
Chapter 4

Restrictive Blind Issuing
Protocols

In this chapter we introduce a new notion, called restrictive blinding, to enable the
CA to encode attributes into certified key pairs that are unlinkable and untraceable
in all other respects. We design various practical restrictive blind certificate issuing
protocols, for DLREP-based certificates as well as for RSAREP-based certificates,
and analyze their security. This chapter builds on Chapter 2, but may be read inde-
pendently of Chapter 3. In Chapter 5 we will show how to combine the issuing and
showing protocol techniques.

4.1 Restrictive blinding

Informally, a restrictive blind certificate scheme is a digital certificate scheme (see
Section 2.6) with the following properties:

• If V and P both follow the protocol, then V obtains a certified key pair

(s, p, cert(p)).

The pair (s, p) is a key pair of V , and cert(p) is P’s (secret-key or public-key)
digital certificate on V’s public key p.

• The certified public key (p, cert(p)) obtained by V by interacting with P̃ is
statistically independent from P̃’s view in the protocol execution.

• If P follows the protocol, then V̂ cannot forge certified key pairs.

• If V̂ obtains a certified key pair (s, p, cert(p)), then with overwhelming prob-
ability the secret key s contains at least one attribute encoded by P.
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The last property is the hardest to formalize. To understand the meaning of “encod-
ing at least one attribute,” consider by way of example a scenario in which V is to
receive P’s certificate on a public key defined by the RSAREP function (see Sec-
tion 2.3.3). If P is to encode (x1, . . . , xl) into the secret key V will know for the
public key

∏l
i=1 gxi

i xv
l+1 it will end up with, then V must be unable to modify these

l attributes as part of its blinding operations; we say that part of V’s secret key (the
first l positions) is blinding-invariant. Note that P’s ability to encode (x1, . . . , xl)
into V’s secret key does not contradict the requirement that V is able to blind its cer-
tified public key (p, cert(p)), assuming that V can generate x l+1 at random from Z

∗
n.

The difficulty resides in how to meet all four properties.
In general,P may encode attributes into V’s secret key in an arbitrary fashion. All

that matters is that the blinding-invariant part of V’s secret key can be described by
a polynomial-time computable (non-constant) function from the space of secret keys
into the space of attributes. For example, suppose that V̂ can obtain P’s certificate on
a public key of the form

∏l
i=1 gαxi+β

i xv
l+1, for random blinding factors α, β ∈ Zv,

but not on other forms. Then P can still encode l − 2 attributes in an independent
manner into V’s secret key, since x∗

i := (xi − xl)(xl−1 − xl)−1 mod v remains
unchanged for all i ∈ {1, . . . , l − 2}). (More generally, the invariance applies under
linear transformations.) For another example, see Proposition 4.3.15. If, on the other
hand, V̂ can obtain P’s certificate on a public key of the form

∏l
i=1 gxi+αi

i xv
l+1, for

random blinding factors α1, . . . , αl ∈ Zv, then P cannot encode anything into V’s
secret key.

P need not necessarily know the attributes it encodes into V’s secret key; know-
ing a one-way image may suffice, as we will see in Section 5.2.1. This general-
ization enables P to “update” previously encoded attributes without knowing their
current values. For this reason, in the definition of restrictive blinding we will not
be concerned with who determines, knows, or generates the attributes that are to be
encoded; of importance is only the existence of a blinding-invariant part in the secret
key that V will end up with.

We are now prepared for a formal definition.

Definition 4.1.1. A restrictive blind certificate scheme is a digital certificate scheme
with the following additional properties:

• (Blinding of the certified public key) If V follows the protocol and accepts,
then V obtains a certified key pair (s, p, cert(p)) such that the certified pub-
lic key (p, cert(p)) is statistically independent from P̃’s view in the protocol
execution.

• (Blinding-invariant part) There exists a non-constant function {Inv i(·)}i∈V

that can be evaluated in polynomial time, such that the following two proper-
ties hold if P follows the protocol:
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– Let s denote the secret key of the certified key pair obtained by V . Then
Invi(s) = tuple, where tuple is the attribute tuple encoded by P .

– Let s1, . . . , st∗ denote the secret keys of any t∗ certified key pairs obtained
by V̂ after engaging in t ≥ t∗ protocol executions, and let tuplej denote
the attribute tuple P intended to encode into V’s certified key pair in the
j-th protocol execution, for all j ∈ {1, . . . , t}. For all j ∗ ∈ {1, . . . , t∗},
there exists j ∈ {1, . . . , t} such that the following two properties hold
with overwhelming probability:

∗ Invi(sj∗) = tuplej .

∗ The multiplicity of Invi(sj∗) is no greater than the multiplicity of
tuplej .

We will say that a restrictive blind certificate issuing protocol execution is per-
formed with respect to (x1, . . . , xl) if (x1, . . . , xl) is the attribute tuple that P intends
to encode into V’s certified key pair in that particular protocol execution.

The second part of the definition may seem overly complex, but is needed to cap-
ture the case where V consists of a plurality of receivers. Namely, operating under
the assumption that an adversary can passively monitor the protocol executions of
honest receivers, it must be infeasible for the adversary to benefit from this informa-
tion by being able to compute a certified key pair for which the secret key encodes
an attribute tuple that P intended to encode only in the secret key of one of the moni-
tored honest receivers.1 It is not hard to see that the definition captures this scenario,
regardless of how protocol executions are interleaved. Note that there is no problem
if V̂ can swap attribute tuples that P encodes in different protocol executions with V .

Definition 4.1.1 encompasses both public-key certificates and secret-key certifi-
cates. Note that restrictive blinding of secret-key certificates is not a special case of
Chaum’s blind signature paradigm [91, 92, 93, 94, 95, 96, 99, 100]: P’s certificate
is not a digital signature on V’s public key but only on V’s secret key, which by
definition cannot be blinded.

The notion of restrictive blinding also differs from Chaum’s notion of one-show
blinding [90, 98]. The latter concerns a property of an issuing protocol in combina-
tion with a showing protocol, while restrictive blinding is a property of the issuing
protocol only. In particular, restrictive blinding has nothing to do with restricting the
number of times a certificate may be shown. One special use of restrictive blinding
is to construct practical one-show blind signature schemes (see Section 5.4), but its
general applicability is much broader.

Definition 4.1.1 describes the strongest possible case of blinding; not even a CA
with unlimited resources can create a correlation between the certified public keys

1In a practical situation, session encryption can prevent monitoring of protocol executions, but the
security of the session encryption method depends not only on the receiver. Moreover, as a general design
principle it is undesirable to make the security of two different building blocks, that serve different goals,
depend on each other.
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it issues and its views in the issuing protocol. A weaker flavor would be one where
linking is merely computationally infeasible, but as explained in Section 1.3.5 this is
unsatisfactory.

In practical applications, it will often be desirable that V’s secret key cannot be
computed by a party that gets to learn V’s certified public key and also knows P̃’s
view in the originating issuing protocol. This property is not part of the definition,
but holds for all the constructions in this chapter.

Two generic approaches are known to design restrictive blind certificate schemes:

• One can use any “ordinary” blind signature issuing protocol, and have the re-
ceiver use a zero-knowledge proof to prove to the issuer that it has properly
encoded the attributes into its “challenge” message, before the issuer returns
its final response. According to Goldreich, Micali, and Wigderson [191], zero-
knowledge proofs exist for all languages in the complexity class NP.

• Techniques from the field of secure multi-party computations can be used,
along the lines of Juels, Luby, and Ostrovsky [224]. (See also Damgård [126]
and Pfitzmann and Waidner [303].)

Both approaches result in highly impractical protocols. A more efficient approach is
to run polynomially many copies of an ordinary blind signature protocol in parallel,
and have the signer complete a randomly chosen run of the protocol only when the
receiver shows correct formation of the “challenge” messages it submitted in all the
other protocol runs. This approach is still far from practical, though, and in fact does
not qualify: the attributes cannot be encoded in polynomial time with overwhelming
success probability. Note also that the improved issuing protocol of Chaum’s ad hoc
one-show blind signature scheme [98, 90] does not meet Definition 4.1.1.

The objective of this chapter is to design secure restrictive blind issuing proto-
cols that are truly practical, and that enable the CA to encode polynomially many
attributes without affecting the size of certified public keys.

4.2 Practical constructions

In this section we design four practical restrictive blind certificate schemes. The
first two of these are based on the DLREP function, the latter two on the RSAREP
function. All schemes are for issuing secret-key certificates. We will extensively
analyze the schemes in the next section.

In Chapter 5 we will combine the showing protocols of the previous chapter with
the issuing protocols designed here. Because the receiver in the issuing protocol will
be the prover (signer) in the showing protocol, in the rest of this chapter we denote
the CA by P0 and the receiver by V0, to avoid confusion with the (P, V) notation
used in Chapter 3.
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4.2.1 Restrictive blinding based on the DLREP function

DLREP-based scheme I

Let (IDL, DDL) be any invulnerable instance generator for the DL function, and let
(q, g0) denote the output of IDL on input 1k. P0 feeds (q, g0) to DDL to obtain x0, and
computes h0 := gx0

0 . P0 then generates l ≥ 1 random numbers y1, . . . , yl ∈ Zq , for
some l of its own choice, and computes g i := gyi

0 , for all i ∈ {1, . . . , l}.
The system parameters are (q, g0). The public key of P0 is

h0, (g1, . . . , gl),

and its secret key is
x0, (y1, . . . , yl).

In addition, a correlation-intractable hash function H(·) = {H i(·)}i∈{(q,g0)}, such
that Hq,g0 (·) maps its outputs into Zs (for some s superpolynomial in k), is decided
on. A concise description of Hq,g0 (·) is published along with the public key. Al-
though not made explicit in the notation, Hq,g0 (·) may (and preferably does) depend
also on P0’s public key and any other information specified before protocol execu-
tions take place. (Alternatively, in each application of the hash function all such
static information is hashed along.) We will address the issue of selecting H(·) in
Section 4.3.3 when analyzing the security of the scheme.

The restrictive blind issuing protocol (P0, V0) is a proof of knowledge such that
V0 obtains a blinded public key, h ′ ∈ Gq , and a blinded certificate (c′0, r

′
0) ∈ Zs×Zq

of P0 on h′. The pair (c′0, r′0) is defined to be a certificate of P0 on h′ if and only if
the verification relation

c′0 = Hq,g0(h
′, g

r′
0

0 (h0h
′)−c′0)

holds. The secret key of V0 is a DL-representation, (x1, . . . , xl, α1), of h′ with re-
spect to (g1, . . . , gl, g0). The numbers x1, . . . , xl ∈ Zq are encoded by P0 into V0’s
secret key, and in particular are known to P0; they form the blinding-invariant part
of V0’s secret key. Because V0 generates α1 at random, only V0 knows a secret key
corresponding to h′ (see Proposition 2.3.3). Moreover, h ′ is statistically uncorrelated
to (x1, . . . , xl), regardless of the distribution of (x1, . . . , xl).

With h denoting
∏l

i=1 gxi

i , an execution of the certificate issuing protocol with
respect to (x1, . . . , xl) is defined as follows:

Step 1. P0 generates a random number w0 ∈ Zq , and sends a0 := gw0
0 to V0.

Step 2. V0 generates three random numbers α1, α2, α3 ∈ Zq . V0 computes h′ :=
hgα1

0 , c′0 := Hq,g0(h′, gα2
0 (h0h)α3a0), and sends c0 := c′0 + α3 mod q to P0.

Step 3. P0 sends r0 := c0(x0 +
∑l

i=1 xiyi) + w0 mod q to V0.
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V0 accepts if and only if gr0
0 (h0h)−c0 = a0. If this verification holds, V0 computes

r′0 := r0 + α2 + c′0α1 mod q.
We restrict P0 in the following manner. It may perform protocol executions with

respect to the same (x1, . . . , xl) in parallel, but must perform executions that involve
different attribute tuples sequentially. (The reason for this restriction will be clarified
in Section 4.3.3. In Section 4.4 we will show how to get around the restriction.) The
resulting scheme is depicted in Figure 4.1.

When forming c′0 in Step 2, V0 may hash along additional information, such as
a public key to be used for session encryption in a showing protocol or one or more
initial witnesses for the showing protocol. The advantages of including the latter will
become clear in Section 5.4.

DLREP-based scheme II

The following variation of DLREP-based scheme I is somewhat less efficient, but
as Proposition 4.3.7 will show admits a better proof of unforgeability in the random
oracle model. The required modifications are minimal, and so we only describe these:

• P0 generates an additional random number f ∈ Gq , which it publishes along
with the other public key data. It also generates an additional random number
t ∈ {0, 1}, serving as additional secret key information to P0, and forms h0

according to h0 := gx0
0 f t. No further changes are needed in the key set-up.

• A certificate of P0 on h′ is redefined to be a triple, (c′0, r′0, r′1) ∈ Zs×Zq×Zq

such that

c′0 = Hq,g0(h
′, g

r′
0

0 f r′
1(h0h

′)−c′0)

The definition of a key pair for V0 is not changed, nor is that of the blinding-
invariant part.

• In Step 1 of the certificate issuing protocol, P0 generates an additional random
number w1 ∈ Zq , and forms a0 according to a0 := gw0

0 fw1 . In Step 2 of
the protocol, V0 generates an additional random number α4 ∈ Zq, and mul-
tiplies fα4 into the second argument to Hq,g0(·) when computing c′0. In Step
3 of the protocol, P0 computes an additional response, r1, according to r1 :=
c0t + w1 mod q, and sends this along to V0. Finally, V0 accepts if and only if
gr0
0 f r1(h0h)−c0 = a0, and in addition blinds r1 to r′1 := r1 + α4 mod q.

The requirement that P0 may not interleave protocol executions with respect to dif-
ferent attribute tuples still applies.

The resulting scheme is depicted in Figure 4.2.
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P0 V0

SYSTEM PARAMETERS

(q, g0) := IDL(1k)

KEY SET-UP

x0 := DDL(q, g0)

y1, . . . , yl ∈R Zq

Secret key: x0, (y1, . . . , yl)

h0 := gx0
0

gi := gyi
0 ∀i ∈ {1, . . . , l}

Public key: h0, (g1, . . . , gl)

Additional information: Hq,g0 (·)

PROTOCOL

w0 ∈R Zq

a0 := gw0
0

a0−−→
α1, α2, α3 ∈R Zq

h′ := hgα1
0

c′0 := Hq,g0 (h′, gα2
0 (h0h)α3a0)

c0 := c′0 + α3 mod q

c0←−−
r0 := c0(x0 +

∑l

i=1
xiyi) + w0 mod q

r0−−→
gr0
0 (h0h)−c0

?
= a0

r′0 := r0 + α2 + c′0α1 mod q

Figure 4.1: DLREP-based scheme I.
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P0 V0

SYSTEM PARAMETERS

(q, g0) := IDL(1k)

KEY SET-UP

x0 := DDL(q, g0)

t ∈R {0, 1}
y1, . . . , yl ∈R Zq

Secret key: (x0, t), (y1, . . . , yl)

f ∈R Gq

h0 := gx0
0 ft

gi := gyi
0 ∀i ∈ {1, . . . , l}

Public key: (f, h0), (g1, . . . , gl)

Additional information: Hq,g0 (·)

PROTOCOL

w0, w1 ∈R Zq

a0 := gw0
0 fw1

a0−−−−−→
α1, α2, α3, α4 ∈R Zq

h′ := hgα1
0

c′0 := Hq,g0 (h′, gα2
0 (h0h)α3fα4a0)

c0 := c′0 + α3 mod q

c0←−−−−−
r0 := c0(x0 +

∑l

i=1
xiyi) + w0 mod q

r1 := c0t + w1 mod q

r0, r1−−−−−→
gr0
0 fr1(h0h)−c0

?
= a0

r′0 := r0 + α2 + c′0α1 mod q

r′1 := r1 + α4 mod q

Figure 4.2: DLREP-based scheme II.
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4.2.2 Restrictive blinding based on the RSAREP function

RSAREP-based scheme I

Let (IRSA, DRSA) be any invulnerable instance generator for the RSA function, and
let (n, v) denote the output of IRSA on input 1k. We assume that IRSA outputs the
prime factorization (p, q) of n as “side information” for P0. P0 feeds (n, v) to DRSA

to obtain x0, and computes h0 := xv
0 . P0 then generates l ≥ 1 random numbers

g1, . . . , gl ∈ Z
∗
n.

The system parameters are (n, v). The public key of P0 is

h0, (g1, . . . , gl),

and its secret key is the prime factorization of n. In addition, a one-way hash function
H(·) = {Hi(·)}i∈{(n,v)}, such that Hn,v(·) maps its outputs into Zs (for some s
superpolynomial in k), is decided on. A concise description of Hn,v(·) is published
along with the public key. Although not made explicit in the notation, its specification
may depend on P0’s public key and any other information specified before protocol
executions take place. We will address the issue of selecting H(·) in Section 4.3.3.

Our restrictive blind issuing protocol (P0, V0) is a proof of knowledge such that
V0 obtains a blinded public key, h ′ ∈ Z

∗
n, and a blinded certificate (c′0, r

′
0) ∈ Zs×Z

∗
n

of P0 on h′. The pair (c′0, r
′
0) is defined to be a certificate of P0 on h′ if and only if

the verification relation

c′0 = Hn,v(h′, (r′0)
v(h0h

′)−c′0)

holds. The secret key of V0 is an RSA-representation, (x1, . . . , xl, α1), of h′ with
respect to (g1, . . . , gl, v). The numbers x1, . . . , xl ∈ Zv are encoded by P0 into V0’s
secret key; they form the blinding-invariant part of V 0’s secret key. Because V0 gen-
erates α1 at random, h′ is uncorrelated to (x1, . . . , xl), regardless of the distribution
of (x1, . . . , xl).

With h denoting
∏l

i=1 gxi

i , an execution of the certificate issuing protocol with
respect to (x1, . . . , xl) is defined as follows:

Step 1. P0 generates a random number a0 ∈ Z
∗
n, and sends it to V0.

Step 2. V0 generates two random numbers α1, α2 ∈ Z
∗
n and a random number α3 ∈

Zv. V0 computes h′ := hαv
1 , c′0 := H(h′, αv

2(h0h)α3a0), and sends c0 :=
c′0 + α3 mod v to P0.

Step 3. P0 sends r0 := ((h0h)c0a0)1/v to V0. (Note that P0 can compute v-th roots
of arbitrary numbers in Z

∗
n, because it knows the prime factorization of n.)

V0 accepts if and only if rv
0(h0h)−c0 = a0. If this verification holds, V0 computes

r′0 := r0α2α
c′0
1 (h0h)(c

′
0+α3)divv.
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As with both DLREP-based schemes, P0 may perform protocol executions with re-
spect to the same (x1, . . . , xl) in parallel, but may not interleave executions that
involve different attribute tuples. (In Section 4.4 we will show how to get around this
restriction.) The resulting scheme is depicted in Figure 4.3.

When forming c′0 in Step 2, V0 may hash along additional information, such as
a public key for session encryption or one or more initial witnesses for a subsequent
showing protocol. Inclusion of the latter will be pursued further in Section 5.4.

RSAREP-based scheme II

The following variation of RSAREP-based scheme I is somewhat less efficient, but
admits a better proof of unforgeability in the random oracle model. The modifications
to RSAREP-based scheme I are the following:

• P0 generates an additional random number f ∈ Z
∗
n, which it publishes along

with its other public key data. No further changes are needed in the key set-up.

• A certificate of P0 on h′ is redefined to be a triple, (c′0, r
′
0, r

′
1) ∈ Zs×Z

∗
n×Zv

such that
c′0 = Hn,v(h′, (r′0)

vf r′
1(h0h

′)−c′0)

The definition of a key pair for V0 is not changed, nor is that of the blinding-
invariant part.

• In Step 2 of the protocol, V0 generates an additional random number α4 ∈ Zv,
and multiplies fα4 into the second argument to Hn,v(·) when computing c′0.
In Step 3 of the protocol, P0 generates a random number r1 ∈ Zv , computes
r0 according to r0 := ((h0h)c0a0/f r1)1/v , and sends r0 along to V0. Finally,
V0 accepts if and only if rv

0f r1(h0h)−c0 = a0, and computes

r′0 := r0α2α
c′0
1 (h0h)(c

′
0+α3)divvf (r1+α4)divv

and r′1 := r1 + α4 mod v.

The requirement that P0 may not interleave protocol executions with respect to dif-
ferent attribute tuples still applies.

The resulting scheme is depicted in Figure 4.4.

4.2.3 Comparison

The constructions based on the DLREP function and on the RSAREP function follow
exactly the same design principle. This may not be readily clear from the descrip-
tions, because P0 in the RSAREP-based variants makes use of trapdoor information,
which is not available in the DLREP-based variants. To appreciate the underlying
design principle, observe that P0 need not make use of trapdoor information in the
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P0 V0

SYSTEM PARAMETERS

(n, v) := IRSA(1k)

KEY SET-UP

Secret key: factorization of n

h0, g1, . . . , gl ∈R Z
∗
n

Public key: h0, (g1, . . . , gl)

Additional information: Hn,v(·)

PROTOCOL

a0 ∈R Z
∗
n

a0−−→
α1, α2 ∈R Z

∗
n

α3 ∈R Zv

h′ := hαv
1

c′0 := Hn,v(h′, αv
2(h0h)α3a0)

c0 := c′0 + α3 mod v

c0←−−
r0 := ((h0h)c0a0)1/v

r0−−→
rv
0 (h0h)−c0

?
= a0

r′0 := r0α2α
c′0
1 (h0h)(c

′
0+α3)divv

Figure 4.3: RSAREP-based scheme I.
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P0 V0

SYSTEM PARAMETERS

(n, v) := IRSA(1k)

KEY SET-UP

Secret key: factorization of n

f, h0, g1, . . . , gl ∈R Z
∗
n

Public key: (f, h0), (g1, . . . , gl)

Additional information: Hn,v(·)

PROTOCOL

a0 ∈R Z
∗
n

a0−−−−−→
α1, α2 ∈R Z

∗
n

α3, α4 ∈R Zv

h′ := hαv
1

c′0 := Hn,v(h′, αv
2(h0h)α3fα4a0)

c0 := c′0 + α3 mod v

c0←−−−−−
r1 ∈R Zv

r0 := ((h0h)c0a0/fr1 )1/v

r0, r1−−−−−→
fr1rv

0 (h0h)−c0
?
= a0

r′0 := r0α2α
c′0
1 (h0h)(c

′
0+α3)divvf(r1+α4)divv

r′1 := r1 + α4 mod v

Figure 4.4: RSAREP-based scheme II.
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RSAREP-based schemes. In RSAREP-based scheme I, we hereto make the follow-
ing modifications:

• Instead of generating h0, g1, . . . , gl at random, P0 generates l + 1 random
numbers x0, y1, . . . , yl from Z

∗
n, and computes h0 := xv

0 and gi := yv
i , for all

i ∈ {1, . . . , l}. (More generally, P0 may set x0 := DRSA(n, v).)

• In Step 1 of the issuing protocol, P0 generates a0 according to a0 := wv
0 , for a

random w0 ∈ Z
∗
n.

• In Step 3 of the issuing protocol, P0 computes r0 as follows:

r0 := (x0

l∏
i=1

yxi

i )c0w0.

The resulting scheme is depicted in Figure 4.5. Similar modifications can be made
to RSAREP-based scheme II. With these modifications, it is easily seen that the
DLREP-based and the RSAREP-based schemes are all based on the same design
principle:

P0 interactively issues a signed proof of knowledge of a secret key corre-
sponding to the joint public key h0h, using one of the proofs of knowl-
edge described in Sections 2.4.3 and 2.4.4. V0 blinds not only a0 and
P0’s response(s), but also h.

In all four schemes, h0h or h may be thought of as the auxiliary common input m ∗

in Definition 2.5.1. Note that for both DLREP-based scheme II and RSAREP-based
scheme II the issuing protocols are provably witness-hiding. (In particular, even after
P0 has performed polynomially many protocol executions, arbitrarily interleaved and
possibly with respect to all valid attribute tuples, its secret key provably cannot leak.)

Not using the trapdoor information in the RSAREP-based schemes has several
advantages:

• Multiple provers can all operate with respect to the same (n, v), generated by
a trusted party or by means of a secure multi-party protocol (see Boneh and
Franklin [39] and Poupard and Stern [309]).

• The binary sizes of v and c may be much smaller than the binary sizes of the
prime factors of n. This reduces P0’s computational burden.

• P0 can be split into many sub-provers that all hold a share of the public key,
and that must all contribute to issue a certified key pair to V0. Using RSAREP-
based scheme I, for instance, the i-th sub-prover could hold h 0i := xv

0i, with∏l
i=1 h0i = h0, and could be in charge of generating y i. The contribution of

the i-th sub-prover to the issuing protocol would be an initial witness a 0i :=
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P0 V0

SYSTEM PARAMETERS

(n, v) := IRSA(1k)

KEY SET-UP

x0 := DRSA(n, v)

y1, . . . , yl ∈R Z
∗
n

Secret key: x0, (y1, . . . , yl)

h0 := xv
0

gi := yv
i ∀i ∈ {1, . . . , l}

Public key: h0, (g1, . . . , gl)

Additional information: Hn,v(·)

PROTOCOL

w0 ∈R Z
∗
n

a0 := wv
0

a0−−→
α1, α2 ∈R Z

∗
n

α3 ∈R Zv

h′ := hαv
1

c′0 := Hn,v(h′, αv
2(h0h)α3a0)

c0 := c′0 + α3 mod v

c0←−−
r0 := (x0

∏l

i=1
yxi

i )c0w0

r0−−→
rv
0 (h0h)−c0

?
= a0

r′0 := r0α2α
c′0
1 (h0h)(c

′
0+α3)divv

Figure 4.5: RSAREP-based scheme I without use of trapdoor information.
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wv
0i and a response r0i := (x0iy

xi

i )c0w0i; the product of all the individual
witnesses is the initial witness expected by V0, and likewise for the responses.

The technique of sharing P0’s secret key can also be applied to the DLREP-based
issuing protocols (and the other protocols that will be described later in this chap-
ter). It is even possible to extend the technique to provide for arbitrary secret shar-
ing, requiring one of several predetermined subsets to cooperate in order to perform
the role of P0. For relevant secret-sharing techniques, see Pedersen [299], Cere-
cedo, Matsumoto, and Imai [84], Gennaro, Jarecki, Krawczyk, and Rabin [184], and
Takaragi, Miyazaki, and Takahashi [369]. Also, the number of entities that share
P0’s secret key could be increased so that multiple entities are needed to approve
each attribute. In a practical implementation, the sub-provers could take the form of
tamper-resistant computing devices stored in independently guarded locations. This
not only provides optimal protection against (insider and outsider) theft and extortion
of P0’s secret key, but it can also ensure that different device operators must approve
the same attributes that are to be encoded into a certified key pair. 2

Using the trapdoor information in the RSAREP-based schemes also has a couple
of advantages:

• It avoids the exponentiation in Step 1 of the protocol.

• P0 does not need to remember or reconstruct in Step 3 a secret number that it
generated in Step 1, which is an advantage when implementing the protocol.
(P0 still needs to access its secret key, of course.) The protocol can even be
turned into a two-move protocol by having V 0 form a0 by feeding at least an
identifier for V0 and a nonce into a sufficiently strong one-way function. (V 0

must send the nonce along with its challenge to P0, so that P0 can check its
freshness.)

• P0 can perform the issuing protocol without knowing (x 1, . . . , xl); it merely
needs to know h. This property enables P0 to recertify a previously certified
public key, without knowing its blinding-invariant part. During the process,
P0 can even update one or more of the x i values. (Details will be provided in
Section 5.2.1.)

In the RSAREP-based schemes, V0 cannot verify by itself that v is co-prime to ϕ(n).
However, if the prime v is not co-prime to ϕ(n), then P̃0 cannot respond to V’s
challenge c0 with probability at least 1−1/v. In other words, V 0 becomes convinced
with overwhelming probability of the proper formation of (n, v) by engaging in a
single execution of the certificate issuing protocol.

2Issuer fraud is a serious threat, as witnessed for instance by the 250 employees of the Department
of Motor Vehicles of California who in 1998 were found to have issued over 25 000 genuine-looking but
fraudulent licenses in a two-year period.
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In Step 2 of all four certificate schemes, V0 can perform all the required exponen-
tiations in a preprocessing stage; its real-time computational burden in each protocol
amounts to one modular multiplication and one application of the hash function. This
makes the schemes highly practical.

The main advantage of the DLREP-based variants over the RSAREP-based vari-
ants is that the computation ofP0’s response(s) does not involve any exponentiations.
In highly demanding applications, this enables the CA to serve more receivers us-
ing cheaper equipment, especially when using an elliptic curve implementation with
short system parameters.

4.3 Analysis

In this section we analyze the certificate schemes of the previous section. We will
prove that all four schemes are restrictive blind certificate schemes, under plausible
cryptographic assumptions.

To avoid unnecessary duplication of security statements and proof reductions,
a detailed analysis is provided only of RSAREP-based scheme I. The analysis of
the other three schemes is highly similar, and so for these we merely point out the
differences.

Throughout this section it is assumed that the system parameters, (q, g0) and
(n, v), respectively, are properly formed.

4.3.1 Completeness

The statements in this section hold for any choice of H(·).

Proposition 4.3.1. When interacting with P 0, V0 in RSAREP-based scheme I ac-
cepts.

Proof. This follows immediately from the manner in which P 0 computes r0 in Step
3 and the verification relation applied by V0.

Proposition 4.3.2. For any P̃0, if V0 in RSAREP-based scheme I accepts, then

(x1, . . . , xl, α1), h′, (c′0, r
′
0)

is a certified key pair.

Proof. Clearly, (x1, . . . , xl, α1) is an RSA-representation of h′ with respect to the
tuple (g1, . . . , gl, v). To show that (c′0, r′0) is a certificate of P0 on h′, note that V0 in
Step 2 of the issuing protocol computes c ′0 := Hn,v(h′, αv

2(h0h)α3a0). It therefore
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suffices to prove that (r′0)
v(h0h

′)−c′0 = αv
2(h0h)α3a0 for the assignments made by

V0. This can be seen as follows:

(r′0)
v(h0h

′)−c′0 = (r0α2α
c′0
1 (h0h)(c

′
0+α3) divv)v(h0hαv

1)
−c′0

= (r0α2(h0h)(c
′
0+α3) divv)v(h0h)−c′0

= rv
0αv

2(h0h)v ((c′0+α3) divv)(h0h)−c′0

(�)
= ((h0h)c0a0)αv

2(h0h)v((c′0+α3) divv)(h0h)−c′0

= (h0h)(c
′
0+α3 mod v)+v ((c′0+α3) divv)a0α

v
2(h0h)−c′0

= (h0h)c′0+α3αv
2(h0h)−c′0a0

= αv
2(h0h)α3a0.

The substitution (�) is allowed because V 0 accepts only if rv
0 (h0h)−c0 = a0.

In a like manner, the direct analogues of these two propositions can be proved for the
other three certificate schemes in Section 4.2.

4.3.2 Privacy for the receiver

The statements in this section address the protocol (P̃0, V0), and hold for any choice
of H(·).

Lemma 4.3.3. In RSAREP-based scheme I, for any properly formed system param-
eters, any certified public key, any (x1, . . . , xl), and any possible view of P̃0 in an
execution of the issuing protocol with respect to (x1, . . . , xl) in which V0 accepts,
there is exactly one set of random choices that V 0 could have made in that execution
of the issuing protocol such that V 0 would end up with a certified key pair containing
that particular certified public key.

Proof. Consider any tuple (x1, . . . , xl) and any certified public key h ′, (c′0, r
′
0). With

h denoting
∏l

i=1 gxi

i , the response r0 of P̃0 is such that rv
0 (h0h)−c0 = a0, since V0

accepts. Define the following two sets:

Views (P̃0) = {(a0, c0, r0) | a0, r0 ∈ Z
∗
n and c0 ∈ Zv such that

rv
0(h0h)−c0 = a0}

Choices (V0) = {(α1, α2, α3) | α1, α2 ∈ Z
∗
n and α3 ∈ Zv}.

We will show that for all P̃0-view ∈ Views (P̃0) exactly one triple (α1, α2, α3) ∈
Choices (V0) exists such that P̃0-view corresponds to an execution of the issuing
protocol in which V 0 receives the certified public key (h′, (c′0, r

′
0)).
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Suppose that P̃0-view corresponds to the issuing of h ′, (c′0, r
′
0). We determine

the numbers α1, α2, α3 that must have been chosen by V 0. First, α1 is determined
from h, h′ as

α1 := (h′ h−1)1/v.

Note that α1 exists and is uniquely defined, since v is co-prime to ϕ(n). Next, α3 is
determined from c0, c

′
0 according to

α3 := c0 − c′0 mod v.

Finally, the choices for α1 and α3, together with r0, r
′
0 and c′0, uniquely determine

α2 as

α2 := r′0(r0α
c′0
1 (h0h)(c

′
0+α3) divv)−1.

For these choices of the three variables all the assignments and verifications in
the execution of the issuing protocol would be satisfied by definition, except maybe
for the assignment

c′0 := Hn,v(h′, αv
2(h0h)α3a0)

that must have been made by V 0. To prove that this assignment holds as well, note
that

c′0 = Hn,v(h′, (r′0)
v(h0h

′)−c′0)

by definition of a certified public key. Therefore the proof is complete if

(r′0)
v(h0h

′)−c′0 = αv
2(h0h)α3a0

for the choices for α1, α2, and α3 made above. This can be derived exactly as in
the proof of Proposition 4.3.2, considering that the substitution (�) is allowed here
because P̃0-view ∈ Views (P̃0).

Lemma 4.3.3 does not necessarily hold in the case of improperly formed system
parameters. In particular, if v is not co-prime to ϕ(n) then a substantial part of the
views of P̃0 cannot be matched with a substantial part of the certified public keys.
This is not a problem, though, as we saw in Section 4.2.3.

Proposition 4.3.4. For any properly formed system parameters in RSAREP-based
scheme I, if V0 follows the issuing protocol and accepts, then it obtains a certified
key pair comprising a perfectly blinded certified public key, regardless of the behavior
of P̃0.

Proof. This is an immediate consequence of Lemma 4.3.3 and the fact that V 0 gen-
erates its triples (α1, α2, α3) at random from Choices (V0).
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The same result can be proved for the other three certificate schemes described in
Section 4.2.

In Chapter 5 we will make the connection with the showing protocols in Chapter 3
and show that that the above privacy result holds even when V 0 selectively discloses
any property of the encoded attributes. That is, any certificate that V 0 shows in the
showing protocol execution could have originated (with uniform probability) from
any of the issuing protocol executions in which P̃0 encoded attributes that satisfy the
formula disclosed by V 0.

4.3.3 Security for the Certificate Authority

In this section we address the protocol (P 0, V̂0), by analyzing the properties of un-
forgeability and restrictive blinding.

Unforgeability

We study the unforgeability of RSAREP-based scheme I in the strongest possible
attack model. All our unforgeability results hold even if V̂0 can engage in poly-
nomially many executions of the issuing protocol, can arbitrarily interleave protocol
executions, and may select an arbitrary attribute tuple (x1, . . . , xl) at the start of each
new protocol execution.

The following lemma holds for any choice of H(·).

Lemma 4.3.5. If the Guillou-Quisquater proof of knowledge with s := v is witness-
hiding, then V̂0 in RSAREP-based scheme I cannot output with non-negligible suc-
cess probability a non-trivial RSA-representation of 1 with respect to (g1, . . . , gl, v).

Proof. Suppose that V̂0, after engaging in t executions of the issuing protocol, out-
puts a non-trivial RSA-representation of 1 with respect to (g1, . . . , gl, v), with non-
negligible probability ε. We construct a polynomial-time interactive algorithm V̂ for
extracting the witness ofP in the Guillou-Quisquater proof of knowledge, as follows.

Let (n, v) denote the system parameters in the Guillou-Quisquater proof of knowl-
edge, and hGQ the public key of P . V̂ simulates P0 with the help of the protocol
executions of P, by performing the following steps:

Step A. (Simulate the key set-up for P 0.) Select a random index j ∈ {1, . . . , l} and
l + 1 random numbers x0, y1, . . . , yl ∈ Z

∗
n. Set h0 := xv

0 , gi := yv
i , for all

i ∈ {1, . . . , l} \ {j}, and gj := hGQy
v
j . The simulated public key of P 0 is

h0, (g1, . . . , gl).

Step B. (Simulate P0 in issuing protocol executions with respect to (x1, . . . , xl).)

Step 1. Receive a from P. Generate a random number α ∈ Z
∗
n and pass

a0 := axjαv mod n on to V̂0.
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Step 2. Receive c0 from V̂0, and pass c := c0 on to P .

Step 3. Receive r from P , and pass

r0 := rxj (x0

l∏
i=1

yxi

i )c0α

on to V̂0.

Repeat this simulation until t executions of the issuing protocol have been
performed.

Step C. Check if V̂0 has output a non-trivial RSA-representation, (u1, . . . , ul, ul+1),
of 1. If not, then halt.

Step D. If uj = 0 mod v, then halt.

Step E. Compute integers e, f ∈ Z such that euj + fv = 1, using the extended Eu-
clidean algorithm. (This can always be done, because v is a prime.) Compute

hf
GQ(

l∏
i=1

yui

i ul+1)−e

and output the result.

It is easy to see that the public key in Step A is generated with the same proba-
bility distribution as that by which P 0 generates its public key. Note that this is the
case regardless of the probability distribution of hGQ.

The response that is computed by V̂ in the simulated issuing protocol is the same
as the response that P0 would compute:

rv
0 = (rxj (x0

l∏
i=1

yxi

i )c0α)v

= (rv)xj (xv
0

l∏
i=1

(yv
i )xi)c0αv

(�)
= (hc

GQa)xj αvxvc0
0 (

∏
i∈{1,...,l}\{j}

gxi

i )c0y
vcxj

j

= (hGQy
v
j )cxj (axj αv)hc0

0 (
∏

i∈{1,...,l}\{j}
gxi

i )c0

= (gxj

j )c0a0h
c0
0 (

∏
i∈{1,...,l}\{j}

gxi

i )c0

= (h0h)c0a0,
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where the substitution (�) is allowed because the response of P satisfies rvh−c
GQ = a.

Since α is chosen at random from Z
∗
n, a0 is randomly distributed over Z

∗
n regardless

of xj . From this it follows that the view of V̂0 in the simulated issuing protocol
has the same distribution as when V̂0 interacts with P0, regardless of the probability
distributions of (x1, . . . , xl), its challenges, and hGQ. Therefore V̂ moves from Step
C to Step D with probability ε.

Because j is chosen at random by V̂ , and is uncorrelated to the view of V̂0 in the
issuing protocol, uj �= 0 mod v in Step D with probability at least 1/l. (Not all ui

can be zero, because v is co-prime to ϕ(n).)
The output of V̂ in Step E is equal to h

1/v
GQ :

(hf
GQ(

l∏
i=1

yui

i ul+1)−e)v = hfv
GQ (

l∏
i=1

(yv
i )uiuv

l+1)
−e

= h
1−euj
GQ y

ujv
j (

∏
i∈{1,...,l}\{j}

gui

i uv
l+1)

−e

= hGQ(hGQy
v
j )−euj (

∏
i∈{1,...,l}\{j}

gui

i uv
l+1)

−e

= hGQ(g
uj

j )−e(
∏

i∈{1,...,l}\{j}
gui

i uv
l+1)

−e

= hGQ(
l∏

i=1

gui

i uv
l+1)

−e

= hGQ1−e

= hGQ.

In all, the probability that V̂ can compute the secret key of P is at least ε/l. Since
l is polynomial in k, this probability is non-negligible if ε is non-negligible. This
contradicts the assumption.

Note that the reduction is tight only if l is a (small) constant; it is not clear how to
achieve tightness for arbitrary l polynomial in k.

We are now prepared for the main result.

Proposition 4.3.6. If Assumption 2.5.9 is true, then a hash function H(·) exists such
that RSAREP-based scheme I is unforgeable.

Proof. TakeH(·) equal to the hash functionH∗(·) defined in Assumption 2.5.9. Sup-
pose that V̂0 obtains t + 1 certified key pairs with non-negligible success probability
ε after engaging in t executions of the certificate issuing protocol, for some t ≥ 0.
We construct a polynomial-time (interactive) algorithm V̂ that can forge signatures
in the interactive Guillou-Quisquater signature scheme.
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Let (n, v) denote the system parameters in the Guillou-Quisquater proof of knowl-
edge, and hGQ the public key of P . V̂ simulates P0 with the help of the protocol
executions of P, by performing the following steps:

Step A. (Simulate the key set-up for P 0.) Generate a random number x0 ∈ Z
∗
n and

set h0 := hGQx
v
0. Generate l random numbers y1, . . . , yl ∈ Z

∗
n, and com-

pute gi := yv
i , for all i ∈ {1, . . . , l}. The simulated public key of P 0 is

h0, (g1, . . . , gl).

Step B. (Simulate P0 in issuing protocol executions with respect to (x1, . . . , xl).)

Step 1. Receive a from P , and pass a0 := a on to V̂0.

Step 2. Receive c0 from V̂ , and pass c := c0 on to P.

Step 3. Receive r from P , and pass r0 := r(x0

∏l
i=1 yxi

i )c0 on to V̂0.

Repeat this simulation until t executions of the issuing protocol have been
performed.

Step C. Check if V̂ has t+1 distinct certified key pairs on its tapes. If not, then halt.

Step D. For each of these t + 1 certified key pairs, ((x1, . . . , xl, α1), h′, (c′0, r
′
0)),

compute c∗ := c′0, r∗ := r′0(x0

∏l
i=1 yxi

i α1)−c′0 , and m := h′, and output the
signed message (m, (c∗, r∗)).

It is easy to see that the public key in Step A is generated with the same probabil-
ity distribution as that by which P 0 generates its public key. The response that is
computed by V̂ in the simulated issuing protocol is the same as the response that P 0

would compute:

rv
0 = (r(x0

l∏
i=1

yxi

i )c0)v

= rvxc0v
0 ((

l∏
i=1

(yv
i )xi)c0

(�)
= (hc

GQa)xcv
0 (

l∏
i=1

gxi

i )c0

= (hGQx
v
0)

cahc0

= (h0h)c0a0,

where the substitution (�) is allowed because the response of P satisfies rvh−c
GQ =

a. It follows that the view of V̂0 in the simulated issuing protocol has the same
distribution as when V̂0 interacts with P0, regardless of the probability distributions
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of its challenges, (x1, . . . , xl), and hGQ. Therefore, V̂ moves from Step C to Step D
with probability ε.

We next show (i) that the output of V̂ consists of t+1 messages with correspond-
ing Guillou-Quisquater signatures, and (ii) that these signed messages are all distinct
with overwhelming probability. Property (i) follows from

c∗ = c′0
(�)
= Hn,v(h′, (r′0)

v(h0h
′)−c′0)

(��)
= Hn,v(m, (r∗)vh−c∗

GQ ).

The substitution (�) is allowed by definition of a certificate, and substitution (��)

follows from

(r′0)
v(h0h

′)−c′0) = (r∗(x0

l∏
i=1

yxi

i α1)c′0)v(h0

l∏
i=1

gxi

i αv
1)

−c′0

= (r∗)vx
c′0v
0 (

l∏
i=1

(yv
i )xiαv

1)
c′0h

−c′0
0 (

l∏
i=1

gxi

i αv
1)

−c′0

= (r∗)v(h0x
−v
0 )−c′0

= (r∗)vh−c∗

GQ .

To prove property (ii), consider any two certified key pairs,

(x1, . . . , xl, α1), h′, (c′0, r
′
0)

and
(x∗

1, . . . , x
∗
l , α

∗
1), h∗, (c∗0, r

∗
0).

The corresponding signed messages, as computed by V̂ in Step D, are equal to

h′, (c′0, r′0((h
′)1/v)−c′0)

and
h∗, (c∗0, r∗0((h∗)1/v)−c∗0 ).

Suppose that these two signed messages are the same. From h ′ = h∗ and c′0 = c∗0 it
follows that r′0 = r∗0 . Furthermore, if (x1, . . . , xl, α1) and (x∗

1, . . . , x
∗
l , α

∗
1) are not

the same, then

(x1 − x∗
1 mod v, . . . , xl − x∗

l mod v,
l∏

i=1

g
(xi−x∗

i )divv
i α1/α∗

1)
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is a non-trivial RSA-representation of 1. According to Lemma 4.3.5, this contradicts
Assumption 2.5.9. Consequently, if the two signed messages are the same, then the
two certified key pairs are the same, and therefore property (ii) holds as well.

To complete the proof, observe that an execution of the simulated issuing protocol
constitutes exactly one execution of the protocol with P . In all, V̂ can compute
t + 1 Guillou-Quisquater signed messages from t protocol executions with P with
probability ε. If ε is non-negligible, this contradicts Assumption 2.5.9.

Similar reductions can be made for the other three certificate schemes in Section 4.2.
Because DLREP-based scheme II and RSAREP-based scheme II are non-trivially
witness-indistinguishable, we get the following results by application of Proposi-
tion 2.5.3.

Proposition 4.3.7. Assume thatP0 performs no more than polylogarithmically many
protocol executions, and that the binary size of the outputs of H g,g0(·) is linear in k.
If (IDL, DDL) is invulnerable for the DL function, then DLREP-based scheme II is
unforgeable in the random oracle model, for any distribution of (x 1, . . . , xl).

Proposition 4.3.8. Assume thatP0 performs no more than polylogarithmically many
protocol executions, and that the binary size of the outputs of Hn,v(·) is linear in k.
If (IRSA, DRSA) is invulnerable for the RSA function, then RSAREP-based scheme II is
unforgeable in the random oracle model, for any distribution of (x 1, . . . , xl).

These results hold even in case V0 may arbitrarily interleave the protocol execu-
tions and P0 encodes different attribute tuples of V0’s choice.

Blinding-invariance

To study the restrictive blinding property, we slightly weaken the attack model by
assuming that (x1, . . . , xl) is formed independently of h0. In most applications this
requirement is naturally met, especially if P0 selects (x1, . . . , xl).

The following assumption states that the only manner to generate a pair h, (c, r)
for which c = Hn,v(h, rvh−c) is by forming h as the v-th power of some known
x ∈ Z

∗
n. That is, if an algorithm could output such a transcript, then with “modest”

extra effort it could also compute h1/v mod n.

Assumption 4.3.9. There exists a hash function H∗(·) = {H∗
i (·)}i∈{n,v} and an

expected polynomial-time algorithm K, such that for any polynomial-time algorithm
A, for all constants c > 0, and for all sufficiently large k,

∣∣∣ Pk

(
A(n, v) = (h, c, r) such that c = H∗

n,v(h, rvh−c) | (n, v) := IRSA(1k)
)

− Pk

(
K((n, v), (h, c, r); A) = β ∈ Z

∗
n such that βv = h

) ∣∣∣ < 1/kc.
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This assumption can be proved in the random oracle model by using the oracle
replay technique of Pointcheval and Stern [307]. 3

Proposition 4.3.10. If Assumption 4.3.9 holds, then a hash function H(·) exists such
that the following holds for all l ≥ 1 and all (x1, . . . , xl). Let (x1, . . . , xl) be
formed independently of h0, (g1, . . . , gl), and be the same in all protocol executions
of RSAREP-based scheme I. If V̂0, after engaging in polynomially many protocol ex-
ecutions with respect to (x1, . . . , xl), outputs a certified key pair comprising a secret
key (x∗

1, . . . , x
∗
l , α1), then

(x∗
1, . . . , x

∗
l ) = (x1, . . . , xl)

with overwhelming probability.

Proof. Suppose that V̂0, after t protocol executions, outputs with non-negligible suc-
cess probability ε a certified key pair comprising a secret key (x∗

1, . . . , x
∗
l , α1) for

which (x∗
1, . . . , x

∗
l ) differs from (x1, . . . , xl). Using a proper choice for H(·), we

show how to use algorithm K in Assumption 4.3.9 to construct a polynomial-time
algorithm A for inverting the RSA function, thereby obtaining a contradiction.

Let (IRSA, DRSA) denote any invulnerable instance generator for the RSA function.
On input k, this instance generator outputs a triple (n, v, x). Algorithm A, on input
(n, v, hRSA := xv), performs the following steps:

Step A. (Simulate the key set-up for P 0.) Generate l random numbers, r1, . . . , rl ∈
Zv, and l random numbers, s1, . . . , sl ∈ Z

∗
n. Set

gi := hri
RSAs

v
i ∀i ∈ {1, . . . , l}.

With h denoting
∏l

i=1 gxi

i , generate a random number x0 ∈ Z
∗
n, and compute

h0 := xv
0h

−1. (Since (x1, . . . , xl) is generated independently of h0, we may
assume that it is generated before (h0, g1, . . . , gl) is generated.) The simulated
public key of P0 is h0, (g1, . . . , gl). In addition, define H(·) according to

Hn,v : (a, b) �→ H∗
n,v(h0a, b),

for all a, b ∈ Z
∗
n, where H∗(·) is the hash function in Assumption 4.3.9.

Step B. (Simulate P0 in issuing protocol executions with respect to (x1, . . . , xl).)

Step 1. Generate a random number w0 ∈ Z
∗
n. Compute a0 := wv

0 , and send
a0 to V̂0.

3Because A is non-interactive, it is unclear how to formalize knowledge extraction outside of the
random oracle model. The intuition is that if A would keep a “history” tape that contains a copy of
everything it has written on its work tape (but with previous contents never overwritten), then K should be
able to extract knowledge from A by looking at the history tape and A’s input tape and random tape.
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Step 2. Receive c0 from V̂0.

Step 3. Compute r0 := xc0
0 w0, and send r0 to V̂0.

Repeat this simulation until t executions of the issuing protocol with V̂0 have
been performed.

Step C. Check if V̂0 has output a certified key pair (x∗
1, . . . , x

∗
l , α1), h′, (c′0, r

′
0) for

which (x∗
1, . . . , x

∗
l ) does not equal (x1, . . . , xl). If this is not the case, then

halt.

Step D. If
∑l

i=1 ri(xi − x∗
i ) = 0 mod v, then halt.

Step E. Run algorithm K on input (n, v) and (h ′, (c′0, r
′
0)), using <A, V̂0> as a

black-box algorithm. If K does not output β ∈ Z
∗
n such that βv = h′ mod n,

then halt.

Step F. Using the extended Euclidean algorithm, compute integers e, f ∈ Z satisfy-
ing

e(
l∑

i=1

ri(xi − x∗
i )) + fv = 1.

(This can always be done, because v is prime.) Compute

hf
RSA(α1x0β

−1
l∏

i=1

s
xi−x∗

i

i )e,

and output the result.

By definition of the key generation of A in Step A, the public key in Step A is simu-
lated with the same probability distribution as that by which P 0 generates its public
key, regardless of the distribution of hRSA and (x1, . . . , xl). The response that is com-
puted by A in the simulated issuing protocol is the same as the response that P 0

would compute:

rv
0 = (xc0

0 w0)v

= (xv
0)

c0wv
0

= (h0h)c0a0.

It follows that the view of V̂0 in the simulated issuing protocol has the same distri-
bution as that provided by P 0, regardless of the probability distribution by which V̂0

generates its challenges. Therefore, Step D is reached by supposition with probability
ε.

The tuple (r1, . . . , rl) is unconditionally hidden from V̂0, due to the randomness
of the si’s and the fact that v is co-prime to ϕ(n), and it is therefore independent of
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(x∗
1, . . . , x

∗
l ). Because (r1, . . . , rl) is also independent of (x1, . . . , xl), the transition

from Step D to Step E takes place with probability 1 − 1/v.
Because of the definition of H(·), we can infer from Assumption 4.3.9 that the

output β of K in Step E satisfies

βv = h0h
′ = h0

l∏
i=1

g
x∗

i

i αv
1

with non-negligible probability. Therefore, the transition from Step E to Step F takes
place with non-negligible probability.

According to the key pair construction in Step A we also have

xv
0 = h0h = h0

l∏
i=1

gxi

i .

From these two relations we get

(x0β
−1)v =

l∏
i=1

g
xi−x∗

i

i (αv
1)

−1

=
l∏

i=1

(hri
RSAs

v
i )xi−x∗

i (αv
1)

−1

= h

∑
l

i=1
ri(xi−x∗

i )

RSA (
l∏

i=1

s
xi−x∗

i

i α−1
1 )v

and so

(α1x0β
−1

l∏
i=1

s
x∗

i −xi

i )v = h

∑l

i=1
ri(xi−x∗

i )

RSA .

From this it follows that the output of A in Step F is equal to h
1/v
RSA , with overwhelming

probability:

(
hf

RSA(α1x0β
−1

l∏
i=1

s
xi−x∗

i

i )e
)v

= hfv
RSA

(
(α1x0β

−1
l∏

i=1

s
xi−x∗

i

i )v
)e

= h
1−e(

∑l

i=1
ri(xi−x∗

i ))
RSA (h

∑l

i=1
ri(xi−x∗

i )
RSA )e

= hRSA.

The overall success probability of A is (1− 1/v)ε times the (non-negligible) success
probability of algorithmK. If ε is non-negligible, then (I RSA, DRSA) is not invulnerable
for the RSA function. Therefore (x∗

1, . . . , x
∗
l ) = (x1, . . . , xl) with overwhelming

probability.
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The result holds regardless of the fashion in which protocol executions with respect
to the same attribute tuple are interleaved.

The hash function defined in the proof of Proposition 4.3.10 is not the same as
that in the proof of Proposition 4.3.6. In practice, any sufficiently strong one-way
hash function should suffice for both propositions. (Another approach is to adjust
Assumption 4.3.9.)

A similar result can be proved for the other three certificate schemes described
in Section 4.2. In all four schemes, P0 is effectively proving knowledge of a rep-
resentation of the joint public key h0h, by means of a protocol that we know from
Section 2.4 to be honest-verifier zero-knowledge. Since c 0 as formed by V 0 is ran-
domly distributed, wiretappers cannot infer anything from the protocol executions
of honest receivers. More generally, the blinding-invariance property remains valid
even if V̂0 can wiretap the issuing as well as the showing protocol executions of hon-
est parties, assuming that these use their certified key pairs only in zero-knowledge
showing protocols.

The following negative result shows that Proposition 4.3.10 cannot easily be gen-
eralized.

Proposition 4.3.11. If P 0 performs protocol executions in parallel with respect to
different attribute tuples, then V̂0 can obtain a certified key pair for which the putative
restrictive blinding-invariant part is not equal to any of these tuples.

Proof. Suppose that P0 performs its protocol executions with respect to t > 1 dif-
ferent attribute tuples, (x11, . . . , xl1), . . . , (x1t, . . . , xlt). In the following attack, V0

engages in parallel in t protocol executions, each with respect to one of the tuples.
Assume without loss of generality that the j-th protocol execution is with respect to
the tuple (x1j , . . . , xlj) and let hj :=

∏l
i=1 g

xij

i , for all j ∈ {1, . . . , t}.4

Step 1. V̂0 obtains t numbers, a01, . . . , a0t ∈ Z
∗
n from P0, by engaging in Step 1 of

all t protocol executions.

Step 2. V̂0 chooses t numbers, α1, . . . , αt ∈ Zv, subject to
∑t

i=1 αi = 1 mod v.
V0 computes

h′ :=
t∏

i=1

hαi

i

and

c′0 := Hn,v(h′,
t∏

i=1

a0i).

For all i ∈ {1, . . . , t}, V̂0 then computes c0i := αic
′
0 mod v and sends c0i to

P0 in Step 2 of the i-th protocol execution.

4The ordering of protocol executions assumed here follows for instance from the time order in which
V0 processes the first message of each protocol execution.
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Step 3. V̂0 obtains t numbers, r01, . . . , r0t ∈ Z
∗
n from P0, by engaging in Step 3 of

all t protocol executions.

If V̂0 accepts in all t protocol executions, it computes

r′0 :=
t∏

i=1

r0i(h0hi)(αic
′
0)divvh

−((
∑t

i=1
αi)divv)

0 .

(The additional operations needed to blind the certified key pair have been left out
only for reason of clarity; they are easy to incorporate.)

If the t responses of P0 are all correct, then (c′0, r′0) is a certificate of P0 on h′:

(r′0)
v =

( t∏
i=1

r0i(h0hi)(αic
′
0)divvh

−((
∑t

i=1
αi)divv)

0

)v

=
t∏

i=1

rv
0i(h0hi)v((αic

′
0)divv)h

−v((
∑t

i=1
αi)divv)

0

=
t∏

i=1

(h0hi)c0ia0i(h0hi)v((αic
′
0)divv)h

−v((
∑

t

i=1
αi)divv)

0

=
t∏

i=1

(h0hi)αic
′
0 mod va0i(h0hi)v((αic

′
0)divv)h

−v((
∑

t

i=1
αi)divv)

0

=
t∏

i=1

(h0hi)αic
′
0a0ih

−v((
∑t

i=1
αi)divv)

0

= (h
∑

t

i=1
αi

0 )c′0

t∏
i=1

h
αic

′
0

i a0ih
−v((

∑
t

i=1
αi)divv)

0

= (h
∑

t

i=1
αi mod v

0 )c′0

t∏
i=1

(hαi

i )c′0a0i

= h
c′0
0 (h′)c′0

t∏
i=1

a0i

= (h0h
′)c′0

t∏
i=1

a0i.

From

h′ =
l∏

j=1

g

∑
t

i=1
αixij

j
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it is clear that V̂0 can obtain a certified key pair for which the secret key does not
contain any of the t attribute tuples with respect to which the protocol executions
have been performed.

In fact, if t > l then V̂0 can target any attribute tuple it desires, assuming a certain
linear independence property; see Proposition 4.3.15 for details.

The attack in the proof of Proposition 4.3.11 requires V̂0 to engage in parallel
executions of the issuing protocol, because each of the t challenges of V̂0 depends on
all t initial witnesses. In case P0 does not perform protocol executions with respect to
different attribute tuples in parallel, it seems that V̂0 can only obtain certified key pairs
that comprise one of the t tuples with respect to which the protocol executions have
been performed. This isolation property is formalized by the following assumption.

Assumption 4.3.12. There exists a hash function H(·) such that the following holds
for all l, t ≥ 1. Let t attribute tuples,

(x11, . . . , xl1), . . . , (x1t, . . . , xlt),

be formed. Let (x∗
1, . . . , x

∗
l , α) denote the secret key of a certified key pair computed

by V̂0 in RSAREP-based scheme I after engaging in polynomially many protocol
executions with respect to tuples (x1i, . . . , xli), i ∈ {1, . . . , t} of its own choice
(possibly adaptively chosen). IfP 0 does not perform protocol executions with respect
to distinct attribute tuples in parallel, then with overwhelming probability there exists
i ∈ {1, . . . , t} such that (x∗

1, . . . , x
∗
l ) = (x1i, . . . , xli). More generally, the second

property in Definition 4.1.1 holds.

For DLREP-based scheme II and RSAREP-based scheme II, the analogous as-
sumption can be proved in the random oracle model, provided that P 0 performs no
more than polylogarithmically many protocol executions. Note that the assumption
does not forbid protocol executions with respect to the same attribute tuple to be
performed in parallel.

4.3.4 Additional properties

P0 knows the numbers (x1, . . . , xl) that end up in the secret key of V 0. Once P0

gets to see h′ and for some reason (for instance because x1 is an identifier that V0

discloses in the showing protocol) is able to link it to the protocol execution in which
it was certified, it can compute h′/h = αv

1 . According to Proposition 4.3.4, α1 is
uncorrelated to the view of P̃0 in (P̃0, V0). In Section 2.2.3 we have seen that if any
DRSA leads to a one-way RSA function, then a random choice for α 1 certainly will.
From this we get the following result.

Corollary 4.3.13. If (IRSA, DRSA) is invulnerable for the RSA-function, and does not
output the factorization of n as side information, then P̂0 cannot compute the secret
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key of V0 from the certified public key of V 0 even if P̂0 knows the encoded attribute
tuple (x1, . . . , xl).

Therefore, only V0 can feasibly perform a (signed) proof of knowledge of a se-
cret key corresponding to its certified public key(s). Note that the interests of P 0

and V0 are aligned, because (IRSA, DRSA) needs to be invulnerable to guarantee the
unforgeability of certified key pairs. If the issuing protocol is combined with one of
the RSAREP-based showing protocols of Chapter 3, and V0 does not disclose at least
part of the encoded attribute tuple, then not even P̃0 will be able to determine V0’s
secret key. The latter property is desirable to achieve non-repudiation, especially in
the case of limited-show certificates; see Section 5.5.3 for details.

A similar result holds for the other three certificate schemes constructed in Sec-
tion 4.2. The DLREP-based schemes have the advantage that a trapdoor is not known
to exist, so that P0 may generate the system parameters by itself.

The following property clarifies the nature of the certificate scheme.

Proposition 4.3.14. RSAREP-based scheme I is a secret-key certificate scheme.

Proof. We construct a polynomial-time simulation algorithm S that generates cer-
tified public keys with the same probability distribution as that according to which
they are generated in the issuing protocol between P 0 and V0. On given as input
n, v, h0, (g1, . . . , gl) and Hn,v(·), S generates two random numbers α2, α3 ∈ Z

∗
n,

computes h := h−1
0 αv

2 , c0 := Hn,v(h, αv
3) and r0 := αc0

2 α3, and outputs the pair
h, (c0, r0). The output of S is a certified public key:

c0 = Hn,v(h, αv
3)

= Hn,v(h, (r0α
−c0
2 )v)

= Hn,v(h, rv
0(αv

2)
−c0)

= Hn,v(h, rv
0(h0h)−c0).

Since v is co-prime to ϕ(n), and α2 and α3 in Step 1 are chosen at random from Z
∗
n,

the output distribution of A is identical to that of certified public keys issued to V 0

by P0.

The other three schemes described in Section 4.2 are secret-key certificate schemes
as well. For the advantages of this property, see Section 2.6 and Section 5.2.2.

For any of the certificate schemes in Section 4.2, a limited degree of paralleliza-
tion can be achieved without any modifications. Observe that the crux of the proof
of Proposition 4.3.10 is that (P0, V0) is a proof of knowledge of the v-th root of h 0h,
but not of the v-th root of h0. Elaborating on this observation, we can obtain the
following result.

Proposition 4.3.15. There exists a hash function H(·) such that the following holds.
Let (x∗

1, . . . , x
∗
l , α) denote the secret key of a certified key pair computed by V̂0 in
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RSAREP-based scheme I after engaging in polynomially many protocol executions
(that may be arbitrarily interleaved) with respect to attribute tuples (x1i, . . . , xli),
for i ∈ {1, . . . , t}, of its own choice, subject to the restriction that the tuples are
formed independently of h0. If Assumption 4.3.9 holds, then for all l, t ≥ 1, with
overwhelming probability (1, x∗

1, . . . , x
∗
l ) is contained in the linear span of the t

vectors (1, x1i, . . . , xli), for i ∈ {1, . . . , t}. In particular, if t ≤ l the second property
in Definition 4.1.1 holds.

In other words, if P0 performs protocol executions with respect to up to t ≤ l
independent tuples in parallel, it can still encode l − t + 1 attributes into the secret
key of each certified key pair that V̂0 ends up with. The same holds for the DLREP-
based schemes. This immunization technique is not very practical, though, because
the degree of parallelization depends on l and the number of attributes to be encoded.
In the next section we show how to guarantee security in the presence of arbitrary
parallelization.

4.4 Parallelization of protocol executions

Whether or not the measure of not running protocol executions with respect to dif-
ferent attribute tuples in parallel poses a performance bottleneck depends on the ap-
plication at hand. Sequential protocol executions need not be inefficient, because P 0

can send out a0 for a new protocol execution as soon as it has received the challenge
c0 for the current protocol execution. To prevent queuing, P 0 should abort an ex-
ecution of the issuing protocol if a predetermined time lag between the transmittal
of a0 and the reception of c0 is exceeded; the receiver must then try again in a later
protocol execution. Assuming that requests for protocol executions arrive in accor-
dance with a Poisson process, this strategy is the M/D/1 model with feedback known
from queueing theory. The feedback may be purposely limited by P 0, to shut out
parties that frequently exceed the permitted time lag. Furthermore, executions of the
certificate issuing protocol can be scheduled to take place at a convenient time and
can be repeated if necessary. Also, remember that protocol executions with respect
to the same attribute tuple may always be performed in parallel.

The ability to arbitrarily interleave protocol executions offers two benefits in
highly demanding applications:

• The role of P0 can be performed by distributed processors that need not com-
municate or synchronize; they merely need access to the same secret key.

• Receivers can go off-line between Step 1 and Step 2, in principle for as long
as they please. P0 in Step 1 could even send to V0 an authenticated encryption
of the random bits it used to form its initial witness, and have V0 return it in
Step 2. (Obviously, P0 must prevent replay.) In the RSAREP-based protocols
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V0 may even form a0 on its own as the output of a sufficiently strong one-way
function, as pointed out in Section 4.2.3.

In the following two sections we describe two techniques to “immunize” the certifi-
cate schemes of Section 4.2 against parallel mode attacks. Both immunizations admit
arbitrary parallelization, and do not affect the definition of the system parameters and
P0’s public key; only the definition of a certificate changes slightly.

4.4.1 Masking the initial witness

Our first immunization technique aims to destroy the multiplicative relation in the
initial witnesses that is exploited by V0 in Step 2 of the parallel mode attack of Propo-
sition 4.3.11. It applies to both DLREP-based schemes and to both RSAREP-based
schemes.

Concretely, to enable full parallelization of protocol executions in RSAREP-
based scheme I, we have P0 send fn,v(a0) instead of a0 in Step 1 of the issuing
protocol. The function {fi(·)}i∈{(n,v)} must satisfy the following two requirements:

1. For random a0, b0 ∈ Z
∗
n, it is easy to compute fn,v(a0b0) from fn,v(a0) and

b0.

2. For random a0, b0 ∈ Z
∗
n, it is infeasible to compute a triple

α �= 0 mod v, β �= 0 mod v, fn,v(aα
0 bβ

0 )

from fn,v(a0) and fn,v(b0).

The first requirement ensures that V0 can retrieve certified public keys in exactly
the same manner as in the original issuing protocol, while the second requirement
prevents parallel mode attacks based on the exploitation of multiplicative properties.
The second requirement may be weakened by having P 0 time the delay between
sending out a0 and receiving c0, aborting when a predetermined time bound is ex-
ceeded; it then suffices that triples α �= 0 mod v, β �= 0 mod v, fn,v(aα

0 bβ
0 ) cannot

be computed within the imposed time bound. Note that we do not require that the
computation of fn,v(aα

0 ) from fn,v(a0) be infeasible.
Correspondingly, the following modifications must be made to RSAREP-based

scheme I:

• The pair (c′0, r
′
0) is redefined to be a certificate of P0 on h′ if and only if

c′0 = Hn,v(h′, fn,v((r′0)
v(h0h

′)−c′0)).

• In Step 1 of the issuing protocol, P0 sends fn,v(a0) instead of a0.
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• In Step 2 of the issuing protocol, V0 computes c′0 according to

c′0 := Hn,v(h′, fn,v(αv
2(h0h)α3a0)).

V0 can compute c′0 by virtue of the first requirement for f(·).

• V0 accepts if and only if fn,v(rv
0(h0h)−c0) is equal to the number provided by

P0 in Step 1.

Note that the definition of a key pair for V0 is not affected; only the definition of a
certificate is changed. The resulting scheme is depicted in Figure 4.6.

Proposition 4.4.1. If f(·) is one-to-one, then the immunized RSAREP-based scheme
I is at least as secure as the original scheme.

The proof is trivial: the security of the immunized scheme is easily seen to reduce
to that of the original scheme in case it is feasible to invert f(·).

Assumption 4.4.2. There exists a function f(·) and a hash function H(·) such that
the issuing protocol of the immunized RSAREP-based scheme I is restrictive blind
with blinding-invariant part (x1, . . . , xl), even when protocol executions with respect
to different attribute tuples are arbitrarily interleaved.

A concrete suggestion for a one-to-one function f(·) satisfying our two require-
ments is the following. Let M be a random prime such that n divides M − 1, and let
F be a random element of order n in Z

∗
M . Define

fn,v : a0 → F a0 mod M ∀a0 ∈ Z
∗
n.

It is easy to see that the first requirement for f(·) is met. Whether the second require-
ment is met depends on the hardness of the Diffie-Hellman problem [136]; this is the
problem of computing gab, on input (g, ga, gb) for random a, b and a random group
element g of large order. It is widely believed that there exist groups in which the
ability to solve the Diffie-Hellman problem is polynomial-time equivalent to the abil-
ity to compute discrete logarithms; see Maurer and Wolf [258] for partial evidence.

Proposition 4.4.3. Suppose there exist positive integers (α, β) and a polynomial-
time algorithm that, on given as input a randomly chosen tuple (n, M, F ) of the
specified format and a pair (F a0 mod M, F b0 mod M) for randomly chosen a0, b0

in Z
∗
n, outputs F aα

0 bβ
0 mod M with non-negligible success probability. Then the

Diffie-Hellman problem in groups Z
∗
M , with M of the specified form, is tractable.

The proof of this proposition makes use of standard techniques, and is therefore
omitted.

Proposition 4.4.3 does not suffice to prove the second requirement, because it per-
tains only to algorithms that compute F aα

0 bβ
0 mod M for fixed (α, β). Nevertheless,

it provides evidence in favor of f(·) meeting the second requirement.
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P0 V0

SYSTEM PARAMETERS

(n, v) := IRSA(1k)

KEY SET-UP

Secret key: factorization of n

h0, g1, . . . , gl ∈R Z
∗
n

Public key: h0, (g1, . . . , gl)

Additional information: Hn,v(·), fn,v(·)

PROTOCOL

a0 ∈R Z
∗
n

a∗
0 := fn,v(a0)

a∗
0−−→

α1, α2 ∈R Z
∗
n

α3 ∈R Zv

h′ := hαv
1

c′0 := Hn,v(h′, fn,v(αv
2(h0h)α3a0))

c0 := c′0 + α3 mod v

c0←−−
r0 := ((h0h)c0a0)1/v

r0−−→
fn,v(rv

0 (h0h)−c0)
?
= a∗

0

r′0 := r0α2α
c′0
1 (h0h)(c

′
0+α3)divv

Figure 4.6: Immunization I of RSAREP-based scheme I.
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This immunization technique also applies to the other three certificate schemes
described in Section 4.2. Its drawback is decreased performance: V 0 cannot precom-
pute the application of fn,v(·) in Step 2, and certificates are larger and more costly
to verify. Furthermore, an elliptic curve implementation of the immunized DLREP-
based schemes seems out of the question.

4.4.2 Swapping exponents in the verification relation

The second immunization technique applies to both DLREP-based schemes as well
as to RSAREP-based scheme II, and fully preserves their efficiency. On the down-
side, it does not apply to RSAREP-based scheme I, and it is unclear how to prove
unforgeability in the random oracle model.

The required modifications are the result of swapping the position of the chal-
lenge with that of (one of) the response(s) in the verification relation. In the case of
DLREP-based scheme I, the certificate verification relation

c′0 = Hq,g0 (h
′, g

r′
0

0 (h0h
′)−c′0),

becomes

c′0 = Hq,g0(h
′, g

c′0
0 (h′)r′

0).

The secret key of V0 is redefined to be a DL-representation of h ′ with respect to
(g1, . . . , gl, h0), instead of with respect to (g1, . . . , gl, g0). No changes are needed
to the process of generating the system parameters. The issuing protocol is modified
correspondingly, as follows:

Step 1. P0 generates a random number w0 ∈ Zq , and sends a0 := gw0
0 to V0.

Step 2. V0 generates three random numbers α1 ∈ Z
∗
q and α2, α3 ∈ Zq . V0 com-

putes h′ := (h0h)α1 , c′0 := Hq,g0(h′, gα2
0 (h0h)α3a0), and sends c0 := c′0 −

α2 mod q to P0.

Step 3. P0 sends r0 := (w0 − c0)/(x0 +
∑l

i=1 xiyi) mod q to V0.5

V0 accepts if and only if gc0
0 (h0h)r0 = a0. If this verification holds, V0 computes

r′0 := (r0 + α3)/α1 mod q. The resulting scheme is depicted in Figure 4.7.
It is easy to verify that the protocol is complete, and that (c ′

0, r
′
0) is a secret-key

certificate of P0 on h′. Excluding public keys h′ that are equal to 1, the following
result can be proved in a manner similar to the proof of Proposition 4.3.4.

5To guarantee that P0 can always perform Step 3, the attribute tuple that is encoded must satisfy

(x0 +
∑l

i=1
xiyi) �= 0 mod q. Since finding a tuple for which equality hold should be infeasible for

V0 there is no need to check for this.
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P0 V0

SYSTEM PARAMETERS

(q, g0) := IDL(1k)

KEY SET-UP

x0 := DDL(q, g0)

y1, . . . , yl ∈R Zq

Secret key: x0, (y1, . . . , yl)

h0 := gx0
0

gi := gyi
0 ∀i ∈ {1, . . . , l}

Public key: h0, (g1, . . . , gl)

Additional information: Hq,g0 (·)

PROTOCOL

w0 ∈R Zq

a0 := gw0
0

a0−−→
α1 ∈R Z

∗
q

α2, α3 ∈R Zq

h′ := (h0h)α1

c′0 := Hq,g0 (h′, gα2
0 (h0h)α3a0)

c0 := c′0 − α2 mod q

c0←−−
r0 := (w0 − c0)/(x0 +

∑l

i=1
xiyi) mod q

r0−−→
gc0
0 (h0h)r0

?
= a0

r′0 := (r0 + α3)/α1 mod q

Figure 4.7: Immunization II of DLREP-based scheme I.
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Proposition 4.4.4. For any properly formed system parameters in the immunized
DLREP-based scheme I, if V0 follows the issuing protocol and accepts, then it obtains
a certified key pair comprising a perfectly blinded certified public key, regardless of
the behavior of P̃0.

Obtaining a certificate on h′ = 1 seems infeasible; it implies the ability to com-
pute a number c0 ∈ Zq such that Hq,g0(1, gc0

0 ) = c0. However, there is no need
to make an assumption to this effect, since this case can be recognized and declared
invalid.

While it would seem that the unforgeability of the modified certificate scheme
can be proved in a manner similar to the proof of Proposition 4.3.6, this is not the
case. Nevertheless, unforgeability is believed to hold for the modified scheme as
well.

We now arrive at the crucial difference with DLREP-based scheme I. The parallel
mode attack described in the proof of Proposition 4.3.11 does not apply, because V 0

in Step 2 has to solve linear relations in terms of the responses of P0, which it cannot
anticipate at that time.

Assumption 4.4.5. There exists a hash function H(·) such that in the immunized
DLREP-based scheme I the following holds for all l, t ≥ 1. Let t attribute tuples,

(x11, . . . , xl1), . . . , (x1t, . . . , xlt),

be formed. Suppose that V̂0, after engaging in polynomially many protocol execu-
tions (arbitrarily interleaved) with respect to tuples (x1i, . . . , xli), i ∈ {1, . . . , t}
of its own choice (possibly adaptively chosen), outputs a certified key pair com-
prising a secret key (x∗

1, . . . , x
∗
l , α1). With overwhelming probability, there exists

i ∈ {1, . . . , t} such that (x∗
1, . . . , x

∗
l ) = (α1x1i mod q, . . . , α1xli mod q). More

generally, the second property in Definition 4.1.1 holds.

Assuming that public keys equal to 1 are declared invalid, it follows that α 1 �= 0,
and so

(x∗
1/α1 mod q, . . . , x∗

l /α1 mod q) = (x1i, . . . , xli).

The following argument gives some insight as to why the assumption should hold.
If we restrict ourselves in Assumption 4.4.5 to protocol executions that involve the
same (x1, . . . , xl), which is formed independently of h0, then the proof of Proposi-
tion 4.3.10 applies in virtually the same manner, assuming the DL-based analogue to
Assumption 4.3.9. Therefore, attacks must exploit the parallel nature of the issuing
protocol with respect to different attribute tuples, if they are to have a non-negligible
success probability. In the following, we consider only “algebraic” attacks on the
parallel version of the issuing protocol. We restrict ourselves to the case l = 1; it is
easy to prove that if Assumption 4.4.5 holds for l = 1 then it also holds for general l.
Furthermore, we consider only two parallel executions of the issuing protocol, each
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with respect to a different blinding-invariant number; the argument can easily be gen-
eralized. Finally, we assume that V̂0 cannot compute with non-negligible probability
of success a non-trivial representation of 1 with respect to (g0, g1, h0). (It is easy to
prove that logg0

h0 and logg0
g1 do not leak.)

Denote by x10 and x11 �= x10 mod q, respectively, the putative blinding-invariant
parts corresponding to each of the parallel two executions of the certificate issuing
protocol. The goal of V̂0 is to obtain a certified public key h′ �= 1, (c0, r0) and a
secret key (β0, β1) for h′ such that

β0 �= x10β1 mod q and β0 �= x11β1 mod q.

Knowing (c0, r0) such that

c0 = Hq,g0 (h
′, gc0

0 (h′)r0)

is equivalent to knowing (a0, r0) such that

g
Hq,g0 (h′,a0)
0 (h′)r0 = a0.

Therefore, the attack target is a triple (β0, β1), h′ = gβ0
1 hβ1

0 , (a0, r0) such that
gc0
0 (gβ0

1 hβ1
0 )r0 = a0, where c0 denotes Hq,g0 (g

β0
1 hβ1

0 , a0). Raising the verification
relations for each of the two protocol executions to the powers γ 0 and γ1, respec-
tively, and multiplying the results, we obtain

gγ0c00+γ1c01
0 hγ0r00+γ1r01

0 gγ0x10r00+γ1x11r01
1 = aγ0

00a
γ1
01.

V̂0 must determine a pair β0, β1, and numbers γ0, γ1, c00, c01 for which the informa-
tion provided by P0 can be combined into a pair (a0, r0) such that

gc0
0 gβ0r0

1 hβ1r0
0 = a0,

where c0 = Hq,g0(g
β0
1 hβ1

0 , a0).
Assume first that V̂0 computes a0 := aγ0

00a
γ1
01, for γ0, γ1 �= 0 mod q that need not

be explicitly known at the time c00 and c01 have to be provided. V̂0 must ensure that

gγ0c00+γ1c01
0 hγ0r00+γ1r01

0 gγ0x10r00+γ1x11r01
1 = gc0

0 gβ0r0
1 hβ1r0

0 .

Assume furthermore that γ0 and γ1 are computable by V̂0 once the attack has been
completed successfully (a plausible assumption given the algebraic nature of the at-
tack). It follows from the assumption that V̂0 cannot compute a non-trivial represen-
tation of 1 with respect to (g0, g1, h0) that V̂0 has to (implicitly) solve the following
three relations,

γ0x10r00 + γ1x11r01 = β0r0 mod q,
γ0r00 + γ1r01 = β1r0 mod q,
γ0c00 + γ1c01 = c0 mod q,
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for (γ0, γ1, β0, β1, c00, c01) and r0. It seems that (γ0, γ1, β0, β1, c00, c01) must be
committed to before r00 and r01 are provided; only r0 can be computed afterwards.
Since r0 can be computed by V̂0 after r00 and r01 have been received, it may seem
that there are many workable choices for γ0, γ1, β0, β1. This is not true, however,
since V̂0 has to solve, in terms of γ0, γ1, β0, β1, a single relation that does not involve
r0 but does involve r00 and r01. Multiplying both sides of γ0r00+γ1r01 = β1r0 mod
q by β0/β1 mod q, and subtracting the result from γ0x10r00+γ1x11r01 = β0r0 mod
q, we get

(γ0 (x10 − β0/β1)) r00 + (γ1 (x11 − β0/β1)) r01 = 0 mod q.

Because r00 and r01 cannot be anticipated, and because β0/β1 mod q cannot be
equal to both x10 and x11, the only workable non-zero choices for γ0, γ1, β0, β1 seem
to be to take γ0 = A00r

−1
00 mod q and γ1 = A01r

−1
01 mod q, or γ0 = A00r01 mod q

and γ1 = A01r00 mod q, for some suitable constants A00 and A01 that may depend
on β0 and β1. To argue that V̂0 cannot compute a := aγ0

00a
γ1
01 for such a choice for

γ0, γ1, we focus on the third relation, γ0c00 + γ1c01 = c0 mod q. (After all, it is
not completely inconceivable that a can be computed in this way before r 00 and r01

become known, since r00 and r01 are known to satisfy the two verification relations.)
Even if a could be computed, the fact that c0 is the outcome of a sufficiently strong
one-way hash function applied to a0 implies that its value cannot be expressed in
terms of r00 and r01. (Note that c0 = Hq,g0 (g

β0
1 hβ1

0 , aγ0
00a

γ1
01) should imply, by virtue

of the strength of the hash-function, that c0 cannot be chosen as an algebraic func-
tion of β0, β1, γ0, γ1; this trivially holds in the random oracle model.) Consequently,
γ0c00 + γ1c01 = c0 mod q can only be solved for values c00 and c01 that are ex-
pressed in terms of r00, r01. Because c00 and c01 have to be provided by V̂0 before
r00 and r01 become known, workable choices for γ0 and γ1 should be infeasible.

We assumed in this argument that V̂0 computes a0 := aγ0
00a

γ1
01. The information

contained in
gγ0c00+γ1c01
0 hγ0r00+γ1r01

0 gγ0x10r00+γ1x11r01
1

can be combined into gc0
0 (gβ0

1 hβ1
0 )r0 in a more general way. The most general form

seems to be a0 := aγ0
00a

γ1
01g

δ0
1 gδ1

1 hδ2
0 for smart choices for δ0, δ1, δ2. Assuming again

that it is infeasible to compute with non-negligible probability of success a non-
trivial representation of 1 with respect to (g0, g1, h0), we can derive three relations
similar to those previously displayed. From the first two of these we can again derive
one relation that involves r00 and r01 but not r0, and that relation must be solved
(implicitly) for γ0, γ1, β0, β1. The only way to arrive at a relation in which γ0 and
γ1 are not expressions in terms of r00, r01 (for which the preceding argument ap-
plies) seems to be to choose δ0, δ1 such that γ0r00 + γ1r01 + δ1 = β0r0 mod q and
γ0x10r00 +γ1x11r01 +δ0 = β1r0 mod q are linearly dependent in r0; in that case r0

cannot be made to drop out of the equations. Such choices for δ 0, δ1 seem to require
expressions in terms of r00 and r01 that cannot be anticipated.
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This completes our argument as to why Assumption 4.4.5 should hold. Unfor-
tunately, it is unclear how to prove Assumption 4.4.5, even in the random oracle
model.

A similar immunization applies to DLREP-based scheme II; we simply swap
the position of the challenge in the verification relation with that of one of the two
responses. The immunization technique does not apply to RSAREP-based scheme
I, since it does not have a response that appears as an exponent in the verification
relation. It can be applied to RSAREP-based scheme II, though, but not without a
twist. Redefine a certificate of P0 on h′ ∈ Z

∗
n to be a triple, (c′0, r′0, r′1) ∈ Zs ×

Z
∗
n × Zv such that

c′0 = Hn,v(h′, (r′0)
vf c′0(h′)−r′

1).

V0’s secret key now is an RSA-representation of h ′ with respect to (g1, . . . , gl, h0, v).
In the modified issuing protocol, V0 can blind h =

∏l
i=1 gxi

i to h′ = (h0h)βαv
1 , for

arbitrary β ∈ Zv and α1 ∈ Z
∗
n. While in an application this general blinding form

must be taken into account, for unlinkability it suffices for V 0 to simply fix β = 1,
say, and use a random α1. The resulting issuing protocol is depicted in Figure 4.8.
(Alternatively, P0 can perform this protocol without using the factorization of n,
similar as described in Section 4.2.3. The protocol can be converted into a two-move
protocol in the manner pointed out in Section 4.2.3.) Now, from h ′ one cannot infer
that β �= 0 mod v, yet this choice must be prevented. We can get around this by
having V0 in the showing protocol demonstrate that β �= 0 mod v, as part of the
formula it is demonstrating: see Section 5.1.1 for details.

4.5 Other certificate schemes

The certificate schemes in Sections 4.2 and 4.4 are all based on the digital signature
schemes discussed in Sections 2.5.3 and 2.5.4. As in many areas of cryptography, it is
of interest to have alternatives based on different underlying assumptions, instead of
placing all bets on one horse. In this section we describe two such alternatives. Both
alternatives are believed to be secure even when protocol executions with respect to
different attribute tuples are arbitrarily interleaved.

4.5.1 DSA-like certificates

The system parameter generation and the key set-up for this scheme are the same as
for DLREP-based scheme I. It is preferable that H(·) do not map arguments to zero,
but since this event should have negligible probability anyway there is no need to
make an assumption to this effect.

For a ∈ Gq , let a denote a mod q. In the DSA [277], a signature standard
originally proposed in 1994 by the U.S. National Institute of Standards and Tech-
nology, a signature on a message m with respect to a public key h 0 = gx0

0 is a pair
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P0 V0

SYSTEM PARAMETERS

(n, v) := IRSA(1k)

KEY SET-UP

Secret key: factorization of n

f, h0, g1, . . . , gl ∈R Z
∗
n

Public key: (f, h0), (g1, . . . , gl)

Additional information: Hn,v(·)

PROTOCOL

a0 ∈R Z
∗
n

a0−−−−−→
α1, α2 ∈R Z

∗
n

α3, α4 ∈R Zv

h′ := h0hαv
1

c′0 := Hn,v(h′, αv
2f−α3(h′)−α4a0)

c0 := c′0 + α3 mod v

c0←−−−−−
r1 ∈R Zv

r0 := ((h0h)r1a0/fc0 )1/v

r0, r1−−−−−→
fc0rv

0 (h0h)−r1
?
= a0

r′0 := r0αr1
1 α2f−((c′0+α3)divv)(h′)−((r1+α4)divv)

r′1 := r1 + α4 mod v

Figure 4.8: Immunization II of RSAREP-based scheme II.
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(a0, r0) ∈ Zq × Zq such that

(gHq,g0 (m)/r0

0 h
a0/r0
0 ) mod q = a0.

The DSA makes the following specific choices: Gq is constructed using the subgroup
construction, q is a 160-bit prime, and Hq,g0(·) is set equal to SHA-I [276].

We modify the DSA scheme by applying a cyclic left shift to the role of the
exponents, (Hq,g0 (m), r0, a0), in the DSA verification relation.6 A certificate of P0

on a public key h′ �= 1 is defined to be a pair (a′
0, r

′
0) ∈ Zq × Zq such that

(ga′
0/c′0

0 (h′)r′
0/c′0) mod q = a′

0,

where c′0 = Hg,g0(h0, a′
0). The presence of a′

0 in Hq,g0 (h0, a′
0) is not mandatory, but

is believed preferable. The secret key of V0 is a DL-representation of h′ with respect
to (g1, . . . , gl, h0).

Let h denote
∏l

i=1 gxi

i . The issuing protocol is as follows:

Step 1. P0 generates a random number w0 ∈ Zq , and sends a0 := gw0
0 to V0.

Step 2. V0 generates a random number α1 ∈ Z
∗
q and two random numbers α2, α3 ∈

Zq. It computes h′ := (h0h)α1 , a′
0 := aα2

0 (h0h)α3 , and c′0 := Hq,g0(h′, a′
0).

Finally, V0 sends c0 := c′0α2a0a′
0

−1
mod q to P0.

Step 3. P0 sends r0 := (x0 +
∑l

i=1 xiyi)−1(c0w0 − a0) mod q to V0. (To guar-
antee that P0 can always perform Step 3, (x1, . . . , xl) must satisfy (x0 +∑l

i=1 xiyi) �= 0 mod q.)

V0 accepts if and only if g
a0/c0
0 (h0h)r0/c0 = a0. If this verification holds, V0 com-

putes r′0 := α−1
1 (r0a0

−1a′
0 + c′0α3) mod q. The resulting scheme is depicted in

Figure 4.9.
It is easy to verify that the protocol is a proof of knowledge (the probability

that the inverses of a0 and a′
0 are defined is overwhelming) and that (a ′

0, r
′
0) is a

secret-key certificate of P0 on h′. As with the schemes in Section 4.4.2, it is unclear
how to reduce the unforgeability of the underlying signature scheme to that of the
new scheme, but unforgeability is believed to hold nevertheless. Furthermore, if V 0

follows the issuing protocol and accepts then it obtains a certified key pair comprising
a perfectly blinded certified public key.

Assumption 4.4.5 should apply here as well. Following the argument in Sec-
tion 4.4.2, we arrive at three relations that differ only in that γ 0c00 + γ1c01 =
c0 mod q is replaced by γ0a00 + γ1a01 = a0 mod q, where a0 = aγ0c00

00 aγ1c01
01 .

6Camenisch, Piveteau, and Stadler [72] applied another shift of the exponents, in order to construct an
ordinary DSA-like blind signature scheme in Chaum’s sense. Their shift does not give rise to a restrictive
blind certificate scheme that is secure in parallel mode.
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P0 V0

SYSTEM PARAMETERS

(q, g0) := IDL(1k)

KEY SET-UP

x0 := DDL(q, g0)

y1, . . . , yl ∈R Zq

Secret key: x0, (y1, . . . , yl)

h0 := gx0
0

gi := gyi
0 ∀i ∈ {1, . . . , l}

Public key: h0, (g1, . . . , gl)

Additional information: Hq,g0 (·)

PROTOCOL

w0 ∈R Zq

a0 := gw0
0

a0−−→
α1 ∈R Z

∗
q

α2, α3 ∈R Zq

h′ := (h0h)α1

a′
0 := aα2

0 (h0h)α3

c′0 := Hq,g0 (h′, a′
0)

c0 := c′0α2a0a′
0

−1
mod q

c0←−−
r0 := (x0 +

∑l

i=1
xiyi)

−1(c0w0 − a0) mod q

r0−−→
g

a0/c0
0 (h0h)r0/c0

?
= a0

r′0 := α−1
1 (r0a0

−1a′
0 + c′0α3) mod q

Figure 4.9: DSA-like scheme.
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The latter relation seems even harder to handle, although it is unclear how to prove
this intuition.

A drawback of this DSA-like certificate scheme over the immunized DLREP-
based scheme I in Section 4.4.2 is that V0 cannot precompute the exponentiation aα2

0

in Step 2.
Although the DSA makes the explicit choice Gq ⊂ Z

∗
p, an elliptic curve imple-

mentation may be used instead. Indeed, the elliptic curve analog of the DSA, called
the ECDSA, has been adopted as a standard by ISO, by ANSI, by IEEE, and by
NIST; see Johnson and Menezes [223] for an overview. Since numbers in G q are
represented by coordinate pairs, and base numbers occur also as exponents, a secure
mapping is needed from base numbers to numbers in Z q. One solution is to use the
first coordinate; this is the approach taken in the ECDSA.

4.5.2 Certificates based on Chaum-Pedersen signatures

The following scheme differs from all the other certificate schemes in this chapter in
that public-key certificates are issued, not secret-key certificates. The system param-
eter generation and the key set-up for this scheme are the same as for DLREP-based
scheme I.

Chaum and Pedersen [109] presented a digital signature scheme that can be
viewed as an entangled application of two Schnorr protocol executions; it is an op-
timization of a protocol due to Chaum, Evertse, and van de Graaf [108, Protocol
4]. A signature on a message m with respect to a public key h0 = gx0

0 is a triple
(z, c0, r0) ∈ Gq × Zs × Zq such that

c0 = Hq,g0 (m, z, gr0h−c0
0 , mr0z−c0).

Chaum and Pedersen defined Gq using the subgroup construction, but an elliptic
curve implementation is permitted as well. They also described how to construct a
blind issuing protocol for their signatures. The interactive Chaum-Pedersen proto-
col is a Fiat-Shamir type proof of knowledge of both log g0

h0 and logm z that also
demonstrates that these two discrete logarithms are equal. For the purpose of ordi-
nary blind signatures, though, the Chaum-Pedersen scheme does not have advantages
over the Schnorr signature scheme.

The situation is different for the restrictive blind certificate scheme that we will
now construct from their signature scheme by applying our techniques. Define a
certificate of P0 on a public key h′ �= 1 to be a triple, (z ′, c′0, r

′
0) ∈ Gq × Zs × Zq

such that
c′0 = Hq,g0 (h

′, z′, g
r′
0

0 h
−c′0
0 , (h′)r′

0(z′)−c′0).

The secret key of V0 is a DL-representation (x1, . . . , xl, α1) of h′ with respect to
(g1, . . . , gl, h0), with P0 encoding x1, . . . , xl ∈ Zq into V0’s secret key. As before,
let h denote

∏l
i=1 gxi

i . V0 this time needs to know z := (h0h)x0 . Hereto P0 must
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either compute z for V0 or publish (gx0
1 , . . . , gx0

l , hx0
0 ) along with its public key; in

the latter case, V0 can compute z by itself.
The issuing protocol is as follows:

Step 1. P0 generates a random number w0 ∈ Zq , and sends a0 := gw0
0 and b0 :=

(h0h)w0 to V0.

Step 2. V0 generates a random number α1 ∈ Z
∗
q and two random numbers α2, α3 ∈

Zq. V0 computes h′ := (h0h)α1 , z′ := zα1 , a′
0 := hα2

0 gα3
0 a0, b′0 :=

(z′)α2(h′)α3bα1
0 , c′0 := Hq,g0 (h′, z′, a′

0, b
′
0), and sends c0 := c′0 + α2 mod q

to P0.

Step 3. P0 sends r0 := c0x0 + w0 mod q to V0.

V0 accepts if and only if gr0
0 h−c0

0 = a0 and (h0h)r0z−c0 = b0. If this verification
holds, then V0 computes r′0 := r0 + α3 mod q. (Alternatively, V0 first computes
r′0 and then checks whether (g0h

′)r′
0(h0z

′)−c′0 = a′
0b

′
0.) The resulting scheme is

depicted in Figure 4.10.
It is easy to verify that the protocol is a Fiat-Shamir type proof of knowledge,

and that (z ′, r′0, c
′
0) is a certificate of P0 on h′ if V0 accepts. The witness-hiding

property can be argued in the same manner as with the Schnorr proof of knowledge,
but no proof is known. The unforgeability of certificates follows directly from the
unforgeability of blind Chaum-Pedersen signatures and the fact that V̂0 cannot know
two different DL-representations of the same public key. Proving the latter fact is
trivial: P0 can perform the protocol without knowing a non-trivial DL-representation
of 1 with respect to (g1, . . . , gl, h0), and in particular it may generate g1, . . . , gl at
random.

Excluding public keys h′ equal to 1, it can be shown thatV 0 obtains a certified key
pair comprising a perfectly blinded certified public key. Finally, Assumption 4.4.5 is
believed to apply.

This certificate scheme has several drawbacks in comparison to DLREP-based
schemes I and II and their immunization described in Section 4.4.2:

• Certificates are larger and more costly to verify.

• V0’s computation of bα1
0 in Step 2 of the issuing protocol cannot be prepro-

cessed.

• It is not clear how to prove the property of restrictive blinding even when only
sequential protocol executions involving the same attribute tuple are consid-
ered.

• The scheme is a public-key certificate scheme; certified public keys cannot be
simulated.
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P0 V0

SYSTEM PARAMETERS

(q, g0) := IDL(1k)

KEY SET-UP

x0 := DDL(q, g0)

y1, . . . , yl ∈R Zq

Secret key: x0, (y1, . . . , yl)

h0 := gx0
0

g1, . . . , gl ∈R Gq

Public key: h0, (g1, . . . , gl)

Additional information: Hq,g0 (·), z := (h0h)x0

PROTOCOL

w0 ∈R Zq

a0 := gw0
0

b0 := (h0h)w0

a0, b0−−−−−→
α1 ∈ Z

∗
q

α2, α3 ∈ Zq

h′ := (h0h)α1

z′ := zα1

a′
0 := hα2

0 gα3
0 a0

b′0 := (z′)α2 (h′)α3bα1
0

c′0 := Hq,g0 (h′, z′, a′
0, b′0)

c0 := c′0 + α2 mod q

c0←−−−−−
r0 := c0x0 + w0 mod q

r0−−−−−→
gr0
0 h−c0

0

?
= a0

(h0h)r0z−c0
?
= b0

r′0 := r0 + α3 mod q

Figure 4.10: Scheme based on Chaum-Pedersen signatures.
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On the upside, P0 can perform the issuing protocol without knowing (x 1, . . . , xl).
This has several advantages:

• P0 can certify attributes without needing to know them. Hereto V 0 forms h as
its commitment to attributes x1, . . . , xl−1 (the number xl must be generated
at random to unconditionally hide the l − 1 attributes) and at the start of the
issuing protocol presents this to P0 together with a proof of knowledge of a
DL-representation with respect to (g1, . . . , gl).

• More generally, P0 can certify attributes of which it knows no more than a
property demonstrated by V0. V0 can demonstrate this property when present-
ing h by using the showing protocol techniques, for instance by sending along
a signed proof.

• P0 can recertify previously certified attributes without knowing their values;
see Section 5.2.1 for details. (It cannot update their values, though; for this an
RSAREP-based issuing protocol is needed.)

• It is possible to protect against framing attempts by parties with unlimited com-
puting resources; see Section 5.5.3 for details.

Whether these advantages are desirable depends on the application at hand.
Another advantage is that the delegation strategy (see Section 2.6) is excluded

altogether, because public-key certificates are used. This is not the case for the cer-
tificate issuing schemes based on secret-key certificates, as Section 5.1.2 will show.

4.6 Bibliographic notes

The notion of restrictive blinding in Section 4.1 originates from Brands [46, 48].
Definition 4.1.1 appears here for the first time.

The four certificate schemes in Section 4.2 originate from Brands [54]. The case
l = 2 of DLREP-based scheme I was introduced by Brands [49] for the purpose of
withdrawing electronic coins with embedded identifiers in an off-line electronic cash
system. The case l = 1 of RSAREP-based scheme I was analyzed by Brands [51].
The security proofs presented in Section 4.3.3 are stronger than those in [49, 51], in
that the reductions are based on any invulnerable instance generator instead of one
specific distribution.

The immunization technique described in Section 4.4.1 is due to Brands [50].
The immunized DLREP-based schemes in Section 4.4.2 are a generalization of a
withdrawal protocol devised by Schoenmakers [341] in the context of electronic cash.

The immunization described in Section 4.4.2 of RSAREP-based scheme II, which
is based on a new twist, appears here for the first time; previously, the immunization
technique of Schoenmakers was believed not to apply to RSAREP-based schemes.
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The DSA-based certificate scheme described in Section 4.5.1 has not previously
appeared in the academic literature.

Brands [46, 48] introduced the special case l = 2 of the scheme in Section 4.5.2,
for the purpose of designing an off-line electronic cash scheme. Cramer and Peder-
sen [122] subsequently used this scheme to modify a protocol by Chaum and Ped-
ersen [109]; the slightly more general form used by them was already considered
by Brands [46, page 27 & 28]. Radu, Govaerts, and Vandewalle [316] proposed a
variation to make the scheme provably witness-hiding, but their variation does not
improve the overall security of the scheme.






