDH assumption, blind IBE Π2 is secure (according
to Definition 4); i.e., BlindExtract is both leak-free and selective-failure blind.

A proof of Theorem 2 is presented in the full version of this paper [30].



Blind Identity-Based Encryption and Simulatable Oblivious Transfer 273

3.2 On Other IBEs and HIBEs

Let us briefly summarize what we know about efficient BlindExtract protocols for
other IBE schemes and hierarchical IBE (HIBE) schemes. First, random oracle
based IBEs [6,22] appear to be less suited to developing efficient BlindExtract
protocols than their standard model successors. This is in part due to the fact
that the identity string is hashed into an element in G in these schemes, instead
of represented as an integer exponent, which makes our proof of knowledge tech-
niques unwieldy. We were not able to find BlindExtract protocols for the Boneh
and Franklin [6], Cocks [22], or the recent Boneh-Gentry-Hamburg [7] IBEs with
running time better than O(|I|), where I is the identity space. Additionally, we
did not consider the efficient IBE of Gentry [27], as our focus was on schemes
with static complexity assumptions.

We additionally considered hierarchical IBE schemes, such as those due to
Boneh and Boyen [3], Waters [44] and Chatterjee and Sarkar [18]. For all of these
HIBEs, the number of elements comprising an identity secret key grow with the
depth of the hierarchy, but each piece is similar in format to the original keys
and our same techniques would apply.

3.3 Additional Properties for a Blind IBE

In §4, we use blind IBE as a tool for constructing oblivious transfer protocols.
We can use either of the efficient blind IBEs Π1 and Π2 defined above together
with the following observations about efficient protocols relating to them.

First, in our OT constructions, we require an efficient zero-knowledge proof of
knowledge protocol for the statement PoK{(msk) : (params ,msk) ∈ Setup(1κ,
c(κ))}. If efficiency were not critical, we could accomplish this proof using general
techniques [46,28,32]. However, for the parameters used in Π1, Π2, this proof can
be conducted efficiently in a number of ways; one technique is to set msk = α and
conduct the equivalent PoK {(α) : g1 = gα} using a standard Schnorr proof [42].

The second property that we require is more subtle. Note that in the schemes
Π1 and Π2, there are many valid decryption keys for each identity. This may
lead to a condition where some incorrectly-formed ciphertexts decrypt differently
depending on which secret key is used. This can cause problems with the proofs
of full-simulation security for our OT protocols (specifically, we may not be able
to show Receiver security.) To address this condition in our OT protocols, we
require that Π1 and Π2 possess a property similar to committing encryption [14].
Intuitively, this property ensures that for a ciphertext and identity (C, id): (1)
running the honest decryption algorithm on C with respect to any valid secret
key for identity id will result in the same unique value, or (2) if this is not so,
then this fact can be publicly identified.

Let us define a public ciphertext validity check algorithm, which we denote
by IsValid(params , id , C). In the case of blind IBE schemes Π1 and Π2, we
implement this algorithm by first checking the group parameters γ are valid
(see [20]), and verifying that for any params and C = (X, Y, Z), all the values
are in the correct groups and e(Y, F (id)) = e(Z, g). The correctness property for
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the IsValid algorithm is that it outputs 1 for all honestly-generated parameters
and ciphertexts. From the description of Π1 and Π2, it is easy to see that IsValid
is correct. The algorithm’s behavior in the case of maliciously-generated input
is constrained insofar as it affects the following definition:

Definition 5 (Committing IBE). An IBE scheme (resp., blind IBE) Π is
committing if and only if: (1) it is IND-sID-CPA-secure (resp., secure in the
sense of definition 4) and (2) every p.p.t. adversary A has an advantage negligi-
ble in κ for the following game: First, A outputs params , id ∈ I and a ciphertext
C. If IsValid(params , id, C) �= 1 then abort. Otherwise, the challenger, on in-
put (params , id), runs the Extract (resp., BlindExtract) protocol with A twice to
obtain purported keys sk id, sk ′

id. A’s advantage is defined as:
∣
∣Pr

[
Decrypt(params , id, sk id, C) �= Decrypt(params , id, sk ′

id, C)
]∣
∣

In the full version of this work [30], we prove that both Π1 and Π2 are committing
blind IBE schemes in the sense of definition 5.

4 Simulatable Oblivious Transfer

We now turn our attention to constructing efficient and fully-simulatable obliv-
ious transfer protocols. We’ll use any of the efficient blind IBEs presented in
the previous section as a building block. In particular, we focus on building
(non-adaptive) OTN

k and (adaptive) OTN
k×1 protocols, in which a Sender and

Receiver transfer up to k messages out of an N -message set. In the non-adaptive
model [10,35], the Receiver requests all k messages simultaneously. In the adap-
tive model [36], the Receiver may request the messages one at a time, using
the result of previous transfers to inform successive requests. Intuitively, the
Receiver should learn only the messages it requests (and nothing about the re-
maining messages), while the Sender should gain no information about which
messages the Receiver selected.

Full-simulation vs. half-simulation security. Security for oblivious transfer
is defined via simulation. Informally, a protocol is secure if, for every real-world
cheating Sender (resp., Receiver) we can describe an ideal-world counterpart
who gains as much information from the ideal-world interaction as from the real
protocol. Much of the oblivious transfer literature uses the simulation-based def-
inition only to show Sender security, choosing to define Receiver security by a
simpler game-based definition. Naor and Pinkas demonstrated that this weaker
“half-simulation” approach permits selective-failure attacks, in which a malicious
Sender induces transfer failures that are dependent on the message that the Re-
ceiver requests [36]. Recently, Camenisch et al. [12] proposed several practical
OTN

k×1 protocols that are secure under a “full-simulation” definition, using adap-
tive (e.g., q-PDDH) or interactive (e.g., one-more-inversion RSA) assumptions.
We now enhance their results by demonstrating efficient full-simulation OTN

k

and OTN
k×1 protocols secure under static complexity assumptions (e.g., DBDH).
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4.1 Definitions

Recall the definitions for both the non-adaptive and adaptive protocols. For
consistency with earlier work, we use the notation from Camenisch et al. [12].

Definition 6 (k-out-of-N Oblivious Transfer (OTN
k , OTN

k×1)). An oblivious
transfer scheme is a tuple of algorithms (SI, RI, ST, RT). During the initialization
phase, the Sender and the Receiver run an interactive protocol, where the Sender
runs SI(M1, . . . , MN ) to obtain state value S0, and the Receiver runs RI() to
obtain state value R0. Next, during the transfer phase, the Sender and Receiver
interactively execute ST, RT, respectively, k times as described below.

Adaptive OT. In the adaptive OTN
k×1 case, for 1 ≤ i ≤ k, the ith transfer proceeds

as follows: the Sender runs ST(Si−1) to obtain state value Si, and the Receiver
runs RT(Ri−1, σi) where 1 ≤ σi ≤ N is the index of the message to be received.
This produces state information Ri and the message M ′

σi
or ⊥ indicating failure.

Non-adaptive OT. In the non-adaptive OTN
k case the parties execute the protocol

as above; however, for round i < k the algorithm RT(Ri−1, σi) does not output
a message. At the end of the the kth transfer RT(Rk−1, σk) outputs the messages
(M ′

σ1
, . . . , M ′

σk
) where for j = 1, . . . , N each M ′

σj
is a valid message or the

symbol ⊥ indicating protocol failure. (In a non-adaptive scheme, the k transfers
do not necessarily require a corresponding number of communication rounds).

Definition 7 (Full Simulation Security). Security for oblivious transfer is
defined according to a simulation-based definition.

Real experiment. In experiment RealŜ,R̂(N, k, M1, . . . , MN , Σ) the possibly
cheating sender Ŝ is given messages (M1, . . . , MN ) as input and interacts with
possibly cheating receiver R̂(Σ), where Σ is a selection algorithm that on in-
put messages (Mσ1 , . . . , Mσi−1) outputs the index σi of the next message to be
queried. At the beginning of the experiment, both Ŝ and R̂ output initial states
(S0, R0). In the adaptive case, for 1 ≤ i ≤ k the sender computes Si ← Ŝ(Si−1),
and the receiver computes (Ri, M

′
i) ← R̂(Ri−1), where M ′

i may or may not be
equal to Mi. In the non-adaptive case, the Receiver obtains no messages until
the kth round, and therefore the selection strategy Σ must be non-adaptive. At
the end of the kth transfer the output of the experiment is (Sk, Rk).

Ideal experiment. In experiment IdealŜ′,R̂′(N, k, M1, . . . , MN , Σ) the possibly
cheating sender algorithm Ŝ′ generates messages (M∗

1 , . . . , M∗
N ) and transmits

them to a trusted party T . In the ith round Ŝ′ sends a bit bi to T ; the possibly
cheating receiver R̂′(Σ) transmits σ∗

i to T . In the adaptive case, if bi = 1 and
σ∗

i ∈ (1, . . . , N) then T hands Mσi
∗ to R̂′. If bi = 0 then T hands ⊥ to R̂′.

Note that in the non-adaptive case, T does not give R̂′ any response until the kth

round. At the end of the kth transfer the output of the experiment is (Sk, Rk).



276 M. Green and S. Hohenberger

Sender Security. OTN
k×1 provides Sender security if for every real-world p.p.t.

receiver R̂ there exists a p.p.t. ideal-world receiver R̂′ such that ∀N = 
(κ),
k ∈ [1, N ], (M1, . . . , MN ), Σ, and every p.p.t. distinguisher:
RealS,R̂(N, k, M1, . . . , MN , Σ)

c≈ IdealS′,R̂′(N, k, M1, . . . , MN , Σ).

Receiver Security. OTN
k×1 provides Receiver security if for every real-world

p.p.t. sender Ŝ there exists a p.p.t. ideal-world sender Ŝ′ such that ∀N = 
(κ),
k ∈ [1, N ], (M1, . . . , MN ), Σ, and every p.p.t. distinguisher:
RealŜ,R(N, k, M1, . . . , MN , Σ)

c≈ IdealŜ′,R′(N, k, M1, . . . , MN , Σ).

4.2 Constructions

Non-adaptive OTN
k without Random Oracles. Given a committing blind

IBE scheme Π , it is tempting to consider the following “intuitive” protocol: First,
the Sender runs the IBE Setup algorithm and sends params to the Receiver.
Next, for i = 1, . . . , N the Sender transmits an encryption of message Mi under
identity “i”. To obtain k messages, the Receiver extracts decryption keys for
identities (σ1, . . . , σk) via k distinct executions of BlindExtract, and uses these
keys to decrypt the corresponding ciphertexts. If Π is a blind IBE secure in
the sense of definition 4, then a cheating Receiver gains no information about
the messages corresponding to secret keys he did not extract. Similarly, with
additional precautions, a cheating Sender does not learn the identities extracted.
However, it seems difficult to show this protocol is fully-simulatable, because the
ideal Sender would have to form the N ciphertexts before learning the messages
that k of them must decrypt to!

Fortunately, we are able to convert this simple idea into the fully-simulatable
OTN

k protocol shown in Figure 2. We require only the following modifications:
first, we have the Sender prove knowledge of the value msk using appropri-
ate zero-knowledge techniques.1 Then, rather than transmitting the ciphertext
vector during the first phase of the protocol, the Sender transmits only a com-
mitment to a collision-resistant hash of the ciphertext vector, and sends the
actual ciphertexts at the end of the kth round together with a proof that she
can open the commitment to the hash of the ciphertexts. (She does not open the
commitment; she only proves that she knows how to do so.)

Theorem 3 (Full-simulation Security of the OTN
k Scheme). If blind

IBE Π ∈ {Π1, Π2} with the IsValid as defined in §3.3 and (CSetup, Commit,
Decommit) is a secure commitment scheme, then the OTN

k protocol of figure 2 is
sender-secure and receiver-secure in the full-simulation model under DBDH.

We include a proof of Theorem 3 in the full version [30].

Adaptive OTN
k×1 in the Random Oracle Model. While our first protocol

is efficient and full-simulation secure, it permits only non-adaptive queries. For
1 In §3.3, we describe how to conduct these proofs efficiently for the practical blind

IBE constructions we consider.
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SI(M1, . . . , MN ), ST() RI(), RT(σ1, . . . , σk)

Sender and Receiver agree on parameters for a commitment scheme and
a collision-resistant hash function H.a

1. Generate (params,msk) ← Setup(1κ, c(κ)).
2. For j = 1, . . . , N , set Cj ← Encrypt(params, j, Mj).
3. Compute (C, D) ← Commit (H(C1, . . . , CN )).
4. Send (params, C) to Receiver.
5. Conduct PoK{(msk) : (params,msk) ∈ Setup(1κ, c(κ))}.

6. If the proof does not verify, abort.

For i = 1, ..., k, run BlindExtract on identity σi for Receiver to obtain skσi .

Following the kth extraction:
1. Send the ciphertexts (C1, . . . , CN ) to the Receiver.
2. Conduct PoK{(D) : Decommit (H(C1, . . . , CN ), C, D) = 1}.

3. If the proof does not verify, or for any i
IsValid(params, i, Ci) �= 1, abort and set
M ′

σ1 , . . . , M ′
σk

← ⊥.
4. For i = 1 to k: If BlindExtract on σi failed,

set M ′
σi

← ⊥; else, set M ′
σi

to the value
Decrypt(params, σi, skσi , Cσi).

Output Sk Output Rk, (M ′
σ1 , . . . , M ′

σk
).

a In the case of Pedersen’s commitment scheme, the parameters may be generated
by the Receiver. H may also be selected by the Receiver.

Fig. 2. OTN
k from any of the committing blind IBEs in §3, with input messages

M1, . . . , MN ∈ M. We present the SI, RI, ST, RT algorithms in a single protocol flow.

many practical applications (e.g., oblivious retrieval from a large database), we
desire a protocol that supports an adaptive query pattern. We approach this
goal by first proposing an efficient OTN

k×1 protocol secure in the random ora-
cle model. The protocol, which we present in Figure 3, requires an IBE scheme
with a super-polynomial message space (as in the constructions of §3.1), and
has approximately the same efficiency as the construction with random oracles
of Camenisch et al. [12]. However, their construction requires unique blind sig-
natures and the two known options due to Chaum [19] and Boldyreva [2] both
require interactive complexity assumptions. By using the blind IBE schemes in
§3.1, our protocols can be based on the DBDH assumption.

Theorem 4 (Full-simulation Security of the OTN
k×1 Scheme). If blind IBE

Π ∈ {Π1, Π2} with the IsValid as defined in §3.3 and H is modeled as a random
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SI(M1, . . . , MN ) RI()

1. Select (params,msk) ← Setup(1κ, c(κ)).
2. Select random W1, . . . , WN ∈ M, and for j = 1, . . . , N set:
— Aj ← Encrypt(params, j, Wj)
— Bj ← H(Wj) ⊕ Mj

— Cj = (Aj , Bj)
3. Conduct PoK{(msk) : (params,msk) ∈ Setup(1κ, c(κ))}.
4. Send (params, C1, . . . , CN ) to Receiver.

5. If the proof fails to verify or for any i
IsValid(params, i, Ci) �= 1, abort and
set M ′

σ1 , . . . , M ′
σk

← ⊥.

Output S0 = (params,msk) Output R0 = (params, C1, . . . , CN )

ST(Si−1) RT(Ri−1, σi)

In the ith transfer, run BlindExtract on identity σi for Receiver to obtain skσi .

1. If BlindExtract fails, then set M ′
σi

to ⊥.
2. Else set t ← Decrypt(params, σi, skσi , Aσi)

and set M ′
σi

← Bσi ⊕ H (t).

Output Si = Si−1 Output Ri = (Ri−1, M
′
σi

).

Fig. 3. Adaptive OTN
k×1 from any of the committing blind IBEs in §3, with

M1, . . . , MN ∈ {0, 1}n. Let hash H : M → {0, 1}n be modeled as a random oracle.

oracle, then the OTN
k×1 protocol of figure 3 is sender-secure and receiver-secure

in the full-simulation model under DBDH.

We include a proof of Theorem 4 in the full version [30].

Adaptive OTN
k×1 without Random Oracles. The random-oracle OTN

k×1
presented above is reasonably efficient both in terms of communication cost and
round-efficiency. Ideally, we would like to construct a protocol of comparable
efficiency in the standard model. We could construct an OTN

k×1 protocol by
compiling k instances of the non-adaptive OTN

k from §4.2. Each protocol round
would consist of a 1-out-of-N instance of the protocol, with new IBE parameters
and new a vector of ciphertexts (C1, . . . , CN ). To ensure that each round is
consistent with the previous rounds, the Sender would need to prove that the
underlying plaintexts remain the same from round to round. This can be achieved
using standard proof techniques, but is impractical for large values of k or N .

Alternatively, we could combine our scheme with the standard model OTN
k×1 of

Camenisch et al. [12]. Their efficient OTN
k×1, for example, incurs only a constant

cost per transfer phase. However, the protocol relies on the dynamic q-Strong
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DH and q-Power Decisional DH assumptions, where large values of q require
larger than normal security parameters [21]. Fortunately, one might be able to
keep q small (on the order of k rather than N) by combining the Camenisch
et al. scheme with ours as follows: in their initialization, the Sender releases N
values corresponding to the messages that require q = N . Instead, we could use
a blind IBE scheme to encrypt these N values during initialization, and then
during the adaptive transfer phase, a Receiver could request the decryption key
of his choice along with the information required in the Camenisch et al. scheme.
Thus, reducing the values available to an adversary to q = k.

5 Other Applications of Blind IBE

Privacy-preserving delegated keyword search. Several works use IBE as a
building-block for public-key searchable encryption [5,45]. These schemes permit
a keyholder to delegate search capability to other parties. For example, Waters
et al. [45] describe a searchable encrypted audit log in which a third party audi-
tor is granted the ability to independently search the encrypted log for specific
keywords. To enable this function, a central authority generates “trapdoors” for
the keywords that the auditor wishes to search on. In this scenario, the trapdoor
generation authority necessarily learns each of the search terms. This may be
problematic in circumstances where the pattern of trapdoor requests reveals sen-
sitive information (e.g., the name of a user under suspicion). By using blind and
partially-blind IBE, we permit the authority to generate trapdoors, yet learn no
information (or only partial information) about the search terms.2

Blind and partially-blind signature schemes. Moni Naor observed that
each adaptive-identity secure IBE implies an existentially unforgeable signature
scheme [6]. By the same token, an adaptive-identity secure blind IBE scheme im-
plies an unforgeable, selective-failure blind signature scheme. This result applies
to the adaptive-identity secure Π2 protocol of §3.1, and to the selective-identity
secure protocol Π1 when that scheme is instantiated with appropriately-sized
parameters and a hash function (see §7 of [3]). The efficient BlindExtract proto-
col for the adaptive-identity secure Π2 scheme can also be used to construct a
partially-blind signature, by allowing the signer (the master authority) to supply
a portion of the input string. Partially-blind signatures have many applications,
such as document timestamping and electronic cash [33].

Temporary anonymous identities. In a typical IBE, the master authority
can link users to identities. For some applications, users may wish to remain
anonymous or pseudonymous. By employing (partially-)blind IBE, an author-
ity can grant temporary credentials without linking identities to users or even
learning which identities are in use.
2 Boneh et al. [5] note that keyword search schemes can be constructed from any key

anonymous IBE scheme. While the schemes of §3 are not key anonymous, Boyen
and Waters remark that key anonymity in similar schemes might be acheived by
implementing them in asymmetric bilinear groups [9].
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Abstract. We develop a new multi-party generalization of Naor-Nissim indi-
rect indexing, making it possible for many participants to simulate a RAM ma-
chine with only poly-logarithmic blow-up. Our most efficient instantiation (built
from length-flexible additively homomorphic public key encryption) improves
the communication complexity of secure multi-party computation for a number
of problems in the literature. Underlying our approach is a new multi-party vari-
ant of oblivious transfer which may be of independent interest.

Keywords: communication complexity, oblivious RAM machine, privacy-
preserving protocols, secure multiparty computation.

1 Introduction

Naor-Nissim indirect indexing [24] allows two parties to privately access an array at
a shared index. We develop a multiparty generalization of Naor-Nissim indirect index-
ing, and show that our methods have many cryptographic applications. For example, we
can transform any non-private multiparty protocol into a private one, in a manner that
preserves its communication efficiency. Further, we can construct a multiparty general-
ization of Naor-Nissim circuits with look-up tables [24], enabling any number of par-
ties to privately and obliviously simulate a RAM machine with only polylogarithmic
overhead. The tools we build also yield automatic generalizations and efficiency im-
provements for several other protocols, including those for secure distributed constraint
satisfaction [34,35,39,29] and private stable matching [18,11].

Underlying our techniques is a useful multiparty generalization of oblivious transfer
(mOT), which may be of independent interest. In mOT, the role of the chooser is divided
among many participants, each of whom holds a share of an input and receives a share
of the output. We define this primitive and its related security notions, and provide two
main constructions. Our first construction is generic, and can be built from black-box
access to any ordinary two-party oblivious transfer. Our second construction is highly
efficient and uses length-flexible additively homomorphic public key encryption [8,9].

The paper is organized as follows. In Section 2, we define our multiparty gener-
alization of Naor-Nissim indirect indexing. In Section 3, we show how this tool yields
multiparty generalizations of existing protocols and efficiency improvements in existent
multiparty protocols. In Section 4, we reduce the construction of multiparty indirect in-
dexing to that of a simpler protocol, which can be seen as a multiparty variant of the
well-known oblivious transfer primitive. In Section 5, we provide an efficient construc-
tion for this new protocol.

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 283–297, 2007.
c© International Association for Cryptology Research 2007
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1.1 Background and Related Work

General secure multiparty computation (e.g., see [14,15]) can be used to privately im-
plement the functions of interest in our paper, though rather inefficiently. Particularly,
the communication complexity of such a construction for our mOT function would be
linear in the size of the database. We are most interested in protocols with sublinear
communication complexity.

Ostrovsky and Shoup [31] design communication-efficient protocols for the case
where the database is shared between k servers and the index to be accessed is held by
a single chooser. Only the chooser will learn the element in this position. Our setting
is more general, as the index and final output cannot be learned by any one party, and
are instead shared. As a result, our protocols automatically give new constructions for
the problem considered by Ostrovsky and Shoup. Their goal, however, is information-
theoretic security, while we work in the computational setting.

Naor and Pinkas [26] introduce distributed oblivious transfer which distributes the
task of the database among multiple servers to compute the standard oblivious transfer
functionality. Unconditional security is guaranteed as long a limited number of these
participants do not collude. Unlike our mLUT protocol, the database is not shared ex-
plicitly between the servers. Instead, the database sends these servers a “transfer func-
tion,” which allows each to compute a value related to the original database. From these
values, the chooser can compute the original desired value in the database.

Barkol and Ishai [2] design a communication-efficient secure multiparty protocol in
which m parties share an input x, and all hold the same constant-depth circuit C. Parties
then privately compute C(x). Let x = σ be an index shared between the parties and let
circuit C hard-code elements of a database Δ and return the x-th element as its output.
Our construction is different in the sense that the database and the final output are not
known to any single party and are shared instead. These are crucial properties that we
need in order to securely implement multiparty circuits with look-up tables.

Since its proposal by Rabin [33], oblivious transfer has been a widely studied prim-
itive and many variants, reductions, and applications have been considered. Even, Gol-
dreich and Lempel [10] formalized 1-out-of-2 OT as a generalization of Rabin’s OT.
This was further generalized by Brassard, Crépeau and Robert [4] into 1-out-of-n OT,
under the name “all-or-nothing disclosure of secrets.” We believe that the mOT primi-
tive may be of independent interest. Goldreich and Vainish [17] and Killian [20] show
that OT is a complete primitive in the sense that two parties can compute any circuit
securely using only blackbox access to OT. Goldreich [15] provides a nice presentation
of the completeness of OT using a linear (in the circuit size) number of invocations of
1-out-of-4 two-party OT. Our mOT primitive directly translates this result to the case
of general multiparty computation in a straight-forward fashion, yielding a new proof
of this result. It also leads to new proofs for other results in general secure multiparty
computation such as, for example, given a secure two-party OT protocol, n parties can
compute any function n-privately (e.g., see [14]), given secure channels, n parties can
compute any function t-privately (information theoretically) for t < n/2 (e.g., see [3]),
and similar results.

In concurrent and independent work, Ishai et al. [19] design an mOT protocol under
the name “distributed OT.” Both our protocol and theirs involve the use of efficient
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PIR protocols, though in different ways. Thus, our work gives new constructions for
the results in their paper. Comparing our two tools, our database performs O(n) work
where theirs performs O(n2), where n is the size of the database. While both tools are
comparable in terms of communication efficiency, theirs is only efficient in this sense
under some limitations on the number of parties m, since the size of the messages
passed in their scheme is linear in m. The length of the messages passed in our protocol
is independent of the number of parties, and thus we impose no limit on the number
of parties involved in our protocols. Additionally, our protocol has a logarithmic (in
n) round complexity, while theirs has a linear (in m) round complexity (the database’s
response is a log n-iterated encryption in the former, and an m − 1-iterated encryption
in the later).

1.2 Definitions and Notation

We use the following definitions and notations.

Notation 1. We denote the negation of bit b by ¬b.

Definition 2 (t-privacy). A protocol is t-private if any set of at most t participants
cannot compute after the protocol more then they could jointly compute solely from
their set of private inputs and outputs.

Notation 3 (Asymptotic notation). We use the following asymptotic notation: o(f) de-
notes that the asymptotic upper bound f is not tight; Ω(f) denotes that the asymptotic
lower bound f is tight; and ˜O(f) denotes the asymptotic upper bound O(f), ignoring
polylog(f) factors.

Notation 4 (Share notation). We let ([δ]1, [δ]2, . . . , [δ]m) be the collection of the
shares of δ split among m parties via some secret-sharing scheme, so that player i
holds the share [δ]i. When the subscript can be determined from context, we abuse no-
tation and omit the subcript for ease of exposition; thus, we may denote the share of
player i as, simply, [δ].

2 Secure Multiparty Computation with Look-Up Tables

Naor and Nissim [24] define and give a secure two-party protocol for circuits with
look-up tables. In the computational model of circuits with look-up tables, gates of a
circuit are represented by look-up tables (LUT). The LUT input wires define the table
entries and an index, and the LUT output wires are set according to the value stored
in the indexed position. The protocol for private LUT serves as a building block in
a protocol for privately evaluating circuits with LUT (a variant of the garbled circuit
transformation). Here, we extend the definition of the look-up table primitive to the
multiparty case.

Definition 5 (Multiparty LUT). In a multiparty LUT (mLUT) protocol, all the parties
are both a chooser and a database holder. Each party i holds a share of the database Δ,
and a share of the index σ. At the end of the protocol, each party learns a share of δσ ,
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the element at position σ in database Δ. Let Δ = (δ0, . . . , δn−1). Let party i’s share
of δ be denoted by [δ]i. Then, the mLUT protocol can be summarized by the following
protocol Π .

Π([Δ]1, [σ]1; [Δ]2, [σ]2; . . . ; [Δ]m, [σ]m) → ([δσ]1; [δσ]2; . . . ; [δσ]m)

Definition 6 (Private mLUT). We call a mLUT protocol t-private if no coalition of up
to t parties can learn any information about σ or any of the elements in Δ.

Circuits with LUT amount to performing computations with tables as follows. (1) Read
operations: The table values as well as the index specifying the location of the read
item are either preset or the result of an intermediate computation. In particular, it is
possible to perform any kind of indirect read. (2) Write operations: The value written
to the table may be the result of an intermediate operation but the location should be
predetermined. In other words, no indirect writes are allowed.

It follows that any computation on a RAM machine where write operations are obliv-
ious, in the sense that the time and location of the write operations should not depend
on the input and randomness, may be emulated by circuits with LUT.

Results of Pippenger and Ficher [32] imply that when considering circuits vs. Tur-
ing Machines there is no significant advantage to the latter since there exists a series of
circuits of size comparable to the running time of the Turing Machine. Currently it is
not known whether a similar result applies to circuits vs. RAM machines. Particularly,
there is a potential gap between the two, i.e. a computation on a RAM machine may be
much more efficient than any circuit family. But for circuits with LUT this gap is closed.
Particularly, note that for any write-oblivious RAM machine M running in time T (n),
there exists a family of circuits with LUT of size T (n) computing fM . Now, all one
needs to show is an efficient simulation of any RAM machine using a write-oblivious
RAM machine. Such a simulation exists, with polylogarithmic blow-up [16,24]. Specif-
ically, for any RAM machine M running in time T (n) using space S(n), there exist a
series of circuits with LUT of size T (n)polylog(S(n)) computing fM .

3 Applications

Although we have not yet provided a private protocol for multiparty LUT (mLUT),
we show how such a protocol leads to immediate efficiency improvements for several
privacy-preserving protocols in the literature and efficient multiparty generalizations of
existing two-party protocols.

We note that by replacing the two-party private LUT of Naor and Nissim [24] with
a private construction of mLUT, we generalize all the constructions given in that paper
to the multiparty case. In Appendix A of the full version of this paper [12], we present
a multiparty generalization of the communication complexity model and a transforma-
tion which makes any efficient, non-private protocol in this model into an efficient,
private protocol with the same functionality. Also, a private mLUT protocol automat-
ically yields the ability to simulate, as a multiparty computation, a private oblivious
RAM machine with only a polylog (in size of the RAM) blowup in communication
between the parties.
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Furthermore, we believe our mLUT protocol to be useful in a variety of existing ap-
plications, such as private multiparty sampling protocols [19], distributing the function
of an “auction issuer” in Naor-Pinkas-Sumner style auctions [27], private approxima-
tion protocols, and any setting where a global decision is privately computed using ac-
cess to some of the inputs of several parties. In the remainder of this section, we discuss
applying our tools to two such domains: protocols for distributed constraint satisfaction
problems, and protocols for the stable matching problem.

3.1 Private DisCSPs

Distributed constraint satisfaction problems (DisCSPs) are composed of agents holding
local variables, and a constraint network that restricts the legal assignments to agents’
variables. A solution to a DisCSP is an assignment to variables that is in agreement
with all the constraints ([38,36]). To achieve this goal, agents run a protocol where they
check assignments to their and other agents’ variables for consistency. Distributed CSPs
are an elegant model for many every day combinatorial problems that are distributed
by nature, such as meeting scheduling [13,23] in which agents attempt to schedule
meetings according to their constrained personal schedule.

Nissim and Zivan [29] design new secure protocols for DisCSPs based on advanced
search heuristics. The first protocol they design is a centralized protocol, where two
of the agents collect “encrypted” data from all other parties, and obliviously perform a
search algorithm. Their centralized algorithm avoids information leakage to all agents.
their second protocol makes the first step toward a feasible distributed secured protocol
for solving DisCSPs. They construct a network, whose nodes are small groups (e.g.
pairs) of agents, from the original DisCSPs. Each node group obliviously performs
the roles of all its members in the search algorithm. This protocol has the following
disadvantages (1) it is not fully distributed and a small collusion of agents could learn
information about the other participants’ private inputs. (2) As mentioned in the paper,
the protocol is not perfectly secure, i.e. the communication pattern in the protocol leaks
information about the agents’ private inputs.

Using our private construction for multiparty computation of circuits with LUT, we
can securely extend the centralized protocol given in section 5 of [29] to a fully dis-
tributed one without adding any overhead in the communication or computation of their
protocol. More specifically, the agents will collectively share the private data and obliv-
iously perform the search algorithm. This leads to the first fully distributed and com-
pletely secure protocol for DisCSPs. For completeness, we include a brief description
of our construction in Appendix B of the full version of this paper [12].

3.2 Private Stable Matching

Golle [18] initiated the study of privacy-preserving protocols for stable matching,
arguing persuasively that such protocols could have great practical benefit. In Golle’s
framework, m “matching authorities” receive the encrypted preference lists from the
participants and then perform a secure multiparty computation to return the stable
matching to the participants. Franklin et al. [11] revisit Golle’s work and design sub-
stantially more efficient protocols for private stable matching in this framework.
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Naor, Pinkas, and Sumner [27] observe, in considering this problem as a possible
domain for their paper’s techniques, that the algorithm for solving the stable matching
problem requires the power of indirect addressing of a RAM and, thus, its translation
into a circuit is rather inefficient. Indeed, the stable matching algorithm of
Franklin et al. [11] can be efficiently implemented as a circuit of size O(n2) with access
to a RAM. More specifically, one can implement their algorithm [11, Section 5] in the
multiparty setting1 by implementing their array/matrix accesses using our mLUT pro-
tocol. In this way, we extend this (very efficient) construction of theirs from two-party
to multiparty, yielding a protocol in the same framework as Golle and Franklin et al.,
but a factor of n more efficient than previous private stable matching protocols. The
following table compares our results with those of the previous work.

Protocol Total Total Round
Work Communication Complexity

Golle [18] O(n5) O(mn5) ˜O(n3)
Franklin et al. [11] O(n4√log n) O(mn3) ˜O(n2)
Ours O(n4) O(mn2) ˜O(n2)

4 Protocols for Private mLUT

In this section, we reduce the problem of constructing a protocol for private mLUT
to a subproblem we call “generalized multiparty oblivious transfer.” First we define
this subproblem, and then we show our construction for mLUT. Later, we define a
related protocol we call “multiparty oblivious transfer” and draw connections between
this new primitive and general multiparty computation. Finally, in Section 5, we give
a construction for an efficient, private g-mOT protocol, completing our private mLUT
construction.

4.1 A Construction for Private mLUT

Our construction for the private mLUT protocol invokes a protocol called general-
ized multiparty oblivious transfer (g-mOT) for each share of the database. Parties
get their shares of the output for each run of the g-mOT protocol and combine their
shares in the appropriate way to compute shares of the indexed position in the origi-
nal database Δ. We define generalized mOT below, and then describe this protocol in
more detail.

Definition 7 (Generalized multiparty oblivious transfer). Generalized multiparty
oblivious transfer (g-mOT) is a protocol involving m parties where: at the beginning of
the protocol, each party holds a share of a secret index σ and one distinguished party
holds a table of n bits, the database Δ = (δ0, . . . , δn−1); at the end of the protocol,

1 Franklin et al. generalize this two-party protocol to the multiparty case, but the resulting pro-
tocol is only secure in a new security model where one considers collections of pairs of match-
ing authorities, where each pair is honest-majority. Our generalization is secure in the standard
passive adversary security model where up to a certain threshold of players may be corrupted.
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each party holds a share of the database element δσ . In the terminology of oblivious
transfer, every party is a chooser and one party is also the database. The protocol Π
for

(

n
1

)

–g-mOT(m, t) can be summarized as:

Π(Δ, [σ]; [σ]; . . . ; [σ]) → ([δσ]; [δσ]; . . . ; [δσ])

We give a full security description of g-mOT later but, for our mLUT construction,
we only require that this protocol be t-private.

For simplicity, we assume that the outputs and database are shared using XOR sharing
in the construction below. Any other sharing scheme would work fine, however, as the
overhead for switching between different sharing methods does not effect the overall
complexity of our protocols. Again, let m be the number of parties participating in the
protocol. Let chooser i hold Δi = [Δ]i, where ⊕Δi = Δ. The protocol is outlined
below.

Inputs: Each party holds a share of the database Δ = (δ0, . . . , δn−1) and a
share of the index σ.
Output: Each party holds a share of δσ .

– For i = 1 to m:
• Parties run

g-mOT(Δi, [σ]; [σ]; [σ]; . . . ; [σ]) → ([δi
σ]; [δi

σ]; . . . ; [δi
σ]).

– Participant i locally computes a share of δσ as [δσ] = ⊕[δj
σ].

Claim. The complete protocol is a t-private multiparty LUT. The protocol has
O(k� log2 npoly(m)) communication complexity and O(log n) round complexity,
where k is a security parameter, m is the total number of parties, and the database
is composed of n strings of bit-length �.

Proof (Sketch). Our mLUT protocol uses m invocations of a generalized mOT protocol.
Thus, the communication complexity of our mLUT construction is simply m times
that of the g-mOT protocol from Section 5.2. Since we can run the generalized mOT
protocols in parallel, the round complexity of the mLUT protocol remains the same as
that of the g-mOT protocol. The t-privacy of the mLUT protocol follows from general
composition theorems [5,15] and the t-privacy of our g-mOT protocol.

4.2 Multiparty Oblivious Transfer

Before we give a construction for an efficient t-private generalized multiparty oblivious
transfer protocol, we explore a related protocol we call multiparty oblivious transfer. We
also give a detailed security definition for these protocols, as there may be interesting
applications that require something stronger than t-privacy.

Multiparty oblivious transfer (mOT) is a protocol involving m′ + 1 parties: m′

choosers and a database. Each chooser holds a share of a secret index σ ∈ [0, n−1]. The
database holds a table2 of n bits, Δ′ = (δ0, . . . , δn−1). At the end of the protocol, each

2 In Section 5.2, we consider a generalization of this definition, where the database is a table of
n strings, each of length �.
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chooser holds a share of the database element δσ . The protocol Π for
(

n
1

)

–mOT(m′, t)
can be summarized as follows:

Π(Δ′; [σ]1; . . . ; [σ]m′) → (∅; [δσ]1; . . . ; [δσ]m′)

We consider mOT for its simplicity and because, in many scenarios, g-mOT reduces
to mOT. For example, by letting m = m′+1 it is clear that, when the inputs and outputs
are XOR shares, there is a simple reduction of g-mOT to mOT. More specifically, the
database in the g-mOT protocol can compute the database Δ′ by permuting Δ according
to x0 (his share of the secret index) and blinding each entry by a random y0 (his share of
the output). Considering XOR shares, then, generalized mOT reduces to an invocation
of the following mOT protocol Π .

Π(Δ′; x1, . . . ; xm′) → (∅; y1; . . . ; ym′) where
m′
⊕

i=0

xi = σ and
m′
⊕

i=0

yi = δσ

Definition 8 (Secure mOT). Following Naor and Pinkas [26], we give a detailed, four-
parameter security definition for this new variant of oblivious transfer. We relate this
definition to the more common and intuitive security notion of t-privacy. We say the
mOT protocol is (t1, t2, t3, t4)-secure if, when all the participants follow their steps
properly (i.e., considering a passive adversary), the following properties are met:

input t1-privacy: no coalition of up to t1 choosers should be able to learn any
information about σ.
output t2-privacy: no coalition of up to t2 choosers should be able to learn any
information about δσ.
chooser t3-privacy: the database should not be able to learn any information about
σ, even when colluding with up to t3 other participants.
database t4-privacy: no coalition of up to t4 non-database players should be able
to learn any information about δj for j �= σ.

We could easily create information theoretic and computational variants of this defini-
tion by specifying the power of the adversary accordingly.

Remark 1. The following are automatic consequences.

– (t1, t2, t3, t4)-security implies min(t1, t2, t3 + 1, t4)-privacy.
– It is necessary that t3 ≤min(t1, t2). For g-mOT this becomes strict, t3<min(t1, t2).
– For g-mOT, since the database is a chooser, there is always a collusion of t3 + 1

choosers who can learn σ, so t1 = t3 + 1. Furthermore, t1 = t2 because, for
the database, learning σ implies learning δσ (and vice versa). Thus, for g-mOT,
t-privacy implies (t, t, t − 1, t4)-security, for some t4 ≥ t.

– If the players are computationally unbounded, it must be the case that (m′+1)/2 >
min(t1, t2, t3 +1, t4), or else we contradict known results for the privacy of uncon-
ditionally secure multiparty computation.
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5 Protocols for Private mOT and g-mOT

In this section, we give two constructions for multiparty oblivious transfer. The first
mOT construction uses blackbox access to two-party oblivious transfer, showing that
mOT can be constructed under a variety of complexity assumptions. The second is
a construction of g-mOT which we rely on for our earlier applications, as it is effi-
cient in terms of communication complexity. We leave open the problem of finding a
fully black-box transformation of two-party oblivious transfer into multiparty oblivious
transfer with sublinear (in size of the database) blowup in communication complexity.

5.1 A Generic Construction for 1-Out-of-2 mOT

Here, we describe a generic construction for a 1-out-of-2 mOT protocol, using blackbox
access to a two-party oblivious transfer protocol. For this construction, we consider
the case where the secret σ is shared among the m′ choosers using XOR sharing. Let
chooser i hold share bi and ⊕bi = σ.

1. The database chooses 2m′ bits, {(r1
0 , r

1
1), (r

2
0 , r

2
1), . . . , (r

m′

0 , rm′

1 )} uni-
formly at random, such that the bits satisfy the following condition:

m′
⊕

i=1

ri
bi

= δ⊕bi

2. For all 1 ≤ i ≤ m′

Chooser i and the database run a two-party oblivious transfer protocol,
where the chooser’s private input is bi and the database’s private input
is the two element “database” (ri

0, r
i
1).

3. The output for chooser i is ri
bi

which, according to the previous condition,
is an XOR share of δ⊕bi = δσ .

It is clear that the values of the 2m′ variables which satisfy the above condition are
precisely the solutions to the following set of m′ + 1 linear equations:

{

ri
1 = δ0 ⊕ δ1 ⊕ ri

0 | i < m′} , rm′

0 = δ0 ⊕
m′−1
⊕

i=1

ri
0 and rm′

1 = δ1 ⊕
m′−1
⊕

i=1

ri
1

In this form, it is easier to see that the database can find a random solution to the above
system by simply choosing the values for variables {ri

0 | i < m′} uniformly at random.
The remaining values are uniquely defined.

When the two-party oblivious transfer protocol is private, the above mOT protocol
is (m′ − 1)-private. This construction is essentially the same as that of Crépeau and
Kilian [6], though in a different context, and our proof of security follows directly from
theirs.

This 1-out-of-2 mOT construction protocol can be turned into a 1-out-of-n mOT pro-
tocol using a variant of the Brassard-Crépeau-Robert transform [4] which constructs
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1-out-of-n oblivious transfer from (a linear number of invocations of) the 1-out-of-2
variant. While these constructions are not particularly efficient, they do demonstrate
that mOT protocols can be constructed under a variety of standard cryptographic as-
sumptions and in the information-theoretic case. For example, given secure channels,
each two-party OT protocol can be replaced with the distributed OT (dOT) protocol of
Naor and Pinkas [26]. Briefly, in a (r, m, �, t)-dOT protocol, the database sends mes-
sages to m servers3 and the chooser contacts r of the servers to reconstruct δσ, where no
coalition of less than t servers learns σ and no coalition of the chooser with less than �
servers can compute more than can be jointly computed from these participant’s inputs
and outputs. A straight-forward argument of Nikov et al. [28] shows that a necessary
and sufficient condition for dOT is r ≥ t + �. Thus, our mOT protocol based on dOT
will be τ -private for τ < min(� + 1, t). Since r ≤ m, this condition implies our mOT
protocol is τ -private for τ < (m + 1)/2.

Using this construction for mOT instead of OT in a proof of the completeness of OT
such as Goldreich’s [15, §7.1.3.3] yields new proof that (given secure channels) n par-
ties can compute any function τ -privately (information theoretically) for τ < n/2. The
original presentation of this result, due to Ben-Or, Goldwasser, and Wigderson [3], uses
polynomial shares and requires a special, private polynomial degree-reduction tech-
nique to handle the degree growth during the interactive multiplication steps. This new
proof avoids such complicated machinery. In fact, using a basic proof of the complete-
ness of mOT while building mOT out of different tools (e.g., secure channels, secure
channels and one-way functions, two-party OT, etc) yields new proofs for a variety of
interesting results in secure multiparty computation.

5.2 A Construction for 1-Out-of-n g-mOT

In this section, we describe a generic construction of a 1-out-of-n generalized multi-
party oblivious transfer protocol. At a high level, the construction can be viewed as a
non-black-box transformation from a two-party private information retrieval (PIR) pro-
tocol (see [30] for a recent survey). First, the two-party PIR protocol is converted into
a two-party OT protocol. The owners of the secret sharing scheme engage in a multi-
party computation, t-privately transforming their shares of σ into the messages m̄0
that would be sent to the database during the two-party OT protocol. A single chooser
and the database then engage in the message passing of the original PIR protocol. The
received messages m̄1 are then used as inputs to another multiparty computation, t-
privately converting these messages into shares of δσ. In this construction, the sharing
used for the inputs and outputs is some t-out-of-m linear secret sharing scheme with
security parameter k, owned by an appropriate subset of the choosers.

One particularly efficient instantiation of our construction can be built using a two-
round PIR protocol, the length-flexible additively homomorphic public key encryp-
tion [8,9] and design ideas of Aiello-Ishai-Reingold [1]. In the remainder of this section,
we discuss this highly efficient instantiation. The steps of this protocol are assembled
in order and summarized below.

3 We note the database itself might play the role of a server, sending itself a message, causing
dOT to be a protocol among m + 1 parties.
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1. The choosers collaborate to create a (t-out-of-m) threshold, length-
flexible, additively homomorphic) encryption system.

2. The choosers collaborate to compute the PIR scheme’s first message m̄0,
using their shares of σ (see Section 5.2).

3. The choosers send the public parameters, E(σ), and m̄0 to the database.
4. The database uses E(σ) to blind the database, according to the Aiello-

Ishai-Reingold transform (see Section 5.2).
5. The database runs the PIR protocol as usual, using m̄0 and the blinded

database (see Section 5.2).
6. The database sends its response m̄1 to the choosers.
7. The choosers collaborate to decrypt m̄1. In our case, they decrypt the re-

sponse α times and then split the remaining ciphertext into shares (see
Section 5.2).

Highly Efficient Two-Party PIR and OT. A highly efficient two-party PIR scheme
can be built from length-flexible additively homomorphic public key encryption [8,9]
using design ideas of Kushilevitz-Ostrovsky [21] (e.g., following the presentation of
Lipmaa [22]).

The database is composed of n �-bit strings. The chooser takes her secret σ and
constructs q̄ = (q1, . . . ,qα), the α-dimensional vector which indicates the position of
σ in a λ1 × · · ·×λα coordinate system. In this system, index (i1, . . . , iα) is resolved in
the following manner:

Δ[(i1, . . . , iα)] = Δ[i1 ·
α

∏

j=2

λj + i2 ·
α

∏

j=3

λj + · · · + iα−1 · λα + iα]

The first query sent to the database is the encryption of q1 with the corresponding
public key. The database uses this to construct Δ[q1, i2, . . . , iα], a new database with
α−1 dimensions. The next query is the encryption of q2, the first coordinate of the same
element in this new database. We iterate in this fashion α times. This is a standard trick,
due to Kushilevitz and Ostrovsky [21] and is used in the PIR scheme of Stern [37]. In the
final round, the database’s response is the α times encryption of δi. In fact this process
happens in one round, since the encryption of q̄ = (q1, . . . ,qα) can be sent in a single
message. When encryption is achieved using a length-flexible additively homomorphic
public-key cryptosystem, this PIR protocol has Θ(k log2 n + � log n) communication
complexity, as shown by Lipmaa [22].

A modification of this PIR scheme, using the Aiello-Ishai-Reingold transform, yields
a highly efficient OT scheme. The chooser encrypts σ using a homomorphic encryp-
tion scheme and sends this to the database with the corresponding public-key. The
database takes advantage of the homomorphic property of the ciphertext to compute
a new database where each entry δj is represented by E(rj(σ − j) + δj), for some
random rj . Thus, for all j �= σ, the j-th element of the database is the encryption of a
random element. The original Aiello-Ishai-Reingold transform suggests that the homo-
morphic encryption scheme generated for this step be verifiable, such as the El-Gamal
scheme, so the database can verify the correctness of the public-key sent by the chooser.
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As we consider only honest-but-curious adversaries, we can re-use the homomorphic
encryption scheme used in the original PIR protocol and ignore the need for verifiable
keys. The rest of the OT protocol proceeds just as in the original PIR protocol, but the
database’s response must now be decrypted α+1 times to recover δσ . This transforma-
tion increases the communication complexity by a term of � + k(log n + 1) bits, which
does not effect the overall asymptotic complexity.

Input Share Conversion. In our g-mOT scheme, the choosers hold shares of σ using
some linear secret sharing scheme. We describe below how the choosers can engage in
an efficient t-private multiparty protocol to convert their shares of σ into an encryption
of q̄ = (q1, . . . ,qα). For simplicity, we represent the database as the α = log n-
dimensional 2 × · · · × 2 system4.

The choosers interact to define a t-out-of-m threshold version of the length-flexible
homomorphic encryption scheme. In reality, qi is a λi-length bit string of Hamming
weight 1. Locally, the database uses E(qi), the bit-wise encryption of this value, to
process the representation of the database at step i. In our simplified scenario (for all
i, λi = 2) this bit string is simply qi = (¬bi, bi), where bi is the i-th bit in the binary
representation of σ. In other words, if we let Δj denote the α− j-dimensional database
constructed in round j of the PIR protocol, then

Δj+1[i] = ¬qj · Δj [i] + qj · Δj [2i + 1]

Since the encryption of the negation of a bit can be computed by the database, triv-
ially, via the homomorphic property, it suffices to let qi = bi. Damgård et al. [7] provide
efficient, private constant-round multiparty protocols for computing shares of the binary
representation of a secret, from shares of the secret. Using the homomorphic property,
the choosers’ shares are encrypted and combined, and E(q), E(σ), and the public key
are sent to the database by a chooser. From this, the database can run its portion of the
OT protocol, and send its response.

Output Conversion. The response from the database is jointly decrypted α times by
the choosers to recover E(δσ), the desired element encrypted using the same t-threshold
(length-flexible) additively homomorphic encryption scheme. This is already, in a sense,
a share of δσ. Using the homomorphic property, this ciphertext can be split into additive
shares for the choosers, or a different type of sharing if desired.

5.3 Analysis

Claim. The complete protocol of Section 5.2 has O(k� log2 npoly(m)) communication
complexity and O(log n) round complexity, where k is a security parameter, m is the
total number of players, and the database is composed of n strings of bit-length �.

4 For efficiency in communication complexity when using this representation, we require the use
of length-flexible additively homomorphic encryption. It is possible to use a generic additively
homomorphic encryption system and achieve sublinear communication complexity by using a
different representation, at the cost of increasing the round complexity (by a factor of log n)
during this pre-processing phase. Such a choice would not effect the efficiency of the complete
protocol.
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Proof (Sketch). The primitives used by the input share conversion protocol have
O(poly(m, log q)) communication complexity, where q is the size of the field in which
σ lives. Since σ is a pointer into a table of size n, the communication complexity
becomes, in our case, O(poly(m, log log n)) = o(poly(m) log n). Also, the mes-
sages passed between the database and the other parties are the same as those passed
during the oblivious transfer protocol from Section 5.2, whose communication com-
plexity is Θ(k log2 n + � logn). Thus, our complete protocol has O(m(k log2 n +
� logn) + poly(m) log n) = O(k� log2 npoly(m)) communication complexity and
O(log n) round complexity.

Claim. The complete protocol of Section 5.2 is t-private, assuming the threshold
length-flexible additively homomorphic public-key encryption scheme is IND-CPA
secure.

Proof (Sketch). The above security claim follows from the security of the share conver-
sion protocols, from general composition theorems [5,15], and from the same security
arguments of [22] since (although we make use of the protocol in a non-blackbox man-
ner) the transcript of the messages passed between the chooser and database in our
protocol is identical.

More specifically, the g-mOT protocol is (t, t, t − 1, m)-secure, because the
Aiello-Ishai-Reingold transform makes the OT scheme information-theoretically
database-private. When the PIR protocol is converted into an OT protocol using a
transformation that provides computational sender privacy, like the Naor-Pinkas trans-
form [25], the resulting mOT protocol is (t, t, t − 1, t)-secure. The threshold, length-
flexible homomorphic encryption scheme of Damgård and Jurik [9] is IND-CPA secure
in the standard model, under the Paillier and composite DDH assumptions.
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Abstract. We consider a new model for online secure computation on
encrypted inputs in the presence of malicious adversaries. The inputs
are independent of the circuit computed in the sense that they can be
contributed by separate third parties. The model attempts to emulate
as closely as possible the model of “Computing with Encrypted Data”
that was put forth in 1978 by Rivest, Adleman and Dertouzos which
involved a single online message. In our model, two parties publish their
public keys in an offline stage, after which any party (i.e., any of the
two and any third party) can publish encryption of their local inputs.
Then in an on-line stage, given any common input circuit C and its set
of inputs from among the published encryptions, the first party sends a
single message to the second party, who completes the computation.

Keywords: Computing with Encrypted Data, Secure Two-Party Com-
putation, CryptoComputing, oblivious transfer.

1 Introduction

In “Computing with Encrypted Data”, first a public key is published by one
party, followed by collection of data encrypted under this key (potentially from
various sources and independent of the actual computation). Later, in an online
stage, a computing party who possesses a circuit of a function acts on the en-
crypted data, and sends the result (a single message) to the owner of the public
key for output decryption. This wishful single message scenario for secure com-
putation, was put forth as early as 1978 by Rivest, Adleman and Dertouzos [24].
This model is highly attractive since it represents the case where a database
is first collected and maintained and only later a computation on it is decided
upon and executed (i.e., data mining and statistical database computation done
over the encrypted database). However, in its most general form (and the way
[24] envisioned it), the model requires an encryption function that is homomor-
phic over a complete base (sometimes called doubly homomorphic encryption),
which is a construction that we do not have (finding such a scheme is a long
standing open problem and would have far reaching consequences); further, we
have indications such a scheme cannot be highly secure [3].

In this paper we put forth a relaxation of the above model, that relies on
two party secure computations, yet retains much of the desired properties of
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the original model, namely, it allows computing of any feasible functions over
encrypted data, it further allows the data to come from various sources, and it
employs a single online message as well. Our proposed relaxation is to allow two
parties (rather than one) to publish a shared pubic key, and both parties hold
shares of the private key and use their shares of the secret key to do computations
on data encrypted with the public key. Once the public key is published, data
contributors publish encrypted (committed) data as before (this is called the
off-line stage). Then, in the on-line stage, one of the two parties (the compiler)
is sending a single message to the second party (the cryptocomputer), that
contains a circuit for a function to compute, and a garbled circuit of the same
function, allowing the second party to compute the result securely (i.e., while
keeping the inputs private, and gaining no computational advantage beyond
what it can compute from the result and the inputs it knows). Note that because
of its essentially non-interactive nature, our model is also particularly suitable for
applications involving low-latency remote executions, such as for mobile agent
applications [26].

We give two protocols in this model, which differ only in the cryptographic
assumptions and the communication complexity. Both protocols are secure even
against malicious parties, and both allow computing any polynomial function (or
sequence of functions) by a single on-line message exchange, in a sense satisfying
the original vision of [24] for computing with encrypted data.

If we limit the input contribution to the two parties involved, our model
matches naturally the theory of general secure two party computation (see [17,32]
and [20,21] for some of the earliest and the latest works in this area). While it
may be possible to turn many of the works on two party computations to single
message protocols (based on random oracle or non-interactive proofs), we have
not seen this mentioned explicitly (the closest being [4]) or a proof of security
given for it. To the best of our knowledge none of the previous garbled-circuit-
based two party secure computation results allows for data contribution by third
parties (an issue that was not even modeled earlier).

In the general two party computation setting, two parties Alice and Bob have
private inputs xA and xB respectively, and wish to compute a function f(xA, xB)
securely, without leaking any further information. A particularly useful setting is
where Alice and Bob have published commitments sA, sB on their inputs, which
allows secure computation to proceed more efficiently. Applying our results to
this setting, we can have Alice and Bob encrypt their input during the off-line
stage (independently of any computation); then the subsequent secure compu-
tation (or “cryptocomputing” [27]) only requires a single message per function
to be computed. A similar result was previously known only for functions of
restricted complexity classes (e.g., [27] show how to securely compute functions
in NC1), while we provide a protocol for any function in P.

The idea of minimizing the on-line stage in cryptographic primitives goes back
to the notion of Off-line On-line Signature of Even, Goldreich and Micali where
they minimized the amount of computations of a signature at the on-line stage
(after a message is given as an input) [12].
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1.1 Our Model and Results

As outlined above, we propose the off-line/on-line model for crypto-computing
using a single message (and thus optimal round complexity) for the on-line stage.
For k ≥ 2, there are parties P1, . . . , Pk. We name P1 as Alice and P2 as Bob.
The model consists of the following four stages.

1. Alice and Bob publish prospective shares of the public key, yA and yB.
2. Separable Data Collection: Parties P1, . . . , Pk publish their data, encrypted

by a shared public key y.
3. Communication: Given an input circuit C with m designated inputs bits, Al-

ice sends to Bob a single message containing a set of indexes to the published
encrypted inputs {idxi}m

i=1, and a garbled circuit Ĉ.
4. Computation: Bob decides if the message is consistent with the input circuit

and its inputs, verifying that the indices to the encrypted inputs are valid,
and that Ĉ is a garbled version of C. If all these tests succeed, Bob computes
Ĉ on the committed inputs.

Note that since we deal with any polynomial-size function (or circuit), we
can have some of the data encode circuits and the on-line circuit be a universal
one [31].

We give two protocols that are secure within this model. The first is based
on the traditional and quite minimal DDH assumption and uses ElGamal en-
cryption, and the other is based on the DCR assumption and uses the simplified
Camenisch-Shoup encryption scheme (introduced by [20]). The latter protocol
achieves better communication complexity, at the price of using a stronger more
recent assumption and encryption method.

We use non-interactive zero-knowledge proofs (NIZK) for the malicious case,
which can be achieved either in the common reference string model or in the
random oracle model. Under the common reference string model, the NIZK PoK
of De Santis and Persiano [28] can be used, assuming dense secure public-key
encryption scheme. Under the random oracle model, the well-known Fiat-Shamir
technique [14] can be used.

A main primitive our work relies upon is a conditional exposure primitive we
call CODE (Conditional Oblivious Decryption Exposure). CODE is a two-party
non-interactive protocol, which allows Bob to learn the plaintext of a cyphertext
c, if two other cyphertexts a, b encrypt the same value. Unlike other conditional
exposure primitives (e.g. Gertner et al [16] and Aeillo et al [1]), in CODE the
three cyphertexts a, b, c are encrypted with a shared public key, such that third
parties can contribute them, and neither Alice nor Bob alone know anything else
about the result of CODE . The conditional exposure primitive of Aeillo et al. [1]
is a natural translation of a logical ’if a equals b’ to arithmetics on cyphertexts
using encryption that is homomorphic in the plaintext. The CODE primitive
uses homomorphic properties of the keys and of the plaintexts and gives more
freedom to design protocols that include inputs shared among the parties.

This allows for oblivious yet secure “input directed navigation” in a garbled
circuit based on a single trigger, given encrypted inputs. The technique also
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allows efficient combination with zero-knowledge proofs to assure robustness of
the overall protocol.

We note that we concentrate on a single message computation and present
the protocols with respect to the most efficient random oracle based proofs.
Modifying the scheme to employ non-interactive proofs in the standard model
and modifying the single message scheme to consider the universal composability
model of security are possible as well.

1.2 Previous Work

As mentioned above, Rivest, Adleman, and Dertouzos [24] offer perhaps the first
proposal for the study of blind computation on cyphertexts, considering them as
a primitive for private data manipulation. Feigenbaum and Merritt [13] subse-
quently urged more focused investigation on cryptosystems with algebraic homo-
morphisms. The term “CryptoComputing” and the first non-trivial instantiation
originated with Sander, Young, and Yung [27], who present a CryptoComuting
protocol for functions f in NC1. In their model, Alice does not publish her input
sA, but instead sends it (hides it) within her transcript, and information theo-
retic security is achieved with respect to Bob. This is to say that Bob learns no
information whatever about sA apart from the output of f . Beaver [2] extends
[27] to accommodate any function in NLOGSPACE. Other reduced round secure
computations (two message constructions, in fact) have been suggested by Naor,
Pinkas, and Sumner [22] and by Cachin, Camenisch, Kilian, and Müller [4]. Their
approaches are based on the two-party secure function evaluation scheme of Yao
[32] and Goldreich, Micali, and Wigderson [17].

Recently the area of robust two-party computations in constant rounds has
gained some attention. Specifically, the works of Jarecki and Shmatikov [20],
Lindell and Pinkas [21] and Horvitz and Katz [19] gave protocols for two-party
computation using Yao’s garbled circuit that are secure against malicious ad-
versaries. [20] uses a modified Camenisch-Shoup verifiable encryption scheme [6]
to allow the party that sends the garbled circuit to prove its correctness. Our
simplified-Camenisch-Shoup based protocol was devised by combining the ideas
of our first protocol with those from [20], in order to satisfy our model with
better communication complexity. Lindell and Pinkas [21] use a cut-and-choose
approach to proving security of Yao’s garbled circuit against malicious adver-
saries and their method is more generic yet requires a few more rounds. Horvitz
and Katz [19] showed a UC-secure protocol in two rounds (four messages) us-
ing the DDH assumption. In their protocol, the two parties essentially run two
instances of Yao’s protocol simultaneously.

2 Preliminaries

In the primitives we describe below, as well as in our main protocol, we assume
that Alice and Bob agree in advance on some groups over which the computation
is being done.
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Let � be a security parameter. In the constructions below, it is generally
appropriate to let � = log q. We say that a function f(l) is negligible if for
any polynomial poly, there exists a value d such that for any l ≥ d, we have
f(l) < 1/|poly(l)|. To achieve non-interactive proofs in the malicious case, we
also assume a random oracle for the underlying hash function.

2.1 ElGamal Cryptosystem

We employ the ElGamal cryptosystem [11] in our first construction. ElGamal
encryption takes place over the group Gq over which it is hard to compute discrete
logarithms. Typically, Gq is taken to be a subgroup of Z∗

p , where q | p − 1, for
large primes p and q. We denote g as a published generator of Gq.1

Let y = gx be the public key for the secret key x. The encryption of a message
m (denoted Ey(m)) is (gr, m · yr) for r ∈R [1, q]. The decryption of a cyphertext
(α, β) (denoted Dx(α, β) is β/αx. The ElGamal cryptosystem is semantically
secure [18] under the Decision Diffie-Hellman (DDH) assumption [10] over Gq. We
intensively use the multiplicative homomorphism of the ElGamal cryptosystem:
Ey(m1) · Ey(m2) = Ey(m1 · m2).

Our protocol makes use of a private/public keys (xA, yA = gxA) for Alice, as
well as a private/public key (xB, yB = gxB) for Bob. We denote by y the shared
public key yA · yB, for which the corresponding private key is xA + xB. Note
that y may be established implicitly by Alice on learning yB and by Bob on
learning yA. In particular, there is no need for interaction between the parties
to determine the shared key. Since the public keys are published, we assume all
parties hold the joint public key y.

2.2 Simplified-Camenisch-Shoup Cryptosystem

For sCS cryptosystem, Alice and Bob work over Z∗
n2 for n = pq, where p =

2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are all primes, and |p| = |q|. Let n′ = p′qp′,
and h = (1 + n). The group Z∗

n2 has unique (up to isomorphism) decomposition
as the direct-product of four cyclic groups Z∗

n2 = Gn × Gn′ × G2 × T , where Gn

is generated by h and has order n, Gn′ has order n′, and G2 and T are of order
2. Let g′ be a random element of Z∗

n2 . We know that the order of g′ divides
φ(n2) = n ·φ(n) = 4nn′. With very high probability, the order of g′ is a multiple
of n′, and g = (g′)2n thus has order n′ and is a generator of Gn′ .

For the simplified-Camenisch-Shoup (as well as the original Camenisch-
Shoup), all operations take place in Z∗

n2 . Note that h has order n and that
hc = 1 + cn (mod n2). The DCR assumption [23] is that given only n, random
elements of Z∗

n2 are hard to distinguish from random elements of P , which is the
subgroup of Z∗

n2 consisting of all nth powers of elements in Z∗
n2 .

1 In the settings where p = 2q + 1 and Gq is the set of quadratic residues in Z∗
p ,

plaintexts not in Gq can be mapped onto Gq by appropriate forcing of the LeGendre
symbol, e.g., through multiplication by a predetermined non-residue.
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The sCS encryption scheme, introduced by [20] (and based on the CS scheme
of [6]), is semantically secure under the DCR assumption.

Key generation. A private key is x∈ [0, n2

4 ]. A public key is (n, g, y) for y=gx.

Encryption. We map the message m to an integer in (−n
2 , n

2 ]. The encryption
EPK(m) is a pair (u, e) = (gr, hmyr) for a random integer r ∈ [0, n

4 ].

Decryption. Given a pair (u, e), if this is a valid cyphertext it is of the form
(gr, hmyr). Let m̂ = ( e

ux )2. If m̂ is valid, it is (1 + n)m ≡ 1 + nm (mod n2) for
some m, so check that n|m̂−1 and reject otherwise. Else, let m′ = (m̂−1)/n (over
the integers), let m′′ = m′/2 (mod n), and recover the message m = m′′ rem n,
where (a rem b) is a if a ≤ b/2 and otherwise it is b − a.

2.3 CODE (Conditional Oblivious Decryption Exposure)

The linchpin of our construction is a protocol that we newly introduce in this
paper. We refer it to as Conditional Oblivious Decryption Exposure. One of the
main differences between CODE and previously suggested conditional exposure
primitives is that CODE allows for third parties to contribute encryptions using
a public key, and then Alice and Bob, who share the private key can perform
the conditional exposure.

Definition 1 (Conditional Oblivious Decryption Exposure). Let (xA, yA)
and (xB, yB) be two secret/public key pairs and E (resp. D) be the encryption
(resp. decryption) function. Let c1, c2, c3 be three cyphertexts encrypted under
the joint key y = yA · yB. The functionality CODE is defined by

((c1, c2, c3, xA, yB), (xB , yA)) �→
{

(⊥, (c1, c2, c3, Dx(c3)) if Dx(c1) = Dx(c2)
(⊥, (c1, c2, c3, r)) otherwise.

Where x = xA + xB and r ∈R Gq.

In this functionality, the decryption of c3 is exposed to the second party con-
ditioned on c1 ≡ c2 (i.e., if they encrypt the same message). Moreover the first
party is oblivious of the outcome of the protocol.

We show protocols for secure implementations of CODE functionality using
eitehr ElGamal and sCS encryptions. impCODE is a protocol for the CODE
functionality secure in the honest-but-curious case.

impCODE. Let’s call the first party Alice and the second party Bob. The CODE
implementation consists of a single CODE transcript sent from Alice to Bob.
Let c1 = (α, β) = (gr1 , m1y

r1), c2 = (γ, δ) = (gr2 , m2y
r2), and c3 = (λ, μ) =

(gr3 , m3y
r3). Alice sends (ε, ζ, D) to Bob where

1. ε = (α/γ)e and ζ = (β/δ)e, for e ∈R Zq

2. D = (ελ)xA .
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Bob computes m̃3 = ζμ
D·D′ where D′ = (ε · λ)xB and outputs (c1, c2, c3, m̃3).

Note that

m̃3 =

(
m1yr1

m2yr2

)e

· m3y
r3

((
gr1

gr2

)e

· gr3

)x =
(

m1

m2

)e

· m3

that is, if m1 = m2, then m̃3 = m3, as required.

Theorem 1. The protocol impCODE securely implements the functionality
CODE for the honest-but-curious two parties under DDH assumption.

Proof. We show a simulator S = (SIMA, SIMB) for impCODE. The case of
corrupted Alice is easy; since Alice does not get any message from Bob, the
simulator SIMA is trivial. For a corrupted Bob, the simulator SIMB has to
simulate the view of Bob. Formally,

{SIMB ((xB , yA), (c1, c2, c3, d))} c≈ {viewB ((c1, c2, c3, xA, yB), (xB , yA))}

In other words, given the input and output of Bob, SIMB has to simulate the
impCODE transcript (ε, ζ, D) that Alice sends to Bob. The simulator SIMB

computes

e ∈R Zq, ε = (α/γ)e, ζ = (β/δ)e, D′ = (ελ)xB , D =
ζμ

d · D′ ,

and outputs (ε, ζ, D). The simulated (ε, ζ) have the same distribution as in the
real protocol. Given (ε, ζ) and d, D is uniquely determined.

3 Honest-But-Curious Protocol

3.1 Intuition

In our one-message secure function evaluation scheme, Alice sends a garbled
circuit to Bob, and Bob computes the function f using the garbled circuit.
Let C be a circuit with gates G1, G2, . . . , Gm that computes the function f of
interest, and let T1, T2, . . . , Tm be the corresponding truth tables. Sometimes we
interchangeably use the term gates and tables.

First of all, Alice garbles each table by encrypting all the entries and then
permuting the rows. See Figure 1 for example, where Alice garbled an AND
gate with shuffling permutation (1 2 3).

As in Yao’s garbled circuit, Bob’s computation of a gate Gj depends on the
computation of the two gates Gi, Gk associated with the inputs to Gj , where
these gates’ outputs are used in the decryption of the encrypted truth table
Tj. One notable difference from Yao’s technique, is that here we add another
level of separation between these gates’ (encrypted) outputs and the key for
decrypting gate Gj - this is done using CODE . We thank the annonymous referee
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Ti IL (left input) IR (right input) O (output)
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

T a
i IL IR O

1 E[1] E[0] E[0]
2 E[0] E[0] E[0]
3 E[0] E[1] E[0]
4 E[1] E[1] E[1]

In case of ElGamal encryption scheme, E[0] and E[1] actually mean E[g0]
and E[g1] respectively. We still use the notation E[0] and E[1] to handle both
ElGamal and sCS encryption schemes.

Fig. 1. Alice Garbles an AND gate Ti with permutation (1 2 3) and gets T a
i

T b
i IL IR O Plugs[i→j]

1 E[1] E[0] E[0] (n,y,y,n)
2 E[0] E[0] E[0] (n,y,y,n)
3 E[0] E[1] E[0] (n,y,y,n)
4 E[1] E[1] E[1] (y,n,n,y)

T b
j IL IR O Plugs[j→·]

1 E[1] E[0] E[0] · · ·
2 E[0] E[0] E[0] · · ·
3 E[0] E[1] E[0] · · ·
4 E[1] E[1] E[1] · · ·

Fig. 2. Plugs are now added

for commenting that indeed, in the honest-but-curious case, it is enough for us
to use CODE only in the input gates (where Yao’s protocol uses Oblivious
Transfer), improving our construction’s efficiency and readability. However, using
CODE is still required for assuring security in the malicious case.

With only isolated garbled tables, however, Alice cannot have Bob compute
the function. She needs to give to him ‘wiring information’ between a row of a
table (output) and a row of an upper-level table (input). The wiring information
is hereafter called a plug. See Figure 2 for example. Suppose that T b

j is the upper-
level table of T b

i where T b
i ’s output is propagated into T b

j ’s left input. We denote
the plugs in the v-th row of the table T b

i by Plugs[i→j](v), and, more specif-
ically, Plug[i→j](v, w) denotes the w-th element of Plugs[i→j](v). For example,
Plugs[i→j](1) = (n, y, y, n) and Plug[i→j](1, 2) = y. The plug Plug[i→j](1, 2) = y

means that the output value on the first row of T b
i is equal to the left-input value

on the second row of T b
j . On the other hand, from the plug Plug[i→j](1, 4) = n, we

know that the output value of the first row of T b
i is different from the left-input

value on the fourth row of T b
j .

However, if Bob is honest-but-curious, he might be able to find out more
than the output of the function by following other computation paths because
all the plug information is exposed. For example, even if Bob determines that
Oi is the correct output for table T b

i , he can experiment and try computing
another computation path using a different output O′

i on another row of the
same table. Such an attack, if successful, can enable Bob to explore a rich set of
different computational paths for f , potentially leaking information about the
secret input.
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The aim of our protocol is to restrict Bob’s exploration exclusively to the
correct computational path. Suppose that we have three tables T b

i , T b
j and T b

k

where the output of T b
i and the left input of T b

j are connected together and so
are the output of T b

k and the right input of T b
j . Let Oi,vi (resp. Ok,vk

) be the
output for a given row vi in T b

i (resp. for a given row vk in T b
k), and IL

j,vj
(resp.

IR
j,vj

) be the left (resp. right) input for a given row vj in T b
j . Now suppose that

Bob has the plugs Plug[i→j](vi) and Plug[k→j](vk), and wants to retrieve plugs
in the table T b

j . We want to make sure that Bob obtains the plug for the vj -th
row of the T b

j only when Oi,vi ≡ IL
j,vj

and Ok,vk
≡ IR

j,vj
. Since the same will be

true for all gates in C, Bob can only follow the correct computational path, and
learns nothing about other paths.

In order to achieve our goal, for each row of a table Alice generates an en-
cryption key pair (pk, sk), exposes the public key pk, and hides the secret key
sk by encrypting it with the global encryption key (i.e., y = yA · yB). She then
encrypts the plug information with pk. She wants Bob to obtain the key sk and
therefore get the plug information only when Bob follows correct computation
path. The idea is using CODE transcript as a plug. Recall that CODE , given
three cyphertexts c1, c2 and c3, outputs the decryption of c3 when c1 ≡ c2. Here,
c1 and c2 corresponds to Oi,vi and IL

j,vj
(or Ok,vk

and IR
j,vj

), and and c3 to the
cyphertext of sk. Below, we describe our protocols in detail.

3.2 Protocol Details: Publication of Keys and Inputs

Alice and Bob publish their keys yA and yB. Input contributors encrypt input
bits using the public key y = yA · yB. Let s be an n-bit input string that is
contributed by input contributors. Denote the i-th bit of s by si. When El-
Gamal encryption scheme is used, s is encrypted as {(gri, gsi ·yri)}n

i=1, where
ri ∈R Zq. When sCS scheme is used, s is encrypted as {(gri , hsi ·yri)}n

i=1, where
ri ∈R [0, n/4].

3.3 Protocol Details: Alice

Structure of the Table. Alice reads Bob’s published key and input cyphertexts
and computes y = yAyB. Now, in order to incorporate CODE we must extend the
underlying table structure to incorporate plugs and associated keys. To do so,
we append two columns to the basic table T b

i , and denote the resulting expanded
table by T i. See Figure 3.

Here, Bob obtains a key ki,v1 (resp. ki,v2) from the plug of the lower-level
table when he makes a successful match against the left (resp. right) input on
the row v.

Construction of the Overall Garbled Circuit. Alice has to construct three
types of tables: input, output and intermediate gates. First, Alice constructs the
set of intermediate tables {T i} as follows.
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1. Alice mixes each table Ti and encrypts all the entries to yield T b
i .

2. For each table T b
i and row v, Alice selects ki,v1, ki,v2 ∈R Zq to construct two

columns of KL and KR in T i.
3. Alice computes P̂lugs[i→· ](v) for each row v.

T i IL IR O KL (left key) KR (right key) Plugs[i→j]

1 Ey(1) Ey(0) Ey(0) Ey(ki,11), gki,11 Ey(ki,12), gki,12 Ezi,1(ρi,11), . . . , Ezi,1(ρi,14)
2 Ey(0) Ey(0) Ey(0) Ey(ki,21), gki,21 Ey(ki,22), gki,22 Ezi,2(ρi,21), . . . , Ezi,2(ρi,24)
3 Ey(0) Ey(1) Ey(0) Ey(ki,31), gki,31 Ey(ki,32), gki,32 Ezi,3(ρi,31), . . . , Ezi,3(ρi,34)
4 Ey(1) Ey(1) Ey(1) Ey(ki,41), gki,41 Ey(ki,42), gki,42 Ezi,4(ρi,41), . . . , Ezi,4(ρi,44)

1. The value ki,vw for v ∈ [1, 4], w ∈ [1, 2] is chosen randomly from Zq .
2. The public key zi,v = gki,v1 · gki,v2 for v ∈ [1, 4] is used to encrypt plugs of the

v-th row.
3. When we want to emphasize on the abstract view of the plug ρi,vw (resp.

Ezi,v (ρi,vw)), we use the notation Plug[i→j](v, w) (resp. P̂lug[i→j](v, w)).

Fig. 3. Schematic depiction of table T i

Inputs to the circuits are plugs connecting input ciphertexts and the first-level
intermediate gates. Again, plugs are constructed using CODE .

Output gates have much the same structure as intermediate gates. The only
difference is in the last column. Rather than providing encrypted plugs to enable
the computation to be continued, Alice provides encrypted output bits for the
function f .

3.4 Protocol Details: Bob

Now let us consider how Bob evaluates the transcript sent by Alice. We assume,
by recursion, that when Bob tries to evaluate the output of gate Gj , he has the
plugs (i.e., Plugs[i→j](vi) and Plugs[k→j](vk)) for these ciphertexts into T j .

1. For each v ∈ {1, 2, 3, 4}, Bob performs impCODE with the two plugs
Plug[i→j](vi, v) and Plug[k→j](vk, v) trying to obtain keys kj,v1 and kj,v2.

If he fails (by checking if gη ?= gkj,v1 , where η is the output of impCODE),
he tries the next row.

2. If he succeeds, he decrypts P̂lugs[j→· ](v) with the decryption key (kj,v1 +
kj,v2) and gets the plug information Plugs[j→· ](v). Note that zj,v =
gkj,v1+kj,v2 .

3. He proceeds with the computation using the obtained plugs.

When Bob has obtained all outputs from output gates, and so he learns the
output of the circuit.
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3.5 Communication Complexity in the Honest-But-Curious Case

Consider a single truth table; Each row of the table has 12 values of Z∗
p except

the plugs. Plugs of each row has 4 · 4 = 16 values of Z∗
p . Therefore, each (output

or intermediate) table contains 4 · (12 + 16) = 112 = O(1) values of Z∗
p . Each

input plug has 5 values for Alice, and 3 values for Bob. Thus, we need 8n values
of Z∗

p for inputs of Alice and Bob. We need another n bits for Bob to send the
result of the function back to Alice. Summing all the above, it is clear that the
total communication complexity is O((m + n) log p) bits.

4 Full Protocol

4.1 Intuition

While the protocol described above is secure assuming honest-but-curious par-
ticipants, it it not secure against active cheating on the part of Alice.

A corrupted party (either Alice or Bob) can publish a public key which is
not chosen randomly. For example, Alice can wait for Bob to publish his public
key yB, pick a shared private key x of her choice, and send gx/yB as her public
key yB. This gives Alice knowledge of the shared private key and the power to
decrypt any of the inputs (including Bobs: she just needs to re-encrypt Bob’s
input with yB, and then she can decrypt them with x). To overcome this kind
of attacks, the malicious case protocol requires that Alice and Bob publish non-
malleable PoK for the knowledge of the discrete logs of their respective public
keys, together with their public keys. We note that both in the common reference
string model and in the random oracle model, adding non-malleability to NIZK
PoK [28] is simple: In the CRS, we follow the technique of [25]; In the random
oracle model, adding non-malleability to Fiat-Shamir style NIZK PoK [14] is
simple: include the name of the publisher in hash function evalution.

A corrupt Alice may cheat in the construction of the gate. First, Alice may
send encrypted truth tables that do not correspond to the gates of the circuit.
In Section 4.2 we show how Alice can prove that the truth tables are correct.
Second, Alice may fake the plugs. Specifically, Alice may use the fact that the
plugs are encrypted, and encrypt random values instead of valid plugs at selected
locations. If Bob does complete the protocol, Alice learns that these invalid plugs
were not decrypted, thus learning about Bob’s computation path.

Therefore, in our full protocol, Alice sends Bob not only the garbled circuit
but also the proof of its correct construction. The proof comprises two parts: the
proof of correct construction of basic gates, and the proof of correct construction
of plugs.

4.2 Proof of Correct Construction of Basic Gates

In this section, we give a zero knowledge proof of knowledge for a correct con-
struction of gates. We assume that the circuit consists of NAND gates.
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Zero-knowledge Proof of Knowledge. Informally, a Proof of Knowledge is a
proof for a relation R, in which the prover convinces the verifier that an instance
is in the language, and also that the prover knows a witness for this instance,
rather then just the existence of such a witness. In a (standard) proof of knowl-
edge for the discrete log, the prover convinces the verifier that she knows the
value of b, such that a = gb, when a is known to both. We denote such proof by
PK{b : a = gb}. There are many variants on these proofs, such as in [30]. In this
paper, we make use of variants in which Alice proves conjunctive statements,
and statements regarding her knowledge of sets of discrete logs. See [9,29,5] for
a description of how to achieve such variants in an efficient manner.

Proof of Boolean Plaintext. Let σ0 = 1 and σ1 represent boolean values 0 and
1, respectively. Specifically, we define σ := g in ElGamal encryption while σ := h
in sCS encryption. Cramer et al. [8] showed how to prove that the plaintext of
an ElGamal cyphertext A = (α, β) is Boolean, i.e.,

Bool(A)
def
= PK{r : α = gr, (β = yr or β = σ · yr)}.

Proof of Equality/Inequality of Boolean Plaintext. Using ZK PoK for the
discrete log it is easy to prove equality/inequality of the plaintexts of two ElGa-
mal/sCS cyphertexts. Given the two cyphertexts A = (α, β) and A′ = (α′, β′),
let (ε, δ) = (α/α′, β/β′), and let (μ, ν) = (αα′, ββ′/σ). To prove equality of
Dx(A) = Dx(A′), we give PK{e : y = ge, δ = εe} and denote such proof by
Eq(A, A′). To prove inequality of Dx(A) 
= Dx(A′), we give PK{e : y = ge, μ =
νe} and denote such proof by Neq(A, A′).

Shuffling Lists of Cyphertexts. We adopt a protocol of [15] for non-
interactively proving that two lists of cyphertexts are equivalent, and that one
is a permutation of the other. We denote this protocol Shuffle and note that the
length of the transcript of the protocol is linear with the number of cyphertexts.
While the protocol of [15] is originally designed for ElGamal encryptions, it can
be easily applied to sCS encryptions too.

IL IR O

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

IL IR O

A′
1 B′

1 C′
1

A′
2 B′

2 C′
2

A′
3 B′

3 C′
3

A′
4 B′

4 C′
4

I O

A1 B1

A2 B2

Fig. 4. base NAND gate, NAND gate, and OUTPUT gate

Correct Construction of NAND Gate. For an NAND gate, we give a two-
part proof; the first part shows the structure of the gate. However this part leaks
information on the truth table, thus the second part shuffles and re-encrypts the
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T j IL IR O KL KR Plugs[j→·]

1 (αj,11, βj,11) (αj,12, βj,12) (γj,1, δj,1) (λj,11, μj,11), κj,11 (λj,12, μj,12), κj,12 P̂lugs[j→·](1)
2 (αj,21, βj,21) (αj,22, βj,22) (γj,2, δj,2) (λj,21, μj,21), κj,21 (λj,22, μj,22), κj,22 P̂lugs[j→·](2)
3 (αj,31, βj,31) (αj,32, βj,32) (γj,3, δj,3) (λj,31, μj,31), κj,31 (λj,32, μj,32), κj,32 P̂lugs[j→·](3)
4 (αj,41, βj,41) (αj,42, βj,42) (γj,4, δj,4) (λj,41, μj,41), κj,41 (λj,42, μj,42), κj,42 P̂lugs[j→·](4)

T i IL IR O KL KR Plugs[i→j]

1 (αi,11, βi,11) (αi,12, βi,12) (γi,1, δi,1) (λi,11, μi,11), κi,11 (λi,12, μi,12), κi,12 P̂lugs[i→j](1)
2 (αi,21, βi,21) (αi,22, βi,22) (γi,2, δi,2) (λi,21, μi,21), κi,21 (λi,22, μi,22), κi,22 P̂lugs[i→j](2)
3 (αi,31, βi,31) (αi,32, βi,32) (γi,3, δi,3) (λi,31, μi,31), κi,31 (λi,32, μi,32), κi,32 P̂lugs[i→j](3)
4 (αi,41, βi,41) (αi,42, βi,42) (γi,4, δi,4) (λi,41, μi,41), κi,41 (λi,42, μi,42), κi,42 P̂lugs[i→j](4)

Fig. 5. Variable-based representation of table T i and T j

truth table entries. For two ElGamal/sCS cyphertexts Y = (α, β) and Y ′ =
(α′, β′), denote Y ⊕ Y ′ = (αα′, ββ′). Let X = (1, 1/σ2) be a trivial encryption
of 1/σ2. We use the following fact to construct the base gate:

c = a NAND b ⇐⇒ a + b + 2(c − 1) ∈ {0, 1}.

The base NAND gate:
1. Bool(A1), . . . , Bool(C4)
2. Eq(A1, A2), Eq(A3, A4), Neq(A1, A3)
3. Eq(B1, B3), Eq(B2, B4), Neq(B1, B2)
4. Bool(Ai ⊕ Bi ⊕ Ci ⊕ Ci ⊕ X) for i ∈ {1, . . . , 4}

The second and the third items show the input columns are valid. The last item
shows the output columns are valid. Note that the proof in this step reveals
some information such as equality of cyphertexts in the same column. Hence,
the second part: Shuffle(〈Ai, Bi, Ci〉4i=1 , 〈A′

i, B
′
i, C

′
i〉

4
i=1).

Correct Construction of an OUTPUT Gate. The proof for the correct
construction is as follows:

The OUTPUT gate:
1. Bool(A1), Bool(A2), Bool(B1), Bool(B2)
2. Neq(A1, A2), Eq(A1, B1), Eq(A2, B2)

4.3 Correct Construction of Plugs

Structure of the Plug. We modify the structure of P̂lug[i→j](v, w). a little bit
in the full protocol. We assume that the output of the gate Gi and the left input
of the gate Gj are connected together. See Figure 5 for the representation of the
two tables T i and T j . The plug is an encryption of impCODE transcript2 for

2 If the output of Gi were the right input of Gj , it would be c1 = (αj,w2, βj,w2), c2 =
(γi,v, δi,v), c3 = (λj,w2, μj,w2).
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c1 = (αj,w1, βj,w1), c2 = (γi,v, δi,v), c3 = (λj,w1, μj,w1). The actual transcript
will be of the following form Plug[i→j](v, w) = 〈ε, ζ, D〉, where

e ∈R Zq, ε =
(

αj,w1

γi,v

)e

, ζ =
(

βj,w1

δi,v

)e

, D = (ε · λj,w1)
xA .

Note that we don’t have to encrypt ε or ζ; the exponent e for ε and ζ is
already hard to find due to the hardness of DLP. So we only have to apply
ElGamal encryption to D. The plug now looks as follows:

P̂lug[i→j](v, w) = 〈ε, ζ, (gr, D · zr
i,v)〉, where r ∈R Zq.

We denote the (gr, D · zr
i,v) by (η, D̃).

When Bob obtains the (decrypted) plug Plug[i→j](v, w), he executes imp-
CODE scheme and gets an output k̂ by computing

k̂ =
ζ · μj,w1

D · D′ , where D′ = (ε · λj,w1)
xB .

He checks if gk̂ = κj,w1 holds; if it holds, he decides that (αj,w1, βj,w1) ≡
(γi,v, δi,v).

ZKVerify : Proof of Correct Plug Construction. The goal of the ZKVerify
proof is for Alice to prove that the encrypted CODE transcripts are valid. Specif-
ically we show how to generate the proof for the plug P̂lug[i→j](v, w). The plug
is encrypted using a key zi,v = κi,v1 · κi,v2 = gki,v1 · gki,v2 (See Figure 3 and 5
for notations), and the corresponding secret key is obtained by Bob only if he
learns correctly ki,v1 and kj,v2 (this limits his computation to a single computa-
tional path in the circuit). ZKVerify proves two things: (1) given two ciphertexts
Ey(ki,v1), Ey(ki,v2), the encrypted part of the plug, i.e., (gr, D · zr

i,v) is actually
encrypted using the public key zi,v; (2) she knows the discrete-log used in the
rest part of the plug:

PK

{
e : ε =

(
αj,w1

γi,v

)e

, ζ =
(

βj,w1

δi,v

)e}
.

In the ElGamal based construction, we assume that both p and q are safe
primes such that p = 2q + 1 and q = 2q′ + 1 (i.e., p is a double decker). It is
claimed that there are infinitely many such tuples of primes, and they are easy
to find. We let ki,v1 = f τ1 , and ki,v2 = f τ2 , where f is a generator in Gq′ . The
proof ZKVerify

(
(λi,v1 , μi,v1 , gκi,v1) , (λi,v2 , μi,v2 , gκi,v2) , P̂lugs[i→j](v, w)

)
is as follows:

PK

{
(r1, τ1, r2, τ2, e, r3, xA) : λi,v1 = gr1 , μi,v1 = f τ1 · yr1 , κi,v1 = gfτ1

,

λi,v2 = gr2 , μi,v2 = f τ2 · yr2 , κi,v2 = gfτ2
,

ε = (αj,w1/γi,v)
e
, ζ = (βj,w1/δi,v)

e
,

yA = gxA , η = gr3 , D̃ = zr3
i,v · (ε · λj,w1)

xA

}
.
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The above proof uses proofs of knowledge of the double discrete log, which can be
constructed by using Camenisch and Stadler [7]. They showed how to construct
such proof in their paper, and this costs Θ(�) communication complexity (� is
security parameter).

For the sCS based protocol, ZKVerify is simpler, and we do not need to
construct k1, k2 in a special form. The proof shows directly that κi,v1 = gki,v1 .
The proof ZKVerify is as follows:

PK

{
(r1, τ1, r2, τ2, e, r3, xA) : λi,v1 = gr1 , μi,v1 = hki,v1 · yr1 , κi,v1 = gki,v1 ,

λi,v2 = gr2 , μi,v2 = hki,v2 · yr2 , κi,v2 = gki,v2 ,

ε = (αj,w1/γi,v)
e
, ζ = (βj,w1/δi,v)

e
,

yA = gxA , η = gr3 , D̃ = zr3
i,v · (ε · λj,w1)

xA

}
.

Note, in the sCS based protocol, the ZKVerify proof does not include a double
discrete log proof.

4.4 Protocol Details: Input Contribution

The parties contibuting inputs might be malicious. For example, an input con-
tributed may generate a committed input by mauling other committed input.
To avoid this kind of attack, the input contributors add non-malleable zero-
knowledge proofs of knowledge to each of their committed input bits. In addition,
the parties who manage the public directory that stores the committed inputs
check the committed inputs and reject any inputs that have the same proofs.

4.5 Protocol Details: Alice

Alice sends the tables as in the honest-but-curious case, and in addition, for
each gate Gi, she sends a proof of correct construction of the gate and of the
plugs ZKVerify

(
(λi,v1 , μi,v1 , gκi,v1) , (λi,v2 , μi,v2 , gκi,v2) , P̂lugs[i→j](v)

)
,

where by P̂lugs[i→j](v) we mean the four encrypted pairs, one for each CODE
transcript, which are all encrypted using zi,v = gκi,v1+κi,v2 .

4.6 Protocol Details: Bob

In the full version of the protocol, Bob first verifies that all the proofs Alice
sent are valid. That is, for each gate Gi Bob verifies that the proof of correct
construction of the gate is valid. For each row v of table T i, Bob verifies that
the proof for correct encryption of the plugs P̂lugs[i→j](v) is valid. If any of the
proofs is invalid, Bob aborts the protocol. Otherwise (if all proofs are valid), Bob
continues as described in Section 3.

4.7 Communication Complexity in the Malicious Case

In addition to the communication costs of the garbled circuit, the malicious
case incurs the complexity of sending the additional proofs. When ElGamal
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encryption is used, the total communication complexity costs are O((m · � +
n) log p bits mainly due to proof of double discrete log. When sCS encryption is
used, the total communication complexity costs are O((m + n) log p) bits.
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Abstract. We present two block cipher distinguishers in a setting where
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1 Introduction

The research leading to this paper was triggered by the following example. Con-
sider an n-bit block cipher and a plaintext/ciphertext pair for which the least
significant s bits in both n-bit strings are zeros. With s < n/2 such a pair can
be found for any reasonable block cipher in time equivalent to approximately
2s encryptions. Imagine a block cipher where if one is given any key k, one can
find such a pair for k in time much less than 2s, but where no efficient attacks
are known in the traditional black-box model. Should we recommend the use of
such a cipher? We don’t think so!

In the next two sections we present two attacks —or rather distinguishers— for
block cipher constructions, where the attacker knows the key. Section 2 presents
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a distinguisher on AES reduced to seven rounds; Section 3 presents distinguishers
for a class of Feistel ciphers, also with seven rounds. At the first glance it might
appear strange to consider attacks on a cipher where one is given the secret key.
However, by studying this type of attacks, we might learn something about the
security margin of a cipher. Intuitively, it seems clear that if one cannot find
distinguishers for a block cipher when given the key, then one cannot find a
distinguisher where the key is secret. Secondly, in some cases (mainly for block
cipher based hashing) block ciphers are used with a key that is known to the
attacker, and at least to a certain extent, the key is under the attacker’s control.
Our attacks are quite relevant to this case.

After introducing our two attacks, we discuss related work in Section 4. We
present some thoughts on a new notion of security in Section 5. We conclude in
Section 6.

2 Distinguishers for Reduced AES

In this section we present known-key distinguishers for AES [1] reduced to seven
(out of ten) rounds. We shall use the so-called integrals [7] to do so.

AES is an iterated cipher where in each iteration the subfunctions SubBytes,
ShiftRows, MixColumns, and AddRoundKey are employed, except for the last
iteration where the function MixColumns is omitted. The reason for this is that
it allows the decryption routine to be implemented in a similar style to the
encryption routine.

Consider a collection of 256 texts, which have different values in one byte
and equal values in each of the remaining fifteen bytes. It is well-known that
after two rounds of encryption the texts take all 256 values in each of the sixteen
bytes, and that after three rounds of encryption the sum of the 256 bytes in each
position is zero [4]. Such a structure of 256 texts is called a 3-round integral.

2.1 Notation

We introduce some notation for integrals on AES. An integral with the terms Ai

is a collection of 28i texts. Writing Ai
j in a byte position means that in the integral

the (string) concatenation of all bytes with subscript j take all 28i 8i-bit values
exactly once. Ai means that in the integral the particular byte is balanced, that
is, it takes all values exactly 28(i−1) times. C means that the values in the partic-
ular byte are constant, and S means for the particular byte the sum of all texts
can be determined. For AES addition is defined by the exclusive-or operation.
The special last round of AES in integral attacks has an interesting property,
namely that the balance property of an integral is preserved through this round.

2.2 Integrals for AES

It is known that there is a 3-round integral for AES using 232 texts [4,5]. The main
observation is that one can choose 232 plaintexts as a collection of 224 2-round
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Fig. 1. An integral for 4-round AES with 232 texts. The fourth round is a special round
without MixColumns.
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Fig. 2. A backwards integral for three (full) rounds of AES with 232 texts

integrals described above (starting from the second round) each with 28 texts.
Since the texts in each of these 2-round integrals take all values equally many
times in any byte position after the third round, so does the set of all 232 texts.

If we consider AES reduced to four rounds, that is, where the last round is of
the special form described above, then one gets that all bytes of the ciphertexts
are balanced in the 4-round integral. Figure 1 depicts this 4-round integral. Not
surprisingly, one can also define integrals through the inverse cipher of AES. We
present a backwards integral for three (full) rounds of AES in Figure 2. (Note
the backward integral extended to four rounds does not preserve the balance
property nor is it obvious to determine the sum of the texts).

The forward and backward integrals can be combined to integrals over more
than four rounds of AES. One chooses a structure of 256 texts which differ in
seven bytes and which have constant values in the remaining nine bytes. One can
view this as a collection of 224 copies of the forward integral for 4-round AES,
but also one can view this as a collection of 224 copies of the backwards 3-round
integral. Therefore, when one starts in the middle of the cipher one computes
forwards and backwards for the two integrals. Next we show how to employ our
findings in known-key distinguishers for AES reduced to seven rounds.

2.3 Known-Key Distinguishers for AES Reduced to Seven Rounds

Consider a variant of AES reduced to seven rounds, where MixColumns is omit-
ted in the last round. Here one can specify the integral of Figure 3, which can
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Fig. 3. An integral for 7-round AES with 256 texts. The seventh round is a special
round without MixColumns.

be used in an known-key distinguisher. This is constructed from the four-round
integral in Figure 1 and the three-round integral of Figure 2.

The known-key distinguisher simply records the frequencies in each byte of
the plaintexts and ciphertexts, checks whether the values in each byte of the
plaintexts and in each byte of the ciphertexts occur equally often. The time
complexity is similar to the time it takes to do 256 7-round AES encryptions and
the memory needed is small.

The big question is of course, what the complexity is to find a similar struc-
ture for any 128-bit permutation. The only approach we know of, which comes
close to an answer to this is the approach to solve the k-sum problem [10].
Given a function f on n bits, the k-sum problem is to find x1, . . . , xk such that∑k

i=1 f(xi) = 0. A solution to this problem is given in [10] with a running time
of O(k2n/(1+log2 k)). In our case n = 128 and k = 256 indicating a running time
of 258 operations. However this is a very inaccurate estimation of the complexity
we are looking for: the complexity estimate above is in the big O notation, thus
ignoring smaller constants, the approach requires memory (more than for the
AES distinguisher), but much more important, the k-sum problem does not give
us the structure that we get for reduced AES, merely a collection of texts whose
sum through the function f is zero with no conditions of balance on the values
of xi and f(xi). On the other hand, not much research has gone into finding
efficient solutions for this problem. Nevertheless, we feel confident to conjecture
that for a randomly chosen 128-bit permutation finding a collection of 256 texts
in similar time, using similar (little) memory and with similar properties as in
the case of 7-round AES has a probability of succeeding which is very close to
zero. Thus, we make the following claim.

Conjecture 1. There is a known-key distinguisher for AES reduced to seven
rounds which uses 256 texts.

We note that the above integrals might exist for a randomly chosen permutation
but they are hard to find. The point we are making is that for the AES variants
one finds the texts in the integrals much faster than for a randomly chosen
permutation.

3 Distinguisher for a 7-Round Feistel Cipher

We present here a known-key distinguisher on an n-bit Feistel cipher with 7
rounds. The attack requires that the round function of the Feistel cipher consists
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of an XOR of the round key to the round function input, followed by an arbitrary
key-independent transformation. An example of a Feistel cipher with such a
round function is SEED [8], but note that SEED has 16, rather than 7, rounds.

3.1 Description

The distinguisher computes (in constant time) two plaintexts denoted by p =
(pL, pR) and p̃ = (p̃L, p̃R) which have a special property. Let the corresponding
ciphertexts be denoted by c = (cL, cR) and c̃ = (c̃L, c̃R), then the following
equation will hold with probability 1:

pR ⊕ p̃R ⊕ cR ⊕ c̃R. = 0. (1)

Figure 4 gives the algorithm to compute the plaintexts p and p̃. Note that the
algorithm works only if the round keys of the second and sixth rounds are not
equal. For most key schedules, such an equality happens only for a negligible
fraction of the keys.

For two randomly chosen plaintexts, (1) will be satisfied with probability only
2−n/2, so we can build a strong distinguisher in this case. Also, since x can be
chosen arbitrarily one can find many such pairs, thereby increasing the advantage
of the distinguisher.

3.2 Conditions on the Round Function f

If f is a bijection which is easy to invert, the computations of the pair of plain-
texts is straightforward. Also, note that the subkeys can be independent or

Input:
The round function of the Feistel cipher, denoted by f .
The seven subkeys k1, . . . , k7, with k2 �= k6.

Algorithm:

1. Choose an arbitrary value for x.
2. Define the values γ, α, z as:

γ = k2 ⊕ k6

α = x ⊕ f−1(f(x) ⊕ γ)
z = f−1(k3 ⊕ k5 ⊕ α)

3. Compute

p = (z ⊕ f(x) ⊕ k4 ⊕ f(pR, k1), x ⊕ k3 ⊕ f(z ⊕ f(x) ⊕ k4 ⊕ k2))

p̃ = (z ⊕ f(x) ⊕ γ ⊕ k4 ⊕ f(p̃R, k1), x ⊕ α ⊕ k3 ⊕ f(z ⊕ f(x) ⊕ k6 ⊕ k4)).

It follows that pR ⊕ cR = α ⊕ k3 ⊕ k5 = f(z) = p̃R ⊕ c̃R, see Figure 5.
Consequently, pR ⊕ p̃R ⊕ cR ⊕ c̃R = 0.

Fig. 4. Algorithm to compute the plaintexts p, p̃ satisfying (1)
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pL = z ⊕ f(x) ⊕ k4 ⊕ f(pR ⊕ k1) pR = x ⊕ k3 ⊕ f(z ⊕ f(x) ⊕ k2 ⊕ k4)

z ⊕ f(x) ⊕ k4

x ⊕ k3

z ⊕ k4

x ⊕ α ⊕ k5

z ⊕ f(x) ⊕ γ ⊕ k4

cR = x ⊕ α ⊕ k5 ⊕ f(z ⊕ f(x) ⊕ k2 ⊕ k4)cL = z ⊕ f(x) ⊕ γ ⊕ k4 ⊕ f(cR ⊕ k7)

Fig. 5. First encryption in 7-round Feistel cipher distinguisher. The second encryption
is where x is replaced by x ⊕ α and where f(x) is replaced by f(x) ⊕ γ. Notation:
γ = k2 ⊕ k6; α = x ⊕ f−1(f(x) ⊕ γ); z = f−1(k3 ⊕ k5 ⊕ α).

computed in a key-schedule, the only requirement we make above is that k2⊕k6 �=
0. If f is not bijective, the method might still work, if inverting f is not too
costly. One example is DES where given f(w) is it relatively easy to find w′,
such f(w) = f(w′).

There is a variant of this attack which works for 7 rounds of Feistel ciphers
where f is not bijective and where the following tasks should be “easy”:

1. Find x, y, α �= 0 such that f(x) = f(x ⊕ α) = y,
2. Find z such that f(z) = k3 ⊕ k5.

If one accomplishes these two tasks then one finds a pair of plaintexts such that
(1) is satisfied. We omit the details here and refer to Appendix A.
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3.3 Impact

To illustrate where the above findings could be exploited in practice consider the
Matyas-Meyer-Oseas hashing mode, where the compression function is defined as

h(hi−1, mi) = Fhi−1(mi) ⊕ mi.

If F is a 7-round Feistel cipher construction where f is bijective, then one finds
a pair of blocks which collide in half of the bits in the outputs of h doing only
two encryptions.

4 Related Work

Distinguishing attacks on block ciphers where the key is known were introduced
in [3] under the name correlation intractability. It was shown that no block ci-
pher can be secure under this notion of security: for every block cipher, there
exists a relation such that given the key, it is easy to find plaintext/ciphertext
pairs satisfying this relation, but it is difficult to find them for a random per-
mutation. The result is based on the observation that all implementable block
ciphers (must) have a description, whereas a random oracle doesn’t. The rela-
tion is constructed by putting the description of the block cipher in the plain-
texts.

It can be argued however, that the relation of [3] is contrived. It is not clear
at all how or whether such relation may lead to weaknesses in “reasonable”
block-cipher based designs. Secondly, the relation is not interesting from a block
cipher designer’s point of view, because it applies to all implementable block
ciphers. Hence, it gives no guidance on how to construct block ciphers that
can be used for instance in block-cipher based hash function constructions, or
in any other application where the key is known to the attacker or under her
control.

5 Discussion of Known-Key Attacks

The discussion in the previous section suggests there might be a need for a new
notion of security, under which the attacks presented in Section 2 and Section 3
count as valid attacks, but the general result of [3] doesn’t. Indeed, the foremost
idea in our mind, is to evaluate the security of specific, implementable block
cipher designs and their suitability for applications which commonly use block
ciphers as an underlying component.

However, it appears to be non-trivial to formalize a notion of security and at
the same time avoid trivial attacks. A bullet-proof model is likely to be compli-
cated and little transparent. Therefore, we present here some intuitions on what
we think are essential elements of such a new notion of security. The introduction
of the notion itself remains an open problem.
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5.1 Intuitions for the Basic (Known-Key) Scenario

In this scenario, we would measure the security of the cipher against known-key
attacks by computing the average advantage over all values of the key k.

A possible way to reduce the number of parasitical attacks in an informal
model, would be to make the following thought exercise. Whenever we do a
known-key analysis of one specific block cipher, we would rule out attacks which
will succeed with approximately the same work effort on any block cipher. Hence
such attacks would not change the relative ranking of the block ciphers we would
examine.

5.2 Intuitions for Extended Scenarios

In a so-called weak key scenario, the attacker would know that the key would
come out of a pre-specified subset of the whole key space. Such a scenario could
reveal weak keys.

In a related-key scenario, we would consider scenarios where the attacker is
given several different keys ki which could have a known relation to one an-
other. By loosening the relation between the kis, we would eventually measure
how well the block cipher would resemble a set of randomly selected permuta-
tions.

The above extensions can be illustrated using the block cipher DES. The
differential attack on DES [2] uses a 13-round characteristic of average probabil-
ity 2−47, built from iterating a two-round characteristic of average probability
1/234. However it is well-known that the exact probability for two rounds is
either 1/146 or 1/585 depending on the value of one key bit. Thus by restricting
ourselves to the subset of keys which provide the highest probabilities better re-
sults would be achieved. Also, if y = DESk(x) then it holds that DESk(x) = y
where z is the bitwise complemented value of z. This means that for a pair of
keys (k1, k2), where k1 is the bitwise complemented value of k2 it is easy to
distinguish the induced encryption functions from two randomly chosen permu-
tations.

6 Conclusion

In this paper we presented two distinguishers for block ciphers, where the at-
tacker is given the key. Although [3] already presented very strong results in this
model, we tried to show that our attacks are still interesting from a practical
security point of view, in particular when one considers block cipher applica-
tions where the key is indeed known to the attacker, e.g. block-cipher based
hash functions.

Subsequently we argued that a suitable notion of security is still missing in
the cryptographic literature and we presented some intuitions on how such a
new notion could look like.
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A Variant Attack on a 7-Round Feistel Cipher

We present here a variant on the statistical distinguisher presented in Section 3.
It works only if the following conditions are met.

1. The round function f must map at least two inputs, denoted by x, x + α,
to the same output, denoted by y. It must be possible for the attacker to
determine x, y and α.

2. For most outputs, it must be easy to construct an input mapping to that
output.

The distinguisher can be seen as an extension of the 5-round impossible differ-
ential presented in [6]. The transcript consists now of the plaintexts (pL, pR),
(p̃L, p̃R) with

pL = z ⊕ y ⊕ k4 ⊕ f(x ⊕ k3 ⊕ f(z ⊕ y ⊕ k4 ⊕ k2) ⊕ k1),
pR = x ⊕ k3 ⊕ f(z ⊕ y ⊕ k4 ⊕ k2),
p̃L = z ⊕ y ⊕ k4 ⊕ f(x ⊕ α ⊕ k3 ⊕ f(z ⊕ y ⊕ k4 ⊕ k2) ⊕ k1),
p̃R = pR ⊕ α,

and the corresponding ciphertexts. Here z is defined by f(z) = k3 ⊕ k5. We
discuss below what to do if no such z exists. The test is again: verify whether

pR + p̃R = cR + c̃R. (2)
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If it is not possible to find a z such that f(z) = k3 ⊕ k5, then we can search for
a z′ such that f(z′) = k3 ⊕ k5 ⊕ α. We can then construct a plaintext pair such
that in the first text the inputs to f in round three and five are x, respectively
x ⊕ α, and in the second pair x ⊕ α, respectively x. This pair will also satisfy
(2). Finally, if also this is not possible, there might be another difference α that
can be used.
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Abstract. Unbalanced Feistel schemes with expanding functions are
used to construct pseudo-random permutations from kn bits to kn bits
by using random functions from n bits to (k − 1)n bits. At each round,
all the bits except n bits are changed by using a function that depends
only on these n bits. Jutla [6] investigated such schemes, which he de-
notes by F d

k , where d is the number of rounds. In this paper, we describe
novel Known Plaintext Attacks (KPA) and Non-Adaptive Chosen Plain-
text Attacks (CPA-1) against these schemes. With these attacks we will
often be able to improve the results of Jutla.

Keywords: Unbalanced Feistel permutations, pseudo-random permuta-
tions, generic attacks on encryption schemes, Block ciphers.

1 Introduction

A Feistel scheme from {0, 1}l to {0, 1}l with d rounds is a permutation built from
round functions f1, . . . , fd. When these round functions are randomly chosen, we
obtain what is called a “Random Feistel Scheme”. The attacks on these “random
Feistel schemes” are called “generic attacks” since these attacks are valid for most
of the round functions f1, . . . , fd.

When l = 2n and when the fi functions are from {0, 1}n to {0, 1}n we obtain
the most classical Feistel schemes, also called “balanced” Feistel schemes. Since
the famous paper of Luby and Rackoff [10], many results have been obtained on
the security of such classical Feistel schemes (see [11] for an overview of these
results). When the number of rounds is lower than 5, we know attacks with less
than 2l(= 22n) operations: for 5 rounds, an attack in O(2n) operations is given in
[14] and for 3 or 4 rounds an attack in

√
2n is given in [1,12]. When the functions

are permutations, similar attacks for 5 rounds are given in [7,9]. Therefore, for

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 325–341, 2007.
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security, at least 6 rounds are recommended, i.e. each bit will be changed at least
3 times.

When l = kn and when the round functions are from (k − 1)n bits to n
bits, we obtain what is called an “Unbalanced Feistel Scheme with contracting
functions”. In [11] some security proofs are given for such schemes when for
the first and the last rounds pairwise independent functions are used instead of
random contracting functions. At Asiacrypt 2006 [15] generic attacks on such
schemes have been studied.

When l = kn and when the rounds functions are from n bits to (k − 1)n
bits, we obtain what is called an “Unbalanced Feistel Scheme with expanding
functions”, also called “complete target heavy unbalanced Feistel networks” [16].
Generic attacks on Unbalanced Feistel Schemes with expanding functions is the
theme of this paper. One advantage of these schemes is that it requires much
less memory to store a random function of n bits to (k −1)n bits than a random
function of (k − 1)n bits to n bits. BEAR and LION [2] are two block ciphers
which employ both expanding and contracting unbalanced Feistel networks. The
AES-candidate MARS is also using a similar structure.

Attacks on Unbalanced Feistel Schemes with expanding functions have been
previously studied by Jutla [6]. We will often be able to improve his attacks
by attacking more rounds, or by using a smaller complexity. Moreover we will
generalize these attacks by analyzing KPA (Known Plaintext Attacks), not only
CPA-1 (non adaptive plaintext attacks) and by giving explicit formulas for the
complexities. We will not introduce adaptive attacks, or chosen plaintext and
chosen ciphertext attacks, since we have not found anything significantly better
than CPA-1.

The paper is organized as follows. First, we give our notation. Then we de-
scribe the different families of attacks we have studied. We will have three families
of attacks called “2-point attacks” (TWO), “rectangle attacks” (SQUARE, R1,
R2, R3, R4) and “Multi-Rectangle attacks”. In this paper, we will study in detail
TWO and rectangle attacks, but we will give only a few comment on “Multi-
Rectangle attacks” (Multi-Rectangle attacks are still under investigation). It can
be noticed that k = 2 is very different from k ≥ 3.

2 Notation

Our notation is very similar to [15]. An unbalanced Feistel scheme with ex-
panding functions F d

k is a Feistel scheme with d rounds. At each round j, we
denote by fj the round function from n bits to (k − 1)n bits. fj is defined as
fj = (f (1)

j , f
(2)
j , . . . , f

(k−1)
j ), where each function f

(l)
j is defined from {0, 1}n

to {0, 1}n. On some input [I1, I2, . . . , Ik] F d
k produces an output denoted by

[S1, S2, . . . , Sk] by going through d rounds. At round j, the first n bits of the
round entry are used as an input to the round function fj, which produces
(k − 1)n bits. Those bits are xored to the (k − 1)n last bits of the round en-
try and the result is rotated by n bits. We introduce the internal variable Xj: it
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is the n-bit value produced by round j, which will be the input of next round
function fj+1. For example, we have:

X1 = I2 ⊕ f
(1)
1 (I1)

X2 = I3 ⊕ f
(2)
1 (I1) ⊕ f

(1)
2 (X1)

X3 = I4 ⊕ f
(3)
1 (I1) ⊕ f

(2)
2 (X1) ⊕ f

(1)
3 (X2)

. . .

The first round is represented on Figure 1 below:

I1

X1 = I2 ⊕ f
(1)
1 (I1)

f
(1)
1

I2

I3 ⊕ f
(2)
1 (I1) Ik ⊕ f

(k−1)
1 (I1)

f
(2)
1

I3 Ik

I1

f
(k)
1

Fig. 1. First Round of F d
k

After d rounds (d ≥ k + 1), the output [S1, S2, . . . , Sk] can be expressed by
using the introduced values Xj:

Sk = Xd−1

Sk−1 = Xd−2 ⊕ f
(k−1)
d (Xd−1)

Sk−2 = Xd−3 ⊕ f
(k−1)
d−1 (Xd−2) ⊕ f

(k−2)
d (Xd−1)

. . .

3 Overview of the Attacks

We investigated several attacks allowing to distinguish F d
k from a random per-

mutation. Depending on the values of k and d some attacks are more efficient
than others. All our attacks are using sets of plaintext/ciphertext pairs : the sets
can be simply couples (for attack TWO) or a rectangle structure with either four
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plaintext/ciphertext pairs (attack SQUARE) or more (attacks R1, R2, R3, and
R4). Depending on the number of rounds, it is possible to find some relations
between the input variables and output variables of the pairs of a set. Those
relations can appear at random or due to equalities of some internal variables
due to the structure of the Feistel scheme.

The TWO attack consists in using m plaintext/ciphertexts pairs and in count-
ing the number NF d

k
of couples of these pairs that satisfy the relations between

the input and output variables. We then compare NF d
k

with Nperm where Nperm

is the number of couples of pairs for a random permutation instead of F d
k . The

attack is successful, i.e. we are able to distinguish F d
k from a random permutation

if the difference |E(NF d
k
)−E(Nperm)| is much larger than the standard deviation

σperm and than the standard deviation σF d
k
, where E denotes the expectancy

function. In order to compute these values, we need to take into account the fact
that the structures obtained from the m plaintext/ciphertext tuples are not in-
dependent. However their mutual dependence is very small. To compute σperm

and σF d
k
, we will use this well-known formula as in [15] that we will call the

“Covariance Formula”:

V (
∑

xi) =
∑

i

V (xi) +
∑

i<j

[
E(xi, xj) − E(xi)E(xj)

]

where the xi are random variables.
In the attacks R1, R2, R3, and R4, we use a rectangle structure: we consider

ϕ plaintext/ciphertext pairs where ϕ is an even number and is the total number
of indexes of the rectangle. We will fix some conditions on the inputs of the ϕ
pairs. On the case of F d

k , those conditions will turn into conditions on the internal
state variables Xj due to the structure of the Feistel scheme. These conditions
will imply equations on the outputs. On the case of a random permutation,
equations on the outputs will only appear at random. By counting the sets of ϕ
pairs satisfying the conditions on inputs and outputs, we can distinguish between
F d

k and a random permutation, since in the case of F d
k the equations on the

outputs appear not only at random, but a part of them is due to the conditions
we set. However, those attacks are not always able to distinguish between F d

k

and a random permutation, since it requires some internal collision to appear
in the structure of the Feistel scheme. For some instances of F d

k the desired
collision will not exist and the attacks will fail. There exists a probability ε which
is a strictly positive constant independent of n such that rectangle structures
appear for F d

k . How to compute this probability can be found in the extended
version. Consequently, in order to verify that we are able to distinguish between
the family of F d

k permutations and the family of random permutations, we can
apply our attacks on several randomly chosen instances of F d

k or of random
permutation, count the number of instances were the attack is working and
compare this number for F d

k and for a random permutation. Attacks R1, R2,
R3, and R4 all share this principle but the conditions imposed on the plaintexts
and ciphertexts are different.

The SQUARE attack is a special case of attack R1, when ϕ = 4. In the next
sections, we will give more precise definitions of these attacks and examples for
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attack TWO and attack R1. Finally we will consider attacks with more than 2kn

computations, i.e. attacks against generators of pseudo-random permutations.
All the results are summarized in Section 9.

For a fixed value of k, attack TWO is very efficient for small values of d. When
d increases, first SQUARE, which is a variant of R1, then R1 will become the
best known attack. Then, when d increases again, R2, R3 or R4 will become the
best known attack. Finally, for very large d, TWO will become again the best
known attack.

4 Attack “TWO”

In this section, we describe a family of attacks called “TWO”. These attacks will
use correlations on pairs of plaintext/ciphertext. Therefore, they can be called
“2-point” attacks. When k = 2 i.e. on classical balanced Feistel Schemes, these
attacks give the best known generic attacks [14]. However these attacks have not
been studied in [6]. As we will see, TWO attacks are sometimes more efficient
than the attacks of [6] for example when the number of rounds is very small.

The principle of attack TWO is to concentrate on one of the equations linking
an output word Si with some of the internal variables X i. By fixing the first
n-bit blocks of the input I we fix the value of some of the internal variables
and a simple equality between the remaining input blocks and the output word
becomes true assuming that a collision on some of the internal variable occurs.
If the number of plaintext/ciphertext pairs is sufficiently large, this collision will
appear and the attack succeeds.

In order to illustrate attack TWO, we now present the attack against F d
k ,

k + 2 ≤ d ≤ 2k − 1. We will concentrate the attack on the equation:

S2k−d = Xk−1 ⊕
d−1⊕

i=k

f
(2k−i−1)
i+1 (X i)

The i-th pair is denoted by [I1(i), I2(i), . . . , Ik(i)] for the plaintext and by
[S1(i), S2(i), . . . , Sk(i)] for the ciphertext. We will count the number N of (i, j)
such that I1(i) = I1(j), I2(i) = I2(j), . . . , Ik−1(i) = Ik−1(j), Sk(i) = Sk(j),
Sk−1(i) = Sk−1(j), . . . , S2k−d+1(i) = S2k−d+1(j) and S2k−d(i) ⊕ S2k−d(j) =
Ik(i)⊕ Ik(j). For F d

k , this last equation is a consequence of the other equations,
i.e. of these k − 1 equations in I and d − k equations in S. Therefore, the attack
will succeed in KPA when m2 ≥ 2(d−1)n, i.e. when m ≥ 2

d−1
2 n. In CPA-1, we

will fix I1, I2, . . . , Ik to some values, and we will do this α times. The attack will
succeed with α = 2(d−k−2)n and the complexity in CPA-1 is α · 2n = 2(d−k−1)n.

5 “R1” Attack

5.1 Definition of R1

We now give a definition of attack R1. Let us consider ϕ plaintext/ciphertext
pairs. We first set the following conditions on the input variables:
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(I) =
{

I1(1) = I1(2), I1(3) = I1(4), I1(5) = I1(6), . . . , I1(ϕ − 1) = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

Conditions on the first block I1 are here to cancel the impact of function f1,
while conditions on other blocks are used to obtain differential equations on the
internal state variables. These equations will then propagate to other rounds
with some probability until they turn to equations on the outputs, which then
can be detected.

In order for the previous conditions to propagate with high probability, we
need some extra conditions on the internal state variables. We have d−2 internal
state variables X1, X2, . . . , Xd−2 and Xd−1 = Sk is an output variable.

Let a be an integer, 1 ≤ a ≤ d−1. We will choose a values of {1, 2, . . . , d−k}.
Let E be the set of these a values, and let F be the set of all integers i, 1 ≤ i ≤
d − 1 such that i /∈ E . We have |E| = a and |F| = d − a − 1. Let (X) be the set
of the following equalities:

(X) =
{

∀i ∈ E , X i(1) = X i(3) = . . . = X i(ϕ − 1)
∀i ∈ F , X i(1) = X i(2)

Between two different plaintext/ciphertext pairs i and j, i �= j, we can have at
most k−1 successive equalities on the variables I1, X1, X2, . . . , Xd−1. Otherwise
from k successive equalities we would get I1(i) = I1(j), I2(i) = I2(j), . . . , Ik(i) =
Ik(j), so the two messages would be the same. Therefore we must have: 	 d

k
 ≤
a ≤ d − 1 − 	d−1

k 
. For the same reason we must have {d − k} ∈ E since d − 1,
d − 2, . . ., d − k + 1 are in F .

From the conditions (I) and (X) and considering the equalities that we can
derive from them with probability one, we will have:

(S) =
{

∀i, 2 ≤ i ≤ k, Si(1) = Si(2), Si(3) = Si(4), . . . Si(ϕ − 1) = Si(ϕ)
S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)

Consequently the conditions (S) can appear by chance, or due to the condi-
tions (X).

Our KPA attack consists in counting the number N of rectangle sets of plain-
text/ciphertext pairs satisfying the conditions (I) and (S). The obtained num-
ber can be divided into two parts: either the conditions (I) and (S) appear
completely at random, or conditions (I) appear and conditions (S) are satisfied
because (X) happened.

Figure 2 illustrates one rectangle set of our attack. Plaintext/ciphertext pairs
are denoted by 1, 2, . . . , ϕ. Two points are joined by an edge if the values are
equal (for example I1(1) = I1(2)). We draw a solid edge if the equality appears
with probability 1

2n and a dotted line if the equality follows conditionally with
probability 1 from other imposed equalities.

5.2 “R1” Attack on F 7
3

Before studying the general properties of R1, we will illustrate this attack with
an example. We will now describe our “R1” attack on F 7

3 . As we will see, we
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2

1

I1 Xi, i ∈ F Xi, i ∈ F

Xi, i ∈ E Xi, i ∈ E

Xi, i ∈ E Xi, i ∈ E4

3

I1

6

5

I1

. . .

. . .

I1

ϕ

ϕ − 1

Fig. 2. Attack R1 on F d
k

will obtain here a complexity in O(22n) in CPA-1 and in O(2
5n
2 ) in KPA. This

is better than the O(23n) of the TWO attacks. In [6], Jutla shows that he can
obtain on F d

k attacks with complexity less than O(2kn) when d ≤ 3k − 3. For
d = 3, this gives attacks up to only 6 rounds, unlike here where we will reach 7
rounds with the complexity less than 23n. We have F 7

3 [I1, I2, I3] = [S1, S2, S3].
Let i1, i2, i3, i4, i5, i6 be six indexes of messages (so these values are between

1 and m). We will denote by [I1(α), I2(α), I3(α)] the plaintext of message iα,
and by [S1(α), S2(α), S3(α)] the ciphertext of message iα. (i.e. for simplicity we
use the notation I1(α) and S1(α) instead of I1(iα) and S1(iα), 1 ≤ α ≤ 6). The
idea of the attack is to count the number N of indexes (i1, i2, i3, i4, i5, i6) such
that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(1) = I1(2) and I1(3) = I1(4) and I1(5) = I1(6)
I2(1) ⊕ I2(2) = I2(3) ⊕ I2(4) = I2(5) ⊕ I2(6)
I3(1) ⊕ I3(2) = I3(3) ⊕ I3(4) = I3(5) ⊕ I3(6)

and
S3(1) = S3(2) and S3(3) = S3(4) and S3(5) = S3(6)
S2(1) = S2(2) and S2(3) = S2(4) and S2(5) = S2(6)
S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = S1(5) ⊕ S1(6)

We will call the 7 first equations the “input equations” and we will call the 8
last equations the “output equations”.

KPA. If the messages are randomly chosen, for a random permutation we will
have E(Nperm) � m6

215n . For a F 7
3 permutation we will have about 2 times more

solutions since the 8 output equations can occur at random, or due to the fol-
lowing 8 internal equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1(1) = X1(3) = X1(5)
X2(1) = X2(2)
X3(1) = X3(2)
X4(1) = X4(3) = X4(5)
X5(1) = X5(2)
X6(1) = X6(2)
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We get the following conditions on the internal variables:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X2(1) = X2(2) givesX2(3) = X2(4) andX2(5) = X2(6)
X3(1) = X3(2) givesX3(3) = X2(4) andX3(5) = X3(6)
X4(1) = X4(3) = X4(5) givesX4(2) = X4(4) = X4(6)
X5(1) = X5(2) givesX5(3) = X5(4) andX5(5) = X5(6)
X6(1) = X6(2) givesX6(3) = X6(4) andX6(5) = X6(6)

Now since S3 = X6, S2 = X5 ⊕ f
(2)
7 (X6) and S1 = X4 ⊕ f

(2)
6 (X5) ⊕ f

(1)
7 (X6),

we get the 8 output equations written above. Therefore, in KPA, for a F 7
3 per-

mutation, the expectancy of NF 7
3

is larger than for a random permutation by a

value of about m6

215n (since we have 8 equations in X and 7 in I), i.e. we expect
to have about 2 times more solutions for N : E(N ) � 2m6

215n for F 7
3 . So we will be

able to distinguish with a high probability F 7
3 from a random permutation by

counting N when N �= 0 with a high probability, i.e. when m6 ≥ O(215n), or
m ≥ O(2

5n
2 ). We have found here a KPA with O(2

5n
2 ) complexity and O(2

5n
2 )

messages. This is better than the O(23n) complexity of the attack TWO, and it
shows that we can attack 7 rounds, not only 6 with a complexity less than 23n.

CPA-1. We can transform this KPA in CPA-1. We will choose only 3 fixed
different values c1, c2, c3 for I1: m

3 plaintexts will have I1 = c1, m
3 plaintexts will

have I1 = c2, and m
3 plaintexts will have I1 = c3. We will generate all (or almost

all) possible messages [I1, I2, I3] with such I1. Therefore, m = 3 · 22n. We can
derive from these m messages 2m4

27 tuples (i1, i2, i3, i4, i5, i6) satisfying our 7 input
equations. For a random permutation we will have E(Nperm) � 2m4

27·28n (since we
have 8 output equations). For a permutation F 7

3 , we will have E(NF 7
3
) � 4m4

27·28n ,
i.e. about 2 times more solutions, since the 8 output equations can occur at
random, or due to 8 internal equations in X as we have seen. So this CPA-
1 will succeed when N �= 0 with a high probability, i.e. when m4 ≥ O(28n),
or m ≥ O(22n). Here we have m � 3 · 22n, the probability of success is not
negligible. Moreover if it fails for some values (c1, c2, c3) for I1, we can start
again with another (c1, c2, c3). Therefore this CPA-1 is in O(22n) complexity
and O(22n) messages. (This is better than the O(23n) we have found with the
TWO attack).

5.3 Properties of R1

We now describe the general properties of R1. We will denote by nI the number
of equalities in (I), and by nS the number of equalities in (S). Similarly, we will
denote by nX the number of equalities in (X). Therefore nX is the number of
independent equalities in the X i variables needed in order to get (S) from (I)
(in the previous example presented in Section 5.2, we have nI = 7, nS = 8 and
nX = 8). In this attack R1 we have:

⎧
⎨

⎩

nI = kϕ
2 − k + 1

nS = kϕ
2 − 1

nX = a(ϕ
2 − 2) + d − 1
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The idea of R1 is to minimize the total number nI + nX of needed equations in
I and X . When this criteria is dominant, R1 will be the best attack.

The value N is expected to be larger for a F d
k than for a random permutation

due to the fact that (S) can come from random reasons or from (X) in F d
k .

Therefore, it is natural, in order to get necessary and sufficient condition of
success for R1, to evaluate the expectancy and the standard deviation of N in
the case of F d

k and in the case of random permutations. This can be done (by
using the covariance formula as in [15] or by using approximation as in [6]) and
we have found that each time that R1 was better than TWO, we had nX ≤ nS .
However, when nX ≤ nS we can easily obtain sufficient condition of success
for R1 without computing the standard deviations, since when nX ≤ nS we will
have for most permutations about 2 times more (or more) solutions with F d

k than
with this random permutation. Therefore, a sufficient condition of success for R1
when nX ≤ nS is to have that (X) and (I) can be satisfied with a non-negligible
probability. A sufficient condition for this is to have:

In KPA
Condition 1: nX ≤ nS .
Condition 2: mϕ ≥ 2n(nI+nX ).
Condition 3: m2 ≥ 2(d−a)n.
Condition 4: m3 ≥ 2dn and more generally ∀i, 0 ≤ i ≤ ϕ

2 −1, m3+i ≥ 2(d+ia)n.
Condition 5: m4 ≥ 2(d+k)n.
(Conditions 2, 3, 4, 5 are necessary. Conditions 1, 2, 3, 4, 5 are sufficient for

success. Condition 1 is not necessary, but the computation of σ(N ) shows that
R1 is not better than TWO when nX > nS .)

Condition 2 comes from the fact that we have about mϕ rectangles with ϕ
points, and the probability that (I) and (X) are satisfied on one rectangle is

1
2n(nI+nX ) .

Condition 3 comes from the fact that between points 1 and 2 we have |F|
equations in X i, and one equation in I1. Therefore in KPA we must have m2 ≥
2(|F|+1)n = 2(d−a)n.

Condition 4 comes from the fact that between points 1, 2 and 3 we have
d − 1 equations in X i, and one equation in I1. Therefore we must have m3 ≥
2dn. Similarly between the points 1, 2, 3, 5, we must have: m4 ≥ 2(d+a)n. And
similarly between the points 1, 2, 3, 5, 7, . . ., (ϕ − 1), we must have: m

ϕ
2 +1 ≥

2(d+a( ϕ
2 −2))n.

Condition 5 comes from the fact that between points 1, 2, 3, 4, we have d − 1
equations in X i, 2 equations in I1 and (k − 1) in I2, I3, . . ., Ik−1.

It is easy to see that the conditions on any points are consequences of these
5 conditions. Moreover, if m ≥ 2an (we will often, but not always, choose a like
this), condition 4 can be changed with only m3 ≥ 2dn.

CPA-1. In CPA-1 the sufficient conditions when m ≤ 2(k−1)n are:
Condition 1: nX ≤ nS .
Condition 2: m( ϕ

2 +1) ≥ 2n·nX .
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Condition 3: m2 ≥ 2(d−a−1)n.
Condition 4 and Condition 5: m3 ≥ 2(d−1)n.
From these conditions we can compute the best parameters a and ϕ for any

d and k, when d and k are fixed.

Remark. If we choose nX < nS (instead of nX ≤ nS), the attacks are slightly
less efficient but more spectacular since with a non-negligible probability (I)
and (S) are satisfied with F d

k and not with random permutations. Moreover
with nX < nS it is still possible (with R2) to attack 3k−1 rounds with less than
2kn complexity.

6 “R2”, “R3”, “R4” Attacks for Any k ≥ 3 with d ≥ k

R2, R3, and R4 attacks are very similar to attack R1 but the conditions on the
variables are not the same.

6.1 R2 Attacks

In the R2 attack, we will choose a values of {1, 2, . . . , d − k}. Let E be the set
of these a values, and let F be the set of all integers i, 1 ≤ i ≤ d − 1 such that
i /∈ E . We have |E| = a, |F| = d − a − 1, and F contains all the k − 1 values i,
d − k + 1 ≤ i ≤ d − 1. For R2 we have:

(I) =

⎧
⎨

⎩

I1(1) = I1(3) = I1(5) = . . . = I1(ϕ − 1)
I1(2) = I1(4) = I1(6) = . . . = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

(X) =
{

∀i ∈ E , X i(1) = X i(3) = . . . = X i(ϕ − 1)
∀i ∈ F , X i(1) = X i(2)

(S) =
{

∀i, 2 ≤ i ≤ k, Si(1) = Si(2), Si(3) = Si(4), . . . , Si(ϕ − 1) = Si(ϕ)
S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)

The equations (X) have been chosen such that (S) is just a consequence
of (I) and (X). Our attacks consist in counting the number N of rectangle
sets of plaintext/ciphertext pairs satisfying the conditions (I) and (S). Figure 3
illustrates the equations for R2.

Between two different plaintext/ciphertext pairs i and j, i �= j, we can have
at most k−1 successive equalities on the variables I1, X1, . . ., Xd−1. Therefore,
for R2, we have 	d−1

k 
 ≤ a ≤ d − 1 − 	 d
k 
, and

⎧
⎨

⎩

nI = kϕ
2 + ϕ

2 − k − 1
nS = kϕ

2 − 1
nX = a(ϕ

2 − 2) + d − 1
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2

1
I1

Xi, i ∈ F

I1

Xi, i ∈ E

Xi, i ∈ E

4

3
I1

Xi, i ∈ F

I1

Xi, i ∈ E

Xi, i ∈ E

6

5

Xi, i ∈ F

ϕ

ϕ − 1

Fig. 3. Attack R2 on F d
k

As we have explained for R1, sufficient conditions of success for R2 in KPA
are the following 5 conditions:

Condition 1: nX ≤ nS .
Condition 2: mϕ ≥ 2n(nI+nX ).
Condition 3: m3 ≥ 2dn.
Condition 4: m2 ≥ 2(d−a−1)n.
Condition 5: m4 ≥ 2(d+k)n.

Example for R2. In the R2 attack on F 8
3 , we have: ϕ = 8, a = 2, nI = 12,

nS = 11 and nX = 11. Details are in the extended version of the paper.

6.2 R3 Attack

In the R3 attack, we set the following conditions on the input variables:

(I) =
{

I1(1) = I1(2), I1(3) = I1(4), I1(5) = I1(6), . . . , I1(ϕ − 1) = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

Then the conditions on the internal variables (with |E| = d − a − 1 and |F| = a
and if d − k + 2 ≤ i ≤ d − 1 then i ∈ F) are:

(X) =
{

∀i ∈ E , X i(1) = X i(2)
∀i ∈ F , X i(1) = X i(3) = . . . = X i(ϕ − 1)

Finally, the conditions on the output variables are given by:

(S) =

⎧
⎪⎪⎨

⎪⎪⎩

S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)
S2(1) ⊕ S2(2) = S2(3) ⊕ S2(4) = . . . = S2(ϕ − 1) ⊕ S2(ϕ)
∀i, 3 ≤ i ≤ k, S1(1) = S1(3) = S1(5) = . . . = S1(ϕ − 1)
∀i, 3 ≤ i ≤ k, S1(2) = S1(4) = S1(6) = . . . = S1(ϕ)

Then, the R3 attack proceeds exactly the same as R1 and R2 attacks.

6.3 R4 Attack

In the R4 attack, we have the following conditions on the input, internal and
output variables:
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(I) =

⎧
⎨

⎩

I1(1) = I1(3) = I1(5) = . . . = I1(ϕ − 1)
I1(2) = I1(4) = I1(6) = . . . = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

(X) =
{

∀i ∈ E , X i(1) = X i(2)
∀i ∈ F , X i(1) = X i(3) = . . . = X i(ϕ − 1)

(with |E| = d − a − 1 and |F| = a and if d − k + 3 ≤ i ≤ d − 1 then i ∈ F)

(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)
S2(1) ⊕ S2(2) = S2(3) ⊕ S2(4) = . . . = S2(ϕ − 1) ⊕ S2(ϕ)
S3(1) ⊕ S3(2) = S3(3) ⊕ S3(4) = . . . = S3(ϕ − 1) ⊕ S3(ϕ)
∀i, 4 ≤ i ≤ k, S1(1) = S1(3) = S1(5) = . . . = S1(ϕ − 1)
∀i, 4 ≤ i ≤ k, S1(2) = S1(4) = S1(6) = . . . = S1(ϕ)

Example for R4. We will now present how to attack F 3k−1
k when k ≥ 5

with a complexity less than 2kn. This example is interesting since 3k − 1 is the
maximum number of rounds that we can attack with a complexity lower than
2kn (for d = 3k the complexity of the best known attacks become O(2kn) and
for d ≥ 3k + 1 we need more than O(2kn) computations). It is also interesting
since in [6] Jutla was able to attack only 3k − 3 rounds with a complexity less
than 2kn. We will present only the main ideas. We will use the attack R4 with
a = k − 1, i.e. between 1 and 3 we have these k − 1 equations: Xd−1, Xd−2, . . .,
Xd−k+3, plus Xk and X2k.

Remark. With R2 (but not with R1) we can also attack F 3k−1
k (with ϕ = 2k+2

and a = k − 1) with a complexity less than 2kn, but the complexity of R4 will
be slightly better.

In R4 with a = k − 1, we have:
⎧
⎨

⎩

nI = kϕ
2 + ϕ

2 − k − 1
nS = kϕ − 3ϕ

2 − 2k + 3
nX = kϕ

2 + d − 2k − ϕ
2 + 1

Therefore when d = 3k−1, we have nX = kϕ
2 +k− ϕ

2 . nX ≤ nS gives ϕ ≥ 6+ 6
k−2 .

For k ≥ 5, this means ϕ ≥ 8 (ϕ is always even). Now if we look at all the 5
conditions for the complexity, these conditions give: m ≥ 2(k− 1

8 )n in KPA, and
m ≥ 2(k− 1

2 )n in CPA-1. These complexities are less than 2kn as claimed.

7 Experimental Results

We have implemented the CPA-1 attacks SQUARE and R1 against F 6
3 , F 7

3 , and
F 8

3 . The attack against F 6
3 uses 4 points and 2

5n
3 plaintexts, the attack against

F 7
3 uses 6 points and 22n plaintexts, and the attack against F 8

3 uses 8 points and
22.5n plaintexts. Our experiments confirm our ability to distinguish between F 6

3
or F 7

3 or F 8
3 and a random permutation. Our experiments were done as follows:
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– choose randomly an instance of F 6
3 or F 7

3 or F 8
3

– choose randomly a permutation: for this we use classical balanced Feistel
scheme with a large number of rounds (more than 20)

– launch the attack in CPA-1
– count the number of structures satisfying the input and output relations for

the F 6
3 or F 7

3 or F 8
3 permutation and for the permutation

– if this number is higher or equal to a fixed threshold (generally 1 or 2),
declare the function to be a F 6

3 or F 7
3 or F 8

3 permutation and otherwise a
random permutation

All these procedures are iterated a large number of time (at least 1000 times) to
evaluate the effectiveness of our distinguisher. We give the percentage of success,
i.e. the number of F 6

3 or F 7
3 or F 8

3 that have been correctly distinguished and
the percentage of false alarm, i.e. the number of random permutation that have
incorrectly been declared as F 6

3 or F 7
3 or F 8

3 .

Table 1. Experimental results for CPA-1 attacks

scheme n threshold Percentage of success of the attack Percentage of false alarm
F 6

3 8 2 54% 4%
F 7

3 6 1 33% 1%
F 8

3 6 1 38% 1%

We give some details in the F 7
3 case: here are the numbers of rectangles sets

for 100 instances of F 7
3 .

2, 0, 25, 1, 0, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 12, 1, 4, 1,

0, 1, 4, 18, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 1, 13, 0, 1, 6, 0,

0, 0, 33, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 3, 36, 1, 14, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0

The corresponding numbers for 100 random permutations are composed of 99
zero and a single one. This clearly shows that we can distinguish between the
two cases.

Our experiments show that the distinguisher on F 6
3 is more efficient than the

one on F 7
3 and than the one on F 8

3 . But in all case they confirm our ability to
distinguish.

8 Attack by the Signature

It can be proved that all the permutations F d
k have an even signature. The

proof of this result is quite similar to the proof in the case of a symmetric
Feistel scheme [13]. Therefore, by computing the signature of F d

k we are able
to distinguish F d

k from a random permutation with a non-negligible probability
and O(2kn) computations if all the 2kn plaintext/ciphertext are known. However
if we do not have access to the complex codebook of size 2kn, or if we want to
distinguish F d

k from a random permutation with an even signature, this “attack”
obviously fails.
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9 Summary of the Results on F d
k , k ≥ 3, on TWO,

SQUARE and Rectangle Attacks

The following table shows the results we have obtained with our different attacks.

Table 2. Results on F d
k for k = 3, on TWO, SQUARE and Rectangle attacks (i.e. with-

out Multi-rectangle attacks). CAUTION: Multi-Rectangle attacks may have sometimes
better complexities.

KPA CPA-1
F 1

3 1 1
F 2

3 2
n
2 , TWO 2

F 3
3 2n, TWO 2

F 4
3 2

3
2 n, TWO 2

n
2 , TWO

F 5
3 22n, TWO 2n, TWO

F 6
3 2

9
4 n, SQUARE 2

5
3 n, SQUARE

F 7
3 2

5
2 n, M1, ϕ = 6 22n, M1, ϕ = 6

F 8
3 2

23
8 n, R2, ϕ = 8 2

5
2 n, R2, ϕ = 8

F 9
3 23n, R2, ϕ ≥ 10 23n, R2, ϕ ≥ 10

F 10
3 27n, TWO 27n, TWO

F 11
3 28n, TWO 28n, TWO

F d
3 , d ≥ 10 2(d−6+� d

3 �)n, TWO 2(d−6+� d
3 �)n, TWO

10 Multi-rectangle Attacks

An interesting problem is to design better attacks than 2-point attacks, or
rectangle attacks. We have tried attacks with different geometries of equations
(hexagons instead of rectangles, multi-dimensional cubes instead of 2-dimension
rectangles, etc...). So far the best new attacks that we have found are “Multi-
Rectangle attacks”, i.e. attacks where some “rectangles” in I equations are linked
with S equations. We will present here only two examples. More details are given
in the extended version of this paper. These new attacks are very promising
asymptotically (i.e. when n becomes large) but their efficiency from a practical
point of view and the design optimality are still under investigation.

Example 1. With a 2-rectangle attack (as in Figure 4 below), it seems that
we can attack F 18

6 with a complexity strictly less than 26n. Therefore this at-
tack is expected to be better than rectangle attacks. However we have to use 2
rectangles of about 2 × 20 points. Consequently we will have a large constant in
the complexity and therefore such a theoretical attack might be of no practical
interest.

Example 2. It seems that we can attack F d
k when d ≤ k2 +k with a complexity

less than O(2kn) with a Multi-Rectangle attack when k is fixed (with a huge
coefficient depending of k and not of n in the O).This attacks is based on arrays
of k + 1 dimensional hypercubes. This attack is still under investigation.
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Table 3. Results on F d
k for k > 3, on TWO, SQUARE and Rectangle attacks (i.e. with-

out Multi-rectangle attacks). CAUTION: Multi-Rectangle attacks may have sometimes
better complexities.

KPA CPA-1
F 1

k 1 1
F 2

k 2
n
2 , TWO 2

F 3
k 2n, TWO 2

F d
k , 2 ≤ d ≤ k 2

d−1
2 n,TWO 2

F k+1
k 2

k
2 n, TWO 2

n
2 , TWO

F k+2
k 2

k+1
2 n, TWO and SQUARE 2n, TWO

F k+3
k 2

2k+3
4 n, SQUARE 22n,TWO or 2

k+2
3 n, SQUARE

F d
k , k + 2 ≤ d ≤ 2k 2

d+k
4 n, SQUARE 2(d−k−1)n,TWO or 2

d−1
3 n, SQUARE

F 2k
k 2

3k
4 n, SQUARE 2

2k−1
3 n,SQUARE

...
...

...
F 3k−1

k 2(k− 1
8 )n, R3 k = 4, R4 k ≥ 5 2(k− 1

2 )n, R2 k = 4, R4 k ≥ 5
F 3k

k 2kn, R2 2kn, R2
F d

k , 3k ≤ d ≤ k2 2(d−2k)n, R2 2(d−2k)n, R2

1 3 17 19

2 4 18 20

21 23 37 39

22 24 38 40

X1, X7

I1

X2, X3, X4, X5, X6

X8, X9, X10, X11, X12

. . .

X1, X7

X1, X7

I1

X2, X3, X4, X5, X6

X8, X9, X10, X11, X12

. . .

X1, X7

X13, X14, X15, X16, X17

X13 X13 X13

Fig. 4. Example of a multi-rectangle attack on F 18
6
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Multi-Rectangle attacks are also of interest for less rounds, for example in
order to attack F 2k

k with a smaller complexity than rectangle attacks.

11 Conclusion

In [6], Jutla has introduced “Rectangle attacks” against unbalanced Feistel
schemes. To improve the attacks of Jutla, we have first made a systematic analy-
sis of the different ways to optimize the parameters. We have obtained like this 5
different kinds of “rectangle attacks” that we have called SQUARE, R1, R2, R3
and R4. By computing the optimal parameters, we have shown that we can at-
tack 3k−1 rounds in KPA instead of 3k−3 in CPA-1 for Jutla with a complexity
strictly lower than 2kn with these “Rectangle attacks” (This was confirmed with
experimental simulations). Moreover, we have also described two other families
of attacks that we have called TWO ( for 2-point attacks) and “Multi-Rectangle
attacks”. We have shown that sometimes TWO attacks are the best, and some-
times it is SQUARE, R1, R2, R3, R4 or Multi-Rectangle attacks, depending
of the choices of d and k. For example, for very small values of d, TWO at-
tacks are the best. Multi-Rectangle attacks seem to be very promising from a
theoretical point of view. For example, we may attack much more than 3k − 1
rounds with a complexity strictly lower than 2kn, and we may attack F 2k

k with
a complexity better than with rectangle attacks. However the precise properties
of Multi-Rectangle attacks are not yet known since these attacks are still under
investigation.

In conclusion, there are much more possibilities for generic attacks on unbal-
anced Feistel schemes with expanding functions than with other Feistel schemes
(classical or with contracting functions). So these constructions must be designed
with great care and with sufficiently many rounds. However, if sufficiently many
rounds are used, these schemes are very interesting since the memory needed to
store the functions is much smaller compared with other generic Feistel schemes.

More examples and more simulations can be found in the extended version of
this paper.
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Abstract. Tweakable blockciphers, first formalized by Liskov, Rivest,
and Wagner [12], are blockciphers with an additional input, the tweak,
which allows for variability. An open problem proposed by Liskov et al.
is how to construct tweakable blockciphers without using a pre-existing
blockcipher. There are many natural questions in this area: is it signif-
icantly more efficient to incorporate a tweak directly? How do direct
constructions compare to existing techniques? Are these direct construc-
tions optimal and for what levels of security? How large of a tweak can
be securely added? In this work, we explore these questions for Luby-
Rackoff blockciphers. We show that tweakable blockciphers can be cre-
ated directly from Luby-Rackoff ciphers, and in some cases show that
direct constructions of tweakable blockciphers are more efficient than
previously known constructions.

1 Introduction

A blockcipher, also known as a pseudorandom permutation, is a pair of algorithms
E and D. The encryption algorithm E takes two inputs – a key K and a message
block M , and produces a ciphertext block C of the same length as M , while the
decryption algorithm D reverses this process. A blockcipher is considered secure
if, for a random secret key K, the cipher is indistinguishable from a random
permutation.

A tweakable blockcipher takes an extra input, the tweak, (T ), that is used only
to provide variation and is not kept secret. Unlike changing the key, changing the
tweak should involve minimal extra cost. A tweakable blockcipher is considered
secure if it is indistinguishable from a family of random permutations indexed
by the tweak. The Hasty Pudding Cipher by Schroeppel [21] was the first to
introduce an auxiliary blockcipher input called a “spice” and Liskov, Rivest,
and Wagner [12] later formalized the notion of tweakable blockciphers. Liskov et
al. describe two levels of security: a secure (CPA) tweakable blockcipher is one
that is indistinguishable from a random permutation family to any adversary
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that may make chosen plaintext queries, while a strongly secure (CCA) tweakable
blockcipher is pseudorandom even to an adversary that may also make chosen
ciphertext queries.

Tweakable blockciphers have many practical applications. Liskov et al. de-
scribe how they can be used to implement secure symmetric encryption and
authenticated encryption. Halevi and Rogaway [9,10] suggest an immediate ap-
plication to private storage where the tweak is set to be the memory address
of an enciphered block; and thus, the encryptions of two blocks with the same
plaintext are not likely to look the same and yet decryption remains straight-
forward. Tweakable blockciphers have also been studied in a variety of other
contexts [1,11,20,2].

Feistel Blockciphers. Feistel blockciphers [6] have been an actively studied class
of constructions since Horst Feistel invented them in 1973. In particular, Luby
and Rackoff showed how to construct a pseudorandom permutation from a
pseudorandom function by composing three (or four in the case of CCA se-
curity) Feistel permutations [13]. We call this construction the Luby-Rackoff
blockcipher. In 1996, Lucks [14] described an optimization for the secure 3-
round version by replacing the first round with a universal hash function.
Shortly afterwards, Naor and Reingold [15] provided the analogous optimiza-
tion for the strongly secure 4-round cipher, replacing both the first and last
rounds with a more general type of function. In 2001, Ramzan [18] formally
studied many variations on the Luby-Rackoff cipher. Patarin gave proofs of se-
curity for certain constructions against unbounded adversaries with access to
exponentially many queries, albeit assuming the individual round functions are
random functions rather than pseudorandom. Specifically, Patarin proved se-
curity for 7 rounds against q � 2k queries, where the blockcipher input is of
size 2k [16], and later improved this to show that 5 rounds is sufficient, both
for chosen-plaintext and chosen-ciphertext attacks [17], which remains the best
proven security level for Feistel ciphers. Dodis and Puniya recently provided a
combinatorial understanding of Feistel networks when the round functions are
unpredictable rather than pseudorandom [5].

Our Work. Liskov, Rivest, and Wagner [12] give two constructions for tweak-
able blockciphers, each one constructed from an underlying blockcipher. Sub-
sequent work has also taken this approach; Halevi and Rogaway’s EMD and
EME modes [9,10] and Rogaway’s XEX mode [20] were all blockcipher modes of
operation. The only examples of specific tweakable blockciphers are the Hasty
Pudding [21] and the Mercy [4] ciphers.

One open problem proposed by Liskov et al. was to study how to incorporate
tweaks into existing blockciphers, or design tweakable blockciphers directly. In
this work, we perform a systematic study of issues relating to directly tweak-
ing Luby-Rackoff blockciphers. We analyze the approach of including a tweak
by XOR-ing the tweak value into one or more places in the dataflow. This natural
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model for adding a tweak changes the cipher minimally. Also, approaches involv-
ing more direct cryptographic processing of the tweak (e.g. hashing the tweak)
have a significant additional cost associated with changing the tweak.

Our Contributions. We present tweakable Luby-Rackoff blockciphers, for both
CPA and CCA security, and against both polynomial-time adversaries, and
against unbounded adversaries with q � 2k queries1, where k is half the size of
the input (matching the best result for ordinary blockciphers [17]). Specifically,
we construct tweakable blockciphers:

– CPA-secure against polynomial adversaries in 4 rounds (Theorem 3)
– CCA-secure against polynomial adversaries in 6 rounds (Theorem 8)
– CPA-secure against q � 2k queries in 7 rounds (Theorem 4)
– CCA-secure against q � 2k queries in 10 rounds (Theorem 9)

Recall that for polynomial adversaries CPA-security requires 3 rounds whereas
CCA-security requires 4. It is thus natural to wonder if our constructions are
optimal. We prove our constructions against polynomial adversaries are indeed
round-optimal in our model (Theorems 1 and 7). Furthermore, we show that any
construction of 6 or fewer rounds in our model can be attacked with O(2k/2)
queries (Table 1), so our construction of Theorem 4 is also round-optimal. In
addition, the attacks used to prove the round-optimality of our constructions,
as well as our extension of the proof methods of Naor and Reingold, help to
form the theoretical foundation necessary for the secure design of tweakable
blockciphers regardless of construction, as well as shedding light on the diffi-
culties in adding a tweak to Feistel-based blockciphers such as RC6 [19] and
MARS [3].

We also explicitly address the problem of incorporating tweaks of arbitrary
length, an important issue not addressed in the literature.2 We show that our
CPA-secure constructions can incorporate additional blocks of tweak at the cost
of 1 round per block (Theorems 11 and 14), and that our CCA-secure con-
structions may be similarly extended at the cost of 2 rounds per block of tweak
(Theorems 12 and 15).

2 Definitions

A tweakable blockcipher is a triple of algorithms ( ˜G, ˜E, ˜D) for key generation,
encryption, and decryption, respectively. We restrict our attention to tweakable
blockciphers where ˜G(·), ˜EK(·, ·), and ˜DK(·, ·) are all efficiently computable al-
gorithms; and where the correctness property holds; that is, for all M, T, and
1 That is, any non-negative q < 2k such that q2−k is negligible.
2 Using tweaks of arbitrary length has been considered for tweakable symmetric en-

cryption [8], but not for one-block constructions. Certain applications require differ-
ent, specific tweak sizes, and one may want to allow longer tweaks to include more
information. Indeed, this was the motivation for Schroeppel to allow spice values of
512 bits in the Hasty Pudding Cipher [21].
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for all keys K ∈ ˜G(1k), ˜DK( ˜EK(M, T ), T ) = M . We also generally assume that
˜G(1k) draws keys uniformly at random from {0, 1}p(k) for some polynomial p.

We have two notions of security: (1) chosen-plaintext secure (CPA) and (2)
chosen-ciphertext secure (CCA). Security is defined in terms of both a poly-
nomial and an exponential adversary; polynomial adversaries are limited to a
number of queries and computations polynomial in the message size, whereas an
exponential adversary is allowed unlimited computation, but is bounded by an
exponential number of queries relative to the message size.

Definition 1. Over all adversaries with access to an encryption oracle, the max-
imum advantage is defined as:

ADV-TBCK( ˜E, ˜D, q, t) = max
A

: |Pr[A ˜EK (·,·)(1k) = 1] − Pr[AΠ (1k) = 1]|

where (1) for all k, K is generated by ˜G(1k), (2) Π is a random permutation
family parameterized by its second input, and (3) A is allowed to run for t steps
and make at most q oracle queries.

Definition 2. Over all adversaries with access to an encryption and decryption
oracle, the maximum advantage is defined as:

ADV-STBCK( ˜E, ˜D, q, t) = max
A

: |Pr[A ˜EK(·,·), ˜DK(·,·)(1k) = 1] − Pr[AΠ,Π−1
(1k) = 1]|

where (1) for all k, K is generated by ˜G(1k), (2) Π, Π−1 are a pseudorandom
permutation family and its inverse, and (3) A is allowed to run for t steps and
make at most q oracle queries.

A tweakable blockcipher is CPA secure if for all k, for q queries and time t,
ADV-TBCK( ˜E, ˜D, q, t) is negligible in k. A tweakable cipher is said to be
polynomially-secure if q and t are polynomial in k. If t is unspecified, then it
may be unbounded. We define CCA security in the same manner.

3 The Feistel Blockcipher

Recall the formula for the Feistel blockcipher [6] on input M = (L0, R0):

Li+1 = Ri

Ri+1 = fi+1(Ri) ⊕ Li

where the output after n rounds is (Ln, Rn), and each fi is a pseudorandom
function specified by the key. Further recall that the 3-round Feistel construction
is secure against chosen plaintext attacks, and the 4-round construction is secure
against chosen ciphertext attack [13].

3.1 Notation

In order to talk about where to add a tweak, we must first establish some nota-
tion. Unless otherwise specified, the tweaks we refer to are a half-block in length;
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Fig. 1. An illustration of Λ3;
the locations at which to XOR
a tweak of length |M |/2 for
3-round LR

that is, on input M of size 2k, the tweak is of size
k. As we will later see, a blockcipher may allow
for longer tweaks; we think of these as “multiple
tweaks,” as conceptually, the longer tweak can be
thought of as being composed of multiple tweaks,
each of the same size.

For an n-round Luby-Rackoff construction,
a single half-block of tweak can conceiv-
ably be XOR-ed in at any of the following
unique locations: L0, L1, . . ., Ln, R0, R0.5,
R1, . . . , Rn−0.5, Rn. Let this set be denoted by
Λn. We illustrate the Λ3 (3-round) locations in
Figure 1.

Let T λ be the XOR of all the tweaks used at
location λ ∈ Λn. The formula for our construc-
tion is:

Li+1 = Ri ⊕ TRi

Ri+1 = fi+1(Ri ⊕ TRi ⊕ TRi+0.5) ⊕ Li ⊕ TLi

We use “BC(n, λ)” to refer to the tweakable
blockcipher construction where the number of
Luby-Rackoff rounds is n and a tweak T λ is XOR-
ed in at some location λ ∈ Λn. To denote adding
multiple tweaks, we write “BC(n, λ1, . . . , λt)”,
where T λi = Ti is the tweak for location λi and
different locations each have their own indepen-
dent tweak. Thus, in such a construction, the
tweak size is tk.

We might also want to denote adding the same tweak value at two or more
locations. We write this as “BC(n, λ1 + λ2)”, where the implication of using the
compound location λ1 +λ2 is that T λ1 = T λ2 . Of course, we may also consider a
construction with multiple tweaks, each of which may be a compound location;
we use the obvious notation for this. We use the symbol Γ to denote a (possibly)
compound tweak location.

In Λn, we have listed all tweaks at “.5” locations, i.e., Rl+0.5 for some l.
However, we do not have to consider these locations.

Lemma 1. For all m, Rm+0.5 is equivalent to Rm + Lm+1.

Lemma 2. For all 0 ≤ m < n, Lm is equivalent to Rm+1.

Since Lm and Rm+1 are equivalent, we will use them interchangeably. This starts
us off with a reduced set of tweakable constructions to study including tweaks
at locations Ln, R0, . . ., Rn and all combinations thereof.
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4 Tweakable Blockciphers with CPA Security

In this section, we focus on achieving CPA security. In the next section, we will
discuss the stronger CCA notion of security.

We begin by presenting some general results that hold for an arbitrary number
of rounds. These results will help us to narrow down the possibilities for secure
constructions and to prove the optimality of our final construction. As stated
in Section 3, the set of possibly secure constructions includes those with tweaks
at locations Ln, R0, . . ., Rn and all combinations thereof. However, we remark
in Lemma 3 that we do not need to consider all possible locations, and that
some locations can be simulated without directly tweaking the blockcipher; this
important observation is used frequently throughout the paper.

Lemma 3. For all n, without loss of generality, we can consider only construc-
tions that never use the tweak locations Ln Rn, R0, or R1, even in compound
locations, and even when considering CCA security.

Proof. We can simulate oracle queries with or without the tweaks in Ln Rn,
R0, or R1. To simulate a query (L0, R0, T1, . . . , Tt) to a construction with these
tweaks, we make a query (L0 ⊕ TR1 , R0 ⊕ TR0 , T1, . . . , Tt) to the construction
without these tweaks to obtain (Ln, Rn), and we return (Ln ⊕ TLn , Rn ⊕ TRn).
Decryption queries can be simulated similarly. �

The set of tweak locations we need to consider is thus reduced to {R2 . . . , Rn−1}.
From here on, we consider Λn to be {R2, . . . , Rn−1}.

Lemma 4. For all n, BC(n, Rn−1) is not CPA-secure.

Proof. We use a 2-query attack. If we query (L, R, T ) to get (Ln
1 , Rn

1 ), and then
query (L, R, T ′) to get (Ln

2 , Rn
2 ), then Ln

1 ⊕ Ln
2 = T ⊕ T ′. �

Thus, we arrive at our first round-specific conclusion.

Theorem 1 (No Tweakable 3-Round Constructions). For all n < 4 and
all compound locations Γ of elements in Λn, BC(n, Γ ) is not CPA-secure.

Proof. This follows from Lemmas 3 and 4, and the set {R2, . . . , Rn−2} being
empty for n = 3. �

4.1 Secure Locations

We have reduced the set of possible secure single tweak locations to {R2, . . . ,
Rn−2}. We now show that each of these locations are secure for n ≥ 4. However,
first we must define ε−ARCU2 hash functions and introduce some related work.

Definition 3. An ε − ARCU2 (“Almost Right-Collision-avoiding Universal”)
hash function family is a hash function family given a range of {0, 1}2k with
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the property that for all x �= y, the probability that hR(x) = hR(y) is at most
2−k + ε, over the choice of h, where hR denotes the right half of the output of h.

Naor and Reingold [15] create a secure blockcipher using two Luby-Rackoff
rounds in combination with a potentially less expensive function.

Theorem 2 (Naor-Reingold). If E denotes two Luby-Rackoff rounds with
truly random round functions, and h is drawn from an ε−ARCU2 hash function
family, then E◦h is indistinguishable (in a CPA attack) from a random function.

Using Definition 3 and Theorem 2, we are able construct CPA-secure tweakable
blockciphers.

Theorem 3 (Several Tweakable n-Round Constructions (for n ≥ 4)).
For all n ≥ 4 and m ∈ {2, . . . , n − 2}, BC(n, Rm) is CPA-secure against polyno-
mially bounded adversaries.

Proof. We can capitalize on Theorem 2 as follows. We will prove that when we
let h(L, R, T ) = (L ⊕ fm−1(R)||R ⊕ T ⊕ fm(L ⊕ fm−1(R))) over random choice
of fm−1 and fm, these conditions hold. Here, h is comprised of the last two
rounds of the construction before the tweak, including the tweak. Once we prove
this, the result will follow: the first m − 2 rounds are a permutation, so if h′ is
comprised of the first m rounds, it will be ε − ARCU2 if h is. Furthermore, since
m ≤ n − 2, there are at least 2 more rounds to follow; any further rounds are
another permutation and pseudorandomness will be maintained.

Lemma 5. The family h(L, R, T ) = (L ⊕ f1(R)||R ⊕T ⊕ f2(L ⊕ f1(R))), where
f1 and f2 are randomly chosen over the domain of all functions from k bits to
k bits, is ε − ARCU2, for ε = 2−k + 2−2k.

Proof. Let x = (L, R, T ) and y = (L′, R′, T ′), where x �= y. Note that if R �=
R′ then the probability that L ⊕ f1(R) = L′ ⊕ f1(R′) is the probability that
f1(R) = L ⊕ L′ ⊕ f1(R′) which is 2−k. Similarly, if R = R′ but L �= L′ then
L ⊕ f1(R) �= L′ ⊕ f1(R′). In either case, the probability that L ⊕ f1(R) =
L′ ⊕ f1(R′) is at most 2−k. Finally, if R = R′ and L = L′ then T �= T ′ so
hR(L, R, T ) = hR(L, R, T ′) ⊕ T ⊕ T ′ �= hR(L, R, T ′).

The probability that hR(L, R, T ) = hR(L′, R′, T ′) given that L ⊕ f1(R) �=
L′ ⊕ f1(R′) is the probability that f2(L ⊕ f1(R)) = R ⊕ R′ ⊕ f2(L′ ⊕ f1(R′),
which is 2−k, so the probability we hit a collision is at most (1−2−k)(2−k)+2−k =
2−k + 2−2k + 2−k = 2−k + ε. �

From the Lemma, if all the round functions are random, then the h we are
interested in is ε − ARCU2. By Theorem 2, BC(n, Rm) is indistinguishable from
a random function if all round functions are random. Therefore, BC(n, Rm) must
be CPA secure if its round functions are pseudorandom (since random functions
are indistinguishable from random permutation families). This completes the
proof of Theorem 3. �
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Corollary 1 (CPA Security In 4 Rounds). BC(4, R2) is CPA-secure and
round-optimal.

Proof. This follows directly from Theorems 1 and 3. �

4.2 Exponential Attacks

In this section, we investigate the security of tweakable blockcipher construc-
tions against an adversary who is capable of making an exponential number of
queries. We provide general attacks against several types of tweakable construc-
tions built from Luby-Rackoff permutations. In this section, we assume all round
functions are ideal, in other words, that they are uniform random functions.3 We
consider a construction secure against exponentially many queries if the prob-
ability of any computationally unbounded adversary allowed q � 2k queries to
distinguish the construction from a random permutation family is negligible in k.
These attacks appertain to constructions with both single and compound tweak
locations (where the same tweak value is XOR-ed in multiple locations) and are
used to prove that all constructions of less than 7 rounds can be distinguished
from a random permutation family in O(2

k
2 ) queries.

Lemma 6. For any 0 ≤ r < n, BC(n, Rr+0.5) is insecure against O(2
k
2 ) queries.

Proof. The attack is as follows: fix the message and query with 2
k
2 different

tweaks. The probability that two different queries lead to the same output is
negligible for a random permutation family. However, the probability that two
queries lead to a collision in this construction is not negligible. On each query,
the internal values stay constant until the input to fr+1. Since we have made 2

k
2

queries to an ideal round function, we can expect with non-negligible probability
to get a collision on the output of fr+1 for two distinct queries. If we get such a
collision, notice the entire output ciphertext will collide. �
Corollary 2. For any 0 ≤ r < n, BC(n, Rr+0.5 + Rr+1) is insecure against
O(2

k
2 ) queries.

Proof. The attack is identical to that used in Lemma 6, except that instead of
expecting a collision of the type fr+1(Rr ⊕ T ) = fr+1(Rr ⊕ T ′), we expect a
collision of the type fr+1(Rr ⊕ T ) ⊕ T = fr+1(Rr ⊕ T ′) ⊕ T ′. �

Lemma 7. For any 0 ≤ r < n, BC(n, Rr+0.5+Rn−1) is insecure against O(2
k
2 )

queries.

Proof. For this proof we will first need a result from probability.

Lemma 8 (Strong Birthday Lemma). For all k > 1, there exists an m <

1.2×2
k
2 such that if p is the probability of picking an element twice when selecting

m elements from a 2k-element set with replacement uniformly at random, then
p and 1 − p are both non-negligible in k.
3 This is the standard assumption when we want to prove security in a setting where

the adversary has beyond-polynomial capabilities [16,17].
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Proof. For proof of the Strong Birthday Lemma, see full version [7]. �

The attack is as follows: Compute the m described in Lemma 8. Keep the message
constant and query with m different tweaks. The probability that two ciphertexts
are such that Ln ⊕T = L′n⊕T ′ is significantly higher for the actual construction
than for a random permutation family. Since m ≤ 1.2 × 2

k
2 , this attack can be

performed by an exponential adversary.
Notice that the internal values of any pair of queries are the same up to the

input of fr+1. For every query, fr+1 receives a different input (as the input is a
fixed value XOR-ed by the tweak). Since the round functions are ideal, the event
of getting a collision on two outputs of fr+1 with m different queries reduces to
the event of picking the same element twice as described in Lemma 8; say that
probability is p. Notice that if such a collision happens, we always get a collision
of the type, Ln ⊕ T = L′n ⊕ T ′.

Assume that the outputs of fr+1 are distinct for each of the m queries. Notice
that in order to have a collision of two Rn−2 values, it must be true that the
Ln−2 values differ for both queries, because the intervening rounds act as a
permutation. Therefore, we will get a collision on Rn−2 if and only if we have a
collision of the type:

fn−2(Ln−2) ⊕ Ln−3 = fn−2(L′n−2) ⊕ L′n−3.

Since the probability of such a collision for any two queries is either 2−k or
0 (in the case that the Ln−2 values coincide), we can bound the probability of
having such a collision above by (1.2)22k

2×2k = .72 since m ≤ 1.2× 2
k
2 . Therefore, in

this case, with probability greater equal to .28, we can assume all Rn−2 values
are distinct. Notice:

Ln ⊕ T = L′n ⊕ T ′ ⇔ fn−1(Rn−2) ⊕ Ln−2 ⊕ T = fn−1(R′n−2) ⊕ L′n−2 ⊕ T ′.

The probability of such an event occurring over m queries with distinct
Rn−2 and ideal round functions is, again, p. Therefore, the overall probabil-
ity of getting at least two ciphertexts with the described property is at least
p + (1 − p)(.28p).

If the construction we are given is the random permutation family, the prob-
ability of getting the coincidence described is clearly p. Therefore the differ-
ence in probabilities of this event happening for the tweakable construction and
the random permutation family is at least p + .28p(1 − p) − p = .28p(1 −
p). Since p and 1 − p are non-negligible in k (by Lemma 8), this value is
also non-negligible, and therefore our attack successfully distinguishes the two
constructions. �

Corollary 3. BC(n, Rr+0.5 + Rr+1 + Rn−1) is insecure against O(2
k
2 ) queries.

Proof. The generalization of Lemma 7 to Lemma 3 is identical to the extension
of Lemma 6 to Lemma 2. �
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These four attacks can be used to attack every tweakable Luby-Rackoff blockci-
pher of 6 or fewer rounds. A rundown of which general attack applies for each
construction can be found in Table 1. We do not include L1, R1, L6 or R6 in the
possible locations, or their equivalent constructions of Table 1 since they can be
simulated away by Lemma 3.

4.3 A Tweakable Construction Secure for q � 2k Queries

Table 1. All possible 6-round tweakable blockcipher
constructions and the corresponding lemmas that
prove the constructions are insecure

Tweak Locations
Location Equivalent Attack
R2 R0.5 Lemma 6
R3 R1.5 Lemma 6
R4 R4.5 Lemma 6
R5 N/A Lemma 4
R2 + R3 R1.5 + R2 Corollary 2
R2 + R4 R2.5 Lemma 6
R2 + R5 R0.5 + R5 Lemma 7
R3 + R4 R3.5 + R4 + R5 Corollary 3
R3 + R5 R3.5 Lemma 6
R4 + R5 R4.5 + R5 Corollary 2
R2 + R3 + R4 R2.5 + R3 Corollary 2
R2 + R3 + R5 R1.5 + R2 + R5 Corollary 3
R2 + R4 + R5 R2.5 + R5 Lemma 7
R3 + R4 + R5 R3.5 + R4 Corollary 2
R2 + R3 + R4 + R5 R2.5 + R3 + R5 Corollary 3

We now show a 7-round
Luby - Rackoff construction
that is secure against an ad
versary allowed q�2kqueries.

Theorem 4. BC(7, R3+L3)
is CPA-secure for q � 2k

queries.

Proof. To prove that this
construction is a secure
tweakable blockcipher we uti-
lize the following theorem
from Patarin [16]:

Theorem 5 (Patarin). Let
F be a function from 2k bits
to 2k bits. If F has the prop-
erty that for q � 2k queries,
the probability of having l >
O(k) indices such that Ri1 =
Ri2 = Ri3 = ...Ril

is negligi-
ble, (where Rij is the right half of the j’th output of F ), and on distinct inputs F
has only a negligible probability of a full collision on its outputs, then E◦F ,(where
E is a four-round Luby-Rackoff function), is indistinguishable from random for
q � 2k input queries.

We decompose our 7-round construction into two functions, F and E, where
F is the first three rounds, including the XOR-ed tweak at both L3 and R3,4

and E is the last four rounds. It is obvious that E is a four-round Luby-Rackoff
function. To prove that F has the properties enumerated in Theorem 5, we need
to prove the following two properties about F .

Lemma 9. F is such that for any two distinct queries, the probability of the
outputs being equal is O(2−2k) and the probability of the right halves of the
outputs being equal is O(2−k).

4 Although L3 is equivalent to R4, we think of this construction as using L3, so that
we can conceptually split the function this way.

-
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Proof. For proof see full version [7]. �
So long as the queries the adversary makes do not produce a full collision on
F or a multi-collision on the right half of the output of F , the responses are
indistinguishable from random. Therefore, the queries of the adversary are inde-
pendent of the outputs of F so long as the required conditions hold. By Lemma 9,
the probability of an overall collision in q � 2k queries is O(q22−2k) which is
negligible. Similarly, the probability of an l-way multicollision on the right is
O(ql2−(l−1)k) = O(2k(q2−k)l). Since q < 2k(1−ε) for some ε, we know that
(q2−k)l < (2−kε)l = 2−klε. If l ≥ k ≥ 2/ε, which will be true for sufficiently large
k, this probability is bounded by 2−k. Thus, F satisfies the necessary properties
with all but a negligible probability, which completes our proof of Theorem 4. �

5 Tweakable Blockciphers with CCA Security

In this section, we study the problem of achieving CCA security. An important
observation to make in constructing a CCA-secure tweakable blockcipher is a
distinguishing attack we will call the four-message attack, which is a type of
Boomerang attack [22]. The attack can be performed by any adversary with
access to encryption and decryption oracles, E and D respectively. To perform
the attack, the adversary makes four queries:

1. For an arbitrary message M and tweak T , obtain C = E(M, T ).
2. For an arbitrary tweak T ′ �= T , obtain C′ = E(M, T ′).
3. Obtain M ′ = D(C′, T ).
4. Obtain C′′ = E(M ′, T ′). If C = C′′; output 1, otherwise output 0.

A wide class of tweakable blockciphers fall to the four-message attack:

Theorem 6 (Four Message Attack). Suppose that g1 : {0, 1}n → {0, 1}l is
an injective function that is invertible on its domain, that g2 : {0, 1}t → {0, 1}l

is any deterministic function, and that g3 : {0, 1}l → {0, 1}n is a function such
that for all C and T there exists a unique A such that g3(A ⊕ g2(T )) = C. Then
the construction ˜EK(M, T ) = g3(g2(T ) ⊕ g1(M)) is not CCA-secure.

Proof. Note that C = g3(g2(T ) ⊕ g1(M)), C′ = g3(g2(T ′) ⊕ g1(M)). Now if we
decrypt C′ with tweak T , we obtain M ′ = g−1

1 (g2(T ′) ⊕ g2(T ) ⊕ g1(M)). When
we encrypt M ′ under tweak T ′, we get C′′ = g3(g2(T ′)⊕g1(g−1

1 (g2(T ′)⊕g2(T )⊕
g1(M))) = g3(g2(T ′) ⊕ g2(T ′) ⊕ g2(T ) ⊕ g1(M)) = g3(g2(T ) ⊕ g1(M)) = C. �
Note in particular that if both g1 and g3 are permutations, the conditions are
satisfied. This has immediate consequences:

Corollary 4. For all n, Rm ∈ Λn, both BC(n, Rm) and BC(n, Rm + Rm+1) are
not CCA-secure.

Proof. Here, g1 is the permutation described by the m rounds of Luby-Rackoff
before the tweak, g2(T ) = 0k||T for BC(n, Rm) and g2(T ) = T ||T for BC(n, Rm+
Rm+1), and g3 is the remaining n−m rounds. Clearly g1 and g3 are permutations,
so the four message attack applies. �
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This shows that if we are to be able to add a half-block of tweak to the construc-
tion anywhere, it must be used at multiple locations, and those locations must
be separated by at least one round.5 In fact, however, a one round distance will
not suffice:

Lemma 10. For all n, Rm ∈ Λn, BC(n, Rm + Rm+2) is not CCA-secure, and
BC(n, Rm + Rm+1 + Rm+2) is also not CCA-secure.

Proof. To simplify, recall that Rm +Rm+2 is equivalent to Rm+0.5 by Lemma 1.
Noticing this makes it clear why this is unlikely to be secure, in light of the
previous two corollaries, but we still have some work to do.

Here, we use the four-message attack again, but this time, suppose g1 and
g3 are not permutations. Rather, if (L, R) is the output of the first m rounds
of the Luby-Rackoff permutations, then g1(M) is the 3k bit response (L, R, R).
Notice that g2(T ) is 02k||T , and g3(A, B, C) computes the remaining rounds,
computing Lm+1 = B and Rm+1 = fm(C)⊕A, and continuing from there. Note
that g3(g2(T )⊕ g1(M)) is the output we get from applying BC(n, Rm+0.5) to M
with tweak T . For the BC(n, Rm + Rm+1 + Rm+2) construction, this is just the
same as BC(n, Rm+0.5 +Lm), and change g2 so that it produces T ||0k||T rather
than 02k||T . Clearly g1 is injective and invertible, and g3 has unique inverses of
the proper form, which we can find by inverting the tweakable blockcipher and
noting the values in the proper place. Doing so requires the tweak T , but the
answer is unique regardless, or we wouldn’t have unique decryption. By Theorem
6, neither of these constructions are CCA-secure. �

Theorem 7. For all n < 6 and all compound locations Γ of elements in Λn,
BC(n, Γ ) is not CCA-secure.

Proof. In order to construct a CCA-secure tweakable blockcipher, we must use
the tweak at (minimally) Rm and Rm+d for some d ≥ 3. And naturally, m and
m+d must be in the range 2, . . . , n−1 since all other locations can be simulated.
For n ≤ 5 no such pair of locations exists. �

Therefore, the first construction that can be CCA-secure is BC(6, R2 +R5), and
is in fact a secure construction!

Theorem 8. BC(6, R2 + R5) is a CCA-secure tweakable blockcipher.

Proof. For proof, see full version [7]. �

5.1 CCA Security Against Exponential Attacks

Theorem 9. BC(10, L3 + R3 + L7 + R7) is CCA-secure for q � 2k queries.

Proof. In order to construct a tweakable blockcipher secure against CCA expo-
nential attacks, we use a theorem of Patarin [17]:
5 This shows, along with Lemma 10, that an adversary making a CCA attack with

XOR injection will be able to succeed, regardless of the location of the XOR.
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Theorem 10 (Patarin). Let F and F ′ be functions from 2k bits to 2k bits. If
F and F ′−1 each have the property that for q � 2k queries, the probability of
having l > O(k) indices such that Ri1 = Ri2 = Ri3 = ...Ril

is negligible, (where
Rij is the right half of the j’th output of F or F ′−1), and on distinct inputs F
(and F ′−1) has only a negligible probability of a full collision on its outputs, then
F ′ ◦E ◦ F ,(where E is a four-round Luby-Rackoff function), is indistinguishable
from random against chosen-ciphertext attack for q � 2k input queries.

In our construction, the first three rounds, including the tweaks at L3 and R3,
form F , and the last three rounds, including the tweaks at L7 and R7, form
F ′. F ′−1 is just the same as F , except with distinct round functions. Both F
and F ′−1 meet the properties of Theorem 10, as we have shown in our proof of
Lemma 9. BC(10, L3 +R3 +L7 +R7) = F ′ ◦E ◦F , and is therefore CCA-secure
against q � 2k queries. �

6 Allowing Longer Tweaks

In our previous results, all tweaks were assumed to be a half block in length. It
may be desirable however, to have tweaks of arbitrary lengths. We can always
lengthen a tweak that is less than a half block, by padding it in a deterministic
way. However, increasing the length of a tweak beyond a half block in length does
not follow easily. It may be useful to have constructions that are still secure with
longer tweaks, as one usual way of choosing a tweak is to include data with it
that makes it unique [21]. The longer the tweak, the more data can be included.

Tweakable Blockciphers with Longer Tweaks. For t half-blocks of tweak, we show
how to construct a CPA-secure tweakable blockcipher in t + 3 rounds and a
CCA-secure tweakble blockcipher in 2t + 4 rounds.

Theorem 11. For all n, one can use n − 3 half-blocks of tweak but no more.
Specifically, BC(n, R2, . . . , Rn−2) is secure, but any construction BC(n, Γ1,
. . . , Γt) for t > n − 3 is not secure.

Theorem 12. For all n, the tweakable blockcipher BC(2n, R2 + R2n−1, R3 +
R2n−2, . . . , Rn−1 + Rn+2) is a CCA-secure tweakable blockcipher.

Proof. For proof of Theorem 11 and Theorem 12 see full version [7].

Longer Tweaks with Exponential Security. Next, we focus on constructing Luby-
Rackoff based tweakable blockciphers which are secure against an unbounded
adversary with q � 2k queries. For t half-blocks of tweak, we show how to con-
struct a CPA-secure tweakable blockcipher in t+6 rounds and give a CCA-secure
tweakable blockcipher in 2t+8 that meets this security goal. These constructions
are based on a t + 2 round function F designed to meet the properties required
by Patarin.

Theorem 13. Let μi = Li+2 if i ≡ 1 or i ≡ 2 mod 4, let μi = Li+2 + L1 if
i ≡ 3 mod 4, and μi = Li+2+L2 if i ≡ 0 mod 4. Let μ′

i = μi +Ri if i �≡ 2 mod 4,
and μ′

i = μi + Ri + L1 otherwise. Then let F be BC(n + 2, μ1, . . . , μn−1, μ
′
n). F
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is a function such that for q � 2k queries, the probability of having l = O(k)
indices such that Ri1 = Ri2 = Ri3 = ...Ril

is negligible, (where Rij is the right
half of the j’th output of F ), and on q distinct inputs F has only a negligible
probability of a full collision on its outputs.

Proof. For proof, see full paper [7]. �
Theorem 14. E ◦ F is a tweakable blockcipher with t tweaks that is secure
against any unbounded adversary with at most q � 2k queries, where E is a
four-round Luby-Rackoff cipher.

Proof. This follows from Theorem 13 and Theorem 5. Note that E ◦ F requires
a total of t + 6 rounds.

Theorem 15. F ′ ◦ E ◦ F is a tweakable blockcipher with t tweaks that is
CCA-secure against any unbounded adversary with at most q � 2k queries,
where E is a four-round Luby-Rackoff cipher, F ′ is the inverse of the F de-
scribed above, with new independent round functions.

Proof. This follows from Theorem 13 and Theorem 10. Here, F ′ ◦E ◦F requires
2(t + 2) + 4 = 2t + 8 rounds.

7 Conclusion

Table 2 summarizes our constructions, compared to regular blockciphers and the
second construction of Liskov et al. [12]. This table shows that our results are
better for CPA constructions, equivalent for CCA against polynomial attacks,
and worse for CCA against exponential ones.

Table 2. Number of rounds required for each construction. The prior tweakable con-
struction we consider is ˜EK,h(M, T ) = h(T ) ⊕ EK(M ⊕ h(T )), where h is an ε−AXU2

hash function; subsequent constructions are similar. The natural way to realize the
hash function would be to simply use two random functions on the tweak, one for each
half of the data stream. Although Liskov et al. do not explicitly consider arbitrary
tweak length, their construction and proof can be easily extended to do so.

Security Level Blockciphers Prior TBCs [12] This paper
CPA with polynomial queries 3 rounds [13] 3 + 2 rounds/tweak 3 + 1 round/tweak
CPA with � 2k queries 5 rounds [17] 5 + 2 rounds/tweak 6 + 1 round/tweak
CCA with polynomial queries 4 rounds [13] 4 + 2 rounds/tweak 4 + 2 rounds/tweak
CCA with � 2k queries 5 rounds [17] 5 + 2 rounds/tweak 8 + 2 rounds/tweak

We conclude with some open problems: (1) incorporating tweaks securely into
other blockcipher structures, (2) direct, specific design of tweakable blockciphers
(Luby-Rackoff or otherwise) and (3) improving the provable level of security for
tweakable blockciphers in general.
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Abstract. In the standard general-adversary model for multi-party pro-
tocols, a global adversary structure is given, and every party must trust
in this particular structure. We introduce a more general model, the
asymmetric-trust model, wherein every party is allowed to trust in a dif-
ferent, personally customized adversary structure. We have two main
contributions. First, we present non-trivial lower and upper bounds for
broadcast, verifiable secret sharing, and general multi-party computation
in different variations of this new model. The obtained bounds demon-
strate that the new model is strictly more powerful than the standard
general-adversary model. Second, we propose a framework for express-
ing and analyzing asymmetric trust in the usual simulation paradigm for
defining security of protocols, and in particular show a general composi-
tion theorem for protocols with asymmetric trust.

1 Introduction

In the standard general-adversary model for multi-party computation
(MPC) [13], an adversary structure is specified which basically lists all sets of
parties that we expect the adversary might be able to corrupt. This model is
symmetric: every party is required to trust in the same adversary structure A.
This is unnatural since there is no inherent reason why the parties should all
have the same view on which adversary structure best models the given scenario.
For instance, two parties may have completely contradictory beliefs on whether
a third party can be corrupted or not. Also, insisting on one global adversary
structure may imply that a party must consent to the fact that he himself is com-
pletely untrusted. In this paper, we introduce a more natural asymmetric-trust
model where each party pi is allowed to trust in his own adversary structure
Ai. We then explore the differences between this asymmetric model and the
standard one.

Of course, a trivial approach is to try to build a protocol that will be secure
even if any set from any Ai is corrupt. However, this may be impossible, namely
if the union of all Ai violates known lower bounds for the symmetric model. Our

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 357–375, 2007.
c© International Association for Cryptology Research 2007



358 I. Damg̊ard et al.

main conclusion in this paper is that there are cases where the trivial symmet-
ric solution does not work, but where nevertheless broadcast, verifiable secret
sharing, or even general secure computation, are possible with asymmetric trust.

As an example, consider the three-party scenario where p1 distrusts p2, p2
distrusts p3, and p3 distrusts p1. In the standard model, MPC requires broadcast
channels for this problem. In contrast, in the most natural one of our asymmetric-
trust models, MPC does not require broadcast for the same scenario.

1.1 General Setting

We assume that n parties P = {p1, . . . , pn} are given who are connected by a
complete, synchronous network of pairwise channels. Also present is an adversary
who may corrupt some subset of the parties.

We consider both passive and active corruption. We also consider both com-
putational and unconditional security; where we may distinguish between uncon-
ditional security with negligible error probability or perfect security. When we do
not state the type of security explicitly, positive results mean that the goal can
be achieved with unconditional security, and negative results hold even w.r.t. to
computational security.

A crucial point is whether the parties are additionally connected by broadcast
channels and/or share a consistent public-key infrastructure (PKI). In the active
case, broadcast/PKI typically allow for more resilient protocols than in the set-
ting with only pairwise channels. Note that a PKI can be set up with respect to
an unconditional pseudo-signature scheme [2,17]. Therefore, in the PKI setting,
the achievability of a computationally secure task typically implies its feasibility
with unconditional security.

1.2 Contributions

General multi-party computation (MPC) [20,12] typically relies on the two fun-
damental building blocks broadcast [16] (BC, aka Byzantine agreement) and (ver-
ifiable) secret-sharing [4,19,7] ((V)SS). It is thus interesting to know to which
extent these tasks can be achieved in a certain model.

We introduce different variants of the asymmetric-trust model and corre-
sponding definitions for broadcast, VSS, and general MPC; and give feasibility
and impossibility results for these cases. Most results demonstrate that protocols
for the asymmetric model are able to tolerate a strictly stronger adversary than
any protocol for the symmetric model. For broadcast and VSS, we come quite
close to characterizing the difference between symmetric and asymmetric trust,
while the situation is much more open for general MPC.

In addition we give a general framework for augmenting security models with
asymmetric trust. For concreteness we describe how to extend the UC frame-
work [5] with asymmetric trust. This seems to be the first simulation-based
security model for reasoning about asymmetric trust. Finally, we explore the is-
sue of when UC secure MPC is possible when the parties have asymmetric trust
in the setup assumptions.
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1.3 Symmetric-Trust Model

In the symmetric-trust model, a single adversary structure A is given which is a
monotone subset of the power set of P , A ⊆ 2P . Monotone means that A ∈ A
and A′ ⊂ A imply that A′ ∈ A.1 The goal is to achieve secure MPC for the case
that an adversary corrupts the parties in exactly one set in A. However, if the
adversary manages to corrupt a set A /∈ A then no security is guaranteed. A
set A ∈ A is called maximal if there is no set A′ ∈ A that strictly contains A:
�A′ ∈ A : A′ ⊃ A.

The tight bounds [13] for multi-party computation in the symmetric model are
summarized in the following table where the second column indicates whether
broadcast channels or a public-key infrastructure (PKI) are available.

STD Broadcast/PKI Unconditional Computational
Passive don’t care Q2 Q1

Active available Q2 Q2

Active not available Q3 Q3

Qk ≡
(
∀A1, . . . , Ak ∈ A :

⋃k
i=1 Ai �= P

)

1.4 Asymmetric-Trust Model

In the asymmetric-trust model, every party pi has its own personalized adversary
structure Ai ⊆ 2P . We denote A = (A1, . . . , An) as the aggregate adversary
structure and define A∗ :=

⋃n
i=1 Ai. We assume that each party pi trusts itself,

i.e., A ∈ Ai ⇒ pi /∈ A. The set of corrupted parties is denoted by F .
We generally assume that all the adversary structures Ai are publicly known,

so that we can use information on them in the code of our protocols. In other
words, parties must make their beliefs public. Indeed, this seems necessary for
our feasibility results and besides we do not believe this to be problematic:
even if we were in the symmetric model and just wanted to agree on one global
adversary structure, it would still seem necessary to discuss beliefs in public.

We now introduce some variants of the asymmetric-trust model. The pre-
sentation here is somewhat informal; we show later in the paper how to fully
formalize it using a variant of the UC framework.

Via Symmetry. One approach is to define security for (A1, . . . , An) via the
usual symmetric notion. It is clear that if party pi believes that the subsets
Ai could be corrupted, then pi would only be willing to participate in an A-
secure protocol π if Ai ⊆ A: if Ai \ A �= ∅, then there exists a subset F ⊆
{p1, . . . , pn} which pi thinks might be corrupted and which π might not tolerate
being corrupted.
1 However, we allow for the loose notation of non-monotone structures A in which

case we actually mean the structure’s monotone closure, e.g., A = {{p1}} refers to
the actual structure A = {{p1}, ∅}.
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The definition going via symmetry insists on still giving a definition of security
by specifying some subsets F against which the protocol should be secure. As
argued above, to allow all parties to participate in π, any such definition would
have to require π simply to tolerate the corruption structure A∗ =

⋃n
i=1 Ai. This

of course gives no new views at asymmetric trust.

Via Allowed Consequences. A more interesting approach to trust is to say
that in reality all subsets F ⊆ {p1, . . . , pn} can imaginably be corrupted. The
party pi having corruption structure Ai simply means that pi thinks it very
unlikely that a subset Ai �∈ Ai will be corrupted. A reasonable security defini-
tion should therefore allow any corruption pattern F ⊆ {p1, . . . , pn} to occur.
The goal is then (similarly to [15]) to specify for each F ⊆ {p1, . . . , pn} what
consequences the corruption of F is allowed to have. These consequences should
ideally be such that all pi would be willing to participate in an (A1, . . . , An)-
secure protocol.

Strict. In the strict notion we take the standard security definitions for broad-
cast, VSS, and MPC, and require that no matter what subset F ⊆ {1, . . . , n}
is corrupted, the protocol must provide full security to all uncorrupted parties.
In terms of threshold security this corresponds to t = n and is unattainable for
most multi-party tasks. Two-party tasks like secure communication and zero-
knowledge however have strictly secure implementations, possibly using setup
assumptions.

Fully Relaxed. At the other extreme from strict security we consider fully
relaxed security. From the set F ⊆ {p1, . . . , pn} of corrupted parties we define
three types of parties: corrupted, näıve, foreseeing. A corrupted party is a party
from F . A näıve party pi is honest (not from F ) but it happens that F /∈ Ai. A
foreseeing party pi is honest and has F ∈ Ai. A näıve party is called näıve as it
believed it very unlikely that F would be corrupted, yet it was.

The fully relaxed model requires full security (in the usual sense) for the set
of foreseeing parties but no security for the näıve parties. That is, a näıve party
is treated like a corrupted party (although it is not controlled by the adversary).

If (A1, . . . , An) = (A, . . . , A) for some common adversary structure A, then
all parties are foreseeing (and thus protected) as long as F ∈ A and all parties
are näıve (and thus unprotected) as long as F �∈ A. In this sense fully relaxed
security corresponds to usual A-security.

Semi-relaxed. Strict security protects even näıve parties and fully relaxed
security gives no security at all to näıve parties. There are different ways to
define a semi-relaxed model in-between these extremes. In general, a semi-relaxed
model requires full security for the set of foreseeing parties but still some partial
security (to be defined) for näıve parties.

The main reason why we consider semi-relaxed models is that, in the fully
relaxed model, composition of subprotocols is difficult. A näıve party may, for
instance, not be able to consistently broadcast the message it wants although it
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follows the protocol. Extending some security constraints to the set of all honest
parties thus allows to compose protocols more easily.

2 Broadcast, VSS, and MPC with Asymmetric Trust

In this section we focus on implementing broadcast, VSS, and MPC in the point-
to-point model with asymmetric trust. A first observation is that in the passive
case, as well as in the active case where broadcast or a PKI is given, the sym-
metric bounds (summarized in the table below2) still hold for any of the defined
asymmetric-trust models:

Theorem 1. In the passive case and in the active case with broadcast (or PKI),
broadcast, VSS, and MPC in any asymmetric model are achievable with respect
to an aggregate adversary structure A = (A1, . . . , An) if and only if they are
achievable with respect to the structure A∗ =

⋃n
i=1 Ai in the symmetric-trust

model:

Passive Active (BC/PKI)
Broadcast Q1 Q1

(V)SS Q1 Q2

MPC Q1 / Q2 Q2

Proof. The cases where there is a protocol for any structure are trivial. For all
remaining cases Q2(A∗) is a tight bound in the symmetric model.

⇐ Trivially, if a task is achievable in the symmetric model for A∗ then it is also
achievable in any asymmetric model for aggregate structure (A∗, . . . , A∗)
and thus for any A = (A1, . . . , An) such that

⋃n
i=1 Ai = A∗.

⇒ Assume any protocol in the asymmetric model for some aggregate structure
A = (A1, . . . , An) such that ¬Q2(A∗). Since each party trusts itself there
must be two distinct parties pi and pj and adversary sets Ai ∈ Ai and
Aj ∈ Aj such that Ai ∪ Aj = P , and pi ∈ Aj and pj ∈ Ai. From this, we
can build a two-party protocol for the same task wherein the parties distrust
each other. This is done by having one party simulate pi (and the parties
in Aj) and the other one pj (and the parties in Ai), and then execute the
asymmetric protocol we assumed exists.

For unconditionally secure MPC in the passive case this implies that two
parties can securely compute the logical OR over their input bits, which is
impossible [3,18].

For VSS (in the active case) this implies that a dealer can secret-share a
value in the two-party setting such that the other party can reconstruct it
during the reconstruction phase without the help of the dealer — but then it
can also do so at any time after the sharing phase, which contradicts security.

2 The only difference between computational and unconditional security occurs for
MPC in the passive case where MPC for any structure is achievable with computa-
tional security but Q2 is necessary for unconditional security.
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For MPC (and secure function evaluation, in particular) in the active case
this implies that two parties can flip a fair coin, which is impossible [8]. �

In view of this theorem, for the rest of this section, we concentrate on the case
where the adversary is active and where BC/PKI are not assumed.

2.1 Broadcast

Definition 1 (Broadcast w/ full relaxation). A protocol where sender ps ∈
P inputs xs ∈ D, and all pi ∈ P output yi ∈ D, achieves broadcast with full
relaxation if:

Validity: If ps and pi are honest and F ∈ As ∩ Ai then yi = xs.
Consistency: If pi and pj are honest and F ∈ Ai ∩ Aj then yi = yj. �

For the use as a subprotocol in MPC, a helpful additional property of broadcast
is to demand validity independently of the sender’s adversary structure. In that
way, a näıve party can still consistently convey its view. We define semi-relaxed
broadcast as broadcast with sender-independent validity in the following way —
where we only state the different validity condition.

Definition 2 (Broadcast w/ sender-indep. validity (semi-relaxed)).

Validity: If ps and pi are honest and F ∈ Ai then yi = xs. �

The following theorem is proven in the full version of the paper.

Theorem 2. Broadcast with sender-independent validity for every sender ps ∈
P is (perfectly) achievable if and only if

B3(A) ≡ ∀Ai, Aj : ∀Ai ∈ Ai, Aj ∈ Aj , Aij ∈ Ai ∩ Aj : Ai ∪ Aj ∪ Aij �= P.

Note that B3(A) is a proper relaxation of Q3(A), which is necessary and suf-
ficient in the symmetric framework. In particular, B3(A) is a condition on all
pairs of parties, whereas Q3(A) is the condition ∀Ai ∈ Ai, ∀Aj ∈ Aj , ∀Ak ∈ Ak :
Ai ∪ Aj ∪ Ak �= P on all triples of parties. Trivially, any semi-relaxed version
of broadcast implies broadcast with full relaxation. Achievability under B3(A)
thus follows for the fully relaxed case. However, the next two results show, first
that B3(A) is not necessary for fully relaxed broadcast, and second, a weaker
but necessary condition.

Proposition 1. There are aggregate structures A such that ¬B3(A) and broad-
cast with full relaxation is achievable for every selection of a sender ps ∈ P.

Proof. Consider aggregate structure A = ({{p2}, {p3}}, {{p1}, {p3}}, ∅) among
P = {p1, p2, p3}. If the sender is p1 or p2 then it can simply multi-send its
input value since, with respect to p3, validity and consistency only have to hold
if nobody is corrupted. If the sender is p3 then p3 can send its input value to
p1 who in turn sends it to p2. Again, validity and consistency with respect to
p3 only have to hold if no party is corrupted; parties p1 and p2 are trivially
consistent. �
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Theorem 3. If there are structures Ai, Aj, and Ak, and sets Aij ∈ Ai ∩ Aj,
Aik ∈ Ai ∩ Ak, Ajk ∈ Aj ∩ Ak, such that Aij ∪ Aik ∪ Ajk = P then broadcast
with full relaxation is not achievable for any selection of a sender ps ∈ P.

Proof. Along the lines of the lower-bound part of the proof of Theorem 2. �

2.2 Verifiable Secret Sharing (VSS)

Definition 3 (VSS w/ full relaxation). A pair of protocols (Sh, Rec) wherein
dealer pd ∈ P inputs secret s in protocol Sh and every pi ∈ P outputs si in
protocol Rec achieves VSS with full relaxation if:

Secrecy: If pd is honest and F ∈ Ad then the adversary has no information
about s as long as protocol Rec has not started yet.

Correctness: If pd and pi are honest and F ∈ Ad∩Ai then pi computes output
si = s in protocol Rec.

Commitment: If pi and pj (case i = j included) are honest and F ∈ Ai ∩ Aj

then, after termination of protocol Sh, there is a value s′ ∈ F such that, in
protocol Rec, pi and pj compute output si = sj = s′. �

It may be tempting to believe that fully relaxed VSS could be obtained by
just running a standard VSS protocol that is secure with respect to the dealer’s
adversary structure Ad. But such a protocol provides no security at all if F �∈ Ad,
and hence cannot in general guarantee that the commitment property is satisfied.

We define semi-relaxed VSS as VSS with dealer-independent correctness in the
following way — where we only state the conditions different from the previous
definition.

Definition 4 (VSS w/ dealer-indep. correctness (semi-relaxed)).

Correctness: If pd and pi are honest and F ∈ Ai then pi computes output
si = s in protocol Rec. �

We derive our VSS protocols from the VSS protocol in [14]. Note that, since we
are not given full-fledged broadcast, additional measures have to be taken.

Theorem 4. Perfectly secure VSS with full relaxation is achievable for every
selection of a dealer pd ∈ P if

V 3(A) ≡ ∀Ai, Aj : ∀Ai ∈ Ai, ∀A′
i ∈ Ai, ∀Aj ∈ Aj : Ai ∪ A′

i ∪ Aj �= P.

Proof. Follows from the protocol in Fig. 1 which is analyzed in Lemma 1. �

Lemma 1. For a given V 3-structure, the protocol in Fig. 1 achieves fully relaxed
VSS with perfect security.

Proof. Secrecy: If F ∈ Ad then the share sk with Pk = P \ F �= ∅ being all
honest does not get opened during the sharing phase by an honest dealer
since it receives no complaints from within Pk with respect to this share (all
broadcasts are valid with respect to pd). Share sk perfectly hides the secret.
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Sharing Sh: For each maximal set Ak ∈ Ad the dealer pd assigns a random share
sk ∈ F with the only restriction that s =

∑
k sk. The dealer sends each sk to all

parties in Pk = P \ Ak. Each party pi ∈ Pk stores sk and s′
k := sk.

For each sk, the parties in Pk pairwisely compare their shares. If any inconsistency
is detected by a party pi ∈ Pk it broadcasts (w/ sender-independent validity) a
complaint to all parties in P .
Now, if the dealer receives any complaint, it opens share sk by broadcast (w/ sender-
independent validity) towards P . Party pi ∈ P always adopts any opening by the
dealer. If a party pi ∈ P sent or received a complaint but does not see the dealer
open sk, it disqualifies the dealer and defines sk := 0. Note that a party in Pk who
disqualifies the dealer still stores the initial share s′

k it is holding — although, from
now on, it uses sk = 0 for its own computation.
A party pi ∈ Ak who, at this point, neither disqualified the dealer nor saw the
dealer open share sk, is called k-curious.
Reconstruction Rec: For each share sk,
– All parties in Pk multi-send s′

k to the parties in Ak.
– All parties who are not k-curious accept sk as the reconstructed share.
– All parties pj who are k-curious wait for the parties pi ∈ Pk to send their

shares. Then they search for a set Aj ∈ Aj such that all parties in Pk \ Aj sent
the same share ŝ′

k. Party pj then accepts sk := ŝ′
k.

Finally, all shares sk are summed up in order to compute the reconstructed secret.

Fig. 1. Protocol VSS with full relaxation

Correctness: We show that when parties pd and pi are honest and F ∈
Ad ∩ Ai then, during reconstruction, pi opens each share sk (share with
respect to Ak ∈ A) correctly as distributed by pd.

First, we observe that pi does not disqualify the dealer pd: disqualification
implies a complaint sent or received by pi — and thus also received by pd.
This forces pd to open sk, implying that pi does not disqualify pd. This
implies that either pd opened sk during the sharing phase or that all honest
parties in Pk agree on the same share s′k = sk. An opening during the sharing
phase is correctly received by pi (validity of broadcast). If pi remains k-
curious then there is the unique value ŝ′k = sk such that there exists some
Ai ∈ Ai with all parties in Pk \ Ai opening the same share ŝ′k — since
Ad ∪ Ai ∪ A′

i �= P .
Commitment: Consider two honest parties pi and pj such that F ∈ Ai ∩ Aj .

All information that is broadcast is thus valid and consistent with respect
to pi and pj . We distinguish three cases.
– pi, pj ∈ Pk. Because of broadcast consistency, both parties either dis-

qualify the dealer (sk = 0), or accept the same initial share, or adopt
the same share being opened by the dealer.

– pi ∈ Pk, pj ∈ Ak. Because of broadcast consistency, pi and pj receive
exactly the same values that are broadcast. Thus either both disqualify,
or both adopt, or pi stays with his initial share whereas pj is k-curious.
In the latter case, there was no complaint and thus no conflict among
any honest parties in Pk — and thus all honest parties in Pk hold the
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same share s′k. As in the correctness argument, pj thus finds the unique
value ŝ′k = sk such that there is some Aj ∈ Aj with all parties in Pk \Aj

all opening the same share ŝ′k — which is identical to pi’s share. Thus,
commitment is also guaranteed in the latter case.

– pi, pj ∈ Ak. The parties both either are k-curious, or adopt the same
opening, or disqualify the dealer. If they are k-curious then no honest
party in Pk broadcast a complaint and thus, again, all honest parties in
Pk hold the same share s′k. Since F ∈ Ai∩Aj both parties will determine
a set Ai ⊆ F (and Aj ⊆ F , respectively) such that the parties in Pk \ Ai

(Pk \ Aj) all open the same share ŝ′k = s′k. �

Proposition 2. There are aggregate structures A such that ¬V 3(A) and VSS
with full relaxation is achievable for every selection of a dealer pd ∈ P.

Proof. Consider aggregate structure A = ({{p2}, {p3}}, {{p1}}, ∅) among P =
{p1, p2, p3}. The parties can run the preprocessing protocol from [10] trying to
establish a PKI with unconditional security. If it succeeds then the players can
simulate broadcast and thus use the VSS protocol for dishonest minorities in,
e.g., [9]. If it fails then it suffices that the dealer always reconstructs his input
value whereas the other parties reconstruct some default value. �

The following theorem is proven in the full version of the paper.

Theorem 5. Unconditionally secure VSS with dealer-independent correctness
is achievable if V 3(A). Additionally, secrecy with respect to any F ∈ A∗ can be
guaranteed.

Theorem 6. If ¬V 3(A) then perfectly secure VSS with dealer-independent cor-
rectness is not achievable for every selection of a dealer pd ∈ P.

Proof. If n = 2 then ¬V 3(A) and self-trust imply ¬Q2(A∗), and impossibility
follows from Theorem 1. We can therefore assume that n ≥ 3.

With ¬V 3(A) there are structures Ai and Aj , and sets Ai, A
′
i ∈ Ai and

Aj ∈ Aj with Ai ∪ A′
i ∪ Aj = P . We show that there is no VSS with respect

to dealer pd = pj . Note that Ad ∪ Ai ∪ A′
i = P and self-trust imply, wlog, that

pd ∈ Ai and pi ∈ Ad.
If such a VSS protocol existed then three parties pδ, pι and pκ could use

it to simulate VSS among themselves with dealer pδ where (Aδ, Aι, Aκ) =
{{pι}, {{pδ}, {pκ}}, ∅}: pδ simulates all parties in Ai, pι simulates all parties
in Ad, and pκ simulates all parties in A′

i. Now the share sι is not allowed to
give any information about secret s but any triplet (sδ, sι, ·) perfectly reveals an
honest dealer’s correct secret and any triplet (·, sι, sκ) perfectly reveals the value
a corrupted dealer was committed to. This is not possible. �

Finally, note that impossibility of broadcast implies impossibility of VSS. Thus
all impossibility results for broadcast naturally extend to VSS.
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2.3 Multi-Party Computation (MPC)

We now argue informally that, also with respect to general MPC, the
asymmetric-trust model allows to tolerate strictly more than in the symmet-
ric case. We only consider fully relaxed security, i.e., privacy and correctness
only hold for foreseeing parties. This notion of MPC security is formalized in
the following section.

Theorem 7. In the fully relaxed model, there exist infinite many aggregate
structures A = (A1, . . . , An) with ¬Q3(A∗) for which unconditionally secure
MPC is achievable.

Proof. We construct an aggregate adversary structure A for n = 3T parties,
where each individual Ai is such that its maximal sets have size T , but where
no set of size T occurs in more than one Ai. Clearly, for each n, there are several
such structures and several of them are not Q3. For such a structure, we can
implement MPC by first running a preprocessing protocol from [11] that aims
at establishing a PKI with unconditional security (as discussed earlier). This
protocol in its most general form has parameters T and t, where 2T + t < n;
we choose t = T − 1. The protocol guarantees success if there are at most t
corruptions. If there are at most T , there will be agreement on the result which
is “success” or “failure.” Our solution is that, if the preprocessing is successful,
we run a standard MPC protocol secure against T corruptions based on the PKI
constructed. If the preprocessing fails, each party computes its output locally
using its own input and default values for the other parties. As for security,
note first that if there are more than T corruptions, all parties are näıve or
corrupted, and security is guaranteed. If there are at most T −1 = t corruptions,
the preprocessing succeeds, and the protocol is secure. If there are T corruptions,
either the preprocessing succeeds, in which case we are fine, as before. Otherwise,
all honest parties agree that it failed. Since the corrupted set occurs in at most
one of the Ai, at most one party is foreseeing, and it may securely compute its
output locally since the fully relaxed requirement only forces foreseeing parties
to be consistent. All other parties are näıve or corrupt. �

Again, the impossibility results for broadcast naturally extend to MPC.

3 A Generic Framework for Asymmetric Trust

Until now we gave ad-hoc definitions of asymmetric security for VSS and broad-
cast. We now develop a general framework for augmenting security models with
asymmetric trust. The asymmetric security notions introduced above can be
derived as special cases. The exposition is meant as a framework for adding
asymmetric trust to protocol security models phrased via ideal functionalities
and corruptions. For concreteness we consider the UC framework.
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3.1 Basic UC Framework

We consider protocols π for a party set P = {p1, . . . , pn}. A corruption pattern
is a pair of subsets Pat = (Act,Pas), Act,Pas ⊆ P , where Act ⊆ Pas; The
interpretation is that the parties pi ∈ Pas are passively corrupted and the parties
pi ∈ Act actively corrupted. We write (Act,Pas) ⊆ (Act

′,Pas
′) to mean

Act ⊆ Act
′ and Pas ⊆ Pas

′. An adversary structure is a set A = {(Act,Pas)}
of corruption patterns, where Pat ∈ A ∧ Pat

′ ⊆ Pat ⇒ Pat
′ ∈ A.

An ideal functionality is an ITM F . It can receive inputs from each pi ∈ P
(pi-inputs) and deliver outputs to each pi ∈ P (pi-outputs). Besides this, it can
receive aux-inputs and deliver aux-outputs, thought of as inputs coming from
the adversary respectively values leaked to the adversary. As an example an
ideal functionality FCom for bit commitment can be phrased as follows: On pi-
input (commit, cid, pi, pj , m ∈ {0, 1}) produce aux-output (commit, cid, pi, pj);
Here cid is a commitment identifier. On a later aux-input (deliver, cid, pi, pj),
output (receipt, cid, pi, pj) to pj. On pi-input (open, cid, pi, pj) after receiving
pi-input (commit, cid, pi, pj, m), produce aux-output (open, cid, pi, pj , m). On a
later aux-input (open, cid, pi, pj), output (open, cid, pi, pj , m) to pj .

A protocol π consists of n parties p1, . . . , pn and some ideal functionalities G,
which might, e.g., model point-to-point lines or commitment. We write G ∈ π
and π[G] to mean that π uses the ideal functionality G. An environment Z for
π is a ITM which gives inputs to the parties and gets outputs from the parties.
We denote an execution of π in Z by Execπ,Z . The environment Z also corrupts
parties.3 For a corruption pattern Pat = (Act,Pas) the environment is allowed
to see the internal state of pi ∈ Pas and control pi ∈ Act: When pi ∈ Act,
then in Execπ,Z it is Z which determines all pi-inputs to G ∈ π and receives all
pi-outputs from G ∈ π. The party pi is not run at all. Besides this, Z receives
all aux-outputs from all G ∈ π and can give aux-inputs to all G ∈ π. As an
example, in Execπ[FCom],Z the environment sees when commitments are made
and determines when to deliver receipts and openings.

The execution Execπ,Z is compared to a simulation SimF ,S,Z . Here the simu-
lator S must simulate an execution of π. E.g., S simulates aux-outputs to Z from
all G ∈ π and receives aux-inputs from Z to G ∈ π. The simulator itself receives
aux-outputs from F and gives aux-inputs to F . When Z gives a pi-input for
pi �∈ Act, it is given to F . The simulator gives all pi-inputs to F for pi ∈ Act.
When F produces a pi-output for pi �∈ Act, it is given to Z, but when F pro-
duces a pi-output for pi ∈ Act, it is not given to Z. When Z gives a pi-input to
F for pi ∈ Pas, it is shown to S, and when F produces a pi-output for pi ∈ Pas,
it is shown to S.

A protocol π is called a UC secure implementation of F if there exists a simu-
lator S such that SimF ,S,Z ≈ Execπ,Z for all Z. It is possible to restrict Z to
corrupting according to some Pat ∈ A, in which case we say that π is A-secure
(in the symmetric sense).

3 We use the formulation of the UC framework without an explicit adversary, see full
version of [5].
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F(Xtn) runs a copy of F . When F produces aux-output z, F(Xtn) produces
aux-output z, and when F(Xtn) receives aux-input z it gives F the aux-
input z. When the (current) corruption pattern is Pat and Xtn(Pat) =
(ActIn, ActOut,PasIn,PasOut), the remaining inputs and outputs are handled
as follows:

– For pi ∈ PasIn: On pi-input x, produce aux-output (in, pi, x), and then give
F the pi-input x.

– For pi ∈ PasOut: On pi-output x from F , produce aux-output (out, pi, x), and
then produce the pi-output x.

– For pi ∈ ActIn: Ignore all pi-inputs, and on an aux-input (in, pi, x), give F
the pi-input x.

– For pi ∈ ActOut: Ignore all pi-outputs from F , and on an aux-input
(out, pi, x), produce the pi-output x.

Fig. 2. F(Xtn)

3.2 Modeling the Security Loss of Näıve Parties

To define asymmetric trust in the UC framework, we need to model the loss of
security we will allow for a party who turns out to have been näıve. To express
what we choose to allow, we introduce the concept of a corruption extension Xtn
which is a function that maps a corruption pattern Pat to a tuple

Xtn(Pat) = (ActIn,ActOut,PasIn,PasOut),

of party subsets, where

PasIn,PasOut ⊆ P \ Pas and ActIn,ActOut ⊆ P \ Act.

These are subsets of parties who are not corrupt but nevertheless have their
security violated in some way.

This is modeled in the simulation SimF ,S,Z by giving S the following extra
power over F : For the parties pi ∈ PasIn, respectively pi ∈ PasOut, we show
S the pi-inputs to F , respectively the pi-outputs from F . For the parties pi ∈
ActIn, when Z gives a pi-input to F , it is not given to F . Instead we allow S to
specify these pi-inputs. Finally, for the parties pi ∈ ActOut, when F produces
a pi-output to Z, it is not given to Z but we allow S to specify these pi-outputs.

Of course, a functionality F may also be used as an auxiliary functionality in
a protocol. In this case the extra power is given to the environment (adversary),
see more on this below.

In order to formally incorporate the above into the UC framework without
making changes that require us to reprove the composition theorem, we define
the following way to extend any ideal functionality: For a functionality F and
any extension Xtn, let F (Xtn) be the ideal functionality in Fig. 2. We say that
π is an Xtn-secure implementation of F if π is a UC secure implementation of
F (Xtn) (tolerating environments corrupting any subset of parties).
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Note that in SimF(Xtn),Z it is S which has access to the aux-inputs and aux-
outputs of F (Xtn), giving it exactly the desired extra power. Note also that
F (Xtn) is allowed in the UC framework since it allows functionalities to know
which parties are corrupted.

Note that in the above definition we do not restrict in any way how many
parties the environment corrupts! We might however use Xtn to specify that
for some corruptions A �∈ A the simulator is allowed to corrupt all parties in
the simulation. This allows to model that for corruptions A �∈ A no security
guarantees are given. The notion of corruption extensions therefore subsumes the
normal notion of restricting the environment to certain corruption patterns A.

As mentioned, extensions also apply to a functionality G used in protocol π.
For this purpose we assume that π associates to each G ∈ π an extension XtnG .
We then let π̂ denote the protocol where each G ∈ π is replaced by G(XtnG).
In Execπ̂,Z it is Z which has access to the aux-inputs and outputs of G(XtnG),
granting it extra power over G in the same way as we did for the simulator before.

Definition 5. Let π be a protocol having an extension XtnG associated to each
G ∈ π, let Xtn be some extension and let F be some ideal functionality. We say
that π is an Xtn-secure implementation of F if π̂ is a UC secure implementation
of F (Xtn) (tolerating all corruption patterns). �

We can prove a composition theorem for this notion of security. For a protocol
π = π[G] and a protocol γ we use π[γ/G] to denote the protocol π where the
use of G has been replaced by γ. Let Xtnπ (Xtnγ) be the extensions π (γ)
associates to its ideal functionalities. For H ∈ π[γ/G] we associate the extension
Xtn(H) = Xtnπ(H) when H ∈ π and Xtn(H) = Xtnγ(H) when H ∈ γ.

Theorem 8. Assume that π is an Xtn-secure implementation of F and G ∈ π
with Xtnπ(G) = XtnG. Assume furthermore that γ is an XtnG-secure implemen-
tation of G. Then π[γ/G] is an Xtn-secure implementation of F .

Proof. When Xtnπ(G) = XtnG for G ∈ π, then π being an Xtn-secure imple-
mentation of F implies that π̂[G(XtnG)] is a UC secure implementation of F (Xtn).
That γ is an XtnG-secure implementation of G implies that γ̂ is a UC secure
implementation of G(XtnG). So, by the UC composition theorem, π̂[γ̂/G(XtnG)] is
a UC secure implementation of F (Xtn). Since π̂[γ/G] = π̂[γ̂/G(XtnG)] this implies
that π̂[γ/G] is a UC secure implementation of F (Xtn) which by definition implies
that π[γ/G] is an Xtn-secure implementation of F . �

3.3 Asymmetric Trust

We now use Definition 5 to express asymmetric trust, formalizing the concepts
we introduced in Section 1.4. To each pi we associate an adversary structure
Ai expressing that pi trusts that only corruption patterns Pat ∈ Ai will ac-
tually occur. We call A = (A1, . . . , An) an aggregate adversary structure. A
symmetric adversary structure A corresponds to the aggregate adversary struc-
ture An = (A, . . . , A). For an actually occurring corruption pattern Pat =
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(Act,Pas) we let ForeseeingA(Pat) = {pi ∈ P \ Pas|Pat ∈ Ai} and we let
NäıveA(Pat) = {pi ∈ P \ Pas|Pat �∈ Ai}. We call pi ∈ ForeseeingA(Pat)
foreseeing and we call pi ∈ NäıveA(Pat) näıve. We model asymmetric trust
by treating the foreseeing honest parties as we normally treat the honest par-
ties in UC security and treating the corrupted parties as we do normally. For
the näıve parties we allow the simulator (environment) extra powers, using the
concepts we defined earlier. Formally, we say that a corruption extension Xtn
is an extension for A = (A1, . . . , An) if it holds for all Pat that Xtn(Pat) =
(ActIn,ActOut,PasIn,PasOut) satisfies PasIn,PasOut,ActIn,ActOut

⊆ NäıveA(Pat). This gives a lot of granularity in how to treat the honest-but-
näıve parties: PasIn specifies the näıve parties for which the inputs are allowed
to leak to the adversary, PasOut specifies the näıve parties for which the out-
puts are allowed to leak to the adversary, ActIn specifies the näıve parties for
which the inputs might be controlled by the adversary, and ActOut specifies
the näıve parties for which the outputs might by controlled be the adversary.

To get some more structure, we name some special types of extensions, called
relaxed, semi-relaxed, strong, strict, which are defined as follows:

– Xtn is of type relaxed if it is the extension of A that specifies ActIn =
ActOut = NäıveA(Pat) for all Pat, i.e., there is no security for näıve
parties.

– Xtn is of type semi-relaxed if it is the extension of A that specifies ActIn =
∅,ActOut = Näıve \ Act,PasIn = Näıve \ Pas,PasOut = Näıve \
Pas. I.e., the honest-but-näıve parties are guaranteed that their inputs are
contributed correctly to the computation. They are however not guaranteed
to receive correct outputs nor any privacy of their inputs or their outputs.

– Xtn is of type strong if it is the extension of A that specifies ActIn =
ActOut = ∅, PasIn = PasOut = NäıveA(Pat), i.e., näıve parties have
no privacy but may contribute their inputs and get correct results.

– Xtn is of type strict if it is the extension of A that specifies XtnG(Pat) =
(∅, ∅, ∅, ∅), i.e., there is full security for näıve parties.

If atk is one of relaxed, semi-relaxed, strong, strict, we call π an atk

A-secure implementation of F if π is an Xtn-secure implementation of F toler-
ating A, where Xtn is the extension of A of type atk. Also, if π makes use of
functionality G, we say that G is an atk functionality if the extension π assigns
to G is of type atk.

The following composition theorem is an immediate corollary to Theorem 8.

Corollary 1. Let atk,atk
′ ∈ {relaxed, semi-relaxed, strong, strict}. If π

is an atk A-secure implementation of F , where G ∈ π is an atk
′ functionality,

and γ is an atk
′ A-secure implementation of G, then π[γ/G] is an atk A-secure

implementation of F .

Note that the notion of semi-relaxed security as defined here is equivalent to the
notions sender-independent validity and dealer-independent correctness in Sec-
tion 2. Indeed, defining broadcast and VSS by requiring a semi-relaxed secure
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implementation of a corresponding ideal functionality would define exactly these
notions.

To see the connection between symmetric security and our notions of asym-
metric security, let A be the aggregate adversary structure modeling that all
parties trust that at most t parties will be corrupted, and let π be a protocol
using only strict functionalities. In this case the simulator is given no extra cor-
ruption when at most t parties are corrupted, as all parties are foreseeing. So, as
long as at most t parties are corrupted, relaxed, semi-relaxed, strong and strict
A-security are equivalent to the usual UC t-security. If however more than t
parties are corrupted, then all honest parties are näıve, meaning e.g. that strong
security allows the simulator to see the inputs and outputs of all parties, and
relaxed security allows the simulator to specify the inputs and outputs of all
parties. So, when more than t parties are corrupted, strong A-security gives no
guarantees on the privacy of any party but still guarantees correctness for the
honest-but-näıve parties, and relaxed A-security gives no guarantees at all. Note
that giving no guarantees at all when more than t parties are corrupted is equiv-
alent to normal t-security, where simulation is only required for environments
corrupting at most t parties. Therefore relaxed security is a generalization of
normal (symmetric) UC security, and strong security is a strengthening.

4 Multi-Party Computation in the UC Framework

In this section we first formalize the notion of secure multi-party computation
in the UC framework where the parties have asymmetric trust in each other.
In Section 2.3 we already informally looked at this case in the secure-channels
model. In Section 4.2 we look at a setting where a number of certificate au-
thorities (or common reference strings) are present and where the parties have
asymmetric trust in these certificate authorities (or common reference strings).

4.1 Secure Function Evaluation

For simplicity we focus on secure function evaluation (SFE). SFE of f(x1, . . . , xn)
can be expressed as securely evaluating the ideal functionality Ff

SFE
for secure

function evaluation of f . Essentially Ff
SFE

takes an input xi from each pi, com-
putes (y1, . . . , yn) = f(x1, . . . , xn) and outputs yi securely to pi. We call π an
A SFE w/ full relaxation of f if π is a relaxed A-secure implementation of
Ff

SFE
. We call π an A SFE w/ contributor-independent correctness of f if π is a

semi-relaxed A-secure implementation of Ff
SFE

. For concreteness we flesh out
these notions below.

Definition 6 (SFE w/ full relaxation). The simulator has the following extra
powers:

Input Secrecy: If pi is honest and F �∈ Ai or pi is corrupt, then the simulator
sees xi. If party pi is honest and F ∈ Ai then the simulator is not shown xi.
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Input Correctness: If pi is honest and F �∈ Ai or pi is corrupt, then the
simulator can replace xi by some x′

i. After this, the outputs (y1, . . . , yn) =
f(x′

1, . . . , x
′
n) are computed, where x′

i = xi for all honest pi with F ∈ Ai.
Output Secrecy: If pi is honest and F �∈ Ai or pi is corrupt, then the sim-

ulator sees yi. If party pi is honest and F ∈ Ai then the simulator is not
shown yi.

Output Correctness: If pi is honest and F �∈ Ai or pi is corrupt, then the
simulator can replace yi by some y′

i. After this, Ff
SFE

outputs y′
i on behalf of

pi, where y′
i = yi for all honest pi with F ∈ Ai.

Robustness: Robustness is best expressed as a condition on the protocol (as
opposed to the simulation), by requiring that all honest parties compute an
output, i.e., no honest party aborts the protocol. Alternatively, one can require
this only for the foreseeing parties, getting weak robustness. �

Definition 7 (SFE w/ contributor-independent correctness). The sim-
ulator has the following extra powers (listing only differences from Definition 6):

Input Correctness: If pi is corrupt, then the simulator can replace xi by
some x′

i. After this, the outputs (y1, . . . , yn) = f(x′
1, . . . , x

′
n) are computed,

where x′
i = xi for all honest pi. �

These notions can be generalized to MPC w/ full relaxation and MPC w/
contributor-independent correctness by requiring a relaxed (semi-relaxed) A-
secure implementation of a more general ideal functionality F .

4.2 With Asymmetrically Trusted Setup

We now consider a setting where some setup is given. We focus on UC security,
where setup is needed when there is no trust among the parties. We consider
two setup assumptions which have been studied previously: common reference
string (CRS) and key registration (KR), and we generalize the study to consider
asymmetric trust. Here, we only cover the KR case whereas the CRS case is
treated in the full version of the paper, using similar techniques.

Key Registration. In [1] Barak et al. gave a feasibility result for UC secure
MPC in a network which had a key registration service FKR which allows a user
Ui to register a public key pki while checking that Ui knows a corresponding
secret key. We extend this analysis of the power of key registration by analyzing
a setting where there are several key registration services (KRS’s) in which the
users have different partial trust. For completeness we also assume that the
users have different, partial trust in each other. We characterize the aggregate
adversary structures which allow to securely compute any ideal functionality in
this setting. We consider the same type of security as in [1,6]: polynomial time
security and the protocol is only required to deliver outputs if all parties are
honest. This is modeled by allowing the simulator to decide when and if honest
outputs from F to Z are delivered in SimF ,S,Z .
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We model the KRS’s as parties KR = {KRk}. We then add n users U =
{U1, . . . , Un}, making the party set P = KR ∪ U . The users are the parties
which want to compute some ideal functionality FU among them.4 We also
add a strict functionality for authenticated, asynchronous point-to-point com-
munication among the users and between the users and the KRS’s, and we
add a strict functionality for secure, asynchronous point-to-point communica-
tion among the users.5 Finally we need that each user can give a proof of pos-
session (PoP) of the secret key when it registers a public key. For this purpose
we postulate an ideal functionality POP. Let gen be the generator pk = gen(r)
used to generate public keys (we can wlog assume that the randomness r con-
stitutes the private key). We assume that POP behaves as follows: On input
(Ui, KRk, ri) from Ui, output (Ui, KRk, pki = gen(ri)) to KRk. This models
that Ui gives pki to KRk and then somehow proves knowledge of ri such that
pki = gen(ri).

By Ui registering a public key at KRk we then mean that Ui samples a
random public key pki ← gen(ri) and inputs (Ui, KRk, ri) securely to POP . The
honest behavior of each KRk is as follows: The first time it sees POP output
(Ui, KRk, pki) for Ui it sends (Ui, KRk, pki) to all users Uj using authenticated
point-to-point communication.

Since the behavior of KRk is fixed and the behavior of POP is given by gen,
we specify a protocol by π = (gen, U1, . . . , Un). For convenience we assume that
each Ui starts the protocol by registering some pki,k with each KRk. Then Ui

waits for each KRk to send some pkj,k for each Uj ∈ U and stores all these keys.
After this registration phase the users then proceed to run the actual protocol.
We can therefore in the specification of pi assume that it knows the keys pkk,j .
We call such a π = (gen, U1, . . . , Un) a KR-protocol.

As for trust, we consider only active corruptions, so that Pat = (Act,Act)
for all patterns. We therefore write Act ∈ A and consider A ∈ 2P . We associate
no trust to the KRS’s. That is, we assume that AKRk

= 2P for each KRS.
To each Ui we associate a corruption structure Ai ⊆ 2P . We call (A1, . . . , An)
complete for the KR setting if it allows to securely compute any efficient ideal
functionality FU among the users using a KR protocol.

For Acti ∈ Ai we let Act
U
i = Acti ∩ U and Act

KR
i = Acti ∩ KR. We

say that two users Ui �= Uj are KR connected if it holds for all Acti ∈ Ai and
Actj ∈ Aj that either Act

KR
i �= KR or Act

KR
j �= KR or Act

U
i ∪ Act

U
j �= U .

That is, together, Ui and Uj cannot imagine a scenario where both of them think
that all KRS’s might be corrupted and where together they think all users might
be corrupted.

4 We say that FP′ is among P ′ if it ignores pi-inputs for P \P ′ and gives no pi-outputs
for P \ P ′.

5 Since secure, asynchronous point-to-point communication has a normal UC secure
implementation given authenticated channels and several standard complexity as-
sumptions, this strict ideal functionality can be replaced with any such implemen-
tation to get an equivalent model with only authenticated communication, using
Corollary 1.
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Theorem 9. An aggregate adversary structure A = (A1, . . . , An) is complete
for the KR setting iff all pairs of distinct users are KR connected in A.

The proof of Theorem 9 is given in the full version of the paper. A special case
of Theorem 9 is when the users have no trust in each other (AU

i = U for all Ui)
in which case the condition can be phrased as: There exists at most one user
who thinks that all KRS’s can be corrupted.

5 Conclusion

We proposed a notion of asymmetric trust in protocol security and gave a general
definition of asymmetric secure MPC and gave specialized definitions of asym-
metric secure broadcast, VSS, and SFE. We explored the feasibility of broadcast,
VSS, and MPC in various models with asymmetric trust. A tight characteriza-
tion of the feasibility of broadcast has been found for asymmetric trust, and
nontrivial upper and lower bounds for VSS, and we have shown how to tolerate
strictly stronger adversaries in MPC than with symmetric trust. It is an open
problem to completely characterize the aggregate adversary structures that allow
for MPC in the case with active adversaries and no set-up.
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Abstract. Secure multi-party computation (MPC) allows a set of n
players to securely compute an agreed function of their inputs, even
when up to t players are under the control of an adversary. Known asyn-
chronous MPC protocols require communication of at least Ω(n3) (with
cryptographic security), respectively Ω(n4) (with information-theoretic
security, but with error probability and non-optimal resilience) field ele-
ments per multiplication.

We present an asynchronous MPC protocol communicating O(n3)
field elements per multiplication. Our protocol provides perfect security
against an active, adaptive adversary corrupting t < n/4 players, which
is optimal. This communication complexity is to be compared with the
most efficient previously known protocol for the same model, which re-
quires Ω(n5) field elements of communication (i.e., Ω(n3) broadcasts).
Our protocol is as efficient as the most efficient perfectly secure protocol
for the synchronous model and the most efficient asynchronous protocol
with cryptographic security.

Furthermore, we enhance our MPC protocol for a hybrid model.
In the fully asynchronous model, up to t honest players might not be
able to provide their input in the computation. In the hybrid model,
all players are able to provide their input, given that the very first
round of communication is synchronous. We provide an MPC protocol
with communicating O(n3) field elements per multiplication, where all
players can provide their input if the first communication round turns
out to be synchronous, and all but at most t players can provide their
input if the communication is fully asynchronous. The protocol does
not need to know whether or not the first communication round is
synchronous, thus combining the advantages of the synchronous world
and the asynchronous world. The proposed MPC protocol is the first
protocol with this property.

Keywords: Multi-party computation, asynchronous, hybrid model, ef-
ficiency, perfect security.

� This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 376–392, 2007.
c© International Association for Cryptology Research 2007



Simple and Efficient Perfectly-Secure Asynchronous MPC 377

1 Introduction

1.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) enables a set of n players to securely
evaluate an agreed function of their inputs even when t of the players are cor-
rupted by a central adversary. A passive adversary can read the internal state
of the corrupted players, trying to obtain information about the honest players’
inputs. An active adversary can additionally make the corrupted players deviate
from the protocol, trying to falsify the outcome of the computation.

The MPC problem dates back to Yao [Yao82]. The first generic solutions pre-
sented in [GMW87, CDG87, GHY87] (based on cryptographic intractability as-
sumptions) and later [BGW88, CCD88, RB89, Bea91] (with information-theoretic
security) assume the existence of a synchronous network. Synchronous networks
assume that there is a global clock, and the delay of any message in the network
is bounded by a constant. Such networks do not well model real-life networks
like the internet.

1.2 Asynchronous Networks

In asynchronous networks, messages are delayed arbitrarily. As worst-case
assumption, the adversary is given the power to schedule the delivery of mes-
sages. Asynchronous communication models real-world networks (like the In-
ternet) much better than synchronous communication. However, protocols for
asynchronous networks are much more involved than their synchronous counter-
parts. This comes from the fact that when a player does not receive an expected
message, he cannot decide whether the sender is corrupted (and did not send
the message at all) or the message is just delayed in the network.

This implies also that in fully asynchronous settings it is impossible to consider
the inputs of all uncorrupted players. The inputs of up to t (potentially honest)
players have to be ignored, because waiting for them could turn out to be endless.

For a good introduction to asynchronous protocols, see [Can95]. Due to its
complexity, asynchronous MPC has attracted much less research than syn-
chronous MPC. The most important results on asynchronous MPC are [BCG93,
BKR94, SR00, PSR02, HNP05].

In the asynchronous setting perfect information-theoretic security against an
active adversary is possible if and only if t < n/4 (whereas cryptographic and
unconditional security are possible if and only if t < n/3).

1.3 Communication Complexity of MPC Protocols

The first proposed MPC protocols secure against active adversaries were very in-
efficient and so of theoretical relevance mainly. In the recent years lots of research
concentrated on designing protocols with lower communication complexity (mea-
sured in bits sent by honest players). The currently most efficient MPC protocols
for the synchronous model are [HMP00] (perfect security with t < n/3, O(n3)
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communication per multiplication), [DN07] (information-theoretic security with
t < n/3, O(n) communication per multiplication), [BH06] (information-theoretic
security with t < n/2, communicating O(n2) per multiplication), [HN06]
(cryptographic security with t < n/2, communicating O(n) per multiplication).

However known MPC protocols for asynchronous networks still feature (im-
practically) high communication complexities. The most efficient asynchronous
protocol is the one of [HNP05] communicating O(n3) per multiplication
while providing cryptographic security only. The most efficient information-
theoretically secure protocols were proposed in [SR00, PSR02]. Both protocols
are secure against an unbounded adversary corrupting up to t < n/4 players.
The first one makes extensive use of the (communication-intensive) BA primitive
– O(n2) invocations per multiplication, which amounts to Ω(n5)1 bits of com-
munication per multiplication. The second one requires only O(n2) invocations
to BA in total, however, still communicates O(n4) bits per multiplication, and
provides unconditional security only (for which t < n/4 is not optimal).

1.4 Contributions

Known MPC protocols for the asynchronous setting suffer from two main dis-
advantages in contrast to their more restrictive synchronous counterparts, both
significantly reducing their practicability: Asynchronous protocol tend to have
substantially higher communication complexity, and they do not allow to take
the inputs of all honest players. In this work, we propose a solution to both these
problems.

First, we present an perfectly secure asynchronous MPC protocol that com-
municates only O(n3) field elements per multiplication. This very same com-
munication complexity is also required by the most efficient known perfectly
secure protocol for the synchronous model [HMP00], as well as by the most ef-
ficient asynchronous protocol only secure against computationally bounded ad-
versaries [HNP05]. The protocol provides perfect security against an unbounded
adaptive active adversary corrupting up to t < n/4 players, which is optimal. In
contrast to the previous asynchronous protocols, the new protocol is very simple.

Second, we extended the protocol for a hybrid communication model (with the
same security properties and the same communication complexity), allowing all
players to give input if the very first round of the communication is synchronous,
and takes at least n − t inputs in a fully asynchronous setting. It is well-known
that fully asynchronous protocols cannot take the inputs of all players; however,
we show that a single round of synchronous communication is sufficient to take
all inputs. We stress that it is important that this round is the first round,
because assuming the k-th round to be synchronous implies that all rounds up
to k must also be synchronous. Furthermore, the protocol achieves the best of
both worlds, i.e., takes the inputs of all players when indeed the first round
is synchronous, and still takes the inputs of at least n − t players even if the
synchronity assumptions cannot be fulfilled. More precisely, the protocol takes

1 The most efficient known asynchronous BA protocol requires Ω(n3).
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the inputs of at least n − t players, and additionally, always takes the inputs of
players whose first-round messages are delivered synchronously.

2 Preliminaries

2.1 Model

We consider a set P of n players, P = {P1, . . . , Pn}, which are connected with a
complete network of secure (private and authentic) asynchronous channels. The
function to be computed is specified as an arithmetic circuit over a finite field F =
Zp (with p > n), with input, addition, multiplication, random, and output gates.
We denote the number of gates of each type by cI , cA, cM , cR, and cO, respectively.

The faultiness of players is modeled in terms of a central adversary corrupting
players. The adversary can corrupt up to t players for any fixed t with t < n/4,
and make them deviate from the protocol in any desired manner. The adversary
is computationally unbounded, active, adaptive, and rushing. Furthermore, in
order to model the asynchronism of the network, the adversary can schedule
the delivery of the messages in the network, i.e., she can delay any message
arbitrarily. In particular, the order of the messages does not have to be preserved.
However, every sent message will eventually be delivered.

The security of our protocols is perfect, i.e., information-theoretic without
any error probability.

2.2 Design of Asynchronous MPC Protocols

Asynchronous protocols are executed in steps. Each step begins by the sched-
uler choosing one message (out of the queue) to be delivered to its designated
recipient. The recipient is activated by receiving the message, he performs some
(internal) computation and possibly sends messages on his outgoing channel
(and waits for the next message).

The action to be taken by the recipient is defined by the relevant sub-protocol2

consisting of a number of instructions what is to be done upon receiving a spec-
ified message. If the received message refers to a sub-protocol which is not yet
“in execution”, then the player keeps the message until the relevant sub-protocol
is invoked.

2.3 Partial Termination

Many “asymmetric” tasks with a designated dealer (broadcast, secret-sharing)
cannot be implemented with guaranteed termination in an asynchronous world;
the players cannot distinguish whether the dealer is corrupted and does not start
the protocol, or the dealer is correct but his messages are delayed in the network.
Hence, these protocol are required to terminate only if the dealer is correct.
However, we require that if such a sub-protocol terminated for one (correct)
player, then it must eventually terminate for all correct players.
2 We assume that for each message it is clear to which sub-protocol it belongs.
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The issue with partial termination is typically attacked by invoking n in-
stances of the protocol with partial termination in parallel, every player acting
as dealer in one instance. Then, every player can wait till n − t instances have
terminated (from his point of view). In order to reach agreement on the set of
terminated instances, a specialized sub-protocol is invoked, called agreement on
a core-set. A player can only be contained in the core-set if his protocol instance
has terminated for at least one honest player, and hence will eventually terminate
for all honest players. The core-set contains at least n − t players.

2.4 Input Provision

Providing input is an inherently asymmetric task, and it is not possible to dis-
tinguish between a corrupted input player who does not send any message and a
correct input player whose messages are delayed in the network. For this reason,
in a fully asynchronous world it is not possible to take the inputs of all players;
up to t (possible correct) players cannot be waited for, as this waiting could turn
out to be endless. Hence, the protocol waits only till n − t of the players have
achieved to provide input, and then goes on with the computation.

2.5 Byzantine Agreement

We need three flavors of Byzantine agreement, namely broadcast, consensus, and
core-set agreement.

The broadcast (BC) primitive allows a sender to distribute a message among
the players such that all players get the same message (even when the sender
is corrupted), and the message they get is the sender’s message if he is honest.
As explained above, broadcast cannot be realized with complete termination;
instead, termination of all (correct) players is required only when the sender is
correct; however, as soon as at least one correct player terminates, all players
must eventually terminate. Such a broadcast primitive can be realized rather
easily [Bra84]. The required communication for broadcasting an �-bit message is
O(n2�), where the hidden constant is small.

Consensus enables a set of players to agree on a value. If all honest players
start the consensus protocol with the same input value v then all honest players
will eventually terminate the protocol with the same value v as output. If they
start with different input values, then they will eventually reach agreement on
some value. All known i.t.-secure asynchronous consensus protocols start by
having every player broadcast his input value, which results to communication
complexity Ω(n3�), where � denotes the length of the inputs.

Agreement on a core set (ACS) is a primitive presented in [BCG93]. We use
it to determine a set of at least n − t players that correctly shared their values.
More concretely, every player starts the ACS protocol with a accumulative set of
players who from his point of view correctly shared one or more values (the share
sub-protocol in which they acted as dealers terminated properly). The output
of the protocol is a set of at least n − t players, who really correctly shared
their values, which means that every honest player will eventually get a share of
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every sharing dealt by a dealer from the core set. The communication cost of a
ACS protocol are essentially the costs of n invocations to consensus (where the
messages are index of players), i.e. Ω(n4 log n) bits.

2.6 Super-Invertible Matrices

We consider r-by-c matrices M over a field F . When r = c, M is called invertible
if all column-vectors are linearly independent. When r ≤ c, M is called super-
invertible if every subset of r column-vectors are linearly independent.

Formally, for an r-by-c matrix M and an index set C ⊆ {1, . . . , c}, we denote
by MC the matrix consisting of the columns i ∈ C of M . Then, M is super-
invertible if for all C with |C| = r, MC is invertible.

Super-invertible matrices over F can be constructed as follows: Fix c disjoint
elements α1, . . . , αc ∈ F , and for i = 1, . . . , r, let fi(·) be a polynomial of degree
at most r − 1 with fi(αi) = 1 and fi(αj) = 0 for j ∈ {1, . . . , r} \ {i}. Then,
M = {mi,j = fi(αj)}. M is super-invertible because M{1,...,r} is invertible (it is
the identity matrix), and any MC for C ⊆ {1, . . . , c}, |C| = r can be mapped
onto M{1,...,r} using an invertible matrix given by Lagrange interpolation.

Super-invertible matrices are of great help to extract random elements from a
set of some random and some non-random elements: Consider a vector (x1, . . . , xc)
of elements, where for some C ⊆ {1, . . . , c} with |C| = r, the elements {xi}i∈C

are chosen uniformly at random (by honest players), and the elements {xj}j /∈C

are chosen maliciously (by corrupted players). Then, the vector (y1, . . . , yr) =
M(x1, . . . , xc) is uniformly random and unknown to the adversary.3

This means that given a super-invertible matrix and a set of c elements out
of which at least r elements are chosen uniformly at random (and unknown to
the adversary), we can generate r uniformly random elements (unknown to the
adversary).

3 Protocol Overview

The new protocol proceeds in three phases: the preparation phase, the input
phase and the computation phase. Every honest player will eventually complete
every phase.

In the preparation phase many sharings of random values will be generated in
parallel. For every multiplication gate, 3t + 1 random sharing will be generated.
For every random gate, one random sharing will be generated.

In the input phase the players share their inputs and agree on a core set of
correctly shared inputs (every honest player will eventually get a share of every
input from the core set).

In the computation phase, the actual circuit will be computed gate by gate,
based on the core-set inputs. Due to the linearity of the used secret-sharing, the

3 This follows from the observation that the c− r maliciously chosen elements {xj}j /∈C

define a bijection from the r random elements {xi}i∈C onto (y1, . . . , yr).
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linear gates can be computed locally – without communication. Each multipli-
cation gate will be evaluated with the help of 3t + 1 of the prepared sharings.

4 Secret Sharing

4.1 Definitions and Notations

As secret-sharing scheme, we use the standard Shamir scheme [Sha79]: We say
that a value s is d-shared if every correct player Pi is holding a share si of s,
such that there exists a degree-d polynomial p(x) with p(0) = s and p(i) = si

for all i = 1, . . . , n. We call the vector (s1, . . . , sn) of shares a d-sharing of s. A
(possibly incomplete) set of shares is called d-consistent if these shares lie on a
degree d polynomial.

Most of our Sharings will be t-sharings (where t denotes the maximum number
of corrupted players). We denote a t-sharing of s by [s]. In the multiplication
sub-protocol, we will also use 2t-sharings, which will be denoted by [[s]].

4.2 Share1 and Recons — The Vanilla Protocols

In the following, we recap the Share1 and Recons protocol of [BCG93].4 Share1

allows a dealer PD to t-share a secret value s ∈ F . Recons allows the players
to reconstruct a d-sharing (for d ≤ 2t) towards a receiver PR. We stress that
the protocol Share1 does not necessarily terminate when the dealer PD is cor-
rupted. However, when it terminates for some correct player, then it eventually
terminates for all players. The protocol Recons always terminates.

The intuition behind the protocol Share1 is the following: In order to share
a secret s, the dealer chooses a random two-dimensional polynomial f(·, ·) with
f(0, 0) = s, and sends to every player Pi the polynomials gi(·) = f(i, ·) and
hi(·) = f(·, i). Then the players pairwisely check the consistency of the received
polynomials, and publicly confirm successful checks. Once n − t players are mu-
tually consistent, the other players use the checking points received from these
players to determine their respective polynomial gi(·), and all players compute
the share si = gi(0).

Protocol Share1 (Dealer PD, secret s ∈ F)
• Distribution — Code for Dealer PD: Choose a random two-

dimensional degree-t polynomial f(·, ·) with f(0, 0) = s and send to each
player Pi the two degree-t polynomials gi(·) = f(i, ·) and hi(·) = f(·, i).

• Consistency Checks — Code for player Pi:

1. Wait for gi(·) and hi(·) from PD.
2. To each player Pj send the share-share sji = hi(j).
3. Upon receiving sij from Pj check whether sij = gi(j). If so broadcast

(ok, i, j).
4 We denote their sharing protocol by Share1, as it allows to share only one single

value.
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• Output-computing — Code for Player Pi:

1. Wait until there is a (n − t)-clique in the graph implicitly defined by the
broadcasted confirmations.5

2. Upon receiving at least 2t + 1 t-consistent share-shares sij (for j ∈
{1, . . . , n}) from the players in the clique, find the interpolation poly-
nomial g̃i(·) and (re)compute your share si = g̃i(0).6

3. Output the share si.

Lemma 1. For every coalition of up to t bad players and every scheduler, the
protocol Share1 achieves the following properties:
– Termination: If the dealer is correct, then every correct player will eventually

complete Share1, and if some correct player has completed Share1, then all
the correct players will eventually complete Share1.

– Correctness: Once a correct player has completed Share1, then there exists a
unique value r which is t-shared among the players, where r = s if the dealer
is correct.

– Privacy: If the dealer is correct, then the adversary obtains no information
about the shared secret.

The communication complexity of Share1 is O(n2κ + n2BC(κ)).

The intuition behind the protocol Recons is the following: Every player Pi sends
his share si to PR. The receiver waits until receiving at least d+t+1 d-consistent
shares and outputs the value of their interpolation polynomial at 0. Note that
corrupted players can send false shares to PR, but for the latest when PR has
received the shares of all honest players, he has at least n − t ≥ d + t + 1
t-consistent shares (for t < n/4 and d ≤ 2t).

Protocol Recons (Receiver PR, degree d, d-sharing of s)
• Code for player Pi: Send si to PR.
• Code for receiver PR: Upon receiving at least d + t + 1 d-consistent

shares si (and up to t inconsistent shares), interpolate the polynomial p(·)
and output s = p(0).

Lemma 2. For any d-shared value s, where d + 2t < n, for every coalition of
up to t bad players, and for every scheduler, the protocol Recons achieves the
following properties:
– Termination: Every correct player will eventually complete Recons.
– Correctness: PR will output s.
– Privacy: When PR is honest, then the adversary obtains no information

about the shared secret.

The communication complexity of the protocol Recons is O(nκ).

Note that for t < n/4, Recons can be used to reconstruct t-sharings as well as
2t-sharings. However, the protocol Share1 can only generate t-sharings.
5 The graph has n nodes representing the n players and there is an edge between i

and j if and only if both (ok, i, j) and (ok, j, i) were broadcasted.
6 If the dealer is correct or if Pi is a member of the clique gi(·) = g̃i(·).
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Proofs of security as well as details on solving the clique-problem in Share1

(respectively, reducing it to a computationally simpler problem) and on find-
ing (and interpolating) d + t + 1 d-consistent shares in Recons, can be found
in [BCG93].

4.3 Share∗: Sharing Many Values at Once

The following protocol Share∗ extends the protocol Share1 in two ways: First, it
allows the dealer to share a vector

(

s(1), . . . , s(�)
)

of � secrets at once, substan-
tially more efficient than � independent invocations of Share1. Secondly, Share∗

allows to share “empty” secrets, formally s(k) =⊥, resulting in all shares of s(k)

being ⊥ as well. This will be used when a dealer should share an unknown value.

Protocol Share∗ (Dealer PD, secrets (s(1), . . . , s(�)) ∈ (F ∪ {⊥})�)
• Distribution — Code for Dealer PD: For every s(k) �=⊥, choose a

random two-dimensional degree-t polynomial f (k)(·, ·) with f (k)(0, 0) = s(k).
Send to every Pi the polynomials

(

g
(1)
i , h

(1)
i , . . . , g

(�)
i , h

(�)
i

)

, where g
(k)
i (·) =

f (k)(i, ·) and h
(k)
i (·) = f (k)(·, i) if s(k) ∈ F , and g

(k)
i = h

(k)
i =⊥ if s(k) =⊥.

• Consistency Checks — Code for player Pi:

1. Wait for
(

g
(1)
i , h

(1)
i , . . . , g

(�)
i , h

(�)
i

)

from PD.

2. To each Pj send
(

s
(1)
ji , . . . , s

(�)
ji

)

, where s
(k)
ji = h

(k)
i (j), resp. s

(k)
ji =⊥ if

h
(k)
i =⊥.

3. Upon receiving
(

s
(1)
ij , . . . , s

(�)
ij

)

from Pj , broadcast (ok, i, j) if for all k =

1, . . . , � it holds that s
(k)
ij = g

(k)
i (j), resp. s

(k)
ij =⊥= g

(k)
i .

• Output-computing — Code for Player Pi:

1. Wait until there is a (n−t)-clique in the graph defined by the broadcasted
confirmations.

2. For k = 1, . . . , �, upon receiving at least 2t + 1 t-consistent share-shares
s
(k)
ij (for j ∈ {1, . . . , n}) from the players in the clique, find the interpo-

lation polynomial g̃
(k)
i (·) and (re)compute the share s

(k)
i = g̃

(k)
i (0). Upon

receiving 2t + 1 values s
(k)
ij =⊥ (for j ∈ {1, . . . , n}), set s

(k)
i =⊥.

3. Output the shares
(

s
(1)
i , . . . , s

(�)
i

)

.

Lemma 3. The protocol Share∗ allows PD to share � secrets from F ∪ {⊥} at
once, with the same security properties as required in Lemma 1. The communi-
cation complexity of Share∗ is O(�n2κ + n2BC(κ)).

5 Preparation Phase

The goal of the preparation phase is to generate t-sharings of � uniformly random
values r(1), . . . , r(�), unknown to the adversary, where � will be cM (3t + 1) + cR.

The idea of the protocol PreparationPhase is the following: First, every player
acts as dealer in Share∗ to share a vector of �′ = 	�/(n − 2t)
 random values.
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Then the players agree on a core set of n − t correct dealers (such that their
Share∗ protocol was completed by at least one honest player). This results in
n − t vectors of �′ correct t-sharings, but up to t of these vectors may be known
to the adversary (and may not be random). Then, these n − t correct vectors
are compressed to n − 2t correct random vectors, unknown to the adversary, by
using a (n − 2t)-by-(n − t) super-invertible matrix (applied component-wise).
This computation is linear, hence the players can compute their shares of the
compressed sharings locally from their shares of the original sharings.

Protocol PreparationPhase (�)
Code for player Pi:
• Secret Sharing

• Act as a dealer in Share∗ to share a vector of �′ = 	�/(n − 2t)
 random
values

(

s(i,1), . . . , s(i,�′)
)

.
• For every j = 1, . . . , n, take part in Share∗ with dealer Pj , resulting in the

shares
(

s
(j,1)
i , . . . , s

(j,�′)
i

)

.
• Agreement on a Core Set

1. Create an accumulative set Ci = ∅.
2. Upon completing Share∗ with dealer Pj , include Pj in Ci.
3. Take part in ACS with the accumulative set Ci as input.

• Compute Output (local computation)

1. Wait until ACS completes with output C. For simple notation, assume
that {P1, . . . , Pn−t} ⊆ C.

2. For every k ∈ {1, . . . , �′}, the (n − 2t) t-shared random values,
unknown to the adversary, are defined as

(

r(1,k), . . . , r(n−2t,k)
)

=
M

(

s(1,k), . . . , s(n−t,k)
)

, where M denotes a (n − 2t)-by-(n − t) super-
invertible matrix, e.g., constructed according to Section 2.6. Compute
your shares

(

r
(1,k)
i , . . . , r

(n−2t,k)
i

)

accordingly. Denote the resulting �′(n−
2t) ≥ � sharings as [r(1)], . . . , [r(�)].

Lemma 4. PreparationPhase (eventually) terminates for every honest player. It
outputs independent random sharings of � secret, independent, uniformly random
values r(1), . . . , r(�). PreparationPhase communicates O(�n2κ+n3BC(κ)) bits and
requires one invocation to ACS.

6 Input Phase

In the InputPhase protocol every player Pi acts as a dealer in one Share∗ protocol
in order to share his input si.7 However the asynchronity of the network does not
allow the players to wait for more than n − t Share∗-protocols to be completed.
In order to agree on the players whose inputs will be taken into to computation
one ACS protocol is run.
7 si can be one value or an arbitrary long vector of values from F .
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Protocol InputPhase (Every Pi has input si)
Code for player Pi:
• Secret Sharing

• Share your secret input si with Share∗.
• For every j = 1, . . . , n take part in Share∗ with dealer Pj .

• Agreement on a Core Set

1. Create a accumulative set Ci = ∅.
2. Upon completing Share∗ with dealer Pj , include Pj in Ci.
3. Take part in ACS with your accumulative set Ci as your input.
4. Output the agreed core set C and your outputs of the Share∗ protocols

with dealers from C.

Lemma 5. The InputPhase protocol will (eventually) terminate for every honest
player. It enables the players to agree on a core set of at least n − t players who
correctly shared their inputs – every honest player will (eventually) complete the
Share∗ protocol of every dealer from the core set (and get the correct shares of
his shared input values). InputPhase communicates O(cIn

2κ+n3BC(κ)) bits and
requires one invocation to ACS.

7 Computation Phase

In the computation phase, the circuit is evaluated gate by gate, whereby all
inputs and intermediate values are shared among the players. As soon as a
player holds his shares of the input values of a gate, he joins the computation of
the gate.

Due to the linearity of the secret-sharing scheme, linear gates can be computed
locally simply by applying the linear function to the shares, i.e. for any linear
function f(·, ·), a sharing [c] = [f(a, b)] is computed by letting every player Pi

compute ci = f(ai, bi). With every random gate, one random sharing (from
the preparation phase) is associated, which is directly used as outcome of the
random gate. With every multiplication gate, 3t + 1 random sharings (from
the preparation phase) are associated, which are used to compute a sharing of
the product as described in the protocol Multiplication.

Protocol ComputationPhase ((3t + 1)cM + cR random sharings
[r(1)], . . . , [r(�)])
For every gate in the circuit — Code for player Pi:

1. Wait until you have shares of each of the inputs
2. Depending on the type of the gate, proceed as follows:

• Linear gate [c] = f([a], [b], . . .): compute your share ci as ci = f(ai, bi, . . .).
• Multiplication gate [c] = [a][b]: participate in protocol

Multiplication([a], [b], [r(0)], . . . , [r(3t+1)]), where [r(0)], . . . , [r(3t+1)] denote
the 3t + 1 associated random sharing.
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• Random gate [r]: set your share ri = r
(k)
i , where [r(k)] denotes the asso-

ciated random sharing.
• Output gate [a] → PR: participate in Recons(PR, d = t, [a]).

In order to compute multiplication gates, we use the approach of of [DN07]:
First, the players jointly generate a secret random value s, which is both t-shared
(by [s]) and 2t-shared (by [[s]]). These sharings can easily be generated based on
the 3t + 1 t-sharings associated with the multiplication gate. Then, every player
locally multiplies his shares of a and b, resulting in a 2t-sharing of the product
c = ab, i.e., [[c]]. Then, the players compute and reconstruct [[c − s]], resulting
in every player knowing d = c − s, pick a default t-sharing [d], and (locally)
compute [c] = [d] + [s], the correct product [ab].

Protocol Multiplication ([a], [b], [r(0)], . . . , [r(3t+1)])
Code for player Pi:

1. Prepare [s]: The degree-t polynomial p(·) to share s is defined by the shared
coefficients r(0), r(1), . . . , r(t). For every Pj , a sharing of his share sj = p(j) is
defined as [sj ] = [r(0)] + [r(1)]j + . . . + [r(t)]jt. Invoke Recons(Pj , d = t, [sj])
to let Pj learn his degree-t share sj .

2. Prepare [[s]]: The degree-2t polynomial p′(·) to share s is defined by the
shared coefficients r(0), r(t+1), . . . , r(3t). For every Pj , a sharing of his share
s′j = p′(j) is defined as [s′j ] = [r(0)] + [r(t+1)]j + . . . + [r(3t)]j2t. Invoke
Recons(Pj , d = t, [s′j ]) to let Pj learn his degree-2t share s′j .

3. Compute [ab]:
1. Compute your degree-2t share of c = ab as ci = aibi, resulting in [[c]].
2. For every j = 1, . . . , n, invoke Recons (Pj , d = 2t, ([[c]] − [[s]])), resulting

in every Pj knowing d = c − s.
3. Define [d] as default sharing of d, e.g., the constant degree-0 polynomial.
4. Compute [c] = [d] + [s].

Lemma 6. The protocol Multiplication (eventually) terminates for every hon-
est player. Given correct sharings [a], [b], [r(0)], . . . , [r(3t+1)] as input, it outputs
a correct sharing [ab]. The privacy is maintained when ([r(0)], . . . , [r(3t+1)]) are
sharings of random values unknown to the adversary. Multiplication communi-
cated O(n2κ) bits.

Lemma 7. The protocol ComputationPhase (eventually) terminates for every
honest player. Given that the � = (3t + 1)cM + cR sharings [r(1)], . . . , [r(�)] are
correct t-sharings of random values, unknown to the adversary, it computes the
outputs of the circuit correctly and privately, while communicating O(n2cM +
ncOκ) bits (where cM , cR, and cO denote the number of multiplication, random,
and output gates in the circuit, respectively).
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8 The Asynchronous MPC Protocol

The following protocol allows the players to evaluate an agreed arithmetic circuit
C of a finite field F : Denote the number of input, multiplication, random and
output gates as cI , cM , cR, cO, respectively.

Protocol AsyncMPC (C, cI , cM , cR, cO)
1. Invoke PreparationPhase to generate � = cM (3t + 1) + cR random sharings.
2. Invoke InputPhase to let the players share their inputs.
3. Invoke ComputationPhase to evaluate the circuit (consisting of linear, multi-

plication, random, and output gates).

Theorem 1. For every coalition of up to t < n/4 bad players and for every
scheduler, the protocol AsyncMPC securely computes the circuit C. AsyncMPC
communicates O

(

(cIn
2 + cMn3 + cRn2 + ncO)κ + n3BC(κ)

)

bits and requires 2
invocations to ACS,8 (which requires O(n2BC(κ))).

9 The Hybrid Model

9.1 Motivation

A big disadvantage of asynchronous networks is the fact that the inputs of up to t
honest players cannot be considered in the computation. This restriction disqual-
ifies fully asynchronous models for many real-world applications. Unfortunately,
this drawback is intrinsic to the asynchronous model, no (what so ever clever)
protocol can circumvent it. The only escape is to move to less general commu-
nication models, where at least some restriction on the scheduling of messages
is given.

In [HNP05], an asynchronous (cryptographically secure) MPC protocol was
presented in which all players can provide their inputs, given that one single
round of communication is synchronous. However, this protocol has two serious
drawbacks: First, the communication round which is required to be synchronous
is round number 7 (we say that a message belongs to round k if it depends
on a message received in round k − 1). This essentially means that the first 7
rounds must be synchronous, because if not, then the synchronous round can
never be started (the players would have to wait until all messages of round 6
are delivered — an endless wait in an asynchronous network).

The second drawback of this protocol is that one must decide a priori the
mode in which the protocol is to be executed, namely either in the hybrid mode
(with the risk that the protocol fails when some message in the first 7 rounds is
not delivered synchronously), or in the fully asynchronous mode (with the risk
that up to t honest players cannot provide their input, even when the network
is synchronous).
8 The protocol can easily be modified to use only a single invocation to ACS, by

invoking PreparationPhase and InputPhase in parallel, and invoking ACS to find those
dealers who have both correctly shared their input(s) as well as correctly shared
enough random values.
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9.2 Our Hybrid Model

We follow the approach of [HNP05], but strengthen it in both mentioned direc-
tions: First, we require only the very first round to be synchronous, and second,
we guarantee that even if some messages in the first round are not delivered
synchronously, still at least n − t inputs are provided — so to speak the best of
both worlds. A bit more precisely, we provide a fully asynchronous input protocol
with the following properties:
• For every scheduler, the inputs of at least n − t players are taken.
• If all messages sent by Pi in the very first round of communication are deliv-

ered synchronously, then Pi’s inputs are taken.
This means in particular that if the first round is fully synchronous, then the

inputs of all honest players are taken, and if the network is fully asynchronous,
then at least n − t inputs are taken.

9.3 PrepareInputs and RestoreInput

We briefly describe the idea of the new input protocol (assuming, for the sake
of simple notation, that every player gives exactly one input): In the first (sup-
posedly synchronous) round, every player computes a degree-t Shamir-sharing
of his input and sends one share to each player. Then, the players invoke the
fully asynchronous input protocol, where the input of each player is a vector
consisting of his real input, and his shares of the inputs of the other players. As
result of the asynchronous input protocol, a core set C of at least n − t players
is found, whose input vectors are (eventually) t-shared among the players. For
every player Pi ∈ C, the input is directly taken from his input vector. For every
player Pj /∈ C, the input is computed as follows: There are n − t shares of his
input, each t-shared as a component of the input vector of some player Pi ∈ C.
Up to t of these players might be corrupted and have input a wrong share.
Therefore, these t-shared shares are error-corrected and used as Pj ’s input. For
error correction, t + 1 random t-sharings are used. These will be generated (ad-
ditionally) in the preparation phase. Then, right before the computation phase,
sharings of the missing inputs are computed.

In the following, we present a (trivial) sub-protocol PrepareInputs, which pre-
pares the inputs of all players (to be invoked in the first, supposedly synchronous
round), and a protocol RestoreInput, which restores the sharing of an input s(k)

of a player not in the core set, if possible (to be invoked right before the compu-
tation phase). The protocol RestoreInput needs t+1 t-sharings of random values,
which must be generated in the preparation phase.

Protocol PrepareInputs (every Pi holding input s(i))
Code for player Pi:

1. Choose random degree-t polynomial p(·) with p(0) = s(i) and send to every
Pj his share s

(i)
j = p(j).
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2. Collect shares s
(j)
i (from Pj) till the first round is over. Then compose your

new input s̃(i) =
(

s(i), s
(1)
i , . . . , s

(n)
i

)

, where s
(j)
i =⊥ if no share s

(j)
i was

received from Pj within the first round.

Protocol RestoreInput (Core Set C, Input Sharings [s̃(i)] of Pi ∈ C,
[r(0)], . . . , [r(t+1)], k)
Code for player Pi:

1. Define the blinding polynomial b(x) = r(0 + r(1)x+ . . .+ r(t)xt, and for every
Pj , define [bj] = [b(j)] = [r(0)] + [r(1)]j + . . . + [r(t)]jt. Invoke Recons to
reconstruct bj towards Pj , for every Pj .

2. For every Pj ∈ C, denote by [s(k)
j ] the sharing of Pj ’s share of Pk’s input s(k).

Note that [s(k)
j ] is a part of the input vector [s̃(j)]. If [s(k)

j ] �=⊥, then compute

[dj ] = [s(k)
j ]+ [bj ], and invoke Recons to reconstruct dj towards every player.

3. If there exists a degree-t polynomial p(·) such that at least 2t + 1 of the
reconstructed values dj lie on it, define d′i = p(i), and compute your share
s
(k)
i of Pk’s input s(k) as d′i − bi. The sharing of input [s(k)] was successfully

restored. If no such polynomial p(·) exists, then [s(k)] cannot be restored.

Lemma 8. The protocol PrepareInputs and RestoreInput terminate for all play-
ers. When all messages of a player Pk in Step 1 of PrepareInputs are syn-
chronously delivered, then a sharing of his input s(k) can be successfully restored
in RestoreInput, by any core set C with C ≥ n − t (with up to t cheaters. When
an input sharing [s(k)] of an honest player Pk is restored in RestoreInput, then
the shared value is the correct input of Pk. Furthermore, both PrepareInputs and
RestoreInput preserve the privacy of inputs of honest players.

Proof (sketch). Termination and privacy are easy to verify. We focus on cor-
rectness. First assume that Pk is honest, and all his messages in Round 1 of
PrepareInputs were synchronously delivered. Then every honest player Pi em-
beds the share s

(k)
i in his input vector. There will be at least n − t players in

the core set, so at least n − 2t honest players Pj . This means that there are
at least n − 2t t-consistent shares s

(k)
j , and hence, at least n − 2t consistent

shares dj . For t < n/4, we have n − 2t ≥ 2t + 1, and the result is a sharing of
d − b = (s(k) + b) − b = s(k). Then assume that Pk is honest, but not all his
messages in Round 1 have been delivered synchronously. However, if there are
2t+1 points on the polynomial p(·), at least t+1 of these points are from honest
players, and hence the right input is restored.

9.4 The Hybrid MPC Protocol

The new main protocol for the hybrid model is as follows:

Protocol HybridMPC (C, cI , cM , cR, cO)
1. Invoke PrepareInputs to let every Pi with input s(i) Shamir share s(i) among

all players.
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2. Invoke PreparationPhase to generate � = cM (3t + 1) + cR + cI(t + 1) random
sharings.

3. Invoke InputPhase (with Pi’s input being the vector s̃(i)) to let the players
share their input vectors.

4. Invoke RestoreInput to restore the inputs of every Pk not in the core set.
5. Invoke ComputationPhase to evaluate the circuit (consisting of linear, multi-

plication, random, and output gates).

Theorem 2. For every coalition of up to t < n/4 bad players and for every
scheduler, the protocol HybridMPC securely computes the circuit C, taking the
inputs of all players (when the first round is synchronous), or taking the inputs of
at least n − t players (independently of any scheduling assumptions). AsyncMPC
communicates O

(

(cIn
3 + cMn3 + cRn2 + ncO)κ + n3BC(κ)

)

bits and requires 2
invocations to ACS (can be reduced to 1).

10 Conclusions

We have presented an MPC protocol for the fully asynchronous model, which is
perfectly secure against an active, adaptive adversary, corrupting up to t < n/4
players, what is optimal. The protocol communicates only O(n3) field elements
per multiplication. Even in the synchronous model, no perfectly secure MPC pro-
tocol with better communication complexity is known. Furthermore, the protocol
is as efficient as the most efficient protocol for the asynchronous model, which
provides only cryptographic security.

Furthermore, we have enhanced the protocol for a hybrid communication
mode, where the inputs of all players can be taken under the only assump-
tion that the very first communication round is synchronous. This assumption is
very realistic, as anyway the players have to agree on set of involved players, on
the circuit to be evaluated, etc. The proposed protocol combines best of both the
hybrid model and the fully asynchronous model; it allows at least n − t players
provide their input (even when the communication is fully asynchronous), and
additionally guarantees that the input of every player is taken, as long as his
first-round messages are delivered synchronously.

Lastly, the proposed protocol is conceptually very simple. It uses neither player
elimination nor repetition.
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Abstract. Byzantine Agreement (BA) among n players allows the play-
ers to agree on a value, even when up to t of the players are faulty.

In the broadcast variant of BA, one dedicated player holds a message,
and all players shall learn this message. In the consensus variant of BA,
every player holds (presumably the same) message, and the players shall
agree on this message.

BA is the probably most important primitive in distributed protocols,
hence its efficiency is of particular importance.

BA from scratch, i.e., without a trusted setup, is possible only for t <
n/3. In this setting, the known BA protocols are highly efficient (O(n2)
bits of communication) and provide information-theoretic security.

When a trusted setup is available, then BA is possible for t < n/2
(consensus), respectively for t < n (broadcast). In this setting, only com-
putationally secure BA protocols are reasonably efficient (O(n3κ) bits).
When information-theoretic security is required, the most efficient known
BA protocols require O(n17κ) bits of communication per BA, where κ
denotes a security parameter. The main reason for this huge communi-
cation is that in the information-theoretic world, parts of the setup are
consumed with every invocation to BA, and hence the setup must be
refreshed. This refresh operation is highly complex and communication-
intensive.

In this paper we present BA protocols (both broadcast and consensus)
with information-theoretic security for t < n/2, communicating O(n5κ)
bits per BA.

Keywords: Byzantine agreement, broadcast, consensus, information-
theoretic security, multi-party computation, efficiency.

1 Introduction

1.1 Byzantine Agreement, Consensus, and Broadcast

The problem of Byzantine agreement (BA), as originally proposed by Pease,
Shostak, and Lamport [PSL80], is the following: n players P1, . . . , Pn want to
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reach agreement on some message m, but up to t of them are faulty and try
to prevent the others from reaching agreement. There are two flavors of the
BA problem: In the broadcast problem, a designated player (the sender) holds
an input message m, and all players should learn m and agree on it. In the
consensus problem, every player Pi holds (supposedly the same) message mi,
and the players want to agree on this message.

More formally, a protocol with PS giving input m is a broadcast protocol, when
every honest Pi outputs the same message m′

i = m′ for some m′ (consistency),
and when m′ = m, given that PS is honest (validity). Analogously, a protocol
with every player Pi giving input mi is a consensus protocol, when every honest
Pi outputs m′

i = m′ for some m′ (consistency), and when m′ = m, given that
every honest Pi inputs the same message mi = m for some m (validity).

1.2 Models and Bounds

We assume that the players are connected with a complete synchronous network
of secure channels. Complete means that each pair of players shares a channel.
Synchronous means that all players share a common clock and that the message
delay in the network is bounded by a constant.

The feasibility of broadcast and consensus depends on whether or not a trusted
setup (e.g. a PKI setup) is available. When no trusted setup is available (“from
scratch”), then consensus and broadcast are achievable if and only if at most
t < n/3 players are corrupted. When a trusted setup is available, then consensus
is achievable if and only if at most t < n/2 players are corrupted, and broadcast
is achievable if and only if at most t < n players are corrupted. All bounds can
be achieved with information-theoretical security, and the bounds are tight even
with respect to cryptographic security. We stress in particular that no broadcast
protocol (even with cryptographic intractability assumptions) can exceed the
t < n/3 bound unless it can rely on a trusted setup [FLM86, Fit03]. The main
difference between protocols with information-theoretic security and those with
cryptographic security is their efficiency.

1.3 Efficiency of Byzantine Agreement

We are interested in the communication complexity of BA protocols. The bit
complexity of a protocol is defined as the number of bits transmitted by all
honest players during the whole protocol, overall.

In the model without trusted setup, Byzantine agreement among n players is
achievable for t < n/3 communicating O(n2) bits [BGP92, CW92]. In the model
with a trusted setup, the communication complexity of BA heavily depends
on whether information-theoretic security is required or cryptographic security
is sufficient. When cryptographic security is sufficient, then O(n3κ) bits are
sufficient for reaching agreement, where κ denotes the security parameter [DS83].
When information-theoretic security is desired, then reaching agreement requires
at least O(n6κ) bits of communication [BPW91, PW96, Fit03].
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However, the latter result consumes the setup, i.e., a given setup can be used
only for one single BA operation. Of course, one can start with a m times larger
setup which supports m BA operations, but the number of BA operations is a
priori fixed, and the size of the setup grows linearly with the number of intended
BA operations. This diametrically contrasts the cryptographic scenario, where a
fixed-size setup is sufficient for polynomially many BA operations. In [PW96], a
method for refreshing the setup is shown: They start with a compact setup, use
some part of the setup to perform the effective BA operation, and the remaining
setup to generate a new, full-fledged setup. With this approach, a constant-size
setup is sufficient for polynomially many BA invocations. However, with every
BA invocation, the setup must be refreshed, which requires a communication of
O(n17κ) bits [PW96, Fit03]. Hence, when the initial setup should be compact,
then the costs for a BA operation of [PW96] is as high as O(n17κ) bits.

1.4 Contributions

We present a protocol for information-theoretically secure Byzantine agreement
(both consensus and broadcast) which communicates O(n4κ) bits when the setup
may be consumed (i.e., the number of BA operations per setup is a priori fixed).
This contrasts to the communication complexity of O(n6κ) bits of previous
information-theoretically secure BA protocols [BPW91, PW96].

More importantly, we present a refresh operation for our BA protocol, com-
municating only O(n5κ) bits, contrasting the complexity of O(n17κ) bits of pre-
vious refresh protocols [PW96]. This new results allows for polynomially many
information-theoretically secure BA operations from a fixed-size setup, where
each BA operations costs O(n5κ) bits.

This substantial speed-up is primarily due to a new concept, namely that the
refresh operation does not need to succeed all the time. Whenever the setup is
to be refreshed, the players try to do so, but if they fail, they pick a fresh setup
from an a priori prepared stock. Furthermore, using techniques from the player-
elimination framework [HMP00], the number of failed refresh operations can be
limited to t. Using algebraic information-theoretic pseudo-signatures [SHZI02]
for appropriate parameters, the function to be computed in the refresh protocol
becomes algebraic, more precisely a circuit over a finite field with multiplicative
depth 1. Such a function is very well suited for efficient non-robust computation;
in fact, it can be computed based on a simple one-dimensional Shamir-sharing,
although t < n/2.1 This allows a very simple refresh protocol with low commu-
nication overhead.

Compared to the refresh protocol of [PW96], our refresh protocol has the
disadvantage that it requires t < n/2, whereas the protocol of [PW96] can cope
with t < n. However, almost all applications using BA as sub-protocol (like
voting, biding, multi-party computation, etc.) inherently require t < n/2, hence
the limitation on our BA protocol is usually of theoretical relevance only.
1 Note that general MPC protocols for this model need a three-level sharing, namely a

two-dimensional Shamir sharing ameliorated with authentication tags [RB89, Bea91,
BH06].
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2 Preliminaries

2.1 Formal Model

We consider a set of n players P = {P1, . . . , Pn}, communicating over pairwise
secure synchronous channels. Many constructions require a finite field F ; we set
this field to F = GF (2κ) where κ is a security parameter (we allow a negligible
error probability of O(2−κ)). To every player Pi ∈ P , a unique non-zero element
αi ∈ F \ {0} is assigned. The faultiness of players is modeled by a central
computationally unlimited adversary adaptively corrupting up to t < n/2 players
and taking full control over them.

We assume that there is a trusted setup, i.e., before the protocol starts, a
fixed probabilistic function Init : 1κ → (state1, . . . , staten) is run by a trusted
party, and every player Pi ∈ P secretly receives statei as his initial state.

2.2 Information-Theoretically Secure Signatures

A classical (cryptographic) signature scheme consists of three algorithms:
KeyGen, Sign, and Verify. KeyGen generates two keys, a signing key for the signer
and a public verification key; Sign computes a signature for a given message and
a given signing key; and Verify checks whether a signature matches a message
for a given verification key. A secure signature scheme must satisfy that every
signature created by Sign is accepted by Verify (with the corresponding sign-
ing/verification keys, completeness), and without the signing key it is infeasible
to compute a signature which is accepted by Verify (unforgeability). Classical
signature schemes provide cryptographic security only, i.e., an unbounded forger
can always find an accepting signature for any given message, with exhaustive
search, using Verify as test predicate.

As an information-theoretically secure signature scheme must be secure even
with respect to a computationally unbounded adversary, every verifier must have
a different verification key, and these verification keys must be kept private. Thus
it cannot be automatically guaranteed that a signature is either valid for all ver-
ifiers or for no verifier (it might be valid for one verifier, but invalid for another
one). Therefore, an additional property called transferability is required: It is
impossible for a faulty signer to produce a signature which, with non-negligible
probability, is valid for some honest verifier without being valid for some other
honest verifier. We say that a signature scheme is information-theoretically se-
cure if it is complete, unforgeable and transferable.

In [SHZI02], a so called (ψ, ψ′)-secure signature scheme is presented, which
allows the signer to sign a message m ∈ F such that any of the players in P
can verify the validity of the signature. As long as the signer signs at most ψ
messages and each verifier verifies at most ψ′ signatures the success probability
of attacks is less then 1/|F| = 2−κ.

Here, we use a one-time signature scheme (i.e., one setup allows only for one
single signature), where every verifier may verify up to t + 2 signatures (of the
same signer). In context of [SHZI02], this means that we set ψ = 1 and ψ′ = t+2.
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By simplifying the notation (and by assuming that 2t + 1 ≤ n), we receive the
following scheme:

KeyGen: Key generation takes as input the string 1κ, and outputs the sign-
ing key sk to the signer PS and the n verification keys vk1, . . . , vkn to
the respective verifiers P1, . . . , Pn. The signing key is a random vector
sk = (p0, . . . , pn+1, q0, . . . , qn+1) ∈ F2(n+2), defining the polynomial

Fsk(V1, . . . , Vn+1, M) =

⎛
⎝p0 +

n+1∑
j=1

pjVj

⎞
⎠ + M

⎛
⎝q0 +

n+1∑
j=1

qjVj

⎞
⎠

= p0 + Mq0 +
n+1∑
j=1

(pj + Mqj) Vj .

The verification key vki of each player Pi ∈ P is the vector vki =
(vi,1, . . . , vi,n+1, xi, yi), where the values vi,1, . . . , vi,n+1 are chosen uniformly
at random from F , and the xi- and yi-values characterize the polyno-
mial Fsk, when applied to vi,1, . . . , vi,n+1, i.e., xi = p0 +

∑n+1
j=1 pjvi,j and

yi = q0 +
∑n+1

j=1 qjvi,j .
Sign: The signature σ of a message m ∈ F is a vector σ = (σ0, . . . , σn+1),

characterizing the polynomial Fsk when applied to m, i.e., σj = pj +mqj for
j = 0, . . . , n + 1.

Verify: Given a message m, a signature σ = (σ0, . . . , σn+1), and the verifica-
tion key vki = (vi,1, . . . , vi,n+1, xi, yi) of player Pi, the verification algorithm
checks whether

xi + myi
?= σ0 +

n+1∑
j=1

σjvi,j

(
= Fsk(vi,1, . . . , vi,n+1, m)

)
.

The protocol has the following sizes: Signing key: (2n + 4)κ bits; verification
key: (n+3)κ bits; signature: (n+2)κ bits. The total information distributed for
one signature scheme (called sig-setup) consists of (n2 + 5n + 8)κ bits.

Note that a sig-setup for the player set P is trivially also a valid sig-setup for
every player subset P ′ ⊆ P . We will need this observation later.

3 Protocol Overview

Basically, the new broadcast protocol is the protocol of [DS83], ameliorated
with information-theoretically secure signatures [SHZI02]. Similarly to [PW96],
we start with a compact (constant-size) setup, which allows only for few broad-
casts, and use some of these broadcasts for broadcasting the payload, and some
of them to refresh the remaining setup, resulting in a fresh, full-fledged setup.

We borrow ideas from the player-elimination framework [HMP00] to substan-
tially speed-up the refresh protocol: The generation of the new setup is performed
non-robustly, i.e., it may fail when an adversary is present, but then the failure
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is detected by (at least) one honest player. At the end of the refresh protocol,
the players jointly decide (using one BA-Operation) whether the refresh has suc-
ceeded or not; if yes, they are happy to have generated a new setup. If it failed,
they run a fault-handling procedure, which yields a set E of two players, (at
least) one of them faulty. As originally the set P contains an honest majority,
also the set P \ E contains an honest majority. So the player set is reduced to
P ′ ← P \ E (with at most t′ ← t − 1 faulty players).

We are still missing the fresh setup; however, as with each fault-handling, one
faulty player is eliminated from the actual player set, faults can occur only t
times. For these t cases, we have a stock of t prepared setups, and with each
fault, we take one out of this stock. This way it is ensured that at any point
in the protocol, we have t′ prepared setups on stock, where t′ is the maximum
number of faulty players in P ′. More precisely, the protocol runs as follows:

Initial Setup: The procedure Init generates 2+5t BA-setups2; one for the first
BA operation, one for the first invocation of the refresh protocol, and t extra
setups for the stock, each consisting of 2 BA-setups for replacing the failed
refresh and 3 BA-setups for localizing the set E ⊆ P in the fault-handling
procedure. The actual player set is set to P ′ = P and the maximum number
of faulty players in P ′ to t′ = t.

Broadcast/Consensus: To perform a BA operation, the protocol Broadcast,
resp. Consensus is invoked with the payload. In parallel, Refresh is invoked
to refresh the reduced setup. If successful, Refresh produces two BA-setups
using only one single BA operation. If Refresh fails, 5 BA-setups are taken
from the stock, an elimination set E ⊆ P ′ is localized (using 3 BA’s) and
eliminated (P ′ ← P ′ \ E, t′ ← t′ − 1), and the two remaining BA-setups are
kept as new state – for the next Broadcast/Consensus operation.

In our presentation, we ignore the fact that faulty players can sent no message
(or a message in a wrong format) when they are expected to send a message to an
honest player. As general rule, we assume that when an honest player does not
receive an expected message, he behaves as if he had received the zero-message.

4 Broadcast and Consensus

We present the protocols for the actual broadcast and consensus operation.
Note that the Refresh protocol outputs correct BA setup for P ′ only (rather

than P). However, as P \ P ′ might contain honest players we need to achieve
BA in P . We first present the BA protocols for P ′, then show how to realize BA
in P using these protocols.

As [SHZI02] signatures can cope only with message in the field F , also our
BA protocols are limited to messages m ∈ F . An extension to longer messages
is sketched in Appendix A.

2 Init invokes KeyGen 4 + 10t times in parallel for each signer PS ∈ P . As will become
clear later, 2n sig-setups are equivalent to one BA-setup.
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We first present a broadcast protocol that allows a sender PS ∈ P ′ to con-
sistently distribute a message m ∈ F to the players in P ′.3 The protocol is
essentially the protocol of [DS83], with a simplified description of [Fit03]. In ad-
dition, the protocol is modified such that in one protocol run every player verifies
at most ψ′ = t+2 signatures of each signer (as required by our signature scheme).

Every player maintains a set A of accepted messages, a set N of newly ac-
cepted messages, and (one or several) sets Σm of received signatures for a mes-
sage m.

Protocol Broadcast’
0. Sender PS : Send m and the corresponding signature σS to all Pi ∈ P ′.
1. ∀Pi ∈ P ′: If Pi received from the sender a message m together with a

valid signature σS set A = N = {m} and Σm = {σS}.
k. In each Step k = 2, . . . , t′ + 1, execute the following sub-steps for every

player Pi ∈ P ′ \ {PS}:
k.1 For every message m ∈ N , compute the signature σi on m, and send

(m, Σm ∪ {σi}) to all players in P ′. Set N = {}.
k.2 In turn, for every message (m, Σm) received in Sub-step k.1 do:

– If m ∈ A, or if |A| ≥ 2, ignore the message,
– else if Σm contains valid signatures from at least k different

players in P ′, including PS , include m in A and in N ,
– else ignore the received message (m, Σm) and all further mes-

sages from the player who has sent it.
t′+2. ∀Pi: if |A| = 1, then accept m ∈ A as the broadcasted value. Otherwise,

the sender is faulty, and accept m =⊥ (or any fixed pre-agreed value from
F) as the broadcasted value.

One can easily verify that the protocol Broadcast’ is as secure as the used sig-
nature scheme [DS83, Fit03] and that every player verifies at most t+2 signatures
from the same signer. Furthermore, every signer Pi issues up to two signatures;
however, the second one is for the sole goal of proving to other players that the
sender PS is faulty, and the secrecy of Pi’s signing key is not required anymore.
Hence, it is sufficient to use a one-time signature scheme, whose unforgeability
property is broken once the signer issues two signatures.

To construct a consensus protocol in P ′, we use a trick of [Fit04]: Every player
needs two sig-setups, a primary scheme for the same purpose as in the above
protocol, and an alternative scheme for identifying the message (if there is any)
originally held by the majority of the players. During the protocol execution,
every player Pi additionally maintains (one or several) sets Σ′

m, containing al-
ternative signatures σ′

j (issued by Pj) for m, where Σ′
m with |Σ′

m| ≥ n′ − t′

now “replaces” the sender’s signature in the above broadcast protocol. Now we
present the consensus protocol for P ′, each Pi holding a message mi ∈ F :

3 Note that Broadcast’ will not be used in the paper, it is presented only for the sake
of clarity of the protocol Consensus’.
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Protocol Consensus’
0. ∀Pi ∈ P ′: Send mi and the corresponding (alternative) signature σ′

i to
all players in P ′.

1. ∀Pi ∈ P ′: If there exists a message m received (together with a valid
signature) from at least n′ − t′ different players, let Σ′

m denote the set
of all these signatures, and set A = N = {m} and Σm = {}. If no such
message exists, set A = N = {}.

k. In each Step k = 2, . . . , t′ + 2, execute the following sub-steps for every
player Pi ∈ P ′:
k.1 For every message m ∈ N , compute the signature σi on m, and send

(m, Σ′
m, Σm ∪ {σi}) to all players in P ′. Set N = {}.

k.2 In turn, for every message (m, Σ′
m, Σm) received in Sub-step k.1 do:

– If m ∈ A, or if |A| ≥ 2, ignore the message,
– else if Σm contains valid signatures in the primary scheme from

at least k − 1 different players in P ′, and Σ′
m contains valid

signatures in the alternative scheme from at least n′−t′ different
players in P ′, then include m in A and in N ,

– else ignore the received message (m, Σ′
m, Σm) and all further

messages from the player who has sent it.
t′+3. ∀Pi: if |A| = 1, accept m ∈ A as the agreed value, otherwise (there was

no pre-agreement) accept m =⊥.

The security of the protocol Consensus’ follows immediately from the security
of the protocol Broadcast’, and the fact that every player issues at most one
signature in the alternative scheme, and each such signature is verified at most
t + 1 times. The communication complexity of BA in P ′ is at most 4n3|σ| +
3n2κ + n2|σ| = (8n4 + 26n3 + 9n2)κ.

Broadcast and consensus in P can be constructed from consensus in P ′:

Protocol Broadcast
1. The sender PS ∈ P sends the message m to every player Pj ∈ P ′.
2. Invoke Consensus’ to reach agreement on m among P ′.
3. Every player Pi ∈ P ′ sends the agreed message m to every player Pj ∈ P .
4. Every player Pj ∈ P accepts the message m which was received most often.

Protocol Consensus
1. Invoke Consensus’ to reach agreement on m among P ′.
2. Every player Pi ∈ P ′ sends the agreed message m to every player Pj ∈ P .
3. Every player Pj ∈ P accepts the message m which was received most often.

The security of these protocols follows from the security of Consensus’ and
from t′ < n′/2 and t < n/2. The communication complexity of BA in P is at
most (8n4 + 26n3 + 11n2)κ.
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5 Refreshing the Setup

5.1 Overview

To “refresh” the setup means to compute a new setup which allows for two BA
operations, while this computation consumes only one BA-setup. The protocol
Refresh generates the new setup with a special-purpose MPC among the players
in P ′. This computation is performed non-robustly: Every sub-protocol either
achieves its intended goal, or it fails. When it fails, then at least one honest
player detects the failure. We do not require agreement on the fact whether
or not a sub-protocol has failed. Only at the very end of Refresh, the players
agree on whether or not a player has detected a failure during the computation
(using consensus, thereby consuming one BA-setup). The computation takes
only random values as input, so in case of failure, privacy is of no interest.

The computation of the verification keys will not only be non-robust, but even
non-detectable, i.e., it might output wrong values without any (honest) player
detecting the failure. However, once the verification keys are generated, their
correctness is verified, and honest players can detect whether or not there was a
failure.

We provide a fault-handling sub-protocol, to be invoked when Refresh fails,
which localizes a set E ⊆ P ′ of two players, where (at least) one of them is
faulty. This allows to reduce the actual player set, thereby reducing the maxi-
mum number of faulty players, thereby limiting the number of times Refresh can
fail. In this fault-handling sub-protocol, every players sends to some designated
player all messages he has received during the course of the protocol, as well as
all random elements he sampled (which define the sent messages). Given this
information, the designated player can help to compute the set E to eliminate.

In the sequel, we present the used sub-protocols (all of them non-robust), and
finally the protocols Refresh and FaultHandling. The protocol Refresh invokes once
the protocol Consensus’, hence it consumes one valid BA-setup. The protocol
FaultHandling invokes 3 times the protocol Broadcast; it requires enough BA-
setups for that. However, the protocol FaultHandling is invoked only t times in
total, so the required BA-setups can be prepared at beforehand.

For the sake of a simpler presentation, we give to every player Pi a flag faili,
which is initialized to false, and is set to true once Pi has detected a failure. We
say that a protocol succeeds when no player has detected a failure; otherwise,
the protocol fails.

5.2 Secret Sharing

We use standard Shamir sharing [Sha79]. We say that a value a is t′-shared
among the players P ′ if there exists a degree-t′ polynomial f(·) with f(0) = a,
and every (honest) player Pi ∈ P ′ holds a share 〈a〉i = f(αi), where αi is
the unique evaluation point assigned to Pi. We denote the collection of shares
as 〈a〉. Observe that we can easily add up shared values, namely 〈a + b〉 =
(〈a〉1 + 〈b〉1, . . . , 〈a〉n′ + 〈b〉n′). We write 〈a〉 + 〈b〉 as a short hand.
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In order to let a dealer PD ∈ P ′ verifiably share a value a according to
Shamir sharing, we employ the following (non-robust) protocol (based on the
VSS protocol of [BGW88]).

Protocol Share
1. (Distribution.) PD selects the coefficients c0,1, c1,0, . . . , ct′,t′ at random, and

sets f(x, y) = a + c1,0x + c0,1y + c1,1xy + . . . + ct′,t′xt′
yt′

. Then, to every
Pi ∈ P ′, PD computes and sends the polynomials fi,�(y) = f(αi, y) and
f�,i(x) = f(x, αi).

2. (Checking.) For every pair Pi, Pj ∈ P ′, Pi sends fi,�(αj) to Pj , who compares
the received value with f�,j(αi). Pj sets failj = true if some difference is
non-zero.

3. (Output) Every Pj outputs 〈a〉i = fi,�(0).

Lemma 1. The protocol Share has the following properties: (Completeness) If
all players in P ′ correctly follow the protocol, then the protocol succeeds. (Correct-
ness) If the protocol succeeds, then the outputs (〈a〉1, . . . , 〈a〉n′) define a degree-t′

polynomial f(·). (Validity & Privacy) If the protocol succeeds and the dealer is
honest with input a, then f(0) = a and no subset of t′ players obtains any in-
formation on a. (Complexity) The protocol communicates at most (2n2 − 2n)κ
bits and requires at most (1/4n2 + 1/2n − 3/4)κ random bits.

The following protocol lets the players in P ′ reconstruct a correctly Shamir
shared value a towards a designated player PR ∈ P ′:

Protocol Recons
1. Every player Pi ∈ P ′ sends his share 〈a〉i to the recipient PR.
2. PR verifies whether 〈a〉1, . . . , 〈a〉n′ lie on a degree-t′ polynomial f(·) and out-

puts a = f(0) if yes. Otherwise, PR sets failR = true and outputs a = 0.

Lemma 2. The protocol Recons has the following properties: (Completeness) If
all players in P ′ correctly follow the protocol, then the protocol succeeds. (Correct-
ness) If the protocol succeeds, then PR outputs the correct secret a. (Complexity)
The protocol communicates at most (n − 1)κ bits and requires no randomness.

5.3 Generating Random Values

We present a (trivial) protocol that allows the players to generate a random
value c ∈R F , known to all players in P ′.

Protocol GenerateRandom
1. ∀Pi ∈ {P1, . . . , Pt′+1}: select a random value ci ∈R F and invoke Share to

share ci among P ′.

2. The players compute 〈c〉 =
∑t′+1

i=1 〈ci〉.
3. ∀Pk ∈ P ′: invoke Recons to reconstruct 〈c〉 towards player Pk.
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Lemma 3. The protocol GenerateRandom has the following properties: (Com-
pleteness) If all players in P ′ correctly follow the protocol, then the proto-
col succeeds. (Correctness) If the protocol succeeds, then it generates a uni-
formly random value c ∈R F , known to all players Pj ∈ P ′. (Complexity)
The protocol communicates at most (n3 + n2 − 2n)κ bits and requires at most
(1/8n3 + 3/8n

2 + 3/8n − 5/8)κ random bits.

Proof (sketch). Completeness and complexity follow from inspecting the proto-
col. We now focus on the case when the protocol succeeds. There is at least
one honest player Ph in {P1, . . . , Pt′+1}, who chooses his value ch uniformly at
random. As in Step 1, the adversary does not obtain any information about ch

(privacy of Share), and as the values ci of every player Pi ∈ P ′ are fixed after
Step 1 (Correctness of Share), ch is statistically independent of all other values
cj (j = i). Hence, the sum c1 + . . . + ct′+1 is uniformly distributed. ��

5.4 Generating One Sig-Setup

Recall that a sig-setup for a designated signer PS consists of the signing key
(p0, . . . , pn′+1, q0, . . . , qn′+1), which should be random and known only to the
signer PS , and one verification key (vi,1, . . . , vi,n′+1, xi, yi) for each player Pi ∈
P ′, where the values vi,1, . . . , vi,n′+1 should be random and known only to Pi,4

and the values xi and yi are computed as xi = p0 +
∑n′+1

j=1 pjvi,j and yi =

q0 +
∑n′+1

j=1 qjvi,j , respectively. Table 1 summarizes the steps needed to compute
these values.

Table 1. Preparing one sig-setup

Player Inputs (rand.) Intermediate (shared) Outputs

PS
p0 · · · pn′+1

q0 · · · qn′+1

P1 v1,1 · · · v1,n′+1
p1v1,1 · · · · · · pn′+1v1,n′+1 x1 = p0 +

∑
k pkv1,k

q1v1,1 · · · · · · qn′+1v1,n′+1 y1 = q0 +
∑

k qkv1,k

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Pn′ vn′,1 · · · vn′,n′+1
p1vn′,1 · · · · · · pn′+1vn′,n′+1 xn′ = p0 +

∑
k pkvn′ ,k

q1vn′,1 · · · · · · qn′+1vn′,n′+1 yn′ = q0 +
∑

k qkvn′,k

In our protocol, first every player Pi chooses and secret-shares his verification
key (vi,1, . . . , vi,n′+1). Then, the players jointly generate three random vectors
(p0, . . . , pn′+1), (q0, . . . , qn′+1), and (r0, . . . , rn′+1). The first two of these vectors
4 The randomness of vi,1, . . . , vi,n′+1 is needed for the sole reason of protecting the

verifier Pi, hence it must be guaranteed for honest verifiers only.
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will serve as signing key, and the third will serve as blinding in the verification
of the computation. Then, for each of these three vectors, the values x1, . . . , xn′ ,
respectively y1, . . . , yn′ or z1, . . . , zn′ , are computed. This computation is not
detectable: It might be that one of the xi, yi or zi values is wrong, and still
no honest player has detected a failure (however, when all players correctly
follow the protocol, then all values will be correct). The correctness of these
values is verified in an additional verification step: Two random challenges ρ
and ϕ are generated, and the linearly combined (and blinded) signing vector
(ρp0 + ϕq0 + r0, . . . , ρpn′+1 + ϕqn′+1 + rn′+1) is computed, and (distributively)
compared with the linearly combined verification keys. If all checks are successful,
then (with overwhelming probability) all keys are correctly computed.

Protocol GenerateSignatureSetup
1. (Generate vi,k-values.) Every Pi ∈ P ′ selects random vi,1, . . . , vi,n′+1 and

invokes Share to share them.
2. (Generate pk-values.) Invoke GenerateRandom n′ + 1 times to obtain shared

p0, . . . , pn′+1.
3. (Compute xi-values.) For every xi, execute the following steps:

3.1 Every Pj ∈ P ′ (locally) computes ci,j =
∑n′+1

k=1 〈pk〉j〈vi,k〉j and invokes
Share to share it.

3.2 The players compute 〈xi〉 = 〈p0〉 +
∑n′

j=1 λj〈ci,j〉, where λj denotes the
j-th Lagrange coefficient5.

4. (Generate qk/yi-values.) Generate (q0, . . . , qn′+1) and (y1, . . . , yn′) along the
lines of Steps 2–3.

5. (Generate rk/zi-values.) Generate (r0, . . . , rn′+1) and (z1, . . . , zn′) along the
lines of Steps 2–3.

6. (Check correctness of the computed xi/yi-values)
6.1 Invoke GenerateRandom twice to generate random challenges ρ and ϕ.
6.2 For k = 1, . . . , n′ + 1, compute and reconstruct towards every player

〈sk〉 = ρ〈pk〉 + ϕ〈qk〉 + 〈rk〉.
6.3 For i = 1, . . . , n′, compute 〈wi〉 = s0 +

∑n′+1
k=1 sk〈vi,k〉.

6.4 For i = 1, . . . , n′, compute 〈w̃i〉 = ρ〈xi〉 + ϕ〈yi〉 + 〈zi〉.
6.5 For i = 1, . . . , n′, reconstruct to every player 〈di〉 = 〈wi〉 − 〈w̃i〉.
6.6 Every Pj checks whether di

?= 0 for i = 1, . . . , n′, and sets failj = true in
case of any non-zero value.

7. (Announce xi/yi-values.) For every Pi ∈ P ′, invoke Recons to reconstruct
〈xi〉 and 〈yi〉 towards Pi.

Lemma 4. The protocol GenerateSignatureSetup has the following properties:
(Completeness) If all players in P ′ correctly follow the protocol, then the pro-
tocol succeeds. (Correctness) If the protocol succeeds, then (with overwhelming

5 The j-th Lagrange coefficient can be computed as λj =
∏n′

i=1,i�=j
−αi

αj−αi
.
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probability) it generates a correct signature setup. (Privacy) If the protocol suc-
ceeds, then no subset of t′ players obtains any information they are not allowed
to obtain. (Complexity) The protocol communicates at most (11n4 +4n3 −3n2 −
13n)κ bits and requires at most (2n4 + 4n3 + 2n2 + 3)κ random bits.

Proof (sketch). (Completeness) We consider the case that all players follow
the protocol, hence no sub-protocol fails. Observe that for every i = 1, . . . , n′,
the points (α1, ci,1), . . . , (αn′ , ci,n′) lie on a degree-2t′ polynomial fi(·) with
fi(0) =

∑n′+1
k=1 pkvi,k. This polynomial is well defined because n′ > 2t′, hence

we can interpolate fi(0) with Lagrange’s formula.6 This interpolation is done
distributively, i.e., every player Pj shares his ci,j , then these sharings are
combined using Lagrange’s formula, and p0 is distributively added, resulting in
a sharing of xi = p0 +

∑n′+1
k=1 pkvi,k. Similarly, yi = q0 +

∑n′+1
k=1 qkvi,k and zi =

r0 +
∑n′+1

k=1 rkvi,k. Clearly, for any ρ and ϕ, (ρp0 +ϕq0 +r0)+
∑n′+1

k=1 (ρpk +ϕqk +
rk)vi,k = ρxi +ϕyi +zi, hence di = 0, and no player detects a failure in Step 6.6.

(Correctness) We have to show that when the protocol succeeds, then for
i = 1, . . . , n′ holds xi = p0 +

∑n′+1
k=1 pkvi,k and yi = p0 +

∑n′+1
k=1 qkvi,k. Observe

that after Step 5, the values vi,k, pk, qk, rk, xi, yi, zi are fixed (they all are
t′-shared). When xi and yi do no satisfy the required equation above, then
only with negligible probability, for random ρ and ϕ they satisfy the equation
(ρp0 + ϕq0 + r0) +

∑n′+1
k=1 (ρpk + ϕqk + rk)vi,k = ρxi + ϕyi + zi.

(Privacy) We have to show that when the protocol succeeds, every player
learns only his respective key (plus some random data he could have generated
himself with the same probability). First observe that in Steps 1–5, the only
communication which takes place is by invocation of Share, which leaks no
information to the adversary. In Step 6, the values s1, . . . , sn′+1 and d1, . . . , dn′

are reconstructed. Every value sk is blinded with a random rk (unknown to the
adversary), so is uniformly random from the viewpoint of the adversary. The
values di are either 0 (and hence the adversary can easily simulate them), or
the protocol fails (and all computed values are discarded).

(Complexity) The complexity can be verified by inspecting the protocol. ��

5.5 The Refresh-Protocol

In order to refresh a BA-setup, we need to generate two BA-setups, consuming
only one BA-setup. Remember that one BA-setup consists of 2n′ sig-setups (2
for every potential signer); hence, Refresh needs to generate 4n′ sig-setups.

Protocol Refresh
0. ∀Pi ∈ P ′: set faili = false.
1. Invoke GenerateSignatureSetup 4n′ times in parallel to generate 4 sig-setups

for each signer PS ∈ P ′.
6 Note that fi(0) is arbitrary when a single player is incorrect — something we do not

care for when arguing about completeness.
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2. ∀Pi ∈ P ′: Send faili to every Pj ∈ P ′.
3. ∀Pj ∈ P ′: Set failj = true if any received bits faili = true.
4. Invoke Consensus’ with Pj ’s input being failj . Denote the output as fail.
5. ∀Pi ∈ P ′: send fail to every Pj ∈ (P \ P ′).
6. ∀Pj ∈ (P \ P ′): Set fail as the majority of the received bits.

It is easy to see that Refresh fails when any GenerateSignatureSetup failed for
an honest player. On the other hand, when all players follow the protocol, then
Refresh succeeds. Refresh communicates O(n5)κ bits.

5.6 Fault Handling

The following fault-handling procedure is invoked only when Refresh has failed
(i.e., the players agree on fail = true). The goal of FaultHandling is to localize a
set E ∈ P ′ of two players, such that (at least) one of them is faulty.

FaultHandling exploits the fact that there is no need to maintain the secrecy
of the failed Refresh protocol. Basically, in FaultHandling the whole transcript
of Refresh is revealed and there will be a message from some player Pi to some
player Pj , where Pi claims to have sent some other message than Pj claims to
have received — hence either Pi or Pj is lying, and we can set E = {Pi, Pj}.
Unfortunately, it would be too expensive to publicly reveal the whole transcript;
instead, the transcript is revealed towards a selected player (e.g. Pk ∈ P ′ with
the smallest index k), who searches for the fault and announces it.

We stress that the considered transcript not only contains the messages of all
invocations of the protocol GenerateSignatureSetup, but also the messages of the
protocol Refresh. This is important because it might be that no fault occurred
in GenerateSignatureSetup, but still some (corrupted) player Pi claimed to have
faili = true.

Protocol FaultHandling
1. Every Pi ∈ P ′ sends to Pk all random values chosen during the course of the

protocol Refresh (including all sub-protocols), as well as all values received
during the course of Refresh.

2. Pk computes for every Pi the messages Pi should have sent (when being
correct) during the course of Refresh; this can be done based on the random
values and the received messages of Pi.

3. Pk searches for a message from some player Pi ∈ P ′ to some other player
Pj ∈ P ′, where Pi should have sent a message xi (according to his claimed
randomness), but Pj claims to have received xj , where xi = xj . Denote the
index of this message by 
.

4. Pk invokes Broadcast to announce (i, j, 
, xi, xj).
5. Pi invokes Broadcast to announce whether he indeed sent xi in the 
-th

message.
6. Pj invokes Broadcast to announce whether he indeed received xj in the 
-th

message.
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7. If Both Pi and Pj confirm to have sent xi, respectively to have received xj ,
then E = {Pi, Pj}. If Pi does not confirm to have sent xi, then E = {Pk, Pi}.
If Pj does not confirm to have received xj , then E = {Pk, Pj}.

FaultHandling requires 3 BA invocations and communicates O(n5κ) bits.

6 Conclusions

We have presented a BA protocol for n players that achieves information-
theoretic security against t < n/2 faulty players, communicating O(n5κ) bits
(for some security parameter κ). The protocol requires a compact constant-size
setup, as all BA protocols that tolerate t ≥ n/3 do (also those with cryptographic
security only), and allows for polynomially many BA operations.

This result improves on the existential result of [PW96], which communicates
O(n17κ) bits per BA.
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A Long Messages

The proposed BA protocols only capture messages m ∈ F , i.e., κ-bit messages.
In order to reach BA on longer messages, one could invoke the according BA
protocol several times (once for every κ bit block). However, this would blow up
the communication complexity unnecessarily high: BA of a 
κ bit message would
require a communication complexity of O(
n5κ) bits (as opposed to O(
κn2 +
n17κ) in [PW96]). In this section, we sketch a construction that allows BA of a

κ bit message at costs of O(
κn2 + n5κ) bits.

In order to achieve the stated complexity, we need to replace the protocol
Consensus’ by Consensuslong’. The basic idea of Consensuslong’ is straight forward:
Every player Pi ∈ P ′ sends his message mi to every other player. Then, the
players use Consensus’ to reach agreement on a universal hash value. If agreement
is achieved, all players output the message with the agreed hash value, otherwise
they output ⊥. The key for the universal hash function is assumed to be pre-
shared among the players as part of the BA-setup, and only reconstructed when
needed. We also explain how this sharing is prepared in the Refresh protocol.

A.1 Protocol Consensuslong’

In the following, we present the protocol Consensuslong among the players in P ′,
reaching agreement on a 
κ bit message m. The protocol makes use of universal
hashing [CW79]. As universal hash with key k ∈ F , we use the function Uk :
F� → F , (m(1), . . . , m(�)) �→ m(1) +m(2)k + . . . +m(�)k�−1. The probability that
two different messages map to the same hash value for a uniformly chosen key
is at most 
/|F|, which is negligible in our setting with F = GF (2κ).

Protocol Consensuslong’
1. Every Pi ∈ P ′ sends his message mi to every player Pj ∈ P ′.
2. The players reconstruct the random hash key k ∈ F , which is part of the BA

setup.
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3. Every Pi ∈ P ′ computes (for his original message mi) the universal hash
Uk(mi).7

4. The players in P ′ invoke Consensus’ to reach agreement on the hash value h.
5. If the above consensus fails (i.e., h =⊥), then every Pi ∈ P ′ outputs ⊥. If

it succeeds, then every Pi ∈ P ′ outputs that mj received in Step 1 with
Uk(mj) = h.

One can easily see that the above protocol reaches consensus on m, and that
it communicates O(
κn2) plus one invocations of Consensus’, i.e., communicates
O(
κn2 + n4κ) overall.

A.2 Generating the Hash Key

The protocol Consensuslong’ needs a random hash key to be known to all players
in P ′. We cannot afford to generate this hash key on-line (this would require sev-
eral invocations of broadcast). Instead, we assume a robust sharing of a random
field element to be part of every BA-setup. This sharing is then reconstructed
when needed.

As robust sharing, we use the scheme of [CDD+99]. Essentially, this is a two-
dimensional Shamir sharing, ameliorated with so called authentication tags. The
sharing is constructed non-robustly; in the Share protocol, the players pairwisely
check the consistency of the received shares, and fail in presence of faults. The
sharing of the hash key is generated as sum of a sharing of each player in P ′.
Such a sharing can be computed with communicating O(n4κ) bits (and without
involving broadcast). When the hash key is needed, then the sharing of the
actual BA setup is reconstructed towards every player in P ′. This is achieved
by having every player sending his shares (including the authentication tags) to
every other player; this involves a communication of O(n3κ) bits.

7 In order to do so, the message mi is split into blocks m
(1)
i , . . . , m

(�)
i .
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Abstract. We present six multiparty protocols with information-
theoretic security that tolerate an arbitrary number of corrupt parti-
cipants. All protocols assume pairwise authentic private channels and a
broadcast channel (in a single case, we require a simultaneous broadcast
channel). We give protocols for veto, vote, anonymous bit transmission,
collision detection, notification and anonymous message transmission.
Not assuming an honest majority, in most cases, a single corrupt par-
ticipant can make the protocol abort. All protocols achieve functionality
never obtained before without the use of either computational assump-
tions or of an honest majority.

Keywords: Multiparty computation, anonymous message trans-
mission, election protocols, collision detection, dining cryptographers,
information-theoretic security.

1 Introduction

In the most general case, multiparty secure computation enables n participants
to collaborate to compute an n-input, n-output function (one per participant).
Each participant only learns his private output which, depending on the function,
can be the same for each participant. Assuming that private random keys are
shared between each pair of participants, we known that every function can
be securely computed in the presence of an active adversary if and only if less
than n/3 participants are corrupt; this fundamental result is due to Michael Ben-
Or, Shafi Goldwasser and Avi Wigderson [BGW88] and David Chaum, Claude
Crépeau and Ivan Damg̊ard [CCD88]. When a broadcast channel is available,
the results of Tal Rabin and Michael Ben-Or [RB89] tell us that this proportion
can be improved to n/2.

Here, we present six specific multiparty computation protocols that achieve
correctness and privacy without any assumption on the number of corrupt parti-
cipants. Naturally, we cannot always achieve the ideal functionality, for example
in some cases, a single participant can make the protocol abort. This is the price
to pay to tolerate an arbitrary number of corrupt participants and still provide
information-theoretic privacy of the inputs.

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 410–426, 2007.
c© International Association for Cryptology Research 2007
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All protocols we propose have polynomial complexity in the number of parti-
cipants and the security parameter. We always assume pairwise shared private
random keys between each pair of participants, which allows pairwise private
authentic channels. We also assume a broadcast channel and, even though it
is a strong assumption, in some cases we need the broadcast to be simultane-
ous [CGMA85, HM05].

1.1 Summary of Results

Our main contributions are in the areas of elections (vote) and anonymity
(anonymous bit transmission and anonymous message transmission). Each pro-
tocol is an astute combination of basic protocols, which are also of independent
interest, and that implement parity, veto, collision detection and notification.

The main ingredient for our information-theoretically secure protocols is the
dining cryptographers protocol [Cha88] (see also Section 2), to which we add the
following simple yet powerful observation: if n participants each hold a private
bit of an n-bit string with Hamming weight of parity p, then any single partic-
ipant can randomize p by locally flipping his bit with a certain probability. It
is impossible, however, for any participant to locally derandomize p. In the case
of the anonymous message transmission, we also build on the dining cryptog-
raphers protocol by noting that a message that is sent can be ciphered with a
one-time pad by having one participant (the receiver) broadcast a random bit.
Any modification of the message can then be detected by the receiver with an
algebraic manipulation detection code [CFP07].

Vote. Our vote protocol (Section 4) allows n participants to conduct an m-
candidate election. The privacy is perfect but the protocol has the drawback that
if it aborts (any corrupt participant can cause an abort), the participants can still
learn information that would have been available had the protocol succeeded.
For this protocol, we require a simultaneous broadcast channel. It would be
particularly well-suited for a small group of voters that are unwilling to trust
any third party and who have no advantage in making the protocol abort.

Previous work on information-theoretically secure voting protocols include
[CFSY96], where a protocol is given in the context where many election au-
thorities are present. To the best of our knowledge, our approach is fundamen-
tally different from any other approaches for voting. It is the first to provide
information-theoretic security without requiring or trusting any third party,
while also providing ballot casting assurance (each participant is convinced that
their input is correctly recorded [AN06]) and universal verifiability (each par-
ticipant is conviced that only registered voters cast ballots and that the tally is
correctly computed [SK95]).

Anonymity. Anonymity is the power to perform a task without identifying the
participants that are involved. In the case of anonymous message transmission,
it is simply the capacity of the sender to transmit a private message to a specific
receiver of his choosing without revealing either his identity or the identity of the
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receiver. A number of protocols have been suggested for anonymous transmission.
Many of these rely on trusted or semi-trusted third parties as well as computa-
tional assumptions (for instance, the MIX-net [Cha81]). Here, we do not make
any such assumptions. The most notable protocol for anonymous transmission
in our context is the dining cryptographers protocol [Cha88], which allows a sin-
gle sender to anonymously broadcast a bit, and provides information-theoretical
security against a passive adversary. We present the protocol in a version that
implements the multiparty computation of the parity function in Section 2.

The case of multiple yet honest senders in the dining cryptographers pro-
tocol can be solved by time slot reservation techniques, as originally noted by
Chaum [Cha88]. But nevertheless, any corrupt participant can jam the chan-
nel. Techniques offering computational security to this problem have been pro-
posed [Cha88, WP89b]. Also, computational assumptions allow the removal of
the reliance on a broadcast channel [WP89a].

In our implementation of anonymous bit transmission (Section 5), we ele-
gantly deal with the case of multiple senders by allowing an unlimited amount
of participants to act as anonymous senders. Each anonymous sender can target
any number of participants and send them each a private bit of his choice. Thus,
the outcome of the protocol is, for each participant, a private list indicating how
many 0s and how many 1s were received. The anonymity of the sender and re-
ceiver and the privacy of all transmitted bits is always perfectly achieved, but
any participant can cause the protocol to abort, in which case the participants
may still learn some information about their own private lists.

We need a way for all participants to find out if the protocol has succeeded.
This is done with the veto protocol (Section 3), which takes as input a single bit
from each participant; the output of the protocol is the logical OR of the inputs.
Our implementation differs from the ideal functionality since a participant that
inputs 1 will learn if some other participant also input 1. We make use of this
deviation from the ideal functionality in further protocols.

In our fixed role anonymous message transmission protocol (Section 8), we
present a method which allows a single sender to communicate a message of
arbitrary length to a single receiver. To the best of our knowledge, this is the first
protocol ever to provide perfect anonymity, message privacy and integrity. For a
fixed security parameter, the anonymous message transmission is asymptotically
optimal.

Our final protocol for anonymous message transmission (Section 9) allows a
sender to send a message of arbitrary length to a receiver of his choosing. While
any participant can cause the protocol to abort, the anonymity of the sender
and receiver is always perfectly achieved. The privacy of the message is pre-
served except with exponentially small probability. As far as we are aware, all
previous proposed protocols for this task require either computational assump-
tions or a majority of honest participants. The protocol deals with the case of
multiple senders by first executing the collision detection protocol (Section 6),
in which each participant inputs a single bit. The outcome only indicates if the
sum of the inputs is 0, 1 or more. Compared to similar protocols called time
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slot reservation [Cha88, WP89b], our protocol does not leak any additional in-
formation about the number of would-be senders. The final protocol also makes
use of the notification protocol (Section 7) in which each participant chooses a
list of other participants that are to be notified. The output privately reveals to
each participant the logical OR of his received notifications. A special case of
this protocol is when a single participant notifies another single participant; this
is the version used in our final protocol to enable the sender to anonymously tell
to the receiver to act accordingly.

1.2 Common Features to All Protocols

All protocols presented in the following sections share some common features,
which we now describe. Our protocols are given in terms of multiparty computa-
tion with inputs and outputs and involve n participants, indexed by i = 1, . . . , n.
In the ideal functionality, the only information that the participants learn is their
output (and what can be deduced from it). Correctness refers to the fact that
the outputs are correctly computed, while privacy ensures that the inputs are
never revealed.

The protocols ensure correctness and privacy even in the presence of an un-
limited number of misbehaving participants. Two types of such behaviour are
relevant: participants who collude (they follow the protocol but pool their infor-
mation in order to violate the protocol’s privacy), and participants who actively
deviate from the protocol (in order to violate the protocol’s correctness or pri-
vacy). Without loss of generality, these misbehaviours are modelled by assuming
a central adversary that controls some participants, rendering them corrupt. The
adversary is either passive (it learns all the information held by the corrupt par-
ticipants), or active (it takes full control of the corrupt participants). We will
deal only with the most general case of active adversaries, and require them to
be static (the set of corrupt participants does not change). A participant that
is not corrupt is called honest. Our protocols are such that if they do not abort,
there exists inputs for the corrupt participants that would lead to the same out-
put if they were to act honestly. If a protocol aborts, the participants do not
learn any more information than they could have learned in an honest execu-
tion of the protocol. The input and output description applies only to honest
participants.

We assume that each pair of participants shares a private, uniformly random
string that can be used to implement an authentic private channel. The partici-
pants have access to a broadcast channel and in some cases, it is simultaneous.
A broadcast channel is an authentic broadcast channel for which the sender is
confident that all participants receive the same value and the receivers know
the identity of the sender. A simultaneous broadcast channel is a collection of
broadcast channels where the input of one participant cannot depend on the
input of any other participant. This could be achieved if all participants simul-
taneously performed a broadcast. In order to distinguish between the two types
of broadcast, we sometimes call the broadcast channel a regular broadcast. It
is not uncommon in multiparty computation to allow additional resources, even
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if these resources cannot be implemented with the threshold on the honest par-
ticipants (the results of [RB89] which combine a broadcast channel with n/2
honest participants being the most obvious example). Our work suggests that
a simultaneous broadcast channel is an interesting primitive to study in this
context.

In all protocols, the security parameter is s. Unfortunately, in many of our pro-
tocols, a single corrupt participant can cause the protocol to abort. All protocols
run in polynomial time with respect to the number of participants, the security
parameter and the input length. Although some of the protocols presented in
this paper are efficient, our main focus here is in the existence of protocols for
the described tasks. We leave for future work improvement of their efficiency.
Finally, due to lack of space, we present only sketches of security proofs.

2 Parity

Protocol 1 implements the parity function and is essentially the same as the
dining cryptographers protocol [Cha88], with the addition of a simultaneous
broadcast channel. Note that if we used a broadcast channel instead, then the
last participant to speak would have the unfair advantage of being able to adapt
his input in order to fix the outcome of the protocol!

Protocol 1. Parity
Input: xi ∈ {0, 1}
Output: yi = x1 ⊕ x2 ⊕ · · · ⊕ xn

Broadcast type: simultaneous broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort, the output is the same as in the ideal
functionality.
2) (Privacy) No adversary can learn more than the output of the ideal functionality.
Each participant i does the following:
1. Select uniformly at random an n-bit string ri = r1

i r2
i . . . rn

i with Hamming weight
of parity xi.

2. Send rj
i to participant j using the private channel; keep bit ri

i to yourself.
3. Compute zi, the parity of the sum of all the bits received, including ri

i.
4. Use the simultaneous broadcast channel to announce zi.
5. After the simultaneous broadcast is finished, compute yi =

⊕n
k=1 zk. This is the

outcome of the protocol. If the simultaneous broadcast fails, abort the protocol.

Correctness and privacy follows from [Cha88]. Thus, any adversary can learn
only what can be deduced from the corrupt participant’s inputs and the out-
come of the protocol. Note that this means that the adversary can deduce the
parity of the inputs of the other participants. We will later use the two simple
observations that there is no way to cheat except by refusing to broadcast and
that any value that is broadcast is consistent with a choice of valid inputs. In
the following protocols, we will adapt step 4 of the parity protocol to make
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it relevant to the scenario, this will allow us to remove the assumption of the
simultaneous broadcast. We will also use the fact that if a single participant
either does not broadcast, or broadcasts a random bit in step 4 then the value
of the output of parity is known to this participant, but is perfectly hidden to
all other participants.

3 Veto

In this section, we build on the parity protocol to give a protocol for the secure
implementation of the veto function, which computes the logical OR of the
participant’s inputs (Protocol 2). As noted in Lemma 3, the protocol achieves a
variant of the ideal functionality: any participant can passively learn the value
of the logical OR of all other participants’ inputs. This deviation from the ideal
functionality is unavoidable since the two-participant ideal scenario is impossible
to implement in our model. We will use this deviation in the collision detection
protocol of Section 6.

Protocol 2. Veto
Input: xi ∈ {0, 1}
Output: yi = x1 ∨ x2 ∨ · · · ∨ xn

Broadcast type: regular broadcast
Achieved functionality:
1) (Reliability) No participant can make the protocol abort.
2) (Correctness) The outcome of the protocol is the outcome of the ideal functionality.
3) (Privacy) Any adversary learns the logical OR of the other participants’ inputs but
nothing more.

The n participants agree on n orderings such that each ordering has a different last
participant.
result ← 0
For each ordering,

Repeat s times:
1. Each participant i sets the value of pi in the following way: if xi = 0 then pi = 0;

otherwise, pi = 1 with probability 1
2 and pi = 0 with complimentary probability.

2. The participants execute the parity protocol with inputs p1, p2, . . . pn, with the
exception that the simultaneous broadcast is replaced by a regular broadcast with
the participants broadcasting according to the current ordering (if any participant
refuses to broadcast, set the value result ← 1). If the outcome of parity is 1, then
set result ← 1 .

Output the value result.

Lemma 1 (Reliability). No participant can make the veto protocol abort.

Proof. If a participant refuses to broadcast, it is assumed that the output of the
protocol is 1. ��
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Lemma 2 (Correctness). If all participants in the veto protocol have input
xi = 0, then the protocol achieves the ideal functionality with probability 1. If
there exists a participant with input xi = 1 then the protocol is correct with
probability at least 1 − 2−s.

Proof. The correctness follows by the properties of the parity protocol, with
the difference that we now have a broadcast channel instead of a simultaneous
broadcast channel. The case where all inputs are 0 is trivial. Let xi = 1 and
suppose that the protocol is executed until the ordering in which participant i
speaks last. Then with probability at least 1−2−s, in step 2 of veto, the output
of the protocol will be set to 1. ��

Lemma 3 (Privacy). In the veto protocol, the most an adversary can learn is
the logical OR of the other participants’ inputs. Additionally, this information is
revealed, even to a passive adversary, with probability at least 1 − 2−s.

Proof. This follows from the properties of the parity protocol: for a given repeti-
tion, the adversary learns the parity of the honest participants’ pi’s, but nothing
else. Because of the way that the pi’s are chosen in step 1, if for any repetition,
this parity is odd, the adversary concludes that at least one honest participant
has input 1, and otherwise if all repetitions yield 0, then the adversary concludes
that with probability at least 1 − 2−s, all the honest participant’s inputs are 0.
In all cases, this is the only information that is revealed; clearly, it is revealed
to any passive adversary, except with exponentially small probability. Note that
this information could be learned in the ideal functionality by assigning to all
corrupt participants the input 0. ��

4 Vote

The participants now wish to conduct an m-candidate vote. The idea of Proto-
col 3 is simple. In the veto protocol, each participant with input 1 completely
randomizes his input into the parity protocol, thus randomizing the output of
parity. By flipping the output of parity with probability only 1/n, the prob-
ability of the outcome being odd becomes a function of the number of such
flips. Using repetition, this probability can be approximated to obtain the exact
number of flips with exponentially small error probability. This can be used to
compute the number of votes for each candidate. Unfortunately, a corrupt par-
ticipant can randomize his bit with probability higher than 1/n, enabling him
to vote more than once. But since a participant cannot derandomize the parity,
he cannot vote less than zero times. Verifying that the sum of the votes equals n
ensures that all participants vote exactly once. Note that the protocol we present
is polynomial in m and not in the length of m.

Lemma 4 (Correctness). If the vote does not abort, then there exists an input
for each corrupt participant such that the output of the honest participants equals
the output of the ideal functionality, except with probability exponentially small
in s.
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Protocol 3. Vote
Input: xi ∈ {1, . . . , m}
Output: for k = 1 to m, y[k]i = |{xj | xj = k}|
Broadcast type: simultaneous broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort, then there exists an input xi for each
corrupt participant such that the protocol achieves the ideal functionality.
2) (Privacy) Even if the protocol aborts, no adversary can learn more that what it would
have learned by setting in the ideal functionality xi = 1 for all corrupt participants.

Phase A
For each candidate k = 1 to m,

For j = 1 to s,
1. Each participant i sets the value of pi in the following way: if xi �= k, then pi = 0;

otherwise, pi = 1 with probability 1
n

and pi = 0 with complimentary probability.
2. The participants execute the parity protocol to compute the parity of p1, p2, . . . pn,

but instead of broadcasting their output bit zi, they store it as z[k]ji .
Phase B
All participants simultaneously broadcast z[k]ji (j = 1, 2, . . . , s). If the simultaneous
broadcast is not successful, the protocol aborts.
Phase C
To compute the tally, y[k]i, for each value k = 1 . . . m, each participant sets:
p[k]j =

⊕n
i=1 z[k]ji , σ[k]i =

∑s
j=1 p[k]j/s and if there exists an integer v such that

|σ[k]i − pv| < 1
2e2n

,

where pv = 1
2

(
n−2

n

)v
((

n
n−2

)v

− 1
)
, then y[k]i = v .

If for any k, no such value v exists, or if
∑m

k=1 y[k]i �= n, the protocol aborts.

Proof. If all participants are honest, the correctness of the protocol is derived
from the Chernoff bound as explained in the Appendix. Assume now t corrupt
participants. Since the parity protocol is perfect, the only place participant i can
deviate from the protocol is by choosing pi with an inappropriate probability.
We first note that if the t corrupt participants actually transmit the correct
number of private bits in phase A and broadcast the correct number of bits
in phase B, then whatever they actually send is consistent with some global
probability of flipping.

We use again the fact that it is possible to randomize the parity but not to
derandomize it: if the corrupt participants altogether flip with a probability not
consistent with an integer number of votes, either the statistics will be incon-
sistent, causing the protocol to abort, or we can interpret the results as being
consistent with an integer amount of votes. If they flip with a probability con-
sistent with an integer different than t, then each y[k]i will be assigned a value,
but with probability exponentially close to 1, we will have

∑m
k=1 y[k]i �= n and

the protocol will abort. ��

Lemma 5 (Privacy). In the vote protocol, no adversary can learn more than
what it would have learned by assigning to all corrupt participants the input 1 in
the ideal functionality, and this even if the protocol aborts.
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Proof. Assume that the first t participants are corrupt. No information is sent
in phase A or phase C. We thus have to concentrate on phase B where the
participants broadcast their information regarding each parity. For each execu-
tion of parity, the adversary learns the parity of the honest participant’s values,
pt+1 ⊕ pt+2 ⊕ . . .⊕ pn, but no information on these individual values is revealed.
The adversary can thus only evaluate the probability with which the other parti-
cipants have flipped the parity. But this information could be deduced from the
output of the ideal functionality, for instance by fixing the corrupt participants’
inputs to 1. ��

It is important to note that the above results do not exclude the possibility of an
adversary causing the protocol to abort while still learning some information as
stipulated in Lemma 5. This information could be used to adapt the behaviour
of the adversary in a future execution of vote.

In addition to the above theorems, it follows from the use of the simultane-
ous broadcast channel that an adversary cannot act in a way that a corrupt
participant’s vote depends an honest participant’s vote. In particular, it can-
not duplicate an honest participant’s vote. We claim that our protocol provides
ballot casting assurance and universal verifiability. This is straightforward from
the fact that participants do not entrust any computation to a third party: they
provide their own inputs and can verify that the final outcome is computed
correctly.

5 Anonymous Bit Transmission

The anonymous bit transmission protocol enables a sender to privately and
anonymously transmit one bit to a receiver of his choice. Protocol 4 actually
deals with the usually problematic scenario of multiple anonymous senders in
an original way: it allows an arbitrary number participants to act as anonymous
senders, each one targeting any number of participants and sending them each a
chosen private bit. Each participant is also simultaneously a potential receiver :
at the end of the protocol, each participant has a private account of how many
anonymous senders sent the bit 0 and how many sent the bit 1. Note that in
our formalism for multiparty computation, the privacy of the inputs implies the
anonymity of the senders and receivers.

The security of the anonymous bit transmission protocol follows directly
from the security of the vote and of the veto. Of course, the anonymous bit
transmission also inherits the drawbacks of these protocols. More precisely we
have the following:

Lemma 6 (Correctness). The anonymous bit transmission protocol com-
putes the correct output, except with exponentially small probability.

Proof. If the protocol does not abort, by Lemmas 2 and 4, except with expo-
nentially small probability, all bits are correctly transmitted. ��
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Protocol 4. Anonymous Bit Transmission
Input: xj

i ∈ {0, 1, ⊥}, (j = 1, 2, . . . , n)
Output: yi = (|{xi

j | xi
j = 0}|, |{xi

j | xi
j = 1}|)

Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort then the output of the protocol equals
the output of the ideal functionality.
2) (Privacy) The privacy is the same as in the ideal functionality.

For each participant j,
1. Execute the vote protocol with m = 3 as modified below. The three choices are:

0, 1, or ⊥ (abstain). Each participant i chooses his input to the vote according
to xj

i , his choice of message to be sent anonymously to participant j. The vote
protocol is modified such that:
(a) The output strings are sent to participant j through the private channel.
(b) Participant j computes the tally as in the vote and if this computation suc-

ceeds, he finds out how many participants sent him a 0, how many sent him
a 1 and how many abstained. If this occurs (and the results are consistent) he
sets his success bit, sj to 0. If the vote aborts, he sets sj to 1.

Execute the veto protocol, using as inputs the success bits sj . If the output of veto
is 0, then the anonymous bit transmission succeeds. Otherwise, the protocol fails.

Lemma 7 (Privacy). In the anonymous bit transmission protocol, the pri-
vacy is the same as in the ideal functionality.

Proof. Each execution of the vote protocol provides perfect privacy, even if the
protocol aborts. The final veto reveals some partial information about which
honest participants have been targeted by corrupt participants, but this does
not compromise the privacy of the protocol. ��

In Protocol 4, the use of the private channel in step (a) can be removed and
replaced by a broadcast channel. Since participant j does not broadcast, the
messages remain private. Another modification of the protocol makes it possible
to send m possible messages instead of just two but note that the complexity
is polynomial in m and not in the length of m. The transmission of arbitrarily
long strings is discussed in Sections 8 and 9.

6 Collision Detection

The collision detection protocol (Protocol 5) enables the participants to verify
whether or not there is a single sender in the group. This will be used as a pro-
cedure for the implementation of anonymous message transmission in Section 9.
Ideally, a protocol to detect a collision would have as inputs only xi ∈ {0, 1},
with outputs in {0, 1, 2}, depending on the sum of the inputs. Unfortunately we
do not know how to achieve such a functionality; instead, we allow any partici-
pant to choose to force output 2, which in our description, corresponds to using
input value 2.
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Protocol 5. Collision Detection
Input: xi ∈ {0, 1, 2}
Output: let r =

∑n
i=1 xi then yi = min{r, 2}

Broadcast type: regular broadcast
Achieved functionality:
1) (Reliability) No participant can make the protocol abort.
2) (Correctness) The output of the protocol equals the output of the ideal functionality.
3) (Privacy) An adversary cannot learn more than it could have learned by assigning
to all corrupt participants the input 0 in the ideal functionality.

Veto A
All participants perform the veto protocol with inputs min{xi, 1}. As in Lemma 3,
the participants note the value of the logical OR of the other participants’ inputs.
Veto B
If the outcome of veto A is 0, skip this step. Otherwise, each participant with input 1
in veto A will set bi = 1 if he detected in veto A that another participant had
input 1, or if xi = 2. All other participants set bi = 0. Then all participants perform a
second veto protocol with inputs bi.

Output: yi =

⎧
⎪⎨

⎪⎩

0 if the outcome of veto A is 0
1 if the outcome of veto A is 1 and the outcome of veto B is 0
2 if the outcome of veto A is 1 and the outcome of veto B is 1

Lemma 8 (Reliability). No participant can make the collision detection pro-
tocol abort.

Proof. This follows from the reliability of veto. ��

Lemma 9 (Correctness). In the collision detection protocol, the output equals
the output of the ideal functionality (except with exponentially small probability).

Proof. This follows from the correctness of the veto protocol. There are only
two ways a corrupt participant can deviate from the protocol. First, participant i
can set bi = 0 although xi ∈ {0, 1} and although in the first veto his input was 1
and a collision was detected. The outcome of veto B will still be 1 since another
participant with input 1 in veto A will input 1 in veto B. This is consistent with
input xi = 1. Second, participant i can set bi = 1 although xi = 0. If veto B is
executed, then we know that another participant has input 1 in veto A. This is
consistent with input xi = 1. ��

Note that we have raised a subtle deviation from the ideal protocol in the above
proof: we showed how it is possible for a corrupt participant to set his input
to 0 if all other participants have input 0 and to 1 otherwise. Fortunately, the
protocol is still sufficiently good for the requirements of the following sections.

Lemma 10 (Privacy). In the collision detection protocol, an adversary can-
not learn more than it could have learned by assigning to all corrupt participants
the input 0 in the ideal functionality.

Proof. In each veto, an adversary can only learn whether or not there exists
an honest participant with input 1. In all cases, this can be deduced from the
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outcome of the ideal functionality by setting the input to be 0 for all corrupt
participants. ��

7 Notification

In the notification protocol (Protocol 6), each participant chooses a list of other
participants to notify. The output privately reveals to each participant whether
or not he was notified, but no information on the number or origin of such
notifications is revealed. Because participants are notified one after another, our
protocol does not exclude adaptive behaviours.

Protocol 6. Notification
Input: ∀j �= i, xj

i ∈ {0, 1}
Output: yi =

∨
j �=i xi

j

Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort then the output of the protocol equals
the output of the ideal functionality.
2) (Privacy) The privacy is the same as in the ideal functionality.

For each participant i:
Participant i sets yi ← 0.
Repeat s times:

1. Each participant j �= i sets the value of pj in the following way: if xi
j = 0 then

pj = 0; otherwise, pj = 1 with probability 1
2 and pi = 0 with complimentary

probability. Let pi = 0.
2. The participants execute the parity protocol with inputs p1, p2, . . . pn, with the

exception that participant i does not broadcast his value, and the simultaneous
broadcast is replaced by a regular broadcast (if any participant refuses to broad-
cast, abort).

3. Participant i computes the outcome of parity, and if it is 1, yi ← 1 .

Lemma 11. The notification protocol achieves privacy and except with expo-
nentially small probability, the correct output is computed.

Proof. Privacy and correctness are trivially deduced from properties of the par-
ity protocol. ��

8 Fixed Role Anonymous Message Transmission

In Section 5, we presented an anonymous bit transmission protocol. The
protocol easily generalizes to m messages, but the complexity of the protocol
becomes polynomial in m. It is not clear how to modify the protocol to transmit
a string of arbitrary length, while still allowing multiple senders and receivers.
However, in the context where a single sender S is allowed, it is possible to
implement a secure protocol for S to anonymously transmit a message to a
single receiver R, which we call fixed role anonymous message transmission
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(Protocol 7). If the uniqueness condition on S and R is not satisfied, the protocol
aborts. The protocol combines the use of the parity protocol with an algebraic
manipulation detection code [CFP07], which we present as Theorem 1. Due to
lack of space, the encoding and decoding algorithms, F and G, respectfully,
are not repeated. For a less efficient algorithm that achieves a similar result,
see [CPS02].

Theorem 1 ([CFP07]). There exists an efficient probabilistic encoding algo-
rithm F and decoding algorithm G, where F : {0, 1}m → {0, 1}m+2(log(m)+s and
G : {0, 1}m+2(log(m)+s) → {⊥, {0, 1}m} such that for all w, G(F (w)) = w, and
any fixed combination of bit flips applied to w′ = F (w) produces a w′′ such that
G(w′′) =⊥, except with probability 2−s.

Protocol 7. Fixed Role Anonymous Message Transmission
Oracle: The sender S and receiver R know their identity
Input: S has input w ∈ {0, 1}m, all other players have no input
Output: R has output w, all other players have no output
Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort, R obtains the correct message.
2) (Privacy) The only information that can be learned through the protocol is for R
to learn w.
3) (Oracle) If the oracle conditions are not satisfied (in the sense that more than one
honest participant believes to be the sender or the receiver), the protocol will abort.

1. S computes w′ = F (w)
2. The participants execute m + 2(log(m) + s) rounds of the parity protocol, with

participants using a broadcast instead of a simultaneous broadcast and using the
following inputs:
(a) S uses as input the bits of w′.
(b) R uses as input the bits of a random m-bit string, r.
(c) All other players use 0 as input for each round.

3. Let d be the output of the rounds of parity. R computes w′′ = d ⊕ r.
4. R computes y = G(w′′).
5. A veto is performed: all players input 0 except R who inputs 1 if y =⊥ and 0

otherwise.
If the outcome of veto is 1, the protocol aborts. Otherwise, R sets his output to y.

Lemma 12 (Correctness, Privacy, Oracle). In the fixed role anonymous
message transmission protocol, the probability that R obtains as output a
corrupt message is exponentially small. The protocol is perfectly private, and if
the oracle conditions are not satisfied, it will abort (except with exponentially
small probability).

Proof. Because of the properties of parity and the fact that the receiver broad-
casts a random bit, we have perfect privacy. Correctness is a direct consequence
of Theorem 1. Finally, if more than one participant acts as a sender or receiver,
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then again by Theorem 1, the message will not be faithfully transmitted and the
protocol will abort in step 5, except with exponentially small probability. ��
Theorem 2. For a fixed security parameter, the fixed role anonymous mes-
sage transmission protocol is asymptotically optimal.

Proof. For any protocol to preserve the anonymity of the sender and the receiver,
each player must sent at least one bit to every other player for each bit of the
message. In the fixed role anonymous message transmission protocol, for
a fixed s, each player actually sends O(1) bits to each other player and therefore
the protocol is asymptotically optimal. ��

9 Anonymous Message Transmission

Our final protocol allows a sender to anonymously transmit message to a receiver
of his choosing. Contrary to the fixed role anonymous message transmis-
sion protocol of Section 8, anonymous message transmission (Protocol 8)
does not suppose that there is a single sender, but instead, it deals with poten-
tial collisions (or lack of any sender at all) by producing the outputs Collision

or No Transmission. The only deviation from the ideal functionality in the
protocol is that a single participant can force the Collision output. Note again
that in this protocol, the privacy of the input implies anonymity of the sender
and receiver.

Protocol 8. Anonymous Message Transmission
Input: xi =⊥ or xi = (r,w) where r ∈ {1, . . . , n} and w ∈ {0, 1}m

Output: If |{xi | xi �=⊥}| = 0 then yi = No Transmission and if |{xi | xi �=⊥}| > 1
then yi = Collision. Otherwise let S be such that xS = (r,w) then all yi =⊥ except
yr = w.
Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) The output equals the output of the ideal functionality except that a
single participant can make the protocol produce the output Collision.
2) (Privacy) The privacy is the same as in the ideal functionality.

1. The participants execute the collision detection protocol; participants who have
input xi =⊥ use input 0 while all others use input 1. If the outcome of collision
detection is 1, continue, otherwise output No Transmission if the output is 0
and Collision if the output is 2.

2. Let the sender S be the unique participant with xS �=⊥. The participants execute
the notification protocol, with S using input xr

S = 1 and xj
S = 0 otherwise. All

other participants use the input bits 0. Let R be the participant who computes as
output yR = 1. If the notification protocol fails, abort.

3. The participants execute the fixed role anonymous message transmission
protocol.

Lemma 13 (Correctness). In the anonymous message transmission
protocol, the output equals the output of the ideal functionality except with
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exponentially small probability. The only exception is that a single participant
can make the protocol produce the output Collision.

Proof. This follows easily from the correctness of the collision detection, no-
tification and fixed role anonymous message transmission protocols. ��

Lemma 14 (Privacy). The anonymity of the sender and receiver are perfect. If
the protocol succeeds, except with exponentially small probability, participant r is
the only participant who knows w.

Proof. Perfect anonymity follows from the privacy of the collision detection,
notification and anonymous message transmission protocols. If the sender
successfully notifies the receiver in step 2, then the privacy of w is perfect. But
with exponentially small probability, the receiver will not be correctly notified,
and an adversary acting as the receiver will receive the message w. ��

10 Conclusion

We have given six multiparty protocols that are information-theoretically secure
without any assumption on the number of honest participants. It would be in-
teresting to see if the techniques we used can be applied to other multiparty
functions or in other contexts.

Our main goal was to prove the existence of several protocols in a model that
does not make use of any strong hypotheses such as computational assumptions
or an honest majority. This being said, all the presented protocols are reasonably
efficient: they are all polynomial in terms of communication and computational
complexity and in one case, asymptotically optimal.
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A Proof of Correctness for Protocol 3

Lemma 15 (Correctness). If all participants are honest in Protocol 3 (vote),
then the output is correct, except with probability exponentially small in s.

Proof. We fix a value k and suppose that v participants have input xi = k.
Thus we need to show that in the vote, y[k]i = v, except with probability
exponentially small in s.

We now give the intuition behind phase C of the vote. Let pv be the prob-
ability that p[k]j =

⊕n
i=1 z[k]ji = 1. For v ≤ n, we have p0 = 0, p1 = 1

n and
pv+1 = pv

(
1 − 1

n

)
+ (1 − pv) 1

n . Solving this recurrence, we get
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pv =
1
2

(
n − 2

n

)v ((
n

n − 2

)v

− 1
)

. (1)

Thus, the idea of phase C of the vote is for the participants to approximate pv

by computing σ[k]i =
∑s

i=1 p[k]j/s. If the approximation is within 1
2e2n of pv,

then the outcome is y[k]i = v. We first show that if such a v exists, it is unique.
Clearly, for v < n, we have that pv+1 > pv. We also have limn→∞ pn = 1

2 − 1
2e2 .

Thus the difference between pv+1 and pv is:

pv+1 − pv = pv

(

1 − 1
n

)

+ (1 − p)
1
n

− pv (2)

=
1 − 2pv

n
>

1 − 2pn

n
>

1
e2n

(3)

Hence if such a v exists, it is unique. We now show that except with probability
exponentially small in s, the correct v will be chosen. Let X =

∑s
j=1 p[k]j be

the sum of the s executions of parity, with μ = spv the expected value of X .
The participants have computed σ[k]i = X/s .

By the Chernoff bound, for any 0 < δ ≤ 1,

Pr[X ≤ (1 − δ)μ] < exp(−μδ2/2) (4)

Let δ = 1
2e2npv

. We have

Pr[X ≤ μ − s

2e2n
] < exp(− s

8e4n2pv
) (5)

and so
Pr[σ[k]i − pv ≤ −1

2e2n
] < exp(− s

8e4n2pv
) (6)

Similarly, still by the Chernoff bound, for any δ < 2e − 1,

Pr[X > (1 + δ)μ] < exp(−μδ2/4) (7)

Let δ = 1
2e2npv

and we get

Pr[X > μ +
s

2e2n
] < exp(

−s

16e4n2pv
) (8)

and so
Pr[σ[k]i − pv >

1
2e2n

] < exp(
−s

16e4n2pv
) (9)

Hence the protocol produces the correct value for y[k]i, except with probability
exponentially small in s. ��
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Abstract. The black-box field (BBF) extraction problem is, for a given
field F, to determine a secret field element hidden in a black-box which
allows to add and multiply values in F in the box and which reports
only equalities of elements in the box. This problem is of cryptographic
interest for two reasons. First, for F = Fp it corresponds to the generic
reduction of the discrete logarithm problem to the computational Diffie-
Hellman problem in a group of prime order p. Second, an efficient
solution to the BBF extraction problem proves the inexistence of field-
homomorphic one-way permutations whose realization is an interesting
open problem in algebra-based cryptography. BBFs are also of indepen-
dent interest in computational algebra.

In the previous literature BBFs had only been considered for the prime
field case. In this paper we consider a generalization of the extraction
problem to BBFs that are extension fields. More precisely we discuss the
representation problem defined as follows: For given generators g1, . . . , gd

algebraically generating a BBF and an additional element x, all hidden
in a black-box, express x algebraically in terms of g1, . . . , gd. We give an
efficient algorithm for this representation problem and related problems
for fields with small characteristic (e.g. F = F2n for some n). We also
consider extension fields of large characteristic and show how to reduce
the representation problem to the extraction problem for the underlying
prime field.

These results imply the inexistence of field-homomorphic (as opposed
to only group-homomorphic, like RSA) one-way permutations for fields
of small characteristic.

Keywords: Black-box fields, generic algorithms, homomorphic encryp-
tion, one-way permutations, computational algebra.

1 Introduction

1.1 Black-Boxes and Generic Algorithms

Algebraic structures like groups, rings, and fields, and algorithms on them, play
a crucial role in cryptography. In order to compute in an algebraic structure one
needs a representation of its elements, for instance as bitstrings. Algorithms that
do not exploit any property of the representation are called generic. The concept
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of generic algorithms is of interest for two reasons. First, generic algorithms can
be used no matter how the structure is represented, and second, this model
allows for significant lower bound proofs for certain computational problems.
For instance, Shoup [Sho97] proved a lower bound on the complexity of any
generic algorithm for computing discrete logarithms in a finite cyclic group.

Representation-independent algorithms on a given algebraic structure S are
best modeled by a black-box [BS84, BB99, Mau05], which initially contains some
elements of S, describing an instance of the computational problem under con-
sideration. The black-box accepts instructions to perform the operation(s) of S
on the values stored in it. The (internal) values are stored in addressable registers
and the result of an operation is stored in a new register. The values stored in
the black-box are hidden and the only information about these values provided
to the outside (an hence to the algorithm) are equalities of stored elements. This
models that there is no (need for a) representation of values but that nevertheless
one can compute on given values. The equality check provided by the black-box
models the trivial property of any (unique) representation that equality is easily
checked.1

A basic problem in this setting is the extraction problem: The black-box con-
tains a secret value x (and possibly also some constants), and the task of the
algorithm is to compute x (explicitly).

For example, a cyclic group of prime order p is modeled by a black-box where
S is the additive group Zp (and which can be assumed to contain the constants 0
and 1 corresponding to the neutral element and the generator, respectively). The
discrete logarithm problem is the extraction problem for this black-box. Shoup’s
result implies that no algorithm can extract x (if uniformly chosen) with fewer
than O(

√
p) expected operations. Actually, this many operations are required

in expectation to provoke a single collision in the black-box, which is necessary
for the algorithm to obtain any information about the content of the black-box.
Both the baby-step giant-step algorithm and the Pohlig-Hellman algorithm are
generic algorithm which can be described and analyzed in this model.

1.2 Black-Box Fields and Known Results

If one assumes in the above setting that the black-box not only allows addition
but also multiplication of values modulo p, then this corresponds to a black-box
field (BBF).

An efficient (non-uniform) algorithm for the extraction problem in Fp was
proposed in [Mau94] (see also [MW99]), where non-uniform means that the al-
gorithm depends on p or, equivalently, obtains a help-string that depends on p.
Moreover, the existence of the help-string, which is actually the description of
an elliptic curve of smooth order over Fp, depends on a plausible but unproven
number-theoretic conjecture.

1 Note that this model is simpler than Shoup’s model which assumes a random rep-
resentation.
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Boneh and Lipton [BL96] proposed a similar but uniform algorithm for the
extraction problem in Fp, but its running time is subexponential and the analysis
also relies on a related unproven number-theoretic conjecture.

1.3 Black-Box Extention Fields

Prime fields differ significantly from extension fields, which is relevant in the
context of this paper:

In contrast to an extension field Fpk (for k > 1), a prime field Fp is generated
by any non-zero element (for instance 1). Hence there is a unique isomorphism
between any two instantiations of Fp that is given by mapping the 1 of the first
instance to the 1 of the second. In particular, there is a unique isomorphism
between a BBF over Fp and any explicit representation of Fp. Therefore in an
explicit representation there exists a unique element corresponding to a secret
value x inside the black-box, and the extraction problem as stated above is well
defined.

As an extension field Fpk (for k > 1) contains non-zero elements that do
not algebraically generate the entire field, it is not sufficient to give a secret
value x inside the black box in order to describe an arbitrary extension field.
Rather, the field must be given by a set of elements (generators) in the black-box
algebraically generating the field. A vector space basis of Fpk over Fp would be
a natural choice, but our goal is to make no assumption whatsoever about how
the given elements generate the field.

Furthermore, extension fields Fpk (for k > 1) have non-trivial automorphisms,
so there is no unique isomorphism between a black-box extension field and an
explicit representation. Therefore the extraction problem as originally posed is
not well defined for extension fields. We hence formulate a more general problem
for extension fields, the representation problem: Write a secret x hidden inside
the black-box as an algebraic expression in the other elements (generators) given
in the black-box.

When an explicit representation of the field is given outside of the black-box
(say in terms of an irreducible polynomial of degree k over Fp), then one can also
consider the problem of efficiently computing an isomorphism (and its inverse)
between this explicitly given field and the BBF.

1.4 Contributions of This Paper

We present an efficient reduction of the representation problem for a finite black-
box extension field to the extraction problem for the underlying prime field Fp. If
the characteristic p of the field in question is small, or if p is large but an efficient
algorithm for the extraction problem for Fp exists, then this yields an efficient
algorithm for the representation problem for the extension field. Under their
respective number-theoretic assumptions one can also use the results of [Mau94,
BL96, MW99].

Theorem 1 (informal). The representation problem for the finite black-box
extension field FB of characteristic p is efficiently reducible to the representation
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problem for Fp. If the characteristic p is small (e.g. p = 2) then the representation
problem for FB is effciently solvable.

Furthermore, our algorithms provide an efficiently computable isomorphism be-
tween the black-box field and an explicitly represented (outside the black-box)
isomorphic copy. If we are given preimages of the generators inside the black-box
under some isomorphism from an explicitly represented field into the black-box
or if the black-box allows inserting elements from an explicitly represented field,
we may even efficiently extract any element from the black-box field, i.e., we
can find the element corresponding to an x inside the black-box in the explicit
representation.

In particular, these results imply that any problem posed for a black-box field
(of small characteristic) can efficiently be transformed into a problem for an
explicit field and be solved there using unrestricted (representation-dependent)
methods. For example, this implies that computing discrete logarithms in the
multiplicative group over a finite field (of small characteristic) is not harder in
the black-box setting than in the case where the field is given by an irreducible
polynomial.

1.5 Cryptographic Significance of Black-Box Fields

A BBF Fp can be viewed as a black-box group of prime order p, where the multi-
plication operation of the field corresponds to a Diffie-Hellman oracle; therefore
an efficient algorithm for the extraction problem for Fp corresponds to an effi-
cient generic reduction of the discrete logarithm problem to the computational
Diffie-Hellman problem in any group of prime order p (see [Mau94]). So an ef-
ficient algorithm for the extraction problem for Fp provides a security proof for
the Diffie-Hellman key agreement protocol [DH76] in any group of order p for
which the discrete logarithm problem is hard.2

Boneh and Lipton [BL96] gave a second reason why the extraction problem
is of interest in cryptography, namely to prove the inexistence of certain field-
homomorphic encryption schemes.

The RSA trapdoor one-way permutation defined by x �→ xe (mod n) is group-
homomorphic: the product of two ciphertexts xe and x′e is the ciphertext for
their product: xe ·x′e = (x ·x′)e. This algebraic property has proven enormously
useful in many cryptographic protocols. However, this homomorphic property is
only for one operation (i.e., for a group), and an open problem in cryptography
is to devise a trapdoor one-way permutation that is field-homomorphic, i.e., for
addition and for multiplication. Such a scheme would have applications in multi-
party computation, computation with encrypted data (e.g. server-assisted com-
putation), and possibly other areas in cryptography [SYY99, ALN87, Dom02].

2 In this context it is not a problem that Maurer’s efficient algorithm [Mau94] for
the extraction problem for Fp is non-uniform, because one can construct a Diffie-
Hellman group of order p together with the help-string and hence the equivalence
really holds.
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A solution to the extraction problem for Fp implies an equally efficient attack
on any Fp-homomorphic encryption scheme that permits checking the equality of
two encrypted elements (which is for example true for any deterministic scheme).
Indeed, a black-box field can be regarded as an idealized formulation of a field-
homomorphic encryption scheme which allows for equality checks. Any algorithm
that succeeds in recovering an “encrypted” element hidden inside the black-
box will also break an encryption scheme that allows the same operations. In
particular, an efficient algorithm for the extraction problem for Fp implies the
inexistence of a secure Fp-homomorphic one-way permutation.

This generalizes naturally to the extension field case yielding the following
corollary to Theorem 1:

Corollary 1. For fields of small characteristic p (in particular for F2k) there are
no secure field-homomorphic encryption schemes3 that permit equality checks.
In particular, there are no field-homomorphic one-way permutations over such
fields.4

The same holds even for large characteristic p if we admit non-uniform adver-
saries under the assumption of [Mau94, MW99].

Beyond its cryptographic significance, the representation problem for black-
box extension fields is of independent mathematical interest. The representation
problem for groups, in particular black-box groups, has been extensively studied
[BB99, BS84], inciting interest in the representation problem for other algebraic
black-box structures.

2 The Representation Problem for Finite Black-Box
Fields

2.1 Preliminaries on Finite Fields

We assume that the reader is familiar with the basic algebraic concepts of groups,
rings, fields, and vector spaces and we summarize a few basic facts about finite
fields.

The cardinality of every finite field is a prime power, pk, where p is called
the characteristic and k the extension degree. There exists a finite field for every
prime p and every k. Finite fields of equal cardinality are isomorphic, i.e., for
each cardinality pk there is up to isomorphism only one finite field, which allows
one to refer to it just as Fpk .

3 In the public-key case we can efficiently recover the encrypted field element, in
the private-key case this is only possible up to isomorphism, as we may have no
knowledge of the plaintext field.

4 One may be led to believe that field-homomorphic one-way permutations cannot
exist, since a finite field has only a small number of automorphisms, which can be
enumerated exhaustively. However, we assume the target field to be given as a black-
box without explicit representation of the elements. As such it is a priori not clear
how to find the preimage of a random element.
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Prime fields Fp (i.e., k = 1) are defined as Zp = {0, . . . , p−1} with addition and
multiplication modulo p. An extension field Fpk can be defined as the polynomial
ring Fp[X ] modulo an irreducible polynomial m(X) of degree k over Fp. It hence
consists of all polynomials of degree at most k − 1 with coefficients in Fp.

For every x ∈ Fpk , the p-fold sum of x (i.e., x + x + · · · + x with p terms),
denoted px, is zero: px = 0. Moreover, xpk−1 = 1 for all x �= 0, as pk − 1 is the
cardinality of the multiplicative group of Fpk , which is actually cyclic.

An extension field Fpk is a vector space over Fp of dimension k. For appropriate
g ∈ Fpk there exist bases of the form (1, g, g2, . . . , gk−1). The only automorphisms
of a finite field Fpk are the Frobenius automorphisms x �→ x(pi) for i=0, . . . , k−1.
In particular, a prime field has no non-trivial automorphisms.

For every � dividing k, there is a subfield Fp� of Fpk . The trace function
trF

pk/F
p�

: Fpk → Fp� , defined as

trF
pk/F

p�
(a) =

(k/�)−1∑

i=0

a(pi�),

is a surjective and Fp�-linear function [LN97].

2.2 The Black-Box Model

We make use of the abstract model of computation from [Mau05]: A black-
box field FB is characterized by a black-box B which can store an (unbounded
number of) values from some finite field Fpk of known characteristic p but not
necessarily known extension degree in internal registers V0, V1, V2, . . .. The first
d + 1 of these registers hold the initial state I = [g0, g1, . . . , gd] of the black-box.
We require the size d+1 of the initial state to be at most polynomial in log(|FB|).

The black-box B provides the following interface: It takes as input a pair
(i, j) of indices and a bit indicating whether addition or multiplication should
be invoked. Then it performs the required operation on Vi and Vj , stores the
result in the next free register, say V�, and reports all pairs of indices (m, n)
such that Vm = Vn.5

Since we only allow performing the field operations + and · on the values of the
black box, the black-box field FB is by definition the field FB = Fp[g0, g1, . . . , gd]
generated6 by the elements g0, g1, . . . , gd ∈ Fpk contained in the initial state
I = [g0, g1, . . . , gd] of the black-box.

A black-box field FB is thus completely characterized by the

– public values: characteristic7 p, size d + 1 of the initial state,
– secret values: initial state I = [g0, g1, . . . , gd] (hidden inside the black-box)

5 Alternatively, equality checks could also be modeled as an explicit operation which
must be called with two indices.

6 By Fp[g0, g1, . . . , gd] we denote the field consisting of all polynomial expressions over
Fp in the generators g0, g1, . . . , gd.

7 If the characteristic p is small it need not be given but can be recovered in time
O(

√
p) using a modified Baby-Step-Giant-Step algorithm [Mau05].
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This is probably the most basic yet complete way of describing a finite field.
Observe that the field Fpk , the elements of which the black-box can store, does
not appear in the characterization. Since no algorithm can compute any value not
expressible as an expression in the operators + and ·, and the elements initially
given inside the black-box, we can without loss of generality assume that k is
such that Fpk

∼= FB, where k is unknown, but can be efficiently computed as we
shall see later.

Also, the operations “additive inverse” and “multiplicative inverse” and the
constants 0 and 1 need not be provided explicitly, since they can be computed
efficiently given the characteristic p and the field size |FB| = pk: We can com-
pute the additive inverse for an element a ∈ F

∗
B as −a = (p − 1)a, and the

multiplicative inverse is a−1 = apk−2. Furthermore, 1 = apk−1 for any non-zero
a and 0 = pa for any a. These expressions can be evaluated efficiently using
square-and-multiply techniques.

When discussing the complexity of algorithms on black-box fields, we count
each invocation of the black-box as one step. Additionally we will take into
account the runtime of computations not directly involving the black-box.

We consider an algorithm to be efficient if it runs in time polynomial in the
bit-size of a field element, log |FB|.8

2.3 The Representation Problem and Related Problems

We now turn to the problems we intend to solve. Let a characteristic p be
given and let B be a black-box with initial state I = [x, g1, . . . gd] consisting
of generators g1, . . . gd and a challenge x, where FB = Fp[x, g1, . . . gd].We then
consider the following problems:

Definition 1 (Representability Problem, Representation Problem). We
call x representable (in the generators g1, . . . gd) if x ∈ Fp[g1, . . . gd]. The problem
of deciding whether x ∈ Fp[g1, . . . gd] is called the representability problem. If x
is representable, then finding a multi-variate polynomial q ∈ Fp[X1, . . . , Xd] such
that x = q(g1, . . . , gd) is called the representation problem.

We proceed to discuss two problems that are closely related to the representa-
tion problem. First, we state a generalization of the extraction problem, defined
in [Mau05], that is applicable to all finite black-box fields. To do so, we need
to specify an isomorphism φ from the black-box to some explicitly given field
K. This is necessary for the extraction problem to be well-defined, because in
contrast to prime fields there are many isomorphisms between two isomorphic
extension fields.

Definition 2 (Extraction Problem). Let K be an explicitly given field (e.g.
by an irreducible polynomial) such that K ∼= FB. Let the images φ(g1), . . . , φ(gd)

8 The requirement that the size d + 1 of the initial state be at most polynomial in
log(|FB|) is imposed so that this makes sense.
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of the generators g1, . . . , gd under some isomorphism φ : FB → K be given. The
extraction problem is to compute φ(x).9

Remark 1. Note that an efficient solution to the representation problem implies
an efficient solution to the extraction problem. The expression q(g1, . . . , gd) re-
turned as a solution to the representation problem can simply be evaluated
over K, substituting φ(gi) for gi (i = 1, . . . , d), which yields φ(x):

q(φ(g1), . . . , φ(gd)) = φ(q(g1, . . . , gd)) = φ(x).

Finally consider an efficient but representation-dependent algorithm A solving
some problem Q on a finite field K (where the algorithm A requires for instance
that the field K is given by an irreducible polynomial). We are interested if the
existence of such an algorithm A generally implies the existence of a generic
algorithm for the problem Q of comparable efficiency. More specifically, we are
interested in algorithms Φ and Φ−1 efficiently computing an arbitrary isomor-
phism φ : FB → K and its inverse φ−1, yielding a generic solution Φ−1 ◦ A ◦ Φ
to the problem Q. That is the algorithm Φ maps an x ∈ FB to K by solving the
extraction problem with respect to φ. The inverse map Φ−1 on the other hand
maps a field element x′ ∈ K into the black box field FB by means of construct-
ing φ−1(x′) from the generators inside the black-box using the field operations.
These two algorithms can then be chained together with the original, represen-
tation dependent algorithm A, yielding a black-box, representation independent
algorithm Φ−1 ◦ A ◦ Φ. Hence we consider the following problem:

Definition 3 (Isomorphism Problem). Let K be an explicitly given field
such that K ∼= FB. The isomorphism problem consists of computing an (ar-
bitrary but fixed) isomorphism φ : FB → K and its inverse φ−1 for arbitrary
elements of K and FB.

In the following we will exhibit an efficient reduction from the representation
problem for any finite field to the representation problem for the underlying
prime field. Moreover, our solution to the representation problem will also yield
an explicitly given field (by an irreducible polynomial) Fpk

∼= FB with an efficient
solution to the isomorphism problem for Fpk and FB. This allows to solve any
problem posed on the black-box field FB in the explicitly given field Fpk using
the corresponding algorithms.

2.4 The Representation Problem for Fp

First, we shall see that the representation, extraction and isomorphism problems
are equivalent when the black-box field FB is isomorphic to some prime field Fp:

9 The extraction problem also makes sense if the isomorphism φ is given in another
fashion. For example, the black-box might offer an operation that allows inserting
elements from an explicitly given field K. This would for instance correspond to a
field-homomorphic one-way permutation.
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Lemma 1. Let FB ∼= Fp be a BBF with initial state I = [x, g1, . . . , gd]. Then
the representation, extraction and isomorphism problems are efficiently reducible
to one another.

Proof. Note that there is a unique isomorphism φ : FB → Fp. Furthermore, as
FB ∼= Fp, there must be a gi �= 0 (i ∈ {1, . . . , d}). This gi can be efficiently found
by checking the inequality gi + gi �= gi and the constant 1 can be efficiently
computed inside the black-box as gp−1

i using square-and-multiply techniques.
Reduction extraction to representation: see Remark 1.
Reduction isomorphism to extraction: A solution to the extraction problem

yields an efficient algorithm computing the isomorphism φ. The inverse φ−1

can be efficiently computed using square-and-multiply techniques, constructing
φ−1(a) for a ∈ Fp as a sum of 1s inside the black-box. This solves the isomor-
phism problem.

Reduction representation to isomorphism: A solution to the isomorphism
problem yields an efficient algorithm computing the isomorphism φ. Then we
have φ(x)gp−1

i as a solution to the representation problem. 	


Note that solving the extraction problem for a black-box field FB ∼= Fp with
initial state V 1 = [x] amounts to solving the discrete logarithm problem for a
group of order p (given as a black-box) for which a Diffie-Hellman oracle is given.
The following results are known:

Lemma 2 ([Mau94]). There exists a non-uniform algorithm that, under a
(plausible) number-theoretic conjecture, solves the extraction (representation,
isomorphism) problem for a black-box field FB ∼= Fp in time polynomial in log(p),
and with a polynomial (in log(p)) amount of advice depending on p.

Lemma 3 ([BL96]). There exists a (uniform) algorithm that, under a (plausi-
ble) number-theoretic conjecture, solves the extraction (representation, isomor-
phism) problem for a black-box field FB

∼= Fp in time subexponential in log(p).

For the remainder of this work we will only concern ourselves with reducing
other problems to the representation problem for Fp. The reader may generally
assume that p is small, such that the representation problem for Fp is easy to
solve.

2.5 The Representation Problem for Fpk for a Given Fp-Basis

Before we proceed to the general case, we first investigate the simpler case where
the initial state of the black-box B is I = [x, b1, . . . , bk], and b1, . . . , bk form a
basis of FB as Fp-vector space. We efficiently reduce this problem to the repre-
sentation problem for Fp discussed in Section 2.4.

Lemma 4. The representation problem for a black-box field FB of characteristic
p with initial state I = [x, b1, . . . , bk], where b1, . . . , bk form an Fp-basis of FB,
is efficiently reducible to the representation problem for Fp.
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Proof. The proof relies on the well-known dual basis theorem (see e.g. [LN97]):
For any Fp-basis {b1, . . . , bk} of Fpk there exists a dual basis {c1, . . . , ck} with the
property that trF

pk /Fp
(cibj) = δij , where δij designates the Kronecker-Delta. We

calculate the dual basis {c1, . . . , ck} for the basis {b1, . . . , bk} inside the black-
box. This can be done efficiently as follows:

We write the elements of the dual basis as ci =
∑k

l=1 αilbl. Furthermore,
let A = (αil)i,l=1,...,k be the coefficient matrix, B = (trF

pk/Fp
(blbj))l,j=1,...,k

the trace matrix, and Ik the identity matrix. Then the definition of the dual
basis yields a matrix equation AB = Ik. Traces can be computed efficiently
inside the black-box using square-and-multiply techniques, so the trace matrix
B can be efficiently computed inside the black-box. Since B always has full rank
[LN97], the matrix equation AB = Ik can be solved for the αil using Gaussian
elimination (inside the box B).

As the characteristic p and the exponent k are known, we can efficiently
compute additive and multiplicative inverses (see Section 2.2). Solving for the k2

unknowns in the matrix A using Gaussian elimination is efficient, and requires
only field operations and equality checks. Hence it can be performed in the
black-box and we can efficiently compute the dual basis elements ci inside the
black-box.

To represent the challenge x in the basis {b1, . . . , bk}, we now calculate ξi =
trF

pk/Fp
(cix) ∈ Fp inside the black-box and have x =

∑k
i=1 ξibi by the dual

basis property. We use an oracle O that solves the representation problem for Fp

(possibly instantiated according to Section 2.4) to extract the ξi from the black
box, obtaining the required representation of x in the given generators (basis)
{b1, . . . , bk}. 	


3 The Representation Problem for Fpk for Arbitrary
Generating Sets

Now we turn to the general case, where a black-box field FB of characteristic p is
not necessarily given by a basis, but by an arbitrary generating set {g1, . . . , gd}
which generates FB as Fp-algebra.

3.1 Main Theorem

Before we get to our main result, we first discuss the representability problem.

Lemma 5. The representability problem for a black-box field FB of characteris-
tic p with initial state I = [x, g1, . . . , gd] can be solved efficiently and the extension
degree k such that FB ∼= Fpk can be found efficiently.

Proof. We need to determine efficiently whether x is representable in the genera-
tors g1, . . . , gd and then find k such that FB ∼= Fpk . To this end we first determine
the size ki := k(gi) := |Fp[gi]| of the subfield Fp[gi] ≤ FB of the black-box field
FB generated by gi, for i = 1, . . . , d. We have

ki := k(gi) = min{j ∈ N : gi = gpj

i } (1)
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by the properties of the Frobenius homomorphism y �→ yp [LN97]. Eq. (1) can
be evaluated efficiently using square-and-multiply.

Now the field element x is representable in the generators g1, . . . , gd if and
only if x ∈ Fp[g1, . . . , gd] or, equivalently, Fp[x] ≤ Fp[g1, . . . , gd]. But the field
Fp[g1, . . . , gd] generated by g1, . . . , gd is isomorphic to the smallest field Fpk′

where k′ = lcml
i=1(ki) that contains all the Fpki . Hence x is representable in

the generators g1, . . . , gd if and only if k(x) | k′. Moreover, independently of the
representability of x we have k = lcm(k(x), k′). 	


We can now state our main result, an efficient reduction from the representation
problem for an extension field to the representation problem for the underlying
prime field:

Theorem 1. The representation problem for the black-box field FB of charac-
teristic p with initial state I = [x, g1, . . . , gd] (not necessarily a basis) such that x
is representable in g1, . . . , gd is efficiently reducible to the representation problem
for Fp.

We shall see later that from this theorem we can also obtain efficient reductions
of the extraction and isomorphism problems to the representation problem for
the underlying prime field Fp.

3.2 Proof of Theorem 1

By assumption, the challenge x is representable in the generators g1, . . . , gd. We
will show how to efficiently generate a Fp-power-basis {g0, g1, . . . , gk−1} for FB
inside the black-box. The representation problem can then be efficiently reduced
to the representation problem for Fp using Lemma 4.10

Algorithm 1 returns an Fp-power-basis for FB by computing an element
g ∈ FB (a generator), such that Fp[g] = Fpk . To this end Algorithm 1 iter-
ates over the generators g1, . . . , gd, checking if the current gi is already con-
tained in Fp[g] for the current g.11 If not, Algorithm 1 invokes the algorithm
combine gen(g, gi) to obtain a new g (which we call g′ for now) such that
Fp[g′] = Fp[g, gi]. Clearly, Fp[g] = Fp[g1, . . . , gd] when the algorithm terminates,
and hence {g0, g1, . . . , gk−1} is a Fp-power-basis for Fp[g1, . . . , gd] = FB.

As g is computed inside the black-box from the initially given generators
g1, . . . , gd using only field operations, a representation q′(g1, . . . , gd) = g of g

10 One might suspect that the {gj
i }i=1,...,d;j=1,...,k already generate FB as an Fp-vector

space. However, this is not the case. As an example, take F26 . Then we can find
generators g2 ∈ F22 ⊂ F26 and g3 ∈ F23 ⊂ F26 such that F2[g2, g3] = F26 . But
gj

i ∈ F2i , so the Fp-vector space V generated by {gj
i } has dimension dimF2 V ≤

dimF2 F22 + dimF2 F23 = 5 < 6 = dimF2 F26 .
11 Note that the number of generators gi appearing in the representation of the gener-

ator g (and thereby the representation of x) could be reduced by considering only
the generators gi corresponding to the maximal elements in the lattice formed by
the ki under the divisibility relation (these suffice to generate the entire field FB).
For ease of exposition we do not do this.
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Algorithm 1. Compute power-basis
1: g := 1
2: m := 1
3: for i = 1 to d do
4: ki := k(gi) := min{j ∈ N : gi = gpj

i }
5: if ki � m then
6: m := lcm(m, ki)
7: g := combine gen(g, gi)
8: end if
9: end for

10: return power basis {g0, g1, . . . , gk−1}

(and therefore of all basis elements) in the generators g1, . . . , gd is known. Now
Lemma 4 gives a representation q′′(g0, g1, . . . , gk−1) = x of the challenge x in
the basis elements, so a representation q(g1, . . . , gd) = x of x in the generators
g1, . . . , gd can be recovered by substitution:

q(g1, . . . , gd) = q′′(g0, g1, . . . , gk−1)

= q′′(q′(g1, . . . , gd)0, q′(g1, . . . , gd)1, . . . , q′(g1, . . . , gd)k−1)

Algorithm 1 is obviously efficient if the algorithm combine gen is efficient. So,
to complete the proof of Theorem 1, we only need to provide an algorithm
combine gen(a, b) that, given two elements a, b ∈ FB, efficiently computes a
generator g such that Fp[g] = Fp[a, b].

Algorithm 2. combine gen(a, b)
1: find k′

a , k′
b such that

– k′
a | k(a), k′

b | k(b),
– gcd(k′

a, k′
b) = 1,

– lcm(k′
a, k′

b) = lcm(k(a), k(b))

2: find a′ ∈ Fp[a] and b′ ∈ Fp[b] such that k(a′) = k′
a and k(b′) = k′

b

3: return a′ + b′

Claim. Given two elements a, b ∈ FB, the algorithm combine gen(a, b) efficiently
computes a generator g such that Fp[g] = Fp[a, b].

Proof. We analyze algorithm combine gen(a, b) step by step:

Step 1 can be performed in time polynomial in k (where pk = |FB|), and hence
in log(|FB|), by factoring k(a) and k(b) (which both divide k). 12

Step 2 relies on the following lemma [Len05]:
12 Bach and Shallit [BS96, Section 4.8] give a much more efficient algorithm for com-

puting such values k′
a, k′

b of complexity O((log k(a)k(b))2).
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Lemma 6. Let M ≥ L ≥ K be a tower of finite fields and let b1, . . . , bn be a
K-basis of M . Then {trM/L(b1), . . . , trM/L(bn)} contains a K-basis of L.

Proof. From [LN97, 2.23(iii)] we know that trM/L : M → L is L-linear and
surjective. Hence for all d ∈ L there exists an c ∈ M such that trM/L(c) = d.
Since b1, . . . , bn form a K-basis of M , the element c ∈ M can be expressed as
c =

∑n
i=1 γibi where γi ∈ K (i = 1, . . . , n). Hence using the L-linearity of trM/L

we have

d = trM/L(c) = trM/L(
n∑

i=1

γibi) =
n∑

i=1

γi trM/L(bi).

As we can represent every d ∈ L by a K-linear combination in {trM/L(b1), . . . ,
trM/L(bn)}, this set must contain a K-basis of L. 	


As we know k′
a and k(a) from Step 1, and using the fact that the elements

{ai : i = 0, . . . , k(a) − 1} form an Fp-basis of Fp[a], we can compute the set
{trFp[a]/F

p
k′

a
(ai) : i = 0, . . . , k(a) − 1} in time O(k3 log(p)), which contains by

the lemma above an Fp-basis of Fpk′
a
.

The following claim is from [BvzGL01, Lemma 6.2]. For completeness we
provide a short proof sketch.

Claim. Any Fp-basis of an extension field Fp� contains a basis element a′ such
that Fp� = Fp[a′].

Proof (sketch). The Fp-dimension of the span of all proper subfields of Fp� can
be computed by application of the inclusion-exclusion principle (first adding the
dimensions of all maximal subfields, then subtracting the dimensions of their
intersections, then adding the dimensions of the intersections of the intersec-
tions, and so on). Using the Möbius function μ and the Euler function ϕ we
can hence write the Fp-dimension of the span of all proper subfields of Fp� as
−

∑
d|�,d �=� μ(�/d)d = �−ϕ(�) < �. As the Fp-dimension of the span of all proper

subfields of Fp� is smaller then the Fp-dimension � of Fp� , there must be a basis
element a′ which is not contained in any proper subfield of Fp� , and therefore
Fp� = Fp[a′]. 	


By the claim above there is a basis element a′, that generates Fpk′
a
, i.e. Fpk′

a
=

Fp[a′]:

∃a′ ∈ {trFp[a]/F
p

k′
a
(ai) : i = 0, . . . , k(a) − 1} : k(a′) = k′

a.

By checking this property for all candidate elements in {trFp[a]/F
p

k′
a
(ai) : i =

0, . . . , k(a) − 1} we find the generator a′ in time O(k3 log(p)). Analogously we
may determine b′ such that k(b′) = k′

b.
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Step 3. To complete the analysis of the algorithm combine gen(x, y), it remains
to show that given a′, b′ from Step 2, we have Fp[a′ + b′] = Fp[a, b]. Since
lcm(k(a′), k(b′)) = lcm(k(a), k(b)) by Step 1, we have Fp[a′, b′] = Fp[a, b], so it
only remains to show that Fp[a′ + b′] = Fp[a′, b′]. We have Fp[a′, b′] = Fp[a′, a′ +
b′] = Fp[a′ + b′, b′] and gcd(k(a′), k(b′)) = 1, therefore

lcm(k(a′), k(b′)) = lcm(k(a′), k(a′ + b′)) = lcm(k(a′ + b′), k(b′)) = k(a′)k(b′).

It is easy to see that then k(a′+b′) = k(a′)k(b′) holds, and therefore Fp[a′+b′] =
Fp[a, b], as required. 	


3.3 Implications of Theorem 1

From Theorem 1 and Remark 1 we obtain the following corollary:

Corollary 2. The extraction problem for any BBF FB of characteristic p is
efficiently reducible to the representation problem for Fp.

The extraction problem asks for the computation of an isomorphism φ : FB → K.
Note that the computation of φ−1 also reduces efficiently to the representation
problem for Fp, because we can efficiently obtain a power-basis {g0, g1, . . . , gk−1}
inside the black-box, as in the proof of Theorem 1. From this basis we can then
compute the basis {φ(g0), φ(g1), . . . , φ(gk−1)} for K. Hence the isomorphism
φ−1 can be simply and efficiently computed by basis representation.

Corollary 3. Let FB be a BBF of characteristic p and K some explicitly given
field (in the sense of [Len91]) such that K ∼= FB. Then the isomorphism problem
for FB and K can be efficiently reduced to the representation problem for Fp.

Proof. We show that it is possible to efficiently find a field K ′ ∼= FB that is
explicitly given by an irreducible polynomial, such that the isomorphism problem
for FB and K ′ efficiently reduces to the representation problem for Fp. The
corollary then follows from [Len91], which states that the isomorphism problem
for two explicitly given finite fields can be solved efficiently.

So, let an oracle O for the representation problem over Fp be given. As in the
proof of Theorem 1 we efficiently compute a power-basis {g0, g1, . . . , gk−1} inside
the black-box. By Lemma 4 we compute a representation q(g0, g1, . . . , gk−1) =
gk of gk in the basis elements. Note that the minimal polynomial fg ∈ Fp[X ]
of g over Fp is then exactly fg(X) = Xk − q(X0, X1, . . . , Xk−1). Let K ′ =
Fp[X ]/(fg). Then the required isomorphisms φ and φ−1 are efficiently given by
basis representation. 	


4 Conclusion

We have shown that, given an efficient algorithm for the representation problem
for Fp, we can solve the representability, representation, extraction and isomor-
phism problems for a black-box extension field FB

∼= Fpk in polynomial time.
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We achieve this by efficiently constructing (in the generators) an Fp-power-basis
{g0, g1, . . . , gk−1} for the black-box field FB inside the black-box, which is inter-
esting in its own right.

For small characteristic p we can immediately solve the above problems ef-
ficiently, as in this case solving the representation problem for Fp (e.g. using
Baby-Step-Giant-Step) is easy.

As a consequence, field-homomorphic one-way permutations over fields of
small characteristic p, in particular over F2k , do not exist, because such a function
would constitute an instantiation of a black-box field13 and could be efficiently
inverted using the solution to the extraction problem given above. This implies
that over fields of small characteristic there can be no field-homomorphic ana-
logue to the group-homomorphic RSA encryption scheme, which constitutes a
group-homomorphic trapdoor one-way permutation.

For the same reason, even probabilistic field-homomorphic encryption sche-
mes (both private-14 and public-key) over fields of small characteristic p, in
particular over F2k , cannot be realized, if they allow for checking the equality
of elements. This is unfortunate because such schemes could have interesting
applications in multi-party computation and computation with encrypted data
(e.g. server-assisted computation) [SYY99, ALN87, Dom02]. For instance we
might be interested in handing encrypted field elements to a computing facility
and having it compute some (known) program on them. If the encryption per-
mits equality checks, the computing facility can recover the field elements up to
isomorphism.

Furthermore, a polynomial-time solution to the isomorphism problem implies
that any problem posed on a black-box field (i.e., computing discrete logarithms
over the multiplicative group) can be efficiently transferred to an explicitly
represented field, and be solved there using possibly representation-dependent
algorithms (e.g. the number field sieve). The solution can then efficiently be
transferred back to the black-box field. So any representation-dependent al-
gorithm for finite fields is applicable (in the case of small characteristic) to
black-box fields. For example, computing discrete logarithms in the multiplica-
tive group over a finite field is no harder in the black-box setting than if the field
is given explicitly by an irreducible polynomial.

Of course these conclusions do apply not only to fields of small characteristic p,
but to any scenario where we can efficiently solve the representation problem for
the underlying prime field Fp. Hence we obtain subexponential-time solutions
to the above problems under a plausible number-theoretic conjecture applying
the work of Boneh and Lipton [BL96] for solving the representation problem for
Fp. Furthermore we can, under a plausible number-theoretic conjecture, solve

13 Instead of generators we have here the possibility to “insert” elements of an explicitly
given field into the “black-box” of the image of the function.

14 This result requires Theorem 1 whereas the results above already follow from Lemma
4. Also, note that in the private-key case it is only possible to recover encrypted
field elements up to isomorphism, as we may have no knowledge of the plaintext
field.
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the problems above efficiently, even for large characteristic p, if we are willing
to admit non-uniform solutions (solutions that require a polynomial amount of
advice depending on the characteristic p) using an algorithm by Maurer [Mau94]
for solving the representation problem for Fp.

Compared to the case of small characteristic, the situation for fields of large
characteristic is then more complex, because the only known efficient algorithm
for solving the representation problem for Fp is non-uniform [Mau94, MW99],
i.e. it requires a help-string that depends on p. When considering homomorphic
encryption and homomorphic one-way permutations, this means that our impos-
sibility results hold for cases where a malicious party may fix the characteristic
p. In this case the attacker can generate p along with the required help-string to
break the scheme. On the other hand our impossibility results do not apply if
the characteristic p cannot be determined by the attacker, for instance because
it is generated by a trusted party.

It remains an open problem to resolve this issue by providing an efficient
uniform algorithm for the representation problem for Fp, or by proving the
inexistence thereof.
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Abstract. In this paper we show a general transformation from any
honest verifier statistical zero-knowledge argument to a concurrent sta-
tistical zero-knowledge argument. Our transformation relies only on the
existence of one-way functions. It is known that the existence of zero-
knowledge systems for any non-trivial language implies one way func-
tions. Hence our transformation unconditionally shows that concurrent
statistical zero-knowledge arguments for a non-trivial language exist if
and only if standalone secure statistical zero-knowledge arguments for
that language exist.

Further, applying our transformation to the recent statistical zero-
knowledge argument system of Nguyen et al (STOC’06) yields the first
concurrent statistical zero-knowledge argument system for all languages
in NP from any one way function.

1 Introduction

Zero-knowledge proof systems were introduced by Goldwasser, Micali and Rack-
off [GMR89] and have the remarkable property that they yield nothing except
the validity of assertion being proved. Such protocols involve a prover, who tries
to prove some assertion, and a verifier, who is trying to decide if he believes
the assertion. A cheating prover may act maliciously by trying to prove a false
statement; a cheating verifier may try to learn more than the validity of the
statement being proved. The property that the verifier learns nothing (except
the validity of the statement) is formalized as the zero-knowledge condition and
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the property that the prover cannot prove a false statement is formalized as the
soundness condition.

Depending upon how strong we want the zero-knowledge property or the
soundness property to be, we can define several different types of zero-knowledge
systems. In statistical zero-knowledge, we require the zero-knowledge condition
to hold even against an infinitely powerful cheating verifier. When we relax the
zero-knowledge condition so that it need only hold against a probabilistic poly-
nomial time cheating verifier, we get the so called computational zero-knowledge.
Similarly, we can have zero-knowledge with either statistical soundness (known
as zero-knowledge proof systems) or just computational soundness (known as
zero-knowledge argument systems).

It would be desirable to construct statistical zero-knowledge proof systems
for all languages in NP. Unfortunately it was shown that such systems can only
be obtained for languages in AM∩coAM [BHZ87], and AM∩coAM cannot
contain NP unless the polynomial hierarchy collapses. Thus if we want a zero-
knowledge system for all language in NP, we can only have either statistical
soundness or statistical zero-knowledge (but not both).

The original definition of zero-knowledge considers protocols running alone
in isolation. That is, we have a single prover interacting with a single verifier.
The concurrent setting was introduced by Dwork et al [DNS98] (see also [Fei90])
with a motivation to construct zero-knowledge protocols for more realistic set-
tings (such as when the protocols are to be executed over the Internet). In the
concurrent setting, many protocol executions are run at the same time with pos-
sibly a single prover simultaneously talking to many verifiers. The prover in this
setting runs the risk of a coordinated attack from many different verifiers which
interleave the execution of protocols and choose their responses to the prover
based on each others’ messages. If a zero-knowledge protocol maintains its zero-
knowledge property even in the concurrent setting, it is said to be concurrent
zero-knowledge.

Our Results. We give the first general transformation from any zero-knowledge
system to concurrent zero-knowledge system that maintains the statistical zero-
knowledge property of the system. Hence our compiler can be used to transform
a computational zero-knowledge argument system into a concurrent computa-
tional zero-knowledge argument system as well as a statistical zero-knowledge
argument system into a concurrent statistical zero-knowledge argument system.
Our transformation only relies on the existence of one-way functions. Further, it
does not require that the original protocol be public coin. These properties sepa-
rate it from the compiler in [MP03], since the compiler in [MP03] was designed to
maintain statistical soundness (whereas we deal with statistical zero-knowledge)
and was designed to be very efficient (our transformation is polynomial time but
we do not optimize for efficiency). Additionally, the compiler in [MP03] relies on
specific number theoretic assumptions.

We would like to emphasize that our compiler only uses one-way functions. It is
known that the existence of zero-knowledge systems for any non-trivial language
implies one way functions [OW93]. Hence our transformation unconditionally
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shows that concurrent statistical zero-knowledge arguments for a non-trivial lan-
guage exist if and only if standalone secure statistical zero-knowledge arguments
for that language exist. This feature also allows us to achieve a main goal of
ours: applying our transformation to the statistical zero-knowledge system from
[NOV06], we get the first concurrent statistical zero-knowledge argument system
for an NP-complete language from any one-way function.

Techniques. Here we describe our techniques at a high level. Our goal is to create
a general compiler that will work for honest verifier statistical zero-knowledge
arguments and turn them into concurrent statistical zero-knowledge arguments.
We first use a modified version of the preamble from the concurrent zero knowl-
edge protocol of [PRS02]. Using a preamble similar to [PRS02] enables us to have
a verifier committed to his randomness for the run of the protocol and to give
a strategy for a simulator that could extract that randomness in the concurrent
setting. Thus we are be able to use a straight-line simulator after the preamble.

The main technical challenges are to adapt the preamble of [PRS02] to work
with an all-powerful verifier and to base the preamble solely on one-way func-
tions. The proof of soundness in [PRS02] relies on the verifier using statistically
hiding commitments to commit to its randomness. However using statistically
hiding commitments during the preamble does not seem plausible in our setting
even though (independent of this work) they have recently been constructed from
one way functions [HR07]. The main reason is that since we are dealing with
statistical zero-knowledge, the verifier could potentially be all powerful. Thus
all the commitments by the verifier to the prover should be statistically binding.
Consequently, if the randomness of the verifier is not statistically hidden from the
prover during the PRS preamble, it remains unclear how the proof of soundness
would go through (even if the prover uses statistically hiding commitments).

To overcome this problem, the verifier commits using statistically binding
commitments based on one-way functions as it appears essential in our setting.
However, the verifier never actually opens the commitment. Instead the verifier
gives a (standalone secure computational) zero-knowledge proof that his message
are consistent with the randomness committed to in the PRS preamble. Note
that it is important that we use a zero-knowledge proof here since the verifier
is all powerful. This idea enables us to prove that our transformation preserves
the soundness of the underlying proof system.

Furthermore, since we are transforming from an honest verifier statistical zero-
knowledge argument into a concurrent statistical zero-knowledge argument, we
need to find a way to relax the requirement that the verifier is honest. In order
to achieve this goal, the randomness that the verifier uses is determined by
a coin-flipping protocol between the prover and the verifier (instead of being
chosen freely by the verifier alone). This is important for our proof of the zero-
knowledge condition since our simulator for the underlying protocol will require
verifier responses with correctly distributed randomness. Also, this technique
combined with the trick of using zero-knowledge proofs from the verifier allows
us to deal with private-coin protocols as well.
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We are able to combine all of these ideas into a single compiler that lets us
achieve our results.

1.1 Related Work

Statistical zero-knowledge arguments. In this paper, we will be examining statis-
tical zero-knowledge arguments which were first introduced by [BCC88]. From
the constructions of [GMW91, BCC88] it is clear that one main technique to
construct statistical zero-knowledge arguments for any language in NP is to
first construct statistically hiding commitments (and plug them into a standard
protocol).

Early constructions of statistically hiding commitments were built on specific
number theoretic assumptions [BCC88, BKK90]. In [GK96] it was shown how
to construct statistically hiding commitments from claw-free permutations; this
was further reduced to any family of collision-resistant hash functions in [NY89].

Naor et al [NOVY98] showed how to construct statistically hiding commit-
ments from one way permutations. In [Ost91, OW93] it was shown that one
could build a weak from of one-way functions from statistically hiding commit-
ments. Thus one-way functions would be the minimal assumption needed to
create statistically hiding commitments. Until recently, no further progress was
made. Haitner et al [HHK+05] showed how to construct statistically hiding com-
mitments from a one-way function that could approximate the pre-image size of
points in the range.

In a recent breakthrough work, Nguyen et al [NOV06] were able to construct
statistical zero-knowledge arguments from any one-way function for all languages
in NP. They deviated from the traditional line of constructing statistically bind-
ing commitments from one way functions. Instead they created a relaxed variant
of statistically binding commitments from one-way functions first introduced by
Nguyen and Vadhan [NV06]. Building on [NOV06], Haitner and Reingold [HR07]
recently constructed statistically hiding commitments from one way functions.
We remark that [NOV06] serves as a critical component for our results.

Concurrent zero-knowledge. The notion of concurrent zero knowledge was in-
troduced by [DNS98] (see also [Fei90]) who also gave a construction based on
timing assumptions. Richardson and Kilian [RK99] exhibited a family of concur-
rent zero-knowledge protocols for all languages in NP in the plain model. The
analysis of the their protocol required that the protocol have a polynomial num-
ber of rounds. This analysis was improved by Kilian and Petrank [KP01] who
showed that the protocol only required a poly-logarithmic number of rounds.
Prabhkaran, Rosen, and Sahai introduced a variant of the protocol and reduced
the number of rounds further to ω(log n) rounds in [PRS02]. This is the protocol
we will mainly use in our general compiler.

In [MP03], Micciancio and Petrank give a general compiler to compile any
public-coin honest verifier zero-knowledge proof system into a concurrent zero-
knowledge proof system while incurring only an additional ω(log n) rounds. This
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reduction is based on perfectly hiding commitment schemes (having some ad-
ditional special properties) based on the Decisional Diffie-Hellman assumption.
These reductions do not however maintain the statistical zero-knowledge prop-
erty. In other words, even if the original protocol is statistical zero-knowledge,
the resulting protocol may not be.

Concurrent statistical zero-knowledge. There has not been much work on con-
current statistical zero-knowledge. In [MOSV06], Micciancio et al show how to
build concurrent statistical zero-knowledge proofs for a variety of problems un-
conditionally, that is, without making any unproven complexity assumptions.
However since these were statistical zero-knowledge proofs, their results could
not include proofs for all languages in NP (unless NP is in AM∩coAM and
the polynomial hierarchy collapses).

2 Preliminaries

Statistical Difference. The statistical difference between two random variables
X, Y taking values in a universe U is defined to be

Δ(X, Y )
def
= max

S⊂U

∣
∣
∣Pr[X ∈ S] − Pr[Y ∈ S]

∣
∣
∣ =

1
2

∑

x∈U

∣
∣
∣Pr[X = S] − Pr[Y = S]

∣
∣
∣

We say two distributions are statistically close if Δ(X, Y ) is negligible.

Definition 1 (Argument Systems ([Gol01])). An interactive protocol (P, V )
is an argument (or computationally sound proof system) for a language L if the
following three conditions hold:

1. (Efficiency) P and V are computable in probabilistic polynomial time.
2. (Completeness) If x ∈ L, then V outputs accept with probability at least 2/3

after interacting with the honest prover P .
3. (Soundness) If x �∈ L, then for every nonuniform PPT adversarial prover

P ∗, V outputs accept with probability at most 1/3.

For an argument system (P, V ), we define the following terms. If x ∈ L, then the
value that lower bounds the probability of V outputting accept after interacting
with the honest prover P is called the completeness bound. Similarly, If x �∈
L, then the value that upper bounds the probability of V outputting accept
after interacting with any nonuniform PPT adversarial prover P ∗ is called the
soundness error.

We say that an argument system is public coin if all the messages sent by
V are chosen uniformly at random, except for the final accept/reject message
(which is computed as a deterministic function of the transcript).
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Concurrent Zero-knowledge. We assume the conversation between the prover P
and the verifiers V1 . . . Vn is of the form v1, p1, v2, p2, . . . , vt, pt where each vj

is a messages sent to the prover from a verifier Vij and the provers’ response
is the message pj. We assume that there is an adversary A which controls the
verifiers and the verifiers’ messages. The adversary will take as input the partial
conversation so far, i.e., v1, p1 . . . vk, pk and output a pair (i, v) specifying that
P will receive message v from verifier Vi. The view of the adversary on input x
will include the verifiers’ random tapes and all the messages exchanged between
the prover and the verifiers. This view will be denoted by (P, A)(x).

Definition 2. We say that an argument system (P, V ) for a language L is statis-
tical (resp., computational) black box concurrent zero-knowledge if there exists a
probabilistic polynomial time oracle machine S (the simulator) such that for any
unbounded (resp., probabilistic polynomial time) adversary A, the distributions
(P, A)(x) and SA(x) are statistically close (resp., computationally indistinguish-
able) for every string x in L.

We call the statistical difference of these distributions the zero-knowledge error
of the protocol. If we are dealing with computational indistinguishability, the
probability that a probabilistic polynomial time adversary can distinguish these
distributions is called the zero-knowledge error of the protocol as well.

Honest Verifier. We say a proof system is an honest verifier proof system if the
zero-knowledge property is guaranteed to hold only if the verifier acts according
to the protocol.

Note on Notation. We will use P (T, r) (resp., V (T, r)) to signify the correct next
message of an honest P (resp., V ) as per the protocol (P, V ), given the random
coins r and the interaction transcript T observed so far. Sometimes, the random
coin r might be implicit (instead of being explicitly supplied as an input).

3 Compiler Parts

In this section, we give the different parts of the compiler in isolation before
putting them together in the next section to give our full protocol.

3.1 Underlying Zero-Knowledge Protocol

We assume that as input to our compiler, we have an honest verifier statistical
zero-knowledge argument system for some language L. This protocol will have
a prover, a verifier, a completeness bound, a soundness error, a simulator, the
number of rounds and a zero-knowledge error (denoted by P, V, ec, es, S, t and
ez respectively). We let p1, . . . pt denote the messages of the prover and v1, . . . vt

the messages of the verifier in a particular execution of the argument system.
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3.2 Statistically Binding Commitments from Any OWF

In our protocol, we shall use statistically binding commitments from any OWF.
Building on techniques from [HILL99], such commitments were constructed by
Naor [Nao91].

We denote such a commitment scheme by COM. We denote the probability of
an all powerful adversary breaking the binding property of the scheme as bcom.
We denote the probability of a PPT adversary breaking the hiding property of
the scheme as hcom.

3.3 Computational Zero-Knowledge Proof Based on Any OWF for
All of NP

In our protocol, we shall use a computational zero-knowledge proof based on
one-way functions for every language in NP with negligible soundness error
and perfect completeness. One way to construct them is to create statistically
binding commitments based on a OWF as stated earlier [HILL99, Nao91]. These
commitments can then be used in the 3-colorability protocol of [GMW91] to
give us a zero-knowledge proof for any language in NP. We can then repeat the
protocol sequentially n2 times (where n is the security parameter) to achieve
negligible soundness error. We note that this protocol will also have perfect
completeness. We denote the final protocol after the sequential repetitions as
(P ′, V ′).

This protocol will have a prover, a verifier, a completeness bound, a statistical
soundness error, a simulator, the number of rounds and a zero-knowledge error
(denoted by P ′, V ′, e′c = 1, e′s, S′, t′ and e′z respectively).

3.4 Preamble from PRS [PRS02]

In this subsection, we describe the preamble from [PRS02] and give its useful
properties for our context. We note that [RK99, KP01] also have similar pream-
bles (with round complexity higher than [PRS02]) which could be used for our
purpose.

The preamble of the PRS protocol is simple. Let n be the security parameter
of the system and k be any super-logarithmic function in n. Let σ be the bit
string we wish to commit to and γ be the length of σ. We break σ up into
two random shares k2 times. Let these shares be denoted by {σ0

i,�}k
i,�=1 and

{σ1
i,�}k

i,�=1 with σ0
i,� ⊕ σ1

i,� = σ for every i, �. The verifier will commit to these
bits using COM with fresh randomness each time. The verifier then sends these
k2 commitments to the prover. This is then followed by k iterations where in
the �th iteration, the prover sends a random k-bit string b� = b1,�, . . . , bk,�, and
the verifier decommits to the commitments COM(σb1,�

1,� ), . . . , COM(σbk,�

k,� ).
The goal of this protocol is to enable the simulator to be able to rewind and

find the value σ with high probability by following a fixed strategy. Since the
verifier commitments are set after the first round, once we rewind the verifier,
the simulator will have the opportunity to have the verifier open both the σ0
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commitment and the σ1 commitment. In the concurrent setting, rewinding a
protocol can be difficult since one may rewind past the start of some other
protocol in the system as observed by [DNS98]. The remarkable property of this
protocol is that there is a fixed rewinding strategy the simulator can use to
get the value of σ, for every concurrent cheating verifier strategy V

∗, with high
probability.

We will follow [MOSV06] in formalizing the properties of the PRS preamble
we need. Without loss of generality, assume that there are Q concurrent sessions.
Recall that k is the number of rounds of the PRS preamble.

We call the simulator for the PRS preamble CEC-Sim. CEC stands for
concurrently-extractable commitments. CEC-Sim will have oracle access to V

∗

and will get the following inputs.

– Commitments schemes COM = COM1, COM2, . . . , COMQ, where COMs

is the commitment scheme used for session s.
– Parameters γ, k, n and Q, all given in unary.

We also need to give the following definitions adapted from [MOSV06]:

Definition 3 (Major Decommitment). A major decommitment is a re-
veal after the PRS preamble in which V

∗ reveals the opening of commitments
{COM(σ0

i,�)}k
i,�=1 and {COM(σ1

i,�)}k
i,�=1. P only accepts the major decommit-

ment if: (a) all these openings are valid openings to the commitments in the
transcript, and, (b) there exists σ such that for all i, �, σ0

i,� ⊕ σ1
i,� = σ.

Definition 4 (Valid Commit Phase). For a transcript T of the commit phase
interaction between P and V

∗, let T [s] denote the messages in session s. T [s] is
a valid commit phase transcript if there exists a major decommitment D such
that P (T [s], D)= accept.

Definition 5 (Compatibility). Message M=(σ, σ0
i,j , σ

1
i,j) is compatible with

T [s] if

1. σ = σ0
i,j ⊕ σ1

i,j

2. There exist commitments COMs(σ0
i,j)[s] and COMs(σ1

i,j)[s] that are part of
the transcript of the first message of T [s].

Observe that if a message M=(σ, σ0
i,j , σ

1
i,j) is compatible with the transcript

T [s], the cheating verifier can major-decommit to a message different from σ
only with probability at most bcom. Thus we call σ the extracted message.

Definition 6. A Simulator CEC − SimV
∗

has the concurrent extraction prop-
erty if for every interaction T it has with V

∗, it also provides (on a sepa-
rate output tape) an array of messages (M1, M2, . . . , MQ) with the following
property:

For every session s ∈ {1, 2, . . . , Q}, if T [s] is a valid commit phase transcript,
then Ms is compatible with T [s].
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A simulator that has the concurrently extractable property is also called a
concurrently-extractable simulator.

Using the simulation and rewinding techniques in [PRS02], we can obtain
a concurrently-extractable simulator for the PRS preamble. Let 〈P, V∗〉 denote
the output of V

∗ after concurrently interacting with P. Recall that V
∗ is an

unbounded adversary.

Lemma 1 (implicit in [PRS02], adapted from [MOSV06]). There exists a PPT
concurrently-extractable simulator CEC-Sim with a fixed strategy SIMULATE
such that for COM and all concurrent adversaries V

∗, for settings of parameters
σ=poly(n), k = Õ(log n), and Q =poly(n), we have the ensembles

{

CEC-SimV
∗
(COM, 1σ, 1k, 1n, 1Q)

}

n∈N

and
{

〈P,V∗〉(COM, 1σ, 1k, 1n, 1Q)
}

n∈N

have statistical difference ε, where ε is negligible.

4 The Compiler

In this section, we discuss the compiler in detail. It takes as input an honest
verifier statistical zero knowledge argument system (P, V ) and compiles it into a
concurrent statistical zero knowledge argument system (P, V) assuming the exis-
tence of one way functions. The compiler uses statistically binding commitments
and computational zero knowledge proofs as building blocks. Both of these can
be constructed out of any one way function [HILL99, GMW91].

The compiler is presented formally in Figure 1. Let R denote the uniform
distribution. The verifier V first generates a random string r (i.e., r

r← R). P

and V then carry out the PRS preamble [PRS02] where V sets σ to be r.
Instead of using statistically hiding commitments as in the PRS preamble,

we will use statistically binding commitments based on one way functions. This
however causes a problem in the PRS soundness proof [PRS02] since the statis-
tical hiding property of the commitments is used in an essential manner in the
soundness proof1. We resolve this problem later on.

Once P and V have finished the PRS preamble,V gives a computational zero
knowledge proof acting as P ′ in the system (P ′, V ′) (constructed using a OWF as
described in section 3). It proves that all the shares it committed to in the PRS
preamble (first message) are “consistent” with r. In other words, r0

i,� ⊕ r1
i,� = r

for every i, �. The prover P then draws r′ r← R and sends it to V. Now P and
V will begin the supplied honest verifier statistical zero knowledge argument
protocol (P, V ) with some modifications. The random coins of the verifier V are

fixed to be r ⊕ r′ def= r′′.
Let the protocol (P, V ) have t rounds where one round involves a prover

message followed by the verifier’s response. P and V interact as follows. In the
1 For example, if the verifier uses computationally hiding commitments, a cheating

prover could potentially create dependencies between his own commitments and the
verifier challenge.
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Common Input to P and V: (P, V ), (P ′, V ′), x,COM
Compiler:

1. V → P: Generate r
r← R. Using COM, commit to r and the shares

{r0
i,�}k

i,�=1, {r1
i,�}k

i,�=1 such that r0
i,� ⊕ r1

i,� = r for every i, �.
2. For � = 1, . . . k:

(a) P → V: Send b1,�, . . . , bk,�
r← {0, 1}k.

(b) V → P: Decommit to r
b1,�

1,� , . . . , r
bk,�

k,� .
3. V ↔ P: Zero-knowledge proof (P ′, V ′) where V acts as P ′ and proves to P

that r0
i,� ⊕ r1

i,� = r for every i, � and that there exist valid openings to the
commitments in the PRS preamble to r0

i,�, r
1
i,�. If P accepts the

zero-knowledge proof, the transcript of the commit phase is guaranteed to
be a valid commit phase transcript.

4. P → V: send r′ r← R.
5. V calculates r′′ def= r ⊕ r′

6. For j = 1, . . . t:
(a) P → V: send P (T P

j ) = pj .
(b) V → P: send V (T V

j , r′′) = vj .
(c) V ↔ P: zero-knowledge proof (P ′, V ′) where V acts as P ′ and proves

to P that there exist an r′′ such that r ⊕ r′ = r′′ and V (T V
j , r′′) = vj .

7. V → P: send V (T, r′′) = accept/reject.

Fig. 1. Compiler

jth round, P calculates the next message pj of P on the transcript T P
j of the

interaction so far. Transcript T P
j is defined to contain all the messages exchanged

between P and V so far, i.e., T P
j = (p1, v1, . . . , pj−1, vj−1).

The verifier V receives pj from P. It will now calculate V ’s response in the
protocol (P, V ) using randomness r′′ and V ’s transcript T V

j (= (T P
j , pj)) of

the interaction so far; we call this response vj . Now V will act as the P ′ in the
computational zero-knowledge proof system (P ′, V ′).

V will prove that his response is indeed consistent with V acting on input
T V

j and randomness r′′. The statement being proven by V is in NP since it is
possible to check the statement given the opening of the commitment to r. We
are using the computational zero-knowledge proof here instead of just revealing
the commitments to make our soundness proof go through. P acts as V ′ during
this zero-knowledge proof. If the proof is accepted by V ′ then P accepts vj .

Once these t rounds are complete, V accepts if and only if V would accept on
the complete transcript T (=(T V

t , vt)).

4.1 Parameters of the Compiler

Let (P, V ) be an honest verifier zero-knowledge argument system with t rounds,
ec completeness bound, es soundness error, and ez zero-knowledge error. Let
(P ′, V ′) be a computation zero-knowledge proof system with t′ rounds, e′c com-
pleteness bound, e′s soundness error, and e′z zero-knowledge error. Let ε be the
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value from Lemma 1 that represents the statistical difference of a simulated run
of the PRS preamble using SIMULATE from a real run against an arbitrary
unbounded concurrent verifier strategy. Let k be the number of rounds in the
PRS preamble. Let ep be the probability that the PRS preamble is accepted
by the prover and the verifier if they are behaving honestly. Let COM be the
commitment used in the PRS preamble. Let hcom be the probability of a PPT
machine breaking the hiding property of COM and bcom be the probability of
an all powerful adversary breaking the binding property of COM. Let S be the
simulator for (P, V ) and S be a simulator for (P, V).

We give the parameters that we obtain with our compiler in the following
theorem.

Theorem 1. Running the compiler given in Section 4 on the argument system
(P, V ) results in a system (P, V) with the following properties.

– The completeness bound of (P, V) is epec.
– The soundness error of (P, V) is es + (k2hcom + e′z)t.
– The zero-knowledge error of the protocol is:

Δ((P, V∗)(x), SV
∗(x)) = ε + ez + k2bcom + e′st

Proof. The proof of each of the above claims is given below individually.

Completeness. Suppose x ∈ L. Then the probability that the protocol is accepted
by V is:

Pr[(PRS is accepted)∧((P, V ) is accepted)∧(each execution of (P ′, V ′) is accepted)] =

(ep)(ec)(e′
c)

t

Note that e′c is one since our protocol (P ′, V ′) has perfect correctness. Thus
we get the probability that the transformed protocol is accepted is (ep)(ec).

Soundness. Suppose x �∈ L and there exists an adversarial PPT prover P
∗ that

can get V to accept with non-negligible probability φ. In other words, suppose
(P, V) has non-negligible soundness error φ. We will show how to use P

∗ to
build a machine D that breaks the soundness of the underlying zero-knowledge
protocol (P, V ). We give a formal description of D in Figure 2.

D will use P
∗ as follows. D runs P

∗ and executes the PRS preamble interacting
with it setting σ to a random r. Now, D gives a computational zero knowledge
proof to P

∗ and receives r′ as shown in Figure 2. It then runs the honest verifier
machine V acting a cheating prover P ∗ and trying to break the soundness of the
system (P, V ).

In the jth round, D receives pj from P
∗ and sends it to V . V will respond to pj

with vj . Now D wants to be able to give vj as his response to P
∗ so as to be able

to continue the protocol. However D needs his response to P
∗ to be generated

using randomness r⊕r′ as per the protocol (P, V ). D has already committed to r
with a statistically binding commitment and thus can not necessarily decommit
to a r such that vj is consistent with r, r′ and (P, V ).



Concurrent Statistical Zero-Knowledge Arguments for NP 455

Common Input to D and V : x
Auxiliary input to D: The cheating prover machine P

∗

Description of D, a cheating prover for (P, V )
1. D runs a copy of P

∗, acting as the verifier itself.
2. D generates r

r← R. It then interacts with P
∗ to carry out the PRS

preamble using r.
3. D gives a zero knowledge proof (P ′, V ′) to P

∗ proving that all the shares
it committed to in the PRS preamble are consistent with r.

4. D receives r′ from P
∗

5. For j = 1, . . . t:
(a) D gets the message pj from P

∗.
(b) D → V : pj .
(c) V → D: vj .
(d) D uses the simulator S′ of the system (P ′, V ′) and simulates a proof

with P
∗ that V (T V

j , r ⊕ r′) = vj .

Fig. 2. D acting as a cheating prover for (P, V )

However D does not have to decommit to r, but only needs to give a zero-
knowledge proof that he has committed to a randomness r such that vj is con-
sistent with r, r′ and (P, V ). He can use the simulator of (P ′, V ′) to do this.
Hence, D sends vj to P

∗ and simulates a zero knowledge proof of its correctness
by rewinding P

∗. The probability that P
∗ can differentiate between such a sim-

ulated run and a real run can be analyzed using a simple hybrid argument. As
we move from a real run to a simulated one, we construct the following hybrid.
D acts as an honest V sending correct verifier messages vj . However, instead
of giving real zero knowledge proofs, D gives simulated proofs. In other words,
although D would have the witness to the NP statement, it does not use it and
instead simulates the zero knowledge proof. Clearly, the probability that P

∗ can
distinguish this hybrid from a real run is bounded by the zero-knowledge error
(see section 2) of (P ′, V ′). Now, we move from the hybrid to the simulated run
where, in the PRS preamble, D did not commit to a randomness which could
explain his message vj (but rather an unrelated randomness r). Hence, D would
not necessarily possess the witness of his statement.

Using the above hybrid argument, it can be shown that:

Pr[P∗ can distinguish this simulation from a real run] ≤
Pr[P∗can break the ZK condition of (P ′, V ′)]+

Pr[P∗can break any of the commitments during the PRS preamble] ≤
k2hcom + e′z

P
∗ will see t of these simulations from D. Thus we can use the union bound and

get that the probability that P
∗ will be able to distinguish any of the simulation

from a real run is (k2hcom + e′z)t.
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Now, V will only accept in the protocol if the internal V he is running accepts
p1, v1, . . . , pt, vt. Recall that the probability that V accepts when interacting with
P
∗ is φ. Thus the probability that V will accept an interaction with D who is

running P
∗ can be computed as follows:

Pr[V accepts] ≥

1 − Pr[(P∗ does distinguish) ∨ (V does not accept)] ≥
1 −

(

Pr[P∗ does distinguish] + Pr[V does not accept]
)

≥

1 − ((k2hcom + e′z)t + (1 − φ))

This value must be less than the soundness error of (P, V ). Thus we get an
upper bound on the soundness error of the compiled protocol

φ ≤ es + (k2hcom + e′z)t

Note that if es, hcom, e′z are all negligible and t, k are at most polynomial, the
soundness error of the compiled protocol will be negligible.

Concurrent Statistical Zero-knowledge. Lets consider an arbitrary unbounded
concurrent verifier strategy. Let V

∗ be one of the verifiers representing a session
in the concurrent verifier strategy. Given S, the simulator for the underlying
protocol (P, V ), we show how to construct a simulator S for the protocol (P, V).
S will output a simulated transcript from a distribution which is only a negligible
statistical distance from the distribution of the transcript of a real interaction.
The simulator S is described formally in Figure 3.

S will first run S, the simulator of the underlying protocol. S will act as
the honest verifier oracle for S recording all the randomness that he uses as
the oracle. After running S, S will have a transcript p̂1, v̂1, . . . p̂t, v̂t and the
randomness r̂ (used in creating the honest verifier responses v̂1, . . . v̂t). This
transcript p̂1, v̂1, . . . p̂t, v̂t will be statistically close to a real run of (P, V ).

As shown in the figure, S then runs the concurrently extractable simulator
CEC-Sim (or in other words, the PRS simulator) and recovers the committed
randomness r∗ with probability at least (1 − ε). Since the commitments that V

∗

used during the PRS preamble are statistically binding, even an all powerful V
∗

will not be able to change them except with negligible probability. We call this
probability bcom. After finishing the preamble, S will be a straightline simulator
and will not rewind V

∗ any further.
S will now give V

∗ a string r′ such that r∗ ⊕ r′ = r̂. Note that the distribution
of r′ will look completely uniform to V

∗ since V
∗ has no information about r̂.

Now for each round of the protocol, the simulator will proceed as follows.
In round j, S will give p̂j to V

∗. Since V
∗ has already committed to r∗, it will

now be forced use randomness r∗ ⊕ r′ which is exactly r̂, . It will therefore be
forced to respond with v̂j , except of course with the probability that he can
break either the binding property of the commitment or the soundness of the
zero-knowledge proof (P ′, V ′). Since we are using statistically binding commit-
ments and a zero knowledge proof, the probability of an all powerful adversary
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Input: V
∗, one of the verifiers in an arbitrary unbounded concurrent verifier

strategy.
The simulator S

1. S acts as an honest verifier V and runs the simulator S of the argument
system (P, V ) on itself. S generates r̂

r← R and uses it as randomness to
interact with S. After the interaction, S gets as output the simulated
transcript p̂1, v̂1, . . . p̂tv̂t.

2. S runs a copy of V
∗

3. S runs the concurrently extractable simulator CEC-Sim on V
∗. CEC-Sim

executes the PRS preamble with V
∗ and extracts its committed

randomness r∗.
4. S carries out (P ′, V ′) with V

∗ in which V
∗ proves that all the shares it

committed to in the PRS preamble are consistent with r∗.
5. S computes r′ such that r∗ ⊕ r′ = r̂ and sends it to V

∗ .
6. For j = 1, . . . t:

(a) S sends p̂j to V
∗ and receives V

∗’s response v̂′
j .

(b) S carries out (P ′, V ′) with V
∗ in which V

∗ proves that its response
v̂′

j = V (T V
j , r̂). S aborts if v̂′

j 	= v̂j .

Fig. 3. The simulator S for (P, V)

breaking the binding property of the commitments or the soundness property of
the (P ′, V ′) is negligible. Thus the randomness that V

∗ is forced to use will be
r̂ and his response will therefore be v̂j , exactly as in the transcript created by
S. If this is not the case, S aborts.

We now analyze the probability of failure of the simulator S. From a union
bound, we can directly bound this probability by analyzing the probability of all
the events which may cause S to fail. The failure probability is upper bounded
by:

Pr[Output of S is not identically distributed to (P, V )]+

Pr[CEC-Sim is unsuccessful in recovering r∗]+

Pr[V∗ breaks the binding property of any of the commitments]+

Pr[V∗ breaks the soundness property of (P ′, V ′) for any of the executions]

= ε + ez + k2bcom + e′st

Thus Δ((P, V∗)(x), SV
∗(x)) = (ε + ez + k2bcom + e′st) as claimed.

Note that if ε, ez, bcom, e′s are all negligible and t, k are at most polynomial,
the simulated transcript will have negligible statistical difference from a real run
of the protocol. �

4.2 Concurrent Statistical Zero-Knowledge Arguments from Any
One Way Function

In order to build concurrent statistical zero-knowledge arguments from a OWF,
we need the following theorem implicit in [NOV06].
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Theorem 2. If one way functions exist, every language in NP has a public-coin
statistical zero-knowledge argument system.

We can now apply our compiler to the protocol of Nguyen et al [NOV06] to get
the following corollary.

Corollary 1. If one way functions exist, every language in NP has a concurrent
statistical zero-knowledge argument system.
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{brassard,broadbea,gambsseb,tappa}@iro.umontreal.ca

2 University of Oxford
Department of Materials

Parks Road, Oxford, OX1 3PH, United Kingdom
joe.fitzsimons@materials.ox.ac.uk

Abstract. We present the first protocol for the anonymous trans-
mission of a quantum state that is information-theoretically secure
against an active adversary, without any assumption on the number
of corrupt participants. The anonymity of the sender and receiver, as
well as the privacy of the quantum state, are perfectly protected except
with exponentially small probability. Even though a single corrupt
participant can cause the protocol to abort, the quantum state can
only be destroyed with exponentially small probability: if the protocol
succeeds, the state is transferred to the receiver and otherwise it remains
in the hands of the sender (provided the receiver is honest).

Keywords: quantum cryptography, multiparty computation, anonym-
ity, dining cryptographers.

1 Introduction

In David Chaum’s classic dining cryptographers scenario [Cha88], a group of
cryptographers is having dinner at a restaurant and it is the case that either
one of them has anonymously paid the dinner bill or the NSA has paid. The
task that the cryptographers wish to accomplish is to find out which of the two
cases occurred, without revealing any additional information. The security of
Chaum’s protocol does not rely on any computational assumption, but only on
the cryptographers having access to pairwise private channels and to a broadcast
channel. A simple extension to this protocol allows a single participant, say Alice,
to broadcast a message to all the other participants in such a way that Alice’s
identity is information-theoretically protected.

But what if Alice wishes to send a private message to Bob (who is also sit-
ting at the dinner table), while ensuring the anonymity of both herself and of
Bob? This task is called anonymous message transmission. As an instance of
multiparty secure computation, such a protocol can be accomplished, assuming
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pairwise private channels and a broadcast channel, as long as a majority of par-
ticipants are honest [RB89]. Recently, two of us [BT07] have given a protocol
that requires pairwise private channels and a broadcast channel, and accom-
plishes anonymous message transmission without any assumption on the num-
ber of honest participants. The protocol, however, allows even a single corrupt
participant to cause an abort.

Our main contribution is to give the first information-theoretically secure pro-
tocol for quantum anonymous transmission that tolerates any number of corrupt
participants. That is, our protocol allows Alice to send a quantum message to
Bob such that both Alice and Bob remain anonymous (no participant learns the
identity of Alice—even if Bob is corrupt—and the identity of Bob remains known
only to Alice), and the quantum message remains private (nothing about it leaks
to participants other than Bob, unless of course Bob is corrupt). The anonymity
of the sender and receiver, as well as the privacy of the quantum message, are
perfect except with exponentially small probability, regardless of the behaviour
of cheating parties, with no need to rely on any assumptions other than the avail-
ability of a classical broadcast channel as well as private authenticated quantum
channels between each pair of participants. Our protocol has features similar to
the anonymous (classical) message transmission protocol mentioned above: we
can tolerate an arbitrary number of corrupt participants, but any single corrupt
participant can cause the protocol to abort. However, no private information can
be obtained by making the protocol abort.

Since Alice sends quantum information, we need to address a concern that did
not exist in the context of classical anonymous message transmission: the state
to be transmitted should never be destroyed even if the protocol aborts (unless
the receiver is corrupt, since in that case he can follow honestly the protocol until
the very end, and then destroy the successfully transmitted message!). Because
of the no-cloning theorem [WZ82], the sender cannot generally keep a backup
copy of the message before entering the protocol. Nevertheless, we accomplish
this safeguard as part of the main protocol with a simple and novel notion called
fail-safe teleportation. This notion ensures that if something went wrong with
the transmission of the state, its integrity is never at stake because the receiver
can always teleport it back to the sender in a way that does not compromise
anonymity.

1.1 Anonymity

Anonymity is a basic cryptographic concept whose goal is to hide the identity of
the sender or receiver of a message (or both). It is different from, but often com-
plementary to privacy, which ensures the confidentiality of a message. Examples
of anonymous tasks include sending an anonymous letter to one’s love, using
an email account with a pseudonym, accessing a web page through a trusted
identity proxy server or blind reviewing of a conference paper. Three approaches
to classical anonymity are generally considered. The first one requires the help
of a trusted third party that forwards messages between participants without
revealing the identity of the senders. Anonymizers [Boy97, GGK+99] belong to
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this class. The second approach uses chains of untrusted servers that randomize
the ordering of messages. This reordering prevents an outside observer from link-
ing the sender and the receiver of a particular message. The privacy of messages
is generally assured by a public-key cryptosystem. Chaum’s MixNets [Cha81] are
an instance of techniques using this approach. The third and last approach offers
information-theoretic security, assuming resources such as a broadcast channel
and pairwise private channels. Chaum’s dining cryptographers protocol [Cha88]
is the archetypical example of a protocol in this category.

1.2 Model

In our model, we suppose that each pair of participants shares a private authen-
ticated quantum channel, which means that a participant can send an authen-
ticated private message (quantum or classical) to any other participant. Such a
channel can be implemented if the participants share pairwise quantum channels
as well as classical secret keys. An extra tool is given to the participants under
the form of a (classical) broadcast channel. This channel guarantees that all par-
ticipants receive the same message from a publicly known sender, and that the
message is not modified while in transit.

Two security models are generally considered in secure multiparty compu-
tation: honest-but-curious and malicious. In the honest-but-curious model (also
called semi-honest), the participants are assumed to follow the protocol (thus be-
ing honest) but at the same time record all the information they have seen during
its execution (thus being curious). In this model, a protocol is said to be secure
against a collusion of participants if, by pooling their data, these participants
cannot learn more information than from their inputs and the output of the pro-
tocol alone. In the malicious model, participants may actively cheat and deviate
from the original prescription of the protocol. Cheaters can for instance try to
learn information about the input of honest participants or tamper with the
output of the protocol. Formal definitions can be found in Chapter 7 of [Gol04].
Both these models are neatly encapsulated by considering a central entity called
an adversary, which controls some of the participants, rendering them corrupt.
The adversary is passive if the corrupt participants are honest-but-curious, and
active if the corrupt participants are malicious. In this paper, we consider the
case of an active adversary that chooses the set of corrupt participants before
the execution of the protocol.

In the scenario that we consider, within a group of n participants, the
anonymous sender communicates a private quantum message to an anonymous
receiver. The sender is unknown to all participants and the receiver is unknown
to all participants except to the sender. We give the following definitions:

Definition 1 (Sender Anonymity). A protocol achieves sender anonymity if
it does not reveal any information concerning the identity of the sender to any
adversary. An exception concerns the receiver (or the adversary, if the receiver is
corrupt), who may legitimately learn something about the identity of the sender
by virtue of the contents of the transmitted message.
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Note that in particular, if the sender is corrupt, a protocol vacuously achieves
sender anonymity, and that sender anonymity requires that no adversary can
learn the identity of the sender, even if the receiver is corrupt.

Definition 2 (Receiver Anonymity). A protocol achieves receiver anonym-
ity if it does not reveal any information concerning the identity of the receiver
to any adversary beyond what could be legitimately learned by knowing for each
corrupt participant whether or not he is the receiver.

Note that in particular, if the sender or receiver is corrupt, a protocol vacuously
achieves receiver anonymity.

Definition 3 (Full Anonymity). A protocol achieves full anonymity if it does
not reveal any information about the relation between the identity of the sender
and receiver to any adversary beyond what could be legitimately learned by know-
ing for each corrupt participant whether or not he is the receiver.

Note that full anonymity implies sender and receiver anonymity and that if the
sender is corrupt, a protocol vacuously achieves full anonymity.

Remark. The asymmetry between the definitions of sender and receiver ano-
nymity stems from the fact that, contrary to the sender, the receiver does not
know at the onset of the protocol that such a role will be imparted upon him.

In what follows, we are only interested in protocols that are unconditionally
secure in the information-theoretic sense for the purpose of achieving full an-
onymity. We place no limit on the number of corrupt participants. However,
our protocol could abort if even a single corrupt participant deviates from the
prescribed protocol. Even if the protocol aborts, full anonymity as well as mes-
sage privacy are never compromised, except with exponentially small probability.
Note that if we had some sort of guarantee that a strict majority of participants
is honest, then anonymous quantum message transmission could be implemented
as a special case of quantum secure multiparty computation [BCG+06].

1.3 Anonymity in the Quantum World

The first protocol based on quantum mechanics that allows the anonymous com-
munication of classical information was proposed by P. Oscar Boykin [Boy02].
In the case of a quantum message, Matthias Christandl and Stephanie Wehner
were first to define the concept of anonymous quantum message transmission
and to give an explicit protocol for solving this task [Weh04, CW05], but
under the deus ex machina assumption that the n participants share ahead
of time entangled state |+n〉 = 1√

2
|0n〉 + 1√

2
|1n〉. (No mechanism is proposed

to verify the validity of that state.) Under that assumption, their protocol is
information-theoretically secure in terms of full anonymity, but malicious par-
ticipants can alter the transmitted state in a way that will not be detected by
the honest participants.
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One key notion introduced in the paper of Christandl and Wehner is that
of anonymous entanglement. Starting with the assumed n-party entangled
state |+n〉, the sender and the receiver end up sharing a two-party entangled
state |+2〉, better known as Bell State |Φ+〉 = 1√

2
|00〉 + 1√

2
|11〉, provided the

other parties follow the protocol honestly. This entanglement is anonymous
because the sender has chosen with which other party (the receiver) he shares
it, but the receiver has no information concerning the party with which he is
entangled. Moreover, the other parties have no information concerning who are
the two entangled parties (assuming the entangled parties are not corrupt).

A first attempt to accomplish quantum message transmission in the pres-
ence of an unlimited number of corrupt participants without assuming that
a trusted state |+n〉 is shared between the participants before the onset of
the protocol was made by Jan Bouda and Josef Šprojcar [BŠ07], but in
a public-receiver model (the sender is anonymous but the receiver is pub-
lic). The creation and distribution of a |+n〉 state is an important part of
their protocol. From there, they attempt to establish semi-anonymous entan-
glement (the identity of one of the entangled parties, the receiver, is pub-
lic). However, careful analysis reveals that an active adversary can proceed
in such a way that the probability that the protocol aborts becomes cor-
related with the identity of the sender, thus compromising his anonymity.
If the protocol requires the receiver to stay quiet in order not to reveal
whether or not the protocol has succeeded, it is true that the anonymity of
the sender is preserved. However, this is very different from the model usu-
ally considered in secure multiparty computation, in which all the participants
learn at the end of the protocol whether or not it has succeeded. More im-
portantly, this approach makes it impossible to preserve the identity of the
sender whenever the receiver is corrupt. Indeed, if we wanted to cope with
a corrupt receiver and still preserve sender anonymity, this would require
the need to hide from the receiver himself whether or not the protocol has
succeeded. But if it were the case that the message itself (if received) did
not convey any information on the success of the protocol, then it would mean
that it is no more useful than a totally random state. Then, why bother send
it at all?

Our own protocol is also based on the establishment of anonymous entangle-
ment between the sender and the receiver. However, compared to the protocol of
Christandl and Wehner, we do not need to assume an a priori shared |+n〉 state
and no malicious attempt at corrupting the intended final |Φ+〉 state between the
sender and the receiver can succeed (except with exponentially small probability)
without causing an abort. It follows that the intended state will be transmitted
faithfully unless the protocol aborts, in which case it will end up intact at the
sender’s by virtue of fail-safe teleportation (unless the receiver is corrupt). Com-
pared with the protocol of Bouda and Šprojcar, our receiver is anonymous and
the identity of the sender and the receiver cannot be correlated with the proba-
bility that the protocol aborts, allowing us to achieve full anonymity according
to Definition 3.
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2 Toolbox

We now survey the classical and quantum tools that are used in our main pro-
tocol. Two of us recently developed several classical secure multiparty proto-
cols [BT07]; we present below some of the relevant results, which will be used in
the next section. All protocols assume pairwise authentic private classical chan-
nels and a broadcast channel. They offer information-theoretic security and have
polynomial complexity in the number of participants as well as in a security pa-
rameter and, in the case of Theorem 4, in the number of bits in the transmitted
message. In all cases, the expression “exponentially close to 1” or “exponentially
small” means “exponentially in the security parameter”. We also review a key
result from [BCG+02].

Theorem 1 (Logical OR–[BT07]). There exists a secure multiparty protocol
to compute the logical OR of the participants’ input bits (one bit per participant).
If all participants are honest, the correct answer is computed with probability
exponentially close to 1. Misbehaving participants cannot cause the protocol to
abort. (Any refusal to participate when expected will cause the output to be 1.)
The only information an active adversary can learn through the protocol is if at
least one honest participant has input 1. No information about the number of
such participants or their identity is revealed.

Theorem 2 (Collision Detection–[BT07]). There exists a collision detection
protocol in which each participant inputs a bit. Let r denote the number of 1s
among these input bits. The protocol has three possible outcomes corresponding
to whether r = 0, r = 1 or r ≥ 2. If all participants are honest, the correct value
is computed with probability exponentially close to 1. No participant can make
the protocol abort, and an adversary cannot learn more than it could have learned
by assigning to all corrupt participants the input 0 and letting them follow the
protocol faithfully. A single corrupt participant can cause the output correspond-
ing to r ≥ 2 regardless of the other inputs (even if all the other inputs are 0).
Also, it is possible for a corrupt participant to set his input to 0 if all other par-
ticipants have input 0 (producing an r = 0 output) and to 1 otherwise (producing
an r ≥ 2 output). No other form of cheating is possible.

Although the collision detection protocol outlined above may look rather imper-
fect, it is actually just as useful as the ideal protocol for our purpose.

Theorem 3 (Notification–[BT07]). There exists a notification protocol in
which participants can notify other participants of their choosing. Each player’s
output is one private bit specifying if he has been notified at least once; this
value is correctly computed with probability exponentially close to 1. This is the
only information accessible through the protocol even in the case of an active
adversary.

According to [BT07], it is possible in general to invoke the notification protocol
even if multiple senders want to notify several receivers. However, in the spe-
cific context of our use of this protocol for the purpose of anonymous quantum



466 G. Brassard, A. Broadbent, J. Fitzsimons, S. Gambs, and A. Tapp

message transmission, we forbid any honest participant to engage in the above
notification protocol without having previously caused output “r = 1” in the col-
lision detection protocol (Theorem 2). Similarly, no honest participant S will ever
engage in the anonymous message transmission protocol below unless he has ini-
tially caused output “r = 1” in the collision detection protocol and has notified
a single other participant R.

Theorem 4 (Anonymous Message Transmission–[BT07]). There exists an
anonymous message transmission protocol in which a sender can transmit a clas-
sical message to a receiver such that even in the presence of an active adversary,
full anonymity is achieved and the privacy of the message is perfect. If all par-
ticipants are honest then the message is transmitted perfectly. Any attempt by a
corrupt participant to modify the message will cause the protocol to abort, except
with exponentially small probability.

In 2002, Howard Barnum, Claude Crépeau, Daniel Gottesman and Alain Tapp
presented a non-interactive scheme for the authentication of quantum mes-
sages [BCG+02]. The protocol also encrypts the quantum state to be transmitted
and is information-theoretically secure.

Theorem 5 (Quantum Authentication–[BCG+02]). There exists an infor-
mation-theoretically secure quantum authentication scheme to authenticate an
arbitrary quantum message |ψ〉 of length m with an encoding circuit (called au-
thenticate) and a decoding circuit (called decode) of size polynomial in m, which
uses a random private key of length 2m + 2s + 1 and has authenticated mes-
sage of length m + s. Let p the probability that the message is accepted. If the
message is accepted then let q be the probability of obtaining outcome |ψ〉 when
measuring in a basis containing |ψ〉. If the authenticated message is not modified,
then p = q = 1. Otherwise, pq +(1−p) > 1− m+s

s(2s+1) . The protocol also perfectly
preserves the privacy of the transmitted message.

3 Protocol for Anonymous Quantum Message
Transmission

In this section, we describe and analyse our protocol for anonymous quantum
message transmission. Our protocol allows an anonymous sender S to transmit
an m-qubit message |ψ〉 to an anonymous receiver R. We assume a broadcast
channel as well as an information-theoretically secure private and authenticated
quantum channel between each pair of participants (which can also be used, of
course, to transmit classical information). Our protocol achieves full anonymity
and message privacy, except with exponentially small probability. The security
proof for the protocol makes no assumption on the number of corrupt partici-
pants, but a single corrupt participant can make the protocol abort. However, if
the sender and the receiver are honest, the quantum message to be transmitted
will only be lost with exponentially small probability.
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Here is an informal description of the protocol. In the first step, the purely
classical collision detection protocol of Theorem 2 is performed to establish that
exactly one participant wants to send an anonymous quantum message. If this
is not the case, the protocol aborts. In case it is found that more than one
participant wants to speak, one might imagine alternative scenarios such as
asking each one of them to decide at random whether or not to skip their turn
and trying again the collision detection protocol until a single-sender occurrence
occurs. This will reveal information on the number of honest would-be senders
and may take too many trials if there are too many of them, so that more
sophisticated solutions might need to be considered. (Further elaboration on
this issue would go beyond the scope of this paper.)

In the next two steps, the participants collaborate to establish multiple
instances of a shared state |+n〉 = 1√

2
|0n〉 + 1√

2
|1n〉. Then, the sender desig-

nates a receiver by use of the notification protocol (Theorem 3).
If honest, the receiver will act differently from the other participants, but in

a way that is indistinguishable, so that his anonymity is preserved. The shared
instances of |+n〉 are then used to create anonymous entanglement between the
sender and the receiver. However, the anonymous entanglement could be imper-
fect if other participants misbehave. For this reason, the sender then creates a
sufficient number of instances of Bell state |Φ+〉. The possibly imperfect anony-
mous entanglement is used to teleport [BBC+93] an authenticated version of half
of each |Φ+〉. If this first teleportation is successful, the sender uses this newly
established perfect anonymous entanglement to teleport the quantum message
itself. Our fail-safe quantum teleportation protocol ensures that unless the receiver
is corrupt, the quantum message is never destroyed, except with exponentially
small probability: either it is safely transmitted to the receiver, or it comes back
intact at the sender’s.

In more detail, all classical communication from the sender to the receiver
is performed anonymously using the anonymous message transmission proto-
col (Theorem 4). To create anonymous entanglement, all participants must be
involved. One participant (who is chosen arbitrarily, for instance the first par-
ticipant in lexicographic order) creates a state |+n〉 and distributes one qubit to
each participant, keeping one for himself. Of course, this participant could be
corrupt, so that there is no guarantee that a proper |+n〉 has been distributed.
Moreover, a corrupt distributor could send different states to different honest
participants, in the hope that the future evolution of the protocol may depend
on who is the sender and who is the receiver. Foiling this threat constitutes
a key contribution of our protocol. For this reason, all participants verify this
state without destroying it in the next step. If the verification succeeds, the state
shared amongst all participants is guaranteed to be invariant under permutation
of the honest participants (Lemma 1), even though it could still not be a gen-
uine |+n〉 state. This ensures full anonymity. Furthermore, the behaviour of the
state |+n〉, when measured by all but two parties in the Hadamard basis, ensures
correctness (unless it aborts) as shown in Theorems 6 and 8.
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The full protocol is given as Protocol 1, where we denote by P the condi-
tional phase change defined by P |0〉 = |0〉 and P |1〉 = −|1〉. Note that if two
participants (such as the sender and the receiver) share an instance of Bell state
|Φ−〉 = 1√

2
|00〉 − 1√

2
|11〉, a single participant (such as the sender) can convert

this to a |Φ+〉 by locally applying the P operation. Note also that such a local
operation (performed by the sender) has no detectable effect that could be mea-
sured by the other participants (in particular the receiver), which ensures that
the anonymity of the sender is not compromised. It is easy to see that Pro-
tocol 1 has polynomial complexity in n (the number of participants), s (the
security parameter) and m (the length of the message).

Theorem 6 (Correctness). Assume all participants are honest in Protocol 1.
If more than one of them wishes to be a sender, this will be detected with probabil-
ity exponentially close to 1 in the first step. Otherwise, the message is transmitted
perfectly with probability exponentially close to 1, and the protocol can abort only
with exponentially small probability.

Proof. Even if all participants are honest, it is possible for collision detection or
notification to produce an incorrect output (the notification protocol may also
abort); however, this happens with exponentially small probability.

To ensure correctness of the protocol, we only have to verify that S and R
share a sufficient number of proper Bell states |Φ+〉 at the end of step 5. It is clear

Protocol 1. Anonymous Quantum Message Transmission
Let s be the security parameter and m be the length of quantum message |ψ〉. All
quantum communication is performed using the private authenticated quantum chan-
nels.

1. Multiple Sender Detection
1.1 The collision detection protocol (Theorem 2) is used to determine if one and

only one participant wants to be the sender. If not, the protocol aborts.
2. Entanglement Distribution

2.1 One arbitrarily designated participant creates 2m+s instances of the state |+n〉
and sends one qubit of each instance to each participant, keeping one qubit of
each instance for himself.

3. Entanglement Verification
For each of the 2m + s instances:
3.1 Each participant makes n−1 pseudo-copies of his qubit by applying a control-

not with it as the source and a qubit initialized to |0〉 as the target. One such
pseudo-copy is sent to every other participant.

3.2 Each participant verifies that all the n qubits in his possession are in the
subspace spanned by {|0n〉, |1n〉}.

3.3 Each participant broadcasts the outcome of the previous step. If any outcome
is negative, the protocol aborts.

3.4 Each participant resets n − 1 of his qubits to |0〉 by performing n − 1 control-
not operations. These qubits are discarded and the one remaining is back to
the state distributed at step 2.
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Protocol 1. Anonymous Quantum Message Transmission (continued)
4. Receiver Notification

4.1 The participants execute the notification protocol (Theorem 3) in which only S
notifies a single R.

5. Anonymous Entanglement Generation
For each of the 2m + s instances:
5.1 All participants except S and R measure in the Hadamard basis the qubit that

remains from step 3.
5.2 Each participant broadcasts the result of his measurement (S and R broadcast

two random dummy bits).
5.3 S computes the parity of all the bits received during the previous step (except

his own and that of R).
5.4 If the parity is odd, S applies P , the conditional phase change, to his remaining

qubit (the two qubits shared by S and R are now in Bell state |Φ+〉).
6. Perfect Anonymous Entanglement

6.1 S creates 2m instances of Bell state |Φ+〉. He keeps the first qubit of each pair;
let ρ be the rest of the pairs.

6.2 S creates a random classical key k of length 4m + 2s + 1, and computes ρ′ =
authenticate(ρ, k).

6.3 S performs a teleportation measurement on ρ′ using the anonymous |Φ+〉 states
generated during steps 2–5.

6.4 S uses the anonymous message transmission protocol (Theorem 4) to send k
and the teleportation bits to R.

6.5 R completes the teleportation and computes ρ = decode(ρ′, k). If the decoding
is successful, S and R share perfect anonymous entanglement (they share 2m
instances of |Φ+〉).

6.6 A logical OR is computed (Theorem 1): all players input 0 except R, who
inputs 1 if the authentication failed and 0 otherwise. If the outcome is 1, the
protocol aborts.

7. Fail-Safe Teleportation
7.1 S teleports the state |ψ〉 to R using the first m pairs generated in the previous

step. The teleportation bits are anonymously transmitted to R (Theorem 4).
If the communication succeeds, R terminates the teleportation.

7.2 A logical OR is performed (Theorem 1): all players input 0 except R, who
inputs 1 if the communication of the teleportation bits failed. If the outcome
is 0, the protocol succeeds. Otherwise, S and R do the following:

7.2.1 R performs a teleportation measurement using the remaining perfect
anonymous entanglement to teleport back to S the quantum state re-
sulting from partially failed step 7.1.

7.2.2 All participants broadcast 2m random bits, except R who broadcasts the
teleportation bits from above. The protocol continues even if one of the
participants refuses to broadcast.

7.2.3 S reconstructs |ψ〉 from his own teleportation bits from step 7.1 and R’s
teleportation bits received from the broadcast. The protocol aborts.

that at the end of step 3, the participants share proper instances of state |+n〉
(since we are assuming in this theorem that they are honest). When S computes
the parity of the measurement outcomes in step 5, this corresponds to the parity
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of the measurement results in the Hadamard basis of the state |+n〉, where
all but two qubits are measured. If the parity is even, S and R share |Φ+〉
and otherwise |Φ−〉, which is corrected by the sender by the application of the
conditional phase change P . ��

The following Lemma is necessary in the proof of anonymity and privacy
(Theorem 7).

Lemma 1 (Invariance Under Permutation of Honest Participants).
In Protocol 1, if step 3 succeeds, then the state of the system at the end of
the step is:

α|00 . . .0〉H |ψ0〉C + β|11 . . .1〉H |ψ1〉C , (1)

where H denotes the honest participants’ subsystem, C denotes the corrupt par-
ticipants’ subsystem, and α, β ∈ C are such that |α|2 + |β|2 = 1.

Proof. In the entanglement verification step, each honest participant sends a
pseudo-copy of his state to every other honest participant. Therefore, after a
single honest participant verifies that his qubits are in the subspace spanned
by {|0n〉, |1n〉}, we are already ensured that if the entanglement verification suc-
ceeds, the state will be of the form given above. Note that the corrupt partici-
pants’ subsystem C could span more than t qubits since they can bring arbitrary
ancillas into their cheating strategy. ��

Theorem 7 (Anonymity and Privacy). Regardless of the number of corrupt
participants and except with exponentially small probability, Protocol 1 achieves
full anonymity and privacy of the transmitted message |ψ〉.

Proof. We analyse the protocol step by step in order to prove the statement.
By virtue of Theorem 2, step 1 does not compromise the identity of the sender,

and it involves neither the receiver nor the quantum state to be transmitted.
Steps 2 and 3 are done without any reference to S or R and thus cannot com-
promise their anonymity either. Furthermore, the state obtained at the end of
step 3 (if it does not abort) cannot be specifically correlated with any honest par-
ticipant even if some other participants are corrupt. More precisely, by Lemma 1,
the state is invariant under any permutation of the honest participants. This is
crucial for the anonymity and privacy of the rest of the protocol. In particular,
it guarantees that the probability that the protocol aborts does not depend on
the identity of S or R, or any relationship between them. We prove this below
in the analysis of step 6.

The security of step 4 follows directly from the unconditional security of the
notification protocol (Theorem 3). However, if S fails to notify R in step 4 (this
happens with exponentially small probability), an adversary can surreptitiously
take over the role of the honest receiver in the rest of the protocol without being
detected. In that case, the adversary will violate the secrecy of the transmitted
state, yet without compromising the sender and receiver anonymity beyond what
can be learned by inspecting the illegitimately received state.
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In step 5, anonymous entanglement is generated. No information is revealed to
the adversary in this step since all communication is done by honest participants
broadcasting random bits.

For step 6, all communication is done using the anonymous message trans-
mission protocol, which is secure according to Theorem 4, except in logical OR
computation at the end, which reveals the success or failure of the authentica-
tion part of the protocol. We now show that this last substep cannot reveal any
information on the identity of S or R. This is because the success or failure of
the authentication step is uncorrelated to the identity of S and R: by Lemma 1,
as far as the qubits are concerned, all honest participants are identical under
permutation. Thus the adversary has no strategy that would allow him to deter-
mine any information about the identity of S or R, or even about any relation
between them.

During step 7, all the bits sent from S to R are randomly and uniformly
distributed because they are the classical bits resulting from the teleportation
protocol, therefore they do not reveal any information about the identity of S.
A similar observation about the bits broadcast by R in the case that the very
last part of the protocol is executed ensures that R and S remain anonymous.

The privacy of the state |ψ〉 in the case that S successfully notified R in step 4
(which happens with probability exponentially close to 1) is guaranteed by the
basic properties of teleportation. ��

Theorem 8 (Integrity). At the end of Protocol 1, if R is honest then the
state |ψ〉 is either in the possession of S or R, except with exponentially small
probability. Furthermore, |ψ〉 can only stay with S if the protocol has aborted.

Proof. If all participants are honest, then by Theorem 6, the state is in the pos-
session of R except with exponentially small probability. Otherwise, the protocol
might abort before step 7, in which case S still has |ψ〉. If the protocol reaches
step 7, due to the quantum authentication of step 6, S and R share 2m perfect
Bell states |Φ+〉 (with probability exponentially close to 1), which are used for
teleportation in step 7. If the first step of the fail-safe teleportation fails, then S
no longer has |ψ〉; however, the last three substeps of the protocol will always
succeed and S will reconstruct |ψ〉 (provided R is honest). Furthermore, it fol-
lows from the virtues of teleportation that if the protocol does not abort, the
state is no longer with S. ��

The reason why we specify in Theorem 8 that R must be honest is that a
corrupt R can destroy |ψ〉 by simply discarding it after having faithfully followed
the entire protocol. There remains one subtlety to mention: a corrupt R could
behave honestly until the last step. Then, he would input 1 in the logical OR
computation to force S to accept the teleportation back of the state. At that
point, the corrupt R could teleport back to S a fake state. As a result, S would
be fooled into thinking he still has custody of the original quantum state when,
in fact, that state is in the hands of R. (In general, there will be no way for S
to know that this has happened).
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4 Conclusion and Discussion

We have presented the first information-theoretically secure protocol for quan-
tum communication between an anonymous sender and an anonymous receiver
that tolerates an arbitrary number of corrupt participants. In particular, this
means that no adversary can learn any information that will break the anonym-
ity of the sender or receiver. Our protocol also provides perfect privacy for the
quantum message and ensures that the quantum message is never destroyed, ex-
cept with exponentially small probability. The drawback of our protocol is that
any participant can disrupt the protocol and make it abort.
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ters, W.K.: Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Physical Review Letters 70, 1895–1899
(1993)

[BCG+02] Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authen-
tication of quantum messages. In: Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2002), p. 449.
IEEE Computer Society Press, Los Alamitos (2002)
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Abstract. This paper introduces a new paradigm to realize various types of cryp-
tographic primitives such as authenticated key exchange and key encapsulation
in the standard model under three standard assumptions: the decisional Diffie-
Hellman (DDH) assumption, target collision resistant (TCR) hash functions and
pseudo-random functions (PRFs). We propose the first (PKI-based) two-pass au-
thenticated key exchange (AKE) protocol that is comparably as efficient as the ex-
isting most efficient protocols like MQV and that is secure in the standard model
(under these standard assumptions), while the existing efficient two-pass AKE
protocols such as HMQV, NAXOS and CMQV are secure in the random oracle
model. Our protocol is shown to be secure in the (currently) strongest security
definition, the extended Canetti-Krawczyk (eCK) security definition introduced
by LaMacchia, Lauter and Mityagin. This paper also proposes a CCA-secure key
encapsulation mechanism (KEM) under these assumptions, which is almost as ef-
ficient as the Kurosawa-Desmedt KEM. This scheme is also secure in a stronger
security notion, the chosen public-key and ciphertext attack (CPCA) security.
The proposed schemes in this paper are redundancy-free (or validity-check-free)
and the implication is that combining them with redundancy-free symmetric en-
cryption (DEM) will yield redundancy-free (e.g., MAC-free) CCA-secure hybrid
encryption.

1 Introduction

The most common paradigm to design practical public-key cryptosystems secure in
the standard model is to combine a trapdoor function (e.g., Diffie-Hellman or RSA
function) and target collision resistance (TCR) hash functions, where the security is
proven under a trapdoor function assumption (e.g., DDH or SRSA assumption) and the
TCR hash function assumption.

This paper introduces a new paradigm to design practical public-key cryptosystems,
where a pseudo-random function (PRF) is employed in addition to a trapdoor function
(DH) and target collision resistant (TCR) hash function.

The concept of a PRF was introduced by Goldreich, Goldwasser and Micali [4], and
has been shown to exist if and only if a one-way function exists [4,5]. Therefore, the
existence of a pseudo-random function is one of the weakest assumptions, and it is one
of the most fundamental primitives in cryptography.

Since a target collision resistant (TCR) hash function (and the slightly bit more gen-
eral concept, the universal one-way hash function) have also been shown to exist if and
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only if a one-way function exists [12,13], TCR hash function and PRF are the same
level of (the most) fundamental primitives in cryptography. In practice, a well-designed
efficient hash function can be assumed to be a TCR hash function, and such a hash
function with a random seed as a part of the input (or a keyed hash function) can be
assumed to be a PRF.

First, this paper presents a two-pass AKE protocol that offers the following
properties:

1. Its efficiency is comparable to those of MQV [9], HMQV [6] and CMQV [14] (the
message size of our scheme is that of MQV plus the size of two group elements,
and the computational complexity for a session of our scheme is around 3.3 group
exponentiations, while that of MQV is around 2.2 group exponentiations),

2. The assumption and model for its security proof are standard assumptions (DDH,
TCR hash function and PRF) and standard model (not the random oracle model),

3. Its underlying security definition is (currently) the strongest one, the extended
Canetti-Krawczyk (eCK) security definition introduced by LaMacchia, Lauter and
Mityagin [8],

4. Its security proof reduction efficiency is better than those of previous protocols in
the random oracle model.

This paper also proposes a CCA-secure key encapsulation mechanism (KEM) under
these assumptions, which is almost as efficient as the Kurosawa-Desmedt KEM [7].
This scheme is also secure in a stronger security notion, the chosen public-key and
ciphertext attack (CPCA) security, in which an adversary, given a target public key pk∗

and ciphertext c∗, is allowed to query a pair of public key pk and ciphertext c to the
decryption oracle, which answers the adversary with the decrypted result of c by the
secret key of pk.

The proposed schemes in this paper are redundancy-free (or validity-check-free) and
implies redundancy-free (e.g., MAC-free) CCA-secure hybrid encryption by combining
with redundancy-free CCA-secure symmetric encryption (DEM).

2 Preliminaries

2.1 Notations

N is the set of natural numbers and R is the set of real numbers. ⊥ denotes a null string.
A function f : N → R is negligible in k, if for every constant c > 0, there exists

integer n such that f(k) < k−c for all k > n. Hereafter, we often use f(k) < ε(k) to
mean that f is negligible in k.

When A is a probabilistic machine or algorithm, A(x) denotes the random variable

of A’s output on input x. Then, y
R← A(x) denotes that y is randomly selected from

A(x) according to its distribution. When a is a value, A(x) → a denotes the event that

A outputs a on input x. When A is a set, y
U← A denotes that y is uniformly selected

from A. When A is a value, y ← A denotes that y is set as A.
In this paper, we consider that the underlying machines are uniform Turing machines.

But it is easy to extend our results to non-uniform Turing machines.
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2.2 The DDH Assumption

Let k be a security parameter and G be a group with security parameter k, where the
order of G is prime p and |p| = k. Let {G}k be the set of group G with security
parameter k.

For all k ∈ N we define the sets D and R as follows:

D(k) ← {(G, g1, g2, g
x
1 , gx

2 ) | G
U← {G}k, (g1, g2)

U← G
2, x

U← Zp}

R(k) ← {(G, g1, g2, y1, y2) | G
U← {G}k, (g1, g2, y1, y2)

U← G
4}.

Let A be a probabilistic polynomial-time machine. For all k ∈ N, we define the DDH
advantage of A as

AdvDDHA(k) ← | Pr[A(1k, ρ)→1 | ρ
U← D(k)] − Pr[A(1k, ρ)→1 | ρ

U← R(k)]|.

The DDH assumption for {G}k∈N is: For any probabilistic polynomial-time adversary
A, AdvDDHA(k) is negligible in k.

2.3 Pseudo-Random Function (PRF)

Let k ∈ N be a security parameter. A pseudo-random function (PRF) family F associ-
ated with {Seedk}k∈N, {Domk}k∈N and {Rngk}k∈N specifies two items:

– A family of random seeds {Seedk}k∈N.

– A family of pseudo-random functions indexed by k, Σ
R← Seedk, σ

U← Σ, D R←
Domk, and R R← Rngk, where each such function Fk,Σ,D,R

σ maps an element of
D to an element of R. There must exist a deterministic polynomial-time algorithm
that on input 1k, σ and ρ, outputs Fk,Σ,D,R

σ (ρ).

Let AO be a probabilistic polynomial-time machine with oracle access to O. For all
k, we define

AdvPRFF,A(k) ← | Pr[AF (1k, D, R) → 1] − Pr[ARF (1k, D, R) → 1]|,

where Σ
R← Seedk, σ

U← Σ, D R← Domk, R R← Rngk, F ← Fk,Σ,D,R
σ , and RF : D →

R is a truly random function (∀ρ ∈ D RF (ρ) U← R).
F is a pseudo-random function (PRF) family if for any probabilistic polynomial-time

adversary A, AdvPRFF,A(k) is negligible in k.

2.4 Target Collision Resistant (TCR) Hash Function

Let k ∈ N be a security parameter. A target collision resistant (TCR) hash function
family H associated with {Domk}k∈N and {Rngk}k∈N specifies two items:

– A family of key spaces indexed by k. Each such key space is a probability space
on bit strings denoted by KHk. There must exist a probabilistic polynomial-time
algorithm whose output distribution on input 1k is equal to KHk.
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– A family of hash functions indexed by k, h
R← KHk, D R← Domk, and R R← Rngk,

where each such function Hk,D,R
h maps an element of D to an element of R. There

must exist a deterministic polynomial-time algorithm that on input 1k, h and ρ,
outputs Hk,D,R

h (ρ).

Let A be a probabilistic polynomial-time machine. For all k, we define

AdvTCRH,A(k) ←

Pr[ρ ∈ D ∧ ρ �= ρ∗ ∧ Hk,D,R
h (ρ) = Hk,D,R

h (ρ∗) | ρ
R← A(1k, ρ∗, h, D, R)],

where D R← Domk, R R← Rngk, ρ∗ U← D and h
R← KHk. H is a target collision resis-

tance (TCR) hash function family if for any probabilistic polynomial-time adversary A,
AdvTCRH,A(k) is negligible in k.

2.5 PKI-Based Authenticated Key Exchange (AKE) and the Extended
Canetti-Krawczyk (eCK) Security Definition

This section outlines the extended Canetti-Krawczyk (eCK) security definition for two
pass PKI-based authenticated key exchange (AKE) protocols that was introduced by
LaMacchia, Lauter and Mityagin [8], and follows the description in [14].

In the eCK definition, we suppose there are n parties which are modeled as proba-
bilistic polynomial-time Turing machines. We assume that some agreement on the com-
mon parameters in the AKE protocol has been made among the parties before starting
the protocol. The mechanism by which these parameters are selected is out of scope of
the AKE protocol and the (eCK) security model.

Each party has a static public-private key pair together with a certificate that binds
the public key to that party. Â (B̂) denotes the static public key A (B) of party A (B)
together with a certificate. We do not assume that the certifying authority (CA) requires
parties to prove possession of their static private keys, but we require that the CA verifies
that the static public key of a party belongs to the domain of public keys.

Here, two parties exchange static public keys A, B and ephemeral public keys X, Y ;
the session key is obtained by combining A, B, X, Y and possibly session identities.
A party A can be activated to execute an instance of the protocol called a session.
Activation is made via an incoming message that has one of the following forms: (Â, B̂)
or (B̂, Â, X). If A was activated with (Â, B̂), then A is called the session initiator,
otherwise the session responder. Session initiator A creates ephemeral public-private
key pair, (X, x) and sends (B̂, Â, X) to session responder B. B then creates ephemeral
public-private key pair, (Y, y) and sends (Â, B̂, X, Y ) to A.

The session of initiator A with responder B is identified via session identifier
(Â, B̂, X, Y ), where A is said the owner of the session, and B the peer of the ses-
sion. The session of responder B with initiator A is identified as (B̂, Â, Y, X), where
B is the owner, and A is the peer. Session (B̂, Â, Y, X) is said a matching session
of (Â, B̂, X, Y ). We say that a session is completed if its owner computes a
session key.
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The adversary M is modeled as a probabilistic polynomial-time Turing machine
and controls all communications. Parties submit outgoing messages to the adversary,
who makes decisions about their delivery. The adversary presents parties with incoming
messages via Send(message), thereby controlling the activation of sessions. In order to
capture possible leakage of private information, adversary M is allowed the following
queries:

– EphemeralKeyReveal(sid): The adversary obtains the ephemeral private key asso-
ciated with session sid.

– SessionKeyReveal(sid): The adversary obtains the session key for session sid, pro-
vided that the session holds a session key.

– StaticKeyReveal(pid): The adversary learns the static private key of party pid.
– EstablishParty(pid): This query allows the adversary to register a static public key

on behalf of a party. In this way the adversary totally controls that party.

If a party pid is established by EstablishParty(pid) query issued by adversary M,
then we call the party dishonest. If a party is not dishonest, we call the party honest.

The aim of adversary M is to distinguish a session key from a random key. Formally,
the adversary is allowed to make a special query Test(sid∗), where sid∗ is called the
target session. The adversary is then given with equal probability either the session key,

K∗, held by sid∗ or a random key, R∗ U← {0, 1}|K∗|. The adversary wins the game if
he guesses correctly whether the key is random or not. To define the game, we need the
notion of fresh session as follows:

Definition 1 (fresh session). Let sid be the session identifier of a completed session,
owned by an honest party A with peer B, who is also honest. Let sid be the session
identifier of the matching session of sid, if it exists. Define session sid to be “fresh” if
none of the following conditions hold:

– M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid) query (if sid
exists),

– sid exists and M makes either of the following queries:
both StaticKeyReveal(A) and EphemeralKeyReveal(sid), or
both StaticKeyReveal(B) and EphemeralKeyReveal(sid),

– sid does not exist and M makes either of the following queries:
both StaticKeyReveal(A) and EphemeralKeyReveal(sid), or
StaticKeyReveal(B).

We are now ready to present the eCK security notion.

Definition 2 (eCK security). Let K∗ be a session key of the target session sid∗ that

should be “fresh”, R∗ U← {0, 1}|K∗|, and b∗ U← {0, 1}. As a reply to Test(sid∗) query by
M, K∗ is given to M if b∗ = 0; R∗ is given otherwise. Finally M outputs b ∈ {0, 1}.
We define

AdvAKEM(k) ← | Pr[b = b∗] − 1/2|.
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A key exchange protocol is secure if the following conditions hold:

– If two honest parties complete matching sessions, then they both compute the same
session key (or both output indication of protocol failure).

– For any probabilistic polynomial-time adversary M, AdvAKEM(k) is negligible
in k.

This security definition is stronger than CK-security [2] and it simultaneously captures
all the known desirable security properties for authenticated key exchange including
resistance to key-compromise impersonation attacks, weak perfect forward secrecy, and
resilience to the leakage of ephemeral private keys.

2.6 Key-Encapsulation Mechanism (KEM)

A key encapsulation mechanism (KEM) scheme is the triple of algorithms, Σ =
(K, E, D), where

1. K, the key generation algorithm, is a probabilistic polynomial time (PPT) algorithm
that takes a security parameter k ∈ N (provided in unary) and returns a pair (pk, sk)
of matching public and secret keys.

2. E, the key encryption algorithm, is a PPT algorithm that takes as input public key
pk and outputs a key/ciphertext pair (K∗, C∗).

3. D, the decryption algorithm, is a deterministic polynomial time algorithm that takes
as input secret key sk and ciphertext C∗, and outputs key K∗ or ⊥ (⊥ means that
the ciphertext is invalid).

We require that for all (pk, sk) output by key generation algorithm K and for all
(K∗, C∗) output by key encryption algorithm E(pk), D(sk, C∗) = K∗ holds. Here, the
length of the key, |K∗|, is specified by l(k), where k is the security parameter.

Let A be an adversary. The attack game is defined in terms of an interactive com-
putation between adversary A and its challenger, C. The challenger C responds to the
oracle queries made by A. We now describe the attack game (IND-CCA2 game) used
to define security against adaptive chosen ciphertext attacks (IND-CCA2).

1. The challenger C generates a pair of keys, (pk, sk) R← K(1k) and gives pk to ad-
versary A.

2. Repeat the following procedure q1(k) times, for i = 1, . . . , q1(k), where q1(·) is a
polynomial. A submits string Ci to a decryption oracle, DO (in C), and DO returns
Dsk(Ci) to A.

3. A submits the encryption query to C. The encryption oracle, EO, in C selects b∗ U←
{0, 1} and computes (C∗, K∗) ← E(pk) and returns (C∗, K∗) to A if b∗ = 0 and

(C∗, R∗) if b∗ = 1, where R∗ U← {0, 1}|K∗| (C∗ is called “target ciphertext”).
4. Repeat the following procedure q2(k) times, for j = q1(k) + 1, . . . , q1(k)+ q2(k),

where q2(·) is a polynomial. A submits string Cj to a decryption oracle, DO (in C),
subject only to the restriction that a submitted text Cj is not identical to C∗. DO
returns Dsk(Cj) to A.

5. A outputs b ∈ {0, 1}.
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We define the IND-CCA2 advantage of A, AdvKEMIND-CCA2
A (k) ← | Pr[b = b∗] −

1/2| in the above attack game.
We say that a KEM scheme is IND-CCA2-secure (secure against adaptive chosen

ciphertext attacks) if for any probabilistic polynomial-time (PPT) adversary A,
AdvKEMIND-CCA2

A (k) is negligible in k.

3 The Proposed AKE Protocol

3.1 Protocol

Let k ∈ N be a security parameter, G
U← {G}k be a group with security parameter

k, and (g1, g2)
U← G

2, where the order of G is prime p and |p| = k. Let H be a TCR
hash function family, and F, F̃ and F̂ be PRF families. (G, g1, g2), H, F, F̃ and F̂ are the
system parameters common among all users of the proposed AKE protocol (although
F̃ and F̂ can be set privately by each party) We assume that the systems parameters are
selected by a trusted third party.

Party A’s static private key is (a1, a2, a3, a4)
U← (Zp)4 and A’s static public key

is A1 ← ga1
1 ga2

2 , A2 ← ga3
1 ga4

2 . hA
R← KHk indexes a TCR hash function HA ←

Hk,DH ,RH

hA
, where DH ← Πk × G

4, RH ← Zp and Πk denotes the space of possible
certificates for static public keys.

Similarly, Party B’s static private key is (b1, b2, b3, b4)
U← (Zp)4 and B’s static public

key is B1 ← gb1
1 gb2

2 , B2 ← gb3
1 gb4

2 . hB
R← KHk indexes a TCR hash function HB ←

Hk,DH ,RH

hB
.

A and B set PRFs F ← Fk,ΣF,DF,RF , F̃ ← F̃k,ΣF̃,DF̃,RF̃ and F̂ ← F̂k,ΣF̂,DF̂,RF̂ ,
where ΣF ← G, DF ← (Πk)2 × G

8, RF ← {0, 1}k, ΣF̃ ← (Zp)4, DF̃ ← {0, 1}k,
RF̃ ← Zp, ΣF̂ ← {0, 1}k, DF̂ ← (Zp)4, and RF̂ ← Zp.

To establish a session key with party B, party A performs the following procedure.

1. Select an ephemeral private key x̃
U← {0, 1}k.

2. Compute x ← F̂x̃(a1, a2, a3, a4) + F̃(a1,a2,a3,a4)(x̃) mod p and the ephemeral
public key (X1 ← gx

1 , X2 ← gx
2 ).

3. Erase x.
4. Send (B̂, Â, X1, X2) to B.

Upon receiving (B̂, Â, X1, X2), party B verifies that (X1, X2) ∈ G
2. If so, perform

the following procedure.

1. Select an ephemeral private key ỹ
U← {0, 1}k.

2. Compute y ← F̂ỹ(b1, b2, b3, b4)+F̃(b1,b2,b3,b4)(ỹ) mod p and the ephemeral public
key (Y1 ← gy

1 , Y2 ← gy
2 ).

3. Erase y.
4. Send (Â, B̂, X1, X2, Y1, Y2) to A.
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A B

(a1, a2, a3, a4)
U
← (Zp)4 (b1, b2, b3, b4)

U
← (Zp)4

A1 ← ga1
1 ga2

2 , A2 ← ga3
1 ga4

2 , B1 ← gb1
1 gb2

2 , B2 ← gb3
1 gb4

2 ,
hA hB

x̃
U
← {0, 1}k

x ← F̂x̃(a1, a2, a3, a4)
+F̃(a1,a2,a3,a4)(x̃) mod p

X1 ← gx
1 , X2 ← gx

2 (B̂,Â,X1,X2)
−−−−−−−−−→

(X1, X2) ∈ G
2?

ỹ
U
← {0, 1}k

y ← F̂ỹ(b1, b2, b3, b4)
+F̃(b1,b2,b3,b4)(ỹ) mod p

Y1 ← gy
1 , Y2 ← gy

2(Â,B̂,X1,X2,Y1,Y2)
←−−−−−−−−−−−

(Y1, Y2) ∈ G
2?

c ← HA(Â, Y1, Y2) c ← HA(Â, Y1, Y2)
d ← HB(B̂,X1, X2) d ← HB(B̂,X1, X2)
σ ← Y a1+ca3+x

1 Y a2+ca4+x
2 · σ ← Xb1+db3+y

1 Xb2+db4+y
2 ·

Bx
1 Bdx

2 Ay
1A

cy
2

K ← Fσ(sid) K ← Fσ(sid)

Here, sid ← (Â, B̂,X1, X2, Y1, Y2). Note that (A1, A2, B1, B2) ∈ G
4 is confirmed

indirectly through the certificates.

Fig. 1. The Proposed AKE

Upon receiving (Â, B̂, X1, X2, Y1, Y2), party A checks if he sent (B̂, Â, X1, X2) to
B. If so, A verifies that (Y1, Y2) ∈ G

2.
To compute the session key, A computes σA ← Y a1+ca3+x

1 Y a2+ca4+x
2 Bx

1 Bdx
2 , and

B computes σB ← Xb1+db3+y
1 Xb2+db4+y

2 Ay
1A

cy
2 , where c ← HA(Â, Y1, Y2) and d ←

HB(B̂, X1, X2). If they are correctly computed, σ ← σA(= σB). The session key is
K ← Fσ(sid), where sid ← (Â, B̂, X1, X2, Y1, Y2).

3.2 Security

Theorem 1. The proposed AKE protocol is secure (in the sense of Definition 2) if the
DDH assumption holds for {G}k∈N, H is a TCR hash function family, and F, F̃ and F̂
are PRF families.

The proof will be given in the full paper version of this paper.
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4 The Proposed KEM Scheme

4.1 Scheme

In this section, we show a CCA secure KEM scheme.

Let k ∈ N be a security parameter, and let G
U← {G}k be a group with security

parameter k, where the order of G is prime p and |p| = k.
Let H be a TCR hash function family, and F be a PRF family.

Secret Key: The secret key is sk ← (x1, x2, y1, y2)
U← Z

4
p.

Public Key: g1
U← G, g2

U← G, z ← gx1
1 gx2

2 , w ← gy1
1 gy2

2 , H ← Hk,DH ,RH

h and

F ← Fk,ΣF,DF,RF , where h
R← KHk, DH ← {pk} × G

2 (pk is a possible public-
key value), RH ← Zp, ΣF ← G, DF ← {pk} × G

2 and RF ← {0, 1}k.
The public key is pk ← (G, g1, g2, z, w, H, F ).

Encryption: Choose r
U← Zp and compute

C1 ← gr
1 ,

C2 ← gr
2 ,

d ← H(z, w, C1, C2)
σ ← zrwrd

K ← Fσ(pk, C1, C2).

(C1, C2) is a ciphertext, and K is the secret key to be shared.
Decryption: Given (z, w, C1, C2), check whether

(z, w, C1, C2) ∈ G
4.

If it holds, computes

d ← H(z, w, C1, C2)

σ ← Cx1+dy1
1 Cx2+dy2

2

K ← Fσ(pk, C1, C2).

4.2 CCA Security

Theorem 2. The proposed KEM scheme is IND-CCA2 secure if the DDH assumption
holds for {G}k∈N, H is a TCR hash function family, and F is a PRF family.

The proof will be given in the full paper version of this paper.

4.3 CPCA Security

In this paper, we define a stronger security notion than the CCA security on KEM and
PKE.
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Here, we consider a trapdoor commitment, where committer (sender) S commits to
x by sending C ← Epk(x) to receiver R, then S opens x by sending sk to R, where
(pk, sk) is a pair of public key and secret key, and x = Dsk(C). Using a trapdoor
commitment, several committers, S1, . . ., Sn, commits to x1, . . . , xn respectively by
sending C1 ← Epk(x1), . . ., Cn ← Epk(xn) to receiver R. Another party can open
them simultaneously by sending sk to receiver R. A possible malleable attack is as
follows: after looking at pk and C ← Epk(x) sent to receiver R, adversary A computes
pk′, C′, algorithm Conv and non-trivial relation Rel. A registers pk′ and sends C′ to
R as a commitment to x′ such that Rel(x, x′). When sk is opened, A computes sk′ ←
Conv(sk) and sends sk′ to R such that x′ = Dsk′(C′).

To capture the security against such malleable attacks, we now define the CPCA
(Chosen Public-key and Ciphertext Attacks) security for KEM schemes.

Let Σ = (K, E, D) be a KEM scheme. Let C∗, pk∗ and sk∗ be the target ciphertext,
public key and secret key of KEM scheme Σ. In the CPCA security, an adversary A,
given pk∗ and C∗, is allowed to submit a pair of a public key pk and a ciphertext C
along with a polynomial-time algorithm Conv to the decryption oracle DO (with sk∗)
under the condition that (pk, C) �= (pk∗, C∗). DO returns Dsk(C) to A, where DO
computes and confirms that sk ← Conv(sk∗, pk∗), (c, k) ← Epk(1k) and k ← Dsk(c).
(Here, Dsk is equivalent to Dsk∗ except for the difference of sk and sk∗).

We can define the advantage of A for the IND-CPCA game, AdvKEMIND-CPCA
A (k).

We say that a KEM scheme is IND-CPCA-secure if for any probabilistic polynomial-
time (PPT) adversary A, AdvKEMIND-CPCA

A (k) is negligible in k.
We now show that the proposed KEM scheme is CPCA secure. To prove the security,

we need a new requirement for a hash function family, the generalized TCR (GTCR)
hash function family.

Let k ∈ N be a security parameter. Let G be a group with security parameter k,
where the order of G is prime p and |p| = k, and {G}k be the set of group G with
security parameter k.

Let H be a TCR hash function family associated with Domk ← {G
4}k, Rngk ←

{G}k.
For all k, we define

AdvGTCRG

H,A(k) ← Pr[ρ3 ∈ G
2 ∧ ρ∗ �= ((ρ∗1)

u, (ρ∗2)
v, ρ3) ∧

Hk,G4,G
h (ρ∗) = (v/u) · Hk,G4,G

h ((ρ∗1)
u, (ρ∗2)

v, ρ3) mod p |

(u, v, ρ3)
R← A(1k, ρ∗, h, G)],

where G
U← {G}k, ρ∗ ← (ρ∗1, ρ

∗
2, ρ

∗
3)

U← G × G × G
2 and h

R← KHk.
TCR hash function family H is a generalized target collision resistant (GTCR) hash

function family associated with {G}k if for any probabilistic polynomial-time adver-
sary A, AdvGTCRG

H,A(k) is negligible in k.

Theorem 3. The proposed KEM scheme is IND-CPCA secure, if the DDH assumption
holds for {G}k∈N, H is a GTCR hash function family, and F is a PRF family.

The proof will be given in the full paper version of this paper.
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Miniature CCA2 PK Encryption:
Tight Security Without Redundancy

Xavier Boyen
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Abstract. We present a minimalist public-key cryptosystem, as com-
pact as ElGamal, but with adaptive chosen-ciphertext security under
the gap Diffie-Hellman assumption in the random oracle model. The
novelty is a dual-hash device that provides tight redundancy-free im-
plicit validation. Compared to previous constructions, ours features a
tight security reduction, both in efficacy and efficiency, to a classic and
essentially non-interactive complexity assumption, and without resort-
ing to asymmetric/symmetric-key hybrid constructions. The system is
very compact: on elliptic curves with 80-bit security, a 160-bit plaintext
becomes a 320-bit ciphertext. It is also very simple and has a number of
practical advantages, and we hope to see it adopted widely.

1 Introduction and Motivation

One of the major pursuits in cryptographic research has been to devise faster,
nimbler, shorter, and stronger encryption systems that can be used in practice.
In the realm of public-key cryptosystems, the lure of simplicity and efficiency
has produced many a breakthrough and many more successive refinements, over
the last three decades.

We propose one more such technical refinement, in the form of a CCA2-
secure PK cryptosystem with the shortest ciphertext among Discrete-Log-based
systems at any given exact security level. Our construction is simple and purely
algebraic, and relies on a standard assumption in the random-oracle model of [2].
To obtain short ciphertexts, we eliminate all sources of redundancy, and limit
the unavoidable randomness to a single element of the computational group.
Furthermore, we ensure that no space is wasted in the encoding of that element,
by shrinking the computational group itself to the smallest size that the birthday
paradox will allow. The latter requirement is only possible with a tight reduction
to the underlying security assumption, as we shall discuss momentarily. These
properties taken together account for the scheme’s compactness.

All comparable schemes that have been suggested over the years either have
a non-tight security reduction, or are hybrid constructions with both an alge-
braic and a symmetric-key component, each bringing forth its own complexity
assumption. (We note that all known redundancy-free systems depend either on
some non-standard oracle assumption, or at least on the random-oracle model.
Indeed, it remains a major open problem to withstand active attacks without
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redundancy and without relying on random oracles or some sort of interactive
assumption).

By contrast, the scheme we propose can be proven tightly secure, in the
random-oracle model, solely under the Gap Diffie-Hellman (Gap-DH) assump-
tion [22], or even under the usual Computational Diffie-Hellman (CDH) assump-
tion if the algebraic group admits an efficient bilinear pairing: This is because
with a pairing one can instantiate the DDH oracle posited by the Gap-DH as-
sumption, which then reduces to plain CDH. Pairing-friendly groups are easy to
construct on certain types of elliptic curves; we refer the reader to the abundant
literature on pairing-based cryptography. We emphasize that our scheme will be
secure under CDH as soon as a pairing exists in the selected group, even though
we never actually use it. In groups where no efficient pairing is known to exist,
security still follows from the Gap-DH assumption.

1.1 On the Tightness of Reductions

The importance of a tight security reduction to a simple and well-studied as-
sumption is crucial to the determination of the exact security of any cryptosys-
tem. A security proof can be loose in two different ways: the final reduction may
cause a loss of success probability, or the simulator can be slow and steal most
of the computational time that should go to the attacker. The latter factor is
too often ignored when a security proof is advertised as tight: it is often the case
that a proof with tight efficacy probability-wise, would use an inefficient simu-
lator whose running time is quadratic or worse, which can significantly hurt the
security of the scheme in a real-world attack: the true security guarantee would
not be tight if one accounted for all parameters, as one should. Accordingly, it is
only by taking into account all intervening factors that a scheme’s true security
can be determined for a chosen apparent security parameter. Larger apparent
security parameters will have to be selected to compensate for loose reductions
(or strong assumptions), resulting in larger ciphertexts for the desired target
security level.

In the random oracle model in particular, it is very important to pay close atten-
tion to the extent that a scheme’s exact security deteriorates with the number of
random oracle queries made by the adversary, because in reality the random oracle
is instantiated as an algorithmic hash function that can be queried offline, limited
only by the adversary’s computational powers. Interactive assumptions that as-
sume the existence of “fancy oracles” that have no actual instantiations (even im-
perfect ones) are even more troublesome, because there is no telling how a scheme
that depends on such an oracle will fare in the real world: it might be completely
insecure and it is not hard to find examples of such. Sensitivity to the number of
decryption queries is less critical because in practice the decryption query rate is
limited by various online processes, but it nevertheless remains an issue.

1.2 Our Contribution

For all of the reasons above, it is our purpose here to devise a compact encryp-
tion scheme based on plausible assumptions, and establish exact security bounds
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in function of the number of random-oracle and decryption queries made by the
opponent. We seek to obtain a tight security bound that is quasi-independent
of the number of those queries (as long as their number remains sub-exponential
in the security parameter, which is an unavoidable requirement). Surely, elimi-
nating the random oracle itself would be even more desirable, but it is an open
problem whether that is even feasible at all if no redundancy whatsoever is
tolerated.

Our main technical tool stems from the observation that a pair of sequen-
tial one-time pads, can, in the random-oracle model, give us an almost tight
reduction from a mild assumption such as CDH or Gap-DH, without appealing
to explicit ciphertext redundancy or a hybrid scheme. Whereas redundancy-free
public-key schemes with a tight reduction have been proposed in the past, we
view the dual-hash device and the simpler structure that it enables as our main
contributions. As an added bonus, our system will support very efficient non-
interactive threshold decryption.

2 Toward Active Security Without Redundancy

The most common threat to CCA2 security is that of a query on a malformed
ciphertext causing the decryption oracle to leak damaging information, either
about the private key, or about the plaintext (when the malformed ciphertext
is a deformation of a legitimate one). For this reason, the most common way to
construct a CCA-secure system from a CPA-secure one is to add some redun-
dancy, thanks to which malformed or mauled ciphertexts can be safely rejected.
Redundancy has also an utilitarian purpose in the security proofs: simulators
use it to extract private knowledge about the ciphertext creation, which gives
them a backdoor thanks to which decryption queries can be answered with-
out knowledge of the decryption key. The two main ways that this backdoor is
implemented are the NIZK and IBE approaches, briefly described below.

Redundancy can nevertheless be avoided provided that the decryption of mal-
formed ciphertexts is made harmless, e.g., as will be the case if the decryption
of bogus ciphertexts appears uniformly random to the adversary. Thus, as has
been observed several times before, redundancy is not truly necessary in order
to achieve chosen-ciphertext security (though randomness is always needed for
semantic security). Technically, one must also ensure that the simulator is still
able to answer the decryption queries in the absence of a redundancy backdoor:
this is where idealized models such as the random oracle heuristic [2] must come
into play, at least in our current state of knowledge.

Subject to the above limitations, there exists a rather extensive body of work
on public-key encryption systems secure against active attacks. We now review
the main proposals, concentrating on systems that are usable in practice. In order
to depict a more complete landscape, we also discuss a number of redundant
constructions, since they far outnumber the redundancy-free ones. Once again,
if we insist on the lack of redundancy, no CCA2-secure public-key systems, not
even conjectured ones, are known to exist in the standard model.
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2.1 In the Standard Model

In the standard model, all known chosen-ciphertext-secure systems require some
redundancy.

First of all, we mention the early theoretical work of Dolev, Dwork, and Naor
[15], which achieves CCA-security using a bitwise construction which is too inef-
ficient to be used in practice. More efficient constructions were to follow, based
either on the so-called two-key paradigm, or, more recently, on identity-based
encryption and related techniques.

The two-key (or double-encryption) framework for chosen-ciphertext security
was first proposed by Naor and Yung [31], and perfected by Cramer and Shoup
[12] who gave the first efficient CCA2-secure public-key scheme in the standard
model. There were many subsequent improvements to the Cramer-Shoup sys-
tem, and the current state of the art is due to Kurosawa and Desmedt [26]. The
two-key paradigm consists in providing two independent encryptions of the same
plaintext, along with a Non-Interactive Zero-Knowledge (NIZK) proof that the
two plaintexts are the same. This provides the needed redundancy that allows
the simulator to answer decryption queries. A drawback of this approach is that
the redundancy cannot be checked until the complete ciphertext has been de-
crypted, which makes threshold decryption a complicated proposition [9,19,34].

The Identity-Based Encryption (IBE) approach was recently proposed by
Canetti, Halevi, and Katz [10], and subsequently improved [7,8]. Here, the gen-
eral idea is to encrypt a plaintext to an identity equal to a signature verification
key, or some function of the ciphertext itself, that the recipient can use to au-
thenticate the ciphertext. This is a different kind of redundancy that leads to a
completely different type of simulation proof than in the two-key approach. Both
methods are comparable in terms of efficiency. One advantage of the identity-
based approach is that the integrity check can be done before decryption, which
makes non-interactive threshold decryption easy [5]. The main disadvantage of
the IBE approach is that it uses bilinear pairings, although it is possible to
eliminate them entirely by making stronger assumptions [24].

Although reasonably efficient, all these constructions require at least two
group elements’ worth of ciphertext overhead. It is an open problem to achieve
chosen-ciphertext security without redundancy in the standard model.

2.2 Using Random Oracles

In parallel to the above developments, researchers have sought to construct
CCA2-secure systems with efficiency as the primary goal, even if that meant
using the random oracle heuristic. One of the most significant works in this area
is the RSA-OAEP padding scheme [3] and its subsequent improvements [4,33],
which are widely deployed as a standard. However, the development of OAEP
was tormented: the original redundancy-free design had to be scrapped in order
to achieve provable chosen-ciphertext security, and it took several years until an
RSA system with both properties was finally invented (see below).

In parallel, a powerful result by Fujisaki and Okamoto [17], subsequently im-
proved by the same authors [18], shows that any CPA-secure encryption scheme
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can be generically transformed into a CCA2-secure one, in the random oracle
model, simply by adding some judicious redundancy. One can thus assemble a
very efficient CCA2-secure system simply by taking an elliptic-curve implemen-
tation of the ElGamal cryptosytem and applying the Fujisaki-Okamoto trans-
formation. This does however introduce some redundancy.

2.3 From Interactive Hash Assumptions

Since random oracles alone did not seem sufficient to obtain redundancy-free
chosen-ciphertext security, one had to appeal to more exotic and stronger as-
sumptions. In general, these assumptions are interactive and involve at least a
random function, very much like the random oracle model.

The first system to achieve redundancy-free chosen-ciphertext security, is that
of Phan and Pointcheval [32]. The Phan-Pointcheval scheme can be thought of
as an extension of RSA-OAEP that achieves adaptive security using the theo-
retical minimum amount of randomness and no redundancy, but under a strong
non-standard interactive assumption. Roughly speaking, it combines a trapdoor
permutation with an idealized random permutation; the CCA2 security proof
then holds in the random permutation model. In practice, the system is instan-
tiated using RSA and a Feistel network, which only requires a random oracle
rather than a random permutation.

The second system in this category is DHIES [1], all of whose variants are
based on a strong interactive assumption known as Oracle Diffie-Hellman. The
DHIES system is a hybrid of ElGamal, a symmetric cipher, and a MAC, and is
provably secure under the ODH assumption. Because of the MAC, the original
DHIES system is not redundancy-free.

Kurosawa and Matsuo [27] subsequently gave an improvement to DHIES that
eliminated the MAC from the ciphertext and thus the redundancy. This was done
by means of a special “all-or-nothing” mode of operation for the symmetric ci-
pher, such as CMC [20] and EME [21], which can be viewed as an analog to the
pseudo-random permutation in the Phan-Pointcheval system. With this modifi-
cation, DHIES no longer incurs any expansion, and thus the Kurosawa-Matsuo
system is indeed free of redundancy. Since furthermore DHIES can be imple-
mented on elliptic curves, unlike Phan-Pointcheval which uses integer arithmetic
modulo a large RSA composite, Kurosawa-Matsuo can be made very compact.
Indeed, their system currently holds the record for the most compact CCA2
public-key system for short messages.

Libert and Quisquater [28] later transposed the ideas of Kurosawa and Mat-
suo to the identity-based encryption setting, and in particular to the IBE sys-
tem of Boneh and Franklin [6]. They show that CCA2 security can be obtained
by using an expansion-less chosen-ciphertext-secure symmetric mode of opera-
tion (instead of the Fujisaki-Okamoto transformation as originally used in [6]).
The Libert-Quisquater IBE system is in fact simpler than the Kurosawa-Matsuo
PKE, but unfortunately, the security of the former rests (in the RO model) upon
a very strong interactive assumption called Gap Bilinear Diffie-Hellman, which
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is not even falsifiable in our current state of knowledge since nobody knows how
to construct a Gap-BDH challenger.

To conclude this tour, we now briefly review the main features of the Phan-
Pointcheval and the Kurosawa-Matsuo systems, as these are the two schemes
against our construction ought to be compared.

The Phan-Pointcheval System. Phan and Pointcheval [32] gave the first con-
struction of a CCA2-secure public-key encryption system without redundancy.
It is based on the RSA trapdoor permutation which is made non-malleable
using a idealized random permutation instantiated as a Feistel network. The
Phan-Pointcheval system incurs very little ciphertext expansion: for an apparent
security parameter κ, the ciphertext is only κ bits longer than the message it en-
crypts. Without taking the security reduction efficiency into account, this is the
smallest possible ciphertext expansion that can be achieved by any public-key
encryption scheme at the 2−κ security level.

In reality, Phan-Pointcheval is not quite as compact as we would like, for a
couple of reasons: (1) its security reduction has tight efficacy but only quadratic
efficiency in the Feistel network instantiation, which means that in practice its
exact security could degrade significantly with the number of queries made by
the adversary, which ought to be compensated by growing the modulus; (2)
because the scheme is built around an RSA permutation, ciphertexts cannot
be made smaller than 1024 bits at the 2−80 security level, or 15360 bits at the
2−256 security level, to guard against sub-exponential factorization attacks of
complexity L(1/3) using the number field sieve.

The Kurosawa-Matsuo System. To avoid the minimum size limitation as-
sociated with RSA groups, Kurosawa and Matsuo [27] have proposed a differ-
ent construction of a CCA2-secure public-key cryptosystem, based not on RSA
but on ElGamal. Since ElGamal can be implemented on elliptic curves, much
fewer bits are in principle needed in order to achieve the same security. The
Kurosawa-Matsuo construction is set in the KEM/DEM framework, where a
CCA2-secure KEM is constructed simply by hashing an ElGamal session key,
from which an expansion-less one-time chosen-ciphertext-secure DEM is used to
encrypt the actual message. For an apparent security parameter κ, the ciphertext
is 2κ bits longer than the message, which is the smallest possible expansion for a
Discrete-Log-based cryptosystem, due to the birthday bound barrier associated
with generic discrete-log attacks.

On the negative side, the security reduction of the Kurosawa-Matsuo system
relies on the original DHIES construction, which is based on a very strong inter-
active assumption called the Oracle Diffie-Hellman assumption. Roughly speak-
ing, the ODH problem asks us to distinguish (g, ga, gb, gab) from (g, ga, gb, gr)
given access to an oracle O : h �→ H(ha), which can be thought of as the compo-
sition of the composition of a secret-power exponentiation with an ideal random
hash function (also kept secret by default). We note however that Cramer and
Shoup [14] later gave an alternative security proof of DHIES, replacing ODH
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with Gap-DH in the random oracle model. Their proof should also apply to the
Kurosawa-Matsuo system.

Perhaps the main downside of the Kurosawa-Matsuo system is that it de-
pends on rather complex modes of operation for block ciphers, such as the de-
terministic, redundancy-free, one-time chosen-ciphertext-secure modes given in
[20,21]. Because of those extraneous components, the Kurosawa-Matsuo system
may suffer from a larger implementation footprint than competing schemes. The
complex modes of operation may also pose practical challenges for arbitrary-size
plaintexts.

2.4 The New Construction

Here, we propose another efficient public-key encryption system without redun-
dancy and with a tight adaptive chosen-ciphertext security proof. A feature
of our scheme is its simple and self-contained algebraic structure. The secu-
rity reduction is to the Gap Diffie-Hellman assumption in the random-oracle
model. Gap-DH is a “decisional/computational gap” assumption [22], which
simply posits that CDH is hard given a DDH oracle. Since Gap-DH itself re-
duces to the usual CDH in groups equipped with a bilinear map (which we know
how to construct), our scheme belongs with the “plain” random-oracle schemes
of Section 2.2, as opposed to the “fancy” interactive-assumption schemes of
Section 2.3, which until now were the only ones known to avoid redundancy.
Practically speaking, our system only uses hashing and generic group arithmetic
(no block cipher and no complex mode of operation), and so its implementation
should be straightforward in any programming language with a decent library.

The main idea of the scheme is to blind the message not once, but twice, us-
ing ElGamal one-time pads that are homomorphically related to the same secret
decryption key. The resulting ciphertext has no explicit redundancy because the
second key can be reconstructed from the first without having to include any
information about it. In the random oracle model, this however gives us the im-
plicit consistency check needed for chosen-ciphertext security. Furthermore we
can simulate it in constant time and almost perfectly (i.e., with negligible secu-
rity loss) against any polynomially bounded adversary, hence the tight security.

Security and Compacity. It should be mentioned that it does not seem feasi-
ble to achieve a better “ciphertext compacity vs. exact security” tradeoff without
leaving the realm of Discrete-Log-based algebraic CCA2 PKE systems. Indeed,
at the 2−κ exact security level, the ciphertext overhead is a single group element,
which takes as few as 2κ bits to represent; however, the randomness embedded
in this element cannot be removed, and any attempt to reduce the entropy of
that group element further will enable a generic discrete logarithm attack of
relative complexity lower than

√
22κ = 2κ.

However, one should not infer from this that shorter ciphertexts are not pos-
sible using different techniques. For example, with trapdoor permutations it is
possible to reduce the overhead to the theoretical minimum of κ bits, as in the
Phan-Pointcheval system; one problem with this approach is that RSA-based
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trapdoor permutations require much larger groups than elliptic curves for the
same security (which is why Phan-Pointcheval ciphertexts remain large despite
the very low overhead). Substituting a more compact trapdoor permutation for
RSA in Phan-Pointcheval would be an excellent way to create a more compact
scheme than the present proposal. Of course, constructing a compact trapdoor
permutation in the first place, e.g., whose inputs and outpus are no greater than
3κ bits at the 2−κ security level, is another long-standing famous open problem
in cryptography.

State of the Art. We do not claim that our construction constitutes a deep
result, but merely a practical one that we hope will be adopted in practice. In
retrospect, our construction and its security proof appear quite simple, indeed,
as surely many other results of this sort have before it. However, the fact that
with a simple trick we have improved upon the state of the art on an old problem
is a compelling indication that there are still new insights to be gained in this
area. Thus we hope that this contribution will be useful to security practitioners,
and perhaps inspire new ideas to researchers in the field.

3 The Miniature CCA2 System

We are now almost ready to present the construction. Unlike Kurosawa and
Matsuo, we seek to build an integrated encryption scheme without insisting on
a separation between KEM and DEM. On the contrary, we look for an algebraic
construction that avoids block ciphers and their complex modes of operations,
and seek to base our scheme on a single mild and well-studied assumption.

3.1 Inching Toward a Solution

Before we present our construction, it is useful to try out a few approaches, to
see what works and what does not. This will make it easier to understand the
design of the final scheme.

1. To start, consider the hashed ElGamal system, whose ciphertext is (c1, c2) =
(M ⊕ H(gr

1), gr
2) for random r ∈ Fp. The public key is (g1, g2) ∈ G

2, and
the decryption key is k = dlogg1

(g2). The ciphertext is free of redundancy,
but it is malleable and thus the scheme is only secure under passive attacks.

2. To make the scheme secure under active attacks, we can modify the cipher-
text as follows: (c1, c2) = (M ⊕ H1(gr

1), gr
2 gr

3
H2(c1)), where H1 is viewed as

a random oracle and H2 is collision resistant. The public key is (g1, g2, g3)
and the secret key their discrete logs.

Here, there is no obvious active attack, and in fact the scheme can be
proven IND-CCA2 secure under the Gap-DH assumption in the random
oracle model. Unfortunately, the reduction is not tight, and is in fact rather
expensive because, for each decryption query, the DDH oracle must be tested
against the inputs to all previous random-oracle queries.
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3. The reduction in the previous scheme can be made more efficient, and thus
the scheme more secure in the exact sense, by including more information in-
side the random-oracle input, as in: (c1, c2) = (M ⊕ H1(gr

1 , g
r
2), gr

2 gr
3

H2(c1)).
We can also take g3 = g1 to make the key shorter.

This simple modification greatly reduces the number of DDH oracle
queries needed by the simulator (in a security reduction to Gap-DH), to
the point that we now have proportionality between the adversary’s and
the simulator’s use of their respective oracles, i.e., one query to the DDH
oracle for each random-oracle query. The resulting reduction is thus more
efficient, and, indeed, public-key systems with this exact structure have been
recently and independently suggested in at least two places [29,25], prior to
the publication of this work.

However, security still is not tight. For every decryption query, the sim-
ulator must perform a non-trivial group operation between c2 and the input
to every random oracle query made so far. Thus, if the adversary makes
qd decryption and qH random-oracle queries, the simulator’s running time
will be at least the product of the two, i.e., Ω(qd qH), which is clearly dis-
proportionate (i.e., super-linear) to the sum total of all of the adversary’s
queries.

Hence, although the efficacy or succcess probability of the reduction may
be tight, and the use of the DDH oracle parsimonious, the reduction algo-
rithm remains inefficient due to an excess of bookeeping.

A general principle that emerges from these examples is how random oracles
can be utilized to extract the information needed to answer decryption queries,
when the ciphertext contains no redundancy that would let us do so in another
way (as in the schemes mentioned in Section 2.1).

We can also see, in all these examples and analogous constructions based on
a Gap assumption, that the simulator must try out all random oracle inputs to
see if one works for every decryption query that it answers. This is not unrelated
to the fact that our assumption (Gap-DH) only provides a decisional (yes/no)
oracle to the simulator, and indeed, the Kurosawa-Matsuo scheme does not have
this problem because its DHIES component relies on a stronger assumption.

However, the central reason for the schemes’ reduction inefficiency is their use
of a single random oracle for blinding the message (as in M ⊕H(...)). It turns out
that a much more efficient simulator can be made if we had two random-oracle
one-time pads to play with (as in M ⊕ H1(...) ⊕ H2(...)). Why this is so will
become apparent when we construct a simulator in Section 3.4.

3.2 The Full Scheme

Our construction is based on some of the principles hinted to above. The main
difficulty is to obtain a double one-time-pad blinding of the message without
lengthening the ciphertext, and then to use this double blinding in the security
proof to achieve a tight reduction.

We start with the construction, which uses two random oracles Φ and Ψ , and
one collision-resistant function π which could be a simple injection.
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Context: Let κ ∈ N be an arbitrary security parameter. Let G = 〈U〉 be a cyclic
prime-order group (written multiplicatively), generated by U , of prime order
p, such that 22κ−1 < p < 22κ+1. Let Fp be the finite field of size p, and let
F
×
p = Fp \{0} denote its multiplicative group of order p−1. Let M = {0, 1}�

be the set of all bit strings of length �, for any fixed � ≥ 2κ.

Let π : M → F
×
p be an arbitrary injection or a collision-resistant hash

function.
Let Φ : G × G → M and Ψ : G → M be two cryptographic hash functions
(viewed as RO).

Key generation: Draw a secret random exponent s ∈$ F
×
p , and calculate V =

Us.

The public encryption key is Pk ← (U, V ) ∈ G
2.

The private decryption key is Sk ← s ∈ F
×
p .

Encryption: Given Pk and a plaintext Msg ∈ M, pick a randomizer r ∈$ F
×
p ,

and let,

A ← V r

B ← Ψ(A) ⊕ Msg
C ← V r/π(B)

D ← U r/π(B)

E ← Φ(D, C) ⊕ B

The ciphertext is Ctx = (D, E) ∈ G × M.

Decryption: Given Sk and a ciphertext Ctx = (D̄, Ē), check that 1 �= D̄ ∈ G,
and let,

C̄ ← D̄Sk

B̄ ← Ē ⊕ Φ(D̄, C̄)
Ā ← C̄π(B̄)

M̄ ← B̄ ⊕ Ψ(Ā)

The decrypted plaintext is M̄sg = M̄ ∈ M.

3.3 Operational Efficiency

Encryption and decryption have essentially the same computational costs, which
are dominated by the costs of two exponentiations in G, plus (for long messages)
two passes on a buffer whose size is that of the input string (resp. plaintext or
ciphertext). In particular, we note the following:

– Encryption requires only two exponentiations (and not three), because most
of the work done to compute V r can be reused to compute V r/π(B), regard-
less of the exponentiation algorithm used (whether straight double-and-add,
or one of the many efficient window methods; cf., e.g., [30]).

– Decryption can similarly be performed in about a single exponentiation (in-
stead of two), by computing C̄π(B̄) as D̄π(B̄)·Sk, which uses the same gener-
ator as D̄Sk and thus shares the same intermediate powers.
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– In both cases, only two passes on the buffer are needed (and not three): first
on the input string Msg or Ē, and then a second pass on the intermediate
string B or B̄ which must be stored temporarily. We do not need a separate
pass to compute π(B) or π(B̄), since these values can be evaluated on-the-fly
while computing B or B̄. However, this really matters only for long inputs,
where the benefits of redundancy-free encryption are less pronounced.

Any plaintext represented as a string of at least 2κ bits can be encrypted without
requiring any special encoding, and without using any downstream symmetric-
key cipher or other hybrid component. The ciphertext overhead is a single group
element in G.

3.4 Security Reduction

We prove the security of our scheme in the well-known and very standard sense of
IND-CCA2 security, or indistinguishability under an adaptive chosen-ciphertext
attack. The reduction will proceeds from an instance of the Gap-DH problem,
in the random oracle model.

We recall that the Gap-DH problem is to solve the CDH problem given access
to a DDH oracle. In a computational group G, such an instance is a triple
(U, V, W ) = (U, Uv, Uw) ∈ G

3, and the task is to compute the value Uv w ∈ G,
given repeated access to a decision oracle indicating whether an input tuple
(A, B, C, D) ∈ G

4 satisfies the relation dlogA(B) = dlogC(D).

Theorem 1. The miniature public-key cryptosystem is IND-CCA2 secure in the
random oracle model, provided that the Gap Diffie-Hellman assumption holds in
G. The reduction is tight w.r.t. computational cost (“efficiency”) and success
probability (“efficacy”) simultaneously.

Proof. Suppose there is an adversary A that breaks the encryption scheme. We
build from it an algorithm B that solves the Gap-DH problem by simulating an
attack environment to such an adversary. During the course of the interaction,
the simulator will record the answers it makes in response to all queries, and
additionally maintain two separate “watch-lists” for Φ and Ψ .

Key generation. B is given access to a Decision Diffie-Hellman oracle DDH :
G

4 → {0, 1}; it receives a Diffie-Hellman instance (U, V, W ) = (U, Uv, Uw) ∈
G

3, and is to compute Uv w ∈ G.
To start the simulation, B gives to A the public key Pk = (U, V ), implic-

itly letting Sk = v.
Decryption queries. A makes adaptive decryption queries on any ciphertexts

(Dk, Ek) ∈ G × M.
To respond, B sifts the query logs for a random oracle query Φ(Dj , Cj)

such that Dj = Dk and Cj = Dk
Sk. To do this in constant time, B can

maintain a hash-table of those oracle queries such that DDH(U, V, Dj , Cj) =
1. Let thus (Dj , Cj) be the retrieved entry, if it exists.
– If it does, let φj = Φ(Dk, Cj) be the previously assigned value; the sim-

ulator then computes Bk ← Ek ⊕ φj and Ak ← Cj
π(Bk), and returns

Mk ← Bk ⊕ Ψ(Ak) as the plaintext.
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– Otherwise, the simulator simply returns a random string Mk ∈$ M, while
privately adding the triple (Dk, Ek, Mk) to the watch-list associated with
Φ, for future use given below.

Hash-Φ queries. A adaptively queries the random oracle Φ on unique input
pairs (Dj , Cj) ∈ G

2.
To respond, B picks a random string φj ∈$ M which it returns as answer

to the query. Additionally, it tests whether DDH(U, V, Dj, Cj) = 1, in which
case it pulls from the watch list associated with Φ all the triples (Dk, Ek, Mk)
such that Dk = Dj . For all such triples, the simulator lets Bk ← Ek ⊕ φj ,
computes Ak ← Cj

π(Bk), defines ψk ← Bk ⊕ Mk, adds the pair (Ak, ψk) to
the watch-list associated with Ψ , and deletes the triple from the list of Φ.

Observe that all Ek and thus all Ak are necessarily distinct, unless π
collided, and that the work of the simulator is linear in the number of triples
that were pulled from the watch-list. Later, we account for the small proba-
bility of getting a collision Ak1 = Ak2 for Dk1 �= Dk2 .

Hash-Ψ queries. A adaptively queries the random oracle Ψ on arbitrary unique
inputs Ai ∈ G.

To respond, B first determines whether the watch-list associated with
Ψ contains a pair (Ak, ψk) with Ak = Ai. If there exists such a pair, the
simulator removes it from the watch-list and returns the string ψk; otherwise,
it returns a fresh random string ψi ∈$ M.

Challenge. A at some point outputs two messages M1 and M2 on which it
wishes to be challenged.

To create the challenge, B picks a random string E∗ ∈$ M, sets D∗ ←
W from the Gap-DH instance, and declares the challenge ciphertext to be
(D∗, E∗). It disregards M1 and M2.

Additional queries. A makes more adaptive decryption and random oracle
queries on arbitrary inputs (but no decryption query on the challenge ci-
phertext), to which B responds as before.

As it services the queries, the simulator is now on the lookout for a query
Φ(D∗, C∗) such that D∗ = W and DDH(U, V, W, C∗) = 1. As soon as A
makes this query, B terminates the simulation and outputs C∗ = Uv w as
solution to the Gap-DH instance.

Outcome. If the adversary never asks for the value of Φ(W, Uv w), its advan-
tage must be zero, since then the simulation is perfect and the ciphertext
is random. On the contrary, as soon as A makes this particular query, B
obtains the solution it seeks without further interaction.

We now analyze the parameters of the reduction. We consider both efficacy
(i.e., the probability of success) and efficiency (i.e., the computational overhead
needed for a successful reduction).

Reduction Efficacy. It is easy to see that B’s probability of solving Gap-DH
is no less than A’s advantage in the IND-CCA2 attack, minus a negligible
loss Δε that corresponds to the probability that the simulator made two
conflicting random oracle assignments. A conflict can arise for Ψ(Ak) due
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to a collision Ak1 = Cj1
π(Ek1⊕φj1 ) = Cj2

π(Ek2⊕φj2 ) = Ak2 when Cj1 �= Cj2 .
Since the φj are jointly independent of the Cj and Ek, and since every
troublesome Cj can be traced to a watch-list entry that in turn originates
from a unique decryption query, the probability of such a collision over qd

decryption queries, which dictates the total efficacy loss of the system, is
given by the birthday bound:

Δε = ε(A) − ε(B) ≤ (qd)2/p ≈ (qd)2 2−2κ = negl(κ) .

Reduction Efficiency. To express B’s running time of in terms of A’s, let
us assume that the adversary makes qd decryption and qΦ and qΨ hash
queries, and that each exponentiation in G or DDH query costs the simulator
one time unit. The simulation time overhead Δτ is then given by Δτ =
τ(B) − τ(A) = Θ(qd + qΦ + qΨ ), from which we deduce that the running
times of A and B are within a constant factor � 1 (1 being the best possible
ratio):

τ(B)/τ(A) = Θ(1) .

It follows that the reduction is tight in all parameters, as long as the number of
random oracle and decryption queries made by the adversary is sub-exponential
in κ, as required.

3.5 Practical Extensions

We briefly describe two simple extensions to the basic scheme, which we expect
to be useful in certain applications.

Adaptive Chosen-Ciphertext Security vs. Integrity. Most existing CCA2-
secure cryptosystems to date, with or without random oracles, achieve security
against active attacks by performing an integrity check during the decryption
process, based on some amount of redundancy that is embedded in the ciphertext
during encryption. Cryptosystems of this kind include Dolev-Dwork-Naor [15],
Cramer-Shoup [12,13], Fujisaki-Okamoto [17,18], Kurosawa-Desmedt [26], and
Canetti-Halevi-Katz [10], among many others. Most of the time the redundancy
is secret, but it need not be.

By contrast, our scheme does not authenticate the ciphertext; it is similar in
that respect to a few other systems such as Phan-Pointcheval [32] and Kurosawa-
Matsuo [27] as already discussed. Indeed, without redundancy there cannot be
a test to reject malformed ciphertexts, and thus the decryption process always
succeeds. Hence there is no such thing as an “incorrect” ciphertext. (We remark,
however, that because the IND-CCA2 security property implies PA-CCA2, or
plaintext awareness, any ciphertext that was not created using the proper pro-
cedure will safely decrypt to an unpredictable and useless plaintext).

In some applications, it may be desirable to detect that a ciphertext has
been tampered with. One solution is of course to use a “traditional” efficient
CCA2-secure scheme, such as Fujisaki-Okamoto in the random oracle model or
Kurosawa-Desmedt in the standard model. Another solution is to add a small
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amount of redundancy in the plaintext of our scheme, such as a few zeros. This
approach might be more desirable in cases where a quick and inexpensive in-
tegrity test is desired but not required for the security of the larger system: in
this case adding a few zeros to the plaintext of our scheme will be the cheapest
and most effective solution.

Non-interactive Distributed Threshold Decryption. Recall that in a
threshold public-key system, a number of distributed “partial decryption cen-
ters” compute partial decryptions from the ciphertext, or shares, which are then
combined in a threshold manner by a single combiner to produce the final plain-
text; cf., e.g., [19].

As mentioned earlier, CCA2-secure threshold cryptosystems are difficult to
deploy based on the two-key paradigm, and also using the random-oracle-based
Fujisaki-Okamoto transformation, because the decryption process will require
the partial decryptors to communicate with each other in order to decide whether
a ciphertext is valid or not. Essentially, this is because the redundancy in those
schemes is secret [34], which makes it difficult to perform a validity test before the
plaintext has been recovered. By contrast, the identity-based approach is much
more conducive to secure threshold decryption under active attacks, because its
redundancy is public and can be checked non-interactively by the decryption
centers without costly inter-communications [5].

Our scheme turns out to be very easy to turn into a non-interactive CCA2-
secure threshold system. The reasons for this are twofold. First, since the security
of our scheme does not depend on any integrity check, the difficulty of conducting
such a check in a threshold setting should have no ill effect. Second, the algebra
of the scheme itself turns out to be very propitious to secret sharing, because the
secret key Sk is only used once in the decryption process, to compute Ĉ ← D̂Sk.

Thus, our scheme can be used as a basis for a threshold scheme, by splitting
the secret key Sk into a number of random shares Sk1, ..., Skn using Shamir’s
secret sharing. The partial decryption centers would use those shares to produce
decryption shares Ĉi ← D̂Ski . With enough of those, the combiner can perform
Lagrange interpolation “in the exponent” to recover the value of Ĉ =

∏
i ĈΛi

i ,
where the Λi are publically computable Lagrange coefficients. Once it knows Ĉ,
the combiner can complete the decryption algorithm without further interaction
with the decryption centers.

3.6 Implementation on Curves

Although our scheme generally relies on the Gap-DH assumption, it is possible to
implement it in a computational group G where DDH is known to be easy (and
CDH still believed to be hard): in this case the DDH oracle can actually be im-
plemented, and Gap-DH reduces to the usual CDH assumption. In such groups,
the security of the scheme thus follows from computational Diffie-Hellman, which
has of course been studied extensively.

Elliptic curves equipped with an efficiently computable bilinear pairing are
an obvious choice for the group G, because the pairing lets us decide (but not
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compute) the Diffie-Hellman problem efficiently. (To be more precise, G will be
a prime-order subgroup of the group of points on a pairing-friendly curve.) We
refer to [6] and the abundant literature on pairings for details.

On pairing-friendly curves, and more generally in any computational group
with a bilinear map, the mere fact that the DDH oracle could be implemented
efficiently gives us a tight IND-CCA2 security reduction to the CDH assumption
in the random-oracle model. In reality, we will never need to use or implement
a pairing. Conceivably, an existential proof that an efficient pairing (or DDH)
algorithm exists is all we need to relax Gap-DH into the weaker CDH assumption.

4 Summary

We have proposed a very simple public-key cryptosystem with the most compact
ciphertext for a given level of exact CCA2 security, without relying on hybrid
constructions. Earlier constructions with similarly compact ciphertexts required
complex modes of operations for block ciphers and/or stronger assumptions. The
ciphertext has no redundancy, and the scheme offers a tight security reduction
(both efficacy-wise and efficiency-wise) to a classic complexity assumption (Gap-
DH, or just CDH if the arithmetic is done on a pairing-friendly curve).

We have utilized a few new tricks to achieve “direct” tightness without re-
dundancy. These tricks are set in the random oracle model, but we managed
to avoid one of the problems associated with the random oracle methodology,
namely, the fact that, once instantiated, the hash function can be queried of-
fline a practically unlimited number of times. Since our scheme’s security is not
sensitive to the number of queries (below the birthday bound), exact security
remains tight as long as the hash function is adequately modeled as a black box.

Of course, it would be nice to construct a redundancy-free CCA2-secure
public-key encryption system in the standard model (even with a polynomially
sloppy security reduction). However, this appears to be very difficult, because
without redundancy, it is not clear how the simulator could extract the answer
from the decryption queries. In this respect, our scheme represents another in a
long series of a priori surprising results that crucially rely on the random oracle
methodology [2,11,23,16].

We hope that our scheme will appeal to the practioners of cryptography. Ideal
uses for it include bandwidth-contrained environments where active attacks are
a concern, such as radio systems that frequently transmit short messages.
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Abstract. Whereas encryption schemes withstanding passive chosen-
plaintext attacks (CPA) can be constructed based on a variety of com-
putational assumptions, only a few assumptions are known to imply the
existence of encryption schemes withstanding adaptive chosen-ciphertext
attacks (CCA2). Towards addressing this asymmetry, we consider a
weakening of the CCA2 model — bounded CCA2-security — wherein se-
curity needs only hold against adversaries that make an a-priori bounded
number of queries to the decryption oracle. Regarding this notion we
show (without any further assumptions):
– For any polynomial q, a simple black-box construction of q-bounded

IND-CCA2-secure encryption schemes, from any IND-CPA-secure
encryption scheme. When instantiated with the Decisional Diffie-
Hellman (DDH) assumption, this construction additionally yields
encryption schemes with very short ciphertexts.

– For any polynomial q, a (non-black box) construction of q-bounded
NM-CCA2-secure encryption schemes, from any IND-CPA-secure
encryption scheme. Bounded-CCA2 non-malleability is the strongest
notion of security yet known to be achievable assuming only the ex-
istence of IND-CPA secure encryption schemes.

Finally, we show that non-malleability and indistinguishability are not
equivalent under bounded-CCA2 attacks (in contrast to general CCA2
attacks).

1 Introduction

Encryption is often compared to a ‘secure envelope’. Though appealing as a
metaphor, understanding encryption requires a more formal definition of security
of the primitive. For this task, the notion of semantic security against adaptive
chosen-ciphertext attacks (in short, IND-CCA2 security) captures the essential
characteristics of secure envelopes.

Under adaptive chosen-ciphertext attacks (CCA2), whose study was pioneered
by Naor and Yung [22], and Rackoff and Simon [26], security is required to hold
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with respect to adversaries that have access to a decryption oracle. This should
be contrasted to the traditional type of chosen-plaintext attack (CPA), where
the adversary is required to act on its own without any additional help [14].

While there are a number of candidate (practical) public-key encryption
schemes known to be semantically secure against a CPA attack [13], designing
ones that withstand a CCA2 attack is a delicate and difficult task. In the stan-
dard model, there are essentially three approaches known. The first approach,
put forth by Naor and Yung [22] in the early 1990s, and subsequently extended
by Dolev, Dwork and Naor [10], and later Sahai [28] and Lindell [20], is based on
the use of non-interactive zero knowledge for NP. This leads to schemes based
on quite general cryptographic assumptions. The second is due to Cramer and
Shoup [6,7,8] and is based on hash-proof systems. This leads to quite practi-
cal schemes based on several concrete number-theoretic assumptions. The third
and most recent approach is due to Canetti, Halevi and Katz [3] and relies on
identity-based cryptography.

To sum up, all the above approaches make use of additional assumptions to
construct CCA2-secure schemes (apart from the existence of CPA-secure encryp-
tion schemes). A fundamental open question is thus:

Can any CPA-secure encryption scheme be transformed into one that
is also CCA2 secure, without making additional complexity-theoretic as-
sumptions?

1.1 Our Results

Towards addressing this fundamental question, in this paper we introduce a
weakening of the CCA2 attack which we call a bounded-CCA2 attack. In such
an attack, the adversary is restricted to making an a-priori bounded number of
queries to the decryption oracle. This is indeed a reasonable model, since the use
of encryption in many protocols (such as secure multiparty computation) can be
upper-bounded to q decryptions. With this terminology, our main contributions
are summarized below. Henceforth, unless otherwise mentioned, whenever we
talk of CCA attacks, we mean adaptive chosen ciphertext attacks (CCA2), as
opposed to the weaker lunch-time attacks (CCA1).

Bounded CCA2 Semantic Security. Our first result is a simple and ef-
ficient black-box construction of a public-key encryption (PKE) scheme that
is semantically secure against a q-bounded CCA2 attack (technically termed
IND-q-CCA-secure), starting from any CPA-secure encryption scheme. Techni-
cally, this result combines techniques from [3,9]. However, it appears that the
implications for black-box constructions of chosen ciphertext secure encryption
from semantically secure encryption, as we deduce them here, have not been
reported before.

Theorem 1 (Informal). For any polynomial q, there exists a black-box con-
struction of an IND-q-CCA-secure encryption scheme from any CPA-secure en-
cryption scheme.
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The key size and the ciphertext size of this construction are quadratic in q and
thus quite large; nevertheless, it demonstrates the feasibility of black-box con-
structions of bounded-CCA2-secure encryption schemes from any CPA-secure
scheme. Interestingly, this result stands in sharp contrast to the recent results
of Gertner, Malkin and Myers [12] showing that “such” black-box constructions
are impossible when considering standard (unbounded) CCA2-secure encryption.
(The black-box separation result from [12] only holds for constructions where
the decryption function of the CCA2 secure scheme does not make calls to the
encryption function of the CPA secure scheme. Our black-box construction of
q-bounded CCA2 secure encryption falls into this category).

We additionally show that if the underlying CPA-secure PKE scheme has cer-
tain homomorphic properties, then we can construct a q-bounded CCA2-secure
PKE scheme with very short ciphertexts. In particular, in groups where the DDH
assumption holds, we can give a q-bounded CCA2 secure PKE scheme with only
one group element of ciphertext expansion. In contrast, the best known DDH-
based schemes such as the one by Kurosawa and Desmedt [18] which achieve full
CCA2 security have two group elements plus a MAC. The length of the public
keys in this construction are, however, still quadratic in q.

Bounded CCA2 Non-malleability. A q-bounded-CCA2 non-malleable (in
technical terms, NME-q-CCA-secure) encryption scheme is one that is “non-
malleable” with respect to an adversary making at most q decryption queries.
For this notion, we are able to show:

Theorem 2 (Informal). Assuming CPA-secure public-key encryption schemes
exist, for any polynomial q, there exists an NME-q-CCA-secure encryption scheme.

As far as we know, the notion of bounded-CCA2 non-malleability is the strongest
notion of security for encryption schemes known to be achievable under only
the assumption of CPA-secure encryption schemes. Furthermore, the length of
both the the public-key and the ciphertexts grows linearly with q (instead of
quadratically as in our previous construction). However, this second construction
makes a non-black-box use of the underlying CPA secure encryption scheme. In
particular, we use a proof that several ciphertexts are encryptions of the same
message, and this may require analyzing the encryption circuit to form a theorem
statement. (On the other hand, even though our construction uses ZK proofs
and thus costly NP reductions, in many cases, there exist efficient proofs — Σ
protocols [4], for example — for the type of theorems we encounter).

Relation Between Semantic Security and Non-malleability Against

Bounded CCA2 Attacks. It is known that under a CCA2 attack, the other-
wise weaker notion of semantic security in fact implies also non-malleability [1].
In the case of bounded-CCA2 security, however, we show that this equivalence
does not hold. In particular, we show that q-bounded-CCA2 security for any
(fixed) q does not even imply non-malleability under the simple CPA attack.

Theorem 3 (Informal). Assume CPA-secure public-key encryption schemes
exist. Then, for every q, there exists an encryption scheme that is q-bounded
CCA2-secure, but is not non-malleable (even under a CPA attack).
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This separation of notions highlights the importance of directly proving non-
malleability of our second scheme (which slightly complicates the analysis).

1.2 Importance of These Results

The notion of bounded CCA2 security which we present is a weakening of the
traditional notion of CCA2 security. Since it is possible to achieve CCA2 security,
one may then wonder why it is important to consider this notion. There are in
fact two simple reasons:

1. There are many hardness assumptions (such as computational-Diffie-Hellman
and many lattice-based hardness assumptions) for which we can only con-
struct CPA-secure encryption schemes. Our results show how to transform
those schemes into ones with much stronger security properties. Since no
one knows how to achieve full (unbounded) CCA2 security under these as-
sumptions, our result represents the state-of-the-art for encryption in that
area.

2. Being a weaker notion, bounded-CCA2 security may allow for more efficient
constructions. Indeed, under the DDH assumption, we present a bounded-
CCA2 scheme which is less than half the size of the smallest full-CCA2
secure scheme. For certain low-bandwidth applications in which the size of
the ciphertext is critical, this may be the best construction to use.

Organization. After fixing some notation in §2, we formally define the no-
tion of q-bounded CCA2 security. Section §3 contains a black-box construction
of a q-bounded IND-CCA-secure encryption scheme, and Section §4 contains an
optimized instantiation under the DDH assumption. Section §5 contains a non-
black-box construction of a q-bounded NME-CCA-secure encryption scheme. Fi-
nally, in Section §6, we present a separation between the definitions of semantic
security and non-malleability under q-bounded attacks.

Publication Info. This paper is amerge of three independentpreprints [5,15,23].

2 Preliminaries and Definitions

If S is a set then s
$← S denotes the operation of picking an element s of S

uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm
with inputs x, y, . . . and by z

$← A(x, y, . . .) we denote the operation of running
A with inputs (x, y, . . .) and letting z be the output. We write AO1,O2,...(x, y, . . .)
to indicate that A is an algorithm with inputs x, y, . . . and black-box access to
oracles O1, O2, . . .. If A is a randomized algorithm, the notation A(x; r) means
running A with input x and randomness r.

Definition 1 (Encryption scheme). A triple pke = (Gen, Enc, Dec) is a
public key encryption scheme, if (1) Gen and Enc are p.p.t. algorithms and
Dec is a deterministic polynomial-time algorithm, (2) Gen on input 1k pro-
duces a pair (pk , sk), where pk is the public-key and sk is the secret-key, (3)



506 R. Cramer et al.

Enc : pk × {0, 1}∗ → {0, 1}∗ runs on input a public key pk and a message
m ∈ {0, 1}∗ and produces a ciphertext c, (4) Dec : sk × {0, 1}∗ → {0, 1}∗ ∪ {⊥}
runs on input (sk , c) and produces either a message m ∈ {0, 1}∗ or a special sym-
bol ⊥, (5)(Perfect Correctness) There exists a polynomial p(k) and a negligible
function μ(k) such that for every message m, and every random tape re,

Pr[(pk , sk) ← Gen(1k; rg) : ∃re, m s.t Decsk (Encpk (m; re)) �= m] ≤ μ(k).

where the probability is over the random choice of rg. That is, with high proba-
bility over the keys generated by Gen, all valid ciphertexts decrypt correctly.

Next, we define the notions of IND-q-CCA-security and NME-q-CCA-security.

Definition 2 (IND-q-CCA security). For a function q(k) : N → N, we define
the security notion of indistinguishability against q-bounded CCA adversaries
(IND-q-CCA). For an adversary A = (A1, A2) we define the advantage function

AdvIND-q-CCA
pke,A (k) =

∣
∣Pr[ExpIND-q-CCA-1

pke,A (k) = 1] − Pr[ExpIND-q-CCA-0
pke,A (k) = 1]

∣
∣

where, for b ∈ {0, 1}, ExpIND-q-CCA-b
pke,A is defined by the following experiment.

Experiment ExpIND-q-CCA-b
pke,A (k)

(pk , sk) $← Gen(1k)
(M0, M1,St1)

$← ADec(sk ,·)
1 (pk ) s.t. |M0| = |M1|

c∗ $← Enc(pk , Mb)
b′ $← ADec(sk ,·)

2 (c∗,St1)
Return b′

The adversary (A1, A2) is restricted to ask at most q(k) queries to the decryption
oracle Dec in total in each run of the experiment, and none of the queries of A2
may contain c∗. The scheme pke is said to be indistinguishable against q-bounded
chosen-ciphertext attacks (IND-q-CCA-secure, in short) if the advantage function
AdvIND-q-CCA

pke,A (k) is negligible in k for all adversaries A = (A1, A2).

We have the following relation to the standard security definitions for PKE
schemes. Scheme pke is said to be (1) indistinguishable against chosen-plaintext
attacks [14] (CPA), denoted IND-CPA, if it is IND-0-CCA-secure, and (2) indis-
tinguishable against chosen-ciphertext attacks [26] (CCA2), denoted IND-CCA,
if it is IND-q-CCA-secure for any polynomial q(k).

As was done above with indistinguishability, we extend the definition of non-
malleability presented in [24] to consider q(k)-bounded adversaries.

Definition 3 (NME-q-CCA security). Let pke = (Gen, Enc, Dec) be an en-
cryption scheme and let the random variable NME-q-CCAb(Π, A, k, �) where b ∈
{0, 1}, A = (A1, A2) and k, � ∈ N denote the result of the following probabilistic
experiment:
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NME-q-CCAb(pke, A, k, �) :
(pk , sk) ← Gen(1k)
(m0, m1, stateA) ← ADec(sk ,·)

1 (pk ) s.t. |m0| = |m1|
y ← Encpk (mb)
(c1, . . . , c�) ← ADec(sk ,·)

2 (y, stateA)

Output (d1, . . . , d�) where di =
{

copy if ci = y
Decsk (ci) otherwise

pke = (Gen, Enc, Dec) is NME-q-CCA-secure for a function q(k) : N → N if,
∀ p.p.t. algorithms A = (A1, A2) which make q(k) total queries to the oracles
and for any polynomial p(k), the following two ensembles are computationally
indistinguishable:

{

NME-q-CCA0(pke, A, k, p(k))
}

k∈N

c≈
{

NME-q-CCA1(pke, A, k, p(k))
}

k∈N

If q(k) = 0, then the encryption scheme is said to be NME-CPA-secure.

3 Construction of Bounded IND-CCA Secure Encryption

In this section, we present a black-box construction of an IND-q-CCA-secure
encryption scheme. The general outline of our construction is as follows.

First, as demonstrated by Canetti, Halevi and Katz [3], every identity-based
encryption scheme can be transformed into a fully chosen-ciphertext secure en-
cryption scheme. Second, an IND-CPA secure encryption scheme implies a “q-
resilient” identity-based encryption scheme. (The notion of q-resilient security in
the context of identity-based encryption [16] means that the scheme guarantees
security as long as at most q private keys are established). The latter result is
only implicitly contained in a paper about key-insulated public-key cryptosys-
tems by Dodis, Katz, Xu, and Yung [9]. A closer observation of the combination
of the two results already reveals the construction of our IND-q-CCA-secure en-
cryption scheme. Since both transformations are black-box, our main result can
be obtained. However, it appears that the implications for black-box construc-
tions of IND-q-CCA-secure encryption from IND-CPA-secure encryption as we
deduce them here have not been reported before.

Stateful versus Stateless Encryption. When one only considers stateful encryp-
tion, the problem of constructing black-box IND-q-CCA-secure encryption be-
comes trivial: the receiver’s public-key contains q independent public-keys pk i

of the IND-CPA-secure scheme. For 1 ≤ j ≤ q, to encrypt the jth message, a
sender uses the jth public-key pk j as a “one-time key” for the IND-CPA-secure
encryption scheme, the state being j that is incremented after each encryption.
However, this construction requires all participants to share and update the dy-
namic state information j. (This is in contrast to signature schemes where the
signer may maintain a private state).

We circumvent this unrealistic state update assumption by “load-balancing”
the use of instances of the IND-CPA-secure base scheme. The general outline of
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our construction is as follows. We use the q-resilient identity-based encryption
construction implicitly given in [9] based on any IND-CPA-secure PKE scheme.
Using a transformation from [3], this q-resilient identity-based encryption scheme
can be transformed into a PKE scheme. As we will see, the resulting PKE scheme
is secure against q-bounded chosen-ciphertext adversaries.

Theorem 4. For any fixed polynomial q, there exists a black-box construction
that, given any IND-CPA-secure scheme (kg, enc, dec), builds an IND-q-CCA-
secure public-key encryption scheme (Genkg, Enckg,enc, Deckg,dec).

Here we give a direct proof of this theorem that bypasses the notion of identity-
based encryption altogether. We furthermore note that there are some techni-
cal problems with the security proof of the implicitly contained q-resilient IBE
scheme from [9] that we fix in this note.1

3.1 Building Blocks

Cover-free families. If S, T are sets, we say that S does not cover T if
S �⊇ T . Let d, q, s be positive integers, and let F = (Fi)1≤i≤s be a family
of subsets of {1, . . . , d}. We say that family F is q-cover-free over {1, . . . , d},
if for each subset Fi ∈ F and each S that is the union of at most q sets in
(F1, . . . , Fi−1, Fi+1, . . . , Fs), it is the case that S does not cover Fi. Further-
more, we say that F is l-uniform if all subsets in the family have size l. We use
the following fact [11,17]: there is a deterministic polynomial time algorithm that
on input integers s, q returns l, d, F where F = (Fi)1≤i≤s is a l-uniform q-cover-
free family over {1, . . . , d}, for l = d/4q and d ≤ 16q2 log(s). In the following we
let SUB denote the resulting deterministic polynomial-time algorithm that on
input s, q, i returns Fi. We call Fi = SUB(s(k), q(k), i) the subset associated to
index i ∈ {1, . . . , s(k)}.

For our construction we will need a cover-free family with the parameters

s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k) . (1)

One-time signatures. In our construction, we need a strong one-time signa-
ture scheme ots = (Sigkg, Sign, Verify) (see [19]). We assume that the verification
keys which are part of the output by Sigkg are bit strings of size k which we
interpret as natural numbers in {1, . . . , 2k}. Strong one-time signature schemes
can be constructed from (the key-generation algorithm of) any IND-CPA-secure
encryption scheme via a black-box reduction (since a one-way function can be
constructed from the key-generation algorithm, and one-way functions imply
strong signature schemes [19,27]).
1 The problem in the proof of Theorem 2 in [9] (only contained in the full version) is

that their simulator (simulating the view of an adversary attacking the IBE scheme)
sometimes is forced to abort. However, this forced abort is not independent of the
adversary’s view in this simulation. This dependence could be exploited by an ad-
versary that has a higher chance in breaking the IBE scheme only if the simulator
aborts. We give a different simulation to overcome this problem.
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3.2 The Construction

Let q(k) : N → N be a function. Our construction of the IND-q-CCA encryption
scheme (Gen, Enc, Dec) with black-box access to the IND-CPA-secure encryption
scheme (kg, enc, dec) is depicted in Fig. 1. In general we can also use any com-
putationally secure all-or-nothing transform (e.g., the black-box construction
from [2] based on one-way functions) to decrease ciphertext size.

Public and secret keys have size polynomial (quadratic) in the maximal num-
ber of decryption queries q(k). Also note that the upper bound q(k) must be
known in advance as a parameter of the construction.

Genkg(1k) : Define s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k) as in Equation (1).
For i = 1, . . . , d(k) run (pk i, sk i)

$← kg(1k). Output PK = (pk1, . . . , pkd(k))
and SK = (sk1, . . . , skd(k)).

Enckg,enc(PK , M): Create a random pair of one-time signing keys (vk , sigsk) $←
Sigkgkg(1k). Let Fvk = {s1, . . . , sl(k)} be the subset associated to verification
key vk . Pick random M1, . . . , Ml(k) subject to M = M1 ⊕ . . . ⊕ Ml(k) and run

cj
$← enc(pksj

, Mj), for j = 1, . . . , l(k). Sign the ciphertexts c = (c1, . . . , cl(k))
with sigsk by running σ ← Signkg(sigsk , c) and output C = (c, vk , σ).

Deckg,dec(SK , (c = (c1, . . . , cl(k)), vk , σ)): If Verifykg(vk , c, σ) rejects, return reject.
Let Fvk = {s1, . . . , sl(k)} be the subset associated to vk . For j = 1, . . . , l(k)
run Mj ← dec(sksj , cj) and output M = M1⊕ . . . ⊕Ml(k).

Fig. 1. Black-box construction of an IND-q-CCA secure encryption scheme
(Gen, Enc, Dec) from any IND-CPA-secure scheme (kg, enc, dec)

The following proves our main result, Theorem 4.

Lemma 1. If (kg, enc, dec) is IND-CPA secure then (Genkg, Enckg,enc, Deckg,dec)
as described in Fig. 1 is IND-q-CCA secure.

Proof. For any PPT adversary A against the IND-q-CCA security of (Genkg,
Enckg,enc, Deckg,dec), we show, via a game-based proof, that A’s advantage in the
IND-q-CCA game is negligible.

Let Game 0 be the IND-q-CCA game with adversary A and uniformly chosen
experiment bit b. Let X0 denote the event that A’s final guess is correct (i.e.,
X0 denotes that b′ = b). For later games, let Xi (i > 0) be defined analogously.

1
2
AdvIND-q-CCA

pke,A (k) = |Pr [ X0 ] − 1
2
| .

Game 1 is identical to Game 0, except that the verification key vk∗ for the
challenge ciphertext is initially chosen, and all decryption queries with vk = vk∗

are rejected.
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By reduction on the security of the signature scheme ots, one can show that

|Pr [ X1 ] − Pr [ X0 ]| ≤ Advots-ex-for
ots,F (k) ,

for a suitable adversary F , where Advots-ex-for
ots,F (k) is the probability that F

breaks the existential unforgeability of the one-time signature scheme.
Game 2 proceeds like Game 1, but we introduce some notation useful for

later. Denote by C(i) = (c(i), vk (i), σ(i)) the i-th decryption request of A. Define

Q :=
⋃

vk(i) �=vk∗

Fvk(i)

for the sets Fvk(i) of pke keypairs associated with the respective i-th query. We
know that Fvk∗ �⊆ Q, so we can define j := min (Fvk∗ \ Q). Additionally, we
choose (this can be done at the beginning of the game, right after vk∗ is fixed)
uniformly and independently i ∈ Fvk∗ . Call FAIL the event that i �= j. Note
that

Pr [FAIL | X2 ] =
l − 1

l
= Pr [FAIL ],

so the events X2 and FAIL are independent, and in particular, Pr [X2 ] =
Pr [ X2 | ¬FAIL ]. Since we did not actually change anything, Pr [X2 ]=Pr [ X1 ].

In Game 3, we substitute A’s output b′ with a random bit whenever FAIL

occurs. Obviously,

Pr [ X3 | ¬FAIL ] = Pr [ X2 | ¬FAIL ] and Pr [X3 | FAIL ] =
1
2
.

Since Pr [FAIL ] = (l − 1)/l in Game 3 as well, we can establish that

Pr [ X3 ] − 1
2

=
Pr [ X2 ] − 1

2

l
.

In Game 4, we immediately stop the experiment and set FAIL to true (hence
immediately taking a random bit for A’s output) as soon as A asks for a de-
cryption of a ciphertext with a verification key vk �= vk∗ such that i ∈ Fvk . Note
that already in Game 3, such a query would have implied j �= i and hence FAIL.
Consequently,

Pr [ X4 ] = Pr [ X3 ].

Note that Game 4 can be run without knowledge of the secret key sk i.
In Game 5, the challenge ciphertext is prepared as follows. For encrypting

the challenge message Mb with pke, we first choose uniformly pke plaintexts
M∗

1 , . . . , M∗
i−1, M

∗
i+1, . . . , M

∗
l and then the suitable

M∗
i := Mb ⊕

⊕

r �=i

M∗
r .
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Note that then, only the plaintext M∗
i depends on the experiment bit b. This

does not change the distribution of the whole vector M∗
1 , . . . , M∗

l , and we have

Pr [ X5 ] = Pr [ X4 ].

On the other hand, Game 5 can be directly mapped to an adversary B on the
IND-CPA security of pke. More concretely, B simulates Game 5, but substitutes
pk i with its own challenge public key, and submits as challenge plaintexts

M̂0 := M0 ⊕
⊕

r �=i

M∗
r and M̂1 := M1 ⊕

⊕

r �=i

M∗
r .

Then, Pr [ X5 ] is precisely the success probability of B in the IND-CPA
experiment

|Pr [ X5 ] − 1
2
| =

1
2
AdvIND-CPA

pke,B (k) .

Collecting probabilities shows that

AdvIND-q-CCA
pke,A (k) ≤ l(k) · AdvIND-CPA

pke,B (k) + 2 · Advots-ex-for
ots,F (k) .

Since AdvIND-CPA
pke,B and Advots-ex-for

ots,F are negligible, this shows the claim. ��

Remark 1. We stress that it is important for our construction that the number
of subsets s(k) is super-polynomial in k. One could try to trivially build q(k)-
bounded CCA secure encryption pke from CPA secure pke using a public/secret
key vector of size q(k) and defining the subsets Fi as {i}, for 1 ≤ i ≤ s(k) := q(k).
For encryption, a message gets encrypted using pkvk , where vk ∈ {1, . . . , q(k)}
is one of the q(k) distinct public keys of pke, and vk is a random verification
key of the signature scheme. However, since there are only q(k) many possible
choices of verification keys, one can break the scheme with probability 1

q(k) by
(trivially) breaking the signature scheme with probability 1

q(k) .

Remark 2. It might be interesting to explore what (additional) security proper-
ties pke satisfies once invoked with a scheme pke that itself is not only IND-
CPA-secure, but, say, NME-CPA-secure. Unfortunately, we cannot hope that pke

is NME-CPA-secure, independently of pke’s security: say that adversary A re-
ceives a challenge ciphertext C∗ = (c∗, vk∗, σ∗) with c∗ = (c1, . . . , cl) and Fvk∗ =
{s∗1, . . . , s∗l }. Then A may be able to construct l(k) ciphertexts C(1), . . . , C(l) such
that C(i) is associated with a subset F (i) with s∗i ∈ F (i) �= Fverk, and the vector
c(i) consists only of 0-encryptions except for c∗i . The XOR of the decryptions of
C(i) is precisely the challenge plaintext, hence this is a successful malleability
attack.

We note that if we assume the IND-CCA1 security of pke, this proof also
shows that the resulting scheme pke is secure against IND-CCA attackers who
have full access to a decryption oracle before receiving the challenge ciphertext,
but only limited access (q queries) to it in the second attack phase.
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4 Bounded IND-CCA-Secure Encryption from DDH

In this section we propose a construction of IND-q-CCA-secure encryption based
on the Decisional Diffie Hellman (DDH) assumption. The construction follows
the approach from the previous section; we make use of cover-free sets and (with
the same parameters as in Section 3) set up d(k) independent instances of the
(semantically secure) El-Gamal encryption scheme. We encrypt a message using
a subset of the d(k) keys, where the subset is determined by cover-free sets. Cer-
tain homomorphic properties of El-Gamal encryption are exploited to shrink the
ciphertext size down to one group element. (This stands in contrast to Cramer-
Shoup encryption which requires 4 group elements, and the Kurosawa-Desmedt
one which requires 2 group elements and a MAC). The main contribution of
this section is to demonstrate the existence of such limited q(k)-bounded CCA
secure schemes with such an optimal ciphertext size.

To instantiate our scheme we need the following building blocks:

– A cyclic group G of prime-order p where the DDH assumption is believed to
hold, i.e, the two distributions (g, gx, gy, gxy) and (g, gx, gy, gz) are compu-
tationally indistinguishable, for random g ∈ G, and random x, y, z ∈ Zp.

– A redundancy-free symmetric-key encryption scheme (E, D) which is secure
against chosen-ciphertext attacks [8]. Such schemes can be constructed based
on strong pseudorandom permutations [25]. For simplicity, we assume that
the key space of (E, D) is G. (In practice, we can convert K ∈ G into a
random binary string by using key derivation functions [8]).

– A hash function TCR : G → {0, 1}k that is assumed to be target collision-
resistant [21].

Let G be a prime order group and g a random generator of G. The construction
is given in Fig. 2. Correctness is easy to verify. Public and secret keys have
quadratic size in the maximal number of decryption queries q(k). The ciphertext
overhead of the scheme (i.e., the difference between ciphertext and plaintext
size) is only one group element c ∈ G. The ciphertext length of our scheme
is considered optimal since it is the same as that of the CPA secure (original)
El-Gamal encryption.

Theorem 5. Assume TCR is a target collision-resistant hash function, G is a
group where the DDH assumption holds, and (E, D) is a symmetric encryption
scheme that is secure against chosen-ciphertext attacks. Then pke as described
in Fig. 2 satisfies IND-q-CCA security.

The proof of this theorem is very similar to the one of Lemma 1 and is omitted
here. The idea is to prove that the underlying key encapsulation mechanism
(KEM) is IND-q-CCA-secure under the DDH assumption. Using the KEM/DEM
composition theorem [8], this implies the result. Intuitively, we can explain q(k)-
bounded CCA security of the KEM part as follows: Given (g, gx, gy, h) ∈ G

4,
an algorithm B against the DDH problem randomly picks α from Ft∗ where
t∗ = TCR(gy), and sets Xα ← gx. For all i ∈ {1, . . . , d(k)}\{α}, B computes
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Gen(1k) : Define s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k). For i = 1, . . . , d(k)
compute Xi = gxi for random xi ∈ Zp. Output PK = (X1, . . . , Xd(k)) and
SK = (x1, . . . , xd(k)).

Enc(PK , M): Compute c = gr for random r ∈ Zp. Let Ft be the subset associated
to t = TCR(c). Use symmetric key K = (

∏

i∈Ft
Xi)r to encrypt message M to

ψ ← EK(M). Output C = (c, ψ).
Dec(SK , C = (c, ψ)): Let Ft be the subset associated to t = TCR(c). Reconstruct

the symmetric key as K = c
∑

i∈Ft
xi and decrypt ψ to M ← DK(ψ).

Fig. 2. An IND-q-CCA-secure PKE scheme based on DDH

xi
$← Z

∗
p and Xi ← gxi , and gives PK = (X1, . . . , Xd(k)) to another adversary

A against the IND-q-CCA security of the KEM part. B also sets (c∗, K∗) as a
challenge which will be given to A, where c∗ = gy, and K∗ = h·

∏

i∈Ft∗\{α}(g
y)xi .

B outputs “h = gxy” if A outputs “real key”, or “h �= gxy” otherwise. It is
clear that for any query c, B can respond K = c

∑

i∈Ft
xi unless α ∈ Ft where

t = TCR(c). Then, by a similar argument to that in Lemma 1, we can show that
B breaks the DDH assumption.

5 Construction of Bounded NME-CCA-Secure Encryption

In this section, we construct an NME-q-CCA-secure encryption scheme using
any semantically secure (IND-CPA-secure) encryption scheme. The construction
is the same as the DDN construction [10] and the construction of Pass, Shelat
and Vaikuntanathan [24], except that the NIZK proof used is a “designated-
verifier” NIZK proof (DV-NIZK) with “q-bounded strong soundness”. Infor-
mally, a designated-verifier NIZK proof is one where the verifier has some secret
information that enables him to check the validity of a proof. A DV-NIZK proof
is q-bounded sound, if soundness holds even against an adversary who can query
the verifier on at most q proofs and learn if the proofs are valid or not. We refer
the reader to the full version for definitions and constructions of such designated
verifier NIZK (relying on the construction from [24]).2

Because the security proof for this construction is so similar to the one
from [24], we merely summarize the differences necessary to take care of the
additional decryption oracle available to a q-CCA adversary. For a full proof,
refer to the full version of this paper.

Theorem 6. Assume there exists an IND-CPA-secure scheme. Then, for every
polynomial q, there exists an encryption scheme that is NME-q-CCA-secure.

Proof idea: Recall that an encryption of a message m from the construction
in [24] is of the form (c, π, vk , σ), where vk := v1 . . . vk is a k-bit verification-key
2 For technical reasons we also require to slightly strengthen the zero-knowledge prop-

erty of designated verifier NIZK of [24].
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for a strong one-time signature scheme, c = (c1, . . . , ck) is a vector of encryptions
of m where ci is an encryption of m under the IND-CPA public-key pkvi

, π is
a DV-NIZK proof that all the encryptions in c are encryptions of the same
message, and σ is a signature of (c, π) under a signing key corresponding to vk .

The proof in [24] proceeds by defining hybrid experiments NME(1)
b and NME(2)

b

and proceeding to show that the experiments are indistinguishable, and that if
an adversary succeeds in breaking NME(2)

b , it breaks the semantic security of the
underlying encryption scheme.

We will proceed in a completely analogous way, by defining experiments
NME-q-CCA(1)

b and NME-q-CCA(2)
b for b ∈ {0, 1}. The experiment NME-q-CCA(1)

b
proceeds like NME-q-CCAb except that the DVNIZK proof in the challenge ci-
phertext is generated by the zero-knowledge simulator for the DVNIZK proof
system. To answer the decryption queries, notice that each experiment itself
knows all the secret keys, including the DV-NIZK key sp that is required to
check the validity of a proof.

If the two experiments are distinguishable, we can construct an adversary that
breaks the adaptive zero-knowledge of the DVNIZK. Slightly more precisely, a
theorem-chooser/distinguisher pair (Azk, Dzk) on the DV-NIZK is constructed
such that Azk internally simulates the first stage (up to the generation of the
challenge ciphertext) of the NMEb experiment, and Dzk internally simulates the
second stage. Azk generates all encryption and signature keypairs on its own, but
takes the DV-NIZK public key pp from the adaptive zero-knowledge experiment.
Since we assume a DV-NIZK with a strong adaptive zero-knowledge property, in
the corresponding reduction already Azk knows sp and can thus answer decryp-
tion queries before the challenge ciphertext is known. This is the only difference
from the proof of Claim 1 in [24].

In Claim 2 of [24], the probability for the event BadNIZK(Expt) that the
adversary breaks the soundness of the DV-NIZK (in Expt ∈ {NMEb, NME(1)

b ,

NME(2)
b }) must be shown negligible. For Expt = NMEb, this is done by con-

structing an adversary As on the soundness property of the DV-NIZK. Here,
As internally simulates the complete NMEb experiment (except for the final de-
cryption of the forged ciphertext vector) and generates all keypairs except the
DV-NIZK key on its own. The DV-NIZK public key pp is taken from the sound-
ness experiment; since in the [24] CPA setting, no decryptions are necessary,
this is sufficient. However, in our q-CCA setting, As might need to answer up
to q decryption queries in the NME-q-CCA experiment, and thus needs to check
the validity of up to q DV-NIZK proofs. Fortunately, this is exactly what an
adversary against the assumed q-adaptive soundness property can do by using
the “verifier-oracle” that checks the validity of proofs at most q times.

Then, Pr
[

NME-q-CCA(1)
b

]

≈ Pr [ NME-q-CCAb ], follows similarly (only now
by a reduction on the strong adaptive zero-knowledge property as before).

The experiment NME-q-CCA(2)
b is defined similarly to [24]. However, we

cannot show Pr
[

NME-q-CCA(1)
b

]

= Pr
[

NME-q-CCA(2)
b

]

, but can only show
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Pr
[

NME-q-CCA(1)
b

]

≈ Pr
[

NME-q-CCA(2)
b

]

, which sufficient for the further ar-
gument. The reason that we cannot show equality is that the view of an adversary
in the Pr

[

NME-q-CCA(i)
b

]

experiments is identical for i = 1, 2 only under the
condition that the answers to CCA decryption queries do not differ (for i = 1, 2;
note that in experiment NME-q-CCA(2)

b , decryption is performed differently than
in NME-q-CCA(1)

b ). However, such decryption queries are answered differently
only if event BadNIZK happens or if the adversary successfully forged a sig-
nature. The probability that one of these events occurs in NME-q-CCA(1)

b is

negligible, and thus Pr
[

NME-q-CCA(1)
b

]

≈ Pr
[

NME-q-CCA(2)
b

]

follows.

If the adversary succeeds in NME-q-CCA(2)
b , we can construct another adver-

sary that breaks the semantic security of the underlying cryptosystem. The rest
of the proof is completely analogous to that in [24].

6 Separating NME-CPA from IND-q-CCA

In this section, we show that under bounded chosen ciphertext attacks, non-
malleability of the encryption scheme is not immediately implied by indistin-
guishability. In particular, for any polynomial q, we exhibit an encryption scheme
that is IND-q-CCA-secure but is not non-malleable under even a chosen plain-
text attack (i.e., a malleability attack where the adversary makes no decryption
queries). In contrast, it has been shown that unbounded IND-CCA security im-
plies non-malleability (even against unbounded CCA attacks) [10,1].

Gen′(1k) : Run Gen(1k) and get a pair of keys (pk , sk). Suppose sk is an �-bit
string. Choose a random degree-q polynomial p(x) = pqx

q + · · · + p1x + sk
with coefficients in GF (2�) and whose constant term is sk . Output pk ′ = pk
and sk ′ = (sk , p).

Enc′(pk , m) : Get c ← Enc(pk , m) and output (0, c).
Dec′(sk , c) : Parse c as (c1, c2). If c1 = 0, output Dec(sk , c2). Else, if c2 > 0, output

p(c2) and otherwise return 0.

Fig. 3. An IND-q-CCA-secure PKE scheme pke
′ which is malleable

Theorem 7. If there exists an IND-q-CCA secure cryptosystem pke, then there
exists another IND-q-CCA secure cryptosystem pke

′ that is not NME-CPA-secure.

Remark. Theorem 4 shows that the existence of a semantically-secure cryp-
tosystem implies the existence of an IND-q-CCA cryptosystem. Therefore, the
“if” clause of the above theorem can be simplified. However, we choose to present
it as above to highlight the point that IND-CCA does not imply NME-CPA.
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Proof. Assume that there exists an encryption scheme pke = (Gen, Enc, Dec)
that iss IND-q-CCA-secure. Then, we construct an encryption scheme pke

′ =
(Gen′, Enc′, Dec′) (given in Figure 6) that is also IND-q-CCA-secure, but is not
NME-CPA-secure. The proof follows from the two claims shown below.

Claim. (Gen′, Enc′, Dec′) is IND-q-CCA-secure.

Proof. Suppose that the claim does not hold. We use the adversary A that breaks
the security of pke

′ = (Gen′, Enc′, Dec′) to construct a q-bounded IND-q-CCA
attack against pke = (Gen, Enc, Dec). The new adversary A′, on input pk , simply
runs A(pk ). When asked to decrypt a ciphertext (0, c), it forwards the query to
its own decryption oracle. When asked to decrypt a ciphertext of the form (1, c2),
it returns either 0 if c2 = 0 or a random value. Since A makes at most q queries,
then A′ will be able to answer all queries. The simulation is perfect because
the degree-q polynomial p(·) is q-wise independent. This adversary A′ succeeds
with the same probability as A, which contradicts the assumption that pke is
q-bounded secure. ��

Claim. (Gen′, Enc′, Dec′) is not NME-CPA-secure.

Proof. Without loss of generality, assume that the message space of pke include
the bits 0 and 1. On input a public key pk , the adversary submits as a message
pair, 0 and 1.

Upon receiving a ciphertext c, the attacker first computes α = Enc(pk , c). It
then returns the vector (α, β1, . . . , βq+1) where βi = (1, i).

Notice that the output of the experiment is the vector (c, p(1), . . . , p(q + 1)).
The distinguisher D now works as follows. It first uses p(1), . . . , p(q + 1) to
interpolate the secret key sk , and then runs Dec(sk , c) and prints the result as
its output.

The distinguisher’s output in the NME0 experiment will therefore be 0 and its
output in the NME1 will be 1, which shows that pke

′ is not even NME-CPA-secure.
As one final point, it may be that the message space of pke does not include the

ciphertext — for example, the size of the ciphertext may be too big. This is easily
handled. The adversary can simply encode c in a bit-by-bit fashion over many ci-
phertexts, and the distinguisher can simply reconstruct c to perform its test. ��
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Abstract. Since its introduction in the early 90’s, the notion of non-
malleability for encryption schemes has been formalized using a num-
ber of conceptually different definitional approaches—most notably, the
“pragmatic” indistinguishability-based approach and the “semantical”
simulation-based approach. We provide a full characterization of these
approaches and consider their robustness under composition.

Keywords: Public-key Encryption, Non-malleability.

1 Introduction

The basic goal of an encryption scheme is to guarantee the privacy of data. A
good formalization of privacy is the notion of semantic security as defined by
Goldwasser and Micali [GM84]. Intuitively, semantic security guarantees that
“whatever a polynomial-time machine can learn about a message given its en-
cryption, it can learn even without seeing the encryption.”

When encryption schemes are deployed in more complex environments, the
demands for security of encryption grow beyond just the basic privacy require-
ment. Motivated by practical security requirements, the seminal work of Dolev,
Dwork and Naor [DDN00] defined the notion of non-malleability—a qualita-
tively stronger notion of security for encryption schemes. In addition to the
normal “privacy” guarantee, non-malleability ensures that it is infeasible for an
adversary to modify a vector of ciphertexts α1, . . . , αn into other ciphertexts of
messages which are related to the decryption of α1, . . . , αn. This stronger notion
of security is critical for many practical applications.

Two Formalizations. The notion of non-malleability for encryption schemes has
been formalized using two different approaches:

– The “Semantical” Simulation-based Approach. The definition pre-
sented in the original work of [DDN00] is a so-called “simulation-based” one.
The main idea is to capture the requirement that an adversary having access
to ciphertexts (and potentially a decryption oracle in case of CCA1/CCA2
attacks), will not be able to “cause more harm” than a simple adversary

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 519–535, 2007.
c© International Association for Cryptology Research 2007
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that does not see any ciphertexts and does not have access to a decryp-
tion oracle. This simulation-based definition of non-malleability is denoted
SIM-NME, and like semantic security, the goal of this definition is to capture
the “meaning” of non-malleability. As a result, it is often harder to directly
prove that a scheme meets the simulation-based definition.

– The “Pragmatic” Indistinguishability-based Approach. Bellare et.al.
present a “comparison-based” formalization of non-malleability [BDPR98].
This notion does away with the “simulator” used in [DDN00] and instead
captures non-malleability through an indistinguishability-style definition.
Other indistinguishability-based definitions appear in [BS99, PSV06]. We
denote by IND-NME the indistinguishability-based approach to defining non-
malleability. The goal of this indistinguishability-based approach is to pro-
vide definitions that are easier to “work with.”

Just as Goldwasser and Micali [GM84] show equivalence between simulation-
based and indistinguishability-based definitions of secrecy, Bellare and Sahai
[BS06] (clarifying [BS99]) show an equivalence between the simulation-based
and the indistinguishability-based approach to defining non-malleability. As we
discuss later, their proof however makes certain implicit assumptions on the
type of encryption schemes used. As far as we know, equivalences for general
encryption schemes are not known.

Composition and Invalid Ciphertexts. In practice, encryption schemes must
guarantee security also when an adversary receives encryptions of multiple mes-
sages. It is well known that for the traditional definition of secrecy, “single-
message” security implies “multi-message” security – we say that the definition
is closed under composition. It would be desirable to have a definition of non-
malleability that composes (i.e., for which non-malleability for a single message
implies non-malleability for multiple messages).

It turns out that this property is highly sensitive to the way non-malleability
is formalized. As pointed out by Pass, shelat and Vaikuntanathan [PSV06], there
is some ambiguity in the original work of Dolev, Dwork and Naor [DDN00] about
how to treat an adversary that sometimes produces invalid ciphertexts as part of
its output. Whereas the intuitive description of the “spirit” of non-malleability
considers an adversary successful if it is able to output ciphertexts that are re-
lated to the ciphertexts it receives, the formal definition does not consider an
adversary who outputs an invalid ciphertext (even if this event is correlated
with the input ciphertexts it receives). It is shown in [PSV06] that for the case
of chosen-plaintext attacks, this (seemingly minor) issue becomes critical in cer-
tain (traditional) applications, and is also essential for proving composability
of non-malleability. In both situations a stronger definition, which does not au-
tomatically fail an adversary which outputs an invalid ciphertext, is sufficient,
whereas the weaker (traditional one) is not. We denote by SIM-NME′, IND-NME′

these stronger variants of SIM-NME, IND-NME (which are in-line with the defi-
nitions of [PSV06, BS06]).
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1.1 Our Results

We may thus broadly categorize definitions of non-malleability into two major
groups: “simulation-based” and “indistinguishability-based,” and each with two
sub-groups: “invalid-allowing” and “invalid-prohibiting.” In this paper we first
fully characterize the relationship among the different definitional approaches
outlined above. Secondly, we consider the robustness of each of the definitions
under a natural (and highly desirable) notion of composition. Our motivation is
to clarify the definitional imbroglio surrounding the notions. To so do, we present
a unified way of defining non-malleability according the above-mentioned differ-
ent approaches. We furthermore believe that our definitions provide the simplest
and cleanest way to formalize non-malleability according to these approaches.

Relations Between Definitions. Our results are as follows.

1. The Case of Invalid-Allowing Definitions For the case of invalid-allowing
definitions, we obtain a separation between the simulation-based defini-
tion of non-malleability, SIM-NME′, and indistinguishability-based defini-
tion, IND-NME′. In particular, under CCA1 or CCA2 attacks, SIM-NME′

is strictly stronger than IND-NME′, whereas under CPA attacks they are
equivalent.

2. The Case of Invalid-Prohibiting Definitions For the case of invalid-
prohibiting definitions, the simulation-based definition, SIM-NME is equiva-
lent to the indistinguishability-based definition IND-NME, under all attacks
(i.e., CPA, CCA1 and CCA2).

3. The Relation between Invalid-Allowing and -Prohibiting Definitions The first
approach to defining non-malleability is strictly stronger than the second
one. In fact, this holds under all attacks in the simulation-based notion, and
under CCA1 and CPA attacks for the indistinguishability-based notion.

A full characterization of the different definitions is summarized in the table
below. The starred results appear in either [DDN00] and/or [BDPR98].

attack relationships

cca2 SIM-NME′ > IND-NME′ = SIM-NME =∗ IND-NME =∗ IND
cca1 SIM-NME′ > IND-NME′ > SIM-NME = IND-NME >∗ IND
cpa SIM-NME′ = IND-NME′ > SIM-NME = IND-NME >∗ IND

Results Concerning Practical Schemes and Restricted Message Spaces. Many
practical and efficient encryption schemes only work for restricted message
spaces. For example, the El Gamal and Cramer-Shoup schemes work for mes-
sages that are elements of some finite group. While it seems natural for the above
equivalences to also hold for this special class of encryption schemes, we show
in §5 that this intuition is not true. In particular, we show that also for the case
of CCA2 attacks, SIM-NME is strictly stronger than IND-NME. Thus, somewhat
surprisingly,
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For restricted message spaces, “simple” IND-CCA2 security does not imply
the original semantical (simulation-based) definition of non-malleability.

This stands in sharp contrast to the result of [DDN00, BDPR98] showing that
IND-CCA2 indeed is equivalent SIM-NME for the case of full messages spaces.

Why Simulation-Based Non-malleability Is Desirable. Many practical system
attacks such as buffer overflows rely on creating a situation in which a process is
fed unexpected input. With this in mind, consider an encryption scheme which
has been dutifully designed so that an adversary cannot produce a ciphertexts
which decrypt to a certain output value (say ⊥). A system designer might employ
this scheme in a process, and rely on the fact that such inputs cannot be produced
by the decrypting algorithm for the correctness of the process.

Now suppose that the adversary might have a way to implement a CCA2
attack. A cryptographer may be content to prove that their encryption scheme
is IND-CCA2-secure. However, the systems’ practitioner may require something
more. She would like the guarantee that even if the adversary has a decryption
oracle, the adversary will be unable to “do any more harm” than if the adversary
did not have the decryption oracle. In other words, the adversary will be unable
to produce unexpected outputs in this case as well—and so the practitioner’s
original assumptions are still valid. In essence, the situation calls for simulation-
based security.

Remarks. As shown by Canetti [Can01], a Universally Composable (UC) im-
plementation of an “idealized” encryption functionality Fpke is equivalent to
IND-CCA2-secure encryption. Furthermore, the UC definition of security is a
semantical notion which provides security under arbitrary concurrent execu-
tions; in particular UC security provides security with respect to man-in-the-
middle attacks. However, the definition of Fpke allows a corrupted sender to
make an honest receiver decrypt a ciphertext to any arbitrary string (and not
only those in the domain of the encryption function) even if this was not possi-
ble in a stand-alone setting ; as such UC encryption does not satisfy the above
desiderata. We also mention that Goldreich [Gol04] presents a similar semantical
(simulation-based) definition of non-malleability, which is equivalent to (simple)
indistinguishability under CCA2 attacks; this definition too does not prevent a
corrupted sender from making an honest receiver decrypt a ciphertext to any
arbitrary string.1

Additional Equivalences. To further clarify the semantical relation between the
various notions, we present additional equivalences for certain restricted encryp-
tion schemes: Concisely, a scheme which is IND-NME secure and for which it is
possible to efficiently produce a ciphertext which decrypts to every output in
1 On a high-level, the difference between SIM-NME and the definition of [Gol04] is that

in the latter, the simulator is required to output plaintexts that are indistinguishable
from the messages the adversary encrypts, whereas in the former the simulator must
do the same as the adversary and output ciphertexts.
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the range of the decryption function is also (multi-message) SIM-NME′ secure.2

Thus, for encryption schemes satisfying certain technical conditions all the above
notions are equivalent. In light of this our separation results might seem “artifi-
cial”.3 Note, however, that although these restriction are not implausible, they
are far from being satisfied all “practical” encryption schemes. Indeed, whereas
RSA-OAEP satisfies them (at the cost of “truncating” the message space), other
schemes such as CS1 from [CS98] does not.

Composability of Definitions. The table below summarizes new and known
results regarding the composability of of the various definitional approaches.
A

√
-mark indicates that the definitions composes, X-mark indicates it does

not, and ? indicates that the status is unknown. Pass, shelat, and Vaikun-
tanathan [PSV06] show the ∗ result. Gennaro and Lindell [GL03] show the †

result. All other results are new in this paper. These new results show that,
contrary to folklore belief, indistinguishability-based definitions of encryption do
not necessarily compose in the context of non-malleability.

SIM-NME′ IND-NME′ SIM-NME IND-NME
cca2 ?

√ √ √

cca1 ?
√

X X
cpa

√ √∗ X† X

Related Work. The work of [BS06] (clarifying the original work of [BS99]) pro-
vided a comprehensive study of equivalence between indistinguishability-based
and simulation-based definitions. Their main results show such an equivalence for
the case of invalid-allowing definitions. We here note that their result implicitly
makes the assumption that the encryption schemes considered have the property
that it is “easy” (i.e., there is a prescribed polynomial-time algorithm) to gener-
ate invalid ciphertexts. In contrast, we consider general encryption schemes (i.e.,
without any such restriction). Interestingly, we show that the notions no longer
are equivalent when doing so (furthermore, when considering restricted messages
spaces, equivalence does not hold even if there exists a prescribed polynomial-
time algorithm for generating invalid ciphertexts).

Nevertheless, we emphasize that proof techniques from [BS99, BS06] are useful
also when considering general encryption schemes. Indeed, our equivalence proof
for the case of invalid-prohibiting definitions (i.e., showing that SIM-NME =
IND-NME) borrows from their original proof.4

2 This result generalizes the earlier results by [BS06]. See Section 1.1 for more details.
3 In a sense all separation results can be called either “artificial” or “trivial”—if they

are satisfied by known schemes then they are trivial, otherwise they are “artificial”.
4 The original published version of their results [BS99] claimed an equivalence be-

tween SIM-NME and an indistinguishability-based definition of non-malleability due
to [BDPR98]. This claim was later retracted in the new version [BS06] (due to sub-
tleties pointed out by Lindell). We mention, however, that our definition of IND-NME
is (seemingly) different from the indistinguishability-based definition of [BDPR98].
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We also mention that various other definitions of non-malleability for encryp-
tion schemes have been proposed (e.g [BDPR98, BS06, Gol04]). Our goal is not to
fully characterize the relative strength of all variants of non-malleability. Rather,
we highlight the differences between certain natural definitional approaches (i.e.,
simulation v.s. indistinguishability, and invalid-allowing v.s. invalid-prohibiting).

2 Definitions

Oracles. In a chosen-plaintext attack (CPA), the oracles O1, O2 return the empty
string. In a CCA1 attack, the oracle O1(pk, ·) returns the decryption of its input
under public key pk (which is implicit by context). Finally, in a CCA2 attack,
both oracles return decryptions with the exception that O2(pk, y, ·) returns ⊥
when queried on a ciphertext contained in y.

Comparing Definitions. If D1, D2 are two definitions, the notation D1 > D2
means that: “Every scheme Π which satisfies D1 also satisfies D2, and if there
exists a scheme Π which satisfies D2, then there exists a scheme Π ′ which also
satisfies D2 but does not satisfy D1.” We say that D1 = D2 if the set of schemes
that satisfy D1 is identical to the set of schemes that satisfy D2.

2.1 Simulation-Based Definitions of Non-malleable Encryption

Definition 1 (SIM-NME′ Security). Define the following two experiments.

SIM-NME′(Π, A, k, �, r) SIM-NME′(Π, S, k, �, r)
(pk, sk) ← Gen(1k) (pk, sk) ← Gen(1k)
(M, s) ← AO1

1 (pk) (M, s) ← S1(pk)

(m1, . . . , m�)
$← M(1k) (m1, . . . , m�)

$← M(1k)
y ← Enc(pk, m)
((c1, . . . , cr), σ) ← AO2

2 (y, h(m), s) ((c1, . . . , cr), σ) ← S2(h(m), s)

di =
{

copy if ci ∈ y

Dec(sk, ci) o.w.
di =

{
copy if ci = copy

Dec(sk, ci) o.w.
Output (M, m, (d1, . . . , dr), σ) Output (M, m, (d1, . . . , dr), σ)

Here M is a Turing machine that samples a vector of �(k) messages from a
distribution. We say that M is an (p, �)-valid message-sampler if 1) the running-
time of M(1k) is bounded by p(k), and 2) there exists polynomials l1, l2, .., l�
such that M(1k) always outputs message sequences (m1, . . . , m�(k)) such that
|mi| = li(1k) for all 1 ≤ i ≤ �(k).

An encryption scheme Π = (Gen, Enc, Dec) is SIM-NME′-secure if for poly-
nomials �(k), r(k) and p(k), every polynomial-time computable history function
h(·), every p.p.t. adversary A = (A1, A2) which runs in time p(k) and always out-
puts a (p, �)-valid message sampler, there exists a p.p.t. algorithm S = (S1, S2)
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that always outputs a (p, �)-valid message sampler, such that the following two
distributions are computationally indistinguishable:{

SIM-NME′(Π, A, k, �(k), r(k))
}

k

c≈
{

SIM-NME′(Π, S, k, �(k), r(k))
}

k
(1)

We also define a weaker notion of this definition named SIM-NME by requiring
that the outputs of the two experiments are indistinguishable only for a certain
“restricted” set of adversaries A. Define the following two types of adversaries:

1. non-copying adversaries: A = (A1, A2) is said to be non-copying if in the
above experiment A2 never outputs a ciphertext ci, s.t., ci ∈ y.

2. valid adversaries5: A is said to be valid if in the above experiment A only
outputs ciphertexts that are in the range of the encryption function (on input
pk), i.e., it holds that for all ci, there exists an di such that ci ∈ Enc(pk, di).

Definition 2 (SIM-NME Security). An encryption scheme Π =(Gen, Enc, Dec)
is SIM-NME-secure if for polynomials �(k), r(k) and p(k), every polynomial-time
computable history function h(·), every non-copying, valid p.p.t. adversary
A = (A1, A2) which runs in time p(k) and always outputs a (p, �)-valid mes-
sage sampler, there exists a p.p.t. algorithm S = (S1, S2) that always outputs a
(p, �)-valid message sampler, such that the ensembles in equation (1) are indis-
tinguishable to any p.p.t. distinguisher D.

Single-Message Versus Many-Message Security. We have presented definitions
which allow the adversary to see a sequence of encrypted messages. Forboth
the above definitions of non-malleability, a scheme satisfying the definition in
the case when �(k) = 1 (but r(k) is still arbitrary), is said to be single-message
secure. The question of whether any single-message secure scheme is also (many-
message) secure is the question of composability of the definition.

Remarks. Single-message SIM-NME security is a rewriting of the original DDN
simulation-based definition of non-malleability. The main difference between
our definition and definition of DDN is that we dispense with the relation
R and instead use the notion of indistinguishability of the outputs. This dif-
ference is inconsequential (since any p.p.t distinguisher can be described as
a p.p.t relation and vice versa); however, this draws a parallel to the (up-
coming) indistinguishability-based definition of non-malleability, which we term
IND-NME. In this way, we emphasize the meaning of this definition: neither a
ciphertext of a chosen message or a decryption oracle can substantially alter
an adversaries ultimate “behavior.” Given this interpretation, it is also intuitive
to see why the valid-adversary is somehow artificial. Moreover this restriction
prevents the definition from composing—i.e., it is possible for a scheme to be
single-message SIM-NME secure, but not SIM-NME secure. We also remark that
our definition of single-message SIM-NME′ security is syntactically equivalent to
the SNM definition of non-malleability from [BS06].
5 This interpretation comes from [DDN00] where they write “A produces...ciphertexts

(f1, . . .)...with fi ∈ Enc(βi)...”.
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2.2 Indistinguishablility-Based Definitions

The following definition of non-malleability was introduced in [PSV06] and is
syntactically very close to the definition of [BS99, BS06].

Definition 3 (IND-NME′ Security [PSV06]). Let Π = (Gen, Enc, Dec) be an
encryption scheme and let the random variable IND-NMEb(Π, A, k, �, r) where
b ∈ {0, 1}, A = (A1, A2) and k, �, r ∈ N denote the result of the following
probabilistic experiment:

IND-NME′
b(Π, A, k, �, r) :

(pk, sk) ← Gen(1k)
((m0,1, . . . , m0,�), (m1,1, . . . , m1,�), s) ← AO1

1 (pk) s.t. |m0,i| = |m1,i|
yi ← Enc(pk, mb,i) for i ∈ [1, �]
(c1, . . . , cr) ← AO2

2 (y, s)

Output (d1, . . . , dr) where di =
{

copy if ci ∈ y

Dec(sk, ci) otherwise

(Gen, Enc, Dec) is IND-NME′-secure if ∀ p.p.t. algorithms A = (A1, A2) and for
any polynomials �(k) and r(k), the following two ensembles are computationally
indistinguishable:

{
IND-NME′

0(Π, A, k, �(k), r(k))
}

k

c≈
{
IND-NME′

1(Π, A, k, �(k), r(k))
}

k
(2)

We also introduce a weaker version of this definition, IND-NME, in which, as in
the previous section, (2) need only hold for non-copying, valid adversaries A.

Definition 4 (IND-NME Security). An encryption scheme (Gen, Enc, Dec) is
IND-NME-secure if ∀ non-copying, valid p.p.t. algorithms A = (A1, A2) and
for any polynomials �(k) and r(k), the ensembles in the equation (2) are com-
putationally indistinguishable.

Single-Message Security. For both the above indistinguishability-based defini-
tions, we obtain the weaker notion of single-message security by restriction at-
tention to the case when �(k) = 1. We also note that our definition of single-
message IND-NME′ security is a syntactical rewriting of (and thus equivalent to)
the definition of IND-PAX of [BS06].

3 Equivalences Between Definitions

Theorem 1. SIM-NME = IND-NME for all attacks.

The equivalence proof for this theorem uses ideas from Bellare and Sahai [BS99].
Note however that it does not show that SIM-NME′ = IND-NME′ (as was the
goal in Bellare and Sahai’s revised paper [BS06]). Let us briefly recall the subtle
issue in the original proof in [BS99] (the same issue appears in the revised proof
that SIM-NME′ = IND-NME′ in [BS06]). In one step of the equivalence proof, the
SIM-NME simulator must re-encrypt a vector of ciphertexts which the adversary
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has produced. If an “aborting” adversary has produced an invalid ciphertext,
it is not clear whether the simulator can proceed—in particular, the encryption
scheme Π might not provide an efficient method available to produce an invalid
ciphertext (as was the case in the previous section). The proof does hold, how-
ever, for a valid adversary who always produces ciphertexts that are in the range
of the Enc function.

In the full version, we present a direct equivalence proof for SIM-NME and
IND-NME which is simple and extends to the case of many-message security.
Moreover, the proof also leads to the following corollary relating SIM-NME′ and
IND-NME′ used in Theorem 4:

Corollary 1. If Π is SIM-NME′-secure, then Π is also IND-NME′ secure.

For completeness, we present a proof of the following theorem in the full version
which has been partially shown by Dolev, Dwork, and Naor [DDN00].

Theorem 2. IND-NME′-CCA2 = IND-NME-CCA2 = IND-CCA2.

In the weaker CPA attack, we show that the simulation and indistinguishabil-
ity definitions for invalid ciphertext-producing adversaries are also equivalent
by adapting a simpler version of Thm. 1. This implies that the construction
from [PSV06] meets the strongest notion of non-malleability for the CPA at-
tack. The proof appears in the full version.

Theorem 3. Under a CPA attack, SIM-NME′ = IND-NME′.

4 Separating the SIM-NME′ and IND-NME′ Definitions

Theorem 4 (Main Separation). Under CCA1 or CCA2 attacks, SIM-NME′ >
IND-NME′ even for single-message security.

Corollary 1 shows that SIM-NME′ implies IND-NME′. Thus, the main idea for
this separation is to design an encryption scheme in which the set of messages for
which a ciphertext can be efficiently computed and the range of the decryption
function differ. As one concrete example below, we design an IND-NME′ scheme
in which it is nearly impossible for an adversary to produce a ciphertext which
decrypts to ⊥ (i.e., an invalid ciphertext) unless it has adaptive access to a
decryption oracle. 6 We show the scheme so constructed meets the IND-NME′

definition. However, it does not meet the SIM-NME′ definition under a CCA1
or CCA2 attack, because an adversary (with access to a decryption oracle) is
able to produce a ciphertext that decrypts to ⊥ whereas a simulator (without
access to a decryption oracle) is unable. Thus, the outputs of the SIM-NME′ and
SIM-NME′ experiments will be trivially distinguishable. The general idea behind
these type of arguments first appears in [DDN00] and is also used in [BDPR98]
to show other separations.
6 Another example would be a finite message space, i.e., a message space which in-

cludes all strings in {0, 1}k and a scheme in which the range of the decryption
function includes one k2 bit string. We discuss this later in §5.
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Proof. Let Π = (Gen, Enc, Dec) be an encryption scheme that satisfies IND-NME′

under a CCA attack. Consider encryption scheme Π ′ defined in the figure below.
The key property of Π ′ is that Dec′ never outputs ⊥ unless it is queried with

Encryption Scheme Π ′

Gen′(1k) : Run (pk, sk) ← Gen(1k). Pick random k-bit string α and set sk
′ ←

(sk, α).
Enc′(pk′, m) : Run c ← Enc(pk, m). Output (1, 0k, c) as ciphertext.
Dec′(sk′, c′) : Parse c′ as (b, β, c) where b is a bit, β is a k-bit string.

1. If b = 0 and β = 1k, then output α.
2. If b = 0 and β = α, then output ⊥.
3. If b = 1 and β = 0k, run m ← Dec(sk, c). If the output is ⊥, output 0.

Otherwise, output m.
4. Otherwise, output 0.

the special “open sesame” string α, and a decryption oracle is necessary to learn
the “open sesame” string.

It is easy to see that Π ′ syntactically is an encryption scheme. The only issue
is to argue that Π ′ is perfectly correct, which follows because perfect correct-
ness only applies to decryption of honestly encrypted messages (which are never
invalid ciphertexts).

Claim. Π ′ = (Gen′, Enc′, Dec′) meets the IND-NME′-CCA definition.

Proof. Suppose there exists an adversary A′ which breaks the IND-NME′-CCA
definition for Π ′. Such an adversary can be used to construct an adversary A
which breaks the IND-NME′-CCA definition for Π as follows:

The new adversary A simulates (Gen′, Enc′, Dec′) for A′ by picking α itself and
using the oracles for Dec to answer queries. More precisely, on input a public key
pk, A generates a k-bit string α and feeds pk to A′. When A′ asks decryption
queries, A simulates the Dec′ algorithm by using α as the second component of
sk

′ and the decryption oracle in order to compute Dec(c, sk). When A′ produces
two challenge messages, A forwards these messages along, and when it receives
a challenge ciphertext y, A feeds (1, 0k, y) to A′. In the case of a CCA2 attack,
A again simulates the Dec′ function, and when A′ finally returns an answer,
A echoes it. A perfectly simulates the IND-NME′-CCA game for A′, and thus
succeeds with exactly the same probability as A′.

Claim. Π ′ does not meet the SIM-NME′-CCA definition.

Proof. Consider the relation R(x, x, M, s) which is 1 if x is ⊥ and 0 otherwise.
A CCA1 adversary with access to a decryption oracle can satisfy R by making

a decryption query on the message (0, 1k, 0) to get the value α, and then by
outputting the ciphertext (0, α, 0).
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However, it is not possible for a simulator S without access to the decryption
oracle to satisfy R. Such a simulator only has an exponentially small chance of
guessing the correct α string necessary to produce ⊥. Thus, Π ′ will not satisfy
SIM-NME′-CCA1.

4.1 More Separations for CCA1 and CPA Attacks

We now show that IND-NME′ is stronger than IND-NME when considering weaker
CPA and CCA1 attacks. Recall that IND-NME′ and IND-NME are different only in
that the former protects against all PPT adversaries, whereas the latter protects
against only valid PPT adversaries.7 By combining the equivalence from The-
orem 1, we also get a separation between IND-NME′ and SIM-NME. For CCA2
attacks, they become equivalent (See Thm. 2).

Theorem 5. IND-NME′ > IND-NME for CCA1 and CPA attacks even for
single-message security.

Corollary 2. IND-NME′ > SIM-NME for CCA1 and CPA attacks even for
single-message security.

Proof. (Of Corollary 2.) By Theorem 5, IND-NME′ > IND-NME for CCA1 and
CPA attacks and by Theorem 1, SIM-NME = IND-NME under all attacks.

The main idea for the proof of Theorem 5 is to use the DDN-lite transforma-
tion [Dwo99, Nao04] to transform an IND-NME-secure encryption scheme into
one that remains IND-NME-secure (Claim 4.1), but is vulnerable to an IND-NME′

attack (Claim 4.1).
We actually prove a stronger statement which gives us a way to transform an

IND-CPA-secure encryption scheme into one that is IND-NME-secure. While this
result has been claimed in [Dwo99, Nao04], as far as the authors know, a proof
has never been printed. Our proof also shows that the construction also trans-
forms an IND-CCA1 scheme into an IND-NME-CCA1 scheme. The IND-NME′-
attack against this scheme is an adaptation of the attack against DDN-lite,
given in [PSV06].

Proof. (of Theorem 5) Let Π = (Gen, Enc, Dec) be an encryption scheme that is
IND-CPA-secure (respectively, IND-CCA1-secure). Let Σ = (Gensig , Sign, Ver) be
a strongly unforgeable one-time signature scheme. Such a signature scheme can
be constructed from one-way functions (The existence of one-way functions, in
turn, is implied by the existence of a IND-CPA-secure encryption scheme). We
construct a new encryption scheme ΠL from Π and show that ΠL satisfies the
IND-NME definition but does does not satisfy IND-NME′.

Claim. ΠL meets the IND-NME definition.

7 We say that an invalid ciphertext “decrypts” to ⊥ (Bot) and hence the title of the
subsection.
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Encryption Scheme ΠL

Gen′(1k) : Run Gen(1k) 2k times with independent random coins to produce 2k
pairs of keys (pki

b, sk
i
b) for i ∈ [1, k] and b ∈ {0, 1}. Let pk

′ =
[
pk

i
b

]
i∈[k],b∈{0,1}

and sk
′ =

[
sk

i
b

]
i∈[k],b∈{0,1}

Enc′(m, pk′) : Run Gensig(1k) to generate a key-pair (vksig, sksig) for the signa-
ture scheme. Let vksig a k-bit string, and let the ith bit of vksig be denoted
vksigi.
Run ci ← Enc(pkvksigi

i , m) for i ∈ [1, k].
Let σ ← Sign(sksig, (c1, c2, . . . , ck)).
Output

[
(c1, . . . , ck),vksig, σ

]
as the ciphertext.

Dec′(c′, sk′) : Parse c′ as ((c1, . . . , ck),vksig, σ).
If Ver(vksig, (c1, . . . , ck), σ) = reject, output ⊥.
Otherwise, decrypt the ci’s with the corresponding secret-keys to get corre-
sponding messages mi. If all mi’s are equal, output m1, else output ⊥.

Proof. First, we show that an encryption scheme Π̃, constructed from Π in the
following way, meets the IND-CPA (respectively, IND-CCA1) definition (Proposi-
tion 1). Π̃ = (G̃en, Ẽnc, D̃ec) is constructed as follows:

1. G̃en runs k copies of Gen to generate public-keys p̃k = (pk1, pk2, . . . ,pkk)
and corresponding secret-keys s̃k = (sk1, sk2, . . . , skk).

2. Ẽnc(m, p̃k) runs Enc(m, pki) for all i ∈ [k], with independently chosen ran-
domness, and outputs the vector of k encryptions

[
c1, c2, . . . , ck

]
.

3. D̃ec(c, s̃k) parses c as
[
c1, c2, . . . , ck

]
. Let mi = Dec(ci, ski). If all the mi are

the same, output m1. Otherwise, output ⊥.

Secondly, in Proposition 2, we show that if Π̃ is IND-CPA-secure (respectively,
IND-CCA1-secure), then Π ′ is IND-NME-CPA-secure (resp., IND-NME-CCA1-
secure). This proof appears in the full version.

Proposition 1. If Π is IND-CPA-secure (or IND-CCA1-secure), then so is Π̃.

Proof. The proof is a straightforward hybrid argument. The only complication
stems from the simulation of the oracle in the CCA1 case. When the adversary
asks to decrypt a ciphertext ĉ = (ĉ1, ĉ2, . . . , ĉk), decrypt cj using the secret-key
skj (if j 	= i) and using the decryption oracle for pki (if j = i).

Proposition 2. If Π̃ is IND-CPA-secure (respectively, IND-CCA1-secure), then
ΠL is IND-NME-secure (respectively, IND-NME-CCA1-secure).

Claim. ΠL is not IND-NME′-secure under CPA and CCA1 single-message attacks.

Proof. We specify an adversary A = (A1, A2) and a distinguisher D such that
D distinguishes between {IND-NME′

0(Π, A, k, 1)} and {IND-NME′
1(Π, A, k, 1)}.

A works as follows:
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1. A1 outputs two arbitrary messages (m0, m1) and no state information.
2. On input ciphertext c =

[
(e1, . . . , ek),vksig, σ

]
, let vksig := b1b2 . . . bk.

A2 produces a new ciphertext c′ as follows: A2 generates a new signing
key (sksig

′,vksig
′). Let vksig

′ := b′1b
′
2 . . . b′k. A2 outputs ciphertext c′ =

((x1, . . . , xk),vksig
′, σ′) where

xi =

{
ei if b′i = bi

E
pk

b′
i

i

(m0) otherwise

and σ′ is the signature of (x1, . . . , xk) under the signing key sksig
′.

Notice that NME0(Π, A, k, 1) = m0 and NME1(Π, A, k, 1) = ⊥ which can be
easily distinguished by a distinguisher D that outputs 0 on m0 and 1 on ⊥.

5 Additional Separations with Finite Message Spaces

Many encryption schemes such as El Gamal, RSA, Cramer-Shoup, and the league
of schemes based on elliptic curves and bilinear maps only process messages from
a finite message space such as the elements of some group G. In order to capture
the security of such systems, Cramer and Shoup [CS98] redefine the encryption
primitive to incorporate (a) a key-dependent message space Mpk and (b) a p.p.t.
message tester algorithm M that on input 1k, pk, α, determines whether α is an
element of the message-space for the security parameter 1k and the public key
pk. The encryption algorithm Enc : Mpk → {0, 1}∗ now takes an input message
from Mpk and produces general bit strings, and the decryption algorithm maps
{0, 1}∗ to Mpk ∪ ⊥. The correctness property is only required to hold over the
message space.

In this section, however, we note that if the message space is finite, then
the previously proven equivalence relationship between the weaker notions of
SIM-NME and IND-NME no longer holds. While the particular counter-example
that we use for the separation may seem contrived, this separation has practical
significance since it runs against our “intuition” about IND-CCA2 security.

The idea behind this separation is as follows. We construct an encryption
scheme whose message space includes three elements, {0, 1, χ} where χ is re-
lated to the public key pk. Moreover, we make it difficult for an adversary to
learn χ unless it has a decryption oracle (notice, the definition for finite message
space only requires the message space to be easily decidable, but does not re-
quire it to be enumerable.8) From this point, the argument is the same. Namely,
an adversary with an oracle can produce a (valid) ciphertext decrypting to χ
(therefore it is a valid adversary), whereas the simulator can only produce ci-
phertexts decrypting to 0 or 1. The subtle difference between this argument and

8 One could require enumerability of the message space. However, it is unclear such a
restriction helps; and it is clear that it needlessly prevents us from using more exotic
algebraic structures for encryption.
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the one from §4 is that in this one, it is not the simulator’s inability to pro-
duce a ciphertext which decrypts to ⊥, but rather its inability to learn a special
message in the message space which provides the separation. In the full message
case, there are no such special messages since any string can be encrypted. This
is the reason that the separation can be extended to valid adversaries.

Let (Gen, Enc, Dec) be an IND-NME-secure encryption scheme for general mes-
sage spaces, and let f be a one-way permutation.9

Finite message space Encryption Scheme Γ

Gen′(1k) : Run Gen(1k) to generate a key pair (pk, sk). Pick k-bit random string
α and compute β = f(α). Set sk

′ = (sk, α) and pk
′ = (pk, β). The message

tester M(m) works as follows: if m ∈ {0, 1} or if f(m) = β, then return 1.
Otherwise, return 0. (The messages space consists of {0, 1, α}).

Enc′(m, pk′) : if M(m) = 0, return an error. Otherwise, run c ← Enc(pk, m) and
return (1, c).

Dec′(c′, sk′) : Parse c′ as (b, c), and sk
′ as (sk, α). If b = 0 then output α. Other-

wise, output m ← Dec(sk, c).

IND-NME security of the above finite-message space encryption scheme di-
rectly follows from the security of (Gen, Enc, Dec). In order to violate SIM-NME,
the adversary B must be non-aborting. Therefore, the final ciphertext it produces
must be in the range of the Enc function (i.e., of the form (1, c)). Combined with
the one-wayness of f , a simulator not having access to a decryption oracle will
not be able to construct a valid encryption to the message α.

However, a CCA1 attacker can easily do so by first querying (0, 0) to find α
(notice that the attacker can query the oracle on invalid ciphertexts, but cannot
produce them as final output), and then honestly encrypting α.

6 Special Cases for Equivalence

The separation between SIM-NME′ and IND-NME′ hinged on the fact that the
set of messages for which one can efficiently compute a ciphertext and the range
of the decryption procedure differ. When these two sets are made to coincide, a
scheme that is IND-NME′ secure is also SIM-NME′-secure. Thus, we provide an
easy way to prove that a scheme meets the strongest notion of non-malleability.
As a corollary, we get that the main construction of [DDN00] achieves the
strongest form of security – that is SIM-NME′-security against CCA2 attacks.

Theorem 6. Any (finite message-space) encryption scheme Π which meets the
IND-NME definition and for which there is an efficient algorithm F , which on
input (pk, d) where d is a string in the range of Dec, produces a ciphertext c
such that d ← Dec(sk, c), also meets the SIM-NME′ definition.
9 In fact a one-way function would suffice. We only use a permutation for ease of

exposition.



Relations Among Notions of Non-malleability for Encryption 533

This restriction could easily be added to many schemes by taking the message
space to be some set {0, 1}�(k) for all keys generated by Gen(1k) (and by making
it easy to generate invalid ciphertext). We note that the RSA-OAEP padding
scheme does exactly this.

7 Composition: Many Message Security

In [PSV06], the authors show that IND-NME′ security under CPA attacks com-
poses. That is, if an encryption scheme is IND-NME′-secure when the adversary
receives one encryption, it will also be IND-NME′-secure in a situation in which
the adversary receives many encryptions.

A natural question is whether the same phenomena occurs under stronger
CCA1 and CCA2 attacks. In this section, we answer affirmatively as described in
the following theorem.

Theorem 7. A scheme Π meets IND-NME′ under attack atk iff it meets single-
message IND-NME′ under attack atk.

Proof Sketch: The forward implication follows directly. For the reverse direction,
we present a routine hybrid argument that uses an adversary (A1, A2), D with
advantage ε to construct a new adversary (A′

1, A
′
2), D which breaks the single-

message security with advantage η/�2.
Define a new experiment IND-NME′

(b1,...,b�)(Π, A, k, �) indexed by an �-bit
string (b1, . . . , b�) which is the same as IND-NME′

0(Π, A, k, �) except in the fourth
line (change is underlined): yi ← Enc(pk, mbi,i) for i ∈ [1, �]. Define

B(i) = (

l−i︷ ︸︸ ︷
0, . . . , 0,

i︷ ︸︸ ︷
1, . . . , 1)

and note that IND-NME′
0 = IND-NME′

B(0) and IND-NME′
1 = IND-NME′

B(�). Be-
cause D distinguishes IND-NME′

0 from IND-NME′
1, there exists some g∗ ∈ [1, �]

such that D distinguishes IND-NME′
B(g∗) from IND-NME′

B(g∗+1) with advan-
tage η/�. This suggests the following adversary: A′O

1 (pk) guesses value g ∈ [1, �]
and runs A1(pk)—answering any decryption queries by using its own decryp-
tion oracle—and waits to receive the two vector of messages (m0,1, . . . , m0,�)
and (m1,1, . . . , m1,�). Finally, A′ outputs (m0,g, m1,g) as its challenge pair and
outputs state information containing g and m0, m1.

Adversary A′O
2 (y, state

′), on input an encryption y, first executes the re-
placed line 4 of experiment IND-NME′

B(g) (described above) with the exception
that it uses y for the (g + 1)th encryption: yg+1 ← y. This is possible because it
receives the messages vectors m0 and m1 in state

′.
It then feeds the resulting vector of ciphertexts y to A2 to produce another

vector of ciphertexts (c1, . . . , c�) and uses this vector as its own output. To answer
any oracle query c from A2, A′

2 uses the following procedure: If c = yj for any
j ∈ [1, �], then return ⊥. Otherwise, it uses its own decryption oracle to decrypt
c and answers with the returned message.
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Notice that IND-NME′
0(A

′
1, A

′
2) and IND-NME′

B(g∗)(A1, A2) are syntactically
the same, as are IND-NME′

1(A
′
1, A

′
2) and IND-NME′

B(g∗+1)(A1, A2). Because A′

guesses g∗ correctly with probability 1/�, D’s overall advantage in breaking the
single-message non-malleability is η/�2. �
One can see here the importance of removing the “valid adversary” restriction
for the hybrid argument to work. This follows because the reduction feeds a
hybrid distribution to A2 and, even if A2 is itself a valid adversary for the multi-
message experiment, A2 may produce invalid ciphertexts when it is fed a hybrid
distribution. Moreover, these ⊥ values may form the basis for distinguishability
in the hybrid experiment. Thus, one cannot guarantee that valid adversaries for
the multi-message experiment can be transformed into valid adversaries for the
single-message experiment. The separation in Claim 4.1 exploits this issue.10

SIM-NME and IND-NME Do Not Compose Against CCA1 or CPA Attacks
We now show that (if there exist SIM-NME-secure encryption schemes) there is
an encryption scheme Π ′ that is SIM-NME or IND-NME-secure when the adver-
sary is given one ciphertext as the challenge, but there is an adversary A′ that
completely breaks the IND-NME-security of Π ′ when given polynomially many
ciphertexts as challenge.

The encryption scheme Π ′ is simply the encryption scheme constructed in the
proof of Thm. 5 (relying on the DDNLite construction). Thm. 5 showed that ΠL
is 1-message IND-NME-secure (and therefore 1-message SIM-NME-secure). The
many-message attack against Π ′ is a simple covering attack. (We mention that
Gennaro and Lindell [GL03] pointed out that the DDNLite encryption scheme
is not secure under under many messages. Although they did not include a
description of the attack, we believe they had a similar attack in mind.)

Recall that an encryption of a message m under Π ′ consists of many encryp-
tions of m with respect to a randomly chosen set of k (out of 2k) public-keys.
Given many (roughly k log k) independent encryptions of m, the one can essen-
tially recover an encryption of m under all the 2k public-keys. This will enable
us to construct a completely new encryption of m, and thus break IND-NME′

security.

Theorem 8. Let atk ∈ {CPA, CCA1}. If there exists an encryption scheme that
is IND-atk secure, then there exists another encryption scheme Π ′ that is 1-
message IND-NME-atk-secure (respectively SIM-NME-atk-secure), but is not even
IND-NME-CPA-secure (respectively, SIM-NME-CPA-secure).

Proof. Omitted

10 This argument also applies to a different interpretation of “valid adversary” in which
one forces the single-message experiment to return 0 when invalid ciphertexts are
produced. In this case, when A2 produces invalid ciphertexts in the hybrid exper-
iments, the value of both hybrid experiments (b = 0, 1) will be 0 and the weaker
definition will thus be met even though there might still be a distinguisher which
could have distinguished the output of A′

2.
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SIM-NME and IND-NME Compose Under CCA2 Attacks

Theorem 9. If an encryption scheme Π is 1-message IND-NME-CCA2-secure,
then it is many-message IND-NME-CCA2-secure.

The proof of this theorem follows from Theorem 2, which shows that under
CCA2 attacks, IND-NME and SIM-NME definitions coincide with the IND-NME′

definition, and Theorem 7 which shows that IND-NME′ composes under a many-
message attack.

Acknowledgments. We would like to thank one of the anonymous Crypto referees
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Abstract. Tiger is a cryptographic hash function with a 192-bit hash
value. It was proposed by Anderson and Biham in 1996. Recently, weak-
nesses have been shown in round-reduced variants of the Tiger hash
function. First, at FSE 2006, Kelsey and Lucks presented a collision
attack on Tiger reduced to 16 and 17 (out of 24) rounds with a com-
plexity of about 244 and a pseudo-near-collision for Tiger reduced to 20
rounds. Later, Mendel et al. extended this attack to a collision attack on
Tiger reduced to 19 rounds with a complexity of about 262. Furthermore,
they show a pseudo-near-collision for Tiger reduced to 22 rounds with
a complexity of about 244. No attack is known for the full Tiger hash
function.

In this article, we show a pseudo-near-collision for the full Tiger hash
function with a complexity of about 247 hash computations and a pseudo-
collision (free-start-collision) for Tiger reduced to 23 rounds with the
same complexity.

Keywords: Cryptanalysis, hash functions, differential attack, collision,
near-collision, pseudo-collision, pseudo-near-collision.

1 Introduction

Tiger is a cryptographic iterated hash function that processes 512-bit blocks and
produces a 192-bit hash value. It was proposed by Anderson and Biham in 1996.
Recent results in the cryptanalysis of Tiger show weaknesses in round-reduced
variants of the hash function. At FSE 2006, Kelsey and Lucks presented a colli-
sion attack on 16 and 17 (out of 24) rounds of Tiger. The attack has a complexity
of about 244 evaluations of the compression function. Furthermore, they present
a pseudo-near-collision for a variant of Tiger reduced to 20 rounds with a com-
plexity of about 248. These results were later improved by Mendel et al. in [3].
They show that a collision can be found for Tiger reduced to 19 rounds with a
complexity of about 262 evaluations of the compression function. Furthermore,
they present a pseudo-near-collision for Tiger reduced to 22 rounds with a com-
plexity of about 244. However, so far no attack is known for the full Tiger hash
function.
� The work in this paper has been supported by the Austrian Science Fund (FWF),
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In this article, we present a 1-bit circular pseudo-near-collision for the full
Tiger hash function with a complexity of about 247 hash computations and a
pseudo-collision (free-start-collision) for a variant of Tiger reduced to 23 rounds
with the same complexity. The attack is based on previous attacks presented
in [2] and [3]. Note that in the attacks of Kelsey and Lucks and Mendel et al. on
round-reduced variants of Tiger, the S-boxes of the hash function are addressed
wrongly (big endian instead of little endian). However, this error can be fixed
easily, because there is really a large amount of freedom in these attacks on
round-reduced variants of Tiger.

The remainder of this article is structured as follows. A description of the Tiger
hash function is given in Section 2. In Section 3, we describe the basic attack
strategy on Tiger based on the work of Kelsey and Lucks on round-reduced
Tiger. We follow this attack strategy in Section 4 to construct a 1-bit circular
pseudo-near-collision for Tiger with a complexity of about 247. In Section 5, we
show a pseudo-collision for Tiger reduced to 23 rounds with the same complexity.
Finally, we present conclusions in Section 6.

2 Description of the Hash Function Tiger

Tiger is a cryptographic hash function that was designed by Anderson and Biham
in 1996 [1]. It is an iterative hash function that processes 512-bit input message
blocks and produces a 192-bit hash value. In the following, we briefly describe the
hash function. It basically consists of two parts: the key schedule and the state
update transformation. A detailed description of the hash function is given in [1].
For the remainder of this article, we will follow the notation given in Table 1.

Table 1. Notation

Notation Meaning
A � B addition of A and B modulo 264

A � B subtraction of A and B modulo 264

A � B multiplication of A and B modulo 264

A ⊕ B bit-wise XOR-operation of A and B
¬A bit-wise NOT-operation of A

A � n bit-shift of A by n positions to the left
A � n bit-shift of A by n positions to the right

Xi message word i (64 bits)
Xi[even] the even bytes of message word Xi (32 bits)
Xi[odd] the odd bytes of message word Xi (32 bits)

2.1 State Update Transformation

The state update transformation of Tiger starts from a (fixed) initial value IV
of three 64-bit words and updates them in three passes of eight rounds each. In
each round one 64-bit word X is used to update the three state variables A, B
and C as follows:
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C = C ⊕ X

A = A � even(C)
B = B � odd(C)
B = B � mult

The results are then shifted such that A, B, C become B, C, A. Fig. 1 shows one
round of the state update transformation of Tiger.

Xi+1

Ai

even

odd

Bi Ci

Ai+1 Bi+1 Ci+1

Fig. 1. The round function of Tiger

The non-linear functions even and odd used in each round are defined as
follows:

even(C) = T1[c0] ⊕ T2[c2] ⊕ T3[c4] ⊕ T4[c6]
odd(C) = T4[c1] ⊕ T3[c3] ⊕ T2[c5] ⊕ T1[c7]

where state variable C is split into eight bytes c7, . . . , c0 with c7 is the most
significant byte (and not c0). Four S-boxes T1, . . . , T4 : {0, 1}8 → {0, 1}64 are
used to compute the output of the non-linear functions even and odd. For the
definition of the S-boxes we refer to [1]. Note that state variable B is multiplied
with the constant mult ∈ {5, 7, 9} at the end of each round. The value of the
constant is different in each pass of the Tiger hash function.

After the last round of the state update transformation, the initial values
A−1, B−1, C−1 and the output values of the last round A23, B23, C23 are com-
bined, resulting in the final value of one iteration (feed forward). The result is
the final hash value or the initial value for the next message block.

A24 = A−1 ⊕ A23

B24 = B−1 � B23

C24 = C−1 � C23
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2.2 Key Schedule

The key schedule is an invertible function which ensures that changing a small
number of bits in the message will affect a lot of bits in the next pass. While the
message words X0, . . . , X7 are used in the first pass to update the state variables,
the remaining 16 message words, 8 for the second pass and 8 for the third pass,
are generated by applying the key schedule as follows:

(X8, . . . , X15) = KeySchedule(X0, . . . , X7)
(X16, . . . , X23) = KeySchedule(X8, . . . , X15)

The key schedule modifies the inputs (Y0, . . . , Y7) in two steps:

first step second step

Y0 = Y0 � (Y7 ⊕ A5A5A5A5A5A5A5A5) Y0 = Y0 � Y7
Y1 = Y1 ⊕ Y0 Y1 = Y1 � (Y0 ⊕ ((¬Y7) � 19))
Y2 = Y2 � Y1 Y2 = Y2 ⊕ Y1
Y3 = Y3 � (Y2 ⊕ ((¬Y1) � 19)) Y3 = Y3 � Y2
Y4 = Y4 ⊕ Y3 Y4 = Y4 � (Y3 ⊕ ((¬Y2) � 23))
Y5 = Y5 � Y4 Y5 = Y5 ⊕ Y4
Y6 = Y6 � (Y5 ⊕ ((¬Y4) � 23)) Y6 = Y6 � Y5
Y7 = Y7 ⊕ Y6 Y7 = Y7 � (Y6 ⊕ 0123456789ABCDEF)

The final values (Y0, . . . , Y7) are the output of the key schedule and the message
words for the next pass.

3 Basic Attack Strategy

In this section, we briefly describe the attack strategy of Kelsey and Lucks to
attack round-reduced variants of the Tiger hash function. A detailed descrip-
tion of the attack is given in [2]. For a good understanding of our attack it is
recommended to study it carefully. The attack can be summarized as follows.

1. Find a characteristic for the key schedule of Tiger which holds with high
probability. In the ideal case this probability is 1.

2. Use a kind of message modification technique developed for Tiger to con-
struct certain differences in the state variables, which can then be canceled
by the differences of the message words in the following rounds.

These two steps of the attack are described in detail in the following sections.

3.1 Finding a Good Characteristic for the Key Schedule of Tiger

To find a good characteristic for the key schedule of Tiger, we use a linearized
model of the key schedule. Therefore, we replace all modular additions and
subtractions by an XOR operation resulting in a linear code over GF (2). Finding
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a characteristic in the linear code is not difficult, since it depends only on the
differences in the message words. The probability that the characteristic holds
in the original key schedule of Tiger is related to the Hamming weight of the
characteristic. In general, a characteristic with low Hamming weight has a higher
probability than one with a high Hamming weight.

For finding a characteristic with high probability (low Hamming weight), we
use probabilistic algorithms from coding theory. It has been shown in the past
(cryptanalysis of SHA-1 [4]) that these algorithms work quite well. Furthermore,
we can impose additional restrictions on the characteristic by forcing certain
bits/words to zero. Note that this is needed to find suitable characteristics for
the key schedule of Tiger. For an attack on the Tiger hash function we need
many zeros in the first and last rounds of the hash function.

3.2 Message Modification by Meet-in-the-Middle

In order to construct a collision in Tiger reduced to 16 rounds, Kelsey and Lucks
use a message modification technique developed for Tiger. The idea of message
modification in general is to use the degree of freedom one has in the choice of
the message words to fulfill conditions on the state variables. In the attack on
Tiger this method is used to construct a certain differential pattern in the state
variables, which can then be canceled by the differences of the message words in
the following rounds. This leads to a collision in a round reduced variant of Tiger.
In the following we will briefly describe this message modification technique
according to Fig. 2.

Assume, we are given Ai−1, Bi−1, Ci−1 and A∗
i−1, B∗

i−1, C∗
i−1 as well as

Δ⊕(Xi) and Δ⊕(Xi+1). Then the modular difference Δ�(Ci+1) can be forced
to be any difference δ with a probability of 2−1 by using a birthday attack.
We try out all 232 possibilities for Xi−1[odd] to generate 232 candidates for
Δ�(odd(Bi)). Similarly, we try out all Xi[even] to generate 232 candidates for
Δ�(even(Bi+1)). Subsequently, we use a meet-in-the-middle approach to solve
the following equation:

Δ�(Ci+1) = mult� [Δ�(Bi−1) � Δ�(odd(Bi))] � Δ�(even(Bi+1)) = δ . (1)

The method can be summarized as follows:

1. Store the 232 candidates for Δ�(odd(Bi)) in a table.
2. For all 232 candidates for Δ�(even(Bi+1)), test if some Δ�(odd(Bi)) exists

in the table with

Δ�(odd(Bi)) = (Δ�(even(Bi+1)) � δ) � mult−1 � Δ�(Bi−1) .

This technique needs about 236 bytes of storage and takes 233 evaluations of
each of the functions odd and even. This is equivalent to about 229 evaluations
of the compression function of Tiger.
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Xi

Ai-1 Bi-1 Ci-1

Xi+1

even

odd

even

odd

Fig. 2. Message Modification by Meet-in-the-Middle

4 A Pseudo-near-collision for Tiger

In this section, we will present a 1-bit circular pseudo-near-collision for the Tiger
hash function. Note that the difference in the final hash value is the same as in
the initial value. In other words, we have a pseudo-collision in the compression
function of Tiger after 24 rounds, but due to the feed forward the collision
after 24 rounds is destroyed, resulting in a 1-bit pseudo-near-collision for the
Tiger hash function. The attack has a complexity of about 247 evaluations of the
compression function. In the attack, we extend techniques invented by Kelsey
and Lucks in the attack on round-reduced variants of Tiger.

We use the characteristic given below for the key schedule of Tiger to construct
the pseudo-near-collision in the hash function. This characteristic holds with a
probability of 2−1 which facilitates the attack.

(0, I, 0, 0, 0, I, I ′, 0) → (0, I, 0, I, 0, 0, 0, 0) → (0, I, 0, 0, 0, 0, 0, 0) (2)

I denotes a difference in the MSB of the message word and I ′ := I � 23. Note
that the XOR-difference (denoted by Δ⊕) equals I if and only if the modular
difference (denoted by Δ�) equals I.

In order to have a pseudo-collision in the compression function of Tiger af-
ter 24 rounds, it is required that there is a pseudo-collision after round 17. Hence,
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Table 2. Characteristic for a 1-bit pseudo-near-collision in the Tiger hash function

i ΔAi ΔBi ΔCi ΔXi

initial value -1 I 0 0

Pass 1

0 0 0 I 0
1 0 0 0 I
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 * I 0 I
6 * I ′ * I ′

7 * * * 0

Pass 2

8 * * * 0
9 * * * I
10 * * * 0
11 * * K⊕ I
12 * K+ L⊕ 0
13 0 L+ I 0
14 0 I 0 0
15 I 0 0 0

Pass 3

16 0 0 I 0
17 0 0 0 I
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0

feed forward 24 I 0 0

the following differences are needed in the state variables for round 14 of Tiger
(see Table 2).

Δ⊕(A14) = 0, Δ⊕(B14) = I, Δ⊕(C14) = 0 (3)

Constructing these differences in the state variables for round 14 is the most
difficult part of the attack. We use the message modification technique described
in Section 3.2 for this. In the following sections, we will describe all steps of the
attack in detail.

4.1 Precomputation

The precomputation step basically consists of 2 parts. First, we have to find a
set L of possible modular differences L+ which are consistent to a low weight
XOR-difference L⊕. A modular difference L+ is consistent to L⊕ if there exist
p and p∗ such that p∗ ⊕ p = L⊕ and p∗ � p = L+. Let L′ be the set of modular
differences L+ which are consistent to the XOR-difference L⊕ then we define the
set L of possible modular differences as follows:
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L = {L+ ∈ L′ : L+ = odd(B14 ⊕ I) � odd(B14)}

Note that the size of the set L′ is related to the Hamming weight of L⊕, namely
|L′| = 2HW(L⊕). In order to optimize the complexity of the meet-in-the-middle
step used in the attack, we need an L⊕ with low Hamming weight. In [2], the
authors assume that an L⊕ with Hamming weight of 8 exists. However, the best
Hamming weight we found for L⊕ is 10.

L⊕ = 02201080A4020104 (4)

In total we found 502 = |L| possible modular differences (out of 1024 = |L′|)
which are consistent to the XOR-difference L⊕ given above. This facilitates the
attack in the following steps.

Second, we need a set K of possible modular differences K+ which are consis-
tent to a low weight XOR-difference K⊕.

K = {K+ ∈ K′ : K+ = odd(B13 ⊕ L⊕) � odd(B13)}

where K′ is the set of modular differences K+ which are consistent to the XOR-
difference K⊕. Of course, the choice of L⊕ and the number of possible modular
differences L+ ∈ L restricts our choices for B13[odd]. Nevertheless, we found
2 = |K| possible modular differences K+ (out of 256 = |K′|) which are consistent
to the XOR-difference K⊕ given below.

K⊕ = 0880020019000900 (5)

Note that the precomputation step of the attack has to be done only once. It
has a complexity of about 2 · 232 round computations of Tiger. This is approxi-
mately about 228.5 evaluations of the compression function of Tiger.

4.2 Compute B9, C9, and C10

In this step of the attack, we have to compute B9, C9 and C10. Therefore, we first
choose random values for B4 and B5 and compute A5 = (B4 �odd(B5))�mult.
Since there is a difference in the MSB of X5 and no differences in B4 and C4, we
also get Δ�(B5) = I and Δ�(A5) = A∗

5 � A5. Note that there is no difference
in C5, since there are no differences in A4 and B5[even].

Second, we choose a random value for B6. Since there is a difference in
Δ⊕(X6) = I ′ and no difference in C5, we also know the modular difference
of Δ�(B6) = (B6 ⊕ I ′) � B6. Once we know B6 and B∗

6 = B6 � Δ�(B6),
we can calculate B9, C9, C10 (and B∗

9 , C∗
9 , C∗

10) by choosing random values for
X7, . . . , X9 and X10[even]. This step of the attack has a complexity of about
12 round computations of Tiger and fixes the message words X7, . . . , X9 and
X10[even].

4.3 Constructing the XOR-Difference Δ⊕(C11) = K⊕

To construct the XOR-difference K⊕ in round 11, we use the message modifica-
tion technique described in Section 3.2. For all modular differences K+ ∈ K′, we



544 F. Mendel and V. Rijmen

do a message modification step and check if Δ⊕(C11) = K⊕. Since the Hamming
weight of K⊕ is 8, this holds with a probability of 2−8. Furthermore, the mes-
sage modification step has a probability of 2−1. Hence, this step of the attack
succeeds with a probability of 2−8 · 2−1 · |K′| = 2−1 and determines the message
words X10[odd] and X11[even].

Finishing this step of the attack has a complexity of about (12 + 232 + 28 ·
232) · 2 ≈ 241 round computations of Tiger. This is approximately about 236.5

evaluations of the compression function of Tiger.

4.4 Constructing the XOR-Difference Δ⊕(C12) = L⊕

Once we have fixed X10[odd] and X11[even], we can calculate the state variables
B10, C10, C11 (and B∗

10, C∗
10, C∗

11). To construct L⊕ in round 12, we use the
same method as described before. For all modular differences L+ ∈ L′, we do
a message modification step and check if Δ⊕(C12) = L⊕. Since the Hamming
weight of L⊕ is 10, this equation holds with a probability of 2−10. Hence, this
step of the attack has a probability of 2−10 · 2−1 · |L′| = 2−1 and determines the
message words X11[odd] and X12[even]. Finishing this step of the attack has a
complexity of about (241 + (232 + 232 · 210)) · 2 ≈ 243.6 round computations of
Tiger. This is approximately about 239 evaluations of the compression function
of Tiger.

4.5 Constructing the XOR-Difference Δ⊕(C13) = I

Once we have fixed X11[odd] and X12[even], we can compute B11, C11 and C12
as well as the according modular differences. In order to construct the needed
difference Δ⊕(A13) = I in round 13, we apply again a message modification step.
Since the XOR-difference and the modular difference is the same for differences
in the MSB, we do not need to compute the list of modular differences that are
consistent to the XOR-difference I for the message modification step. This step
of the attack succeeds with a probability of 2−1 and determines the message
words X12[odd] and X13[even].

Once we have fixed the message words, we can compute B12, C12 and C13 as
well as the according modular differences. In order to guarantee that Δ�(B12)
can be canceled by Δ�(odd(B13)), we need that Δ�(B12) ∈ K. Since the number
of modular differences Δ�(B12) = K+ consistent to K⊕ is |K′| = 28 and |K| =
2, the probability that Δ�(B12) ∈ K is 2−7. Hence, we have to repeat the
attack about 2 · 27 times to finish this step of the attack. This determines the
message words X12[odd], X13[even] and X13[odd] and has a complexity of
about (243.6 + (232 + 232)) · 28 ≈ 251.6 round computations of Tiger. This is
about 247 evaluations of the compression function of Tiger.

Once we have fixed X13[odd] and X13, we can compute A13, B13 and C13 as
well as the according modular differences. In order to guarantee that Δ�(B13)
can be canceled in round 14 by Δ�(odd(B14)), we need that Δ�(B13) ∈ L.
Due to the choice of L⊕ and K⊕ in the precomputation step this holds with
probability 1.
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Hence, we can construct a pseudo-collision in the compression function of
Tiger after 17 rounds, respectively after 24 rounds with a complexity close to
247 evaluations of the compression function of Tiger.

4.6 Computing the Message Words X0, . . . , X7

The attack fixes the message words X7, . . . , X13 and X14[odd]. To compute the
message words X0, . . . , X7 we use the inverse key schedule of Tiger. Therefore,
we choose a random value for X14[even] and compute X15 as follows:

X15 = (X7 ⊕ (X14 � X13)) � (X14 ⊕ 0123456789ABCDEF)

This guarantees that X7 is correct after computing the key schedule backward.
Since the characteristic we use for the key schedule of Tiger has a probability

2−1 to hold, we expect that we have to repeat this step of the attack (for a
different value of X14[even]) about two times such that the characteristic holds
in the key schedule of Tiger. This adds negligible cost to the attack complexity.

4.7 Computing the Initial Value IV

Once we have computed the message words X0, . . . , X7, we can run the rounds
6, 5, . . . , 0 backwards to get the initial value IV . Since there is a difference I
induced in round 1 by X1, we have to inject the same difference in the initial
value to cancel it out, namely

Δ⊕(A−1) = I .

Since the difference is in the MSB, this happens with probability 1. Of course,
the feed forward destroys the pseudo-collision. After the feed forward we get the
same output differences as in the initial values.

Δ⊕(A24) = Δ⊕(A−1 ⊕ A23) = I

Hence, we get a 1-bit circular pseudo-near-collision for the Tiger hash function
with a complexity of about 247 evaluations of the compression function of Tiger.
Note that for an ideal hash function with a hash value of 192-bit one would
expect a complexity of about 290 to construct a pseudo-near-collision with a
1-bit difference.

5 A Pseudo-collision for 23 Rounds of Tiger

In a similar way as we construct the pseudo-near-collision for the full Tiger
hash function, we can also construct a pseudo-collision (free-start-collision) for
Tiger reduced to 23 rounds by using another characteristic for the key schedule.
For the attack we use the key schedule differences given below. It holds with
probability 1.

(0, 0, 0, I, 0, 0, 0, I) → (0, I, 0, 0, 0, 0, 0, I) → (0, 0, 0, 0, 0, 0, 0, I) (6)
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This characteristic for the key schedule of Tiger can be used in a similar way
(as in the pseudo-near-collision for the full Tiger hash function) to construct
a pseudo-collision in Tiger reduced to 23 rounds. The attack has a complexity
of about 247 evaluations of the compression of Tiger. It can be summarized as
follows:

0. Precomputation: First, find a set of possible modular differences L+ with a
low Hamming weight XOR-difference L⊕ which can be canceled by a suitable
choice for B12. Second, we have to find a set of possible modular differences
K+ with a low Hamming weight XOR-difference K⊕ which can be canceled
out by a suitable choice for B11. Note that we use in the attack the same value
for L⊕ and K⊕ as in the pseudo-near-collision attack on the full Tiger hash
function. This step of the attack has a complexity of about 228.5 evaluations
of the compression function of Tiger.

1. Choose random values for A2, B2, C2 and X3, . . . , X7 and X8[even] to com-
pute B7, C7 and C8. This step of the attack has a complexity of about 12
round computations of Tiger.

2. Apply a message modification step to construct the XOR-difference K⊕ in
round 9. This has a complexity of about 236.5 and determines the message
words X8[odd] and X9[even].

3. Apply another message modification step to construct the XOR-difference
L⊕ in round 10. Finishing this step of the attack has a complexity of about
239 and determines the message words X9[odd] and X10[even].

4. To construct the XOR-difference I in round 11, we apply again a message
modification step. This step has a complexity of about 240 and determines
the message words X10[odd] and X11[even].

5. Once we have fixed the message words, we can compute B10, C10 and C11
as well as the according modular differences. Since the difference in B10 can
be cancel out with a probability close to 2−7 (cf. Section 4.5), we have to
repeat the attack about 27 times. Hence, finishing this step of the attack has
a complexity of about 247 hash computations.

6. Determine X11[odd] and X12[odd] according to the result of the precompu-
tation step. This adds no additional cost to the attack complexity.

7. To compute the message words X0, . . . , X7, we have to choose suitable values
for X12[even] and X13, . . . , X15 such that X5, X6 and X7 are correct after
computing the key schedule backward. Note that X3 and X4 can be chosen
freely, because we can modify C2 and C3 such that C2 ⊕ X3 and C3 ⊕ X4
stay constant. In detail, we choose arbitrary values for X13 ,X14, X15 and
calculate X13, . . . , X15 as follows.

X13 = (X5 + (X12 + (X11 ⊕ (¬X10 � 23)))) ⊕ X12

X14 = (X6 − (X13 ⊕ X12 ⊕ (¬(X12 + (X11 ⊕ (¬X10 � 23))) � 23))) + X13

X15 = (X7 ⊕ (X14 − X13)) − (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and guarantees that X5,
X6 and X7 are always correct after computing the key schedule backward.
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8. To compute the initial chaining values A−1, B−1 and C−1 run the rounds 2,
1, and 0 backwards.

Hence, we can construct a pseudo-collision (free-start-collision) for Tiger reduced
to 23 rounds with a complexity of about 247 applications of the compression
function.

6 Conclusion

In this article, we have shown a 1-bit circular pseudo-near-collision for the full
Tiger hash function with a complexity of about 247 evaluations of the compres-
sion function of Tiger. This is the first attack on the full Tiger hash function.
Furthermore, we show a pseudo-collision for Tiger reduced to 23 (out of 24)
rounds with the same complexity. Our attack is based on the attack of Kelsey
and Lucks on round-reduced variants of the Tiger hash function. This work
shows that the security margins of the Tiger hash function are not as good as
one would expect.
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A Collision Attack on Tiger Reduced to 16 Rounds

In this section, we briefly describe the attack of Kelsey and Lucks on Tiger
reduced to 16 rounds. Note that in the original description of the attack the
wrong S-boxes are addressed. However, the attack can be easily modified to work
with the correct S-boxes as well. Note that the modified attack has a slightly
worse complexity, namely about 247 instead of 244 hash computations. For the
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attack the same characteristic is used for the key schedule of Tiger as in the
original attack. The characteristic is shown below.

(I, I, I, I, 0, 0, 0, 0) → (I, I, 0, 0, 0, 0, 0, 0) (7)

It has a probability of 1 to hold in the key schedule of Tiger, which facilitates
the attack. The attack can be summarized as follows.

0. Precomputation: Like in the pseudo-near-collision attack on Tiger described
before, we have to find a set of possible modular differences L+ with a low
Hamming weight XOR-difference L⊕ which can be canceled out by a suitable
choice for B6.

L = {L+ ∈ L′ : L+ = odd(B6 ⊕ I) � odd(B6)}

Second, we have to find a set of possible modular differences K+ with a
low Hamming weight XOR-difference K⊕ which can be canceled out by a
suitable choice for B7.

K = {K+ ∈ K′ : K+ = odd(B5 ⊕ L⊕) � odd(B5)}

Note that we assume in the attack that we can find a XOR-difference L⊕ with
Hamming weight of 10 and a XOR-difference K⊕ with Hamming weight of 8
(as in the pseudo-near-collision attack on the full Tiger hash function). The
precomputation step of the attack has a complexity of about 228.5 evaluations
of the compression function of Tiger.

1. Choose random values for X0, . . . , X1 and X2[even] to compute B1, C1 and
C2. This step of the attack has a complexity of about 6 round computations
of Tiger.

2. Apply a message modification step to construct the XOR-difference K⊕ in
round 3. This step has a complexity of about 236.5 hash computations and
determines the message words X2[odd] and X3[even].

3. Apply a second message modification step to construct the XOR-difference
L⊕ in round 4. Finishing this step of the attack has a complexity of about
239 and determines the message words X3[odd] and X4[even].

4. To construct the XOR-difference I in round 5, we apply again a message
modification step. Finishing this step has a complexity of about 240 and
determines the message words X4[odd] and X5[even].

5. Once we have fixed the message words, we can compute B4, C4 and C5 as
well as the according modular differences. To cancel the difference in B4 we
need that Δ�(B4) ∈ K. Since we assume that the Hamming weight of K⊕

is 8, this has (in the worst case) a probability of 2−7.
In order to guarantee that the difference in B5 is canceled, we need that

Δ�(B5) ∈ L. Since L⊕ has a Hamming weight of 10, this has a probability
(in the worst case) of 2−9. Hence, we expect that we have to repeat the
attack about 216 to finish this step. However, by choosing L⊕ and K⊕ care-
fully this can be improved. Form our analysis (for the pseudo-near-collision
for the full Tiger hash function), we expect that this probability can be im-
proved by a factor of 29, resulting in an attack complexity of about 247 hash
computations.
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6. Determine X5[odd] and X6[odd] according to the results of the precompu-
tation step. This adds no additional cost to the attack complexity.

Hence, a collision can be constructed in Tiger reduced to 16 rounds with a
complexity close to 247 evaluations of the compression function. Note that the
other attacks on round-reduced variants of Tiger can be adjusted in a similar
way.

B Collision Attack on Tiger Reduced to 19 Rounds

In this section, we show how the collision attack on Tiger-19 presented in [3] has
to be modified to work with the correct S-boxes. The complexity of the attack
is close to 262 evaluations of the compression function of Tiger. To construct
a collision in Tiger-19 the key schedule difference given in (8) is used. It has
probability 1 to hold in the key schedule of Tiger which facilitates the attack.

(0, 0, 0, I, I, I, I, 0) → (0, 0, 0, I, I, 0, 0, 0) → (0, 0, 0, I, I, I, I, I) (8)

Since the key schedule difference from round 3 to 18 is the 16-round difference
used in the attack on Tiger-16, the same attack strategy can be used for the
collision attack on Tiger-19 as well. The attack can be summarized as follows:

1. Choose arbitrary values for X0, . . . , X4 and compute the state variables A3,
B3, and B4.

2. Employ the attack on 16 rounds of Tiger, to find the message words X5, . . . ,
X7 and X8, X9[odd] such that the output after round 18 collides.

3. To guarantee that X8, X9[odd] are correct after applying the key schedule,
we use the degrees of freedom we have in the choice of X0, . . . , X4. Note
that for any difference injected in X0 and X1 one can adjust X2, X3, X4
accordingly such that A3, B3 = C2 ⊕ X3 and B4 = C3 ⊕ X4 stay constant.
Furthermore, we get the following equations for X8 and X9 from the key
schedule of Tiger.

X8 = Y0 � Y7

X9 = Y1 � (X8 ⊕ (¬Y7 � 19))

where

Y0 = X0 � (X7 ⊕ A5A5A5A5A5A5A5A5)
Y1 = X1 ⊕ Y0

Y2 = X2 � Y1

Y3 = X3 � (Y2 ⊕ (¬Y1 � 19))
Y4 = X4 ⊕ Y3

Y5 = X5 � Y4

Y6 = X6 � (Y5 ⊕ (¬Y4 � 23))
Y7 = X7 ⊕ Y6



550 F. Mendel and V. Rijmen

To solve these equations the following method is used:

(a) Choose a random value for Y0. This determines Y7 and X0.
(b) Choose a random value for X9[even]. This determines X1.
(c) Adjust X2, X3, X4 accordingly such that A3, B3 = C2 ⊕ X3 and B4 =

C3 ⊕ X4 stay constant.
(d) Once we have fixed X2, X3, and X4, we have to check if Y7 is correct

(this holds with a probability of 2−64). After repeating the method about
264 times for different values of Y0, we expect to find a match.

Hence, this step of the attack has a complexity of at about 264 key schedule
computations and 4 · 264 round computations of Tiger. This is equivalent to
about 262 evaluations of the compression function of Tiger.

Thus, we can construct a collision in Tiger reduced to 19 rounds with a complex-
ity of about 262 + 247 ≈ 262 evaluations of the compression function of Tiger.
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Abstract. Due to recent breakthroughs in hash functions cryptanalysis, some
new hash schemes have been proposed. GRINDAHL is a novel hash function, de-
signed by Knudsen, Rechberger and Thomsen and published at FSE 2007. It has
the particularity that it follows the RIJNDAEL design strategy, with an efficiency
comparable to SHA-256. This paper provides the first cryptanalytic work on this
new scheme. We show that the 256-bit version of GRINDAHL is not collision re-
sistant. With a work effort of approximatively 2112 hash computations, one can
generate a collision.

Keywords: GRINDAHL, hash functions, RIJNDAEL.

1 Introduction

Hash functions are one of the most utilized primitives in cryptography. Basically, a
hash function H is a function that maps an input of variable size to a fixed length
output value. A cryptographic hash function has the additional feature that it must sat-
isfy some security properties such as preimage resistance, second preimage resistance
and collision resistance. For an ideal hash function with an n-bit output, one expects
that compromising these properties should require 2n, 2n and 2n/2 operations respec-
tively [12].

A possible way of building a hash function has been introduced by the pioneering
work of Merkle and Damgård [22,10], using an iterative process: at each iteration, a
fixed-length input function h (the compression function) updates an internal state called
chaining variable with some part of the message. With some appropriate padding of the
message to be hashed, the problem of building a collision-resistant hash function H is
then reduced to the problem of building a collision-resistant compression function h.
However, due to recent attacks [16,18,17,14] against this iterative process, other hash
domain extensions have been introduced [2,5].

Almost all the proposed hash functions define a compression function to be used with
any hash domain extension algorithm. There are basically three different ways of build-
ing a compression function. First, one can relate the security of h to a hard problem,
such as factorisation [9], finding small vectors in lattices [3], syndrome
decoding [1] or solving multivariate quadratic equations [6]. The usually bad efficiency
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of these schemes is compensated by the proofs of security they provide. Another very
active domain is the construction of secure compression functions based on block ci-
phers. The problem of building a secure n-bit compression function from an ideal n-bit
block cipher is more or less resolved [27,28,7] and due to a need of bigger output size
the cryptographic community is now concentrated on the problem of building a secure
(k × n)-bit compression function from an ideal n-bit block cipher [13,26,30]. Finally,
the most common and efficient way of building a compression function is from scratch,
for example the well known and standardized SHA-1 [25] or MD5 [29]. However,
almost all of this type of hash functions have been broken by novel cryptanalysis re-
sults [31,32,33,34,8].

To anticipate further improvements of the attacks, the NIST is initiating an effort [24]
to develop one or more additional hash algorithms through a public competition, simi-
lar to the development process for the Advanced Encryption Standard [23]. In parallel,
new hash functions have been published very recently, such as FORK-256 [15] (broken
in [21]), RADIO-GATÙN [4] or GRINDAHL [20]. We show here that for the GRINDAHL

hash function one can find a collision (resp. a second preimage) with a work effort of
2112 (resp. 2224) hash computations approximatively, whereas 2n/2 (resp. 2n) is ex-
pected for an ideal hash function. Note that the conceptors of GRINDAHL only claimed
a (second) preimage security of 2n/2 operations, already providing an attack requiring
lower than 2n operations.

The paper is organized as follows. In Section 2 we quickly recall the specification
of the GRINDAHL hash function and in Section 3 we begin the analysis with various
observations on the scheme and the general methodology that allows us to build a dif-
ferential path. Then, in Section 4, we provide the first collision attack on GRINDAHL.
Finally, we discuss possible patches in Section 5 and we conclude in Section 6.

2 Description of GRINDAHL

GRINDAHL is a family of hash functions based on the so-called Concatenate-Permute-
Truncate strategy, where in our case the permutation uses the design principles of RI-
JNDAEL [11], well known for being the winning candidate of the Advanced Encryption
Standard (AES) process [23]. Two algorithms are defined, a version with a 256-bit out-
put and a 512-bit one. Also, a compression function mode is given, taking only fixed-
length inputs, to be used with any hash domain extension algorithm. We give in this
section a quick description of the GRINDAHL hash function with a 256-bit output. For
a more detailed specification of the algorithm, we refer to [20].

Let n = 256 be the number of output bits of the hash function H , with an inter-
nal state s of 48 bytes (384 bits), and let M be the message (appropriately padded) to
be hashed. M is split into m blocks M1, . . . , Mm of 4 bytes each (32 bits). At each
iteration k, the message block Mk will be used to update the internal state sk−1. We
call extended internal state ŝk the concatenation of the message block Mk+1 and the
internal state sk, i.e. ŝk = Mk+1||sk. We thus have |ŝk| = (4 + 48)× 8 = 416 bits. We
denote by trunct(x) the least significant t bits of x. Let P : {0, 1}416 �−→ {0, 1}416 be
a non-linear permutation, and let s0 be the initial internal state defined by s0 = {0}384.
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Then, for each iteration k with 0 < k < m, we have sk = trunc384(P (ŝk−1)). For the
last iteration, the truncation is omitted: ŝm = P (ŝm−1). Finally, we apply eight blank
rounds ŝk = P (ŝk−1), for m < k ≤ m + 8, and the output of the hash function is
trunc256(ŝm+8).

The description is not complete since P has not yet been defined. This permutation
follows the design principle of RIJNDAEL (the reader is expected to be familiar with
the transformation defined in the RIJNDAEL specifications) and thus the extended state
ŝ is viewed as a matrix of bytes. However, instead of a (4, 4) bytes matrix, we have a
matrix α of 4 rows and 13 columns in the case of the 256-bit version of GRINDAHL.
The entry of the matrix α located at the i-th row and the j-th column is a byte denoted
by αi,j . Thus, we have:

α =

⎛
⎜⎜⎝

α0,0 α0,1 · · · α0,12
α1,0 α1,1 · · · α1,12
α2,0 α2,1 · · · α2,12
α3,0 α3,1 · · · α3,12

⎞
⎟⎟⎠ .

By splitting the extended internal state ŝ into 52 8-bit chunks x0, . . . , x51, we can
define the conversion from ŝ to α by αi,j = xi+4×j . This mapping has a natural inverse.
Basically, before each iteration, the first column of α is overwritten with the incoming
message block. Finally, the permutation P is defined as

P (α) = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(α).

MixColumns. This transformation is defined as in the RIJNDAEL specifications.

ShiftRows. This transformation cyclically shifts bytes a number of positions along each
row. Thus, the i-th row is rotated by ρi positions to the right, with ρ0 = 1, ρ1 = 2,
ρ2 = 4 and ρ3 = 10.

SubBytes. The only non-linear part of the permutation, exactly defined as the SubBytes
function of RIJNDAEL.

AddConstant. This function is simply defined by α3,12 ←− α3,12 ⊕ 01, where 01 is
the byte-wise hexadecimal value of 1.

Note that the 512-bit version of GRINDAHL is based on the same principle as the
256-bit version, but the extended internal state is bigger (8 rows instead of 4). The com-
pression function mode for GRINDAHL-256 (without optional input) simply consists in
hashing 40 4-byte message blocks for each compression function call.

3 Overall Analysis

In this section, we study possible ways of finding a good differential path for the 256-bit
version of GRINDAHL. More precisely, we look for a trail of k iterations starting from
s0 and so that with two different messages M and M ′ we have the same hash output, i.e.
trunc256(ŝm+8) = trunc256(ŝm′+8). Thus, we only care about collision and second



554 T. Peyrin

preimage resistance. Finding a differential path including the blank rounds seems hard
since no message block is inserted during this last operation and thus we have very few
control on this part. However, the problem looks much easier when trying to find an
internal collision: a differential path excluding the blank rounds, i.e. ŝm = ŝm′ . Here,
we explain how to find such a path, with the constraint that we want this path to have a
good probability of success.

3.1 A Known Potential Attack and the Truncated-Differences

In the original paper from FSE 2007, a section explains a potential attack method,
pointed out by an anonymous reviewer. This method seems quite natural: the attacker
does not look at the actual values of differences inserted in the bytes of the internal
state, but only checks if there is a difference or not (this greatly simplifies the anal-
ysis). We call this kind of zero or non-zero differences truncated-differences in refer-
ence to the very similar truncated differences used by Knudsen in [19]. Then, a chain
of truncated-differences in which in every round the number of actives bytes (bytes
with a non-zero truncated-difference) is low must be found. In this differential path,
the truncated-differences can only be erased during two stages of an iteration: during
a MixColumns transformation or during the truncation at the end of the iteration. In
other words, the number of truncated-differences in a column can be reduced and their
position changed by a clever use of the MixColumns transformation (note however that
one can never erase all the truncated-differences of a column at a time). Otherwise, a
truncated-difference is deleted if it goes to the first column of α at the end of the itera-
tion, due to the truncation. Since at this stage of the attack the differential trail is already
settled, one can not force anything for the truncation but one can play with the message
blocks inserted at each iteration, in order to force a good behavior in the MixColumns
processes (see Section 3.2). In fact, the message bytes act as active/passive bits in the
sense that new input bytes do not affect some parts of the internal state for a limited
number of rounds (see Section 3.3). The feasibility of this method was left as an open
problem, and we argue in Section 3.4 that there is a better way of finding a collision on
GRINDAHL.

3.2 Analysis of Differences Propagation in MixColumns

The MixColumns transformation used in GRINDAHL is the same as in RIJNDAEL, and
its MDS property ensures maximal difference propagation. More precisely, the sum
of the number of active bytes of the input and the output is greater or equal to 5. In
other words, the number of non-zero truncated-differences of the input and the output
of MixColumns is greater or equal to 5.

More formally, let V = (A, B, C, D) be an input vector of four bytes A, B, C and
D; and let W = (A′, B′, C′, D′) be an output vector of four bytes A′, B′, C′ and D′.
We denote the function MixColumns by MC : V �−→ W or MC : (A, B, C, D) �−→
(A′, B′, C′, D′). We also denote by Di(V1, V2) the function returning 1 if the i-th byte
of the 4-byte vectors V1 and V2 are different, and 0 otherwise. Finally, ND(V1, V2)
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Table 1. Approximate probability that two 4-byte input words with DI different bytes on prede-
fined positions maps to two 4-byte output words with DO different bytes on predefined positions
through MixColumns. The values are base 2 logarithms.

�����DI

DO 0 1 2 3 4

0 0 - ∞ - ∞ - ∞ - ∞
1 - ∞ - ∞ - ∞ - ∞ 0
2 - ∞ - ∞ - ∞ -8 0
3 - ∞ - ∞ -16 -8 0
4 - ∞ -24 -16 -8 0

returns the number of such differences, i.e. ND(V1, V2) = #{i | Di(V1, V2) = 1}. We
thus have that if W1 = MC(V1) and W2 = MC(V2) with V1 �= V2, then

ND(V1, V2) + ND(W1, W2) ≥ 5.

Another interesting property is that any input byte of MixColumns defines a permu-
tation for any output byte. Thus, with W1 = MC(V1), W2 = MC(V2) and V1 �= V2
drawn uniformly and randomly in {0, 1}4×8, we have for any 1 ≤ i ≤ 4:

PD = P [Di(W1, W2) = 0] =
2563 − 1
2564 − 1


 2−8, (1)

PD = P [Di(W1, W2) = 1] = 1 − PD 
 1 − 2−8. (2)

Our goal is to compute the probability that a fixed mask of input truncated-
differences maps to a fixed mask of output truncated-differences (later this will be
often utilized in order to compute the probability of success of the differential path).
For example, we want to be able to know the probability that given two input words
V1 and V2 distinct on their 2 first bytes give two output words different on their 3
first bytes through MixColumns (note that this is slightly different from the event
that any 2-byte difference input maps to any 3-byte difference output). We can com-
pute those probabilities in two ways, formally or empirically by testing exhaustively
all the input values: since MixColumns is linear, dealing with differences or values
is the same (during the test, instead of looking for differences or non-differences, we
checked for zero values or non-zero values). We give in Table 1 an approximation
of those probabilities.

3.3 Existence of Control Bytes

Modifying some message bytes will obviously modify quite quickly the internal state,
but not necessarily immediately. For each modified byte of the message Mk, we give in
Table 2 the columns of s (in its matrix representation α) affected by this modification
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after 1, 2 and 3 iterations. Note that for more than 3 iterations, any message byte affect
all the internal state. This active/passive bytes feature will allow us to attack different
columns of different iterations independently. More precisely, we will control inde-
pendently the behaviour of some MixColumns transitions thanks to the active/passive
bytes.

Table 2. Influences on the columns of the extended internal states for a modification of a byte
of the message block Mk = (Ak, Bk, Ck, Dk) incoming at iteration k. We denote by � if the
column is affected (or active) and void if not. The first table shows influences on sk−1, the second
on sk and the third on sk+1.

0 1 2 3 4 5 6 7 8 9 10 11 12

Ak �
Bk �
Ck �
Dk �

0 1 2 3 4 5 6 7 8 9 10 11 12

Ak � � � �
Bk � � � �
Ck � � � �
Dk � � � �

0 1 2 3 4 5 6 7 8 9 10 11 12

Ak � � � � � � � � � �
Bk � � � � � � � � � �
Ck � � � � � � � � � �
Dk � � � � � � � � � �

3.4 General Strategy

We now have all the necessary tools in order to build a truncated-differential path and
evaluate its probability of success. But how to actually find one ? The natural intuition
one would have (as the anonymous reviewer suggested) is to always maintain a low
number of truncated-differences along the path (to increase the probability). However,
finding one such path seems really difficult as one can convince oneself with Property
1 from the original paper:

Property 1. An internal collision for GRINDAHL-256 requires at least 5 iterations.
Moreover, any characteristic starting or ending in the extended state with no differ-
ence contains at least on round where at least half the extended state bytes (excluding
the first column) are active.

This property can be verified with a meet-in-the-middle exhaustive search, as explained
in the original paper. However, with a small speed improvement of this algorithm, one
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can check that an internal collision for GRINDAHL-256 requires at least 6 iterations.
Another observation is that by introducing differences in the state, after a few iterations
we quickly come to an "all-difference" pair of extended states. Moreover, this "all-
difference" pair of extended states is almost stable: the probability that an all-difference
pair of columns remains an all-difference pair of columns through MixColumns is ap-
proximatively PA = (1 − 2−8)4, so for the twelve columns of the extended state (ex-
cepted the first column) we have a probability of P 12

A 
 2−0,27. Thus, our first idea is
to not search for a path starting from a zero difference but from an all-difference pair of
extended states (which is very easy to get). The overwhelming probability P 12

A allows
us to start with as much valid starting states as we want.

3.5 Finding a Truncated Differential Path

Searching for a differential path starting from an all-difference pair of extended inter-
nal states is quite easy. One method is to go backward almost exhaustively. Indeed, in
GRINDAHL the truncated differences propagate in the forward direction as quickly as in
the backward direction. More precisely, if we look for a collision at the end of iteration
k, we try all the possible truncated difference masks for the message blocks inserted at
iterations k, k − 1, etc. and all the possible transitions of truncated differences through
MixColumns, until we come to an all-difference pair of extended states. This algorithm
can be greatly improved with an early-abort strategy: we compute a lower bound on the
cost of the current trail we are building (taking in account the control provided by the
active/passive bytes, see Section 4) and we stop the search branch if the complexity of
the attack is already greater or equal to 2128 operations. We also stop the search if we
go too far in terms of number of iterations1.

Obviously, by always adding truncated differences to all the message blocks in-
serted is the fastest way to reach this goal. However, we will use the message bytes
inserted as control bytes to attack some parts of the differential path independently and
thus increase the probability of success. Thus, it may be better not to go too fast on
adding truncated differences in order to increase the total number of iterations during
the differential path. This will increase the total number of message blocks inserted and
therefore provide more control bytes. For example, we can find a path starting from
an all-difference pair of extended internal states and requiring only 4 iterations to get
a collision, with a probability of success of approximatively 2−312. However, another
path requiring 8 iterations to get a collision, with a probability of success of approxima-
tively 2−440 may be better. Indeed, in the latter case, even if the probability of success
has been divided by a factor 2138, we have inserted 8 message word pairs instead of
only 4 in the former case. Thus, we get roughly 2 × 4 × 4 × 8 = 256 degrees of
freedom compared to the former case (4 pairs of message of 4 bytes each). Thus, we
obtained more degrees of freedom than what we paid for the probability drop. Obvi-
ously, a limit exists: at some point, adding more iterations does not improve things
anymore.

1 In some particular cases, the overall complexity of the attack can remain stable even if the
number of iterations of the differential path increases.
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4 Finding a Collision

In this Section, from the previous observations, we give a complete collision attack for
the 256-bit version of GRINDAHL.

4.1 The Differential Path

Before describing the collision attack, we give in Figure 1 the differential path used and
which has been generated thanks to a program implementing the previously explained
technique (see Section 3.5). This trail is the best found (among other possible candidates
leading to the same complexity). Several candidates were possible and we kept the one
providing the best collision attack. We denote by k the number of the last iteration
of our differential path, i.e. the last line of Figure 1. First, one can check that all the
MixColumns transitions are valid. This differential path has a probability of success of
approximatively 2−55×8 = 2−440, but we will see that we also have a lot of message
blocks inserted allowing to attack some parts independently.

Our aim is to find a pair of messages following the expected differential trail. For
this, we don’t take care of each iteration one by one, but we deal with each of the 4-
byte message words inserted one by one. Said in other words, we will fix the four bytes
of a message word pair and check that the newly imposed MixColumns differential
transitions are the ones expected in the truncated-differential path. If so, we continue to
the next message word pair until we get a collision.

In Table 3, we give all the dependencies of the MixColumns transitions with the mes-
sage blocks inserted, used as control bytes during the differential path from Figure 1.
The cost of all the transitions are given (see Section 3.2) also with the number of con-
trol bytes inserted at each iteration (see Section 3.3). The second column of the Table
gives the position of the columns of the state in which we force a differential transition
during a MixColumns transformation, and the first column indicates in which iteration
this event occurs. For each transition, we give in the third column its cost in terms of
number of bytes (i.e. for a cost c, the transition has a probability of 2−c×8). Then, each
of the seven other columns of the table represents a pair of message words that will be
used as control bytes (the letters a or A, b or B, c or C and d or D represent respectively
the first, second, third and fourth byte of the 4-byte message inserted). Capital letters
means that we have 2 control bytes (we insert a difference for this block) and small
letters means that we only have 1 control byte (no difference inserted for this message
block). In the core of the table a dash or a cross represents the fact that the MixColumns
transition indicated by the corresponding line is affected by the control byte indicated
by the corresponding column. We divided those dependencies for the sake of simplicity,
the crosses are the dependencies that will be used for the attack: they represent for each
MixColumns transition the dependencies of the last involved message word. Finally,
the last line gives the cost of each message word insertion in terms of number of bytes
(the sum gives the total complexity of the attack).

Note that a lot of the inserted message bytes provide two one-byte degrees of freedom
(capital letters) in the case where we introduce a difference for this message block (we
can make independently both messages of the pair vary). From Table 3, one can check
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Fig. 1. Truncated-differential path in 8 iterations starting from an all-difference pair of states. The
dark cells mean that we have a non-zero difference for this byte, and the light cells stand for no
difference. Each row represents an iteration. The first column gives the differences in the state
just after its update with the 4-byte message word, and the second column gives the same state
after application of the ShiftRows transformation. Finally, the third column represents the internal
state just after application of the MixColumns function. Note that the AddConstant and SubBytes
functions have no effect on the differential path, thus they are omitted here. Each first 4-byte
column of the first column states represents the message words inserted at each iteration, that
will later be used as control bytes. The first 4-byte column of the state after every MixColumns
transition can have whatever difference mask since those bytes will be immediately truncated.
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Table 3. Dependencies of the message blocks used as control bytes and inserted during the
truncated-differential path from Figure 1, for a collision at the end of iteration k

message blocks inserted
it col cost k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2

A B C D A B C D A B c D a B c D A b C D A B C D A B c d

2 1 − ×
k-7 3 1 × ×

7 1 ×
1 1 − − − − ×
2 1 − − − − ×
3 2 − − − − × ×

k-6 7 1 − − − ×
8 1 − − − − ×
10 1 − − ×
12 1 − − − × ×
2 1 − − − − − − − − ×
3 1 − − − − − − − − × ×

k-5 8 1 − − − − − − − − ×
9 1 − − − − × × × ×
11 1 − − − − − − × × ×
1 1 − − − − − − − − − − − − ×
3 1 − − − − − − − − − − − − × ×
4 2 − − − − − − − − − − − − ×

k-4 7 1 − − − − − − − − − − − ×
9 1 − − − − − − − − × × × ×
10 1 − − − − − − − − − − ×
11 1 − − − − − − − − − − × × ×
12 1 − − − − − − − − − − − × ×
1 3 − − − − − − − − − − − − − − − − ×
2 2 − − − − − − − − − − − − − − − − ×
4 2 − − − − − − − − − − − − − − − − ×

k-3 5 2 − − − − − − − − − − − − − − − − × ×
9 2 − − − − − − − − − − − − × × × ×
10 2 − − − − − − − − − − − − − − ×
11 1 − − − − − − − − − − − − − − × × ×
12 2 − − − − − − − − − − − − − − − × ×
1 3 − − − − − − − − − − − − − − − − − − − − ×

k-2 2 3 − − − − − − − − − − − − − − − − − − − − ×
6 3 − − − − − − − − − − − − − − − − − − − × ×
12 2 − − − − − − − − − − − − − − − − − − − × ×

k-1 3 3 − − − − − − − − − − − − − − − − − − − − − − − − × ×
COST 0 0 0 1 2 6 5

that we need to test 214×8 = 2112 all-difference pairs of internal state in order to have
a good probability of obtaining a collision. More precisely, the collision attack is as
follows.



Cryptanalysis of GRINDAHL 561

4.2 The Collision Attack

First step: start with the predefined initial value and compute some iterations with lots
of truncated-differences in the incoming message blocks in order to quickly come to an
all-difference pair of states denoted A after a few iterations. This step is omitted in the
complexity analysis since very largely negligible.

Second step: from this pair of states A, generate 214∗8 = 2112 all-difference pairs of
states A1, . . . , A2112 . This step requires 2112 × 20,27 = 2112,27 iterations computations.

Third step: we continue the attack by fixing the control bytes iteration per iteration:
for the message blocks inserted at the beginning of iterations k − 8, k − 7, k − 6 of
our truncated-differential path from Table 3, we have more control bytes incoming than
necessary. Indeed, we have for the messages inserted at iterations k − 8, k − 7 and
k − 6, 8, 8 and 7 control bytes available respectively, whereas we only require 2, 7 and
7 bytes of degrees of freedom respectively. More precisely, for each pair of message
words (Mk−i, M

′
k−i) inserted, its bytes are used in order to adjust the behavior of the

MixColumns transitions where crosses appear at column Mk−i in Table 3 2. For each
step, the total cost is equal to the sum of the costs of all the MixColumns transitions
involved, minus the number of control bytes available from Mk−i. Thus, at this point of
the attack, we maintain 2112 pairs of messages and states following the differential trail.
For the message words inserted at iteration k − 5, we have 6 control bytes for 7 bytes
of conditions, thus we only keep 1 out of 28 message pairs and we go to the (k − 4)-th
message word with 2104 valid pairs. We continue in the same way for the three lasting
message words k − 4, k − 3 and k − 2, having 7, 8 and 4 control bytes respectively3

and requiring 9, 14 and 9 bytes of conditions respectively. We thus expect to have one
pair of messages following the differential trail with a good probability by starting with
214×8 = 2112 all-difference pairs of states.

Fourth step: add a (k + 1)-th message block without truncated-difference in order to
force a truncation after the last iteration k of the differential trail (the final blank rounds
are done without truncation).

4.3 Discussion on the Attack

For the sake of clarity, we explain more precisely how to deal with the control bytes
by giving an example. Let set ourselves when the attacker has to fix the message pair
incoming at step k − 5 (seventh column in Table 3). The previous message words have
already been fixed during the attack, thus we only have to deal with the crosses in
Table 3. Some MixColumns differential transitions have to behave as required by the

2 Since in Table 3 the crosses represent the last message word involved for the transition, the
previous dependencies (represented by a dash) are already fixed at this point.

3 For the k − 2 case, we only have 4 control bytes and not 6 as indicated in Table 3. Indeed,
since c and d are not involved in any MixColumns transition, they can not be considered as
control bytes.
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truncated-differential path, and this has a cost. For example, at the second column of
the (k − 5)-th iteration, we need a 4-truncated-differences to 3-truncated-differences
transition and this will happen with probability 2−8, thus with a cost of 1 byte. How-
ever, to make this event occur, we can use the message word inserted at iteration k − 5
(more precisely its second byte) in order to randomize the instantiation of the transi-
tion. Note that there are several ways of doing this step, and this is discussed below.
We actually have a good probability to find 28 valid pairs of message bytes for this
transition: two control bytes for one byte of condition. We do the same process for the
seventh column transition of iteration k − 4 with the fourth byte of the message word:
again two control bytes for one byte of condition. Then we identify the subset of the
cross product of the two sets of 28 byte pairs such that the twelfth column transitions
of iteration k − 4 is verified (depending only on the two previously fixed pairs of mes-
sage bytes), which costs one byte of condition. So, we maintain 28 valid possibilities.
Then, we fix the first byte of the message word to deal with the third column tran-
sition of iteration k − 4: since this costs one control byte for one byte of condition,
we still maintain 28 valid possibilities. Finally, with the lasting byte of the message
word (the third), we look for a good transition for the ninth column of iteration k − 3:
this costs one control byte for two bytes of conditions but we had maintained 28 valid
possibilities before. Thus, in the end, we have a good probability to find a valid mes-
sage word for all the transitions cited. However, we didn’t take care of the eleventh
column of iteration k − 4, which costs us one byte of condition. To summarize, this
whole step will cost us 28 tries because we had a total of six control bytes for a total of
seven bytes of conditions. Repeating this reasoning for all the message words inserted at
each iteration of the differential path explains the 2112 tries cost for the whole collision
attack.

One may argue that we indeed need to try 2112 all-difference pairs of states but the
basic operation is costly when playing with the control bytes. Indeed, with the previous
example, some steps require to pass through 28 or 216 values of message words, each
requiring only a SubBytes computation on a whole column, or one or two iteration
processes (depending on which column of the state the transition occur). Even if it is
still an attack, the complexity would be a slightly higher. This argument is true if the
attacker uses a naive search method. However, unexpensive precomputations allow to
reduce the computational cost of the search table lookups. For example, with as few as
232 precomputation time and memory, one can generate all the informations needed to
quickly execute the search needed during the third step of the collision search. Only a
few table lookups would then be required. One might also wonder why we did not count
the complexity of the few 4-truncated-differences to 4-truncated-differences transitions.
Such transitions always have a great probability to happen PA = (1 − 2−8)4 
 2−0,02.
Therefore they have very little effect on the complexity of the attack. This operation
is clearly less costly than doing a whole iteration process. Moreover, the compression
function mode performs 40 iterations for one compression call. Thus our attack actually
runs in less than 2112 hash computations, all the complexity coming from the generation
of 2112 all-difference pairs of states.
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Note that we checked that this kind of attack also works with a complexity of at most
2120 hash computations for all the rotation constants providing the best diffusion, which
seems to indicate that the internal state of GRINDAHL is not big enough.

We provide in Appendix the extension of this technique for the second preimage
case applied to the 256-bit version of GRINDAHL. However, note that the GRINDAHL

conceptors only claimed a 128-bit security for (second) preimage resistance, showing
that (second) preimages can be found in less than 2256 operations.

5 Discussion on the Attack and Possible Patches

Most of the difficulty of the presented attack is to actually find a good differential
path, and this is possible by letting the differences totally spread and start from an
all-difference pair of states. Moreover, even if better differential trails may be found by
maintaining a low weight of differences (which is hard to find), we think that the com-
plexity will not drastically decrease compared to our attack. Indeed, the complexity cost
grows quickly due to the last iterations of the differential trail (where very few control
bytes are available), and these steps will remain very costly whatever the differential
trail used. Said in other words, we can compute a lower bound on the complexity of
an attack using any truncated-differential path and control bytes. For example, a short
program gives us that a similar truncated-differential attack for the 256-bit version of
GRINDAHL requires at least 2104 operations (whatever the truncated-differential path).
Note that this does not mean that such an attack exists.

Thus it would be very interesting to think of a new version of GRINDAHL (with a
comparable efficiency) that resists the presented attack but also any attack dealing with
truncated-differences and control bytes. Thus, one wants the lower bound on the com-
plexity of an attack using truncated-differential path and control bytes to be greater or
equal to 2128 operations, and even greater for a good security margin. If this is possible,
an attacker that wants to find a collision would have to first find a differential trail and
then to deal with the actual values of differences in order to lower the complexity. The
SubBytes transformation would therefore discourage this kind of attack and we would
obtain a hash function with a strong security argument. A new GRINDAHL version with
such a property and a reasonable efficiency could be designed by adding some more
columns in the states. The question of the number of the columns to be added or other
possible patches is left open for future researches.

6 Conclusion

We showed in this work that the 256-bit version of GRINDAHL is not collision resis-
tant. By introducing a non-intuitive technique in order to find a good differential path
and with a careful use of the control bytes available, we presented an attack finding
collisions with no more than 2112 hash computations. We believe that such a reasoning
would apply for the 512-bit version of GRINDAHL, even if the search space for a differ-
ential path in this case would be much bigger. Finally, we provided possible patches for
the 256-bit version of GRINDAHL that may lead to new versions with stronger security
arguments.
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Fig. 2. Truncated-differential path in 4 iterations starting from an all-difference pair of states, to
be used for a second preimage attack

actual values of the differences. Thus, we have very few constraints during the dif-
ferential path. This remark allows us to extend our collision attack to second preimage
resistance if the second preimage challenge has a reasonable number of message blocks.
For example, let us look at the differential path from Figure 2. If one wants to find a
second preimage using this path, only the number of control bytes will change as com-
pared with the collision attack case: when we previously had two control bytes because
of the insertion of a non-zero truncated-difference (capital letters in Table 3), we only
get one control byte since the first message block is fixed by the challenge. For the same
reason, when a zero truncated-difference is inserted, we have one control byte for the
collision case (small letters in Table 3) and we have no more control byte in the second
preimage case.

Using exactly the same techniques as for the collision attack, one can find a second
preimage in approximatively 228×8 = 2224 hash computations whereas 2256 hash com-
putations should be required for an ideal 256-bit hash function. The drawback of this
method is that we require the challenge to contain enough message blocks in order to
have enough iterations to follow our differential path (around 8 iterations: 3 to reach an
all-difference pair of states, 4 to follow the path from Figure 2 and 1 to force the trun-
cation at the end of our differential trail). Moreover, we need approximatively 7 more
iterations if we also take in account that we need to generate 2224 all-difference pairs of
internal state to pass the differential trail. Thus, our attack works for a challenge of at
least 15 message words.

Note that the GRINDAHL designers only claimed a 2128 security for their 256-bit ver-
sion, and provided in their original paper a (second) preimage algorithm requiring 2176

operations and memory with a meet-in-the-middle reasoning on the internal state size.
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Table 4. Dependencies of the message blocks used as control bytes and inserted during the
truncated-differential path from Figure 2 in a second preimage attack, for an internal collision
at the end of iteration k. Note that for the pairs of message words that will be used as control
bytes, since we set ourselves in the second preimage attack case, capital letters means that we
have one control byte (we insert a difference for this block) and small letters means that we have
no control byte (no difference inserted for this message block).

message blocks inserted
it col cost k − 4 k − 3 k − 2

A B C D A B C D A B c D

2 1 ×
k-3 3 1 × ×

7 1 ×
1 2 − − − − ×
2 2 − − − − ×
3 3 − − − − × ×
5 3 − − − − × ×
6 3 − − − × ×

k-2 7 2 − − − ×
8 2 − − − − ×
9 2 × × × ×
10 2 − − ×
11 2 − − × × ×
12 1 − − − × ×
3 3 − − − − − − − − × ×

k-1 9 3 − − − − × × × ×
11 3 − − − − − − × × ×
12 3 − − − − − − − × ×

COST 0 16 12
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Abstract. Edon80 is a recent stream cipher design that has advanced
to the third and last phase of the eSTREAM project. It has remained
unbroken and untweaked since it was designed and submitted to eS-
TREAM. It is now one of the 8 final hardware candidates. In this paper
we cryptanalyze the cipher by describing a key recovery attack. The com-
plexity of the attack is around 269 simple operations for a keystream of
similar length.

1 Introduction

Edon80 is a recent stream cipher design, described in [1], that was submitted
to the eSTREAM project. It uses a novel approach in stream cipher design,
concatenating 80 basic building blocks derived from 4 different quasigroups of
order 4. A quasigroup is basically a Latin square, a very simple combinatorial
object.

The design has received a lot of attention and much work has been done
based on Edon80. Regarding security, Hong observed in [2] that with some small
probability, the period of the keystream sequence could be quite small. This was
further studied by the designers themselves in [3] and later also in the paper
[4]. However, this property could not be exploited in any kind of attack. A
theoretical treatment of the quasigroups used in Edon80 is given in [5]. Finally,
from an implementations point of view, it was shown in [6] that Edon80 can be
implemented using less than 3000 gates. Even though the eSTREAM project has
allowed tweaks, the Edon80 construction has remained untweaked since it was
designed and submitted to eSTREAM. However, due to the probability of short
periods, the designers has introduced a limitation in the number of keystream
bits that can be produced per key/IV pair. This limitation is 248 bits and was
proposed in [7], when entering the second phase of eSTREAM.

The small implementation and the fact that the construction has remained
untweaked are the main reasons for the success of Edon80 in eSTREAM – its
advancement to the third and last phase phase of the eSTREAM project. It is
now one of the 8 final hardware candidates.

In this paper we cryptanalyze the cipher by describing a key recovery attack.
The complexity of the attack is around 269 for a keystream of similar length.
The design philosophy is not completely broken. A design using, say, 160 con-
catenated quasigroup operations would be out of scope of the new attack. On

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 568–581, 2007.
c© International Association for Cryptology Research 2007
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the other hand, such a change of the design would double the implementation
cost, making such a design much less interesting.

The new attack to be presented is based on exploiting some periodicity inside
the generator. Using the fact that some elements will repeat with large proba-
bility, we can build a kind of test to find out the correct value of the key bits
used at the end of the concatenation. This leads to a key recovery attack, where
we may vary some parameters and obtain a trade-off between required length of
the received key stream and the computational complexity.

The paper is organized as follows. In Section 2 we describe in more detail the
stream cipher design Edon80. In Section 3 we summarize some previous work
relating to the security of Edon80. In Section 4 we then give the basic ideas of
the new attack, followed by a more detailed analysis in Section 5. In Section 6
we discuss how the attack can be efficiently implemented. In Section 7 we verify
some of the claims by presenting simulation results. Finally, in Section 8 we
derive some possible attack complexities and then we conclude.

2 Description of Edon80

In this section we give a description of the Edon80 stream cipher. An additive
synchronous stream cipher is built around a keystream generator. A generator
takes a key K and an IV value (nonce) IV as its input and produces an arbitrary
long keystream sequence Z = z1, z2, z3, . . .. The keystream is then added to the
plaintext in the encryption phase.

The sizes of the key and IV in Edon80 are 80 bits and 64 bits, respectively.
The design of Edon80 is based on string transformation using 4 quasigroups of
order 4 denoted (Q, •j) (0 ≤ j ≤ 3). The internal updated state consists of 80
memory cells of two bits each. Each memory cell, referred to as an e-transformer
∗i (0 ≤ i ≤ 79), holds 2 bits representing a value between 0 and 3. The 80
e-transformers are connected in series and the result from ∗i is used as input to
∗i+1.

The 80 bit key K is divided into 40 2-bit values K = K0K1 . . .K39 each
represented as a value 0 ≤ Ki ≤ 3. The quasigroup (Q, ∗i), (0 ≤ i ≤ 79) used by
e-transformer ∗i is given by

(Q, ∗i) ←
{

(Q, •Ki) 0 ≤ i ≤ 39,
(Q, •Ki−40) 40 ≤ i ≤ 79.

The quasigroups used in Edon80 are given in Figure 1.
Let the value in ∗i at time t be denoted ai,t. Then the values are updated as⎧⎪⎪⎨

⎪⎪⎩

a0,0 = a0 ∗0 0,
a0,j = a0,j−1 ∗0 (j mod 4), 1 ≤ j,
ai,0 = ai ∗i ai−1,0, 1 ≤ i ≤ 79,
ai,j = ai,j−1 ∗i ai−1,j , 1 ≤ i ≤ 79, 1 ≤ j,

where ai denotes the initial value of ∗i for 1 ≤ i ≤ 79 at the beginning of the
keystream generation phase.
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•0 0 1 2 3
0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3
0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Fig. 1. The 4 quasigroups used in Edon80

Summarizing, the infinite period 4 string 0, 1, 2, 3, 0, 1, 2, 3, 0, . . . is transformed
by ∗0 and the resulting string is transformed by ∗1 etc. The keystream is obtained
by taking every second value produced by ∗79, see Figure 2.

∗i 0 1 2 3 0 1 2 3 0
∗0 a0 a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8

∗1 a1 a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

...
...

...
...

...
...

...
...

...
...

...
∗79 a79 a79,0 a79,1 a79,2 a79,3 a79,4 a79,5 a79,6 a79,7 a79,8

Fig. 2. The quasigroup string e-transformation in keystream generation mode

For simplicity, we adopt the notation Z = z1, z3, z5, . . . as the received
keystream, where

zt = a79,t t ≥ 0, t odd.

A schematic picture of Edon80 is given in Figure 3. Remember that only every
second output is used in the keystream.

0, 1, 2, 3, 0, . . . ∗0 ∗1 ∗2 ∗76 ∗77 ∗78 ∗79� � � � � � � � � keystream

Fig. 3. The keystream generator Edon80

The initial state of Edon80, (a0, a1, . . . , a79), is determined by the key K and
the IV through an IV setup process. Exactly how this is done is not relevant in
our analysis and we refer to the design document [1] for a detailed description
of the IV setup. We can assume that the mapping from the 80-bit key and the
64-bit IV to the initial state a0, a1, . . . , a79 is a random mapping. However, the
attack will still be applicable even if the mapping would be shown to suffer from
some nonrandomness.

Edon80 is designed to be a hardware efficient stream cipher. The hardware
description is slightly different from the algorithmic description given above. In
order to output 1 bit/clock, the implementation uses a second 2-bit memory cell
in ∗i which stores the output from ∗i−1. Though, in [6] the authors demonstrated
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an implementation which does not use this extra memory cell. The implemen-
tation required only a gate count of about 3000 but the output was decreased
to 1/80 bit/clock resulting in a throughput of just a few Mbit/s. However, this
small implementation cost shows that Edon80 is a very interesting candidate for
a stream cipher suitable for constrained environments.

3 Previous Analysis of Edon80

In this section we review the previous results and known properties of Edon80
that will be used in our cryptanalysis. The most important property that will
be exploited in the attack is the relatively short period of Edon80. In the design
document [1] it was stated that the expected average period of the keystream
is about 2103. In [2], Hong argued that there are many key/IV pairs that pro-
duce a keystream with undesirably short period. Referring to Figure 2, using
exhaustive search all d-row key/state pairs of period p = 4, 8 and 16 was found.
Extrapolating the results to 40 rows, and then repeating the same key for the
lower 40 rows, it was concluded that there are many key/IV pairs that produce
a keystream with relatively short period. As an example, it was claimed that
there is a 2−75 probability that a key/IV pair generates a keystream with period
261. In response to these results, the designers claimed in [3] that the values
given by Hong was actually underestimated and that the probability of gener-
ating a keystream with period less than 261 was 2−18.62. Thus, with a total of
279.62 bits we can expect to find a sequence with period less than 261. Further,
it was concluded that the average period of Edon80 is 291. A more detailed
investigation of the periods was given in [4]. Each e-transformer increases the
period of the incoming string by a factor 1, 2, 3 or 4. Let Xi denote the factor
by which e-transformer ∗i increases the period. Considering several consecutive
e-transformers, it was shown that the probability distribution for Xi converges
to the stationary distribution

X =
(

1 2 3 4
1
4

1
4

11
32

5
32

)
,

with expected value E(X) = 77
32 and variance σ2 = V (X) = 1079

1024 . Furthermore,
let 2m be the total number of e-transformers and let P2m be a random variable
for the period after 2m e-transformers. Then when m → ∞, probability density
function (pdf) fP2m can be approximated by the continuous function [4, section 2]

fP2m(s) =
1

0.701658s
√

2πm
exp

(
− (ln(s) − 1.535086m)2

0.984648m

)
, 0 < s < ∞. (1)

We refer to [4] for more details. Despite the relatively high probability of short
periods, it has until now been unclear how to use this to obtain information
about the key.
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4 A Key Recovery Attack – Basic Ideas

In this section we give the ideas behind our key recovery attack on Edon80. The
details are then given in Section 5. We assume a known plaintext scenario i.e.,
the keystream sequence Z = z1, z3, z5, . . . is known to the adversary. The basic
ideas behind the attack are based on the following properties of the cipher,

– The quasigroup (Q, •j) (0 ≤ j ≤ 3) used in e-transformer ∗i (0 ≤ i ≤ 79) is
completely determined by the key. For example, if we know which quasigroup
is used in the last e-transformer, we also know 2 key bits.

– The period of the string produced by ∗i can be expected to be moderately
small for small i. In fact, some internal values (output from e-transformers)
will repeat with large probability due to the periodicity.

We visualize the attack in Figure 4 by considering a matrix with elements ai,j ,
(0 ≤ i ≤ 79, t ≤ j ≤ t + u + v), u, v to be defined later. Every column here
corresponds to one specific time instance t. Also, the ith row corresponds to the
ith e-transformer. Thus we have 80 rows in the Edon80 description. A restriction
to the first B rows simply corresponds to an Edon instance with only B e-
transformers.

Looking at a specific value ai,j , this value is calculated from its neighbours to
the left and above. I.e., the value at position (i, j) will depend on all values at
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Fig. 4. Visualization of the attack idea
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positions (i′, j′) for i′ < i and j′ < j, i.e., all values above and to the left in the
matrix.

In order to set up the attack, we select the B top rows as one part (upper part)
and the remaining rows below as a second part (lower part) of the e-transformers.
Consider two vectors, X and Y of length v = |X | and u = |Y | respectively,

X = (x1, x2, . . . , xv),
Y = (y1, y2, . . . , yu),

xi, yj ∈ {0, 1, 2, 3}, i = 1, 2, . . . v; j = 1, 2, . . . , u, with the values located as shown
in Figure 4. For Edon80, we then have B = 80 − u − 1. As can be seen, the
X = (x1, x2, . . . , xv) vector is simply v symbols coming out of the chain of B
e-transformers starting from some predetermined time. The Y = (y1, y2, . . . , yu)
can be characterized as the values needed to compute the internal state of the
second part of the e-transformers.

Each quasigroup transformation will increase the period of the initial string
by a factor of 1, 2, 3 or 4. Thus the period, denoted Pi, of the sequence produced
by ∗i is given by

Pi = 2μ13μ2 , (2)
for some μ1, μ2 ∈ Z. Let PB be the period of the sequence produced by the
upper part of the e-transformers, giving output corresponding to the vector
X = (x1, x2, . . . , xv). Then, the matrix corresponding to time instance t and time
instance t + kPB, k = 0, 1, 2, . . . will have the same values in the e-transformers
∗i for i ≤ B. More specifically, and which will be used in the attack, the vector
X will have the same value in all considered time instances.

Assume for a moment that the key bits used to determine the quasigroups in
the second part are known. With in total u + v values in the vectors X and Y ,
we consider the (u + v)/2 known keystream symbols that are directly below X
and Y , see Figure 4 again. Using the knowledge of these keystream symbols, the
number of possible combinations of the two vectors X, Y will be reduced from
4u+v to roughly 2u+v. The idea is to choose u and v such that v > u. This means
that not all X vectors will be possible in the set of possible X, Y pairs. Thus,
the outcome of this part is a set Γk such that

Γk = {X : there exists (X, Y ) matching zt+kPB , zt+kPB+2, . . . zt+kPB+u+v}.

Finally, we combine this with the fact that the vector X = (x1, x2, . . . , xv)
will be the same at time instances t and t+kPB. This means that X must appear
in all sets Γk and hence in the intersection of them. The procedure should now
be clear.

For each choice of the 2u + 2 key bits used to define the quasigroups in the
lower part, we determine the sets Γk, for k = 0, 1, 2, . . .. We take the intersection
between the sets obtained so far, and continue until the intersection is empty.
If we eventually receive an empty intersection, the chosen value of the key bits
is discarded. On the other hand, if at the end there is only one vector X in the
intersection, then we assume that we found the correct key bits. The number of
key bits that are guessed in this attack is 2u + 2. When we know these key bits,
the remaining part of the key could be exhaustively searched.
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5 A More Detailed Analysis of the Attack

In this section we give a more detailed analysis of the different parts and param-
eters used in the attack. The parameters that will be covered are

– Guessing the correct period PB .
– The length of the vectors X and Y .
– The number of time instances that has to be considered in order to discard

a wrong key candidate.

5.1 The Period PB

As stated in (2), the period of the sequence after B e-transformers have the form
PB = 2μ13μ2 for some μ1, μ2. It is clear that the X vector will repeat the same
values if the distance between two matrices as described in Figure 4 is a multiple
of the period. So we will assume a distance P ′

B and the repetition of the value
for the X vectors will be true if the actual period is a factor, i.e., if PB|P ′

B .
We denote the probability that PB|P ′

B by αP ′
B
. This value is, according to [4],

approximately calculated as

αP ′
B

=
∫ P ′

B

0
fP2m(s) ds, (3)

where fP2m(s) is defined in (1).
Recall that Xi denoted the factor by which e-transformer ∗i increases the

period. In Section 3 we saw that the probability distribution for Xi converges to
the distribution

X =
(

1 2 3 4
1
4

1
4

11
32

5
32

)
.

This gives us a rough idea of the expected period. For example, if B = 64 we
can expect around 16 of the factors being 1, around the same number being
2, around 22 factors being 3, and around 10 factors being 4. So for B = 64
we can set P ′

B = 236 · 322 and there is a fairly large chance that PB|P ′
B . The

actual probability for different values of the period deviated slightly from the
above since the probabilities are not as the asymptotic ones for low values of i.
However, it can all be computed numerically.

5.2 The Length of Vectors X and Y

Assuming that we have chosen a value B = 80 − u − 1 and an assumed period
P ′

B such that PB|P ′
B , we now consider the choice of v. In order to create a set

Γk where not all X vectors appear we need to choose v > u. We denote the
difference by d, hence

v = u + d.

The simplest approach is then to start at time t and move forward. We assign
all 42 possible values to y1, y2. We can then calculate everything below these
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positions in Figure 4. As we already know the value of zt+2, only 4 of the possible
candidates for y1, y2 will survive. For each surviving value of y1, y2, we assign all
possible values for y3, y4, compute the values below and check against the known
value of zt+4. We will have 16 possibilities for the (y1, y2, y3, y4) vector. After
finishing the Y vector we just continue in this fashion with xi, i = 1, . . . xv. The
set of possible assignments of (Y, X) is then 2u+v. The complexity of calculating
this set in this basic way is then roughly 2u+v. Finally, the Y values are stripped
off and the result is the set Γk. In an actual implementation we can make the
constant factor in the algorithm very small. This will be described in more detail
in Section 6.

5.3 The Number of Intersections Needed to Discard a Key
Candidate

The total number of possible X vectors is 4v. However, in the algorithm, using
the knowledge of the keystream zt, the vector X can only take 2u+v values. Thus,
using v = u + d, only a fraction 1/2d of all values will be possible. Actually, in
practice it is slightly less because some X vectors may appear twice (for different
Y vectors). If we put

4v ·
(

1
2d

)K

≈ 1,

we see that we need about K ≈ 2v
d sets Γk, k = 0, 1, . . . , K − 1 to get an empty

intersection. At least, the average number is around 2v/d. As an example, for
the choice v = u + 2 (d = 2) there can be at most 25% of all the X vectors in
Γk. Since the number of possible X vectors is 4v we expect that we do not need
much more than v sets.

In general, a higher value of d will increase the computational complexity but
since the reduction of possible X values in an intersection is much higher, it will
lead to a smaller number of required intersections and hence a shorter required
keystream length.

5.4 Computational Complexity

Let us summarize the computational complexity of the attack. We assume first
a value B = 80 − u − 1 and P ′

B such that PB |P ′
B. There is an error probability,

1 − αP ′
B

that this assumption is not true.
Then we guess 2u + 2 key bits corresponding to the last u + 1 quasigroups

used. For each such key the complexity of checking it is then roughly 2u+v · K.
Since v = u + d this results in a total complexity of about

24u+d+3 · u + d

d
.

After recovering 2u + 2 key bits one can either reconstruct the sequence after B
e-transformers and apply the same attack again, now with much less complexity;
or simply do an exhaustive key search on the remaining key bits.
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6 Algorithmic Aspects

In this section we describe some algorithmic aspects of the attack and show that
the complexity is based on very simple operations, much faster than the oper-
ation of verifying a key candidate in exhaustive key search. The considerations
here relate to the part of the attack that calculates the Γk sets.

Let (aB+1,t, aB+2,t, . . . , a79,t) be the state of the lower part of Edon80 at time
t and denoted St. In Figure 4 this corresponds to a column starting below an xi

value.
In a straight forward algorithm we save all possible states St and the cor-

responding X vector. Each time a new a79,t (t even) is introduced, each state
St with corresponding X vector will produce 4 new states. Each new state will
have a corresponding X vector with 2 additional entries. Thus, at the end of the
algorithm, we will have 2u+v possible states and X vectors. We can note that
the last step is the most expensive step. It will cost C · 2u+v where C is the cost
for making 2u + 2 table lookups. This constant can be significantly reduced by
using a slightly different algorithm.

We can take advantage of the following observation. Since the length of the
state vector St is u + 1 there are in general 4u+1 possible values for the state
of the lower part of Edon80 at any time. However, looking at the attack as
illustrated in Figure 4, where we have a given keystream sequence zt, zt+2, . . .,
we observe that at any time instance (with a received keystream symbol) only
22�u/2� different states of the second part of Edon80 are possible.

This property comes from the fact that we know every second of the values
zt = a79,t. Knowing a79,t and a79,t+2 and allowing 4 possible values for a79,t+1
will give 4 possibilities for the pair (a77,t+2, a78,t+2). Knowing a79,t, a79,t+2 and
a79,t+4 and allowing 16 possibilities for (a79,t+1, a79,t+3) gives 16 possibilities for
the vector (a75,t+4, a76,t+4, a77,t+4, a78,t+4) etc.

We can from the known keystream compute all 2u possible states for times
t+u+1, t+u+3, . . .. We can then obtain a trellis by including all possible state
transitions from time t + u + 1 to t + u + 3 and so on. A state transition from
time t + u + 1 to t + u + 3 can be labelled by the values of (x1, x2) giving rise to
that transition. This way of modelling the lower part of Edon80 is useful when
we implement the algorithm for computing the Γk sets for a given choice of key
bits.

We can divide the X vector in two equally sized parts, X = (X1, X2), where
X1 = (x1, x2, . . . , xv/2) and X2 = (xv/2+1, xv/2+2, . . . , xv). We first assign Y and
compute possible values of Y as before. This is actually equivalent to computing
the state of the second part of Edon80 at time t + u, so when we continue
we do not keep the value of Y but instead we keep the state St at the time
we are considering. We continue as before, but only over the X1 vector. This
results in a set of possible X1 vectors and their ending states St+u+v/2. The
complexity of calculating this set is then C ·2u+v/2. Next, for every choice of the
2u possible states St+u+v/2 at time t + u + v/2, we assign all possible values for
xv/2+1, xv/2+2, . . ., and create a second set of all possible X2 vectors and their
starting states St+u+v/2. The complexity of calculating this second set is also
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C · 2u+v/2. Thus, calculating the two sets is much faster than finding Γk in the
straight forward algorithm.

The bottle neck in this algorithm is to create Γk from the two sets. This
is done by selecting all possible combinations of X1 and X2 where the ending
state of X1 and the starting state of X2 are the same. With the two sets sorted
according to the states St+u+v/2, the set Γk is easily obtained. Since the size
of Γk is about 2u+v this does not change the asymptotic complexity but the
constant term in the complexity is very small. Each operation consists of just
concatenating X1 and X2, a very simple operation.

The memory requirement in the algorithm is moderately small. We need about
2u+v words, where each word represents an X vector.

7 Simulation Results

In order to verify the attack, it has been simulated on a reduced version of
Edon80. We have produced a keystream exactly as in Edon80 with the modi-
fication that only 24 e-transformers was used, i.e., a variant logically denoted
Edon24. We have investigated the case when the assumed period P ′

B is such that
PB|P ′

B . The simulations target the number of possible values for the vector X
that are still possible after intersecting the k′ sets Γk, k = 0, 1, . . . , k′. Table 1
shows the average number of remaining elements for different values of k′ when
v = u + 2, i.e., when d = 2. As stated in Section 5.3 we expect that we need
about v intersections of sets Γk. For all simulated values of u we have in average
only 0.1 possible value for the X vector left in Γk after v = u + 2 intersections.
This verifies our claim. Table 2 shows the average number of remaining elements
when d = 6. As expected, the intersections produce an empty set with much
fewer sets Γk than in the case with d = 2.

Table 1. The average number of possible values for X left in the intersection of Γk, k =
0, 1, . . . , k′ sets for different choice of u, when d = 2

|Y | = u

k′ 4 5 6 7 8 9
0 909.3 3597.7 14534.2 57953.3 232281.4 927796.6
1 201.6 788.9 3226.0 12823.0 51486.9 205105.3
2 45.8 172.3 716.5 2837.0 11407.7 45379.9
3 10.1 37.7 159.0 626.2 2526.2 10033.2
4 2.3 8.3 35.2 138.4 558.9 2223.5
5 0.5 1.9 7.8 30.6 124.2 493.0
6 0.1 0.4 1.7 6.8 27.7 109.2
7 0.0 0.1 0.4 1.5 6.1 23.9
8 0.0 0.0 0.1 0.3 1.3 5.4
9 0.0 0.0 0.0 0.1 0.3 1.1
10 0.0 0.0 0.0 0.0 0.1 0.2
11 0.0 0.0 0.0 0.0 0.0 0.1
12 0.0 0.0 0.0 0.0 0.0 0.0
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Table 2. The average number of possible values for X left in the intersection of Γk, k =
0, 1, . . . , k′ sets for different choice of u, when d = 6

|Y | = u

k′ 4 5 6 7
0 16265.1 64310.8 260222.9 1040318.8
1 253.0 983.8 4036.7 16164.6
2 3.8 15.2 62.9 250.0
3 0.1 0.2 0.9 4.1
4 0.0 0.0 0.0 0.1
5 0.0 0.0 0.0 0.0

Moreover, our implementation also always found the correct key and discarded
all false key candidates using our algorithm.

8 Estimating the Attack Complexity

As explained before, we have several parameters that we can choose, giving
different parameters for the attack. Basically, there is a trade-off between the
required length of the received keystream and computational complexity of the
key recovery part. For example, choose d = 2 and u = 9 as simulated above,
i.e. B = 70 in the Edon80 case, and an assumed period of P ′

B = 240 · 324. Then
the computational complexity is low, roughly 244 but the required keystream is
large, roughly 278 · 11, where the factor 11 comes from the fact that we need to
intersect at most 11+1 sets Γk. With the low computational complexity we can
of course increase the d parameter and reduce the required keystream to roughly
278. Finally, we must include the error probability. An error occurs if P ′

B is not
a multiple of the true period PB. We simply use (3) to estimate this probability.
A numerical calculation gives that the period is below 278 with probability more
than 1/2. There may be some possible periods below 278 which does not divide
P ′

B. On the other hand, we can try out different (the most probable) forms of P ′
B

in our attack with only a slight increase in complexity. So here we can assume
that the error probability is about 1 − αP ′

B
≈ 1/2.

Clearly, such a long received keystream sequence as 278 is not desirable, even
if the computational complexity is low. We also see that allowing the error prob-
ability to be quite close to 1 might be beneficial. We will then repeat the attack
α−1

P ′
B

times and the requirement is now to receive α−1
P ′

B
different keystreams (ob-

tained from different IV values). The computational complexity, T , grows to

T = α−1
P ′

B
· 24u+d+3 · u + d

d
.

Though in average we only need slightly less than K intersections, there will be
key candidates that need more intersections before they can be discarded. On
the other hand, it is not crucial that all wrong key candidates are discarded. If
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we end up with a set up possible keys then these keys can be tested individually
at the end. This will not affect the computational complexity. With P ′

B · K
keystream bits, we will have K + 1 sets Γk, k = 0, 1, . . . , K to intersect. This
will keep the probability of false alarm low. Thus, the number of keystream bits,
DIV , that are needed from each IV is given by

DIV = P ′
B · 2u + 2d

d
.

The total number of keystream bits, Dtot, is given by

Dtot = α−1
P ′

B
· P ′

B · 2u + 2d

d
.

The trade-off parameters in the attack are u, d and P ′
B. The attack complex-

ities are all functions of these values. We consider two cases.

I There is no restriction on the amount keystream that can be generated by
one key/IV pair.

II We respect the limitation given in [7], i.e., only 248 keystream bits can be
generated before reinitialization with a new IV.

In Table 3 we tabulate some possible values of T , DIV and Dtot for the two differ-
ent cases. With no restriction on the keystream per key/IV pair the parameter
choice u = 13, d = 4 and P ′

B = 258 gives about 269 for both computational
complexity and total amount of keystream. We conclude that we have an attack
requiring a total of 269 received keystream bits and 269 simple operations to
recover the key.

If we respect the 248 limit, choosing parameters u = 9, d = 6 and P ′
B = 245

will allow us to recover the key with in total 272.4 keystream bits and 271.4

simple operations. In many situations it is difficult to argue that we can have
a computational complexity that is lower than the number of keystream bits.

Table 3. Attack complexity for various parameter choices

Case u d P ′
B

αP ′
B

DIV Dtot T

9 6 260 2−9.18 262.3 271.5 255.5

13 2 254 2−10.9 257.9 268.8 270.8

I
13 4 258 2−7.72 261.1 268.8 268.8

15 2 256 2−7.73 260.1 267.8 275.8

7 10 246 2−26.1 247.8 273.9 267.9

9 6 245 2−25.1 247.3 272.4 271.4

II
9 8 245 2−25.1 247.1 272.2 273.2

11 4 245 2−22.7 247.9 270.6 275.6
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An adversary observing the keystream is likely to need at least one operation
per observed keystream bit. On the other hand, only very few keystream bits
are actually used in the attack. If the adversary can randomly access keystream
bits, the computational complexity can be allowed to be much smaller than the
keystream.

Comparing the attack to an exhaustive key search, we can note that an ex-
haustive key search would require computing the key/IV setup consisting of 160
cycles and then additionally 80 cycles to get the 80 first output bits. Every cycle
must compute 80 quasigroup operations. So a software implementation would
require 240 · 80 quasigroup operations, i.e., more than 214 operations to test one
key. Thus, our attack requiring roughly 269 simple operations is about 225 times
faster than a software implemented exhaustive key search.

9 Conclusion

An attack on Edon80 has been presented. It takes advantage of the relatively
short period inside the state of the cipher. By knowing that some values in the
internal state will repeat with high probability after a certain amount of state
updates, it was possible to determine several key bits used in the update of the
last part of the state. The required number of keystream bits as well as the total
complexity is around 269, if we allow each key/IV pair to generate about 261

keystream bits. If we consider the restriction put by the designers i.e., only 248

keystream bits can be produced by each key/IV pair, then the total complexity
is about 272 simple operations with about 247 bits from each key/IV pair.

Adding just a few more quasigroup operations to the chain of 80 is not enough
to counter the attack, but doubling this number to 160 would be sufficient to
resist the attack. However, such a modification comes at the cost of doubling the
hardware (and the gate count).

We do not exclude the possibility of improving this attack by for example
finding more efficient ways of computing the intersection of Γk sets. Since we
are guessing a lot of key bits, there might be a possibility to do something more
efficient. Some minor improvements to the described attack have already been
found, and will be described in the full version of this paper.
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