Chapter 4

Restrictive Blind Issuing
Protocols

In this chapter we introduce a new notion, called restrictive blinding, to enable the
CA to encode attributes into certified key pairs that are unlinkable and untraceable
in all other respects. We design various practical restrictive blind certificate issuing
protocols, for DLREP-based certificates as well as for RSAREP-based certificates,
and analyze their security. This chapter builds on Chapter 2, but may be read inde-
pendently of Chapter 3. In Chapter 5 we will show how to combine the issuing and
showing protocol techniques.

4.1 Restrictive blinding

Informally, a restrictive blind certificate scheme is a digital certificate scheme (see
Section 2.6) with the following properties:

e |f V and P both follow the protocol, then )V obtains a certified key pair

(s, p, cert(p)).

Thepair (s, p) isakey pair of V, and cert(p) is P’s (secret-key or public-key)
digital certificate on V's public key p.

e The certified public key (p, Celt(p)) obtained by V by interacting with Pis
statistically independent from P’s view in the protocol execution.

o If P followsthe protocol, then Y cannot forge certified key pairs.

e If V obtains a certified key pair (s, p, cert(p)), then with overwhelming prob-
ability the secret key s contains at |east one attribute encoded by P.
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Thelast property is the hardest to formalize. To understand the meaning of “encod-
ing at least one attribute,” consider by way of example a scenario in which V is to
receive P’s certificate on a public key defined by the RSAREP function (see Sec-
tion 2.3.3). If P isto encode (x1,..., ;) into the secret key V will know for the
public key H,i.:l g; ‘xy, itwill end up with, then ) must be unable to modify these
[ attributes as part of its blinding operations; we say that part of V's secret key (the
first [ positions) is blinding-invariant. Note that P’s ability to encode (z 1, ..., ;)
into V's secret key does not contradict the requirement that V' is able to blind its cer-
tified public key (p, cert(p)), assuming that  can generate z;, | at randomfromZ.. .
The difficulty residesin how to meet al four properties.

In general, P may encode attributesinto V's secret key in an arbitrary fashion. All
that matters is that the blinding-invariant part of 1's secret key can be described by
apolynomial-time computable (non-constant) function from the space of secret keys
into the space of attributes. For example, supposethat V can obtain P’s certificate on
apublic key of the form []._, ¢7* ¥, |, for random blinding factors v, 3 € Z,,
but not on other forms. Then P can still encode ! — 2 attributes in an independent
manner into V's secret key, since z} = (z; — x;)(z;—1 — x;) ' mod v remains
unchangedfor al i € {1,...,l — 2}). (More generally, the invariance applies under
linear transformations.) For another example, see Proposition 4.3.15. If, on the other
hand, V can obtain P’s certificate on a public key of the form Hizl gi iy, for
random blinding factors a1, ..., oy € Z,, then P cannot encode anything into V's
secret key.

P need not necessarily know the attributes it encodesinto V's secret key; know-
ing a one-way image may suffice, as we will see in Section 5.2.1. This general-
ization enables P to “update” previously encoded attributes without knowing their
current values. For this reason, in the definition of restrictive blinding we will not
be concerned with who determines, knows, or generates the attributes that are to be
encoded; of importanceis only the existence of ablinding-invariant part in the secret
key that V will end up with.

We are now prepared for aformal definition.

Definition 4.1.1. A restrictive blind certificate schemeis a digital certificate scheme
with the following additional properties:

e (Blinding of the certified public key) If V follows the protocol and accepts,
then V obtains a certified key pair (s, p, cert(p)) such that the certified pub-
lic key (p, cert(p)) is statistically independent from 7P's view in the protocol
execution.

e (Blinding-invariant part) There exists a non-constant function {Inv;(-)};ev
that can be evaluated in polynomial time, such that the following two proper-
ties hold if PP follows the protocol:
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— Let s denote the secret key of the certified key pair obtained by ) V. Then
Inv;(s) = tuple, where tuple is the attribute tuple encoded by P.

— Letsy, ..., s denotethe secret keysof any ¢ * certified key pairsobtained
by V after engagingint > ¢* protocol executions, and let tuple; denote
the attribute tuple P intended to encode into V’s certified key pair in the
j-th protocol execution, for all j € {1,...,t}. Forall j* € {1,...,¢*},
there exists j € {1,...,t} such that the following two properties hold
with overwhelming probability:

* Inv;(s;-) = tuple;.
* The multiplicity of Inv;(s;-) is no greater than the multiplicity of
tuple;.

We will say that a restrictive blind certificate issuing protocol execution is per-
formedwithrespectto (x1,...,x;) if (z1,...,z;) istheattribute tuple that P intends
to encodeinto V's certified key pair in that particular protocol execution.

The second part of the definition may seem overly complex, but is needed to cap-
ture the case where V' consists of a pluraity of receivers. Namely, operating under
the assumption that an adversary can passively monitor the protocol executions of
honest receivers, it must be infeasible for the adversary to benefit from thisinforma-
tion by being able to compute a certified key pair for which the secret key encodes
an attribute tuple that 77 intended to encode only in the secret key of one of the moni-
tored honest receivers.® It is not hard to see that the definition captures this scenario,
regardless of how protocol executions are interleaved. Note that there is no problem
if V can swap attribute tuples that P encodesin different protocol executionswith V.

Definition 4.1.1 encompasses both public-key certificates and secret-key certifi-
cates. Note that restrictive blinding of secret-key certificates is not a special case of
Chaum'’s blind signature paradigm [91, 92, 93, 94, 95, 96, 99, 100]: P’s certificate
is not a digital signature on V's public key but only on V's secret key, which by
definition cannot be blinded.

The notion of regtrictive blinding aso differs from Chaum’s notion of one-show
blinding [90, 98]. The latter concerns a property of an issuing protocol in combina
tion with a showing protocol, while restrictive blinding is a property of the issuing
protocoal only. In particular, restrictive blinding has nothing to do with restricting the
number of times a certificate may be shown. One special use of restrictive blinding
isto construct practical one-show blind signature schemes (see Section 5.4), but its
general applicability is much broader.

Definition 4.1.1 describes the strongest possible case of blinding; not even a CA
with unlimited resources can create a correlation between the certified public keys

LIn a practical situation, session encryption can prevent monitoring of protocol executions, but the
security of the session encryption method depends not only on the receiver. Moreover, as agenera design
principle it is undesirable to make the security of two different building blocks, that serve different goals,
depend on each other.
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it issues and its views in the issuing protocol. A weaker flavor would be one where
linking is merely computationally infeasible, but as explained in Section 1.3.5 thisis
unsatisfactory.

In practical applications, it will often be desirable that 1's secret key cannot be
computed by a party that gets to learn V's certified public key and also knows P’s
view in the originating issuing protocol. This property is not part of the definition,
but holdsfor all the constructionsin this chapter.

Two generic approaches are known to design restrictive blind certificate schemes:

e One can use any “ordinary” blind signature issuing protocol, and have the re-
ceiver use a zero-knowledge proof to prove to the issuer that it has properly
encoded the attributes into its “challenge” message, before the issuer returns
itsfinal response. According to Goldreich, Micali, and Wigderson [191], zero-
knowledge proofs exist for al languagesin the complexity class NP.

e Techniques from the field of secure multi-party computations can be used,
along the lines of Juels, Luby, and Ostrovsky [224]. (See also Damgard [126]
and Pfitzmann and Waidner [303].)

Both approaches result in highly impractical protocols. A more efficient approachis
to run polynomially many copies of an ordinary blind signature protocol in paralel,
and have the signer complete a randomly chosen run of the protocol only when the
receiver shows correct formation of the “challenge” messages it submitted in al the
other protocol runs. This approachis till far from practical, though, and in fact does
not qualify: the attributes cannot be encoded in polynomial time with overwhelming
success probability. Note also that the improved issuing protocol of Chaum’s ad hoc
one-show blind signature scheme [98, 90] does not meet Definition 4.1.1.

The objective of this chapter is to design secure restrictive blind issuing proto-
cols that are truly practical, and that enable the CA to encode polynomially many
attributes without affecting the size of certified public keys.

4.2 Practical constructions

In this section we design four practical restrictive blind certificate schemes. The
first two of these are based on the DLREP function, the latter two on the RSAREP
function. All schemes are for issuing secret-key certificates. We will extensively
analyze the schemes in the next section.

In Chapter 5 we will combine the showing protocols of the previous chapter with
the issuing protocols designed here. Because the receiver in the issuing protocol will
be the prover (signer) in the showing protocol, in the rest of this chapter we denote
the CA by P, and the receiver by V), to avoid confusion with the (P, V) notation
used in Chapter 3.
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4.2.1 Redtrictive blinding based on the DLREP function
DL REP-based schemel

Let (Io,, Dy ) be any invulnerable instance generator for the DL function, and let
(g, go) denotethe output of I, oninput 1%. P, feeds (g, go) to Dy, to obtain z, and
computes hg := g3°. Py then generates! > 1 random numbersyy, ...,y € Z,, for
some ! of its own choice, and computes g, := gg*, forall i € {1,...,1}.

The system parametersare (¢, go). The public key of Py is

h(); (gla e agl>a

and its secret key is
Zo, (yla cee ayl)'

In addition, a correlation-intractable hash function H(:) = {Hi(-) }ic{(g,90)}+ SUCh
that H,,.4, (-) mapsits outputsinto Z (for some s superpolynomial in k), is decided
on. A concise description of H,, 4, (-) is published along with the public key. Al-
though not made explicit in the notation, H , 4, () may (and preferably does) depend
also on Py’s public key and any other information specified before protocol execu-
tions take place. (Alternatively, in each application of the hash function all such
static information is hashed along.) We will address the issue of selecting H(-) in
Section 4.3.3 when analyzing the security of the scheme.

The restrictive blind issuing protocol (Pg, Vy) is aproof of knowledge such that
V, obtainsablinded publickey, ' € G, and ablinded certificate (c(,, r)) € ZsxZ,
of Py onh'. Thepair (cf, () is defined to be a certificate of Py on &’ if and only if
the verification relation

C() =Hq,g0 (hlv 980 (hOhl)_cé))

holds. The secret key of V), is a DL-representation, (x1, ..., 2, 1), of A’ with re-
spect to (g1, - - -, 91, go). Thenumberszy, ..., x; € Z, are encoded by Py into Vy's
secret key, and in particular are known to Py; they form the blinding-invariant part
of Vy's secret key. Because V, generates o at random, only Vy knows a secret key
correspondingto i’ (see Proposition 2.3.3). Moreover, h' is statistically uncorrelated

to (z1,...,z;), regardless of thedistribution of (x4, ..., ;).
With h denoting Hﬁzl g;*, an execution of the certificate issuing protocol with
respect to (x4, . .., x;) isdefined asfollows:

Step 1. P, generates arandom number w, € Z,, and sends ag := g4 to V.

Step 2. V, generates three random numbers oy, ao, a3 € Zy. Vo computes b’ =
hgo™t, ¢ = Hq,go (1, g5% (hoh)*3ag), and sends ¢g := ¢, + a3 mod ¢ to Py.

Step 3. Py sendsrg := co(xo + 2221 x;y;) + wo mod ¢ to V.
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Vo accepts if and only if g(° (hoh) ™ = ay. If this verification holds, V, computes
() =19 + a2 + cya; mod g.

We restrict Py in the following manner. 1t may perform protocol executionswith
respect to the same (x4, ..., ;) in parallel, but must perform executionsthat involve
different attribute tuples sequentially. (The reason for thisrestriction will be clarified
in Section 4.3.3. In Section 4.4 we will show how to get around the restriction.) The
resulting schemeis depicted in Figure 4.1.

When forming ¢, in Step 2, V, may hash along additional information, such as
apublic key to be used for session encryption in a showing protocol or one or more
initial witnesses for the showing protocol. The advantages of including the latter will
become clear in Section 5.4.

DL REP-based schemel |

The following variation of DLREP-based scheme | is somewhat less efficient, but
as Proposition 4.3.7 will show admits a better proof of unforgeability in the random
oraclemodel. Therequired modificationsare minimal, and so we only describethese:

o Py generates an additional random number f € G4, which it publishes along
with the other public key data. 1t also generates an additional random number
t € {0,1}, serving as additional secret key information to P, and forms h
according to kg := g;° f*. No further changes are needed in the key set-up.

o A certificate of Py on 1’ isredefinedto beatriple, (c{), r{),71) € Zs x Loy x 2
such that

06 = qugo(hlv 9(7)‘0fr1 (h()h/)icé)

The definition of a key pair for Vy is not changed, nor is that of the blinding-
invariant part.

e In Step 1 of the certificate issuing protocol, P, generates an additional random
number wy € Z,, and forms a, according to ag := g¢° f**. In Step 2 of
the protocol, V, generates an additional random number a4 € Zq, and mul-
tiplies f*+ into the second argument to H ;. ¢, (-) When computing c(,. In Step
3 of the protocol, Py computes an additional response, r, accordingto r; :=
cot + w1 mod ¢, and sendsthis along to V. Finally, V, acceptsif and only if
90° [T (hoh)~° = ag, andin addition blinds ry to 7} := r; + a4 mod q.

The requirement that P, may not interleave protocol executions with respect to dif-
ferent attribute tuples still applies.

The resulting scheme is depicted in Figure 4.2.
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SYSTEM PARAMETERS

(g, 90) := Io.(1%)

KEY SET-UP
zo := DoL(q, 90)
Yi,--» Yl ER Zq
Secret key: o, (y1,---,41)
ho := gg"
gi=gy Vie{l,...,l}
Public key: ho, (g1,---,91)
Additional information: Hq,90 ()
PROTOCOL
wo ER Zq
ap = gg)"
g,
al, 02,03 ER Zq
b := hgg!
cp = Ha,g0 (h', g5 (hoh)*3 ao)
co := ¢+ a3 mod ¢q
Lo
ro := co(xo + 22:1 x;y;) + wo mod ¢
ro,

T0 —co 2
90° (hoh) = ag

T =710 + a2 + c{a1 mod g

Figure 4.1: DLREP-based schemell.
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SYSTEM PARAMETERS

(g, 90) := oL (1¥)

KEY SET-UP
zo := Dp(g, 90)
ter {0,1}
Yi,-- Yl ER Zq
Secret key: (zo,t), (1, ---,y1)
fer Gq
ho :=g;° f*
gi = gé“ vie{l,...,1}
Public key: (f,ho), (91, ---,41)
Additional information: Ha,g0 ()
PROTOCOL
wo, W1 ER Zq
ag = gy° f*1
ap

Qal,Q2,03,04 €ER Zq
h' := hgg!
ch = Haq,go (B, 952 (hoh)™3 f*4ap)
co :=¢f + a3 mod ¢
€0

o~ C
!
ro 1= co(xo + Zi:l z;y;) + wo mod ¢
r1 := cot + w1 mod q
To,T1
—

"0 £71 (hoh) €0 ;
90° f™ (hoh) ag
Ty =10 + a2 4+ c{a1 mod ¢

r] =71+ a4 mod q

Figure 4.2: DLREP-based schemel|l.
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4.2.2 Restrictive blinding based on the RSAREP function
RSAREP-based schemel

Let (Irsa, Drea) be any invulnerable instance generator for the RSA function, and
let (n,v) denote the output of Is, On input 1%. We assume that I outputs the
prime factorization (p, ¢) of n as“sideinformation” for Py. Py feeds (n,v) t0 Dgsa

to obtain x(, and computes h := zj. Py then generates! > 1 random numbers
gi,-.., 401 GZn.
The system parametersare (n, v). The public key of Py is
h(); (gla e agl>a

and its secret key isthe prime factorization of n. In addition, aone-way hash function
H(-) = {Hi()}ief(n,v)}» Such that M, ,(-) maps its outputs into Z, (for some s
superpolynomial in k), is decided on. A concise description of H ,, ,,(-) is published
along with the public key. Although not made explicit in the notation, its specification
may depend on Py’s public key and any other information specified before protocol
executions take place. We will address the issue of selecting H(-) in Section 4.3.3.

Our restrictive blind issuing protocol (Pg, Vo) is aproof of knowledge such that
V, obtainsablinded publickey, ' € 7., and ablinded certificate (¢}, ) € Zyx 7.,
of Py onh'. Thepair (cf, () is defined to be a certificate of Py on 4’ if and only if
the verification relation

ch = Haw (W, (rh)" (hoh') )

holds. The secret key of V is an RSA-representation, (z1,...,x;, a;1), of A’ with
respectto (g1, ..., g;,v). Thenumberszy, ..., z; € Z, areencoded by P into Vy's
secret key; they form the blinding-invariant part of V’s secret key. Because V, gen-

erates «; at random, A’ isuncorrelatedto (x4, . .., x;), regardless of the distribution
of (x1,...,2).

With h denoting ]'[,i.=1 g;", an execution of the certificate issuing protocol with
respect to (x1, . .., x;) isdefined asfollows:

Step 1. Py generates arandom number a € Z., and sendsit to V.

Step 2. V, generatestwo random numbers o, a; € Z., and arandom number a3 €
L. Vo computes b’ := ha¥, ¢ := H(K', a4 (hoh)**ag), and sends ¢y :=
¢y + ag mod v to Py.

Step 3. Py sendsrg := ((hoh)®ag)'/? to V. (Note that P, can compute v-th roots
of arbitrary numbersin 7, because it knows the prime factorization of 7.)

Vo acceptsif and only if 7§ (hoh) ™ = ay. If thisverification holds, V, computes

/ , .
I ° 0 4as)d
7l = roaga® (hoh)(Cotas)dive,
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As with both DLREP-based schemes, Py may perform protocol executions with re-
spect to the same (x1,...,;) in paralel, but may not interleave executions that
involve different attribute tuples. (In Section 4.4 we will show how to get around this
restriction.) The resulting schemeis depicted in Figure 4.3.

When forming ¢, in Step 2, 1V, may hash along additional information, such as
apublic key for session encryption or one or moreinitial witnesses for a subsequent
showing protocol. Inclusion of the latter will be pursued further in Section 5.4.

RSAREP-based schemell

The following variation of RSAREP-based scheme | is somewhat less efficient, but
admitsabetter proof of unforgeability in the random oracle model. The modifications
to RSAREP-based scheme | are the following:

e P, generates an additional random number f € Z ,’:L, which it publishes along
with its other public key data. No further changes are needed in the key set-up.

e A certificate of Py on 1’ isredefined to beatriple, (c), rh, 1) € Zg x Ly x Ly
such that ) ,
C() = H'm’u (hla (r(l))val (hOhl)_co)

The definition of a key pair for Vq is not changed, nor is that of the blinding-
invariant part.

e In Step 2 of the protocol, V, generates an additional random number o4 € Z,,,
and multiplies £+ into the second argument to ., ,,(-) when computing c},.
In Step 3 of the protacol, P, generates a random number r; € Z,, computes
7o accordi ngtorg := ((h()h)COCL()/frl )l/v' and sends rq a|0ng to V. Fi na“y,
Vp acceptsif and only if 8 f™ (hoh) ™% = ag, and computes

/! 7 . . ) .
7“(/) — TOQQQiO (hoh)(°0+ad)dlvvf(7 14aq)dive

andr} := 11 4+ a4 mod v.

The requirement that 7o may not interleave protocol executions with respect to dif-
ferent attribute tuples still applies.
The resulting scheme is depicted in Figure 4.4.

4.2.3 Comparison

The constructions based on the DL REP function and on the RSAREP function follow
exactly the same design principle. This may not be readily clear from the descrip-
tions, because P in the RSAREP-based variants makes use of trapdoor information,
which is not available in the DLREP-based variants. To appreciate the underlying
design principle, observe that P, need not make use of trapdoor information in the
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SYSTEM PARAMETERS

(’I’L, v) = IRSA(lk)

KEY SET-UP
Secret key: factorization of n
ho,91,---,91 €ER Z:l
Public key: ho, (g1,---,91)
Additional information: Hn,o(+)
PROTOCOL
ap €ER ZZ
ﬂ)
ai, o2 €ER Z;
a3 ER Zv
h' :=ha?
¢ :=Hnw(h', ay(hoh)*3a0)
co := ¢( + a3 mod v
Lo
ro := ((hoh)0ag)/?
To,

2
Tg(hoh)_co = agp

<! ’ 2)di
7'6 = T'oCMQOllo (hoh)(00+a3) v

Figure 4.3: RSAREP-based scheme .
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SYSTEM PARAMETERS

(n, U) = IRSA(lk)

KEY SET-UP
Secret key: factorization of n
foho,g1,-- 91 €x Ly,
Public key: (f,ho), (g1,---,91)
Additional information: Hu,w(+)
PROTOCOL
ap ER Z;
ap
a1, 02 ER ZZ
sz, 04 ER ZU
h' :=ha¥
¢y = Hnw(h',af(hoh)*s f*ap)
co := ¢( + a3 mod v
. C
1 ER Zv
ro := ((hoh)®ag/fm1)/"
T0,T1

?
frirg (hoh) ™0 = ag
/ ’ . .
ry = roagaio (hoh)(Co+°‘3)d"’vf(rl+°‘4)d“’”

r] =71+ a4 mod v

Figure 4.4: RSAREP-based schemell.
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RSAREP-based schemes. In RSAREP-based scheme |, we hereto make the follow-
ing modifications:

e Instead of generating ho,g1,...,g; a random, Py generates [ + 1 random
numbers o, y1, . . ., from Z. , and computes hg := x§ and g; := yy, for dl

n?

i€ {1,...,1}. (Moregeneraly, Py may set xo := Dgas(n,v).)

¢ In Step 1 of theissuing protocol, P, generates ay accordingto a¢ := wy, for a
random wy € Z,,.

e In Step 3 of theissuing protocol, P, computes -y as follows:
l
ro == (2o Hy?')cowo-
=1

The resulting scheme is depicted in Figure 4.5. Similar modifications can be made
to RSAREP-based scheme Il. With these modifications, it is easily seen that the
DLREP-based and the RSAREP-based schemes are all based on the same design
principle:

Py interactively issues asigned proof of knowledge of a secret key corre-
sponding to the joint public key hoh, using one of the proofs of knowl-
edge described in Sections 2.4.3 and 2.4.4. V), blinds not only aq and
Po’s response(s), but also h.

In all four schemes, hoh or h may be thought of as the auxiliary common input m *
in Definition 2.5.1. Note that for both DLREP-based scheme |1 and RSAREP-based
schemell theissuing protocolsare provably witness-hiding. (In particul ar, even after
P has performed polynomially many protocol executions, arbitrarily interleaved and
possibly with respect to all valid attribute tuples, its secret key provably cannot leak.)

Not using the trapdoor information in the RSAREP-based schemes has several
advantages.

e Multiple provers can al operate with respect to the same (n, v), generated by
a trusted party or by means of a secure multi-party protocol (see Boneh and
Franklin [39] and Poupard and Stern [309]).

e Thebinary sizes of v and ¢ may be much smaller than the binary sizes of the
prime factors of n. Thisreduces P,’'s computational burden.

e Py can be split into many sub-proversthat all hold a share of the public key,
and that must all contributeto issue a certified key pair to V. Using RSAREP-
based scheme |, for instance, the i-th sub-prover could hold h o; = z§;, with
H,i.:l hoi = hg, and could be in charge of generating ;. The contribution of
the i-th sub-prover to the issuing protocol would be an initial witness a ¢; :=
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SYSTEM PARAMETERS

(n, v) = IRSA(lk)

KEY SET-UP
xo := Dgsa(n,v)
Y1, Y1 ER Z:l
Secret key: zo, (y1,---,Y1)
ho = z§
gi =y Vie{l,...,1}
Public key: ho, (g1,---,91)
Additional information: Hnw(+)
PROTOCOL
wo ER Z;
ag = wg
Ao,
ai,o2 €ER Z;
a3 ER Zv
B = ha?
¢ :=Hn,o(h', ai(hoh)*3ao)
co := ¢+ a3 mod v
Lo
o := (xo H2:1 y; )0 wg
o,

?
78 (hoh) ™0 = agp

cl / i
vl = roanao (hoh)(chteas)divy

Figure 4.5: RSAREP-based scheme | without use of trapdoor information.
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wy; and aresponse ro; = (xo;y; ") Cwo,; the product of al the individual
witnesses is the initial witness expected by V), and likewise for the responses.

The technique of sharing P,’s secret key can aso be applied to the DLREP-based
issuing protocols (and the other protocols that will be described later in this chap-
ter). It is even possible to extend the technique to provide for arbitrary secret shar-
ing, requiring one of several predetermined subsets to cooperate in order to perform
the role of Py. For relevant secret-sharing techniques, see Pedersen [299], Cere-
cedo, Matsumoto, and Imai [84], Gennaro, Jarecki, Krawczyk, and Rabin [184], and
Takaragi, Miyazaki, and Takahashi [369]. Also, the number of entities that share
Po’s secret key could be increased so that multiple entities are needed to approve
each attribute. In a practical implementation, the sub-provers could take the form of
tamper-resistant computing devices stored in independently guarded locations. This
not only providesoptimal protection against (insider and outsider) theft and extortion
of Py’s secret key, but it can also ensure that different device operators must approve
the same attributes that are to be encoded into a certified key pair. 2

Using the trapdoor information in the RSAREP-based schemes also has a couple
of advantages:

e |t avoidsthe exponentiationin Step 1 of the protocol.

e Py does not need to remember or reconstruct in Step 3 a secret number that it
generated in Step 1, which is an advantage when implementing the protocol.
(Pg still needs to access its secret key, of course)) The protocol can even be
turned into a two-move protocol by having V, form aq by feeding at least an
identifier for V; and a nonce into a sufficiently strong one-way function. (Vg
must send the nonce along with its challenge to Py, so that Py can check its
freshness.)

e P, can perform the issuing protocol without knowing (x 1, ..., z;); it merely
needs to know h. This property enables P, to recertify a previously certified
public key, without knowing its blinding-invariant part. During the process,
Py can even update one or more of the x; values. (Details will be provided in
Section 5.2.1)

Inthe RSAREP-based schemes, V, cannot verify by itself that v isco-primeto ¢(n).
However, if the prime v is not co-prime to ¢(n), then Py cannot respond to V's
challenge ¢, with probability at least 1 — 1 /v. In other words, Vo becomes convinced
with overwhelming probability of the proper formation of (n,v) by engaging in a
single execution of the certificate issuing protocol.

2|ssuer fraud is a serious threat, as witnessed for instance by the 250 employees of the Department
of Motor Vehicles of California who in 1998 were found to have issued over 25000 genuine-looking but
fraudulent licenses in atwo-year period.
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In Step 2 of all four certificate schemes, V), can perform all the required exponen-
tiations in a preprocessing stage; its real-time computational burden in each protocol
amountsto one modular multiplication and one application of the hash function. This
makes the schemes highly practical.

The main advantage of the DL REP-based variants over the RSAREP-based vari-
antsisthat the computation of P,’s response(s) does not invol ve any exponentiations.
In highly demanding applications, this enables the CA to serve more receivers us-
ing cheaper equipment, especially when using an elliptic curve implementation with
short system parameters.

4.3 Analysis

In this section we analyze the certificate schemes of the previous section. We will
provethat al four schemes are restrictive blind certificate schemes, under plausible
cryptographic assumptions.

To avoid unnecessary duplication of security statements and proof reductions,
a detailed analysis is provided only of RSAREP-based scheme I. The analysis of
the other three schemes is highly similar, and so for these we merely point out the
differences.

Throughout this section it is assumed that the system parameters, (¢, go) and
(n,v), respectively, are properly formed.

4.3.1 Completeness

The statementsin this section hold for any choice of H(-).

Proposition 4.3.1. When interacting with P, Vo in RSAREP-based scheme | ac-
cepts.

Proof. This followsimmediately from the manner in which P computes r( in Step
3 and the verification relation applied by V. O

Proposition 4.3.2. For any Py, if Vy in RSAREP-based scheme | accepts, then
(r1,...,2,0a1), B, (cy,7p)

isa certified key pair.

Proof. Clearly, (z1,...,x;, 1) is an RSA-representation of h’ with respect to the

tuple (g1, ..., g1, v). Toshow that (c}, ) isacertificate of Py on A/, notethat Vg in
Step 2 of the issuing protocol computes ¢fy := Hy, (R, @ (hoh)*2ao). It therefore
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suffices to prove that (r)® (hoh!) =% = a3 (hoh)*aq for the assignments made by
Vo. This can be seen as follows:

/

(7"(/))” (ho h’) -y (T()az 0‘? (hoh) (co+as) divo ),U (hoha"l’)_co
= (TOOZQ(th)(C/OJ"O‘ii) (iiVU)’l)(hOh)—06
= 7“80[12}(}10}1)” ((C(l)'i‘oés) divo) (h()h)_c(/)
((hoh)®ag) ol (hoh)v((cg+a3) divv) (h()h)_06
= (hoh
(hoh)“0™® a8 (hoh)~“0aq

= Oég (hoh)ad agp.

/

)(c6+a3 mod v)+v ((ch+as) divv)aoag (h()h)700

The substitution (x) is allowed because V, acceptsonly if 73 (hoh) = = aj. O

In alike manner, the direct anal ogues of these two propositions can be proved for the
other three certificate schemesin Section 4.2.

4.3.2 Privacy for the receiver

The statements in this section address the protocol (750, Vo), and hold for any choice
of H(-).

Lemma4.3.3. In RSAREP-based scheme |, for any properly formed system param-
eters, any certified public key, any (z1,...,2;), and any possible view of Py in an
execution of the issuing protocol with respect to (z1, ..., z;) in which V, accepts,
there is exactly one set of random choices that VV, could have made in that execution
of theissuing protocol such that VV, would end up with a certified key pair containing
that particular certified public key.

Proof. Consider any tuple (z1, ..., 2;) andany certified publickey h’, (cf, 7). With
h denoting H,i.:l g;", the response r of Py is such that r{ (hoh) ~ = ag, since Vo

accepts. Define the following two sets:

Views(Py) = {(ao,co,70) | ao,70 € Z,, and co € Z, such that
ro(hoh)™ = ao}
ChOiCES(V()) = {(al,ag,ag) | 1,0 € Z; and as € Zv}

We will show that for al Py-view € Views(750) exactly onetriple (a1, as, a3) €
Choices (V) existg such that Py-view corresponds to an execution of the issuing
protocol in which V), receivesthe certified publickey (h', (cp, ().
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Suppose that P,-view corresponds to the issuing of h', (cp,7p). We determine
the numbers a1, as, ag that must have been chosen by V. First, a; is determined
fromh, h’ as

aq = (h/ h_l)l/'“.

Note that a; exists and is uniquely defined, since v is co-primeto ¢(n). Next, a3 is
determined from ¢, ¢}, according to

asz = cg — ¢{, mod v.

Finally, the choices for «; and a3, together with rq, {, and ¢, uniquely determine
Q9 asS

ay = r(roal® (hoh) (co+es) dive) =1,

For these choices of the three variables all the assignments and verifications in
the execution of the issuing protocol would be satisfied by definition, except maybe
for the assignment

co = Hn (R, a8 (hoh)*ag)

that must have been made by V. To prove that this assignment holds as well, note
that

ch = Haw (W, (r§)" (hoh') =)

by definition of a certified public key. Therefore the proof is complete if
(r5)" (hoh') ™ = ag(hoh)**ag

for the choices for a1, ap, and a3 made above. This can be derived exactly as in
the proof of Proposition 4.3.2, considering that the substitution () is alowed here
because Py-view € Views(Py). O

Lemma 4.3.3 does not necessarily hold in the case of improperly formed system
parameters. In particular, if v is not co-primeto p(n) then a substantial part of the
views of 750 cannot be matched with a substantial part of the certified public keys.
Thisis not a problem, though, as we saw in Section 4.2.3.

Proposition 4.3.4. For any properly formed system parameters in RSAREP-based
scheme |, if V), follows the issuing protocol and accepts, then it obtains a certified
key pair comprising a perfectly blinded certified public key, regardiess of the behavior
of Py.

Proof. Thisis an immediate consequence of Lemma 4.3.3 and the fact that 1V, gen-
eratesitstriples (ay, as, az) a random from Choices (V). O
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The same result can be proved for the other three certificate schemes described in
Section 4.2.

In Chapter 5 we will makethe connection with the showing protocolsin Chapter 3
and show that that the above privacy result holds even when V selectively discloses
any property of the encoded attributes. That is, any certificate that 1V o shows in the
showing protocol execution could have originated (with uniform probability) from
any of the issuing protocol executionsin which P, encoded attributes that satisfy the
formuladisclosed by V.

4.3.3 Security for the Certificate Authority

In this section we address the protocol (P, 170), by analyzing the properties of un-
forgeability and restrictive blinding.

Unfor geability

We study the unforgeability of RSAREP-based scheme | in the strongest possible
attack model. All our unforgeability results hold even if V, can engage in poly-
nomially many executions of the issuing protocol, can arbitrarily interleave protocol
executions, and may select an arbitrary attributetuple (x 1, . . ., 2;) at the start of each
new protocol execution.

The following lemma holds for any choice of H(-).

Lemma4.3.5. If the Guillou-Quisquater proof of knowledge with s := v is witness-
hiding, then V, in RSAREP-based scheme | cannot output with non-negligible suc-
cess probability a non-trivial RSA-representation of 1 with respect to (g1, . . ., g1, v).

Proof. Suppose that Vo, after engaging in ¢ executions of the issuing protocol, out-
puts a non-trivial RSA-representation of 1 with respect to (g1, ..., g;, v), with non-
negligible probability e. We construct a polynomial-timeinteractive algorithm V for
extracting the witness of P in the Guill ou-Quisquater proof of knowledge, asfollows.

Let (n, v) denotethe system parametersin the Guillou-Quisquater proof of knowl-
edge, and h, the public key of P. V simulates P, with the help of the protocol
executions of P, by performing the following steps:

Step A. (Simulate the key set-up for P.) Select arandomindex j € {1,...,1} and
I + 1 random numbers zo, 1, . ..,y € Zo,. Set hy := x, g; := y?, for all
i€ {1,...,13\ {j}, and g; := hegy?. The simulated public key of Py is
ho, (g1, -+, 91)-

Step B. (Simulate Py in issuing protocol executionswith respect to (z1, . . ., x;).)

Step 1. Receive o from P. Generate a random number o € Z. and pass
ap := a®a’ mod n onto V.
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Step 2. Receive ¢, from Vy, and pass ¢ := ¢, onto P.
Step 3. Receiver from P, and pass

l

ro := 1" (10 H yi)Ca
i=1

onto V.

Repeat this simulation until ¢ executions of the issuing protocol have been
performed.

Step C. Check if 170 has output anon-trivial RSA-representation, (w1, . . ., u;, uj+1),
of 1. If not, then halt.

Step D. If u; = 0 mod v, then halt.

Step E. Computeintegerse, f € Z suchthat eu; + fv = 1, using the extended Eu-
clidean agorithm. (This can always be done, because v is a prime.) Compute

l

([ [ wiwsn)

=1
and output the result.
It is easy to see that the public key in Step A is generated with the same proba-
bility distribution as that by which P, generatesiits public key. Note that thisis the
case regardless of the probability distribution of A .

The response that is computed by V in the simulated i ssui ng protocol is the same
as the response that P, would compute:

(;) (h(éQa)iCjaUmgCO( H gfi)COy;CQZj
ie{l,... I\ {5}
(heay?)® (@ a)h ([ o)
ie{1,.... I\ {5}
_ (g;“j)coaohgo( H g;rq,)co
i€{1,..,l}\{s}
= (hoh)®ao,
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where the substitution («) is allowed because the response of P satisfies r’hey = a.
Since « is chosen at random from ZZ, ag israndomly distributed over Z,*L regardless
of x;. From this it follows that the view of Vo in the simulated issui ng protocol
has the same distribution as when 90 interacts with P, regardlwAs of the probability
distributions of (z1, ..., x;), its chalenges, and he,. Therefore )V moves from Step
C to Step D with probability e. R R

Because j is chosen at random by V, and is uncorrelated to the view of V, in the
issuing protocol, u; # 0 mod v in Step D with probability at least 1/1. (Not all u;
can be zero, because v is co-primeto p(n).)

The output of V in Step E is equal to hi,":

I !
hgq(Hy?iUl+1)7e)v = Rl H Yi ) uiiy)”
i=1 =

l—eu; wjv Ui,V —€
= heo Ty;( H 9i" uit1)
ie{1,...,I\{5}
= heolheoyl) ™ ( H g ury1)”¢
ie{1,...,I\{5}
i€{l,.....}\{5}

!
= hso(H 9i " uit1)”
i=1

= hel™®
= o

In all, the probability that 1 can compute the secret key of P is at least e/l. Since
[ is polynomial in k, this probability is non-negligible if € is non-negligible. This
contradicts the assumption. O

Note that the reduction is tight only if [ is a (small) constant; it is not clear how to
achievetightnessfor arbitrary | polynomial in k.
We are now prepared for the main result.

Proposition 4.3.6. If Assumption 2.5.9istrue, then a hash function 7(-) exists such
that RSAREP-based scheme | is unforgeable.

Proof. TekeH(-) equal to the hash function 7 *(-) definedin Assumption 2.5.9. Sup-
pose that Vo obtainst + 1 certified key pairs with non-negligible success probability
e after engaging in ¢ executions of the certificate issuing protocol, for somet > 0.
We construct a polynomial-time (interactive) algorithm V that can forge signatures
in the interactive Guillou-Quisquater signature scheme.
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Let (n, v) denotethe system parametersin the Guill ou-Qui squater proof of knowl-
edge, and h, the public key of P. V simulates P, with the help of the protocol
executions of P, by performing the following steps:

Step A. (Simulate the key set-up for P.) Generate a random number ¢ € Z, and

set ho = heory. Generate ! random numbers yy, ...,y € Z,, and com-
pute g; := yy, foral i € {1,...,1}. The smulated public key of P is
hOa (gla DR agl)'

Step B. (Simulate P in issuing protocol executionswith respect to (x4, .. ., x;).)

Step 1. Receive a from P, and pass ag := a onto V.
Step 2. Receive ¢ from V, and pass ¢ := ¢y onto P.
Step 3. Receive r from P, and passrg := r(xo Hﬁzl y;t) onto Vo.

Repeat this smulation until ¢ executions of the issuing protocol have been
performed.

Step C. Check if V hast + 1 distinct certified key pairsonitstapes. If not, then halt.

Step D. For each of these t + 1 certified key pairs, ((x1,...,2z,a1), b/, (¢, 70)),
compute ¢* := ¢}, 7* = ) (x0 [[._y ¥ 1) %, and m := h/, and output the
signed message (m, (c¢*,r*)).

It is easy to see that the public key in Step A is generated with the same probabil-

ity distribution as that by which P generates its public key. The response that is

computed by V inthe simulated issuing protocol is the same as the response that P
would compute:

l
7«8 — (T(xo ]:[yg«‘q,)Co):U
=1

l

= g ([T

i=1
() l
= (g@)ag ([T oi)
i=1

= (heoxy) ah®

= (hoh)®ay,

where the substitution (x) is allowed because the response of P satisfies r’hey =

a. It follows that the view of 90 in me simulated issuing protocol has the same
distribution as when V), interacts with Py, regardless of the probability distributions
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of its challenges, (z1,...,;), and he,. Therefore, Y moves from Step C to Step D
with probability e. R

We next show (i) that the output of V consists of ¢ + 1 messages with correspond-
ing Guillou-Quisquater signatures, and (ii) that these signed messages are all distinct
with overwhelming probability. Property (i) follows from

= MW, ()" (hoh')~0)
(*) \v —c*
=" Hpu(m, (r)hey ).

Q

The substitution (%) is allowed by definition of a certificate, and substitution (xx)
followsfrom

(rg)" (hoh')™) = (1 xOH?JZ )’ hoHQ %
— U Co”ﬁ lJ,qa coh Hg —cp

i=1
(T*)v hO OU) ¢
— (T*)vh c* )

GQ

To prove property (ii), consider any two certified key pairs,
(Zla cees Xpy 041), hlv (0677”(/))

and

(x],...,2],a7), h*, (c5,75)-
The corresponding signed messages, as computed by Vin Step D, are equa to
W, (chs To((R')*) =)

and
R, (g, o () YY) =),
Suppose that these two signed messages are the same. From b’ = h* and ¢}, = ¢j; it

followsthat r{, = rg. Furthermore, if (z1,...,2;, 1) and (27,..., 2}, a]) arenot
the same, then
(x1 — 2] mod v, .. — 27 mod v Hg(“_x Ddive 1/a7)

=1
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isanon-trivial RSA-representation of 1. According to Lemma4.3.5, this contradicts
Assumption 2.5.9. Consequently, if the two signed messages are the same, then the
two certified key pairs are the same, and therefore property (ii) holds as well.

To completethe proof, observe that an execution of the simul ated i ssuing protocol
constitutes exactly one execution of the protocol with 7. In al, V can compute
t + 1 Guillou-Quisquater signed messages from ¢ protocol executions with P with
probability e. If € is non-negligible, this contradicts Assumption 2.5.9. O

Similar reductions can be made for the other three certificate schemesin Section 4.2.
Because DLREP-based scheme |1 and RSAREP-based scheme Il are non-trivially
witness-indistinguishable, we get the following results by application of Proposi-
tion 2.5.3.

Proposition 4.3.7. Assumethat P, performsno morethan polyl ogarithmically many
protocol executions, and that the binary size of the outputs of ¢ 4, (-) islinear in k.
If (Io, Do) is invulnerable for the DL function, then DLREP-based scheme Il is
unforgeablein the random oracle model, for any distribution of (z 1, ..., x;).

Proposition 4.3.8. Assumethat P, performsno more than polylogarithmically many
protocol executions, and that the binary size of the outputs of H,, ,,(+) islinear in k.
If (Irsa, Drsa) isinvulnerablefor the RSA function, then RSAREP-based schemelll is
unforgeablein the random oracle model, for any distribution of (1, ..., 2;).

These results hold even in case Vy may arbitrarily interleave the protocol execu-
tions and Py encodes different attribute tuples of V’s choice.

Blinding-invariance

To study the restrictive blinding property, we dlightly weaken the attack model by
assuming that (1, ...,x;) is formed independently of /(. In most applications this
requirement is naturally met, especialy if Py selects (x1, ..., x;).

The following assumption states that the only manner to generate apair h, (¢, )
for which ¢ = H,, ,(h,7"h™¢) is by forming h as the v-th power of some known
x € 7. Thatis, if an algorithm could output such a transcript, then with “modest”
extraeffort it could also compute 2 '/* mod n.

Assumption 4.3.9. There exists a hash function H*(-) = {H; () }icfn,»} and an
expected polynomial-time algorithm K, such that for any polynomial-time algorithm
A, for all constants ¢ > 0, and for all sufficiently large &,

‘ P (A(n, v) = (h,c,r) suchthat c = HZ ,(h,7"h™°) | (n,v) := IRSA(lk))

_ Py (IC((n,U), (h,e,r): A) = 3 € Z" suchthat ° = h) ‘ < 1/k.
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This assumption can be proved in the random oracle model by using the oracle
replay technique of Pointcheval and Stern [307].3

Proposition 4.3.10. If Assumption 4.3.9 holds, then a hash function 7(-) exists such
that the following holds for all I > 1 and all (x1,...,2;). Let (z1,...,2;) be
formed independently of ko, (g1, - ., g:), and be the same in all protocol executions
of RSAREP-based scheme I. If V), after engaging in polynomially many protocol ex-
ecutionswith respect to (z1, . . ., x;), outputs a certified key pair comprising a secret
key (z7,..., 2], a1), then

(7, xf) = (21,...,27)
with overwhelming probability.

Proof. Suppose that Vo, after ¢ protocol executions, outputs with non-negligible suc-
cess probability e a certified key pair comprising a secret key (z7,...,z},aq) for
which (z7,..., ) differs from (zq,...,2;). Using a proper choice for H(-), we
show how to use algorithm K in Assumption 4.3.9 to construct a polynomial-time
algorithm A for inverting the RSA function, thereby obtaining a contradiction.

Let (Iren, Drsa) denote any invulnerableinstance generator for the RSA function.
On input k, this instance generator outputs atriple (n, v, ). Algorithm A, on input
(n, v, hee := z?), performsthe following steps:

Step A. (Simulate the key set-up for P,.) Generate [ random numbers, 71, ..., r; €
Z,, and | random numbers, s1, ..., s; € Z, . Set

gi = hlis? Vie{l,...,1}.

With h dencting Hizl g7, generate arandom number z € Z,,, and compute

ho := x3h~1. (Since (x1,..., ;) is generated independently of A, we may

assumethat it is generated before (ho, g1, - . ., 1) iSgenerated.) The simulated

public key of Py is ho, (g1, - - -, gi). In addition, define (-) according to
Hnw: (a,b) — H; o, (hoa,b),

n,v

foral a,b € Z,, where H*(-) isthe hash function in Assumption 4.3.9.

n’

Step B. (Simulate P, inissuing protocol executionswith respectto (x4, ..., 2;).)

Step 1. Generate a random number wg € Z;. Compute a( := wyg, and send
ag to V.

3Because A is non-interactive, it is unclear how to formalize knowledge extraction outside of the
random oracle model. The intuition is that if A would keep a “history” tape that contains a copy of
everything it has written on its work tape (but with previous contents never overwritten), then /C should be
able to extract knowledge from A by looking at the history tape and A’s input tape and random tape.
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Step 2. Receive ¢ from ]70.
Step 3. Compute ro 1= l‘gO’UJ(), and send rg to 9().

Repeat this simulation until ¢ executions of the issuing protocol with 170 have
been performed.

Step C. Check if V, has output a certified key pair (27, . .. sxy,a1), (¢, 1) for
which (z7,...,z;) does not equal (x1,...,x;). If thisis not the case, then
halt.

Step D. If Zézl ri(z; — xf) = 0 mod v, then halt.

Step E. Run algorithm fC on input (n,v) and (h', (¢, 1()), using < A, Vo> as a
black-box algorithm. If X does not output 3 € Z :; such that ¥ = A/ mod n,
then halt.

Step F. Using the extended Euclidean algorithm, computeintegerse, f € 7 satisfy-
ing

l
e(Zm(Jci —z))+ fo=1
i=1

(This can always be done, because v is prime.) Compute

l
hr{SA (alm@ﬁil H Sfl_% )67

=1
and output the resuilt.

By definition of the key generation of A in Step A, the public key in Step A is simu-
lated with the same probability distribution as that by which P, generates its public
key, regardless of the distribution of hes, and (x4, . .., ;). Theresponsethat is com-
puted by A in the simulated issuing protocol is the same as the response that P
would compute:

rg = (2g'wo)”
= (xg)®wg
= (hoh)C“ao.

It follows that the view of jfo in the simulated issuing protocol has the same distri-
bution as that provided by P, regardliess of the probability distribution by which Vv,
generatesits challenges. Therefore, Step D isreached by supposition with probability
€.

Thetuple (rq,...,r;) isunconditionally hidden from ]70, due to the randomness
of the s;’s and the fact that v is co-primeto ¢(n), and it is therefore independent of
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(x%,...,z]). Because (11, ..., r;) isasoindependent of (x1, ..., ), thetransition
from Step D to Step E takes place with probability 1 — 1/v.

Because of the definition of H(-), we can infer from Assumption 4.3.9 that the
output 3 of K in Step E satisfies

l
ﬁ,u — hohl — hO ]:[gi”z a’ll)

i=1

with non-negligible probability. Therefore, the transition from Step E to Step F takes
place with non-negligible probability.
According to the key pair constructionin Step A we also have

1
x5 = hoh = hoHQ?V

=1

From these two relations we get

l
(@B = o " (e
=1
l
= [Iwzst)= (@)™

i=1
ol
_ h%;j:l Ti(Ii*fq,)(H S;i—xfa;1>v
and so l
l (s —
(qmoB™" H s;t T = hRZS;"'Zl S ).
i=1

Fromthisit followsthat the output of A in Step Fisequal to hés/f, with overwhelming

probability:

l l

s v _ i—z 0\ €

(hatarzos™ TTs7 7)) = nda((mod™ [0 7))
i=1 i=1

1- L ori(wi—al L ori(wi—al
R iwmaD) S i)

RSA

= hRSA'

The overall success probability of A is (1 — 1/v)e timesthe (non-negligible) success
probability of algorithm /. If € isnon-negligible, then (Igs., Drsa ) iSNot invulnerable
for the RSA function. Therefore (x%,...,z;) = (x1,...,x;) with overwhelming
probability. O
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The result holds regardless of the fashion in which protocol executions with respect
to the same attribute tuple are interleaved.

The hash function defined in the proof of Proposition 4.3.10 is not the same as
that in the proof of Proposition 4.3.6. In practice, any sufficiently strong one-way
hash function should suffice for both propositions. (Another approach is to adjust
Assumption 4.3.9.)

A similar result can be proved for the other three certificate schemes described
in Section 4.2. In al four schemes, P is effectively proving knowledge of a rep-
resentation of the joint public key hoh, by means of a protocol that we know from
Section 2.4 to be honest-verifier zero-knowledge. Since ¢ as formed by V), is ran-
domly distributed, wiretappers cannot infer anything from the protocol executions
of honest receivers. More generally, the blinding-invariance property remains valid
evenif ), can wiretap theissuing aswell as the showing protocol executions of hon-
est parties, assuming that these use their certified key pairs only in zero-knowledge
showing protocols.

Thefollowing negative result showsthat Proposition 4.3.10 cannot easily be gen-
eralized.

Proposition 4.3.11. If Py performs protocol executions in parallel with respect to
different attribute tuples, then V, can obtain a certified key pair for which the putative
restrictive blinding-invariant part is not equal to any of these tuples.

Proof. Suppose that P, performs its protocol executions with respect to ¢ > 1 dif-
ferent attribute tuples, (z11,...,211),..., (@14, ..., z1t). Inthefollowing attack, Vy
engages in parallel in ¢t protocol executions, each with respect to one of the tuples.
Assume without loss of generality that the j-th protocol execution is with respect to
thetuple (z1;,...,2;;) andlethy == [, g7, foral j € {1,...,t}.4

Step 1. Vo obtains¢ numbers, a1, ..., a0 € Z, fromPy, by engagingin Step 1 of
all ¢ protocol executions.

Step 2. 170 chooses ¢ numbers, aq,...,o; € Z,, subject to Zle o; = 1 mod v.

Vo computes
t

o= s

=1
and

t
CIO = Hn,’u(h,; H aOi)-
=1

Foradlie {1,...,t}, 90 then computes co; := a;c(, mod v and sends cy; to
Py in Step 2 of the i-th protocol execution.

4The ordering of protocol executions assumed here follows for instance from the time order in which
Vo processes the first message of each protocol execution.
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Step 3. ]70 obtains ¢t numbers, rqq, ...,

all ¢ protocol executions.

If Vo acceptsin al ¢ protocol executions, it computes

t t
AT — «;)dive
’I"(I) — I I TOi(hohi)(aq,co)dlvvho ((Zi:1 ) )

i=1

ror € Z,, from Py, by engaging in Step 3 of

(The additional operations needed to blind the certified key pair have been left out
only for reason of clarity; they are easy to incorporate.)
If the ¢ responses of P, are al correct, then (¢, r() is a certificate of Py on h':

(TB)U

From

(ﬁ T0i (hohz')(a*cé’)div"’h(;((zzzl O‘i)divv))”
i=1

t
a;)dive
Hr&(hohi) aicg) le'U U((Z i) )

t
H(h()hi)cma()i(h()h,i)v((a icp) leU
=1

t
H(hoht)alc/o mod v, (hoh )U((a Co)le“)h U((Z a;)divo)
i=1

t
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it is clear that 170 can obtain a certified key pair for which the secret key does not
contain any of the ¢ attribute tuples with respect to which the protocol executions
have been performed. O

In fact, if ¢ > [ then V, can target any attribute tuple it desires, assuming a certain
linear independence property; see Proposition 4.3.15 for details.

The attack in the proof of Proposition 4.3.11 requires ), to engage in parallel
executions of theissuing protocol, because each of the ¢ challenges of 1, dependson
all t initial witnesses. Incase P, doesnot perform protocol executionswith respect to
different attributetuplesin parallel, it seemsthat 1, can only obtain certified key pairs
that comprise one of the ¢ tuples with respect to which the protocol executions have
been performed. Thisisolation property is formalized by the following assumption.

Assumption 4.3.12. There exists a hash function () such that the following holds
for all [,¢ > 1. Let ¢ attribute tuples,

(xllv" 'amll)v" '7(3:115;' o ;mlt)a

beformed. Let (z7, ..., ], «) denote the secret key of a certified key pair computed
by Vo in RSAREP-based scheme | after engaging in polynomially many protocol

executions with respect to tuples (z1;,...,z1;), ¢ € {1,...,t} of its own choice
(possibly adaptively chosen). If P, does not perform protocol executionswith respect
todistinct attribute tuplesin parallel, then with overwhelming probability there exists
i e{1,...,t} suchthat (z3,...,2) = (x1,...,2;). More generally, the second
property in Definition 4.1.1 holds.

For DLREP-based scheme Il and RSAREP-based scheme 11, the analogous as-
sumption can be proved in the random oracle model, provided that P performs no
more than polylogarithmically many protocol executions. Note that the assumption
does not forbid protocol executions with respect to the same attribute tuple to be
performedin parallel.

4.3.4 Additional properties

Py knows the numbers (x4, ..., ;) that end up in the secret key of V. Once P,
gets to see i’ and for some reason (for instance because x; is an identifier that V),
disclosesin the showing protocol) is ableto link it to the protocol executionin which
it was certified, it can compute h’'/h = Y. According to Proposition 4.3.4, a; is
uncorrelated to the view of Py in (Py, V). In Section 2.2.3 we have seen that if any
Dgs, leads to a one-way RSA function, then a random choice for a1 certainly will.
From this we get the following result.

Coroallary 4.3.13. If (Igss, Drsa) isinvulnerable for the RSA-function, and does not
output the factorization of n as side information, then 7, cannot compute the secret
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key of V, from the certified public key of V,, even if 7, knows the encoded attribute
tuple (z1,...,z).

Therefore, only V, can feasibly perform a (signed) proof of knowledge of a se-
cret key corresponding to its certified public key(s). Note that the interests of P
and V, are digned, because (Izs., Drsa) NEEds to be invulnerable to guarantee the
unforgeability of certified key pairs. If the issuing protocol is combined with one of
the RSAREP-based showing protocols of Chapter 3, and VV, does not disclose at least
part of the encoded attribute tuple, then not even P, will be able to determine V's
secret key. The latter property is desirable to achieve non-repudiation, especially in
the case of limited-show certificates; see Section 5.5.3 for details.

A similar result holds for the other three certificate schemes constructed in Sec-
tion 4.2. The DLREP-based schemes have the advantage that atrapdoor is not known
to exist, so that Py may generate the system parameters by itself.

The following property clarifies the nature of the certificate scheme.

Proposition 4.3.14. RSAREP-based scheme | is a secret-key certificate scheme.

Proof. We construct a polynomial-time simulation algorithm .S that generates cer-
tified public keys with the same probability distribution as that according to which
they are generated in the issuing protocol between P, and V. On given as input
n,v, ho, (g1, .., ) and H,, ,(-), S generates two random numbers a2, a3 € Zn,
computes h := ho‘lag, co = Hnv(h,af) and ro := a5’ as, and outputs the pair
h, (co, 7). The output of S isa certified public key:

co = Hno(h,af)
Huo(h (7”0042 °)")

= Hnw(hrg(az)™ )
How(h, g (hoh) ™).

n,v

Sincew isco-primeto ¢(n), and a; and a3 in Step 1 are chosen at random from Z_;,
the output distribution of A isidentical to that of certified public keysissuedto Vg
by ﬁ(). O

The other three schemes described in Section 4.2 are secret-key certificate schemes
aswell. For the advantages of this property, see Section 2.6 and Section 5.2.2.

For any of the certificate schemesin Section 4.2, alimited degree of paralleliza-
tion can be achieved without any modifications. Observe that the crux of the proof
of Proposition 4.3.10isthat (P, Vo) isaproof of knowledge of the v-th root of £ gh,
but not of the v-th root of hy. Elaborating on this observation, we can obtain the
following result.

Proposition 4.3.15. There exists a hash function () such that the following holds.
Let (z7,..., 2], ) denote the secret key of a certified key pair computed by V, in
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RSAREP-based scheme | after engaging in polynomially many protocol executions
(that may be arbitrarily interleaved) with respect to attribute tuples (1, . .., x1;),
for ¢ € {1,...,t}, of its own choice, subject to the restriction that the tuples are
formed independently of hq. If Assumption 4.3.9 holds, then for all I, > 1, with
overwhelming probability (1,z%,...,2]) is contained in the linear span of the ¢
vectors (1, z14, ..., xy3), fori € {1,...,t}. Inparticular, if ¢ < thesecond property
in Definition 4.1.1 holds.

In other words, if P performs protocol executions with respecttouptot < I
independent tuples in parallel, it can still encode [ — ¢ + 1 attributes into the secret
key of each certified key pair that V), ends up with. The same holds for the DLREP-
based schemes. This immunization technique is not very practical, though, because
the degree of parall€elization dependson ! and the number of attributes to be encoded.
In the next section we show how to guarantee security in the presence of arbitrary
parallelization.

4.4 Parall€lization of protocol executions

Whether or not the measure of not running protocol executions with respect to dif-
ferent attribute tuplesin parallel poses a performance bottleneck depends on the ap-
plication at hand. Sequential protocol executions need not be inefficient, because P
can send out a for anew protocol execution as soon asit has received the challenge
co for the current protocol execution. To prevent queuing, P o should abort an ex-
ecution of the issuing protocol if a predetermined time lag between the transmittal
of ay and the reception of ¢ is exceeded; the receiver must then try again in a later
protocol execution. Assuming that requests for protocol executions arrive in accor-
dance with a Poisson process, this strategy isthe M/D/1 model with feedback known
from queueing theory. The feedback may be purposely limited by P, to shut out
parties that frequently exceed the permitted time lag. Furthermore, executions of the
certificate issuing protocol can be scheduled to take place at a convenient time and
can be repeated if necessary. Also, remember that protocol executions with respect
to the same attribute tuple may always be performed in parallel.

The ability to arbitrarily interleave protocol executions offers two benefits in
highly demanding applications:

e Therole of Py can be performed by distributed processors that need not com-
municate or synchronize; they merely need access to the same secret key.

o Receivers can go off-line between Step 1 and Step 2, in principle for as long
asthey please. Py in Step 1 could even send to V, an authenticated encryption
of the random bits it used to form its initial witness, and have V, return it in
Step 2. (Obviously, Py must prevent replay.) In the RSAREP-based protocols
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Vo may even form ag onits own as the output of a sufficiently strong one-way
function, as pointed out in Section 4.2.3.

In the following two sections we describe two techniquesto “immunize” the certifi-
cate schemes of Section 4.2 against parallel mode attacks. Both immunizationsadmit
arbitrary parallelization, and do not affect the definition of the system parameters and
Po’s public key; only the definition of a certificate changes slightly.

441 Maskingtheinitial witness

Our first immunization technique aims to destroy the multiplicative relation in the
initial witnessesthat is exploited by V, in Step 2 of the parallel mode attack of Propo-
sition 4.3.11. It applies to both DL REP-based schemes and to both RSAREP-based
schemes.

Concretely, to enable full parallelization of protocol executions in RSAREP-
based scheme |, we have Py send f,, ,(ap) instead of aq in Step 1 of the issuing
protocol. The function { fi(-) }ie{(n,v)y Must satisfy the following two requirements:

1. For random ag, by € Z,*L, it is easy to compute f, ,(aobo) from f, ,(ao) and
bo.

2. Forrandomag, by € ZZ, itisinfeasibleto computeatriple
a #0mod v, 3 # 0 mod v, fr.,(agbl)

from f‘n,’u (aO) and fn,’u (bO)

The first requirement ensures that 1V, can retrieve certified public keys in exactly
the same manner as in the original issuing protocol, while the second reguirement
prevents parallel mode attacks based on the exploitation of multiplicative properties.
The second requirement may be weakened by having P time the delay between
sending out aq and receiving cq, aborting when a predetermined time bound is ex-
ceeded; it then suffices that triples a # 0 mod v, 3 # 0 mod v, f,.,(agb]) cannot
be computed within the imposed time bound. Note that we do not require that the
computation of f,, ,(a§) from f, ,(ag) beinfeasible.

Correspondingly, the following modifications must be made to RSAREP-based
schemel:

e Thepair (¢, y) isredefined to be a certificate of Py on b’ if and only if
o = Hpw (W, frt,’U((TIO)U(hOhI)_CG))-

o In Step 1 of theissuing protocol, Py sends f,, ., (ao) instead of ay.
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e In Step 2 of theissuing protocol, V, computes ¢, according to
CIO = Hn,'v (h,7 fn,’u (alé (hOh)OLd aO))-
Vp can compute ¢, by virtue of the first requirement for f(-).

o V) acceptsif and only if f, ., (ry (hoh) ™) isequal to the number provided by
Po in Step 1.

Note that the definition of a key pair for V is not affected; only the definition of a
certificate is changed. The resulting scheme is depicted in Figure 4.6.

Proposition 4.4.1. If f(-) isone-to-one, then the immunized RSAREP-based scheme
| isat least as secure as the original scheme.

Theproof istrivial: the security of theimmunized schemeis easily seen to reduce
to that of the original schemein caseitisfeasibleto invert f(-).

Assumption 4.4.2. There exists a function f(-) and a hash function #(-) such that
the issuing protocol of the immunized RSAREP-based scheme | is restrictive blind
with blinding-invariantpart (z1, . . . , ;), even when protocol executionswith respect
to different attribute tuples are arbitrarily interleaved.

A concrete suggestion for a one-to-one function f(-) satisfying our two require-
mentsisthefollowing. Let M be arandom prime such that » divides M — 1, and let
F bearandom element of order n in Z . Define

fnwiag — F mod M Vag € Z;.

Itiseasy to seethat thefirst requirement for f(-) is met. Whether the second require-
ment is met depends on the hardness of the Diffie-Hellman problem [136]; thisisthe
problem of computing ¢, oninput (g, g%, g*) for random a, b and a random group
element ¢ of large order. It is widely believed that there exist groups in which the
ability to solve the Diffie-Hellman problem is polynomial-time equivalent to the abil -
ity to compute discrete logarithms; see Maurer and Wolf [258] for partial evidence.

Proposition 4.4.3. Suppose there exist positive integers («, 3) and a polynomial-
time algorithm that, on given as input a randomly chosen tuple (n, M, F') of the
specified format and a pair (F* mod M, F*c mod M) for randomly chosen a, bo

in Z, outputs F%6% mod M with non-negligible success probability. Then the

n?

Diffie-Hellman problemin groups 7, with M of the specified form, is tractable.

The proof of this proposition makes use of standard techniques, and is therefore
omitted.

Proposition 4.4.3 does not suffice to provethe second requirement, becauseit per-
tains only to algorithms that compute F %0 % mod M for fixed (a, B8). Nevertheless,
it provides evidence in favor of f(-) meeting the second requirement.
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SYSTEM PARAMETERS

(n, v) = IRSA(lk)

KEY SET-UP
Secret key: factorization of n
ho,g91,---,91 €r Z:L
Public key: ho, (91,---,91)
Additional information: Hnw(+), fr,o()
PROTOCOL
ap €ER Z;
af = fn,v(ao) §
o,
al, a2 ER Z:L
a3 ER Zu
h' = hay
¢ = Hn,o (W, frn,v(ag(hoh)*3a0))
co := ¢( + a3 mod v
<C_()
ro 1= ((hoh)Can)l/”
o,

”
fro(rg(hoh) =0) = ag

C/ / - i
ry = roaza;’ (hoh)(00+a3)dw”

Figure 4.6: Immunization | of RSAREP-based schemell.
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This immunization technique also applies to the other three certificate schemes
described in Section 4.2. Its drawback is decreased performance: 1y cannot precom-
pute the application of f, . (-) in Step 2, and certificates are larger and more costly
to verify. Furthermore, an elliptic curve implementation of the immunized DL REP-
based schemes seems out of the question.

4.4.2 Swapping exponentsin the verification relation

The second immunization technique applies to both DLREP-based schemes as well
as to RSAREP-based scheme |1, and fully preserves their efficiency. On the down-
side, it does not apply to RSAREP-based scheme |, and it is unclear how to prove
unforgeability in the random oracle model.

The required modifications are the result of swapping the position of the chal-
lenge with that of (one of) the response(s) in the verification relation. In the case of
DLREP-based scheme I, the certificate verification relation

¢ty = Ha.go (1, g0 (hoh')~0),

becomes
C/O = thgo (h/a 980 (h/)ro)'

The secret key of V) is redefined to be a DL-representation of 4’ with respect to
(g1,---, 91, ho), instead of with respect to (g1, ..., g, 90). No changes are needed
to the process of generating the system parameters. The issuing protocol is modified
correspondingly, as follows:

Step 1. P, generates arandom number w, € Z,, and sends ag := g4 to V.

Step 2. V, generates three random numbers oy € Z: and a2, a3 € Z,. Vo com-
putes h o= (h()h,)al, C/O = Hq790 (h/,gg‘2 (h()h)ag'a()), and sends ¢g := C/O —
o mod g to Py.

Step 3. Py sendsrg := (’LU() — C())/(l‘() + Z'lizl Zzyz) mod qto V().5

Vo acceptsif and only if gg° (hoh)™ = ao. If this verification holds, V, computes
ry = (ro + ag)/a1 mod ¢. Theresulting schemeis depicted in Figure 4.7.

It is easy to verify that the protocol is complete, and that (c(, () is a secret-key
certificate of Py on h’. Excluding public keys i’ that are equal to 1, the following
result can be proved in a manner similar to the proof of Proposition 4.3.4.

5To guarantee that P, can aways perform Step 3, the attribute tuple that is encoded must satisfy
(zo + Zizl z;yi) # 0 mod g. Since finding a tuple for which equality hold should be infeasible for
Vo there is no need to check for this.
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SYSTEM PARAMETERS

(g, 90) := oL (1¥)

KEY SET-UP
xo := DpL(q, 90)
Y1, Y1 ER Zq
Secret key: zo, (y1,---,Y1)
ho = ggo
gi=gy Vie{l,...,l}
Public key: ho,(g1,---,91)
Additional information: Ha,g0 ()

PROTOCOL
wo ER Zq
ao == gg°

ao,
a1 ER Z;

@z, a3 €ER Zq
h' = (hoh)®1
g = Haq,go (B, 952 (hoh)*3ao)
co :=¢f) — az mod ¢

(€]

l
ro := (wo — co)/(zo + Zi:l z;y;) mod g
T0
—
co ™ 2

90° (hoh)™ = ag

ry := (1o + a3)/a1 mod q

Figure 4.7: Immunization |1 of DLREP-based scheme .



168 RESTRICTIVE BLIND ISSUING PROTOCOLS

Proposition 4.4.4. For any properly formed system parameters in the immunized
DLREP-based schemel, if V, followstheissuing protocol and accepts, thenit obtains
a certified key pair comprising a perfectly blinded certified public key, regardless of
the behavior of P.

Obtaining a certificate on ' = 1 seemsinfeasible; it implies the ability to com-
pute a number ¢y € Z, such that H, 4, (1,95°) = co. However, there is no need
to make an assumption to this effect, since this case can be recognized and declared
invalid.

While it would seem that the unforgeability of the modified certificate scheme
can be proved in a manner similar to the proof of Proposition 4.3.6, this is not the
case. Nevertheless, unforgesbility is believed to hold for the modified scheme as
well.

We now arrive at the crucial differencewith DLREP-based schemel. The parallel
mode attack described in the proof of Proposition 4.3.11 does not apply, because V
in Step 2 hasto solvelinear relationsin terms of the responses of P, which it cannot
anticipate at that time.

Assumption 4.4.5. There exists a hash function H(-) such that in the immunized
DLREP-based scheme | the following holdsfor all 7, ¢ > 1. Let ¢ attribute tuples,

(xllv" 'amll)v" '7(3:115;' o ;mlt)a

be formed. Suppose that Vo, after engaging in polynomially many protocol execu-
tions (arbitrarily interleaved) with respect to tuples (z1;,...,21), ¢ € {1,...,t}
of its own choice (possibly adaptively chosen), outputs a certified key pair com-
prising a secret key (z7,...,z;,a1). Wth overwhelming probability, there exists
i € {1,...,t} such that (z3,...,27) = (a1z1; modg,...,a1z; mod ¢). More
generally, the second property in Definition 4.1.1 holds.

Assuming that public keys equal to 1 are declared invalid, it followsthat ory # 0,
and so
(27 /a1 mod q, ..., x] Jay mod q) = (14, ..., T15).

The following argument gives some insight as to why the assumption should hold.
If we restrict ourselves in Assumption 4.4.5 to protocol executions that involve the
same (z1, ..., x;), which is formed independently of %, then the proof of Proposi-
tion 4.3.10 appliesin virtually the same manner, assuming the DL -based analogue to
Assumption 4.3.9. Therefore, attacks must exploit the parallel nature of the issuing
protocol with respect to different attribute tuples, if they are to have anon-negligible
success probability. In the following, we consider only “algebraic” attacks on the
parallel version of the issuing protocol. We restrict ourselvesto thecasel = 1; itis
easy to provethat if Assumption 4.4.5holdsfor [ = 1 thenit also holdsfor general /.
Furthermore, we consider only two parallel executions of the issuing protocol, each
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with respect to adifferent blinding-invariant number; the argument can easily be gen-
eralized. Finally, we assume that V, cannot compute with non-negligible probability
of success a non-trivial representation of 1 with respect to (g, g1, ho). (Itiseasy to
provethat log, ho and log, g1 do not leak.)

Denoteby x1¢ and x11 # x19 mod g, respectively, the putative blinding-invariant
parts corresponding to each of the parallel two executions of the certificate issuing
protocol. The goal of V), is to obtain a certified public key h" # 1, (co,r0) and a
secret key (8o, 51) for A" such that

Bo # z1061 mod ¢ and [y # 1141 mod q.

Knowi ng (C(), 7"()) such that
co = Ha,g (h’, 9° (h/)ro)
is equivaent to knowing (ao, ro) such that

g?q,go(hlﬂo)(h/)rg = ag.
Therefore, the attack target is a triple (30, 31), B’ = ¢°hZ", (ao,70) such that
950 (g hg ) = ag, where ¢ denotes H,, 4, (¢7°hl*, ao). Raising the verification
relations for each of the two protocol executions to the powers v and ~1, respec-
tively, and multiplying the results, we obtain

9300004-71001 h’om"‘oo-‘r’h"mgimwm"‘oo-‘r’ywu'rm — a’OyBagi
]70 must determine apair g, 51, and numbers~yg, v1, coo, co1 for which the informa-
tion provided by P, can be combined into a pair (ag, o) such that

co 50"‘0h€17‘0 = ao
b

90 91

where co = Hq790 (gf‘j\hgl R a()).

Assumefirst that Vy computes ag := agdag;, for vo0,71 # 0 mod ¢ that need not
be explicitly known at the time ¢y and ¢ have to be provided. V, must ensure that
'YOCOO+'YlC()1h'OYO7'00+’Yl”‘01 YoZioToo+Y1 11701

90 Boro hgﬂ‘o.

91 =90'9
Assume furthermore that v and ~, are computable by Vo once the attack has been
completed successfully (a plausible assumption given the algebraic nature of the at-
tack). It follows from the assumption that 1, cannot compute a non-trivial represen-
tation of 1 with respect to (go, g1, ho) that Vy hasto (implicitly) solve the following
threerelations,

YoZ10T00 + Y1Z11701 = Boro mod g,

Yoroo + Y1T01 = B17r0 mod g,

YoCoo + Y1c01 = €o mod g,
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for (70,71, Bo, B1, coo, cor) and rq. It seems that (o, v1, Bo, 1, coo, cor) must be
committed to before oo and ro; are provided; only ro can be computed afterwards.
Since ry can be computed by V), after rog and o1 have been received, it may seem
that there are many workable choices for o, 71, 80, 51. This is not true, however,
since V, hasto solve, intermsof ¢, v1, Bo, 51, asinglerelation that does not involve
ro but doesinvolvergy andrg;. Multi plyl ng both sides of Yoroo+7Y1T01 = 517"() mod
q by ﬂ()/ﬂl mod q, and subtracti ng theresult from YoZ10T00+Y1L11701 = ﬂ()?"() mod
q, we get

(’Yo (3510 - 50/51)) 700 + (’71 (3311 - 50/51)) ro1 = 0 mod q.

Because rp and ro; cannot be anticipated, and because 3y/; mod ¢ cannot be
equal to both 1 and x11, the only workable non-zero choicesfor ¢, v1, 5o, 51 Seem
to beto takeyy = AOOTJOI mod ¢ and v, = AOlrall mod ¢, or vg = Agoro1 mod ¢
and v1 = Ap1700 mod g, for some suitable constants Aoy and Ag; that may depend
on 3 and ;. To argue that V, cannot compute a := a/jad; for such a choice for
Yo, Y1, We focus on the third relation, YoCoo + Y1Co1 = Co mod q. (After al, itis
not completely inconceivable that a can be computed in this way before r oo and r¢;
become known, since g and o1 are known to satisfy the two verification relations.)
Even if a could be computed, the fact that ¢ is the outcome of a sufficiently strong
one-way hash function applied to ao implies that its value cannot be expressed in
terms of 799 and 7. (Notethat co = Hy 4 (955", aggag}) should imply, by virtue
of the strength of the hash-function, that ¢, cannot be chosen as an algebraic func-
tion of By, 81, 70, 71; thistrivialy holdsin the random oracle model.) Consequently,
Yocoo + Y101 = co mod ¢ can only be solved for values coo and co; that are ex-
pressed in terms of rqg, r91. Because cqp and cp; have to be provided by V), before
ro0 and ro; become known, workable cDoi cesfor v and v, should be infeasible.
We assumed in this argument that V, computes ag := ajjag;. Theinformation

containedin
Yocoo+Y1¢01 h’mT‘oo-‘r’Yl T01 ,Y0Z10700+Y1Z11701
0

90 91

can be combined into ¢<° (¢ h* )™ in a more general way. The most general form
seemsto be ag := adda]igl® g0 h? for smart choices for 8y, 0, 2. Assuming again
that it is infeasible to compute with non-negligible probability of success a non-
trivial representation of 1 with respect to (go, g1, ho), we can derive three relations
similar to those previously displayed. From thefirst two of these we can again derive
one relation that involves roq and r9; but not g, and that relation must be solved
(implicitly) for g, v1, 8o, 81. The only way to arrive at arelation in which ~¢ and
~1 ae not expressions in terms of rqg, 191 (for which the preceding argument ap-
p||ES) seems to be to choose 5(), 61 such that YoToo + Y1701 + 01 = 6()7“() mod q and
YoZ10T00 + 1211701 + 0 = B170 mod g arelinearly dependentinr; in that caserg
cannot be made to drop out of the equations. Such choicesfor § ¢, §; seem to require
expressionsin terms of rqy and r; that cannot be anticipated.
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This completes our argument as to why Assumption 4.4.5 should hold. Unfor-
tunately, it is unclear how to prove Assumption 4.4.5, even in the random oracle
model.

A similar immunization applies to DLREP-based scheme 1I; we simply swap
the position of the challenge in the verification relation with that of one of the two
responses. The immunization technique does not apply to RSAREP-based scheme
I, since it does not have a response that appears as an exponent in the verification
relation. It can be applied to RSAREP-based scheme |1, though, but not without a
twist. Redefine a certificate of Py on b’ € Z, to be atriple, (cj,7),7;) € Zs x
7, x 7., such that

co = Mo (W, (r) FO (W) ™).

Vo's secret key now isan RSA-representation of '’ with respectto (g1, . . ., g1, ho, v).
In the modified issuing protocol, Vo can blind i = []_, ¢ to i’ = (hoh)?a?, for
arbitrary 3 € Z, and o € Z,. Whilein an application this genera blinding form
must be taken into account, for unlinkability it suffices for V¢ to simply fix 5 = 1,
say, and use arandom «;. The resulting issuing protocol is depicted in Figure 4.8.
(Alternatively, Py can perform this protocol without using the factorization of n,
similar as described in Section 4.2.3. The protocol can be converted into atwo-move
protocol in the manner pointed out in Section 4.2.3.) Now, from 2’ one cannot infer
that 3 # 0 mod v, yet this choice must be prevented. We can get around this by
having Vy in the showing protocol demonstrate that 3 # 0 mod v, as part of the
formulait is demonstrating: see Section 5.1.1 for details.

45 Other certificate schemes

The certificate schemes in Sections 4.2 and 4.4 are all based on the digital signature
schemesdiscussed in Sections 2.5.3 and 2.5.4. Asin many areas of cryptography, itis
of interest to have alternatives based on different underlying assumptions, instead of
placing al bets on one horse. In this section we describe two such alternatives. Both
alternatives are believed to be secure even when protocol executions with respect to
different attribute tuples are arbitrarily interleaved.

451 DSA-likecertificates

The system parameter generation and the key set-up for this scheme are the same as
for DLREP-based schemel. It is preferable that 7(-) do not map argumentsto zero,
but since this event should have negligible probability anyway there is no need to
make an assumption to this effect.

For a € G, let @ denote a mod ¢. In the DSA [277], a signature standard
originally proposed in 1994 by the U.S. National Institute of Standards and Tech-
nology, a signature on a message m with respect to a publickey ho = g;° isapair
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SYSTEM PARAMETERS
(n,v) = IRSA(lk)
KEY SET-UP

Secret key: factorization of n
foho,g1,-. . 91 €r Loy,

Public key: (f,ho), (g1, 91)
Additional information: Hn,v(+)
PROTOCOL
ap €ER Z;
ag

1,02 ER Z;:
az, o4 ER Zv
h' := hoha?
¢y :=Hno(h',al f73 (k)" ¥ap)
co := ¢{ + a3 mod v
co

—co
T ER Zv
ro := ((hoh)"1ag/f0)!/v

r0,T1

?
feorg (hoh)™™ = ag
7,6 — T,Oa?l"l a2f—((06+a3)divv) (h/)—((rl +ay)divo)

r] =71+ g mod v

Figure 4.8: Immunization Il of RSAREP-based schemell.



4.5 OTHER CERTIFICATE SCHEMES 173

(a0, 70) € Lg % Zq such that

(gz)"q,go (m)/rohgo/ro> mod qg= To.
The DSA makes the following specific choices: G, is constructed using the subgroup
construction, ¢ isa 160-bit prime, and M, 4, (-) is set equal to SHA-I [276].
We modify the DSA scheme by applying a cyclic left shift to the role of the
exponents, (H .4, (m), 7o, ao), in the DSA verification relation.® A certificate of Py
onapublickey h' # 1 isdefined to be apair (a}, ) € Z, x Z, such that

(9" (R)"/0) mod ¢ = aj,

wherecl, = H, 4, (ho, apy). Thepresence of aj, inH,, 4, (ho, ajy) isnot mandatory, but
is believed preferable. The secret key of 1V is a DL-representation of A’ with respect
to (g1, ..., 91, ho)-

Let ~ denote Hﬁzl g5 Theissuing protocol is as follows:

7
Step 1. P, generates arandom number w, € Z,, and sends ag := g4 to V.

Step 2. V), generates arandom number a;; € ZZ and two random numbers as, ag €
L. 1t computes b’ := (hoh)*, a’olzz al? (hoh)®s, and ¢y := Hy g, (W, afy).
Finaly, V, sends ¢j := c’Oaga_oa’Oi mod q to Pp.

Step 3. ,P() sends ro = (l‘() —+ Z'lizl l‘iyi)il(C()’LU() — a_()) mod q to V(). (TO guar-
antee that P, can aways perform Step 3, (x1,...,x;) must satisfy (z¢ +

Zﬁzl 2;yi) 7 0 mod q.)

Vy accepts if and only if gf)’“/C“(hOh)”‘o/Co = qg. If this verification holds, V, com-
putes ) := oy (ro@o ‘al + chas) mod ¢. The resulting scheme is depicted in
Figure4.9.

It is easy to verify that the protocol is a proof of knowledge (the probability
that the inverses of @ and af, are defined is overwhelming) and that (aj, 7)) is a
secret-key certificate of Py on h’. Aswith the schemesin Section 4.4.2, it is unclear
how to reduce the unforgeability of the underlying signature scheme to that of the
new scheme, but unforgeability is believed to hold nevertheless. Furthermore, if 1V
followstheissuing protocol and acceptsthen it obtains a certified key pair comprising
aperfectly blinded certified public key.

Assumption 4.4.5 should apply here as well. Following the argument in Sec-
tion 4.4.2, we arrive at three relations that differ only in that vgcoo + v1co1 =
co mod g is replaced by yoago + v1@01 = ap mod g, where ag = ajd“ag; .

6 Camenisch, Piveteau, and Stadler [72] applied another shift of the exponents, in order to construct an
ordinary DSA-like blind signature scheme in Chaum’s sense. Their shift does not give rise to arestrictive
blind certificate scheme that is secure in parallel mode.
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SYSTEM PARAMETERS

(q,90) == IoL(1%)

KEY SET-UP
xo := DoL(q, go)
Y1, Y1 ER Zq
Secret key: zo, (y1,-.-,y1)
ho := g3°
gi=gyivie{l,...,1}
Public key: ho,(g1,---,91)
Additional information: Hg, g0 (+)

PROTOCOL
wo ER Zq
ap = gé”o

Ao,
a] ER Z;

az,a3 ER Zq

B = (hoh)*1

ah = ag?(hoh)>3

06 = Hq,g0 (h,7a/0)

co 1= céag%aé)_ mod ¢

Lo

1 _ —
ro := (zo + Zi:l x;9;) " (cowo — @p) mod ¢
o,

—_— ?
ggo/co (hoh)ro/cg < a0

/. 1 ——17 ’
ro = aj (roao af + cyas) mod g

Figure 4.9: DSA-like scheme.
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The latter relation seems even harder to handle, although it is unclear how to prove
thisintuition.

A drawback of this DSA-like certificate scheme over the immunized DLREP-
based scheme | in Section 4.4.2 isthat 1, cannot precompute the exponentiation a
in Step 2.

Although the DSA makes the explicit choice G, C Z;, an eliptic curve imple-
mentation may be used instead. Indeed, the elliptic curve analog of the DSA, called
the ECDSA, has been adopted as a standard by 1SO, by ANSI, by IEEE, and by
NIST; see Johnson and Menezes [223] for an overview. Since numbersin G, are
represented by coordinate pairs, and base numbers occur also as exponents, a secure
mapping is needed from base numbers to numbersin Z ,. One solution is to use the
first coordinate; thisis the approach taken in the ECDSA.

45.2 Certificates based on Chaum-Peder sen signatures

Thefollowing scheme differs from al the other certificate schemesin this chapter in
that public-key certificates are issued, not secret-key certificates. The system param-
eter generation and the key set-up for this scheme are the same as for DL REP-based
schemel.

Chaum and Pedersen [109] presented a digital signature scheme that can be
viewed as an entangled application of two Schnorr protocol executions; it is an op-
timization of a protocol due to Chaum, Evertse, and van de Graaf [108, Protocol
4]. A signature on a message m with respect to a public key ho = g;° isatriple
(Z,C(),T()) € Gq X ZS X Zq such that

T —C T —C
Co = H%Qo(mvzvg Oh() °,m’0z 0)'

Chaum and Pedersen defined G, using the subgroup construction, but an elliptic
curve implementation is permitted as well. They also described how to construct a
blind issuing protocol for their signatures. The interactive Chaum-Pedersen proto-
col is a Fiat-Shamir type proof of knowledge of both log , ho and log,,, z that also
demonstrates that these two discrete logarithms are equal. For the purpose of ordi-
nary blind signatures, though, the Chaum-Pedersen scheme does not have advantages
over the Schnorr signature scheme.

The situation is different for the restrictive blind certificate scheme that we will
now construct from their signature scheme by applying our techniques. Define a
certificate of Py onapublickey h’ # 1to beatriple, (2, ¢, () € Gy X Zs x Z,
such that L / /

co = Ha,go (W, 2, 9o°ho ©, ()0 (') ~%0).
The secret key of V), is a DL-representation (x4, ..., x;,«1) of h' with respect to
(915,41, ho), With Py encoding z1, ..., z; € Z, into Vy's secret key. As before,
let h denote Hﬁzl g5t Vo thistime needs to know z := (hoh)®. Hereto Py must

?
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either compute z for Vy or publish (¢7°, ..., ¢;°, hy®) along with its public key; in
the latter case, V), can compute z by itself.
The issuing protocol is as follows:

Step 1. P, generates a random number wy € Z,, and sends aq := g3° and by :=
(hoh)wo to ).

Step 2. V), generates arandom number a; € Z; and two random numbers as, ag €

Zg. Vo computes b/ := (hoh)®t, 2/ = 2*', af = h§*g5®ao, by =
(22 (R)*2byt, ¢y = Hq,go (B, 2', af, bf), and sends ¢ := ¢, + a2 mod ¢
to Po.

Step 3. Py sends g := coxg + wo mod g to V.

Vo acceptsif and only if g°hg “©© = ag and (hoh) ™0z~ = by. If this verification
holds, then V, computes ) := ro + a3 mod ¢. (Alternatively, V, first computes
74 and then checks whether (goh/)™ (hoz') =% = a}bl,.) The resulting scheme is
depicted in Figure 4.10.

It is easy to verify that the protocol is a Fiat-Shamir type proof of knowledge,
and that (2', 7§, cp) is a certificate of Py on A’ if Vo accepts. The witness-hiding
property can be argued in the same manner as with the Schnorr proof of knowledge,
but no proof is known. The unforgeability of certificates follows directly from the
unforgeability of blind Chaum-Pedersen signatures and the fact that ), cannot know
two different DL-representations of the same public key. Proving the latter fact is
trivial: Py can perform the protocol without knowing a non-trivial DL -representation
of 1 with respect to (g1, ..., g1, ho), and in particular it may generate g1,...,g; a
random.

Excluding public keysh’ equal to 1, it can be shown that V, obtainsa certified key
pair comprising a perfectly blinded certified public key. Finally, Assumption 4.4.5is
believed to apply.

This certificate scheme has several drawbacks in comparison to DL REP-based
schemes| and Il and their immunization described in Section 4.4.2:

o Certificates are larger and more costly to verify.

e V,’s computation of bg* in Step 2 of the issuing protocol cannot be prepro-
cessed.

e Itisnot clear how to provethe property of restrictive blinding even when only
sequential protocol executions involving the same attribute tuple are consid-
ered.

e Theschemeis apublic-key certificate scheme; certified public keys cannot be
simulated.
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SYSTEM PARAMETERS

(g, 90) := Io.(1%)

KEY SET-UP
xo := DpL(q, 9o)
Yi,-- Yl ER Zq
Secret key: o, (y1,--.,y1)
ho = gg°
g1,---,91 €ErR Gq
Public key: ho, (g1,---,91)
Additional information: Hq,90 (+), 2z := (hoh)T0
PROTOCOL
wo ER Zq
— WO
ao ‘= g
bo := (hoh)™o
ao, bo
a1 € Zq
2,03 c Zq
R := (hoh)®1
2! =21
af, = h82g8‘3a0
b6 = (Z/)az (h/)agbgl
g :=Haq,go (W, 2", a(, b))
co 1= ¢y + a2 mod g
co
ro := coxo + wo mod ¢q
o

?
90°ho = ao
?
(hoh)mz_co = by

/
Ty i= 70 + a3 mod q

Figure 4.10: Scheme based on Chaum-Pedersen signatures.



178 RESTRICTIVE BLIND ISSUING PROTOCOLS

On the upside, Py can perform the issuing protocol without knowing (z 1, . .., ;).
This has several advantages:

e Py can certify attributes without needing to know them. Hereto )V forms h as
its commitment to attributes x1, ..., z;—1 (the number z; must be generated
at random to unconditionally hide the I — 1 attributes) and at the start of the
issuing protocol presents this to P, together with a proof of knowledge of a
DL -representation with respect to (g1, ..., g1).

e More generaly, P, can certify attributes of which it knows no more than a
property demonstrated by V. 1, can demonstrate this property when present-
ing h by using the showing protocol techniques, for instance by sending along
asigned proof.

e Py can recertify previously certified attributes without knowing their values;
see Section 5.2.1 for details. (It cannot update their values, though; for this an
RSAREP-based issuing protocol is needed.)

o Itispossibleto protect against framing attempts by parties with unlimited com-
puting resources; see Section 5.5.3 for details.

Whether these advantages are desirable depends on the application at hand.

Another advantage is that the delegation strategy (see Section 2.6) is excluded
altogether, because public-key certificates are used. Thisis not the case for the cer-
tificate issuing schemes based on secret-key certificates, as Section 5.1.2 will show.

4.6 Bibliographic notes

The notion of restrictive blinding in Section 4.1 originates from Brands [46, 48].
Definition 4.1.1 appears here for the first time.

Thefour certificate schemesin Section 4.2 originate from Brands [54]. The case
I = 2 of DLREP-based scheme | was introduced by Brands [49] for the purpose of
withdrawing el ectronic coins with embedded identifiersin an off-line electronic cash
system. The case ! = 1 of RSAREP-based scheme | was analyzed by Brands [51].
The security proofs presented in Section 4.3.3 are stronger than those in [49, 51], in
that the reductions are based on any invulnerable instance generator instead of one
specific distribution.

The immunization technique described in Section 4.4.1 is due to Brands [50].
The immunized DLREP-based schemes in Section 4.4.2 are a generaization of a
withdrawal protocol devised by Schoenmakers[341] in the context of el ectronic cash.

Theimmunization described in Section 4.4.2 of RSAREP-based schemell, which
is based on a new twist, appears here for the first time; previoudly, the immunization
technique of Schoenmakerswas believed not to apply to RSAREP-based schemes.
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The DSA-based certificate scheme described in Section 4.5.1 has not previously
appeared in the academic literature.

Brands[46, 48] introduced the special casel = 2 of the schemein Section 4.5.2,
for the purpose of designing an off-line electronic cash scheme. Cramer and Peder-
sen [122] subsequently used this scheme to modify a protocol by Chaum and Ped-
ersen [109]; the slightly more general form used by them was already considered
by Brands [46, page 27 & 28]. Radu, Govaerts, and Vandewalle [316] proposed a
variation to make the scheme provably witness-hiding, but their variation does not
improvethe overall security of the scheme.








