
Chapter 2

Cryptographic Preliminaries

In this chapter we review all the basic cryptographic primitives needed in the rest of
the book: one-way and collision-intractable functions, proofs of knowledge, digital
signatures, and public-key certificates. We introduce two new functions that are one-
way and collision-intractable, and for both design practical techniques for proving
knowledge of an inverse and for constructing digital signatures. These functions are
central to our constructions of issuing and showing protocols in the next two chapters.
We also introduce a new kind of digital certificates, called secret-key certificates; the
benefits of these will become clear in Chapters 4 and 5.

2.1 Notation, terminology, and conventions

2.1.1 Basic notation

The notation “x := y” means that the value of y is assigned to x. Typically, y is
an arithmetic expression. The “=” symbol denotes equality; upon x := y we have
x = y.

Whenever we say that a number is chosen “at random” from a set V , we imply
a uniform distribution over the set V , independent of the probability distributions of
any other variables explicitly considered in the same context. Within a figure, the
notation x ∈R V is used to denote the same.

All the constructions in this book are based on elementary algebra. The notation
Zt denotes the ring of integers modulo t and Z

∗
t its multiplicative group, and GFt

denotes the finite field with t elements. Computations involving numbers in a finite
ring or in a multiplicative group must always be interpreted as computations in these
structures. For example, if x, y ∈ Z

∗
t , then “xy” stands for xy mod t. In cases where

we consider arithmetic involving exponents, the modulo operator is often made ex-
plicit for greater certainty. In mathematical proofs, an element in Z t or in Z

∗
t may

42 CRYPTOGRAPHIC PRELIMINARIES

be interpreted in the algebraic sense of denoting a congruence class, but in construc-
tions of algorithms and protocols it always represents a unique number between 0
and t− 1, usually encoded in binary. In particular, if x, y ∈ Z t, then “x = y” means
that x and y are the same number, not merely that they are congruent modulo t.

For any x ∈ Z and any y ∈ N, x mod y denotes the number x∗ ∈ {0, . . . , y−1}
such that x∗ − x is an integer multiple of y. In keeping with mathematical tradition,
the mod operator acts on the entire arithmetic expression preceding it, unless paren-
theses specify otherwise. For instance, a + b mod y stands for (a + b) mod y.

The notation div is defined by x = x mod y + y (x div y), for any x ∈ Z and
any y ∈ N. Parentheses indicate the arithmetic expression on which div operates.

The notation “|X |” can have three different meanings. If X is a set, then |X |
denotes the size of X , i.e., the number of elements in X ; if X is a number in R, then
|X | denotes its absolute value; and if X is by definition a positive integer then |X |
denotes its binary size (length). The appropriate meaning will always be clear from
the context.

2.1.2 Algorithms, security parameters, and probability

An algorithm is a procedure that, on given some input, always halts after a finite
number of steps. For concreteness, intractability assumptions are always stated in
the uniform complexity model, and we construct algorithms that can be formalized
by Turing machines.1 Thus, all algorithms have a read-only input tape, a work tape,
and a write-only output tape. Probabilistic algorithms in addition have a random tape
containing their coin flips. Once the computation of an algorithm comes to a halt, its
finite-state control enters into either an accept or reject state; correspondingly, the
algorithm is said to accept or reject. In addition, it may have written an output onto
the cells of its output tape; A(x) denotes the output of algorithm A on input x. If A is
probabilistic, then A(x) is a random variable whose probability distribution is taken
over the coin flips of A; that is, A(x) defines a probability space of output strings.
We write x := A(y) or A(y) = x to specify that x is generated by running algorithm
A on input y.

A security parameter is a number that is taken from an infinite subset of the set
of positive integers. Security parameters are used to measure the time and space
complexity of an algorithm, the binary sizes of algorithm inputs and outputs, success
probabilities, and security levels. Although multiple security parameters may be
specified for any one protocol or system, for simplicity all the protocols and systems
in this book make reference to only a single security parameter, denoted by k. The
notation 1k denotes k encoded in unary.

For inputs of the same binary size, the possible outputs of an algorithm are all

1It would be easy to rephrase our constructions and security reductions in the non-uniform complexity
model of Boolean circuits, since they do not hinge on the use of polynomial-size advice strings that cannot
be computed in polynomial time.

2.1 NOTATION, TERMINOLOGY, AND CONVENTIONS 43

assumed to be of the same binary size; this can be achieved by the standard practice
of padding.

As is common in the cryptographic literature, we measure the running time of
an algorithm in terms of elementary algebraic operations, typically modular multi-
plications, instead of in terms of the number of transitions of the Turing machine’s
read-write head. The terms feasible and infeasible have the standard complexity-
theoretical meaning: feasible computations are those that can be performed in time
polynomial2 in k, while infeasibility corresponds to superpolynomial running time 3

(which includes subexponential and exponential running time). Whenever we speak
of a polynomial-time algorithm, it may be either deterministic or probabilistic.

A function f : N �→ [0, 1] is negligible in k if f(k) is smaller than the inverse
of any polynomial in k, for all sufficiently large k; it is non-negligible if there exists
a positive integer c such that f(k) is greater than 1/k c, for all sufficiently large k;
and, it is overwhelming if 1 − f(·) is negligible. (Note that a function can be neither
negligible nor non-negligible.) An intractable problem is one that cannot be solved
in polynomial time with non-negligible probability of success.

The notation Pk(Ek) denotes the probability of event Ek. For probability spaces
S1, S2, . . ., the notation

Pk(Ek(x1, x2, . . .) | x1 := S1; x2 := S2; . . .)

denotes the probability that the event Ek(x1, x2, . . .) holds when each xi is chosen,
in the given order, from the corresponding probability space S i.

An expected polynomial-time algorithm is a probabilistic algorithm whose ex-
pected running time (over its coin flips) is polynomial for any input. By running a
probabilistic polynomial-time algorithm that has non-negligible success probability
ε(k) an expected number of k/ε(k) times, one can construct an expected polynomial-
time algorithm that has overwhelming success probability.

A language over an alphabet is a subset of the set of all finite strings of symbols
from that alphabet. If A is a probabilistic algorithm and L a language, then the col-
lection {A(x)}x∈L is an ensemble of random variables. Two ensembles {A(x)}x∈L

and {B(x)}x∈L are perfectly indistinguishable if, for all x ∈ L, the random variables
A(x) and B(x) have the same distribution. They are statistically indistinguishable
(or almost-perfectly indistinguishable) on L if for all x ∈ L of binary size k their
statistical difference

∑
α

∣∣∣ Pk(A(x) = α) − Pk(B(x) = α)
∣∣∣

2A function f(·) is polynomial in k if there exists a positive integer c such that f(k) ≤ kc for all
sufficiently large k.

3A function f(·) is superpolynomial in k if for all positive integers c, f(k) ≥ kc for all sufficiently
large k.

44 CRYPTOGRAPHIC PRELIMINARIES

is negligible in k.4 Finally, they are computationally indistinguishable on L if, for all
polynomial-time algorithms D with Boolean output (representing accept or reject),
and for all x ∈ L of binary size k,

∣∣∣ Pk(D(y) = 1 | y := A(x)) − Pk(D(y) = 1 | y := B(x))
∣∣∣

is negligible in k.

2.1.3 Interactive algorithms and protocols

An algorithm may consist of two or more interactive algorithms that communicate
according to one or more stepwise descriptions called protocols. Interacting parties
in this book are always modeled as interactive algorithms. Formally, an interactive
algorithm is a Turing machine enhanced with a communication tape and a read-only
common input tape. A pair of interactive algorithms share their communication tapes,
for exchanging messages, and their common input tapes. The work tape and random
tape of each algorithm are private to the algorithm, and their private input tapes enable
each to make use of auxiliary input, also known as private input; this may be present
initially, or computed as protocol executions are taking place.

More generally, there can be any number of interactive algorithms communicat-
ing with each other in an arbitrary fashion. This can easily be formalized by endow-
ing each interactive algorithm with a set of communication and common input tapes
for any other algorithm it needs to be able to communicate with. Correspondingly,
protocols may be defined among more than two parties. In general, any collection
of interactive algorithms can be viewed as a single (interactive or non-interactive)
algorithm.

With P and V denoting two interactive algorithms, (P, V) denotes the protocol
performed by them, and <P , V> denotes the two algorithms viewed as a single
(interactive or non-interactive) algorithm. The input of <P , V> is the initial contents
of their common input tape, and the output of <P , V> is the concatenation of the
contents on the output tapes of P and V. Usually at most one of P and V is defined
to produce an output.

A move in a protocol is a message transfer from one interactive algorithm to
another; a round is two consecutive moves. After the last move in a protocol, the re-
ceiving algorithm checks a (protocol) verification relation in order to decide whether
to accept or reject. Additional verifications may be applied in intermediate stages. A
protocol is said to be non-interactive if it consists of a single move, and interactive if
it has more. None of the protocols in this book have more than two rounds.

4The practical interpretation of this is that an infinitely powerful algorithm that is restricted to taking
polynomially many samples cannot distinguish between the two distributions; such an algorithm can infer
the same information from either distribution. Note that perfect indistinguishability corresponds to zero
statistical difference.

2.1 NOTATION, TERMINOLOGY, AND CONVENTIONS 45

Protocols are sometimes depicted in figures, together with a description of the
preliminary stage for setting up keys and other prerequisite information. Within a
figure, the actions performed by an interactive algorithm are all displayed in the same
column, with a label on top indicating the algorithm that performs the actions. A
move is shown in the form of an arrow from the transmitter to the receiver, with the
message that is transferred displayed on top of the arrow. Protocol figures should
be read from top to bottom. Any additional data that is displayed in a column that
contains one or more message transmittals, such as a public key, is also considered
known to both communicating parties.

The transcript of a protocol executed by two interactive algorithms is the entire
ordered sequence of messages exchanged between them until one of them halts.

The view of an interactive algorithm in a protocol execution is an ordered set con-
sisting of all the information that the algorithm has “seen” in the protocol execution.
This comprises the protocol transcript, as well as the common input, any private in-
put, and its own coin flips (if any). An accepting view of an interactive algorithm
is the view of that algorithm in a protocol execution in which it accepts. Usually at
least one of the algorithms in a protocol will be probabilistic, in which case the view
is a random variable defined by the coin flips in the protocol. By parameterizing over
all possible protocol executions an ensemble of random variables is obtained, and so
we can consider indistinguishability of protocol views.

With P and V denoting two interactive algorithms, VP(aux1)(x; aux2) denotes
V’s output when interacting with P on common input x, auxiliary input aux1 to P
and auxiliary input aux2 to V . When there is no auxiliary input to V , we simply
write VP(aux)(x). In either case, for fixed inputs this is a random variable, whose
probability distribution is taken over the coin flips (if any) of P and V .

The notation K(x; A) denotes the output of algorithm K on input x, when having
write access to the random tape and the private input tape of algorithm A that in
all other respects behaves as a black box to K. The standard method for extracting
knowledge from an algorithm A is to rewind A for the same tape configurations but
different queries. By means of oracle replay in the so-called random oracle model,
which we discuss shortly, it may be possible to extract secrets even if rewinding is
not an option, even though it is unclear in this case how to properly define knowledge
outside the random oracle model. (See Assumption 4.3.9 for an example.)

2.1.4 Attack models

An honest interactive algorithm does not deviate from its behavior specified in the
protocol description, and does not engage in any other actions. In particular, it fol-
lows the protocol description in all protocol executions in which it engages.

An attacker is an interactive algorithm that may deviate from its prescribed ac-
tions, for instance by deviating from its actions in the specified protocols or by wire-
tapping the protocol executions of others. When assessing the security of a new

46 CRYPTOGRAPHIC PRELIMINARIES

cryptographic construction, we typically view the subset of all parties that deviate
from the prescribed protocol(s) (either cooperative or non-cooperative) as a single
algorithm, which we then use as a subroutine for an algorithm to solve a supposedly
intractable problem. A collection of attackers that may but need not share all their
tapes is referred to as an adversary.5

In assessing whether a protocol satisfies a property of interest, one must consider
not only the computing power of the attackers, but also the flexibility they have in
engaging in executions of the protocol. Among the factors contributing to whether
an adversary can break a presumed property of a protocol are the following:

• The extent to which multiple executions of the same protocol, or of different
protocols, can be interleaved. Parallel executions of a protocol are more effi-
cient than sequential executions, not only in the number of moves but also in
that some additional operations (such as line encryption) may be applied once
on all the moves that occur concurrently. On the other hand, parallelization
may enable an adversary to compute information that it could not compute
otherwise.

The most powerful attack model is that of arbitrary composition of protocols
or protocol executions; here, the adversary can adaptively (depending on its
protocol views in the past) decide at each stage which moves of one protocol
execution to interleave with which moves of another protocol execution (not
necessarily of the same protocol), and in what manner.

• The number of protocol executions attackers are able to engage in. 6 A passive
attacker is not allowed to interact at all, but can wiretap protocol executions that
take place by honest parties; an active attacker is allowed to engage in protocol
executions. In all our protocol descriptions in this book honest parties are
assumed to be polynomial-time, and so even an infinitely powerful adversary
can never engage in more than polynomially many protocol executions.

• The computing power given to the adversary. All the privacy results in this
book are proved under the assumption that attackers have infinite computing
power. Digital signatures, on the other hand, can be proved unforgeable only
against attackers that are polynomially bounded.

5The protocol executions of an attacker that operates in isolation may be wiretapped by other attackers
and in this manner add to their power; for this reason isolated attackers must be considered part of the
adversary. The attempt to circumvent this by encrypting all message transfers is not satisfactory. First, it
is unreasonable to characterize parties that do not properly encrypt their own messages as attackers of the
system. Second, it would be poor design practice to let the requirement for session encryption interfere
with the design of the system core and the analysis of systemic security.

6For example, in Section 5.4 we will construct proofs of knowledge in which the prover does not leak
any information about its secret key when performing the protocol once, but multiple protocol executions
using the same public key leak the entire secret key.

2.1 NOTATION, TERMINOLOGY, AND CONVENTIONS 47

The power of an adversary with unlimited resources is not restricted to com-
putations before or after a protocol execution; at each step, it may use infinite
computing time to compute its next message. While this model may seem un-
realistic, in the Turing machine model it makes perfect sense: the running time
of an interactive algorithm is determined by the number of state transitions de-
fined by the transition function, and so the time taken by one machine does not
affect the running time of the other. Moreover, the model of infinite computing
power serves as a useful abstraction to model the complete absence of one-way
functions (see Section 2.2) and other intractable computational tasks. When a
construction is proved invulnerable against an infinitely powerful adversary,
there is no need to worry about attackers that have embedded cryptographic
trapdoors or have come up with a cryptographic breakthrough.

The first two of these factors are under the control of the honest party that is being
attacked. It can determine which protocol executions to perform sequentially and
how many executions it engages in.

The aggregate view of an interactive algorithm in multiple executions of the same
or of different protocols is the collection of its views in the individual protocol exe-
cutions. The ordering of the components of the aggregate view is naturally defined
by the fashion in which the protocol executions are interleaved.

Following Feige, Fiat, and Shamir [168], A denotes an honest interactive algo-
rithm, Â denotes an attacker with polynomially bounded resources, and Ã denotes
an attacker with unbounded computing resources. Attack algorithms Â and Ã may
but need not deviate from the protocol description, and can engage in as many proto-
col executions as they desire, confined only by the limitations imposed by the other
parties in the protocols they engage in. For instance,

V̂P(aux1)
(x; aux2)

denotes V̂’s output after interacting with P, whereby V̂ can query P as if it were an
oracle; in particular, V̂’s output may be the result of a phase in which V̂ engages in a
plurality of protocol executions. In contrast,

VP(aux1)
(x; aux2)

always refers to a single execution of the protocol.
In analyzing whether a certain property holds for an honest party in a protocol,

it is always assumed that the party aborts an execution of the protocol as soon as the
other party (parties) deviates from the description of the protocol in a manner that
is detectable with certainty by the honest party. The interpretation of “detectable”
depends on the verification relations and other actions specified in the description
of the protocol, as well as on actions that we always assume implicitly. Specifi-
cally, it is implicit in protocol descriptions that the parties to a protocol always apply

48 CRYPTOGRAPHIC PRELIMINARIES

range-checking to numbers supposed to be in an algebraic structure. For examples of
attacks that become possible when a party inadvertently does not apply range check-
ing, see Bleichenbacher [34] and Anderson and Vaudenay [14]. Arithmetic relations
that must apply to these numbers (i.e., verification relations) are always mentioned
explicitly. In some case it is necessary to perform group membership tests; see Sec-
tion 2.4.3 for an example. Deviation by the other party from a specified probability
distribution, though, does not constitute a reason to abort a protocol execution.

2.1.5 Security reductions and the random oracle model

Since the emphasis in this book is on practicality, exact security is of importance.
Suppose that a problem P is conjectured to be intractable: problem instances of
size k cannot be solved with non-negligible success probability ε(k) in fewer than
rP (k) steps, for some superpolynomial running-time function rP (·). To prove the
infeasibility of a cryptanalytic attack on a new protocol construction, we construct an
algorithm A that can solve problem instances of size k of problem P in polynomial
time, with success probability negligibly close to ε(k), by making no more than poly-
nomially many subroutine calls to a black-box algorithm B that can feasibly solve
instances of the new construction. Suppose that, for inputs of size k, B runs in time
fB(k), and A makes fA(k) calls to B, using gA(k) additional processing steps for
each call and hA(k) additional one-time processing steps. The functions gA(·) and
hA(·) are polynomials, typically of low degree. The total running time r AB(k) of A
and B is equal to

fA(k)
(
fB(k) + gA(k)

)
+ hA(k).

If fB(·) is polynomially bounded there exists a positive integer k0 such that

rAB(k) < rP (k) ∀k ≥ k0,

contradicting the presumed intractability of problem P . But what practical assur-
ances on the parameter sizes for the new construction can we infer from the proof
reduction? We obtain a contradiction only for security parameter sizes that exceed
k0, and so it is desirable that k0 be as small as possible. Hereto the functions fA(·),
gA(·) and hA(·) should all be as small as possible. In situations of practical interest
fB(k) typically exceeds hA(k) by far, and so fA(·) is the dominating contribution
to the total running time. We therefore equate the overhead factor of a security re-
duction with the (expected) number of calls to algorithm B. A security reduction is
tight if the overhead factor is a (small) constant, and optimal tightness is achieved
when the overhead factor is negligibly close 1. For any given security level, a tight
reduction allows one to implement the new construction using smaller parameter
sizes than would be allowed by a non-tight reduction. Because practicality is an im-
portant objective of this book, we strive for tight security reductions throughout. In
practice it is recommended to choose k in such a manner that an adversary needs

2.2 ONE-WAY FUNCTIONS 49

an expected number of at least 280 elementary operations to break the construction
at hand. (Imagine a supercomputer that can do 1 elementary operation each pico-
second, and that 300 of these are running in parallel; it would take over 128 years to
cycle through all 280 operations.)

Sometimes the security of a new construction can be proved only in the random
oracle model. In this model, a function that is believed hard to invert may be idealized
by substituting applications of the function by calls to a random oracle. The oracle,
on input an element in the domain of the function, produces a random output in the
range of the function, to be interpreted as the outcome of the function. Of course,
multiple oracle queries with the same input produce the same output. The success
probability of the resulting security reduction is taken over the space of all random
functions. Cannetti, Goldreich, and Halevi [76] concocted example constructions
that are provably secure in the random oracle model but provably insecure when the
oracle is instantiated using any function. Therefore, the ability to give a security
reduction in the random oracle model in general does not imply that a successful
attack requires the exploitation of a weakness in the function that is being idealized.
Nevertheless, in the “natural” cryptographic constructions that arise in practice, and
in particular in this book, provable security in the random oracle model is believed to
be a relevant measure of security. Most of the constructions in this book are amenable
to security proofs in the random oracle model.

2.2 One-way functions

2.2.1 Definition

From now on we are mainly interested in functions f(·) that can be expressed as an
infinite collection of functions, {fi(·)}i∈V . Each fi(·) operates on a finite domain,
Di, and V is an enumerable infinite index set, with i uniquely specifying D i. A
description of f(·) entails specifying V and the mapping f i(·). Any collection of
functions {fi(·)}i∈V can be represented by a single function f(·) that operates on an
infinite domain, by defining

f(i, x) := (i, fi(x)),

and so the two notions can be used interchangeably.
Informally, a one-way function is a function that is easy to compute, but com-

puting inverses is difficult on average. To formalize this notion, we require an in-
stance generator for the function. An instance generator for a collection of functions,
{fi(·)}i∈V , is a pair (I, D) of probabilistic polynomial-time algorithms, operating as
follows:

• I takes as input 1k, and outputs an index i ∈ V of binary size l(k), where l(·)
is a fixed polynomial; and

50 CRYPTOGRAPHIC PRELIMINARIES

• D takes as input the output i of I , and outputs an element x in the domain
Di of fi(·). (Elements in Di may occur with zero probability as an output of
D(i).)

The output of (I, D) is (i, x). We will simply write (i, x) ∈ V × Di to denote that
first i is taken from V and then x is taken from D i. (Although this is not the standard
Cartesian product, no confusion can arise.)

Definition 2.2.1. A collection of functions, {f i(·)}i∈V , is (strongly) one-way over
an instance generator (I, D) if and only if the following two properties hold:

1. (Computable in one direction) There exists a deterministic polynomial-time
algorithm that, on input any (i, x) ∈ V × Di, outputs fi(x); and

2. (Uninvertable in the other direction) For any polynomial-time algorithm A, the
probability function defined by

Pk

(
fi(A(i, fi(x))) = fi(x) | i := I(1k); x := D(i)

)

is negligible in k.

Whenever we say that a function f(·) is one-way, we mean that the collection
of functions that it represents is one-way, in the above sense. In case the instance
generator is clear from the context, we will not mention it explicitly.

Note that functions with superpolynomial range are always one-way when ideal-
ized in the random oracle model.

If {fi(·)}i∈V is one-way over (I, D), then (I, D) is said to be an invulnerable
instance generator for {fi(·)}i∈V . The usefulness of the notion of invulnerability
(originating from Abadi, Allender, Broder, Feigenbaum, and Hemachandra [1]) be-
comes apparent when reducing the problem of inverting a function that is conjectured
to be one-way to the problem of breaking a new construction, to prove the security
of the latter. Instead of specifying a particular instance generator for the conjectured
one-way function, it is sometimes possible to make the same security reduction work
for all invulnerable instance generators; this makes the resulting security statement
much stronger. All the security reductions in this book are of this form. Note that if
an instance generator is invulnerable for a function, then so are all instance generators
with a computationally indistinguishable output distribution.

A commitment function enables a sender to commit to a secret, in such a manner
that the receiver cannot determine the secret until the sender opens the commitment,
while the sender cannot open the commitment to reveal a different secret than that
originally committed to. A one-way permutation can serve as a commitment function
that is unconditionally secure for the receiver and computationally secure for the

2.2 ONE-WAY FUNCTIONS 51

sender. Hereto the sender embeds its secret into the hard-core bits 7 of an otherwise
randomly chosen argument x to a one-way permutation f(·).

We now discuss two well-known functions that are widely believed to be one-
way. Their one-wayness is crucial to the security of all the constructions in this
book.

2.2.2 The DL function

The output of an instance generator (I, D) for a DL function, defined below, satisfies
the following format:

• On input 1k, with k ≥ 2, I generates a pair (q, g), satisfying the following
properties:

– q is a prime number of binary size k that uniquely specifies a group of
order q, from now on denoted by Gq . Without loss of generality, the
group operation is assumed to be multiplication.

– g is a generator of Gq .

• On input (q, g), D generates an element x in Zq .

A DL function is a collection of functions, {f i(·)}i∈{(q,g)}, defined as follows:

fq,g : x �→ gx.

The number x is called the discrete logarithm of gx with respect to g. Note that
different algebraic constructions for Gq give rise to different DL functions.

Under what conditions is a DL function one-way? If the construction of G q is
such that multiplication in Gq is feasible, then fq,g(x) can be feasibly computed by
means of repeated squaring (see Menezes, van Oorschot, and Vanstone [266, Sec-
tion 14.6]), possibly in combination with additional preprocessing. 8 The hardness
of inverting a DL function depends on the construction of G q and on the instance
generator (I, D). The following two constructions are widely believed to give rise to
a one-way DL function.

(Subgroup construction) Gq is a subgroup of Z
∗
p, where p is a prime such that

q | (p − 1) and |p| is polynomial in k. The following instance generator is
believed to be invulnerable:

7If f(·) is one-way, then there must exist a Boolean predicate of the bits of the argument of f(·) that
is at least somewhat hard to compute when given f(x). A Boolean predicate b(·) is said to be hard-core
for f(·) if b(·) can be computed in polynomial time, but no probabilistic polynomial-time algorithm can
compute bi(x) from fi(x) with success probability non-negligibly greater than 1/2. More generally,
several bits are said to be (simultaneously) hard-core for f(·) if no polynomial-time algorithm can extract
any information about these bits of x when given fi(x).

8Alternatively, addition chains or other techniques may be used. For overviews and comparisons of
exponentiation methods, see Knuth [232, Subsection 4.6.3], Menezes, van Oorschot, and Vanstone [266,
Chapter 14.6], von zur Gathen and Nöcker [383], Gordon [196], and O’Connor [280].

52 CRYPTOGRAPHIC PRELIMINARIES

• q is generated at random from the set of all primes of binary size k, using
a primality test. The number p is the first prime in the sequence aq + 1,
for successive (even) integer values a, starting from a fixed positive inte-
ger a0 that is “hard-wired” into I; heuristic evidence suggests that only
polynomially many values of a need to be tested (see Wagstaff [384]).
It is not known how to test primality in deterministic polynomial time.
A polynomial-time primality test with negligible error probability may
be used instead, though, because its outputs are computationally indistin-
guishable.

• g is generated at random from Gq \ {1}. This can be accomplished by
taking g := f (p−1)/q, for a random f ∈ Z

∗
p, and testing that g �= 1.

(There is only one subgroup with order q.) Other distributions are not
necessarily improper, but results of Bleichenbacher [34] and Anderson
and Vaudenay [14] for groups of non-prime order suggest that a random
selection is preferred.

• x is best chosen at random from Zq . This maximizes its entropy, and
allows one to prove the hardness of inverting assuming the seemingly
weaker assumption that any polynomial-time algorithm for inverting the
DL function has non-negligible error probability. In particular, either this
choice is successful or the DL-function cannot be one-way at all.

Alternatively, one first generates a random prime p and checks whether q =
(p − 1)/a0 is a prime, repeating this process until a prime q is found. Another
variation is to generate a random composite with known prime factorization
(see Bach [16]), and to test whether its increment by one is a prime, p; if this is
the case, then with high probability the binary size of the largest prime factor
of p − 1 is proportional to |p|. (In this case |q| should be allowed to be linear
in k.)

Primes p of a special form may provide even better protection against attacks.
For instance, it is believed preferable to generate p subject to the restriction
that (p − 1)/2q contains only prime factors greater than q. Other reasons for
generating p of a special form are related to security issues of protocols that
operate in Gq; see Section 2.4.3.

In practical applications it is often important that the pair (p, q) do not contain
a trapdoor that enables the rapid computation of discrete logarithms. Although
no trapdoor constructions are known in the public literature that cannot be
feasibly detected (and, therefore, tested for), confidence can be increased by
using an instance generator that generates q and p in a pseudorandom manner,
starting from a seed value that must be output as well by the instance generator;
see Federal Information Processing Standards no. 186 [277, Appendix 2]. In
addition, a succinct proof may be output for proving that g has been generated
using a pseudorandom process.

2.2 ONE-WAY FUNCTIONS 53

(Elliptic curve construction) Gq is an elliptic curve of order q over a finite field.
(See Menezes [263] for an introduction to elliptic curves as applied in cryp-
tography.) It is common to take Zp as the underlying field, for a prime p
such that |p| is polynomial in k. The following three instance generators are
believed to be invulnerable:

• Select a (probable) prime p, and randomly try elliptic curve coefficients
until a curve of prime order is found. (The process could be sped up by
allowing |q| to be linear in k.) The elliptic curve coefficients must be
specified as part of the output of the instance generator. Generate g and
x at random from Gq \ {1} and Zq , respectively.

• Alternatively, the coefficients determining the elliptic curve are hard-
wired into the instance generator, and p and q of the appropriate form
are sought by trial and error. The numbers g and x are generated at ran-
dom from Gq \ {1} and Zq , respectively.

• Another possibility is to generate an elliptic curve of prime order together
with a generator g, using an algorithm of Koblitz [234]. As before, x is
best chosen at random from Zq .

Alternatively, one can generate elliptic curves over a field of the form GF 2m

instead of over Zp; as we will see shortly, this offers practical advantages.

Any uncertainty about the presence of a trapdoor can be removed in the manner
described for the subgroup construction.

Other constructions have been proposed, but these are considerably more difficult to
understand and have not been scrutinized by more than a few experts. See Biehl,
Meyer, and Thiel [28] and the references therein for constructions in real-quadratic
number fields, and Koblitz [233] for a construction in groups obtained from Jacobians
of hyperelliptic curves.

The prime q need not be generated at random, if only the underlying field is
chosen in a substantially random manner. A smart choice for q enables one to speed
up the reduction modulo q. Example choices for q are 2 127 − 1 (a Mersenne prime)
or, more generally, 2a ± b, for small b. Furthermore, in some applications it may be
useful to use the same q in combination with multiple primes p i, all chosen at random
subject to the condition q | (pi − 1).

With the exception of the technique described in Section 4.4.1, none of the con-
structions in this book depend on the manner in which G q is constructed. In general,
we merely need the following assumption to be true.

Assumption 2.2.2. There exists a DL function that has an invulnerable instance gen-
erator.

From now on we will use the notation (IDL, DDL) to denote an invulnerable in-
stance generator for “the” DL function. Although specific embodiments may have

54 CRYPTOGRAPHIC PRELIMINARIES

additional outputs, such as p, elliptic curve coefficients, a compact proof that g has
been generated at random, and information evidencing that no trapdoor has been built
in, for concreteness we will always assume that the output of (IDL, DDL) is (q, g, x).
We will also assume that (q, g) is always properly formed, meaning that q is a prime
and g a generator of Gq , but will never make any assumptions about the probability
distribution of the outputs of (IDL, DDL).

The one-wayness of a function is an asymptotic property. For overviews of al-
gorithms to compute discrete logarithms, see Odlyzko [281] and McCurley [259].
In practice, the binary size of the parameters must be selected such that adequate
security for the application at hand is offered. For instance, the parameter sizes for
a digital signature that is to have legal meaning several decades from now must be
much greater than for an identification protocol that only seeks to withstand replay
attacks. Currently recommended parameter sizes for the DL function are as follows:

(Subgroup construction) To compute discrete logarithms in Gq , one can either
work in Gq or proceed indirectly9 by computing discrete logarithms with re-
spect to generators of Z

∗
p.

The best known algorithms for computing discrete logarithms in Z
∗
p all have

subexponential running time. In May 1998, Joux and Lercier computed a dis-
crete logarithm modulo a 299-bit prime using a network of Pentium PRO 180
MHz personal computers and a total of 4 months of CPU time. Odlyzko [282]
states that primes p should be at least 1024 bits even for moderate security,
and at least 2048 bits for anything that should remain secure for a decade. 10

This recommendation is based on the presumption that future progress in algo-
rithmic and hardware capabilities will be along the lines witnessed in the past.
According to Silverman [353], it has been estimated that for large k, breaking
a discrete logarithm of k − 30 bits takes about the same time as factoring a k-
bit composite that is the product of two random primes of approximately equal
binary size, but Odlyzko [283] recommends to ignore this difference when
choosing parameter sizes.

In Gq itself, only exponential-time algorithms are known, with running time
O(

√
q). Shoup [352] proved in his so-called generic string encoding model

that algorithms with a better performance than O(
√

q) operations must make
use of the structure of Gq , suggesting that a universal subexponential-time
inverting algorithm that works for any construction of G q cannot exist. As-
suming that the best algorithms for computing discrete logarithms in G q have
running time O(

√
q), a 160-bit prime q offers the same security level as a 1024-

bit p; see Menezes [264]. Odlyzko [282] recommends primes q of 200 bits for

9With (p − 1)/q polynomial in k, the infeasibility of computing discrete logarithms in Gq follows

from that in Z
∗
p.

10This overturns an earlier recommendation of Odlyzko [283] to use 1024-bit primes for long-term
security (i.e., at least the next two decades) and 768-bit primes for medium-term security.

2.2 ONE-WAY FUNCTIONS 55

long-term security. Lenstra and Verheul [247] are more optimistic; for security
until the year 2020 they recommend using primes p of at least 1881 bits and
primes q of at least 151 bits.

(Elliptic curve construction) As with the subgroup construction, the fastest meth-
ods known for computing discrete logarithms in G q require O(

√
q) steps.

When so-called supersingular curves are used, one can invert the DL func-
tion indirectly (by computing discrete logarithms in the underlying field Z por
an extension of it) in subexponential time, and the binary size of p must be
comparable to that in the subgroup construction; see Menezes, Vanstone, and
Okamoto [265]. A linear-time algorithm for so-called trace-1 elliptic curves
was announced in September 1997 independently by Smart [357] and by Satoh
and Araki [335]. Both cases occur with negligible probability for randomly
chosen curves, and can easily be detected. For randomly generated curves
only exponential-time algorithms are known, taking O(

√
p) steps. Barring

algorithmic breakthroughs, numbers in the base and numbers in the ring of ex-
ponents can therefore be taken of the same binary size; this is a huge efficiency
improvement over the subgroup construction.

In May 1998, a Certicom elliptic curve challenge over a field Z p with a 97-bit
prime p was solved after 53 days of distributed computation using more than
1200 computers from at least 16 countries. In a whitepaper [85], Certicom
estimates that a 160-bit prime p offers the same security as factoring a 1024-
bit composite, and that a 210-bit prime p compares with factoring a 2048-bit
composite. More recently, Lenstra and Verheul [247] estimated that a 139-
bit p and a 1024-bit composite or a 160-bit p and a 1375-bit composite offer
computationally equivalent security. They estimate that, for security until the
year 2020, key sizes of at least 161 bits should be used if no cryptanalytic
progress is expected, and at least 188 bits to “obviate any eventualities.”

Assuming again that subexponential-time inverting algorithms do not exist,
working over a field of the form GF2m offers significant advantages. VLSI cir-
cuits have been designed that can rapidly perform operations in these fields; see
Agnew, Mullin, and Vanstone [6] for a VLSI implementation of GF 2155 . Even
in general software environments, the use of GF2m offers performance advan-
tages over Zp. Wiener [390] estimates that m should be in the range 171–180
to make computing discrete logarithms as hard as factoring 1024-bit compos-
ites. In his analysis, Wiener assumes the strongest attack known: a parallel
collision search attack using a fully pipelined chip for elliptic curve additions
over GF2m . In April 2000, a team led by Harley, Doligez, de Rauglaudre,
and Leroy broke an elliptic curve challenge for m = 108 after four months
of distributed computation using 9500 computers; the estimated workload for
solving a 163-bit challenge is about 100 million times larger.

56 CRYPTOGRAPHIC PRELIMINARIES

The belief in the strength of short moduli for the elliptic curve construction is not
ubiquitous. Odlyzko [282] warns that “it might be prudent to build in a considerable
safety margin against unexpected attacks, and use key sizes of at least 300 bits, even
for moderate security needs.” Several renowned cryptographers have even expressed
disbelief that the complexity of the discrete logarithm problem for elliptic curves is
more than subexponential.

2.2.3 The RSA function

The output of an instance generator (I, D) for the RSA function, defined below, sat-
isfies the following format:

• On input 1k, with k ≥ 4 and k even, algorithm I generates a pair (n, v),
satisfying the following properties:

– n is the product of binary size k of two primes, p and q.

– v is a number smaller than n that is co-prime to ϕ(n), where ϕ(·) is
Euler’s phi-function.

• On input (n, v), algorithm D generates an element x in Z
∗
n.

The RSA function is a collection of functions, {f i(·)}i∈{n,v}, defined as follows:

fn,v : x �→ xv.

Under what conditions is the RSA function one-way? Clearly, the RSA function can
be evaluated efficiently, using repeated squaring or addition chain techniques. Note
that the exponent is fixed instead of the base number; this makes repeated squaring
less and addition chains more attractive than in the case of the DL function. The
following instance generator is believed to be invulnerable:

• p and q are chosen at random11 from the set of primes of binary size k/2, using
a (probabilistic) primality test. In case p and q are generated after v has been
determined, a test for gcd(ϕ(n), v) = 1 can be used to decide whether to keep
(p, q) or to repeat the experiment.

• v can be chosen in an almost arbitrary fashion, including an invariant choice
hard-wired into I . Certain choices must be avoided, such as (n, v) such that
v−1 mod ϕ(n) < n0.292 (see Wiener [389] and Boneh and Durfee [36]), but
bad choices are believed to be detectable and so they can be easily avoided.
In fact, they should occur with negligible probability if v and n are generated
independently at random.

11Rivest and Silverman [326] argue that for practical purposes using random primes is as secure as
using primes of a special form.

2.2 ONE-WAY FUNCTIONS 57

• x is best chosen at random from Z
∗
n, for the same reasons as with the DL

function. In particular, either this choice is successful or the RSA function
cannot be one-way at all.

Other methods for generating (n, v) have been proposed, all differing in the distri-
bution according to which p and q are generated; see, for example, Boneh [37] and
Kaliski and Robshaw [225].

Although v may be an arbitrary small constant or a composite, in the rest of this
book we are interested only in primes v that are superpolynomial in k. The reasons
for this will become apparent in Section 2.4.4 and in the next two chapters.

Assumption 2.2.3. There exists an invulnerable instance generator for the RSA func-
tion that outputs primes v that are superpolynomial in k.

Boneh and Venkatesan [40] proved that breaking RSA with small v cannot be
equivalent to factoring n under algebraic reductions unless factoring is easy, but their
result does not apply to superpolynomialv. Consequently, it may well be the case that
there exists an invulnerable instance generator such that inverting the RSA function
is as hard as factoring.

From now on we use the notation (IRSA, DRSA) to denote an invulnerable instance
generator for the RSA function that outputs primes v superpolynomial in k. Its output
is (n, v, x), and we will always assume that (n, v) is always properly formed, mean-
ing that v is a prime that is co-prime to ϕ(n). In practice, additional outputs may
be specified, such as a succinct proof demonstrating that (n, v) is properly formed.
(In the applications in this book, the proof that v is co-prime to ϕ(n) will always be
implicitly given by the party that generates v, as a side consequence of its protocol
executions; see Section 4.2.3.) Moreover, in Sections 4.2.2 and 4.4.2 we will con-
struct protocols on the basis of an invulnerable instance generator that provides the
prime factorization of n as “side information.” We will never make any assumptions
about the probability distribution of the outputs of (I RSA, DRSA).

The fastest known algorithms for inverting the RSA function all proceed by fac-
toring n; for an overview, see Bressoud [61]. They have subexponential running time
and have been used successfully to factor composites of up to 512 bits. 12 Shamir’s
TWINKLE device [345] brings 512-bit moduli within reach of a single device. Ac-
cording to Odlyzko [282], “even with current algorithms, within a few years it will
be possible for covert efforts (involving just a few people at a single institution, and
thus not easily monitored) to crack 768 bit RSA moduli in a year or so.” Lenstra and
Shamir [246] estimate that it would take 5000 TWINKLE devices connected by a
fast network to 80 000 standard Pentium II computers in order to factorize a 768 bit
composite within 6 months. Odlyzko [282] projects that “even 1024 bit RSA moduli

12RSA-155, which has 512 bits and is the product of two 78-digit primes, was factored in August 1999
using the Number Field Sieve algorithm. The effort used the equivalent of roughly 8000 mips years, and
involved 292 desktop computers and a Cray C916 supercomputer. See Cavallar et al. [77] for details.

58 CRYPTOGRAPHIC PRELIMINARIES

might be insecure for anything but short-term protection.” Lenstra and Verheul [247]
recommend using RSA moduli of at least 1881 bits for security until the year 2020,
and Odlyzko [282] recommends to use at least 2048-bit moduli. Silverman [353],
however, argues that these estimates are highly unrealistic on the grounds that taking
the total number of computing cycles on the Internet as a model of available com-
puting power ignores memory and accessibility problems. In particular, he strongly
disagrees with the conclusion of Lenstra and Verheul [247] that 1024 bit moduli are
insecure after 2002, and estimates that 1024 bit moduli will remain secure for at least
20 years and 768 bit moduli for perhaps another 10 years.

The requirement that v be superpolynomial can be met in practice by taking the
binary size of v similar to that of q in the DL function; at least 160 bits is recom-
mended, and 200 bits is preferable. As in the case of q, v need not be chosen at
random. In particular, a smart choice for v enables a faster reduction modulo v.

2.3 Collision-intractable functions

2.3.1 Definition

In practical applications, it is often required of a function that it be infeasible to
compute two arguments that are mapped to the same outcome. Formally:

Definition 2.3.1. A collection of functions, {f i(·)}i∈V , is collision-intractable over
an instance generator (I, D) if and only if the following two properties hold:

1. (Computable in one direction) There exists a deterministic polynomial-time
algorithm that, on input any (i, x) ∈ V × Di, outputs fi(x); and

2. (Collision-intractable in the other direction) For any polynomial-time algo-
rithm A, the probability function defined by

Pk

(
A(i) = (x, y) such that x, y ∈ Di, x �= y, fi(x) = fi(y) | i := I(1k)

)

is negligible in k.

Note that the coin flips of algorithm D are irrelevant. We may therefore say that
the function is collision-intractable over I .

For many-to-one functions, collision-intractability is non-trivial and is a stronger
property than one-wayness. Note that functions with superpolynomial range are al-
ways collision-intractable when idealized in the random oracle model.

A non-trivial collision-intractable function f(·) can serve as a commitment func-
tion that is unconditionally secure for the sender and computationally secure for the
receiver. The straightforward implementation whereby the sender commits to x by
sending fi(x) is unsatisfactory, though: the distribution of x in general will dif-
fer from the distribution for which one-wayness is guaranteed, and even if it is the

2.3 COLLISION-INTRACTABLE FUNCTIONS 59

same there is no guarantee that no partial information leaks. This problem can be
fixed by using a function f(·) with special uniformity properties. (We omit a for-
mal definition, because it is irrelevant for the purposes of this book.) The candidate
collision-intractable functions that will be introduced in the next two sections meet
these properties and are at the heart of all the constructions in the remainder of this
book.

2.3.2 The DLREP function

We refer to the collection of functions considered in this section as the DLREP func-
tion. The output of an instance generator (I, D) for the DLREP function satisfies the
following format:

• On input 1k, with k ≥ 2, algorithm I generates a tuple

(q, g1, . . . , gl)

satisfying the following properties:

– q is a prime number of binary size k that uniquely specifies a group G q

of order q.

– g1, . . . , gl are elements of Gq , for an integer l ≥ 1, and gl �= 1. The
integer l can be hard-wired into I , but may also be determined by I itself,
depending on its input; in the latter case l may be polynomial in k. (Since
l can be inferred from the output of (I, D), it is not made explicit in I’s
output.)

• On input (q, g1, . . . , gl), algorithm D generates a tuple

(x1, . . . , xl),

with x1, . . . , xl ∈ Zq.

A DLREP function is a collection of functions, {f i(·)}i∈{q,g1,...,gl}, defined as fol-
lows:

fq,g1,...,gl
: (x1, . . . , xl) �→

l∏
i=1

gxi

i ,

with domain (Zq)l. The tuple (x1, . . . , xl) is called a DL-representation of h :=∏l
i=1 gxi

i with respect to (g1, . . . , gl). The tuple (0, . . . , 0) is a DL-representation of
1 with respect to any tuple (g1, . . . , gl); we call this the trivial DL-representation. We
simply call (x1, . . . , xl) a DL-representation of h in case (g1, . . . , gl) is clear from
the context. Note that we do not require the g i’s to be generators, in contrast to g in
the DL function, nor do we require the g i’s to be different from one another.

60 CRYPTOGRAPHIC PRELIMINARIES

The DLREP function is a generalization of the DL function. As with the DL
function, different constructions for Gq give rise to different DLREP functions. The
following construction is of special importance to our later constructions in this book.

Construction 2.3.2. Given an invulnerable instance generator (I DL, DDL) for the DL
function, construct an instance generator (IDLREP, DDLREP) for the DLREP function as
follows:

• On input 1k, with k ≥ 2, IDLREP calls IDL, on input 1k, to obtain a pair (q, g).
IDLREP generates l − 1 exponents, y1, . . . , yl−1, at random from Zq, and com-
putes gi = gyi , for all i ∈ {1, . . . , l − 1}. IDLREP sets gl := g, and outputs
q, (g1, . . . , gl). (Alternatively, if the construction of Gq is such that it is easy to
generate random elements from Gq without knowing an element in Gq , IDLREP

may generate random g1, . . . , gl−1 directly.)

• DDLREP generates xl at random from Zq . The other elements, x1, . . . , xl−1, may
all be generated in an arbitrary manner.

Proposition 2.3.3. If (IDL, DDL) is invulnerable, then the DLREP function is one-way
and collision-intractable over (IDLREP, DDLREP).

Proof. The DLREP function is easy to compute, using l exponentiations and l − 1
multiplications. (More efficient methods are discussed shortly.)

The DLREP function is trivially one-way if l = 1. For the case l ≥ 2, note that
if (x1, . . . , xl) is a DL-representation of h ∈ Gq with respect to (g1, . . . , gl), then
x :=

∑l−1
i=1 xiyi+xl mod q is the discrete logarithm of h with respect to g; therefore,

an efficient algorithm for inverting the DL function can be constructed from one for
inverting the DLREP function.

Collision-intractability is vacuously true for the case l = 1. Consider now the
case l ≥ 2. If (x1, . . . , xl) and (y1, . . . , yl) are any two different DL-representations
of the same number, then (x1 − y1 mod q, . . . , xl − yl mod q) is a non-trivial DL-
representation of 1. Consequently, if we can find collisions then we can find a non-
trivial DL-representation of 1, at virtually no overhead. We may therefore assume
that we are given an algorithm B that, on input (q, (g1, . . . , gl)) generated by IDLREP,
outputs a non-trivial DL-representation of 1 in at most t steps, with success probabil-
ity ε. We construct an algorithm A that, on input ((q, g), h), computes log g h mod q,
as follows:

Step 1. A generates 2l − 2 random numbers, r1, . . . , rl−1, s1, . . . , sl−1 ∈ Zq . A
sets

gi := hrigsi ∀i ∈ {1, . . . , l − 1},
and gl := g. A then feeds (q, (g1, . . . , gl)) to B.

Step 2. A receives (x1, . . . , xl) from B, and checks whether or not it is a non-trivial
DL-representation of 1. If it is not, then A halts.

2.3 COLLISION-INTRACTABLE FUNCTIONS 61

Step 3. If
∑l−1

i=1 rixi = 0 mod q, then A halts.

Step 4. A computes

−(
l−1∑
i=1

sixi + xl)(
l−1∑
i=1

rixi)−1 mod q,

and outputs the result.

It is easy to verify that the output in Step 4 is equal to logg h mod q, and that the total
running time is O(l k) plus the running time of B. We now determine the success
probability of A.

Because the joint distribution of (g1, . . . , gl), generated in Step 1, is the same
as that induced by the output of IDLREP, the transition from Step 2 to Step 3 occurs
with probability ε. To determine the probability that the transition from Step 3 to
Step 4 takes place, we observe that there exists an integer j ∈ {1, . . . , l − 1} such
that xj �= 0 mod q (because B’s output is non-trivial). Therefore, there are exactly
ql−2 “bad” tuples (r1, . . . , rl−1) ∈ (Zq)l−1, for which

∑l−1
i=1 rixi = 0 mod q: for

any choice of (r1, . . . , rj−1, rj+1, . . . , rl−1), the remaining number, rj , exists and is
uniquely determined because q is a prime. The tuple (r1, . . . , rl−1) is unconditionally
hidden from B, owing to the randomness of the s i’s and the fact that g is a generator
of Gq , and it is therefore independent of B’s output. Any choice of (r 1, . . . , rl−1) is
equally likely to have been made by A, and so the probability of having chosen a bad
tuple is ql−2/ql−1 = 1/q.

Because Step 4 takes place only if Step 3 is successful, and Step 3 takes place
only if Step 2 is successful, the overall success probability of A is ε(1 − 1/q).

The proof reduction is optimally tight. Because the influence of l on the running time
overhead is merely linear in the security parameter, using the parameter sizes recom-
mended for the DL function to implement the DLREP function results in roughly
the same security level. In particular, a prime q of 200 bits should offer long-term
protection against collision-finding attempts.

Note that Proposition 2.3.3 also applies if g l is generated at random; Construc-
tion 2.3.2 is simply more general.

The number xl need not be generated at random. Construction 2.3.2, however,
is all we need for our purposes in this book. From now on, (I DLREP, DDLREP) always
denotes an invulnerable instance generator that has been constructed from an invul-
nerable instance generator (IDL, DDL) for the DL function in the manner of Construc-
tion 2.3.2. Of course, it is permitted to use any instance generator with a distribution
that is indistinguishable from that generated by (IDLREP, DDLREP).

The constructed DLREP function can be used by a sender to commit to l − 1
attributes, (x1, . . . , xl−1). As we will show in Chapter 3, this commitment function
has a special property: the sender can gradually open its commitment to an infinitely

62 CRYPTOGRAPHIC PRELIMINARIES

powerful receiver, and in intermediate stages demonstrate all sorts of properties about
the attributes without leaking additional information about them.

The method described in the proof of Proposition 2.3.3 for computing the DLREP
function is polynomial-time, but is not very practical for large l in case (some of) the
xi’s are large or randomly chosen. For l ≥ 2, one can evaluate

∏l
i=1 gxi

i much more
efficiently by using simultaneous repeated squaring with a single precomputed table
whose 2l − 1 entries consist of the products of the numbers in the non-empty subsets
of {g1, . . . , gl}. See Knuth [232, Exercises 27 and 39 of Section 4.6.3].

Several variations and optimizations of this basic technique exist. For example,
one can process t > 1 exponent bits at once; the size of the precomputed table then
increases by a factor close to 2(t−1)l, while the number of multiplications decreases
by a factor of t and the number of squarings remains unaffected. For large l one can
break up the computation into a number of blocks: with 1 < j ≤ l, the product∏l

i=1 gxi

i can be computed using d =
l/j� precomputed tables, using simultane-
ous repeated squaring for each of the d subproducts and multiplying the subproduct
results.

Alternatively, one can apply vector addition chain techniques; see, for instance,
Coster [121].

2.3.3 The RSAREP function

We refer to the collection of functions considered in this section as the RSAREP func-
tion. The output of an instance generator (I, D) for the RSAREP function satisfies
the following format:

• On input 1k, with k ≥ 4 and k even, algorithm I generates a tuple

(n, v, g1, . . . , gl)

satisfying the following properties:

– n is the product of binary size k of two primes, p and q.

– v is a prime smaller than n that is co-prime to ϕ(n).

– g1, . . . , gl are elements of Z
∗
n, for an integer l ≥ 0. The integer l can be

hard-wired into I but may also be determined by I itself, depending on
its inputs; in the latter case l may be polynomial in k.

• On input (n, v, g1, . . . , gl), algorithm D generates a tuple

(x1, . . . , xl+1),

with x1, . . . , xl ∈ Zv and xl+1 ∈ Z
∗
n.

2.3 COLLISION-INTRACTABLE FUNCTIONS 63

The RSAREP function is a collection of functions, {f i(·)}i∈{n,v,g1,...,gl}, defined as
follows:

fn,v,g1,...,gl
: (x1, . . . , xl, xl+1) �→

l∏
i=1

gxi

i xv
l+1,

with domain (Zv)l × Z
∗
n. The tuple (x1, . . . , xl, xl+1) is an RSA-representation of

h :=
∏l

i=1 gxi

i xv
l+1 with respect to (g1, . . . , gl, v). The tuple (0, . . . , 0, 1) is an RSA-

representation of 1 with respect to any tuple (g1, . . . , gl, v); we call this the trivial
RSA-representation. We simply call (x1, . . . , xl, xl+1) an RSA-representation of h
in case (g1, . . . , gl, v) is clear from the context. Note that we do not require the g i’s
to be different or to have large order.

While a tuple (y1, . . . , yl, yl+1) ∈ Z
l × Z

∗
n satisfying

h =
l∏

i=1

gyi

i yv
l+1

is not an RSA-representation in case one of y1, . . . , yl is not in Zv , it is easy to check
that the normalized form

(y1 mod v, . . . , yl mod v,
l∏

i=1

gyidivv
i yl+1)

is an RSA-representation of h. In practice, it may sometimes be more efficient to
use (y1, . . . , yl, yl+1) directly in a computation, instead of first normalizing it; this
avoids one multi-exponentiation. On the other hand, normalization is desirable for
the purpose of implementing simultaneous repeated squaring or related techniques.

The following construction is of special importance to our later constructions in
this book.

Construction 2.3.4. Given an invulnerable instance generator (I RSA, DRSA) for the
RSA function, construct an instance generator (IRSAREP, DRSAREP) for the RSAREP func-
tion as follows:

• On input 1k, with k ≥ 4 and k even, IRSAREP calls IRSA, on input 1k, to obtain
a pair (n, v). IRSAREP generates l random numbers, g1, . . . , gl, from Z

∗
n, and

outputs n, v, (g1, . . . , gl).

• DRSAREP generates xl+1 at random from Z
∗
n. The other elements, x1, . . . , xl,

may all be generated from Zv in an arbitrary manner.

Proposition 2.3.5. If (IRSA, DRSA) is invulnerable, then the RSAREP function is one-
way and collision-intractable over (IRSAREP, DRSAREP).

64 CRYPTOGRAPHIC PRELIMINARIES

Proof. The RSAREP function is easy to compute, using l + 1 exponentiations and
l multiplications. (For practicality, one can apply the techniques mentioned in Sec-
tion 2.3.2 to

∏l
i=1 gxi

i , and multiply xv
l+1 into the result.)

The RSAREP function is trivially one-way if l = 0. For the case l ≥ 1, note that
from an RSA-representation of h ∈ Z

∗
n with respect to (g1, . . . , gl, v) it is easy to

compute the v-th root of h, assuming one knows the v-th root of each g i; from this
observation it is easy to see how an efficient inverting algorithm for the RSA function
can be constructed from one from the RSAREP function.

Collision-intractability is vacuously true for the case l = 0. Consider now the
case l ≥ 1. If (x1, . . . , xl, xl+1) and (y1, . . . , yl, yl+1) are any two different RSA-
representations of the same number, then

(x1 − y1 mod v, . . . , xl − yl mod v,

l∏
i=1

g
(xi−yi)divv
i xl+1y

−1
l+1)

is a non-trivial RSA-representation of 1. Consequently, if we can find collisions
then we can find a non-trivial RSA-representation of 1, at modest cost. We may
therefore assume that we are given an algorithm B that, on input (n, v, (g 1, . . . , gl))
generated by IRSAREP, outputs a non-trivial RSA-representation of 1 in at most t steps,
with success probability ε. We construct an algorithm A that, on input ((n, v), h),
computes h1/v, as follows:

Step 1. A generates l random numbers, r1, . . . , rl ∈ Zv, and l random numbers,
s1, . . . , sl ∈ Z

∗
n. A sets

gi := hrisv
i ∀i ∈ {1, . . . , l},

and feeds (n, v, (g1, . . . , gl)) to B.

Step 2. A receives (x1, . . . , xl, xl+1) from B, and checks whether or not it is a non-
trivial RSA-representation of 1. If it is not, then A halts.

Step 3. If
∑l

i=1 rixi = 0 mod v, then A halts.

Step 4. Using the extended Euclidean algorithm, A computes integers e, f ∈ Z

satisfying

e (
l∑

i=1

rixi) + fv = 1.

A then computes

hf (xl+1

l∏
i=1

sxi

i)−e,

and outputs the result.

2.3 COLLISION-INTRACTABLE FUNCTIONS 65

It is easy to verify that the output in Step 4 is equal to h1/v, and that the total running
time is O(l|v|) plus the running time of B. We now determine the success probability
of A.

Because the joint distribution of (g1, . . . , gl), generated in Step 1, is the same
as that of the output of IRSAREP, the transition from Step 2 to Step 3 occurs with
probability ε. To determine the probability that the transition from Step 3 to Step
4 takes place, we observe that there exists an integer j ≤ l such that x j �= 0 mod v
(because B’s output is non-trivial). Therefore, there are exactly v l−1 “bad” tu-
ples (r1, . . . , rl) ∈ (Zv)l, for which

∑l
i=1 rixi = 0 mod v: for any choice of

(r1, . . . , rj−1, rj+1, . . . , rl), the remaining number, rj , exists and is uniquely de-
termined because v is a prime. The tuple (r1, . . . , rl) is unconditionally hidden from
B, owing to the randomness of the si’s and the fact that v is co-prime to ϕ(n), and
it is therefore independent of B’s output. Any choice of (r 1, . . . , rl) is equally likely
to have been made by A, and so the probability of having chosen a bad tuple is
vl−1/vl = 1/v.

Because Step 4 takes place only if Step 3 is successful, and Step 3 takes place
only if Step 2 is successful, the overall success probability of A is ε(1 − 1/v).

The proof reduction is optimally tight, and so using the parameter sizes recommended
for the RSA function to implement the RSAREP function results in roughly the same
security level. In particular, taking a 2048-bit n and 200-bit v should suffice for
long-term security.

As in the case of the DLREP function, Construction 2.3.4 is not the only one
for which Proposition 2.3.5 can be proved, but it suffices for our purposes in this
book. From now on, (IRSAREP, DRSAREP) always denotes an invulnerable instance gen-
erator constructed from an invulnerable instance generator (I RSA, DRSA) for the RSA
function in the manner of Construction 2.3.4. Of course, it is permitted to use any
instance generator with a distribution that is indistinguishable from that generated by
(IRSAREP, DRSAREP).

The constructed RSAREP function can be used by a sender to commit to l at-
tributes, (x1, . . . , xl). We will show in Chapter 3 how the sender can gradually and
selectively open its commitment to an infinitely powerful receiver, and more gener-
ally can demonstrate all sorts of properties about its attributes without leaking addi-
tional information about them.

2.3.4 Comparison

It is clear that the DLREP function and the RSAREP function have much in common,
and indeed most constructions in this book can be based on either function. There
are some notable differences, though:

• In the RSAREP function the factorization of n can serve as a trapdoor, enabling
the computation of arbitrary RSA-representations for any number in Z

∗
n. The

66 CRYPTOGRAPHIC PRELIMINARIES

DLREP function is not known to have a trapdoor.

• In the RSAREP function, v can be arbitrarily small or be a fixed constant
(hard-wired into the instance generator). It is easy to see that Proposition 2.3.5
remains valid for these choices (but the reduction is no longer optimally tight).
Similar choices do not exist for the DLREP function, because the infeasibility
of collision-finding is directly related to the binary size of q.

As a result, the RSAREP function offers greater flexibility. As we will see in the next
section, though, a large v is desirable to construct highly practical showing protocols,
and so the second advantage of the RSAREP function is not of interest to us.

For our purposes in this book the DLREP function is usually preferable, for rea-
sons related to practicality:

• The DLREP function can be evaluated faster than the RSAREP function.

• The DL-representation takes less storage space than the RSA-representation
for the same security level, assuming that exponents are smaller than numbers
in the base.

• Assuming the elliptic curve construction for Gq resists subexponential-time
inverting algorithms, storage of numbers in Gq requires significantly less space
than storage of numbers in Z

∗
n for the same security level, and computations

involving base numbers are much faster.

Moreover, as we will see in the next section, the real-time operations needed to
prove knowledge of a DL-representation are much fewer than in the case of an RSA-
representation, because all exponentiations can be precomputed.

2.4 Proofs of knowledge

2.4.1 Definition

With (i, x) denoting the output of an instance generator for a function {f i(·)}i∈V ,
and with i understood, fi(x) may be called a public key and x a secret key (or witness)
corresponding to the public key. A key pair consists of a secret key and a public key.
The outputs of algorithm I form the system parameters, and the process of running
D and forming the public key is referred to as the key set-up. 13

The public key uniquely corresponds to the secret key, but unless f i(·) is a per-
mutation there may be many secret keys corresponding to each public key. On input
i and the public key, it is infeasible to compute a corresponding secret key if and

13This definition in terms of collections of one-way functions is not standard, but makes sense in our
situation as well as in most other cases that consider only polynomially bounded key holders.

2.4 PROOFS OF KNOWLEDGE 67

only if the function is one-way over (I, D). Moreover, if the function is collision-
intractable over (I, D), no party that is given i can feasibly generate a public key for
which it knows two corresponding secret keys.

We now come to the notion of a proof of knowledge, originating from Gold-
wasser, Micali, and Rackoff [193]. Informally, this is a protocol by means of which
one party can convince another that it “knows” a secret key corresponding to its pub-
lic key.

Definition 2.4.1. A proof of knowledge (P, V) for a function {f i(·)}i∈V is a proto-
col performed by a pair of interactive polynomial-time algorithms. P is called the
prover and V is called the verifier. The protocol (P, V) must satisfy the following
two properties:

• (Completeness) For all k, for all (i, x) ∈ V × Di,

Pk

(
VP(x)

(i, fi(x)) accepts
)

= 1.

The probability is taken over the coin flips (if any) of V and P.

• (Soundness) There exists an expected polynomial-time algorithm K, called a
knowledge extractor, such that for all P̂, for all constants c > 0, for all (i, x) ∈
V × Di with |i| sufficiently large, and for all auxiliary inputs aux,

∣∣∣ Pk

(
VP̂(aux)

(i, fi(x)) accepts
)
− Pk

(
fi(K((i, fi(x)), aux; P̂)) = fi(x)

) ∣∣∣
is smaller than 1/kc.

Loosely speaking, the two properties state that the prover can convince the veri-
fier if and only if the prover knows a secret key corresponding to its public key. 14

The simplest proof of knowledge is one in which P sends x to V, whereupon V
checks its correspondence to the public key by applying f i(·). For our purposes in
this book, however, P should not reveal its secret key. protocol.

2.4.2 Security for the prover

Soundness is a formalization of security for V. Many flavors of security for P have
been studied in the literature. We now examine the four most useful ones.

14Definition 2.4.1 originates from Feige and Shamir [169]. Bellare and Goldreich [22] provided a more
general definition of proof of knowledge that takes into account provers that have superpolynomial com-
puting power. We do not consider this alternative definition here, since it is considerably more complex
and the presented one is adequate for our purposes.

68 CRYPTOGRAPHIC PRELIMINARIES

Definition 2.4.2. A proof of knowledge (P, V) for f(·) is computationally zero-
knowledge if there exists an expected polynomial-time algorithm S, called a sim-
ulator, such that for all V̂ and for all auxiliary inputs aux, the two ensembles{

V̂P(x)
((i, fi(x)); aux)

}
(i,x)∈V ×Di

and
{

S((i, fi(x)), aux; V̂)
}

(i,x)∈V ×Di

are computationally indistinguishable.

Equivalently, the views of V̂ in protocol executions with P can be simulated with
indistinguishable probability distribution.

In a similar manner one can define statistical and perfect zero-knowledge; in these
cases the simulator must be able to output protocol transcripts that are statistically
indistinguishable from, or identically distributed to, the protocol transcripts that a
verifier with unlimited computing power sees when interacting with P . Statistical
and perfect zero-knowledge are meaningful notions in case f i(·) is not a permutation;
even though Ṽ can compute all secret keys corresponding to P’s public key, it cannot
find out more about which one is known to P than what is known in advance.

It is possible to construct protocols that are zero-knowledge when protocol exe-
cutions are performed sequentially, but that leak the secret key of the prover in case
attackers are able to engage in parallel executions of the protocol; see Feige and
Shamir [169] for an example.

The zero-knowledge property states that a misbehavingV (with either polynomial
or unlimited computing power, depending on the flavor) cannot learn any information
beyond what it can infer from merely the system parameters and P’s public key. A
weaker notion, which will be very useful in Chapter 3 to prove the unforgeability of
digital signature schemes in the random oracle model, is the following.

Definition 2.4.3. A proof of knowledge (P, V) for a function f(·) is (computation-
ally, statistically, perfectly) honest-verifier zero-knowledge if there exists an expected
polynomial-time simulator S such that the two ensembles{

VP(x)
((i, fi(x)))

}
(i,x)∈V ×Di

and
{

S((i, fi(x));V)
}

(i,x)∈V ×Di

are (computationally, statistically, perfectly) indistinguishable.

The following notion (due to Feige and Shamir [169]) is also weaker than zero-
knowledge, but in many applications it is at least as useful.

Definition 2.4.4. A proof of knowledge (P, V) for a function f(·) is statistically
witness-indistinguishable if, for any x1, x2 ∈ Di such that fi(x1) = fi(x2), and
for any auxiliary input aux to Ṽ, the two ensembles defined by

ṼP(x1)
((i, fi(x1)); aux) and ṼP(x2)

((i, fi(x2)); aux),

respectively, are statistically indistinguishable.

2.4 PROOFS OF KNOWLEDGE 69

In other words, Ṽ cannot learn any information about which particular secret
key is applied by P . In a similar manner one can define computational and per-
fect witness-indistinguishable proofs of knowledge. More generally, one can define
witness-indistinguishability for protocols that are not proofs of knowledge.

A proof of knowledge for a permutation is trivially witness-indistinguishable; this
is an uninteresting property because it holds even for protocols in which P transmits
its secret key to V . Later in this section, and more importantly in Chapter 3, we will
introduce witness-indistinguishable proofs of knowledge for many-to-one functions.

The following proposition is due to Feige and Shamir [169].

Proposition 2.4.5. Witness-indistinguishability is preserved under arbitrary compo-
sition of protocols.

This property, which does not hold for zero-knowledge, applies not only to dif-
ferent executions of the same protocol but also to executions of different witness-
indistinguishable protocols.

In contrast to the properties of completeness, soundness, (general and honest-
verifier) zero-knowledge, and witness-indistinguishability, the last notion of security
for P discussed here is defined only over the output distribution of a specific instance
generator.

Definition 2.4.6. A proof of knowledge (P , V) for a function f(·) is witness-hiding
over the instance generator (I, D) for f(·) if there exists an expected polynomial-
time algorithm W , called a witness extractor, such that for all verifiers V̂ , for all
constants c > 0, for all sufficiently large k, and for all auxiliary inputs aux,∣∣∣ Pk

(
fi(V̂P(x)

(i, fi(x); aux)) = fi(x) | i := I(1k); x := D(i)
)

− Pk

(
fi(W ((i, fi(x), aux); V̂)) = fi(x)

)∣∣∣ < 1/kc.

The witness-hiding property states that V̂ , after having engaged in (at most) poly-
nomially many protocol executions with P , cannot compute an entire secret key that
corresponds to P’s public key, unless it already knew or could compute such a se-
cret key before any protocol executions with P were performed. The latter case is
not interesting, and so we will refer to proofs of knowledge over vulnerable instance
generators as being trivial witness-hiding. Note that non-trivial witness-hiding does
not exclude the possibility that V̂ can uniquely determine half of the bits of P’s se-
cret key, say, once it has engaged in sufficiently many protocol executions. Due to
the soundness property, however, non-trivial witness-hiding offers adequate security
in most applications of proofs of knowledge.

The following proposition also originates from Feige and Shamir [169].

Proposition 2.4.7. Let (I, D) be an instance generator for a function f(·) such that
the following two properties hold for each y in the range of f i(·):

70 CRYPTOGRAPHIC PRELIMINARIES

• y has at least two preimages in the domain Di of fi(·); and

• conditional on the event that D(i) outputs an element in the preimage set of
y, none of the preimages of y has overwhelming probability of being output by
D(i).

Then the following holds: if (P, V) is a computationally witness-indistinguishable
proof of knowledge for f(·), and f(·) is collision-intractable over (I, D), then (P,
V) is non-trivially witness-hiding over (I, D).

To prove this result, suppose that V̂ outputs a secret key corresponding to P’s
public key, after having engaged in polynomially many protocol executions. Ow-
ing to the witness-indistinguishability property this key differs with non-negligible
probability from the secret key used by P . Therefore, the algorithm <P, V̂> finds
collisions for the function with non-negligible success probability.

Note that the key set-up and the process of generating the system parameters do
not enter the definition of proofs of knowledge. Definition 2.4.1 simply assumes
correct formation. When designing a system, care must be exercised as to which
party controls algorithms I and D:

• The process of generating the system parameters must be controlled by the
party or parties to whom improperly formed system parameters pose a secu-
rity threat. For example, if V runs I then it may be able to embed trapdoor
information so that it can feasibly compute a secret key corresponding to the
public key of P ; whether this is a threat to the security of P depends on the
application at hand. On the other hand, if P runs I , P may be able to deter-
mine system parameters for which it can find collisions. Again, whether or not
this is a problem depends on the application at hand; for a situation in which
P should not run I by itself, see Chapter 3.

Any interests of V and P can be met by letting a trusted party run I . Using
cryptographic multi-party computation techniques (see, for instance, Chaum,
Crepeau, and Damgård [89] and Chaum, Damgård, and van de Graaf [106]), it
is possible for V and P to create a “virtual” trusted party to run I . Although
multi-party computation techniques are not practical in general, in all the con-
structions in this book they can be implemented in a practical manner. For
instance, with the RSA-based constructions that we will present there is no
need for the prover to prove that n is the product of two primes of equal size,
and the proof that v is co-prime to ϕ(n) is a by-product of the certificate is-
suing protocol. More generally, correct formation by one of V and P in our
constructions can always be proved by providing an additional output evidenc-
ing that the process has taken as input a source of randomness substantially
outside of its control.

• Normally the key set-up is performed by P, to make sure that its secret key
does not become known to V . In some applications, V and P should jointly

2.4 PROOFS OF KNOWLEDGE 71

perform this process, by means of an interactive protocol. For example, Chap-
ter 4 addresses the situation where the CA ensures that a part of the secret key
generated for a receiver contains pre-approved attributes, while the receiver
ensures that the CA cannot learn its entire secret key.

We now introduce practical proofs of knowledge for both the DLREP function and
the RSAREP function. These will be central to our constructions of issuing and
showing protocols in the next two chapters.

2.4.3 Proving knowledge of a DL-representation

Consider any instance generator for the DLREP function. P’s public key is h :=∏l
i=1 gxi

i . In order to prove knowledge of a DL-representation of h with respect to
(g1, . . . , gl), P and V perform the following protocol steps:

Step 1. P generates at random l numbers w1, . . . , wl ∈ Zq . It then sends a :=∏l
i=1 gwi

i to V . The number a is called the initial witness.

Step 2. P computes l responses, responsive to a challenge c ∈ Zs of V, where
1 < s ≤ q, according to ri := cxi + wi mod q, for i = 1, . . . , l, and sends
them to V . (The role of s and the process of forming c will be discussed
shortly.)

V accepts if and only if the verification relation
∏l

i=1 gri

i h−c = a holds.
Note that both a and the left-hand side of the verification relation can be rapidly

computed using simultaneous repeated squaring.
A variation is for P in Step 1 to send a one-way hash of a; V must then check

whether this number is equal to the hash of
∏l

i=1 gri

i h−c. Also, if V knows yi :=
logg gi, for some generator g and all i ∈ {1, . . . , l}, then the verification relation can
be collapsed to

g
∑

l

i=1
yirih−c = a.

We will not consider these variations any further.
The integer s in Step 2 must be known to both P and V . It may be determinis-

tically related to the system parameters (e.g., a predetermined rounded fraction of q,
or q itself). Alternatively, it may be specified as part of the process of generating the
system parameters or P may specify it when informing V of its public key.

The challenge c need not be generated at random, nor need it be generated by V .
Nevertheless, we will always refer to it as V’s challenge, because it determines the
security for V.

The protocol description is generic in the sense that the binary size of s and the
process of generating c have yet to be specified. Also, we have not yet stated any
requirements for the instance generator.

72 CRYPTOGRAPHIC PRELIMINARIES

Proposition 2.4.8. (P, V) is complete and perfectly witness-indistinguishable, re-
gardless of the binary size of s and the process of generating V’s challenge.

Proof. Completeness follows from

l∏
i=1

gri

i h−c =
l∏

i=1

gcxi+wi

i h−c

= (
l∏

i=1

gxi

i)c(
l∏

i=1

gwi

i)h−c

= hcah−c

= a.

To prove witness-indistinguishability, we will show that any view of Ṽ could have
resulted from any secret key of P, with equal probability. Suppose P used secret key
(x∗

1, . . . , x
∗
l). In Step 1 it would have sent

a∗ :=
l∏

i=1

g
w∗

i

i

to V , and in Step 3 it would have sent responses r∗
i := cx∗

i + w∗
i mod q, for i ∈

{1, . . . , l}. From ri = r∗i mod q it follows that w∗
i = ri − cx∗

i mod q, for i =
1, . . . , l, and since P’s responses make Ṽ accept it follows that

a∗ =
l∏

i=1

g
w∗

i

i

=
l∏

i=1

g
ri−cx∗

i

i

=
l∏

i=1

gri

i (
l∏

i=1

g
x∗

i
i)−c

= (hca)h−c

= a.

Since the wi’s are chosen at random from Zq, the view perfectly hides which secret
key has been used, and the claimed result follows.

Soundness and security for P depend on the binary size of s and the process of
generating c. Furthermore, for the property of witness-hiding we need to specify an
instance generator. Assuming that c is chosen at random by V , and becomes known
to P only after P has chosen its initial witness a, the following security implications
hold:

2.4 PROOFS OF KNOWLEDGE 73

(Large s) If s is superpolynomial in k, then the protocol is a proof of knowledge as
is; no repetitions are needed to achieve soundness. It is easy to prove that it
is honest-verifier zero-knowledge: the simulator generates r1, . . . , rl and c at
random, and computes a :=

∏l
i=1 gri

i h−c. The following two cases describe
conditions under which (P , V) is witness-hiding over (IDLREP, DDLREP):

• In case V in advance knows (x1, . . . , xl−1) with overwhelming probabil-
ity, but has no a priori information about x l, the protocol is believed to be
witness-hiding over (IDLREP, DDLREP). It is easy to prove that the case of ar-
bitrary l is as secure as the special case l = 1, which is the Schnorr proof
of knowledge [337]. In his generic string encoding model, Shoup [352]
proved that an active attacker in the Schnorr proof of knowledge cannot
learn enough information to be able to subsequently prove knowledge of
P’s secret key by itself. In other words, the Schnorr proof of knowledge
is witness-hiding in the generic string encoding model, a result that can
easily be adapted to the case of arbitrary l.

• In case l ≥ 2 and V cannot identify (x1, . . . , xl−1) in advance with over-
whelming probability (i.e., V has non-negligible uncertainty about the
tuple), it follows from Propositions 2.3.3, 2.4.7, and 2.4.8 that the proto-
col is provably (non-trivially) witness-hiding over (I DLREP, DDLREP).

In either case, the protocol can be made zero-knowledge by prepending a
fourth move in which V commits to its challenge; the required strength of
the commitment depends on whether or not V is polynomially bounded. 15 Al-
ternatively, P and V determine V’s challenge in a mutually random fashion.

(Small s) If s is polynomial in k, then the protocol steps must be repeated polyno-
mially many times in order to result in a sound protocol. (V accepts if and only
if it accepts in each iteration.) Two cases can be discerned:

• Sequential repetitions result in a zero-knowledge proof of knowledge.

• Parallel repetitions do not result in a zero-knowledge proof of knowledge.
They are believed, however, to result in a proof of knowledge that is
witness-hiding over (IDLREP, DDLREP). (This can be proved in case l ≥ 2
and V initially has non-negligible uncertainty about (x1, . . . , xl−1).) A
zero-knowledge protocol can be obtained by prepending a fourth move
in the manner described for the case of large s.

We will not consider the case of small s any further in this book, because the resulting
protocols are significantly less efficient. In later chapters, we will often take s := q.

15As noted by Bellare (personal communication, January 8, 1999), the commitment may not be of the
form gα

i hc, for some i ∈ {1, . . . , l} and random α ∈ Zq , since this would allow an attacker to always
convince V without knowing a DL-representation of h. A commitment of the form gci hα should be fine,
although it is unclear how to prove the soundness property.

74 CRYPTOGRAPHIC PRELIMINARIES

The most practical way to obtain a protocol that is provably witness-hiding is to
set l = 2, to generate x2 at random from Zq, and to set x1 equal to the outcome of
a coin flip (not necessarily unbiased); the resulting three-move protocol (with large
s) is an optimization of Okamoto’s extension [288, page 36] of the Schnorr proof
of knowledge. Taking l > 2 does not improve the provability of the witness-hiding
property and only makes the protocol less efficient; for this reason the situation l > 2
has never been considered in the literature. In Chapter 3, however, we will see that
there are legitimate reasons for resorting to l > 2.

The security results for P hold only assuming that the system parameters are
formed by running IDLREP. Depending on the application at hand, both P and V may
have security interests in seeing to it that the system parameters are formed in this
manner. For example, if P is allowed to generate at least one g i by itself, after V
has formed the remaining ones, P can easily construct colliding secret keys. For our
purposes in Chapter 3 it suffices that V , or a party trusted by V , runs I DLREP. Additional
outputs may be sent to P to prove that random or pseudorandom bits have been used
in the process, and a proof of primality of q may be included.

Furthermore, depending on the application, it may be necessary for P and V to
check membership in Gq of certain numbers:

• If P can get way with a public key h that is not a member of G q , then a
corresponding secret key does not exist, yet P̂ may be able to make V accept
with non-negligible probability. Burmester [67] pointed out for the Schnorr
proof of knowledge that P̂ can convinceV with probability 1/2 by multiplying
in a non-trivial square root of unity; the same attack applies in the general case.
This issue, which applies not only to the subgroup construction but also to the
elliptic curve construction, will also play a role in Chapter 3.

To circumvent the problem, V should check that P’s public key h is a member
of Gq . This one-time check can take place off-line, before the protocol takes
place, and is especially practical in applications in which the same public key is
used in many protocol executions. If Gq is a subgroup of a commutative group
of order o, and q divides o but q2 does not divide o, then the check hq = 1
suffices to verify membership in Gq; see Herstein [210, Corollary on page 62].
It can also be shown that the check hq = 1 suffices to prove membership in
case Gq is not a subgroup of a cyclic group, provided the verifier accepts the
protocol execution; cf. Verheul and Hoyle [382].

In the digital certificate constructions in Chapters 4, 5, and 6, the problem does
not play a role.

• Lim and Lee [252] showed that, in the subgroup construction for G q , it may
in general be dangerous for the prover to apply its secret key to base numbers
supplied by the verifier without first checking that these are indeed members
of Gq . Two ways around this are the following:

2.4 PROOFS OF KNOWLEDGE 75

– The prover can check membership in Gq of each supplied base number a
to which it is to apply its secret exponent.

– One can use a prime p such that (p − 1)/2q contains only prime factors
greater than q. This circumvents the need to perform real-time member-
ship verifications.

In this book the issue is avoided altogether, because in our protocol construc-
tions the prover never applies its secret key to base numbers supplied by the
other party.

2.4.4 Proving knowledge of an RSA-representation

Consider any instance generator for the RSA function. P’s public key is h :=∏l
i=1 gxi

i xv
l+1. In order to prove knowledge of an RSA-representation of h with

respect to (g1, . . . , gl, v), P and V perform the following protocol steps:

Step 1. P generates at random l numbers w1, . . . , wl ∈ Zv and a random number
wl+1 ∈ Z

∗
n, and sends the initial witness a :=

∏l
i=1 gwi

i wv
l+1 to V .

Step 2. P computes l + 1 responses, responsive to a challenge c ∈ Zs, where 1 <
s ≤ v, as follows:

ri := cxi + wi mod v ∀i ∈ {1, . . . , l},

rl+1 :=
l∏

i=1

g
(cxi+wi)divv
i xc

l+1wl+1

P then sends r1, . . . , rl, rl+1 to V. (The role of s and the process of forming c
will be discussed shortly.)

V accepts if and only if the verification relation

l∏
i=1

gri

i rv
l+1h

−c = a

holds.
Note that a, rl+1 and the left-hand side of the verification relation can all be com-

puted almost completely using simultaneous repeated squaring with a single precom-
puted table, since (g1, . . . , gl, h) are all fixed; only the v-th powers occurring in these
expressions have to be multiplied separately into the products.

Proposition 2.4.9. (P, V) is complete and perfectly witness-indistinguishable, re-
gardless of the binary size of s and the process of generating V’s challenge.

76 CRYPTOGRAPHIC PRELIMINARIES

Soundness and security for P depend on the binary size of s and the process of
generating c. Furthermore, for the property of witness-hiding we need to specify an
instance generator. In case c is chosen at random by V , and becomes known to P
only after it has chosen its initial witness a, we have similar security implications as
described for the case of the DLREP function. We mention only the following two
cases, both for s superpolynomial in k:

• In case V knows (x1, . . . , xl) with overwhelming probability, but does not
know xl+1, the protocol is believed to be witness-hiding over (I RSAREP, DRSAREP),
even though this has yet to be proved. The special case l = 0 is the Guillou-
Quisquater proof of knowledge [201, 202]. (Recall that v is a prime that is
superpolynomial in k.)

• In case l ≥ 1 and V initially has non-negligible uncertainty about (x 1, . . . , xl),
it follows from Propositions 2.3.5, 2.4.7, and 2.4.9 that the protocol is provably
(non-trivially) witness-hiding over (IRSAREP, DRSAREP).

There is no point in using s > v: if P̂ can respond to c then it can also respond to
c + jv, for any integer j. In later chapters, we will frequently take s := v.

The most practical way to obtain a protocol that is provably witness-hiding is to
set l = 1, to generate x2 at random from Z

∗
n, and to set x1 equal to the outcome of a

coin flip (not necessarily unbiased); the resulting three-move protocol (with large s)
is an optimization of Okamoto’s extension [288, page 39] of the Guillou-Quisquater
proof of knowledge. As in the case of the DLREP function, we will show in Chapter 3
that there are legitimate reasons for resorting to l > 1.

A four-move zero-knowledge proof of knowledge can be obtained by prepending
a move in which V commits to c. One way to form the commitment is by encod-
ing c into the hard-core bits of the commitment function of Håstad, Schrift, and
Shamir [208]; another is to use the RSAREP function.

As in the case of the proof of knowledge for the DLREP function, the above
security results hold only assuming that the system parameters are indeed formed by
running IRSAREP. Note that v need not be a prime or be co-prime to ϕ(n) to make the
protocol secure, assuming one is willing to restrict the set from which the g i’s and
xl+1 and wl+1 are chosen.16 In light of the goal that will be pursued in Chapter 3,
though, we will only consider the choices for v and n made here.

16For example, the protocol is a witness-hiding proof of knowledge if n is a Blum integer, v = 2, the
gi’s, xl+1, and wl+1 are all quadratic residues, and the protocol moves are repeated polynomially many
times. One can also consider a modification similar to that of Feige, Fiat, and Shamir [168], in which n is
a Blum integer and P randomly multiplies ±1 into rl+1 and a. Yet another choice is v = 2t, for t such
that v is superpolynomial in k; although the prover can convince the verifier with success probability 1/2j

if it knows an RSA-representation of the 2j-th power of h for some j, the protocol can be proved secure
against an active impersonator, relative to the factoring assumption (cf. Shoup [351] and Schnorr [338]).

2.5 DIGITAL SIGNATURES 77

2.5 Digital signatures

2.5.1 Definition

Informally, a digital signature is the electronic analogue of a handwritten signature.
A digital signature on a message can be verified by anyone without the help of the
signer, by applying the public key of the signer, but only the signer can compute
signatures on valid messages, by applying its secret key. The following definition
formalizes this.

Definition 2.5.1. A digital signature scheme consists of a function {f i(·)}i∈V , an
invulnerable instance generator (I, D), two message sets M = {Mi}i∈V and
M∗ = {M∗

i }i∈V , a Boolean predicate pred(·) that can be evaluated in polyno-
mial time, and a protocol (P , V) performed by a pair of interactive polynomial-time
algorithms. P is called the signer, V the receiver, and (P , V) the (signature) issuing
protocol. (P, V) must satisfy the following two properties:

• (Signature generation) For all (i, x) ∈ V × Di and for all m∗ ∈ M∗
i , if

(m, σ) := VP(x)
((i, fi(x)), m∗)

then m ∈ Mi and m is a superstring17 of m∗, and the probability function
defined by

Pk

(
pred(i, fi(x), m, σ) = 1

)

is overwhelming in k.

The pair (m, σ) is called a signed message, and σ is P’s digital signature on
m.

• (Unforgeability) For any t ≥ 0, the following holds. The probability (taken
over (I, D) and the coin flips of V̂ and P) that V̂, after having engaged in up
to t protocol executions with P , outputs at least t + 1 distinct signed messages
(with messages in M) is negligible in k.

The digital signature scheme is said to be unforgeable over (I, D).

Whenever the instance generator is clear from the description of the signature
scheme, we will simply say that the signature scheme is unforgeable.

Note that the capability to obtain two different signatures on the same message
by engaging in a single execution of the protocol with the signer is not considered to

17That is, the binary string m∗ can be obtained by pruning bits from the binary string m. For instance,
any m is a superstring of the null string. Further examples are described shortly. Definition 2.5.1 could
be generalized by considering messages m that have other relations to m∗ (e.g., m is a preimage under a
one-way function of m∗), but this is outside of the scope of the book.

78 CRYPTOGRAPHIC PRELIMINARIES

fall under the scope of forgery. This convention is arbitrary, and adopted here merely
for concreteness.

Definition 2.5.1 is based on the standard definition of Goldwasser, Micali, and
Rivest [194], but differs in a few respects. The standard definition is not suitable to
describe blind signature schemes and other schemes with interactive issuing proto-
cols, including those that we will design in Chapter 4. Also, it includes the processes
of generating the system parameters and the key set-up, but not a notion of security
for the signer; this is opposite to the way the definition of proofs of knowledge is
structured, and does not reflect the common basis of both notions. The definition
given here is adequate for our purposes.18

The role of the auxiliary common input m∗ in Definition 2.5.1 differs depending
on the type of signature scheme:

• In the most widely considered digital signatures in the cryptographic literature,
the signature issuing protocol is non-interactive, M equals M∗, and m∗ is
equal to the message m. In this case, the unforgeability property implies that
the receiver cannot obtain a signature on a message that the signer has not seen
and knowingly signed.

• In the case of blind signatures (see Chaum [91, 92, 93, 94, 95, 96, 99, 100]), m ∗

is always the empty string and m is generated at random by V . Specifically, a
blind digital signature scheme is a digital signature scheme with the additional
property that the signed message (m, σ) obtained by V by interacting with P̃
is statistically independent of P̃’s view in the protocol execution. (Weaker
flavors are possible. The weakest flavor is that in which P̂ cannot correlate
signed messages to its views of protocol executions.)

• In Section 4.2 we will construct issuing protocols in which the message m
is chopped up into polynomially many message blocks, x 1, . . . , xl, α. In this
case, m∗ equals the concatenation of x1, . . . , xl; the remaining message block,
α, is generated secretly at random by V .

As with the witness-hiding and zero-knowledge properties for proofs of knowledge,
the unforgeability property for digital signatures depends on a number of factors that
have been described in Section 2.1.4. Specifically, the resistance of a digital signa-
ture scheme to forgery is influenced by the maximum number of protocol executions
in which V̂ can engage and by the degree to which the protocol executions can be
interleaved. In addition, unforgeability depends on how, when, and by which party
the message m∗ is formed.

18A variation of Definition 2.5.1 is to move the unforgeability property outside of the definition (just
like witness-hiding is not a part of the definition of a proof of knowledge), and instead to complement the
“completeness” property (signature generation) by a “weak soundness” property that states that (P , V)
results in a signed message with probability 1 only if P knows a secret key corresponding to its public key
fi(x). This introduces the problem of defining what it means for a non-interactive algorithm to “know”
information.

2.5 DIGITAL SIGNATURES 79

An attack can proceed in several manners. In a successful key-only attack or
forgery from scratch, V̂ is able to forge signed messages without being given the op-
portunity to interact with P . At the other end of the spectrum is the adaptively chosen
message attack, in which V̂ has the freedom to choose all its contributions (e.g., mes-
sages, blinding factors, challenges) to each execution of the issuing protocol with P
in a manner that may depend on its aggregate view in all the protocol executions up
to that point; V̂ can use P as an oracle, and is limited only by the level of interleaving
of protocol executions that P allows.

A successful forgery may be due to a leakage of P’s secret key x; in this case V̂
is able to forge P’s signature on any message. Such a total break can be prevented
by using a signature issuing protocol that is non-trivially witness-hiding. V̂ need not
necessarily know P’s secret key, however, to be able to forge a signed message. For
instance, once V̂ has obtained a number of signed messages it may be able to alge-
braically combine these in such a manner that an additional signed message results.
In general, we will need to protect against existential forgery; in this case V̂ is able to
forge one signed message, for a message not necessarily of its own choice or under
its control. The unforgeability property of digital signatures states that existential
forgery is infeasible, even under an adaptively chosen message attack.

2.5.2 From proofs of knowledge to digital signature schemes

We now describe a general construction for converting a proof of knowledge into
a digital signature scheme. Consider hereto a proof of knowledge for a one-way
function f(·) that has the following structure:

Step 1. P generates a randomly distributed initial witness a. It sends a, which may
in general be a vector of numbers, to V .

Step 2. V generates a substantially random challenge, c ∈ Zs, with s superpolyno-
mial in the security parameter k. It sends the challenge, which may represent
a concatenation of several challenge numbers, to P.

Step 3. P computes a response, r, as the outcome of a function of its secret key, the
challenge and the coin flips used to construct a. It sends the response, which
may in general be a vector of numbers, to V.

V applies a Boolean polynomial-time computable predicate pred(·) to the system
parameters, P’s public key, P’s initial witness, its own challenge, and P’s response,
and accepts if and only if the outcome of the predicate is 1.

We refer to proofs of knowledge of this structure as Fiat-Shamir type proofs of
knowledge, because the following technique for converting them into digital signa-
ture schemes was first proposed (for a particular instance) by Fiat and Shamir [171].
Note that the proofs of knowledge described in Section 2.4 are of this type.

80 CRYPTOGRAPHIC PRELIMINARIES

The conversion into a digital signature scheme is brought about by replacing the
role of V by a “virtual” verifier. This is accomplished by computing V’s challenge
according to c := Hi(m, a), where m ∈ Mi is any message andH(·) is a sufficiently
strong (see page 84 for details) one-way hash function that must be specified together
with the system parameters or the public key of P . The signature on m is defined
to be σ := (a, r), and anyone can verify it by computing c and applying pred(·).
Because the digital signature on m is obtained by means of an issuing protocol that
is derived from a proof of knowledge, it is also called a signed proof.

As a general rule, from a security perspective it is recommended to hash along all
the information that V needs to check anyway to verify the signed proof, including the
public key, algorithm identifiers, and purpose specifiers. (They may all be assumed
to be part of the message, m.)

Note that the properties of witness-indistinguishable and witness-hiding are pre-
served under the conversion.

In case m is known to P at the start of the protocol, for instance because M is
the empty set or V provides m before learning a, P can compute c := H i(m, a) by
itself, and the issuing protocol can be non-interactive;P simply sends (a, r) to V. It is
conjectured that the non-interactive signature scheme is unforgeable if the signature
issuing protocol is witness-hiding. Modeling H(·) as a random oracle, Pointcheval
and Stern [307] proved the following unforgeability result.

Proposition 2.5.2. Suppose that the binary sizes of the outputs of f i(·) and Hi(·)
are linear19 in k and let (I, D) be an invulnerable instance generator for f(·). If a
Fiat-Shamir type proof of knowledge for f(·) is honest-verifier zero-knowledge, then
its conversion to a non-interactive signature scheme is unforgeable over (I, D) in the
random oracle model.

This result holds even under an adaptively chosen message attack whereby the
signer engages in polynomially many protocol executions that are arbitrarily inter-
leaved.

In case V wants to hide (at least) the message m from P, it must supply c itself.
In this case the protocol remains interactive and the conditions of Proposition 2.5.2
are insufficient to prove unforgeability in the random oracle model. By generalizing
a result due to Pointcheval [305], which is an optimization of a result of Pointcheval
and Stern [306], it is possible to prove the following result.

Proposition 2.5.3. Suppose that the binary sizes of the outputs of f i(·) and Hi(·)
are linear in k. Let (I, D) be such that the condition in Proposition 2.4.7 holds, and
suppose that f(·) is collision-intractable over (I, D). If a Fiat-Shamir type proof
of knowledge for f(·) is computationally witness-indistinguishable and the prover
performs no more than polylogarithmically20 many protocol executions, then its con-

19In fact, we merely need that 2−|Hi(·)| is negligible in k.
20A function f(·) is polylogarithmic in k if there exists a positive integer c such that f(k) ≤ (log k)c

for all sufficiently large k.

2.5 DIGITAL SIGNATURES 81

version to an interactive signature scheme is unforgeable over (I, D) in the random
oracle model.

This result holds under an adaptively chosen message attack, and the protocol
executions may be arbitrarily interleaved.

If it were only for the ability of V to hide m from P, the interactive variant of the
signature scheme would hardly be interesting. Okamoto and Ohta [289] showed that
it is possible forV , in interactive signature schemes derived from witness-hiding Fiat-
Shamir type proofs of knowledge, to perfectly blind the issuing protocol, provided
that certain properties hold. These properties, collectively referred to as commuta-
tive random self-reducibility, apply to virtually all practical Fiat-Shamir type proofs
of knowledge proposed to date, including those described in Section 2.4. In case
the condition in Proposition 2.5.3 holds, we obtain blind signature schemes that are
provably secure in the random oracle model. However, as explained in Section 1.2.2,
Chaum’s blinding techniques are unsuitable for our purposes.

We now show how to construct practical digital signature schemes from our
proofs of knowledge for the DLREP function and the RSAREP function.

2.5.3 Digital signatures based on the DLREP function

In Section 2.4.3 we investigated two variations for proving knowledge of a DL-
representation: one in which s is small and the protocol steps are repeated in parallel
polynomially many times, and the other in which no repetitions are needed because
s is superpolynomial in k. Both protocols are readily seen to be Fiat-Shamir type
proofs of knowledge, and can be converted into a digital signature scheme by apply-
ing the described technique. As mentioned in Section 2.4.3 we will not consider the
case of small s, for reason of practicality. Consider now the case of large s. Let H(·)
be a one-way hash function, defined by

Hq,gl
(·) : Mq,gl

× Gq �→ Zs.

A description of Hq,gl
(·) must be specified together with the system parameters or

P’s public key. The definition of Hi(·) and Mi may also depend on (g1, . . . , gl−1),
P’s public key, and any other information that is specified before protocol execu-
tions take place; for notational reasons we do not make this explicit in the notation.
In practice the outputs of Hq,gl

(·) will usually be t-bit strings, for some t with 2t

(possibly much) smaller than s.
P’s digital signature on a message m is a vector (a, r1, . . . , rl) such that the

relation
l∏

i=1

gri

i h−Hq,gl
(m,a) = a

82 CRYPTOGRAPHIC PRELIMINARIES

holds. Alternatively, one can define the signature to be (c, r1, . . . , rl), and the signa-
ture verification relation is

c = Hq,gl
(m,

l∏
i=1

gri

i h−c).

Since a signature of either one type is readily computed from one of the other type,
the security for P is not affected. Differences exist in terms of efficiency, though:

• Using (c, r1, . . . , rl) is favorable in case the subgroup construction is used to
construct Gq , because the storage complexity of c is smaller than that of a.
In particular, using the parameter sizes recommended in Section 2.2.2, many
hundreds of bits are saved.

• Using (a, r1, . . . , rl) may be preferable when t > 1 digital signatures need to
be verified. With (ai, r1i, . . . , rli) denoting P’s digital signature on message
mi, for all i ∈ {1, . . . , t}, V sets α1 := 1 and generates α2, . . . , αt at random
from a set V ⊆ Zq . V then computes

ci := Hq,gl
(mi, ai) ∀i ∈ {1, . . . , t},

and verifies the compound verification relation

l∏
i=1

g

∑
t

j=1
αjrij

i h−
∑

t

i=1
αici =

t∏
i=1

aαi

i .

It is easy to prove that if the compound verification relation holds, then the
probability that all t signatures are valid is at least 1 − 1/|V |. Since the left-
hand side of the compound verification relation can be rapidly computed using
simultaneous repeated squaring with a single precomputed table, this batch-
verification technique is a substantial improvement over verifying all t digital
signatures separately.21

The security of the digital signature scheme depends on which party specifies c:

(Non-interactive issuing protocol) Proposition 2.5.2 can be applied, since the proof
of knowledge is honest-verifier zero-knowledge.

Proposition 2.5.4. If (IDL, DDL) is invulnerable, and the binary size of outputs
of Hi(·) is linear in k, then non-interactively issued signed proofs are provably
unforgeable over (IDLREP, DDLREP) in the random oracle model, for any distribu-
tion of (x1, . . . , xl−1).

21For large t it is more efficient to randomly partition the t verification relations into a suitable number
of “buckets,” and apply batch-verification to each bucket. Cf. Bellare, Garay, and Rabin [21].

2.5 DIGITAL SIGNATURES 83

We stress that this result holds even in case (x1, . . . , xl−1) is known in advance
to V with overwhelming probability, if only x l is a random secret.

The special case l = 1 is the Schnorr signature scheme [337]. Note that P in
the non-interactive issuing protocol need not transmit a to V ; it can be recov-
ered from c and P’s responses.

(Interactive issuing protocol) By applying Proposition 2.5.3 we obtain the follow-
ing result.

Proposition 2.5.5. Let l ≥ 2 and suppose that V initially has non-negligible
uncertainty about (x1, . . . , xl−1). If the DL function used to implement the
DLREP function is one-way, the binary size of outputs of H i(·) is linear in k,
and P does not perform more than polylogarithmically many executions of the
issuing protocol, then interactively issued signed proofs are provably unforge-
able over (IDLREP, DDLREP) in the random oracle model, for any distribution of
(x1, . . . , xl−1).

On the basis of this result22 We make the following assumption, which will be
needed in Chapter 4.

Assumption 2.5.6. There exists a hash functionH∗(·) and a message setM =
{Mi}i∈{q,gl} with Mq,gl

⊇ Gq such that interactively issued signed proofs
are unforgeable over (IDLREP, DDLREP).

It is easy to prove that this assumption holds for all l ≥ 1 if it holds for l = 1,
for the same choice of hash function.

In accordance with the blinding technique of Okamoto and Ohta [289], V can
blind the issuing protocol by performing the following action after Step 1 of the
proof of knowledge. It generates l +1 random numbers, α 0, . . . , αl ∈ Zq , and
computes a′ := ahα0

∏l
i=1 gαi

i , c′ := Hq,gl
(m, a′), and c := c′ + α0 mod q.

It then sends its challenge c to P . Upon receiving P’s responses, r1, . . . , rl, V
computes r′i := ri + αi mod q, for all i ∈ {1, . . . , l}. It is easy to verify that
(a′, r′1, . . . , r

′
l), or (c′, r′1, . . . , r

′
l) for that matter, is P’s digital signature on

m. Moreover, if V chooses m at random and accepts then the signed message
is statistically independent of P̃’s view in the protocol execution. However,
there are no practical advantages in using this scheme over Chaum’s RSA-
based blind signature scheme [91, 92] (with small v), unless one trusts an el-
liptic curve implementation with short system parameters. Furthermore, as

22In their “random oracle + generic” security model, Schnorr and Jakobsson [339] prove a sharp secu-
rity bound for the unforgeability of interactively issued Schnorr signatures, assuming sequential protocol
executions. They also showed that parallel attacks that beat the success rate of sequential attacks must
solve the problem of finding an intersection point of a subset of randomized hyperplanes. Proposition 2.5.5
can be proved for all l ≥ 1 under the same assumption in a similar manner.

84 CRYPTOGRAPHIC PRELIMINARIES

explained in Section 1.2.2, Chaum’s blinding paradigm is unsuitable for our
purposes. In Chapter 3 we will introduce more intricate blinding techniques
that result in all sorts of previously unattainable results.

In practice, one-wayness ofH(·) is not enough for unforgeability over (I DLREP, DDLREP).
Existential forgery of non-interactively issued Schnorr signatures, for instance, is
feasible in case two messages m1, m2 exist such that, for random (a1, a2) ∈ Gq×Gq ,
it is feasible to compute with non-negligible success probability a third message m
and two integers α, β such that the following correlation holds:

αHq,gl
(m1, a1) + βHq,gl

(m2, a2) = Hq,gl
(m, aα

1 aβ
2) mod q.

In the interactive case, H(·) must be even stronger. To guarantee unforgeability in
practice, H(·) must be correlation-intractable, meaning that it is infeasible to com-
pute correlations like the one displayed. (Note that functions with superpolynomial
range are always correlation-intractable when idealized in the random oracle model.)
Because it is unclear how to formalize the notion of correlation-intractability in a
useful way, we will from now on always speak of a sufficiently strong one-way func-
tion whenever we need a correlation-intractable function. In practice, hash functions
such as SHA-I or RIPEMD-160 should suffice.23

Schnorr [337] suggests for his signature scheme that a one-way hash function
with 10-byte outputs should suffice for long-term practical security. There seems to
be no reason not to allow this choice for arbitrary l in the non-interactive case. In
the interactive case this should hold as well, assuming that P does not respond to
V’s challenge in case the delay between sending the initial witness and receiving the
challenge exceeds a short time bound. To be on the safe side, it is strongly recom-
mended to always use a sufficiently strong collision-intractable hash function with
at least 20-byte outputs. This choice is also preferred in light of the more intricate
signed proofs that will be described in Chapter 3.

2.5.4 Digital signatures based on the RSAREP function

Consider the case of s superpolynomial in k in the proof of knowledge in Sec-
tion 2.4.4, for a prime v superpolynomial in k and co-prime to ϕ(n). Let H(·) be a
one-way hash function, defined by

Hn,v(·) : Mn,v × Z
∗
n �→ Zs.

The definition of Hi(·) and Mi may also depend on (g1, . . . , gl), P’s public key, and
any other information that is specified before protocol executions take place.

23Note that these are not infinite collections of functions: they act on messages of any size, but their
outputs are of fixed size.

2.5 DIGITAL SIGNATURES 85

P’s digital signature on a message m is a vector (a, r1, . . . , rl+1) such that the
verification relation

l∏
i=1

gri

i rv
l+1h

−Hn,v(m,a) = a

holds. This form lends itself to batch-verification. Alternatively, and more compactly,
one can define the signature to be (c, r1, . . . , rl+1), and the corresponding signature
verification relation is

c = Hn,v(m,

l∏
i=1

gri

i rv
l+1h

−c).

Again, this does not affect the security for P .
As with the DLREP function, we distinguish two cases:

(Non-interactive issuing protocol) Proposition 2.5.2 can be applied, since the proof
of knowledge is honest-verifier zero-knowledge.

Proposition 2.5.7. If (IRSA, DRSA) is invulnerable, and the binary size of out-
puts of Hi(·) is linear in k, then non-interactively issued signed proofs are
provably unforgeable over (IRSAREP, DRSAREP) in the random oracle model, for
any distribution of (x1, . . . , xl).

The special case l = 1 is the Guillou-Quisquater signature scheme [201,
202].24

(Interactive issuing protocol) Proposition 2.5.3 can be invoked to prove the follow-
ing result.

Proposition 2.5.8. Let l ≥ 1 and suppose that V initially has non-negligible
uncertainty about (x1, . . . , xl). If the RSA function used to implement the
RSAREP function is one-way, the binary size of outputs of H i(·) is linear in k,
and P does not perform more than polylogarithmically many executions of the
issuing protocol, then interactively issued signed proofs are provably unforge-
able over (IRSAREP, DRSAREP) in the random oracle model, for any distribution of
(x1, . . . , xl).

Based on this result, we make the following assumption.

Assumption 2.5.9. There exists a hash functionH∗(·) and a message setM =
{Mi}i∈{n,v} withMn,v ⊇ Z

∗
n such that interactively issued signed proofs are

unforgeable over (IRSAREP, DRSAREP).
24Four years earlier, Shamir [346] described essentially the same signature scheme, with the irrelevant

difference that V’s hashed challenge appears as the exponent of a instead of h. This scheme also pre-
dates the paper of Fiat and Shamir [171] to which the conversion technique in Section 2.5.2 is generally
attributed.

86 CRYPTOGRAPHIC PRELIMINARIES

It is easy to prove that the assumption holds for all l ≥ 0 if it holds for l = 0,
for the same choice of hash function.

V can blind the issuing protocol, in accordance with the technique of Okamoto
and Ohta [289], by performing the following action after Step 1 of the proof
of knowledge. It generates l + 1 random numbers, α 0, . . . , αl ∈ Zv and
a random number αl+1 ∈ Z

∗
n, and computes a′ := ahα0

∏l
i=1 gαi

i αv
l+1,

c′ := Hn,v(m, a′), and c := c′+α0 mod v. It then sends its challenge, c, toP .
Upon receiving P’s responses, r1, . . . , rl+1, V computes r′i := ri +αi mod v,

for all i ∈ {1, . . . , l}, and r′l+1 := rl+1

∏l
i=1 g

(ri+αi) div v
i αl+1. It is easy to

verify that (a′, r′1, . . . , r
′
l+1), or (c′, r′1, . . . , r

′
l+1) for that matter, is P’s digi-

tal signature on m. Moreover, if V generates m at random and accepts then
the signed message is statistically independent of P̃’s view in the protocol
execution. However, there is no practical advantage over Chaum’s blind sig-
nature scheme [91, 92], which is much more efficient because small v may be
taken. Furthermore, as explained in Section 1.2.2, Chaum’s blinding paradigm
is unsuitable for our purposes. In Chapter 3 we will introduce more intricate
blinding techniques that offer all sorts of benefits.

In practice, H(·) must be a sufficiently strong one-way hash function. Similar con-
siderations as in the case of the DLREP function apply to the binary size of the
outputs of H(·). Although in the interactive issuing protocol 10-byte outputs should
be sufficiently secure when used in combination with a time-out, it is recommended
to always use a sufficiently strong collision-intractable hash function with at least
20-byte outputs. In particular, this will be necessary in Chapter 3.

2.6 Digital certificates

2.6.1 Definition of public-key certificates

Finally, we get to a formal definition of digital certificates. We start with the tradi-
tional definition, which is a special case of the definition of digital signatures.

Definition 2.6.1. A public-key certificate scheme is a digital signature scheme with
the extra property that the message m specifies at least a public key p of V, for which
V knows a corresponding secret key, s.

The pair (p, σ) is called a certified public key, σ is P’s digital certificate on m,
and the triple (s, p, σ) is called a certified key pair. P is also referred to as the
Certificate Authority (CA).

V’s key pair may be generated either before or during the protocol execution.
In the case of conventional identity certificates (see Section 1.1.2), the message

m is the concatenation of p and at least a key holder identifier. In the case of attribute

2.6 DIGITAL CERTIFICATES 87

certificates other attributes are concatenated, either along with the identifier or instead
of the identifier.

As mentioned already in Section 1.3.1, our use of the term “digital certificate”
differs from the mainstream use of the term, which considers a certificate to be the
data structure comprised of the CA’s signature, the public key it certifies, and any
information assigned to that public key. Our convention makes it easier to distinguish
between various cryptographic objects.

The definition of the key pair (s, p) for V may be the same as that of the key
pair (x, fi(x)) for P, but need not; it may even be completely unrelated. Likewise,
completely different instance generators may be used.

2.6.2 Definition of secret-key certificates

We now introduce a new kind of certificates that differ from public-key certificates
in that anyone can generate certified public keys without the assistance of P , but
certified key pairs remain unforgeable. The formal definition is as follows.

Definition 2.6.2. A secret-key certificate scheme is a digital signature scheme with
the additional property that there exists another Boolean predicate, pred ∗(·), that
can also be evaluated in polynomial time, such that:

• The message m, on whichV obtains a signature σ in an execution of the issuing
protocol with P , is a secret key of V . This secret key corresponds to a public
key p of V such that

pred∗(i, fi(x), p, σ) = 1.

• There exists an expected polynomial-time algorithm S, called a certificate sim-
ulator, that, on input (i, fi(x)), outputs a pair (p∗, σ∗) with a probability dis-
tribution that is indistinguishable from the probability distribution of (p, σ).

As in the definition of a public-key certificate, σ is called P’s digital certificate on
V’s public key, the pair (p, σ) is called a certified public key, and the triple (m, p, σ)
is called a certified key pair.

The output distribution of the certificate simulator may be computationally, sta-
tistically, or perfectly indistinguishable.

Example 2.6.3. P runs IRSA to obtain a pair (n, v) together with the factorization
of n, which serves as its secret key. This enables P to compute RSA digital signa-
tures [325]. Its RSA signature on a message m is σ := fn,v(m)1/v mod n, where
f(·) is a sufficiently strong one-way function.

This signature scheme can be converted into a secret-key certificate scheme by
viewing the pair (m, fn,v(m)) as a key pair for V. If we take f(·) to be the DL
function implemented using the subgroup construction (i.e., fn,v(m) = gm mod p,

88 CRYPTOGRAPHIC PRELIMINARIES

for some prime p that is not much smaller than n), then it is easy to build a certificate
simulator with indistinguishable outputs. The simulator picks a random b ∈ Z

∗
n

and checks whether bv mod n is an element of Gq; it repeats this experiment until
successful, and then outputs the pair (bv mod n, b).

How can a secret-key certificate be verified? In applications of practical inter-
est, V will use its public key p in a subsequent showing protocol without disclosing
the secret key m, and so certified public keys cannot be verified by applying pred(·).
Also, applying pred∗(·) to (p, σ) does not prove that the certified public key has been
issued by P, in view of the simulation property. Instead, verification of V’s certified
public key takes place indirectly. Namely, the ability of V to perform a “crypto-
graphic action” with respect to its public key attests to the fact that V knows a secret
key corresponding to its public key, and this in turn convinces that the certificate has
been issued by P . Since there is no point in using public-key certificates without per-
forming some cryptographic action that attests to the possession of a corresponding
secret key, secret-key certificates offer the same basic functionality as do public-key
certificates.25 The following two cryptographic actions in the showing protocol will
be of particular interest to us:

1. V performs a zero-knowledge proof of knowledge of a secret key correspond-
ing to its public key. If V can successfully perform the proof, then the verifier
is convinced not only that V knows a secret key corresponding to the public
key, by virtue of the soundness property, but also that the certificate has been
issued by P . However, the transcript of the protocol execution does not con-
vince anyone else of either one of these facts; the entire protocol execution is
zero-knowledge. (This is an advantage over public-key certificates, for which
the showing protocol is zero-knowledge in its entirety only when V proves
possession of a certificate by means of a zero-knowledge proof as well.)

In Example 2.6.3, V can prove knowledge of the secret key corresponding to
its public key gm by using the Schnorr proof of knowledge or its 4-move zero-
knowledge variant.

2. V digitally signs a message. Given the message, the digital signature of V, and
the certified public key of V, anyone is able to verify not only that the digital
signature is genuine, but also that it was indeed made with respect to a public
key certified by P .

In Example 2.6.3, V can sign a message using the Schnorr signature scheme;
in the random oracle model, these signatures can be issued only by a party that
knows the secret key.

25This idea is reminiscent of Shamir’s [346] self-certified public keys, the goal of which is to avoid
the need for an explicit certificate. Hereto the CA forms the public key of each applicant as a redundant
message that encodes the applicant’s identity, and issues a corresponding secret key to the applicant; key
pairs should be unforgeable.

2.6 DIGITAL CERTIFICATES 89

Note that a third cryptographic action can be performed: decrypting a message that
has been encrypted with V’s public key. In Example 2.6.3, V can decrypt messages
that have been encrypted under its public key g m by means of, for instance, the
ElGamal encryption scheme [146] in Gq . Since decryption requires knowledge of
the secret key, the party that encrypted the message is ensured that either V’s public
key has been certified by P or V̂ cannot decrypt. In the remainder of this book
we will not be interested in the case of encryption; public keys for (hybrid) session
encryption can always be formed at random at the start of an authenticated session.

2.6.3 Comparison

Secret-key certificates have several advantages over public-key certificates:

• They appear to be much better suited to design certificate issuing protocols
with the following property: V is able to blind the certified public key but not
a non-trivial part of its secret key. See Chapter 4 for details.

• A certified public key does not serve as signed evidence that its holder has been
issued a certificate by the CA. This property is preserved if certified key pairs
are used only to perform zero-knowledge proofs.

• The ability to simulate certified public keys enables individuals to hide in
which of several PKIs they are participating. See Section 5.2 for details.

• Knowledge of certified public keys (obtained from repositories or otherwise)
cannot help in attacking the certificate scheme of the CA.

On the other hand, care has to be taken when combining an interactive secret-key
certificate issuing protocol with a showing protocol. Suppose a certificate simulation
algorithm exists that outputs certified public keys for which the certificate simulation
algorithm and P together know a corresponding secret key. Then an attacker may
be able in the showing protocol to perform a cryptographic action with respect to a
simulated public key by delegating part of the action to P ; see Section 5.1.2 for an
example.

Successful delegation to executions of protocols other than the certificate issuing
protocol can simply be prevented by having P use independently generated keys for
different tasks. Key separation is recommended practice anyway; see, e.g., Kelsey,
Schneier, and Wagner [229]. To assess for a given application whether a crypto-
graphic action can be delegated to an execution of the issuing protocol, it must be
investigated whether certified public keys can be simulated in such a way that the
cryptographic action in the showing protocol can be performed by using P as an ora-
cle. In the certificate schemes that will be developed in this book, delegation is never
a problem; see Section 5.1.2 for details.

90 CRYPTOGRAPHIC PRELIMINARIES

2.7 Bibliographic notes

The historical background of the DLREP function in Section 2.3.2 is quite diverse.
In 1987, Chaum, Evertse, and van de Graaf [108] considered the case where all
gi’s are random elements from Z

∗
p, and claimed that inverting is infeasible when

elements from the domain are generated at random (hardly a useful instance gener-
ator). Chaum and Crepeau [60], Chaum and van Antwerpen [110], Chaum [101],
Boyar, Kurtz, and Krentel [44], Pedersen [298], van Heijst and Pedersen [380], and
Okamoto [288] all designed schemes based on the special case l = 2. Chaum, van
Heijst, and Pfitzmann [111, 112] studied collision-intractability for the special case
of fixed l, with gi’s in a group of prime order; their reduction is not tight, though, and
takes exponential time for l polynomial in k. In 1993, Brands [46] examined the one-
wayness and the collision-intractability of the DLREP function for arbitrary l polyno-
mial in k, and provided a tight reduction to prove its collision-intractability; the over-
head factor is approximately 2. Bellare, Goldreich, and Goldwasser [23] modified the
reduction to simplify its analysis, but the overhead is slightly larger. Pfitzmann [301],
elaborating on the reduction of Chaum, van Heijst, and Pfitzmann [111, 112], gave
the first (fairly intricate) optimally tight reduction. The proof of Proposition 2.3.3
is similar to a simpler reduction by Schoenmakers [342], but differs in the assump-
tion on the distribution of the gi’s (for reasons that will become clear in Chapter 3).
Construction 2.3.2 is new.

The RSAREP function in Section 2.3.3 was introduced by Brands [54]. Previ-
ously only the case l = 1 appeared, in proofs of knowledge (see Okamoto [288])
and implicitly in some proofs of security (see, e.g., Guillou and Quisquater [201]).
Construction 2.3.4 and Proposition 2.3.5 appear here for the first time.

The notion of secret-key certificates is due to Brands [56]; see also Brands [52,
53]. Definition 2.6.2 has not appeared previously. The possibility of delegation was
first noted by Schoenmakers (personal communication, May 1995), in the context of
the electronic coin system of Brands [49].

