
Chapter 3

Showing Protocols with
Selective Disclosure

In this chapter we present highly flexible and practical showing protocol techniques
that enable the holder of an arbitrary number of attributes to selectively disclose
properties about them; any other information remains unconditionally hidden. All the
techniques can be based on the DLREP function as well as on the RSAREP function.
The demonstrations can take several forms, including zero-knowledge proofs and
signed proofs. Signed proofs are provably unforgeable in the random oracle model
under the mere assumption that there exists an invulnerable instance generator for the
DL function or the RSA function. We do not yet make the connection with digital
certificate issuing protocols; this will be the topic of Chapters 4 and 5.

3.1 Introduction

Consider a polynomial-time proverP that has committed, by means of a commitment
function, to one or more attributes that are (represented by) elements of a finite ring.
P is to demonstrate to a verifier V that its attributes satisfy a satisfiable formula from
proposition logic, where the atomic propositions are relations that are linear in the
attributes. By way of example, let x1, x2, x3 denote P’s attributes, and consider the
formula(

(F1 AND F2) OR (NOT F3 AND F4)
)

AND NOT F5 (3.1)

where

F1 = (x1 + 2x2 − 10x3 = 13)
F2 = (x2 − 4x3 = 5)
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F3 = (x1 + 3x2 + 5x3 = 7)
F4 = (3x1 + 10x2 + 18x3 = 23)
F5 = (x1 − 8x2 + 11x3 = 5)

We require that the computations of V when interacting with P can be performed
in polynomial time, but V is given infinite computing power in its attempts to learn
additional information about P’s attributes. The goal is to ensure that P does not
reveal to Ṽ any information about its attributes beyond the validity of the formula.

Regardless of the commitment function used, a constant-round zero-knowledge
argument for this task can be constructed by reducing the formula to an instance of
the NP-complete language Directed Hamiltonian Cycle and applying a protocol due
to Feige and Shamir [170]. Alternatively, the formula can be reduced to an instance
of the NP-complete language SAT and then subjected to a slightly more efficient
protocol due to Bellare, Jakobsson, and Yung [24]. The resulting protocols are highly
impractical, though, because statements must be encoded into Boolean circuits and
auxiliary commitments must be used for each gate.

In the remainder of this chapter we show that truly practical techniques exist
whenP commits to its attributes in a special manner. Assuming parameter sizes suffi-
cient to guarantee long-term security, the new techniques allowP to non-interactively
demonstrate example formula (3.1) by sending a mere 275 bytes to V. Forming and
verifying the proof both require fewer than 940 modular multiplications of numbers
in Gq or Z

∗
n.

In the next section we describe how P should commit. We then introduce tech-
niques for demonstrating formulae of special forms. Finally, in Section 3.6 we show
how to combine these techniques to demonstrate arbitrary Boolean formulae.

3.2 How to commit

Our proof techniques require P to commit to its attributes by means of either the
DLREP function or the RSAREP function:

• To base the security on the hardness of inverting the DL function, the attributes
must all be (represented by) numbers in Zq , and P computes h :=

∏l
i=1 gxi

i .
The system parameters and P’s secret key must be generated in accordance
with Construction 2.3.2, based on any invulnerable instance generator for the
DL function. Recall from Construction 2.3.2 that (x l, . . . , xl−1) may have an
arbitrary distribution, but P must generate x l at random from Zq.

• To base the security on the hardness of inverting the RSA function, the at-
tributes must all be (represented by) numbers in Zv , and P computes h :=∏l

i=1 gxi

i xv
l+1, where xl+1 ∈ Z

∗
n. The system parameters and P’s secret

key must be generated in accordance with Construction 2.3.4, based on any
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invulnerable instance generator for the RSA function. Recall from Construc-
tion 2.3.4 that (x1, . . . , xl) may have an arbitrary distribution, but P must gen-
erate xl+1 at random from Z

∗
n.

In either case, h is referred to as the public key of P . Recall that l may be polynomial
in the security parameter.

In case the security is based on the RSA function, there is a clean separation
between the role of the attributes and that of x l+1. This is not the case when the
DL function is used, because one of the attributes must be chosen at random, and it
will rarely make sense in practice to demonstrate a property about a random number.
Nevertheless, the distinction is merely a notational one. If one insists on allowing
(x1, . . . , xl) to have an arbitrary distribution, then P should form h :=

∏l+1
i=1 gxi

i ,
where gl+1 is a generator of Gq and P generates xl+1 at random from Zq . We stick
to the former notation, because it sometimes makes sense to demonstrate that the
random xl is unequal to zero; see Section 5.1.1.

As explained in Section 2.4, algorithms IDLREP and IRSAREP must be run by V , by a
party trusted by V andP, or by means of a secure multi-party protocol betweenV and
P. In any case, it must be ensured that P̂ cannot know more than one representation
of h. On the basis of Propositions 2.3.3 and 2.3.5 it is easily seen how to accomplish
this.

To avoid unduly repetition, throughout this chapter we detail our techniques for
the case where the DLREP function is used to commit to P’s attributes; for the
RSAREP function we clarify only the differences. We also assume from now on
that l ≥ 2 when the DLREP function is used, for obvious reasons.

3.3 Formulae with zero or more “AND” connectives

We first consider the situation in which P is to demonstrate a satisfiable formula with
zero or more “AND” connectives and no other logical connectives.

3.3.1 Technique based on the DLREP function

Without loss of generality, assume thatP is to demonstrate that the DL-representation
it knows of h with respect to (g1, . . . , gl) satisfies the following system of t ≥ 0
independent linear relations:


α11 . . . α1,l−t 1 0 . . . 0
α21 . . . α2,l−t 0 1 . . . 0

...
...

...
...

...
. . .

...
αt1 . . . αt,l−t 0 0 . . . 1







xπ(1)

xπ(2)

...
xπ(l)


 =




b1

b2

...
bt


 mod q. (3.2)

The coefficients αij are elements of Zq, and π(·) is a permutation of {1, . . . , l}.
Clearly, any satisfiable system of linear relations in x1, . . . , xl can be described in
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this form: if a system of linear relations contains dependent relations, it can be re-
duced to a system of independent linear relations, denoted in number by t here; then
the matrix of coefficients can be brought into row canonical form, using Gaussian
elimination; and, finally, by applying a suitable permutation π(·), the columns of the
matrix of coefficients can be interchanged, arriving at the system displayed above.
(In a practical implementation the latter step may be omitted, but here we need π(·)
also to enable a generic description and analysis of the technique.)

If t = l then V can verify the applicability of the formula without communicat-
ing with P, by solving for the xi’s and checking that they form a preimage to h.
Therefore we may assume that t < l.

Representing atomic propositions by linear relations over Z q , system (3.2) cor-
responds to the following Boolean formula:

(b1 = α11xπ(1) + · · · + α1,l−txπ(l−t) + xπ(l−t+1) mod q) AND . . .

. . . AND (bt = αt1xπ(1) + · · · + αt,l−txπ(l−t) + xπ(l) mod q). (3.3)

The special case t = 0 corresponds to the “empty” formula, TRUE. Although P’s
attributes obviously satisfy this formula, it may certainly make sense to demonstrate
it, as will become clear in the next three chapters.

Our technique for demonstrating formula (3.3) is based on the following result.

Proposition 3.3.1. P can prove knowledge of a DL-representation of

(
t∏

i=1

gbi

π(l−t+i))
−1h

with respect to

(
gπ(1)

t∏
i=1

g−αi1
π(l−t+i), . . . , gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i)

)

if and only if it knows a set of attributes that satisfies the formula (3.3).

Proof. If (x1, . . . , xl) satisfies the formula (3.3), then

h =
l∏

i=1

g
xπ(i)

π(i)

(∗)
= (

l−t∏
i=1

g
xπ(i)

π(i) )(
t∏

i=1

g
bi−

∑
l−t

j=1
αijxπ(j)

π(l−t+i) )

(∗∗)
= (

t∏
i=1

gbi

π(l−t+i))(gπ(1)

t∏
i=1

g−αi1
π(l−t+i))

xπ(1) · · · (gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i))
xπ(l−t) ,
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and so the DL-representation that P can prove knowledge of is (xπ(1), . . . , xπ(l−t)).
(We will refer to the marked derivation steps later on.)

To prove the converse, suppose that P̂ convinces V with non-negligible success
probability. According to Definition 2.4.1, there exists a polynomial-time knowledge
extractor K that outputs with non-negligible success probability a DL-representation
(y1, . . . , yl−t). By expanding the relation

(
t∏

i=1

gbi

π(l−t+i))
−1h =

l−t∏
i=1

(gπ(i)

t∏
j=1

g
−αji

π(l−t+j))
yi ,

it is seen that

(y1, . . . , yl−t, b1 −
l−t∑
j=1

α1jyj mod q, . . . , bt −
l−t∑
j=1

αtjyj mod q)

is a DL-representation of h with respect to (gπ(1), . . . , gπ(l)). This must be the DL-
representation (xπ(1), . . . , xπ(l)) known to P , because P must know at least one
such DL-representation to perform the proof of knowledge (otherwise K can be used
directly to compute DL-representations), and if this were different then < P̂ , K>
could be used to invert the DL function (see Proposition 2.3.3).

It remains to check that the DL-representation satisfies the formula (3.3). From
the left-hand side of the matrix equation (3.2) it follows, for all i ∈ {1, . . . , t}, that

l−t∑
j=1

αijxπ(j) + xπ(l−t+i) =
l−t∑
j=1

αijyj + (bi −
l−t∑
j=1

αijyj)

= bi mod q.

This completes the proof.

While the expressions appearing in this proposition are somewhat intimidating, the
process of deriving them is simple and can easily be performed by pencil and paper
using the following three steps:

1. As can be seen in the first part of the proof of Proposition 3.3.1 and in particular
in the derivation step marked by (∗), we first substitute into P’s commitment
h :=

∏l
i=1 gxi

i the t expressions for xπ(l−t+1), . . . , xπ(l) that must hold if the
formula (3.3) holds true.

2. We then group together the terms that are raised to a constant power, and col-
lect terms for each of the variables xπ(1), . . . , xπ(l−t); see the derivation step
marked by (∗∗).

3. Finally, we divide both sides by the product of all constant powers.
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Example 3.3.9 will illustrate the process.
By substitution into Proposition 3.3.1 it is immediately seen that the demonstra-

tion of the formula TRUE corresponds to proving knowledge of a DL-representation
of h with respect to (g1, . . . , gl). According to the proof of Proposition 3.3.1, this
property holds in general.

Corollary 3.3.2. Regardless of the formula demonstrated by P , the proof of knowl-
edge in Proposition 3.3.1 is also a proof of knowledge of a DL-representation of h
with respect to (g1, . . . , gl).

The importance of this simple result will become clear in Section 5.5.2, where
we show how to discourage certificate lending, and in Section 6.3, where we show
how to lift the demonstration technique to the smartcard setting.

Consider now a setting in which Ṽ requests P to demonstrate a plurality of for-
mulae of the form (3.3), not necessarily all the same. Clearly, with each new formula
that is demonstrated for the same h, Ṽ learns additional information about P’s at-
tributes.

Definition 3.3.3. In an adaptively chosen formula attack, Ṽ may select at the start
of each new protocol execution which formula is to be demonstrated by P . Protocol
executions may be arbitrarily interleaved, in any way dictated by Ṽ . In case Ṽ re-
quests a formula that does not apply to P’s attributes, P informs Ṽ of this fact either
by not responding before a time-out or by sending a predetermined fixed message;
otherwise P demonstrates the formula to Ṽ. In either case, Ṽ learns the status of the
formula, namely whether it is true or false with respect to P’s attributes.

We are interested in determining whether Ṽ can learn more about P’s attributes
than what can be learned from only the status of the requested formulae and Ṽ’s a
priori information (the probability distribution from which P’s attributes have been
drawn). That is, do protocol executions leak additional information about P’s at-
tributes?

The following proposition provides a sufficient condition to guarantee that what-
ever Ṽ can compute about P’s attributes, it can also compute using only its a priori
information and the status of the requested formulae.

Proposition 3.3.4. Let P only demonstrate formulae in which x l does not appear,
using a proof of knowledge as described in Proposition 3.3.1 with the property that
it is statistically witness-indistinguishable. For any distribution of (x1, . . . , xl−1),
whatever information Ṽ in an adaptively chosen formula attack can compute about
(x1, . . . , xl−1) can also be computed using merely its a priori information and the
status of the formulae requested.

Proof. Without loss of generality we concentrate on the formulae that P demon-
strates by means of a proof of knowledge. Consider first the demonstration of a
single formula. If xπ(j) does not appear in the formula, for some j ∈ {1, . . . , l − t},
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then the j-th column in the matrix on the left-hand side of system (3.2) contains all
zeros, and it follows that

t∏
i=1

g
−αij

π(l−t+i) = 1.

As a consequence, in Proposition 3.3.1 the number gπ(j) appears separately in the
tuple with respect to which P proves knowledge of a DL-representation. Since in
our case xl does not appear in the formulae demonstrated, it follows that, in a single
formula demonstration, P proves knowledge of a DL-representation (y 1, . . . , yj , xl)
of a number in Gq with respect to a tuple (g∗

1 , . . . , g∗j , gl), for some integer j ≥ 0
and numbers g∗

1 , . . . , g∗j in Gq that depend on the formula demonstrated. The set
{y1, . . . , yj} is a subset of {x1, . . . , xl−1}. Since gl is a generator of Gq, for any
tuple (y1, . . . , yj) ∈ (Zq)j there is exactly one xl such that (y1, . . . , yj , xl) is the
DL-representation that P proves knowledge of. Because the proof of knowledge is
witness-indistinguishable, and xl has been chosen at random by P, it follows that
no information is revealed about y1, . . . , yj . Consequently, no information is leaked
about (x1, . . . , xl−1) beyond the status of the formula.

To complete the proof, we apply Proposition 2.4.5, according to which the (ar-
bitrarily interleaved) demonstration of many formulae, each by means of a witness-
indistinguishable proof, is also witness-indistinguishable.

The witness-indistinguishability condition in Proposition 3.3.4 is not only sufficient,
but also necessary. For example, if l ≥ 3 and t < l − 1, and P performs the proof of
knowledge by disclosing xπ(l−t) and proving knowledge of a DL-representation of

(
t∏

i=1

gbi

π(l−t+i))
−1h(gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i))
−xπ(l−t)

with respect to

(
gπ(1)

t∏
i=1

g−αi1
π(l−t+i), . . . , gπ(l−t−1)

t∏
i=1

g
−αi,l−t−1

π(l−t+i)

)
,

then obviously V learns information that may not have been computable from its a
priori information and the status of the formula. From this counterexample it is also
seen that it does not suffice for the proof of knowledge in Proposition 3.3.4 to be
witness-hiding.

A practical implementation of the proof of knowledge in Proposition 3.3.4 can be
realized by substituting the proof of knowledge described in Section 2.4.3; according
to Proposition 2.4.8 it is perfectly witness-indistinguishable. An important benefit of
using this protocol is that the resulting expressions can be expanded, so that P and
V can use a single precomputed table for simultaneous repeated squaring, regardless
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of the formulae demonstrated. Other advantages of this particular choice of protocol
will become clear in Sections 3.5, 6.3, and 6.4.

The resulting (generic) protocol steps are as follows:

Step 1. P generates at random l − t numbers, w1, . . . , wl−t ∈ Zq, and computes

a :=
l−t∏
i=1

gwi

π(i)

t∏
i=1

g
−

∑
l−t

j=1
αijwj

π(l−t+i) .

P then sends the initial witness a to V .

Step 2. P computes a set of responses, responsive to V’s challenge c ∈ Zs, as
follows:

ri := cxπ(i) + wi mod q ∀i ∈ {1, . . . , l − t}.
P then sends (r1, . . . , rl−t) to V .

V computes

rl−t+i := bic −
l−t∑
j=1

αijrj mod q ∀i ∈ {1, . . . , t},

and accepts if and only if the verification relation

l∏
i=1

gri

π(i)h
−c = a

holds.
For later reference, in Sections 5.4 and 6.3, this protocol is depicted in Figure 3.1.

The exponents in the expressions in Step 1 and in the verification relation, respec-
tively, can be rapidly computed from the matrix of coefficients in (3.2), by taking
the inner products of the matrix rows and the random numbers, and of the matrix
rows and the responses, respectively. Note that the communication complexity of the
protocol decreases as the number of “AND” connectives increases.

As with the proof of knowledge in Section 2.4.3, the above protocol description is
generic in the sense that the binary size of s and the process of generating c have not
been specified. To obtain a proof of knowledge, c should be generated in a substan-
tially random manner and become known to P only after it has computed its initial
witness.

The following property will be of importance in Section 3.5.

Proposition 3.3.5. The protocol obtained by implementing the proof of knowledge
in Proposition 3.3.4 by means of the proof of knowledge described in Section 2.4.3 is
honest-verifier zero-knowledge.
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P V

SYSTEM PARAMETERS

(q, g1, . . . , gl) := IDLREP(1k)

KEY SET-UP

Attributes: x1, . . . , xl−1 ∈ Zq

xl ∈R Zq

Secret key: (x1, . . . , xl)

Public key: h :=
∏l

i=1
g

xi
i

PROTOCOL

w1, . . . , wl−t ∈R Zq

a :=
∏l−t

i=1
g

wi
π(i)

∏t

i=1
g
−

∑l−t

j=1
αijwj

π(l−t+i)

a−−−−−−−−−→
c←−−−−−−−→

∀i ∈ {1, . . . , l − t} :

ri := cxπ(i) + wi mod q
r1, . . . , rl−t−−−−−−−−−→

∀i ∈ {1, . . . , t} :

rl−t+i := bic −
∑l−t

j=1
αijrj mod q∏l

i=1
g

ri
π(i)

h−c ?
= a

Figure 3.1: Generic protocol for demonstrating formula (3.3).
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Proof. To simulate the view of the honest verifier, the simulator picks the challenge
c ∈ Zs according to the same distribution as the honest verifier. It then selects
r1, . . . , rl−t at random from Zq, and computes rl−t+1, . . . , rl as would V in the
protocol. Finally, it computes a such that the verification relation holds true:

a :=
l∏

i=1

gri

π(i)h
−c.

It is easy to check that the resulting view, (a, c, r1, . . . , rl−t), is identically distributed
to the view of the honest verifier.

Corollary 3.3.2 suggests that all the considerations in Sections 2.4.3 and 2.5.3 ap-
ply. Special care must be taken, though, because both h and the tuple with respect
to which knowledge of a DL-representation is demonstrated depend on the partic-
ular formula that is demonstrated. This does not pose any problems for the zero-
knowledge proof mode, which in light of the techniques that will be introduced in
Section 6.3 is best realized by prepending a move in which V commits to its chal-
lenge. Caution must be exercised in case of signed proofs, though. Details follow.

To obtain a signed proof, V’s challenge c is generated as a sufficiently strong
one-way hash of at least a, in accordance with the Fiat-Shamir technique described
in Section 2.5.2. To enable provability in the random oracle model, we will from
now on always assume implicitly that the hash function produces outputs linear in k.
The signed proof consists of (a, (r1, . . . , rl−t)) or of (c, (r1, . . . , rl−t)), and if the
protocol is non-interactive then P can omit sending either a or c to V , since V can
recover it. If a message m is hashed along, then the signed proof also serves as a
digital signature of P on m. Proposition 3.3.4 still applies, since the hashing does
not affect the property of witness-indistinguishability; signed proofs unconditionally
hide all attribute information that was not explicitly disclosed. The unforgeability of
signed proofs is guaranteed computationally, as follows.

Proposition 3.3.6. Suppose that the proof of knowledge in Proposition 3.3.4 is re-
alized by substituting the witness-indistinguishable proof of knowledge described in
Section 2.4.3, and that V’s challenge is formed by hashing at least a. If the DL func-
tion used to implement P’s commitment is one-way, then non-interactively issued
signed proofs are provably unforgeable in the random oracle model, regardless of
the formula(e) demonstrated and the distribution of (x1, . . . , xl−1).

The proof follows by application of Proposition 2.5.2, in light of Corollary 3.3.2
and Proposition 3.3.5. We stress that Proposition 3.3.6 holds even in case of an
adaptively chosen formula attack (and, if messages are hashed along, an adaptively
chosen message attack), as do all the other unforgeability results in this chapter.

Assuming that P performs no more than polylogarithmically many protocol exe-
cutions, and that the status of the formulae requested by V still leaves non-negligible
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uncertainty about (x1, . . . , xl−1), it can be shown that Proposition 3.3.6 holds true
even for interactively issued signed proofs. However, once V has requested suffi-
ciently many formulae to be able to determine (x1, . . . , xl−1) with overwhelming
probability, it is unclear how to prove unforgeability in the random oracle model; we
in effect end up with the question of whether interactively issued Schnorr signatures
are unforgeable, which is believed true but has yet to be proved. To prove unforge-
ability of interactively issued signed proofs in general, we must relate the security
proof to the construction of Proposition 2.5.5.

Proposition 3.3.7. Let l ≥ 3, let xl−1 be the outcome of a random coin flip by P ,
and let P only demonstrate formulae in which both x l−1 and xl do not appear. Sup-
pose that the proof of knowledge in Proposition 3.3.1 is realized by substituting the
witness-indistinguishable proof of knowledge described in Section 2.4.3, and that
V’s challenge is formed by hashing at least a. If the DL function used to imple-
ment P’s commitment is one-way, and P performs no more than polylogarithmically
many formula demonstrations, then interactively issued signed proofs are provably
unforgeable in the random oracle model, regardless of the formula(e) demonstrated
and the distribution of (x1, . . . , xl−2).

The proof follows from Proposition 2.5.3. It is not hard to show that the result
holds even for an unbiased coin flip, if only the uncertainty about the outcome is
non-negligible.1 Note that xl−1 need not take on the values 0 and 1; any set of
values, of any size, will do, if only xl−1 does not take on one particular value with
overwhelming probability.

By blinding its challenge, V can perfectly blind the signed proof, in the manner
described in Section 2.5. Since this proof mode is of no use in this book, we omit the
details.

Propositions 3.3.6 and 3.3.7 tell us that the number of signed proofs computable
by V̂ cannot exceed the number of protocol executions performed by P, except with
negligible probability. For some applications this is all we need, but in other ap-
plications it is not. An entirely different (and new) issue is the unmodifiability of
signed proofs: it should be infeasible to construct a signed proof for a formula that
does in fact not apply to P’s representation. Unless special precaution is taken, a
signed proof convinces only that P knows a DL-representation of h with respect to
(g1, . . . , gl). As an example, if h = gx1

1 gx2
2 , and formulae of the form x2 = b mod q

are to be demonstrated, for arbitrary b ∈ Zq , then P̂ can set a := gw1
1 gw2

2 , for ran-
dom w1 and w2, and b := x2 + w2/Hq,g2(m, a) mod q. In case the signed proof is
to be issued interactively, this requires P̂ to conspire with V, because normally the
formula will be determined prior to executing the protocol. If, on the other hand, P

1In a practical implementation one would likely not bother to introduce the extra coin flip xl−1, since
the benefit that comes from it appears to be only of a theoretical nature; the unforgeability property of
interactively issued signed proofs is believed to hold even if it is omitted.
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is to non-interactively issue a signed proof for demonstrating a formula of its own
choice, then it does not need the assistance of V.

One measure to ensure that a signed proof convinces of which formula has been
demonstrated is to restrict all the matrix entries (the αij’s and the bi’s) that specify
the formulae requested to sets V such that |V |/q is negligible in k (e.g., sets of size√

q). The set V may differ for each formula coefficient. This measure, however,
restricts the range of formulae that P can demonstrate. The following measure does
not have this drawback.

Proposition 3.3.8. Non-interactively (interactively) issued signed proofs are prov-
ably unmodifiable in the random oracle model, subject to the conditions of Proposi-
tion 3.3.6 (Proposition 3.3.7), in case a uniquely identifying description of the for-
mula is hashed along when forming V’s challenge.

To form a uniquely identifying description of the formula (3.3), one can concate-
nate, in a predetermined order, the α ij ’s and the bi’s. In case t and l are not fixed as
part of the system, they must be part of the formula description as well.

In other words, when presented with h, a formula description F , an (optional)
message m, and a signed proof (c, r1, . . . , rl−t), any verifier can convince itself
that the signed proof has been computed by a prover (possibly a group of parties)
that applied its knowledge of a DL-representation of h, and that the prover demon-
strated that its DL-representation satisfies F . To this end, the verifier must compute
rl−t+1, . . . , rl in the manner specified in Figure 3.1 and verify that

c = Hq,gl
(m, F,

l∏
i=1

gri

π(i)h
−c).

In practice, one may prefer to apply both measures in combination, that is, to
hash along the formula description as well as to restrict all the formula coefficients
to small sets.

It is important to note that unmodifiability does not exclude the possibility for V
to end up with a signed proof that convinces only of a part of the formula demon-
strated byP . In particular, by hashing along the formula TRUE (ifP allows this) and
lumping togetherP’s responses, V can hide almost entirely the formula that has been
demonstrated. This property enables V to protect its own privacy in applications in
which it routinely submits its protocol transcripts to a central authority. Details will
be provided in Section 5.3.

Preferably, h is hashed along as well when forming V’s challenge. Micali and
Reyzin [269] show in a general setting that this defeats attacks in practical imple-
mentations whereby the hash function is designed by an adversary in an attempt to
enable forgery in an otherwise secure signature scheme. More importantly for our
purposes, hashing h along is mandatory in situations where h is not fixed but may be
chosen in a fairly arbitrary manner by P ; this is the case when our showing protocol
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techniques are combined with certificate issuing protocols in which the receiver is
in control of generating its public key. For this reason we will from now on always
hash along h in our protocol descriptions. As noted in Section 2.5.2, from the point
of view of security it is strongly recommended anyway to hash along any other data
that the verifier of a signed proof must apply.

To illustrate the preceding techniques, we now present a practical example.

Example 3.3.9. Suppose P has three attributes x1, x2, x3 ∈ Zq , selected according
to an arbitrary probability distribution, and is to demonstrate by means of a non-
interactively issued signed proof to V that the following formula holds:

(x1 + 2x2 − 10x3 = 13) AND (x2 − 4x3 = 5).

Rewriting this formula in the form (3.2), we get the formula

(x1 = 2x3 + 3) AND (x2 = 4x3 + 5).

To demonstrate this formula, P generates a random x4 ∈ Zq , and forms the commit-
ment h :=

∏4
i=1 gxi

i . If the formula holds true, then by substitution we get

h = gx1
1 gx2

2 gx3
3 gx4

4

= g2x3+3
1 g4x3+5

2 gx3
3 gx4

4 ,

and by collecting the constant powers, as well as the variable powers for each of
x2, x3, we obtain

h = (g3
1g

5
2)(g

2
1g

4
2g3)x3gx4

4 .

Finally, by dividing both sides by g3
1g

5
2 , we arrive at

(g3
1g

5
2)

−1h = (g2
1g

4
2g3)x3gx4

4 .

Consequently, P can prove knowledge of a DL-representation of h/(g 3
1g

5
2) with re-

spect to (g2
1g

4
2g3, g4). According to Proposition 3.3.1, this is also sufficient to con-

vince V . By substituting the proof of knowledge described in Section 2.4.3, and
expanding the resulting expressions, we obtain the protocol depicted in Figure 3.2.
Here, m denotes an arbitrary message agreed on between the parties and F denotes
a description uniquely identifying the formula demonstrated. The message is op-
tional, and typically its inclusion serves primarily to protect against replay; hereto
m should contain a random number, a counter, or a sufficiently accurate estimate of
the time and date. Other information, such as an identifier of V or a public key to be
used for session encryption, may be incorporated as well.

The security of the protocol for P follows from the fact that x4 has been chosen
at random and does not appear in the formula demonstrated. Specifically, assum-
ing that the underlying DL function is one-way, it follows from Propositions 3.3.4
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P V

SYSTEM PARAMETERS

(q, g1, g2, g3, g4) := IDLREP(1k)

KEY SET-UP

Attributes: x1, x2, x3 ∈ Zq

x4 ∈R Zq

Secret key: (x1, . . . , x4)

Public key: h :=
∏4

i=1
gxi

i

Additional information: Hq,g4 (·)

PROTOCOL

w1, w2 ∈R Zq

a := g2w1
1 g4w1

2 gw1
3 gw2

4

c := Hq,g4 (h, m, F, a)

r1 := cx3 + w1 mod q

r2 := cx4 + w2 mod q

c, r1, r2−−−−−−→
c

?
= Hq,g4 (h, m, F,

g2r1+3c
1 g4r1+5c

2 gr1
3 gr2

4 h−c)

Figure 3.2: Protocol for Example 3.3.9.
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and 3.3.8 that the signed proof is unforgeable and unmodifiable in the random oracle
model. Moreover, it does not leak more information about (x1, x2, x3) than the valid-
ity of the formula; this holds even if P demonstrates arbitrarily many other formulae
involving only x1, x2, x3, and Ṽ can adaptively choose in each protocol execution
which formula is to be demonstrated and which message is to be signed. As a conse-
quence, P is ensured that the data disclosed in all its showing protocol executions is
no more than the aggregate of the information explicitly disclosed in each individual
execution.

In accordance with the proof of Proposition 3.3.4, the powers of g 4 are cleanly
“separated” from the other products of powers, because x4 does not appear in the
formula demonstrated. In particular, the computations corresponding to the powers
of g4 can all be performed by proving knowledge of the discrete logarithm of g x4

4

with respect to g4, using the Schnorr proof of knowledge. This property, which can
easily be seen to hold in general, will be of major importance in Sections 6.3 and 6.4,
where it is shown how to lift the techniques of this chapter to the smartcard setting.

3.3.2 Technique based on the RSAREP function

To base the proof technique on the hardness of inverting the RSA function, con-
sider P having to demonstrate the system of linear relations (3.2). As described
in Section 3.2, in this case P commits to the attributes (x1, . . . , xl) by means of
h := gx1

1 · · · gxl

l xv
l+1, where xl+1 is chosen at random from Z

∗
n.

The proof of the following proposition is similar to that of Proposition 3.3.1.

Proposition 3.3.10. P can prove knowledge of an RSA-representation of

(
t∏

i=1

gbi

π(l−t+i))
−1h

with respect to

(
gπ(1)

t∏
i=1

g−αi1
π(l−t+i), . . . , gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i), v
)

if and only if it knows a set of attributes that satisfies the formula.

The RSA-representationP can prove knowledge of is (xπ(1), . . . , xπ(l−t), xl+1).

Corollary 3.3.11. Regardless of the formula demonstrated by P , the proof of knowl-
edge in Proposition 3.3.10 is also a proof of knowledge of an RSA-representation of
h with respect to (g1, . . . , gl, v).

The proof of the following result is similar to that of Proposition 3.3.4.
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Proposition 3.3.12. Let P demonstrate formulae using a proof of knowledge as de-
scribed in Proposition 3.3.10 with the extra property that it is statistically witness-
indistinguishable. For any distribution of (x1, . . . , xl), whatever information Ṽ in an
adaptively chosen formula attack can compute about (x 1, . . . , xl) can also be com-
puted using merely its a priori information and the status of the formulae requested.

As in the case of the DLREP function, it is beneficial to implement the proof of
knowledge in Proposition 3.3.10 using the witness-indistinguishable proof of knowl-
edge of Section 2.4.4. The resulting expressions can be expanded, so that P and
V can use a single precomputed table for simultaneous repeated squaring, regard-
less of the formulae demonstrated. This is straightforward, and so we refrain from
a detailed stepwise description of the resulting protocol. For later reference, in Sec-
tions 5.4 and 6.3, the protocol is depicted in Figure 3.3. Note that V may alternatively
apply the mod v operator to each of rl−t+1, . . . , rl, and multiply the corresponding
“junk” factor,

t∏
i=1

g
(bic−

∑
l−t

j=1
αijrj)divv

π(l−t+i) ,

into rl+1 before applying the verification relation.
It is easy to see that the protocol is honest-verifier zero-knowledge. The following

three propositions are straightforward analogues of results stated for the DLREP-
based setting, and can be proved in a similar manner.

Proposition 3.3.13. Suppose that the proof of knowledge in Proposition 3.3.12 is re-
alized by substituting the witness-indistinguishable proof of knowledge described in
Section 2.4.4, and that V’s challenge is formed by hashing at least a. If the RSA
function used to implement P’s commitment is one-way, then non-interactively is-
sued signed proofs are unforgeable in the random oracle model, regardless of the
formula(e) demonstrated and the distribution of (x1, . . . , xl).

Proposition 3.3.14. Let l ≥ 2, let xl be the outcome of a random coin flip by P ,
and let P only demonstrate formulae in which xl does not appear. Suppose that
the proof of knowledge in Proposition 3.3.10 is realized by substituting the witness-
indistinguishable proof of knowledge described in Section 2.4.4, and that V’s chal-
lenge is formed by hashing at least a. If the RSA function used to implement P’s
commitment is one-way, and P does not perform more than polylogarithmically
many formula demonstrations, then interactively issued signed proofs are provably
unforgeable in the random oracle model, regardless of the formula(e) demonstrated
and the distribution of (x1, . . . , xl−1).

The remarks made about the coin flip in Proposition 3.3.7 apply here as well.

Proposition 3.3.15. Non-interactively (interactively) issued signed proofs are prov-
ably unmodifiable in the random oracle model, subject to the conditions of Propo-
sition 3.3.13 (Proposition 3.3.14), in case a uniquely identifying description of the
formula is hashed along when computing V’s challenge.
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P V

SYSTEM PARAMETERS

(n, v, g1, . . . , gl) := IRSAREP(1k)

KEY SET-UP

Attributes: x1, . . . , xl ∈ Zv

xl+1 ∈R Z
∗
n

Secret key: (x1, . . . , xl, xl+1)

Public key: h :=
∏l

i=1
g

xi
i xv

l+1

PROTOCOL

w1, . . . , wl−t ∈R Zv

wl+1 ∈R Z
∗
n

a :=
∏l−t

i=1
gwi

π(i)

∏t

i=1
g
−

∑l−t

j=1
αijwj

π(l−t+i)
wv

l+1

a−−−−−−−−−−−−−→
c←−−−−−−−−−−−→

∀i ∈ {1, . . . , l − t} :

ri := cxπ(i) + wi mod v

rl+1 :=
∏l−t

j=1
(gπ(j)

∏t

i=1
g
−αij

π(l−t+i)
)(cxπ(j)+wj)divvxc

l+1wl+1

r1, . . . , rl−t, rl+1−−−−−−−−−−−−−→
∀i ∈ {1, . . . , t} :

rl−t+i := bic −
∑l−t

j=1
αijrj∏l

i=1
gri

π(i)
rv
l+1

h−c ?
= a

Figure 3.3: Generic protocol for demonstrating formula (3.3), with v replacing q.
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As with the DLREP function, the alternative measure of restricting all the matrix
entries used to specify the Boolean formulae to sets V such that |V |/q is negligible in
k, instead of hashing along F , restricts the range of formulae that P can demonstrate.

Example 3.3.16. Suppose that P has three attributes x1, x2, x3 ∈ Zv , and is to
demonstrate by means of an interactively issued signed proof to V that the formula in
Example 3.3.9 holds. By applying the technique of Proposition 3.3.10, substituting
the proof of knowledge described in Section 2.4.4 and expanding the resulting expres-
sions, we obtain the protocol depicted in Figure 3.4. Assuming that the underlying
RSA function is one-way, and P performs no more than polylogarithmically many
protocol executions, in the random oracle model the signed proof is unforgeable and
unmodifiable. Moreover, it does not leak more information about (x 1, x2, x3) than
the validity of the formula; this holds even if P demonstrates arbitrarily many other
formulae about its attributes.

As in Example 3.3.9, m denotes an (optional) message agreed on between the
parties and F denotes a description uniquely identifying the formula demonstrated.
Examples of data that could be included in m are a nonce to protect against replay,
an identifier of V, a public key to be used for session encryption, and a free-form
message.

When forming c, the description of any other formula that is implied by F may
be hashed along instead of F itself. In addition, if the protocol is performed inter-
actively, V can blind a. In Section 5.3 we will show how this enables V to uncon-
ditionally hide (any part of) the formula that has been demonstrated. However, P
and V cannot form a signed proof for a formula that does not apply to P’s RSA-
representation, according to the property of unmodifiability.

A notable aspect of the protocol is that the computations for the numbers that
are raised to the power v can all be performed by proving knowledge of the v-th
root of xv

5 , using the Guillou-Quisquater proof of knowledge. More generally, the
computations involving x4 and x5 can be performed by proving knowledge of an
RSA-representation of gx4

4 xv
5 with respect to (g4, v). This clean separation can easily

be seen to hold in general, and will be of major importance in Sections 6.3 and 6.4.

3.4 Formulae with one “NOT” connective

We now show how to demonstrate satisfiable formulae from proposition logic with
zero or more “AND” connectives, exactly one “NOT” connective, and no other con-
nectives.

3.4.1 Technique based on the DLREP function

Any consistent system consisting of zero or more independent linear relations and
one linear inequality (i.e., a linear relation where “=” is replaced by “�=”) can be
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P V

SYSTEM PARAMETERS

(q, g1, g2, g3, g4, g5) := IRSAREP(1k)

KEY SET-UP

Attributes: x1, x2, x3 ∈ Zq

x4 ∈R {0, 1}
x5 ∈R Z

∗
n

Secret key: (x1, . . . , x4, x5)

Public key: h :=
∏4

i=1
gxi

i xv
5

Additional information: Hn,v(·)

PROTOCOL

w1, w2 ∈R Zv

w3 ∈R Z
∗
n

a := g2w1
1 g4w1

2 gw1
3 gw2

4 wv
3

a−−−−−−−→
c := Hn,v(h, m, F, a)

c←−−−−−−−
r1 := cx3 + w1 mod v

r2 := cx4 + w2 mod v

r3 := (g2
1g4

2g3)(cx3+w1)divvg
(cx4+w2)divv
4 xc

5w3

r1, r2, r3−−−−−−−→
c

?
= Hn,v(h, m, F,

g2r1+3c
1 g4r1+5c

2 gr1
3 gr2

4 rv
3h−c)

Figure 3.4: Protocol for Example 3.3.16.
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written as a system of linear relations by introducing a non-zero difference term,
ε ∈ Z

∗
q . Using Gaussian elimination, the system can be represented by the matrix

equation



α11 . . . α1,l−t 1 0 . . . 0
α21 . . . α2,l−t 0 1 . . . 0

...
...

...
...

. . .
...

αt1 . . . αt,l−t 0 0 . . . 1







xπ(1)

xπ(2)

...
xπ(l)


 =




b1 − f1ε
b2 − f2ε

...
bt − ftε


 , (3.4)

where t ≥ 1. (Example 3.4.7 will clarify the process.) The coefficients α ij are
elements of Zq, and f1, . . . , ft are numbers in Zq , not all equal to 0 mod q. Clearly,
it can always be ensured that f1, say, is equal to 1. We may assume that t ≤ l, because
if t = l+1 then V can verify the applicability of the formula without communicating
with P .

Our technique for demonstrating the Boolean formula that corresponds to the
system (3.4) is based on the following result. Recall that P commits to the attributes
(x1, . . . , xl) by means of h :=

∏l
i=1 gxi

i .

Proposition 3.4.1. P can prove knowledge of a DL-representation of

t∏
i=1

gfi

π(l−t+i)

with respect to

( t∏
i=1

gbi

π(l−t+i)h
−1, gπ(1)

t∏
i=1

g−αi1
π(l−t+i), . . . , gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i)

)

if and only if it knows a set of attributes that satisfies the system (3.4).

Proof. If (x1, . . . , xl) satisfies system (3.4), then

h =
l∏

i=1

g
xπ(i)

π(i)

= (
l−t∏
i=1

g
xπ(i)

π(i) )(
t∏

i=1

g
bi−fiε−

∑l−t

j=1
αijxπ(j)

π(l−t+i) )

= (
t∏

i=1

gbi

π(l−t+i))(gπ(1)

t∏
i=1

g−αi1
π(l−t+i))

xπ(1) · · · (gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i))
xπ(l−t) ·

(
t∏

i=1

g−fi

π(l−t+i))
ε.
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By dividing both sides of the equation by h, as well as by (
∏t

i=1 g−fi

π(l−t+i))
ε, we see

that (
∏t

i=1 gfi

π(l−t+i))
ε equals

((
t∏

i=1

gbi

π(l−t+i))h
−1)(gπ(1)

t∏
i=1

g−αi1
π(l−t+i))

xπ(1) · · · (gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i))
xπ(l−t) .

Since ε �= 0 mod q, both sides can be raised to the power δ, where δ denotes ε−1 mod
q. From this we see that the DL-representation that P can prove knowledge of is

(δ, xπ(1)δ mod q, . . . , xπ(l−t)δ mod q).

To prove the converse, suppose that P̂ convincesV with non-negligible success prob-
ability. There exists a polynomial-time knowledge extractorK that outputs with non-
negligible success probability a DL-representation (y0, . . . , yl−t). From the fact that∏t

i=1 gfi

π(l−t+i) equals

(
t∏

i=1

gbi

π(l−t+i)h
−1)y0(gπ(1)

t∏
i=1

g−αi1
π(l−t+i))

y1 · · · (gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i))
yl−t

it follows that

hy0 =
l−t∏
i=1

g
yl−t

π(i)

t∏
i=1

g
biy0−fi−

∑l−t

j=1
αijyj

π(l−t+i) .

If y0 = 0 mod q then

(y1, . . . , yl−t,−f1 −
l−t∑
j=1

α1jyj mod q, . . . ,−ft −
l−t∑
j=1

αtjyj mod q) (3.5)

is a DL-representation of 1 with respect to (gπ(1), . . . , gπ(l)), and two cases can be
distinguished:

• If this is the trivial DL-representation, then y1, . . . , yl−t, f1, . . . , ft must all
be zero, in addition to y0. But this is a contradiction, because t ≥ 1 and at
least one of f1, . . . , ft is unequal to 0 mod q, by virtue of the presence of one
“NOT” connective.

• If this is a non-trivial DL-representation of 1, then < P̂, V> has computed a
DL-representation of 1 other than the trivial one. (If P does not know a rep-
resentation of h then K can be used directly to compute DL-representations.)
According to Proposition 2.3.3 this contradicts the assumption that the DL
function is one-way.
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Therefore, y0 �= 0 mod q, and it follows that (y1y
−1
0 , . . . , yl−ty

−1
0 , b1 − f1y

−1
0 −

y−1
0

∑l−t
j=1 α1jyj , . . . , bt−fty

−1
0 −y−1

0

∑l−t
j=1 αtjyj) is a DL-representation of h with

respect to (gπ(1), . . . , gπ(l)). This must be the DL-representation (xπ(1), . . . , xπ(l)),
for the same reason as in the proof of Proposition 3.3.1.

It remains to check that the DL-representation satisfies the formula (3.4). From
the left-hand side of the matrix equation (3.4) it follows, for all i ∈ {1, . . . , t}, that

l−t∑
j=1

αijxπ(j) + xπ(l−t+i) =
l−t∑
j=1

αij(yjy
−1
0 ) + bi − fiy

−1
0 − y−1

0

l−t∑
j=1

αijyj

= y−1
0

l−t∑
j=1

αijyj + bi − fiy
−1
0 − y−1

0

l−t∑
j=1

αijyj

= bi − fiy
−1
0 mod q.

Since y0 �= 0 mod q, this is equal to the i-th entry in the vector on the righthand side;
note that we have y−1

0 = ε mod q. This completes the proof.

As in the case of Proposition 3.3.1, the expressions appearing in this proposition are
fairly intimidating, but the process of deriving them is simple. In addition to the
two steps of substitution and regrouping by collecting terms, we now also collect the
terms that are raised to the power ε and move the resulting expression to the left-hand
side. Example 3.4.7 will illustrate the process.

The following property is implicit in the proof of Proposition 3.4.1, and will be
of major importance in Sections 5.5.2 and 6.3.

Corollary 3.4.2. Regardless of the formula demonstrated by P , the proof of knowl-
edge in Proposition 3.4.1 is also a proof of knowledge of a DL-representation of h
with respect to (g1, . . . , gl).

We now extend the category of adaptively chosen formula attacks defined in Defi-
nition 3.3.3. This time Ṽ may request the demonstration of formulae of the form (3.3)
as well as of the form (3.4).

Proposition 3.4.3. Let P only demonstrate formulae in which x l does not appear,
using a proof of knowledge as described in Proposition 3.4.1 with the property that
it is statistically witness-indistinguishable. For any distribution of (x1, . . . , xl−1),
whatever information Ṽ in an adaptively chosen formula attack can compute about
(x1, . . . , xl−1) can also be computed using merely its a priori information and the
status of the formulae requested.

Proof. Consider first the demonstration of a single formula. If x l does not appear in
the formula (3.4), then in Proposition 3.4.1 the generator g l appears separately in the
tuple with respect to which P proves knowledge of a DL-representation. In particu-
lar, P proves knowledge of a DL-representation (ε−1 mod q, y1, . . . , yj , xlε

−1 mod
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q) of a number in Gq with respect to a tuple (g∗
0 , . . . , g∗j , gl), for some j ∈ {0, . . . , l−

1} and numbers g∗
0 , . . . , g∗j in Gq that depend on the formula demonstrated. The set

{y1, . . . , yj} is a subset of

{x1ε
−1 mod q, . . . , xl−1ε

−1 mod q}.

Clearly, xlε
−1 mod q is uniformly distributed over Zq, because xl has been chosen

at random by P and ε−1 �= 0 mod q. Since gl is a generator of Gq , for any tuple
(y1, . . . , yj) ∈ (Zq)j and for any ε ∈ Z

∗
q there is exactly one xl such that (ε−1 mod

q, y1, . . . , yj , xlε
−1 mod q) is the DL-representation that P proves knowledge of.

Because the proof of knowledge is witness-indistinguishable, and x l has been cho-
sen at random by P , it follows that no information is revealed about (x 1, . . . , xl−1)
beyond the status of the formula. In particular, no information about ε leaks.

The rest of proof is as in Proposition 3.3.4.

A practical implementation of the proof of knowledge in Proposition 3.4.3 can be
realized by substituting the perfect witness-indistinguishable proof of knowledge
described in Section 2.4.3, and expanding the resulting expressions. The resulting
(generic) protocol steps are as follows:

Step 1. P generates at random l− t+1 numbers, w0, . . . , wl−t ∈ Zq , and computes

a := h−w0

l−t∏
i=1

gwi

π(i)

t∏
i=1

g
biw0−

∑l−t

j=1
αijwj

π(l−t+i) .

P then sends the initial witness a to V .

Step 2. Let δ := ε−1 mod q. P computes a set of responses, responsive to V’s
challenge c ∈ Zs, as follows:

r0 := cδ + w0 mod q,

ri := cxπ(i)δ + wi mod q ∀i ∈ {1, . . . , l − t}.

P then sends (r0, . . . , rl−t) to V .

V computes

rl−t+i := bir0 − fic −
l−t∑
j=1

αijrj mod q ∀i ∈ {1, . . . , t},

and accepts if and only if the verification relation

l∏
i=1

gri

π(i)h
−r0 = a
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P V

SYSTEM PARAMETERS

(q, g1, . . . , gl) := IDLREP(1k)

KEY SET-UP

Attributes: x1, . . . , xl−1 ∈ Zq

xl ∈R Zq

Secret key: (x1, . . . , xl)

Public key: h :=
∏l

i=1
g

xi
i

PROTOCOL

w0, . . . , wl−t ∈R Zq

a := h−w0
∏l−t

i=1
g

wi
π(i)

∏t

i=1
g

biw0−
∑

l−t

j=1
αijwj

π(l−t+i)

a−−−−−−−−−→
c←−−−−−−−→

δ := ε−1 mod q

r0 := cδ + w0 mod q

∀i ∈ {1, . . . , l − t} :

ri := cxπ(i)δ + wi mod q
r0, . . . , rl−t−−−−−−−−−→

∀i ∈ {1, . . . , t} :

rl−t+i := bir0 − fic −
∑l−t

j=1
αijrj mod q∏l

i=1
g

ri
π(i)

h−r0
?
= a

Figure 3.5: Generic protocol for demonstrating formula (3.4).
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holds.
For later reference, in Sections 5.4 and 6.3, the protocol is depicted in Figure 3.5.

As with the proof of knowledge in Section 2.4.3, the protocol description is generic
in the sense that the binary size of s and the process of generating c have not yet been
specified.

The following proposition will be of importance in Section 3.5, and can be proved
in a manner similar to the proof of Proposition 3.3.5.

Proposition 3.4.4. The protocol obtained by implementing the proof of knowledge
in Proposition 3.4.3 by means of the proof of knowledge described in Section 2.4.3 is
honest-verifier zero-knowledge.

As suggested by Corollary 3.4.2, the propositions of Section 2.4.3 apply, with
the obvious modifications. Special care must be taken with respect to signed proofs,
though. By way of example, consider h := g x1

1 gx2
2 , and assume that a formula of the

form x1 �= αx2 + β mod q must be demonstrated. The verification relation is

gαr1+βr2−c
1 gr1

2 = hr2a.

Now, suppose that c is formed by hashing a and possibly h but not a description of the
formula. In sharp contrast to the situation in Section 3.3.1, where signed proofs for
which the formula description is not hashed along still serve as proofs of knowledge
of a DL-representation of h, the triple (c, r1, r2) does not serve as a signed proof of
knowledge of a DL-representation of h with respect to (g 1, g2). To come up with
(h, a) and (c, r1, r2) that meet the verification relation, one can pick any h ∈ G q, set
a := h−r2gw1

1 gw2
2 for any (r2, w1, w2) ∈ Zq × Zq × Z

∗
q , set c := Hq,g2(h, a), set

r1 := w2, and compute α := (w1 + c − βr2)r−1
1 mod q for any β ∈ Zq . To get

around this, a description of the demonstrated formula must be hashed along. (The
alternative is to restrict the matrix entries used to specify the formula to sets V such
that |V |/q is negligible in k.) In the following two propositions, F denotes a unique
description of the formula demonstrated.

Proposition 3.4.5. Suppose that the proof of knowledge in Proposition 3.4.3 is re-
alized by substituting the witness-indistinguishable proof of knowledge described
in Section 2.4.3, and that V’s challenge is formed by hashing at least (a, F ). If
the DL function that is used to implement P’s commitment is one-way, then non-
interactively issued signed proofs are provably unforgeable and unmodifiable in the
random oracle model, regardless of the formula(e) demonstrated and the distribution
of (x1, . . . , xl−1).

The proof follows by application of Proposition 2.5.2, in light of Corollary 3.4.2
and Proposition 3.4.4.

Proposition 3.4.6. Let l ≥ 3, let xl−1 be the outcome of a random coin flip by
P, and let P only demonstrate formulae in which both x l−1 and xl do not appear.
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Suppose that the proof of knowledge in Proposition 3.4.1 is realized by substitut-
ing the witness-indistinguishable proof of knowledge described in Section 2.4.3, and
that V’s challenge is formed by hashing at least (a, F ). If the DL function used to
implement P’s commitment is one-way, and P performs no more than polylogarith-
mically many formula demonstrations, then interactively issued signed proofs are
provably unforgeable and unmodifiable in the random oracle model, regardless of
the formula(e) demonstrated and the distribution of (x1, . . . , xl−2).

As before, if h is not fixed but may be chosen in a substantially arbitrary manner
by P , then h should be hashed along when forming V’s challenge.

According to the unmodifiability property, P and V cannot construct a signed
proof for a formula that does in fact not apply to P’s DL-representation. On the
other hand, as we will show in Section 5.3, it is possible for V to obtain a signed
proof for any formula F ′ implied by F , while being convinced itself of F .

We end with a practical example.

Example 3.4.7. Suppose P has three attributes x1, x2, x3 ∈ Zq , and is to demon-
strate by means of a non-interactively issued signed proof to V that the following
formula holds:

NOT(x1 + 3x2 + 5x3 = 7) AND (3x1 + 10x2 + 18x3 = 23).

With ε denoting 7− (x1 + 3x2 + 5x3) mod q, this formula is equivalent to the state-
ment that there exists an ε �= 0 such that

(x1 = 1 + 4x3 − 10ε) AND (x2 = 2 − 3x3 + 3ε).

To demonstrate this formula, P generates a random x4 ∈ Zq , and forms the commit-
ment h :=

∏4
i=1 gxi

i . If the formula holds true, then by substitution we get

h = gx1
1 gx2

2 gx3
3 gx4

4

= g1+4x3−10ε
1 g2−3x3+3ε

2 gx3
3 gx4

4 ,

and by regrouping in three manners (according to constants, variables, and ε), we
obtain

h = (g1
1g

2
2)(g

4
1g−3

2 g3)x3gx4
4 (g−10

1 g3
2)

ε.

Finally, we divide both sides by h, as well as by (g−10
1 g3

2)
ε, and raise both sides to

the power ε−1 mod q, arriving at

g10
1 g−3

2 = (g1
1g

2
2h

−1)1/ε(g4
1g

−3
2 g3)x3/εg

x4/ε
4 .

Therefore, P can prove knowledge of a DL-representation of g 10
1 g−3

2 with respect
to the triple (g1

1g
2
2h

−1, g4
1g

−3
2 g3, g4). According to Proposition 3.4.1, this is also
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P V

SYSTEM PARAMETERS

(q, g1, g2, g3, g4) := IDLREP(1k)

KEY SET-UP

Attributes: x1, x2, x3 ∈ Zq

x4 ∈R Zq

Secret key: (x1, . . . , x4)

Public key: h :=
∏4

i=1
gxi

i

Additional information: Hq,g4 (·)

PROTOCOL

w1, w2, w3 ∈R Zq

a := gw1+4w2
1 g2w1−3w2

2 gw2
3 gw3

4 h−w1

c := Hq,g4 (h, m, F, a)

ε := 7 − (x1 + 3x2 + 5x3) mod q

δ := ε−1 mod q

r1 := cδ + w1 mod q

r2 := cx3δ + w2 mod q

r3 := cx4δ + w3 mod q

c, r1, r2, r3−−−−−−−−→
c

?
= Hq,g4 (h, m, F,

gr1+4r2−10c
1 g2r1−3r2+3c

2 gr2
3 gr3

4 h−r1)

Figure 3.6: Protocol for Example 3.4.7.
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sufficient to convince V . By substituting the proof of knowledge described in Sec-
tion 2.4.3, and expanding the resulting expressions, we obtain the protocol depicted
in Figure 3.6.

The security of the protocol for P follows from the fact that x4 has been chosen
at random and does not appear in the formula demonstrated. Specifically, assuming
that the underlying DL function is one-way, in the random oracle model the signed
proof is unforgeable and unmodifiable. Moreover, it does not leak more information
about (x1, x2, x3) than the validity of the formula; this holds even if P demonstrates
arbitrarily many other formulae (with x4 not appearing in any of these).

A noteworthy aspect of the protocol is that the computations corresponding to the
powers of g4 can all be performed by proving knowledge of the discrete logarithm of
(gx4

4 )1/ε with respect to g4, using the Schnorr proof of knowledge, because x4 does
not appear in the formula demonstrated. This property can easily be seen to hold in
general, and will be of great importance in Sections 6.3 and 6.4.

3.4.2 Technique based on the RSAREP function

To base the technique on the hardness of inverting the RSA function, consider P
having to demonstrate formula (3.4), with “mod v” replacing “mod q,” and ε ∈
Z

∗
v. Recall that P commits to (x1, . . . , xl) by means of h := gx1

1 · · · gxl

l xv
l+1.

Proposition 3.4.8. P can prove knowledge of an RSA-representation of

t∏
i=1

gfi

π(l−t+i)

with respect to

( t∏
i=1

gbi

π(l−t+i)h
−1, gπ(1)

t∏
i=1

g−αi1
π(l−t+i), . . . , gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i), v
)

if and only if it knows a set of attributes that satisfies the system (3.4).

Proof. If (x1, . . . , xl) satisfies the system (3.4), then by regrouping expressions it is
seen that

(
t∏

i=1

gfi

π(l−t+i))
ε

equals

(
t∏

i=1

gbi

π(l−t+i)h
−1) (gπ(1)

t∏
i=1

g−αi1
π(l−t+i))

xπ(1) · · · (gπ(l−t)

t∏
i=1

g
−αi,l−t

π(l−t+i))
xπ(l−t)xv

l+1.
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Because inequality holds, ε �= 0 mod v and so P can compute integers e, f ∈ Z

such that e ε + fv = 1, by using the extended Euclidean algorithm. (This can be
always be done, because v is prime.) It follows that(

e mod v, exπ(1) mod v, . . . , exπ(l−t) mod v, z
)

is the RSA-representation sought for, where z denotes the expression

(
t∏

i=1

gbi

π(l−t+i)h
−1)edivv

l−t∏
j=1

(
gπ(j)

t∏
i=1

g
−αij

π(l−t+i)

)(exπ(j))divv

xe
l+1(

t∏
i=1

gfi

π(l−t+i))
f .

The proof of the converse is similar to the second part of the proof of Proposi-
tion 3.4.1, with the additional application of normalizations where needed.

The protocol can be efficiently implemented by using the proof of knowledge de-
scribed in Section 2.4.4 and expanding the resulting expressions. The direct analogue
of Proposition 3.4.3 can be proved, as well as the unforgeability and unmodifiability
of signed proofs (assuming at least a and F are hashed along when forming c). Since
the necessary adaptations are straightforward, a further description is omitted.

3.5 Atomic formulae connected by “OR” connectives

We now show how P can demonstrate Boolean formulae in which subformulae, of
either one of the two forms discussed in the previous sections, are connected by zero
or more “OR” connectives.

3.5.1 Technique based on the DLREP function

The following definition defines the basic building block for the technique in this
section.

Definition 3.5.1. An atomic formula is one in which linear relations over Zq are
connected by zero or more “AND” connectives and at most one “NOT” connective.

Any atomic formula can be described either by system (3.2) or by system (3.4).
Consequently, any atomic formula applying to P’s attributes can be demonstrated
using either the method described in Section 3.3 or that described in Section 3.4.

Consider now the situation in which P is to demonstrate a satisfiable Boolean
formula F of the form

F = F1 OR . . . OR Fj , (3.6)

for some j ≥ 1 that may be polynomial in the security parameter k. Each of
F1, . . . , Fj is an atomic formula. If F holds true for P’s attributes, then at least
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one of the j atomic subformulae holds true, but Ṽ should not be able to learn which
one(s). Suppose that (at least) Ft holds true, for some t ∈ {1, . . . , j}.

In the following protocol for demonstrating F , it is assumed that atomic formulae
are demonstrated by substituting the witness-indistinguishable proof of knowledge
described in Section 2.4.3 into the proof of knowledge in either Proposition 3.3.1 or
Proposition 3.4.1 (whichever is appropriate):

Step 1. Using the honest-verifier zero-knowledge simulator that exists according to
Proposition 3.3.5 or 3.4.4,P generates j−1 transcripts of subformulae demon-
strations for F1, . . . , Ft−1, Ft+1, . . . , Fj . For each i ∈ {1, . . . , j} \ {t}, the
simulated proof for formula Fi involves a random self-chosen challenge that
we denote by ci, an initial witness, and one or more self-chosen responses. For
subformula Ft, P generates an initial witness in the manner specified by the
standard protocol for demonstrating an atomic formula (to prepare for a gen-
uine proof). P then sends all j initial witnesses, referred to as its initial witness
set, to V .

Step 2. V generates a random challenge c ∈ Zs, and sends it to P .

Step 3. P forms j response sets, as follows. P computes ct := c −
∑

i�=t ci mod
s. Responsive to challenge ct, P computes its responses corresponding to
the demonstration of Ft, in the manner described in Step 2 of the protocol
in either Section 3.3 or Section 3.4 (whichever is appropriate). For each of
the remaining j − 1 subformulae, P uses the self-chosen responses from the
simulated formulae demonstrations prepared in Step 1. P then sends all j
response sets and (c1, . . . , cj) to V.

V verifies that c =
∑j

i=1 ci mod s. If this verification holds, then for each of the j
atomic subformulae it applies the verification relation for that subformula. Specif-
ically, V verifies the demonstration of Fi by applying the verification relation that
applies in the standard protocol for demonstrating F i, using the i-th initial witness
and response set provided by P and the challenge c i. V accepts if and only if the j
challenges sum up correctly and all j verification relations hold; together, these j +1
verification relations make up the verification process for the demonstration of F .

Note that the protocol encompasses the protocols of Sections 3.3 and 3.4 as spe-
cial cases.

Proposition 3.5.2. In the protocol for demonstrating F , assume that P only demon-
strates formulae F in which xl does not appear. The following properties hold:

(a) The protocol is complete and sound.

(b) The protocol is a proof of knowledge of a DL-representation of h with respect
to the tuple (g1, . . . , gl).
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(c) For any distribution of (x1, . . . , xl−1), whatever information Ṽ in an adap-
tively chosen formula attack 2 can compute about (x1, . . . , xl−1) can also be
computed using merely its a priori information and the status of the formulae
requested.

Proof. We only sketch the proof here; the details are easy to fill in.
(a) Completeness is verified straightforwardly. Soundness follows from the con-

dition that the ci’s have to sum up to V’s challenge c, so that P cannot simulate the
demonstration for all j subformulae. For at least one subformulaP has to use a chal-
lenge that it cannot anticipate: it must perform a genuine proof of knowledge for that
subformula. Because the demonstration of an atomic subformula is a sound proof of
knowledge, P can do this only if the subformula indeed holds true for its attributes;
in other words, if F holds true.

(b) The soundness of the protocol for demonstrating F implies that at least one of
the atomic subformulae holds true for P’s attributes. According to Corollaries 3.3.2
and 3.4.2, the proof of knowledge for this atomic subformula is also a proof of knowl-
edge of a DL-representation of h with respect to (g1, . . . , gl).

(c) The third claim follows from the perfect simulatability of the j − 1 subfor-
mulae demonstrations and the fact that the relation

∑j
i=1 ci = c mod s reveals no

information on which j − 1 challenges have been self-chosen by P , regardless of the
manner in which c is formed.

Care must be taken in a practical implementation that the subformula for which a
genuine proof is performed cannot be deduced by timing the delay between sending
V’s challenge and receiving the j response sets.

To obtain a signed proof, V’s challenge c should be generated as a sufficiently
strong one-way hash of at least the j initial witnesses, a description of F , and an
(optional) message m. If h is not fixed, then it should be hashed along as well.
The signed proof consists of (c1, . . . , cj) and the j response sets, or of the j initial
witnesses and the j response sets. If the protocol is performed non-interactively then
P need not send either its initial witness set or its j challenges to V , since they can
be recovered by V .

Proposition 3.5.3. In Proposition 3.5.2, if the DL function used to implement P’s
commitment is one-way, and V’s challenge is formed by hashing at least all j ini-
tial witnesses and F , then non-interactively issued signed proofs are provably un-
forgeable and unmodifiable in the random oracle model, regardless of the formula(e)
demonstrated and the distribution of (x1, . . . , xl−1).

Proposition 3.5.4. Let l ≥ 3, let xl−1 be the outcome of a random coin flip byP, and
let P only demonstrate formulae in which both xl−1 and xl do not appear. If the DL
function used to implement P’s commitment is one-way, V’s challenge is formed by

2This time, V may request the demonstration of any Boolean formula of the form (3.6).



122 SHOWING PROTOCOLS WITH SELECTIVE DISCLOSURE

hashing at least all j initial witnesses and F , and P performs no more than polylog-
arithmically many formula demonstrations, then interactively issued signed proofs
are provably unforgeable and unmodifiable in the random oracle model, regardless
of the formula(e) demonstrated and the distribution of (x1, . . . , xl−2).

Again, the remarks made about the coin flip in Proposition 3.3.7 apply here as
well.

If j ≥ 2 in formula (3.6) the protocol is non-trivially witness-indistinguishable,
and in Proposition 3.5.4 we can omit the requirement that x l−1 be random and do not
appear in the formulae demonstrated by P .

The protocol for demonstrating F admits several variations. For example:

• The relation
∑j

i=1 ci = c mod s can be replaced by any other relation with
the property that, for any c, the selection of any j − 1 challenges uniquely
determines the remaining challenge. For example, for s a prime one can use∏j

i=1 ci = c mod s or, if s is a power of 2, ⊕j
i=1ci = c, where ⊕ denotes the

bitwise exclusive-or operator.

• Instead of simulating all but one of the subformula demonstrations, P could
perform a genuine proof of knowledge for all subformulae that hold true and
simulate the demonstration only for those that do not hold true.

Both variations bring no noteworthy performance gain, and we will see in Section 6.3
that they are disadvantageous when lifting the formulae demonstration techniques to
the smartcard setting. Moreover, in Sections 5.3 and 5.4.2 we will show that the
relation

∑j
i=1 ci = c mod q can be exploited to improve efficiency and privacy in

applications where V must relay signed proofs to the CA. For these reasons we will
not consider the two variations any further.

Example 3.5.5. Suppose P has three attributes x1, x2, x3 ∈ Zq , and is to demon-
strate by means of a non-interactively issued signed proof to V that the following
formula holds:

(
(x1 + 2x2 − 10x3 = 13) AND (x2 − 4x3 = 5)

)
OR(

NOT(x1 + 3x2 + 5x3 = 7) AND (3x1 + 10x2 + 18x3 = 23)
)

Assume for concreteness that

(x1 + 2x2 − 10x3 = 13) AND (x2 − 4x3 = 5)

holds, and that

NOT(x1 + 3x2 + 5x3 = 7) AND (3x1 + 10x2 + 18x3 = 23)
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does not necessarily hold. To demonstrate the formula, P generates a random x 4 ∈
Zq , and forms the commitment h :=

∏4
i=1 gxi

i . As we have seen in Example 3.3.9,
to demonstrate the first subformula P proves knowledge of a DL-representation
of h/(g3

1g
5
2) with respect to (g2

1g
4
2g3, g4). According to Example 3.4.7, the sec-

ond subformula requires a proof of knowledge of a DL-representation of g 10
1 g−3

2

with respect to (g1g
2
2h

−1, g4
1g

−3
2 g3, g4); P simulates this demonstration, using a

self-chosen challenge and self-chosen responses. The resulting protocol is depicted
in Figure 3.7. Here, m denotes an (optional) message and F denotes a descrip-
tion uniquely identifying the formula demonstrated. The signed proof consists of
(c1, c2, r1, r2, r3, r4, r5). Assuming that the underlying DL function is one-way, in
the random oracle model the signed proof is unforgeable and unmodifiable. More-
over, it does not leak more information about (x1, x2, x3) than the validity of the
formula; this holds even if P demonstrates arbitrarily many other formulae.

3.5.2 Technique based on the RSAREP function

Adaptation to the difficulty of inverting the RSA function poses no particular diffi-
culties, and is therefore omitted.

3.6 Demonstrating arbitrary Boolean formulae

We are now prepared for the final step: demonstrating arbitrary satisfiable Boolean
formulae.

3.6.1 Technique based on the DLREP function

Suppose P is to demonstrate an arbitrary Boolean formula that applies to its at-
tributes. Without loss of generality, we assume that F is of the conjunctive normal
form,

F = F1 AND . . . AND Fj , (3.7)

for some j ≥ 1 that may be polynomial in k, where each of F 1, . . . , Fj are atomic
subformulae of the form (3.6). The indices j here and in formula (3.6) do not bear
any relation to one another. Likewise, each subformula may be composed of an arbi-
trary and distinct number of subformulae. The issue of writing an arbitrary Boolean
formula in the form (3.7) is outside of the scope of this book.

Our technique for demonstrating F is as follows. F holds true for P’s attributes
if and only if F1, . . . , Fj all hold true. To demonstrate F , P demonstrates each of
F1, . . . , Fj by means of the proof of knowledge described in the previous section,
subject to the following two constraints:

• All j protocol executions are performed in parallel; and



124 SHOWING PROTOCOLS WITH SELECTIVE DISCLOSURE

P V

SYSTEM PARAMETERS

(q, g1, g2, g3, g4) := IDLREP(1k)

KEY SET-UP

Attributes: x1, x2, x3 ∈ Zq

x4 ∈R Zq

Secret key: (x1, . . . , x4)

Public key: h :=
∏4

i=1
g

xi
i

Additional information: Hq,g4 (·)

PROTOCOL

w1, w2, c2, r3, r4, r5 ∈R Zq

a1 := g2w1
1 g4w1

2 gw1
3 gw2

4

a2 := gr3+4r4−10c2
1 g2r3−3r4+3c2

2 gr4
3 gr5

4 h−r3

c := Hq,g4 (h, m, F, a1, a2)

c1 := c − c2 mod s

r1 := c1x3 + w1 mod q

r2 := c1x4 + w2 mod q
c1, c2, (r1, r2, r3, r4, r5)−−−−−−−−−−−−−−−−−→

c := c1 + c2 mod s

c
?
= Hq,g4 (h, m, F, g2r1+3c1

1 g4r1+5c1
2 gr1

3 gr2
4 h−c1 ,

gr3+4r4−10c2
1 g2r3−3r4+3c2

2 gr4
3 gr5

4 h−r3)

Figure 3.7: Protocol for Example 3.5.5.
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• V’s challenge is the same in all j protocol executions.

V accepts if and only if it accepts P’s demonstration of each of the j subformulae.
Although the two constraints are not strictly necessary, they are preferable in

light of efficiency and, more importantly, for the purpose of lifting the protocol to the
smartcard setting, as we will see in Section 6.3. Also, the constraints are desirable
for the purpose of forming signed proofs.

The following proposition follows straightforwardly from Proposition 3.5.2 and
the fact that using the same challenge for all subformulae does not increase P̂’s cheat-
ing probability.

Proposition 3.6.1. In the protocol for demonstrating F , assume that P only demon-
strates formulae F in which xl does not appear. The following properties hold:

(a) The protocol is complete and sound.

(b) The protocol is a proof of knowledge of a DL-representation of h with respect
to the tuple (g1, . . . , gl).

(c) For any distribution of (x1, . . . , xl−1), whatever information Ṽ in an adap-
tively chosen formula attack 3 can compute about (x1, . . . , xl−1) can also be
computed using merely its a priori information and the status of the formulae
requested.

The proof is straightforward. (A description of what is essentially the knowledge
extractor required to prove soundness is contained in the proof of Proposition 5.4.1.)

To obtain a signed proof, V’s challenge c should be generated as a sufficiently
strong one-way hash of the j initial witness sets, a description of F , and an (op-
tional) message m. In case h is not fixed a priori, it should be hashed along as well.
The signed proof consists all P’s challenge and response sets, or equivalently of all
P’s initial witness sets and response sets. (As before, instead of hashing along a de-
scription of F one may alternatively restrict all the matrix entries to sets V such that
|V |/q is negligible in k.)

Proposition 3.6.2. In Proposition 3.6.1, if the DL function used to implement P’s
commitment is one-way, and V’s challenge is formed by hashing at least all ini-
tial witnesses and F , then non-interactively issued signed proofs are provably un-
forgeable and unmodifiable in the random oracle model, regardless of the formula(e)
demonstrated and the distribution of (x1, . . . , xl−1).

Proposition 3.6.3. Let l ≥ 3, let xl−1 be the outcome of a random coin flip by P ,
and let P only demonstrate formulae F in which both x l−1 and xl do not appear.
If the DL function used to implement P’s commitment is one-way, V’s challenge is
formed by hashing at least all initial witnesses and F , and P performs no more than

3This time, V may request the demonstration of any Boolean formula of the form (3.7).
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polylogarithmically many formula demonstrations, then interactively issued signed
proofs are provably unforgeable and unmodifiable in the random oracle model, re-
gardless of the formula(e) demonstrated and the distribution of (x1, . . . , xl−2).

The remarks about the coin flip in Proposition 3.3.7 apply here as well.
We now posses all the machinery for P to demonstrate the example formula (3.1)

in Section 3.1.

Example 3.6.4. Suppose P has three attributes x1, x2, x3 ∈ Zq , selected accord-
ing to an arbitrary probability distribution, and is to demonstrate by means of a
non-interactively issued signed proof to V that the example formula (3.1) holds true.
Assume for concreteness that

(x1 + 2x2 − 10x3 = 13) AND (x2 − 4x3 = 5)

holds. In Example 3.5.5 we have seen how to demonstrate the subformula appearing
before the third “AND” connective. In accordance with Section 3.4, P demonstrates
the remaining part by proving knowledge of a DL-representation of g 1 with respect
to (g5

1h
−1, g8

1g2, g
−11
1 g3, g4). By merging the two protocols in accordance with the

technique described in this section, we obtain the protocol depicted in Figure 3.8.
As before, m denotes a message and F denotes a description uniquely identifying
formula (3.1). Examples of data that could be included in m are a nonce to protect
against replay, an identifier of V , a public key to be used for session encryption,
and a free-form message. The signed proof consists of (c1, c2, r1, . . . , r9). Assuming
that the underlying DL function is one-way, in the random oracle model the signed
proof is unforgeable and unmodifiable. Moreover, it does not leak more information
about (x1, x2, x3) than the validity of the formula; this holds even if P demonstrates
arbitrarily many other formulae about its attributes.

The performance estimates at the end of Section 3.1 are readily obtained. Namely,
according to Section 2.2.2, 200-bit challenges and responses suffice for long-term
security. Both P and V , to perform their computations in Gq , can use a precom-
puted table that contains the 31 products of the numbers in the non-empty subsets of
{g1, . . . , g4, h}. Performance can be pushed to the limit by using an elliptic curve
implementation with 20-byte base numbers, but beware of the reservations expressed
in Section 2.2.2. Also, the computational burden for V can be reduced by a factor
of almost 3 by having P send along (a1, a2, a3) (one of c1, c2 may be left out) and
applying batch-verification, in the manner described in Section 2.5.3.

3.6.2 Technique based on the RSAREP function

Again, adaptation to the difficulty of inverting the RSA function poses no particular
difficulties.
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P V

SYSTEM PARAMETERS

(q, g1, g2, g3, g4) := IDLREP(1k)

KEY SET-UP

Attributes: x1, x2, x3 ∈ Zq

x4 ∈R Zq

Secret key: (x1, . . . , x4)

Public key: h :=
∏4

i=1
gxi

i

Additional information: Hq,g4 (·)

PROTOCOL

w1, . . . , w6, c2, r3, r4, r5 ∈R Zq

a1 := g2w1
1 g4w1

2 gw1
3 gw2

4

a2 := gr3+4r4−10c2
1 g2r3−3r4+3c2

2 gr4
3 gr5

4 h−r3

a3 := g5w3+8w4−11w5
1 gw4

2 gw5
3 gw6

4 h−w3

c := Hq,g4 (h, m, F, a1, a2, a3)

c1 := c − c2 mod s

r1 := c1x3 + w1 mod q

r2 := c1x4 + w2 mod q

δ := ε−1 mod q

r6 := cδ + w3 mod q

r7 := cx2δ + w4 mod q

r8 := cx3δ + w5 mod q

r9 := cx4 + w6 mod q
c1, c2, (r1, . . . , r9)−−−−−−−−−−−−−→

c := c1 + c2 mod s

c
?
= Hq,g4 (h, m, F,

g2r1+3c1
1 g4r1+5c1

2 gr1
3 gr2

4 h−c1 ,

gr3+4r4−10c2
1 g2r3−3r4+3c2

2 gr4
3 gr5

4 h−r3 ,

g5r6+8r7−11r8−c
1 gr7

2 gr8
3 gr9

4 h−r6)

Figure 3.8: Protocol for Example 3.6.4.
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3.7 Optimizations and extensions

Modulo a small constant factor, the communication and computation complexity of
our proof techniques for atomic formulae are the same as for proofs with full disclo-
sure. In the latter case, P would simply transmit (x1, . . . , xl) to V , and digitally sign
V’s challenge message using the Schnorr or Guillou-Quisquater signature scheme,
say. Thus, our selective disclosure techniques for atomic formulae achieve privacy
essentially for free.

This extreme efficiency does not hold when our techniques are used to demon-
strate formulae of the form (3.6) or (3.7), although the increase in communication
and computation complexity is only linear in the number of logical connectives. We
now describe a slight optimization of our techniques for these two cases. To demon-
strate an atomic formula, our techniques have P demonstrate knowledge of a secret
key corresponding to a public key, where the definition of the public key and of
what constitutes a secret key both depend on the formula demonstrated; see Proposi-
tions 3.3.1 and 3.4.1. In this interpretation, “complex” propositions of the form

“I know a secret key corresponding to public key h and it satisfies formula F ”

(with h fixed a priori and F atomic) are mapped to simple propositions of the form

“I know a secret key corresponding to public key h i,”

where the “distorted” public key hi is not fixed a priori but derived from h in a
formula-dependent manner, and the definition of what constitutes a secret key corre-
sponding to hi also depends on F . Cramer, Damgård, and Schoenmakers [123] show
how to demonstrate monotone Boolean formulae over such simple propositions. 4

Since the witness-indistinguishable proof of knowledge in Section 2.4.3 satisfies their
requirements [123, Corollary 14], their technique can be applied here. The idea is
to dictate the restrictions, according to which P generates its self-chosen challenges
from the challenge message, in accordance with a secret-sharing construction due
to Benaloh and Leichter [25] for the access structure defined by the “dual” of the
formula. Since this technique does not require F to be expressed in the conjunctive
normal form (3.7), the resulting proof of knowledge may be more compact. On the
downside, lifting the optimized demonstration protocols to the smartcard setting (see
Chapter 6) is not always possible without significantly increasing the complexity of
the protocol. Therefore, we will not consider this optimization any further.

Another optimization is for V to batch-process all the verification relations, one
for each atomic (sub)subformula, in the manner described in Section 2.5.3. Batch-
verification may also be applied to the verification of multiple protocol executions.

It is possible to use our showing protocol techniques in such a manner that P
can rapidly demonstrate possession of t out of u “qualitative” attributes, for any

4De Santis, Di Crescenzo, Persiano, and Yung [334] independently devised a similar technique.
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t ≤ u ≤ l. Namely, if each of x1, . . . , xu is guaranteed to be either 1 or 0, then P
can simply demonstrate that

∑u
i=1 xi = t mod q. In Chapter 5 we will see that the

guarantee that each xi is either 0 or 1 can come from a CA that encodes the attribute
values into P’s key pair.

The atomic propositions for which Boolean formulae can be demonstrated can be
extended beyond linear relations:

• A technique of Damgård [127] can be adapted to our scenario in order to
demonstrate polynomial relations. Demonstration of

xγ1
1 + β2x

γ2
2 + · · · + βkxγl

l = β1 mod q

requires P to spawn in the order of
∑l

i=1 γi auxiliary commitments, and to
perform two basic proofs of knowledge for each of these. (Either a proof of
knowledge of a representation or a proof of equality of two secrets; the latter
can be handled using a protocol of Chaum and Pedersen [109] that will also be
used in Section 4.5.2.) This is practical only for low-degree polynomials. 5

• Brickell, Chaum, Dåmgard, and van de Graaf [63] show how to demonstrate
that a secret is contained in an interval. Their technique, which can be adapted
to our scenario, is not very practical because it requires polynomially many
repetitions of a three-move protocol with binary challenges. Moreover, the
interval for which P must perform the proof must be three times larger than
the interval one is interested in, to avoid leakage of information (so that P is
actually demonstrating a different statement).

An improvement is due to Schoenmakers [342]. With h = g x1
1 gα

2 , say, to
demonstrate that x1 ∈ {0, . . . , 2t−1} the prover discloses t auxiliary commit-
ments

h0 := gb1
1 gα1

2 , . . . , ht−1 := gbt
1 gαt

2 .

The bi’s satisfy
∑t−1

i=0 bi2i = x1 and the αi’s are chosen at random subject to
the condition

α =
t−1∑
i=0

αi2i mod q.

The prover proves that each bi ∈ {0, 1}, using our technique in Section 3.5,
and the verifier in addition checks that

t−1∏
i=0

h2i

i = h.

Generalization to arbitrary intervals is accomplished by proving that x 1 is in
the intersection of two appropriately shifted intervals, each of length a power

5Fujisaka and Okamoto [179] proposed another technique that is equally impractical and less elegant.
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of 2. This technique requires the prover to spawn a number of auxiliary com-
mitments that is linear in the size of the interval, and to perform essentially two
Schnorr proofs of knowledge for each of these.

Demonstrating an atomic proposition in both cases involves a serious amount of over-
head, and the practical relevance of demonstrating polynomial relations is unclear.
Therefore we will not consider these techniques any further.

3.8 Bibliographic notes

The technique in Section 3.3 for demonstrating a single linear relation is due to
Brands [54]. The general techniques for demonstrating arbitrary Boolean proposi-
tions, for atomic propositions that are linear relations, originate from Brands [45],
with a summary in Brands [55]. None of the formal security statements and their
proofs have appeared elsewhere previously, nor have the examples.

The suggestion in Section 3.7 to adapt a technique of Damgård [127] to demon-
strate polynomial relations is due to Brands [55], and was later on used by Camenisch
and Stadler [70, 73]. They [74] also rediscovered the simple technique in Sec-
tion 5.2.2 for demonstrating properties of the attributes encoded into different key
pairs, due to Brands [46, page 22] (see also Brands [54]); the resulting proof system
is significantly less practical and flexible, though.

The techniques in this chapter have numerous applications that do not necessar-
ily involve digital certificates. For example, the techniques in Sections 3.3 and 3.4
can be used to improve the undeniable signature scheme of Chaum, van Heijst, and
Pfitzmann [111, 112]. The technique in Section 3.5, which was inspired by a tech-
nique of Schoenmakers [340] to prove knowledge of a secret key corresponding to at
least one of two public keys, has been applied by Cramer, Franklin, Schoenmakers,
and Yung [124] and Cramer, Gennaro, and Schoenmakers [125] to design “key es-
crow” electronic voting schemes (see the Epilogue). Other applications that need not
involve digital certificates but could benefit from our showing protocol techniques
include fair exchange of digital signatures, incremental signing, digital watermark-
ing, private information retrieval, and distributed database querying. In the remaining
chapters we will confine ourselves to applications involving digital certification.




