
Chapter 6

Smartcard Integration

In this chapter we show how to implement our certificate issuing and showing pro-
tocol techniques in smartcards. We realize all the smartcard benefits listed in Sec-
tion 1.1.6, without adding complexity and without downgrading security or privacy.
We also show how to tune our protocols in the smartcard-enhanced setting to accom-
modate any degree of privacy desired.

6.1 Shortcomings of the smartcard-only paradigm

As we have seen in Section 1.1.6, smartcard-based implementations of PKI mecha-
nisms offer numerous advantages over software-only implementations. Many of the
benefits do not exist, though, when certificates are implemented entirely in smart-
cards. In this section we describe the shortcomings of smartcard-only implementa-
tions.

6.1.1 Privacy dangers

In a brochure [358], the Smart Card Forum states: “Smart card technology, if prop-
erly designed and implemented, can enhance both the fact and the perception of the
individual’s ability to exercise a much greater degree of control over personal in-
formation than is the case with any comparable delivery system.” While it is true
that smartcards enhance the perception of privacy, perception and fact are two very
different things:

• The smartcard systems currently in use do nothing to prevent organizations
from linking and tracing all communications and transactions by the same
cardholder. For security reasons, they operate by transmitting in each trans-
action a unique card identifier that can be linked to central database entries
that hold all kinds of identifiable personal data.

220 SMARTCARD INTEGRATION

• A smartcard, or any other tamper-resistant device for that matter, operates as
a black box to anyone but its manufacturer; its inner workings cannot be scru-
tinized or modified by its holder. (Most outsiders are not capable of breaking
into smartcards to determine their internal behavior, and detected attempts to
break in may result in criminal charges.) Smartcards can be programmed to
operate as Trojan horses, offering convenience to their holders while at the
same time covertly sending out their personal data.

The idea that government agencies may cause organizations to build in backdoors
into devices is not far-fetched, as history reveals:

• In the early eighties the U.S. Justice Department misappropriated PROMIS, a
software program developed by Inslaw Inc. that facilitated the integration of all
sorts of databases. The U.S. intelligence community incorporated a backdoor
and sold the modified version to intelligence organizations and banks in over 80
foreign countries; see Fricker [175], Kimery [231], Kunkin [243], Leon [248],
and the Washington Weekly [372].

• In the mid eighties, the NSA worked together with Systematics, a major sup-
plier of software for back office clearing and wire transfers, to introduce back-
doors in much of the banking software supplied to U.S. financial institutions;
see Grabbe [197] and Russell [332].

• In 1995, Der Spiegel and The Baltimore Sun reported that the NSA since 1957
had a secret deal with the Swiss cryptography company Crypto AG, under
which Crypto AG built backdoor access into its encryption products; see Bam-
ford [19, Chapter 8], Global Network Navigator [188], Strehle [364], the Bal-
timore Sun [371], and Madsen [254].

• In 1996, Walsh, a former deputy of the Australian Security Intelligence Organ-
isation (ASIO, the Australian equivalent of the NSA), conducted an influential
study [386] about Australian cryptography policy. In the uncensored version
of the report, Walsh recommended: “Authority should be created for the AFP,
the NCA and ASIO to alter proprietary software so that it performs additional
functions to those specified by the manufacturer. [. . .] The software (or more
rarely the hardware) may relate to communication, data storage, encoding, en-
cryption or publishing devices. [. . .] some modifications may [. . .] create an
intelligent memory, a permanent set of commands not specified in the program
written by the manufacturer or a remote switching device with a capacity to
issue commands at request. [. . .] In the event of an equipment or software
malfunction or failure to perform to full specification, an investigation of a
complaint could lead to discovery of the modification. The issue of liability of
the Commonwealth may then potentially arise.”

6.1 SHORTCOMINGS OF THE SMARTCARD-ONLY PARADIGM 221

Covert data exchange between a tamper-resistant device and the outside world can
take place through a number of channels. Two obvious channels are the following:

• The device can covertly send out or receive data by exploiting the van Eck
effect or simply by sending out or receiving radio signals. We call this the
physical broadcast channel. It is a particular problem in case of contactless
smartcards, which can communicate over much larger distances than com-
monly believed. For instance, On Track Innovation Ltd. markets a contactless
smartcard that it claims can communicate with a reader over a distance of up
to 30 meters; the card can be remotely “revised, expanded and changed, and
new applications can be added, without having to replace the card itself.”

• Another channel becomes available when the device is engaged in a protocol
execution with another device. Along with the data specified by the protocol,
the device can leak out data. Alternatively, data can be leaked by changing the
format of the messages as specified by the protocol; stop bits can be flipped,
message fields set to values outside of specified ranges, and so on. We call this
the piggyback channel.

The following channels are more surreptitious:

• In case a device engages in an interactive protocol, one or more bits of infor-
mation can be leaked by halting during the protocol execution. For instance,
by deciding whether or not to respond to a challenge before a time-out the de-
vice can leak one bit. More generally, in a protocol with t rounds, one of t + 1
preestablished messages can be leaked. This is called the halting channel (also
known as the stopping channel).

• In a similar manner, a device can leak out bits of information by timing the
delay before transmitting a message; this is called the timing channel. In con-
trast to the halting channel, this requires the device to have access to a timer.
(This can be as simple as resetting a counter value in a chip register when a
message is received, and sending out a response message when the counter
reaches zero.) If messages are transmitted over a reliable channel with known
performance characteristics, many bits can be leaked without noticeable de-
lays.

• A related channel is the computation error channel. Here, a device deliberately
causes one of its response messages to be incorrect. The fact whether or not
a response is correct can be used to leak one bit of data, while an incorrect
response can leak as many bits as its binary size.

Even more surreptitious are subliminal channels, first studied by Simmons [354, 355]
in the setting of two prisoners who want to hatch an escape plan but can only com-
municate via a warden. Here, the data transmitted complies with all the range limi-
tations, format specifications, and verification relations specified by the protocol, but

222 SMARTCARD INTEGRATION

the manner in which the data is formed does not. In particular, data is leaked in such
a manner that not even an interposed observer can distinguish a legitimate protocol
execution from one in which bits are leaked. Following Chaum [97], we distinguish
two subliminal channels:

• Any data that is subliminally leaked by a device is called outflow. The data
can be leaked by encoding covert message bits in any data that may be chosen
by the device. If the device encrypts its covert messages under a random key
known only to the receiving device, an observer with unlimited computing
power will not be able to tell the difference with a truly random number.

• Any data that is subliminally leaked to a device is called inflow. In the showing
protocols in Chapter 3, the verifier can encode a covert message into the part of
its challenge message that serves to protect against replay, possibly encrypted
under a mutually known key. Any other data that is hashed along and under
the control of the verifier can also be misused to cause inflow.

Certificate holders will in general be more concerned about outflow than inflow. Out-
flow can reveal their device identifier, access control code, communication and trans-
action history, attributes, data from other applications running on the same device,
and so on. The device does not need to know with whom it is communicating; it
can simply leak out the data with each protocol execution, possibly encrypted under
a key of the intended recipient. Outflow gives verifiers and other parties the power
to discriminate against certificate holders and to follow certificate holders around in
real time.

Outflow is particularly powerful when triggered by inflow. For example, a re-
ceiving device could transmit its device identifier, so that the smartcard can decide
whether or not to leak data. New rule specifications can be uploaded dynamically
by means of inflow, and the certificate holder’s device can be queried in an arbitrary
manner.

When outflow is prevented, inflow is less of a problem, but even then it poses
dangers:

• Inflow messages can cause the smartcard to enter a state of suspension or to
default in other ways. For example, an inflow message could say “If the device
identifier is #134522, then abort.” Errors can be made to occur that appear
random to the device holder.

• In cases where the device is expected to send out at least one message, it can
always respond to inflow queries by means of the halting channel.

• When the smartcard is returned to its issuer, either to be replaced or for an-
other reason, the card issuer can read out all the inflow collected by the card
during the time it was in the hands of its holder. (The card issuer may for in-
stance make the card dump its memory contents by entering a special access

6.1 SHORTCOMINGS OF THE SMARTCARD-ONLY PARADIGM 223

code.) In this manner, the card issuer may be able to retroactively trace all the
communications and transactions of the individual.

Inflow is most powerful when receiving devices are tamper-resistant as well.
The trend to store multiple applications on a single smartcard increases the scope

for privacy invasion. It is impossible for anyone but the card issuing organizations
to verify that different pieces of personal data are used only by the application for
which they were collected.

The disparity between perception and fact makes the smartcard-only model ex-
tremely dangerous, especially since the interests of card issuers are not aligned with
those of individuals. Even if the issuer and the manufacturer(s) of the smartcards
could be trusted, implementing our issuing and showing protocol techniques entirely
in tamper-resistant smartcards would not preserve privacy. Namely, most of today’s
smartcards can produce only pseudorandom numbers, on the basis of a random seed
value that must be installed by (or under the supervision of) the issuer, to guarantee
its uniqueness, randomness, and secrecy. Therefore, the issuer can compute all the
pseudorandom numbers used by each device during its lifetime. Even if the issuer
were to state that it does not know the seed values, or that its tamper-resistant devices
produce random numbers by post-processing bits sampled from an internal “true”
randomness source (such as a noise diode), this statement cannot be publicly veri-
fied. Also, the quality of a noise generator or other hardware methods for generating
random numbers cannot be guaranteed.

Privacy concerns are one of the main reasons why smartcard implementations
worldwide are stalling. As Schwartz [343] notes, “Ultimately, smart cards will not
be able to succeed if consumers do not trust them. If the tracking ability of the
cards weighs greater in the minds of consumers than convenience, the cards will not
succeed in the market.”

6.1.2 Other shortcomings

In addition to these serious privacy problems, there are other reasons to believe that
the smartcard-only paradigm is inadequate and dangerous:

• Great care must be taken that the addition of complex circuitry and software
does not introduce weaknesses in the tamper-resistance characteristics of the
hardware. The cost of developing and incorporating new circuitry and software
is much greater in the case of smartcards than in environments where tamper-
resistance is not a concern. The ability to protect smartcards hinges on having
enough capability and space for a software solution.

• With smartcard components already cramming for space, adding circuitry ad-
versely affects smartcard reliability. A “dead” card at the very least inconve-
niences and frustrates its holder, and in many applications the consequences

224 SMARTCARD INTEGRATION

can be quite dramatic. If multiple applications are stored on the same card, its
holder may all of a sudden be locked out of a number of services.

• Because of size constraints, there will always be serious limitations to the func-
tionality that can be squeezed into a smartcard. The amount of smartcard mem-
ory needed to keep track of a detailed log of all uses of a certificate (for the
convenience of its holder) is substantial. The display and keyboard sizes of a
so-called “super smartcard” are adequate only for communication of the most
rudimentary data.

• The smartcard must be relied on to protect the security interests of its holder.
Since standard smartcards do not have their own display and keyboard, user
identification data must be entered on a terminal communicating with the card,
and this terminal must be trusted not to capture the user’s identification data.
Likewise, any results that the card wants to communicate to its holder must be
displayed on the terminal. The result is that a variety of fake-terminal attacks
become possible. Even with a super smartcard there is no way for cardholders
to verify that the data entered into and displayed by their card is the same as
that processed and output by the card.

• If the secret keys of certificate holders are generated inside a smartcard, there
is no way to verify that they are generated in such a manner that others cannot
guess them. In particular, as we have seen in the previous section, it is very
hard to guarantee that the CA cannot reconstruct all the secret keys. This makes
the legal status of digital signatures highly doubtful.

• Card issuers for security reasons will need to migrate to a new tamper-resistant
chip design every couple of years. During the renewal period, the individual is
unable to use his or her certified key pairs, and is inconvenienced by the loss
of the functionality stored on the card.

In sum, smartcards are far from the most logical place to install additional circuitry
and software intended to expand functionality for the card holder.

In spite of the pitfalls, the security advantages of smartcards are so great that
smartcards should not be abandoned. We now examine how to overcome the short-
comings of the smartcard-only model and realize all the benefits described in Sec-
tion 1.1.6.

6.2 Combining smartcards and software-only devices

A smartcard is not a stand-alone computing device; by its very nature, it can operate
only in combination with another device. Indeed, most smartcards do not have their
own power source. In many communication and transaction settings, smartcards are

6.2 COMBINING SMARTCARDS AND SOFTWARE-ONLY DEVICES 225

naturally used in conjunction with user-controlled software-only computing devices.
For example, to use a smartcard over the Internet, it will have to be connected to a
desktop computer, notebook, handheld, or otherwise.

The integration of smartcards and software-only computing devices (such as PCs,
notebooks, and handhelds) is already well underway. Standardization efforts by ma-
jor industry consortiums include the PC/SC Workgroup [297] and the OpenCard
Framework[293]. Smartcard readers for PCs come in many forms: as a serial port
add-on, embedded into the keyboard, as a device connected to the keyboard port,
plugging into a floppy drive, combined with a modem, or as a PC Card. Prices are
dropping rapidly owing to new design methods. In October 1998, Microsoft an-
nounced Smart Cards for Windows (subsequently renamed to Windows for Smart
Cards), an 8-bit multi-application operating system for low-cost smart cards with 8
kilobytes of ROM, designed to extend the desktop computer environment into smart-
card use.1

6.2.1 Benefits

Combining smartcards with user-controlled software-only computers offers many ad-
vantages:

• Fake terminal attacks can be prevented. If the user’s computer has a keyboard
and a display, the user can enter his or her password, PIN, or biometric using
the keyboard, and can read out any transaction information from the comput-
er’s display; there is no need to rely on someone else’s device for interacting
with one’s own smartcard.

• With a proper design, most of the computational and storage burden of the
smartcard can be moved to the user-controlled computer, which can be much
more powerful. In particular, high-strength public key cryptographic tech-
niques may become entirely feasible using low-cost smartcards without cryp-
tographic coprocessors. (See Section 6.5.1 for an example.)

• As a consequence of the fact that fake terminal attacks need not be prevented
and sophisticated public-key cryptographic techniques are entirely feasible,
verifiers do not need tamper-resistant terminals that represent the security inter-
ests of a CA.2 This makes it much easier to become an acceptor of certificates.

• Any individual or software or hardware manufacturer can make or provide its
own functional or other enhancements for the user’s computer and sell them
on the open market; this is an attractive feature for all parties alike.

1Users of Windows NT 5.0, for instance, can gain network access by presenting an X.509v3 certificate
stored on a smartcard.

2In today’s electronic purse systems and other off-line smartcard systems based on symmetric cryptog-
raphy, verifier terminals must be strongly tamper-resistant to protect a master key that enables reconstruc-
tion of all smartcard secret keys.

226 SMARTCARD INTEGRATION

• The user’s computer can safeguard the secret keys of the user, and can make,
store (for the purpose of non-repudiation), and verify any digital signatures.
It can also keep its own chronological transaction log, and allow the user to
review and print it. Special software could provide certificate management
functions, such as help the user track his or her own transactions and categorize
them. The transaction data could automatically flow into a software program,
so that the user need never key in any data. For improved confidentiality, any
sensitive data stored on the user’s computer can be encrypted using a password-
derived secret key.

• Schneier and Shostack [336] discuss the security ramifications of the fact that
many different parties are involved with manufacturing and handling smart-
cards. Among other measures, they argue that a prime candidate for improve-
ment is to place the user interface under the control of the user. This fits per-
fectly with the model considered here.

Compact operating systems, open source code, independent code reviews, digital
certification of source code and executables, open market availability, and anti-virus
software all contribute to the trust that users can place in the software running on
their own computer.

Ideally, desktop computers are used only as devices to communicate over the
Internet and to run application software, and the user-controlled computer is in the
form of a personal digital assistant (PDA) or similar handheld device. The handheld
device enables its holder to port his or her certified key pairs, and is better suited
as a medium to run trusted code. Access to the Internet by PDAs is on the rise.
In 1998, Semico Research predicted that the sales of small portable computers will
reach 7.5 billion dollars in the year 2003, and the Yankee Group estimated that by
2002 there will be over 21 million subscribers of mobile, wireless access to the Inter-
net. Companies including Microsoft and 3COM have already announced smartcard
enhancements for handheld devices.

By interposing their computer between the smartcard and the outside world, users
can straightforwardly prevent certain data leakages:

• The user’s computer can prevent the smartcard from covertly sending out data
using physical broadcast. In cyberspace, there should rarely be a need to pro-
tect against the emission or reception of radio signals or electromagnetic radia-
tion, especially when communications and transactions are untraceable. Com-
munications and transactions in the physical world, however, require protec-
tion by means of physical shielding. General measures to protect against van
Eck monitoring are expensive and mostly classified, but effective solutions are
available for smartcards and other user devices. For instance, Cord Technolo-
gies, Inc. ships a low-cost electromagnetic shield slightly larger than a smart-
card, which (according to its claims) closely approximates a Faraday Cage; by
blocking low frequency magnetic fields and radiofrequency communication,

6.2 COMBINING SMARTCARDS AND SOFTWARE-ONLY DEVICES 227

it prevents an inserted chipcard from communicating with a card reader and
from receiving the electrical power needed to operate. Handhelds and other
software-only devices could have such protection built into their smartcard
slots.

• Software on the user’s computer can verify all the data passing to and from the
smartcard. It can do range checks, check verification relations, and so on. Snif-
fer programs can intercept data sent to communication ports and compare this
with specified data formats, allowing the user’s computer to detect the exis-
tence of a piggyback channel.3 More generally, software running on the user’s
computer can sift any data before passing it on, or simply halt a transmission
in case data fields do not comply with the protocol specifications.

Thus, the integration of smartcards and other tamper-resistant user devices with user-
controlled computers provides a natural environment to protect against data leakages
that are efficiently detectable. From now on, we will assume that the smartcard-
enhanced systems that we will develop prevent such data leakages.

6.2.2 How not to cope with subliminal channels

Simmons [354, 355] and Desmedt, Goutier, and Bengio [135, Section 5] showed
how to use randomization to destroy subliminal channels, in a general setting. In
1988, Chaum [97] proposed very similar techniques to prevent inflow and outflow
in the setting of consumer transactions, particularly electronic cash. Chaum’s smart-
card techniques [97, 103, 109] have numerous drawbacks, though, that make them
unsuitable for practical use.

By far the most serious shortcoming relates to security: the systemic security
breaks down completely when an attacker succeeds in compromising the tamper-
resistance of a single smartcard. The problem is Chaum’s reliance on blind signature
protocols. Anyone who extracts the secret key of a smartcard can copy and lend
out certificates at will. The blinding makes it hard or even impossible to detect the
fraud, even if all the showing protocol executions involve the online participation of
the CA. Even if fraud could be detected, its source cannot be traced and the fraud
cannot be contained in any other way than by suspending the operation of the entire
system: distribution of CRLs and online certificate validation do not help, because
the attacker cannot be stopped from retrieving new certificates.

The security problem is worsened by the way in which Chaum encodes attribute
information. Instead of having the CA encode attributes by cryptographic techniques
(blind signatures cannot accomplish this), Chaum simply has the smartcard digitally
sign statements about attributes the CA has stored in its memory. This flawed ap-
proach is central to all Chaum’s work, as witnessed for instance by the following:

3In this manner, engineers in May 1995 discovered that Microsoft’s Registration Wizard covertly sent
the entire directory structure of the user’s hard drive to Microsoft.

228 SMARTCARD INTEGRATION

• Chaum [97, page 16] proposes that the tamper-resistant device “sign state-
ments requested by C that T checks are true based on credential data it main-
tains.” (Here, C denotes the user-controlled computer, and T the tamper-
resistant device.)

• Chaum [88] states: “When the young Bob graduates with honors in medieval
literature, for example, the university registrar gives his representative a digi-
tally signed message asserting his academic credentials. When Bob applies to
graduate school, [. . .] his representative asks its observer to sign a statement
that he has a B.A. cum laude and that he qualifies for financial aid based on at
least one of the university’s criteria (but without revealing which ones). The
observer, which has verified and stored each of Bob’s credentials as they come
in, simply checks its memory and signs the statement if it is true.” (Chaum
uses the terms “observer” and “representative” to refer to the smartcard and
the user-controlled computer, respectively.)

• In the same manner, Chaum [88] deals with negative statements, such as felony
convictions, license suspensions, or statements of pending bankruptcy: “Once
the observer has registered a negative credential, an organization can find out
about it simply by asking the observer (through the representative) to sign a
message attesting to its presence or absence. Although a representative could
muzzle the observer, it could not forge an assertion about the state of its cre-
dentials.”

• In his smartcard-enhanced electronic cash systems [41, 103], Chaum gives
each consumer smartcard the power to mint electronic money. Each smart-
card stores electronic cash in the form of a counter value maintained in a chip
register. For example, one hundred electronic dollars spendable up to cent
granularity would be represented by a counter value of 10 000. To make a pay-
ment, a smartcard fills out the payable amount using a blinded electronic check
and decreases its register value correspondingly.4

Consequently, the physical compromise of a single smartcard not only enables the
attacker to anonymously flood the system with (copies of) untraceable certificates,
but also to pretend to possess certificates for arbitrary attributes. Depending on the
application, this can result in enormous damages. For instance, in a financial appli-
cation the attacker may claim to have been issued digital bearer bonds worth huge
sums of money, and may be able to impersonate people by assuming arbitrary identity
attributes.

Chaum’s blind trust in the tamper-proofness of smartcards is puzzling. Decades
of experience have provided strong evidence that absolute tamper-proofness will

4Electronic purse systems based on symmetric cryptography also work this way, but the complete lack
of privacy at least ensures that fraud can be contained.

6.2 COMBINING SMARTCARDS AND SOFTWARE-ONLY DEVICES 229

likely never be fully realizable. Kocher [236], Anderson and Kuhn [12, 13], Boneh,
DeMillo, and Lipton [38], and Biham and Shamir [29] discuss low-cost physical at-
tacks that do not require direct physical access to the smartcard’s internals. The most
powerful non-invasive attack is Differential Power Analysis, due to Kocher, Jaffe,
and Jun [237], in which the attacker gathers information correlated to secret keys by
using statistical analysis and error correction techniques. Invasive physical attacks
require days or weeks in a specialized laboratory and are much more costly to under-
take, but they are also much harder to protect against. Microprobe workstations and
other sophisticated equipment can be used to physically damage a smartcard chip in
a controlled manner. See Kuhn [242, Section 1.2] and Kömmerling and Kuhn [239]
for an overview of equipment to attack chips at the hardware level, and Biham and
Shamir [30] for an invasive attack based on destroying a single wire of a carefully
chosen memory cell using a laser beam. Even though manufacturers work hard to
improve smartcard tamper-resistance, mass production smartcards will likely never
be able to withstand invasive physical attacks for more than a couple of years follow-
ing their release. New sophisticated apparatus will appear, and existing apparatus is
being improved all the time. Organized crime can hire expertise comparable to that
in national laboratories, and sophisticated tools are increasingly becoming accessi-
ble to hackers and undergraduate students at technical universities. Kömmerling and
Kuhn [239] “see no really effective short-term protection against carefully planned
invasive tampering involving focused ion-beam tools.” They note that storage of se-
crets in battery-backed SRAM is highly effective to protect against invasive attacks
(through zeroization), but this technology is not feasible for smartcards.

In a 1997 interview, Chaum [104] claimed: “On-line, software-only techniques
sometimes become rather elaborate, whereas if you have a tamper-resistant device,
you can do things in a relatively simple way.” We now know, though, that the practice
of relying solely on smartcard tamper-resistance is not acceptable. As Kocher, Jaffe,
and Jun [237] point out with respect to Differential Power Analysis, the best way
to deal with smartcard vulnerability is to design cryptographic systems under the
assumption that secret key information will leak. In light of this, we will operate
in this chapter under the assumption that smartcard tamper-resistance is a matter of
economics. At the very least, we need the following security features:

• Each smartcard must have a unique independent secret key. (In practice, com-
putational independence suffices, and so this principle is not violated by using
diversified secret keys.)

• To guarantee that a smartcard design will be able to survive widespread physi-
cal compromise of smartcards, the design must provide for the ability to detect,
trace and contain fraud even if all smartcards are compromised. That is, the
smartcard-enhanced system should have all the security features of a secure
software-only system. (This also facilitates a seamless migration path from
software-only devices to a setting where certificate holders also hold smart-

230 SMARTCARD INTEGRATION

cards, or vice versa.)

• Any sound smartcard system requires a strategy for migrating from one gener-
ation of smartcards to the next, to keep up with advances in smartcard tamper-
ing.

Chaum’s smartcard techniques have yet another drawback: they cannot prevent the
smartcard from storing data that the CA can use retroactively to trace transactions,
once it gains access to the contents of the device. Any unique random number known
to both the smartcard and the verifier in the showing protocol execution can be used
to trace the transaction. Cramer and Pedersen [122] modified Chaum’s protocols to
prevent the smartcard and the verifier from developing common coin flips, i.e., mutu-
ally known information that is statistically correlated, other than inflow and outflow.
A drawback of their protocol is that both the smartcard and the user’s computer must
perform several real-time exponentiations that cannot be preprocessed, and the is-
suing protocol consists of 10 moves. More seriously, the modified protocol does
nothing to overcome the security problems of Chaum’s techniques, and in fact de-
grades security even further. An anonymous extortioner in cyberspace can force an
individual to retrieve certificates for which the extortioner supplies the blinding fac-
tors, and can subsequently show these by requiring the victim to assist in performing
the showing protocol execution. The extortioner can blind any data from and to the
verifier before relaying it, and in this manner can remain untraceable at all times to
anyone including the victim.5 When certificates represent money or other significant
value that verifiers can redeem from the CA, this perfect crime exposes certificate
holders to unacceptable risk.

In the remainder of this chapter we show how to overcome all these problems.

6.3 Secure smartcard integration

In this section we show how to overcome the security and efficiency shortcomings
described in the previous section. The goal is to ensure that the user-controlled com-
puter cannot show a certificate without the assistance of the smartcard. This will lay
the foundation for the privacy techniques in Section 6.4.

6.3.1 Technique based on the DLREP function

We replace P in the showing protocols of Chapter 3 by <S , U>. S denotes the
smartcard and U the user’s software-only computer. S and U must be configured
in such a manner that any protocol data to and from S flows through U . The system

5A simpler form of this extortion strategy applies in the software-only setting, where the extortioner
needs the “assistance” of the victim only in the issuing protocol. In the special case of electronic cash, this
is known as “payee untraceability.”

6.3 SECURE SMARTCARD INTEGRATION 231

parameters and the public key h are generated as described in Section 3.2, and atomic
propositions are demonstrated as depicted in Figures 3.1 and 3.5.

According to Proposition 3.6.1(b), the demonstration of a satisfiable Boolean for-
mula is a proof of knowledge of a DL-representation of h with respect to (g 1, . . . , gl).
From this we immediately obtain the following result.

Proposition 6.3.1. If (x1, . . . , xl) is shared between S and U in such a manner that
Û cannot compute with non-negligible success probability a DL-representation of
h :=

∏l
i=1 gxi

i with respect to (g1, . . . , gl), then U cannot demonstrate any Boolean
formula without the assistance of S.

Note that S’s assistance is required even to demonstrate formulae in which its
share of the DL-representation does not appear, and in particular to demonstrate the
formula TRUE.

Any manner of sharing the DL-representation of h will do; all that matters is that
Û cannot compute the entire representation by itself. Not all sharing methods are
equally suitable, though. Non-linear sharing makes it difficult for S to assist U in the
showing protocol in any other manner than by providing to U its share of the repre-
sentation. The resulting showing protocol would be insecure, since U can reuse h in
subsequent formula demonstrations without needing S’s assistance. The following
construction shows how (x1, . . . , xl) may be shared securely and efficiently.

Proposition 6.3.2. Suppose that x1 is generated at random from Zq , and is known
to S but not to U . Regardless of the distribution of (x2, . . . , xl), <S, U> can demon-
strate to V any Boolean formula of the form (3.7) in which x1 does not appear, in
such a manner that:

• The only task that S performs in each formula demonstration is one execution
of the Schnorr proof of knowledge, in which it proves knowledge of x1 to U .

• The view of Ṽ when interacting with <S , U> is the same as it would be when
interacting with P.

Proof. Let h = hShU , where hS = gx1
1 and hU =

∏l
i=2 gxi

i . To show how the
demonstration of a formula takes place, we consider four cases:

Case 1. F is an atomic formula consisting of zero or more “AND” connectives and
no other connectives, in the form (3.3). We assume the permutation π(·) of
{1, . . . , l} has 1 as a fixed point. If x1 does not appear in the formula to be
demonstrated by <S , U>, then the 1-st column in the matrix on the left-hand
side of the system (3.2) contains all zeros.

To compute a in Step 1 of the showing protocol, S generates a random number
w1 ∈ Zq , computes aS := gw1

1 , and sends aS to U . U generates l − t − 1

232 SMARTCARD INTEGRATION

random numbers, w2, . . . , wl−t ∈ Zq , and computes

a := aS

l−t∏
i=2

gwi

π(i)

t∏
i=1

g
−

∑
l−t

j=2
αijwj

π(l−t+i) .

To compute the l − t responses in Step 2, U sends V’s challenge c to S . S
computes rS := cx1 + w1 mod q, and sends rS to U . U sets r1 := rS , and
computes the other l − t − 1 responses as specified in Step 2 of the protocol
(P, V).

Clearly, the task performed by S is exactly an execution of the Schnorr proof
of knowledge, in which it proves knowledge of log g1

hS to U , and the view of

Ṽ is the same as it would be in (P, Ṽ).

Case 2. F is an atomic formula consisting of zero or more “AND” connectives, one
“NOT” connective, and no other connectives, in the form (3.4). As in Case 1,
with the permutation π(·) having 1 as a fixed point, if x1 does not appear in the
formula to be demonstrated then the 1-st column in the matrix on the left-hand
side of the system (3.4) contains all zeros.

To compute a in Step 1 of the showing protocol, S generates a random number
w1 ∈ Zq , computes aS := gw1

1 , and sends aS to U . U generates l − t random
numbers, w0, w2, . . . , wl−t ∈ Zq , and computes

a := aδ
S h−w0

l−t∏
i=2

gwi

π(i)

t∏
i=1

g
biw0−

∑l−t

j=2
αijwj

π(l−t+i) .

To compute the l − t + 1 responses in Step 2, U sends V’s challenge c to
S . S computes rS := cx1 + w1 mod q, and sends rS to U . U computes
r1 := rSδ mod q, and computes the other l − t responses as specified in Step
2 of the protocol (P, V).

Again, the two claimed properties can easily be seen to hold.

Case 3. F is a formula connecting atomic subformulae by zero or more “OR” con-
nectives and no other connectives, in the form (3.6). Recall from Section 3.5
that P simulates all but one of the subformula demonstrations, even if multi-
ple subformulae hold true. The advantage of this is now clear: U needs the
assistance of S only for the one subformulae demonstration that cannot be
simulated, using the method of either Case 1 or Case 2.

Case 4. F is an arbitrary Boolean formula, in the form (3.7). Recall from Section 3.6
that V’s challenge is the same for all j subformula demonstrations. The advan-
tage of this is now clear: each of the j subformulae that must be demonstrated

6.3 SECURE SMARTCARD INTEGRATION 233

contains (at least) 1 subsubformula that holds true, yet S need only perform one
execution of the Schnorr proof of knowledge to provide its assistance. Specifi-
cally, U can use S’s response rS for each of the j subformula demonstrations,
using the method of either Case 1 or Case 2.

This completes the proof.

This construction works regardless of whether V is to receive a signed proof, a 4-
move zero-knowledge proof, or otherwise.

Note that U can precompute all the required exponentiations, except for the op-
eration of raising aS to the power δ in Case 2 of the proof. In case U does not know
the formula to be demonstrated until it communicates with V , it does not help for S
to provide its initial witness well before the start of the showing protocol execution.
In many practical applications δ will be small, and the burden of raising a S to the
power δ is insignificant. In PKIs where speed is of utmost importance, U may pre-
fer to avoid the exponentiation of aS altogether by simply multiplying c by δ before
passing it on to S.6 A drawback of the latter approach is that V cannot encode infor-
mation into its challenge that is intended for S , because U modifies it before passing
it on. In Section 6.4 we will see why this may be undesirable.

The construction in Proposition 6.3.2 ensures not only that S need not provide
its assistance for each (sub)subformula, but also lays the foundation for U’s privacy.
Note, for example, that S does not need to know h, l, the attributes (x 2, . . . , xl), or
the formula to be demonstrated. Section 6.4 will elaborate on this observation.

Security follows from the following result.

Proposition 6.3.3. If the Schnorr proof of knowledge is witness-hiding, then Û in
the construction in Proposition 6.3.2 needs the assistance of S in the t-th formula
demonstration with respect to h, for any integer t.

In other words, the only way to get around S is to physically break its tamper-
resistance and extract x1. The formal proof of this security result proceeds by gener-
ating g2, . . . , gl all as random powers of g1. From a successful formula demonstration
in which Û does not use the assistance of S, a DL-representation of h with respect
to (g1, . . . , gl) can be extracted. With overwhelming success probability this can be
converted into S’s secret key x1, resulting in a contradiction. (For signed proofs, we
need to assume the random oracle model.)

In a practical implementation one might care to ensure that g 1 �= 1, but from a
theoretical viewpoint there is no need to exclude this possibility.

In case U is allowed to use the same h in arbitrarily many showing protocol
executions, a construction for S that offers weaker security than Proposition 6.3.3

6Extra operations may be needed to make this work. Consider for example a formula connecting two
atomic subformulae, both with a “NOT” connective, by an “AND” connective. With δ1 denoting the δ for
the first subformula and δ2 that for the second, U computes γ such that cδ1 + γ = cδ2 and adjusts for γ
when computing a and its responses for the first subformula.

234 SMARTCARD INTEGRATION

clearly will not do. The property that the assistance of S is needed after arbitrarily
many protocol executions is desirable, however, even in case of public keys for which
S refuses to further assist U once it has assisted in a predetermined number of show-
ing protocol executions. Namely, it allows S to use the same x1 as its contribution
to arbitrarily many different public keys, rather than having to use a new random x 1

for each. (As we will see in Section 6.4.3, this approach also improves privacy.) S’s
share x1 can be regarded as its secret key, and hS as its “public” key.

An even stronger security result can be proved by letting S perform an execution
of Okamoto’s extension of the Schnorr proof of knowledge [288, page 36], or more
efficiently its optimization described in Section 2.4.3.

Proposition 6.3.4. Let l ≥ 2, and suppose that x1 is generated at random from Zq ,
that x2 is the outcome of a random coin flip, and that (x1, x2) is known to S but not
to U . Regardless of the distribution of (x3, . . . , xl), <S, U> can demonstrate to V
any Boolean formula of the form (3.7) in which x1 and x2 do not appear, in such a
manner that:

• The only task that S performs in each formula demonstration is one execu-
tion of the three-move proof of knowledge described in Section 2.4.3, in which
it proves knowledge to U of a DL-representation of gx1

1 gx2
2 with respect to

(g1, g2).

• The view of Ṽ when interacting with <S , U> is the same as it would be when
interacting with P.

The construction is readily apparent when studying the construction in the proof
of Proposition 6.3.2. Because S’s proof of knowledge is provably witness-hiding,
Proposition 6.3.3 can be proved under the weaker assumption that the DL function
used to implement the commitment to (x1, . . . , xl) is one-way. In a practical imple-
mentation one might care to ensure that g1, g2 �= 1, but from a theoretical viewpoint
there is no need to exclude this possibility.

In addition, it is possible to prove the following result.

Proposition 6.3.5. If the DL function is one-way, and S performs no more than poly-
logarithmically many executions of its protocol with U , then signed proofs of formula
demonstrations with respect to h are unforgeable by Û in the random oracle model,
regardless of the distribution of (x3, . . . , xl).

The same should be true for the construction of Proposition 6.3.2, but it is unclear
how to prove this.

It is straightforward to combine our smartcard-enhanced showing protocols with
any of the DLREP-based certificate issuing protocols described in Chapter 4. In case
unlimited-show certificates are issued, S is not needed in the issuing protocol; the
CA simply looks up (or reconstructs) the secret key of S, and encodes that into the
certified key pair it issues. In the case of limited-show certificates, U in Step 2 of

6.3 SECURE SMARTCARD INTEGRATION 235

the issuing protocol must hash along its (master) initial witness (set) for the showing
protocol, and so S must provide (each) aS already at this stage. (Providing the initial
witnesses in an early stage is desirable anyway, to enable U to precompute as many
exponentiations as possible.) In addition, S must keep track of the number of times it
has cooperated in demonstrating a formula with respect to a limited-show certificate,
and refuse to cooperate more times than allowed. In practice, limiting the number of
times a certificate can be shown is trivial: for each of its initial witnesses, S responds
just once anyway.

Implementing our limited-show techniques in smartcards offers two security lay-
ers: showing a certificate more times than allowed is not possible without physically
extracting the smartcard’s secret key, and perpetrators (who manage to physically
extract the secret keys from their smartcards and then commit fraud) can be traced.
Thus, we get both the tamper-resistance protection and the software-only protection.

In the case of dynamic limited-show certificates (see Section 5.4.2), the correction
factors can all be determined by U , as desired.

Any linear sharing method other than the methods in Propositions 6.3.2 and 6.3.4
can be used, with the obvious modifications. Different sharing methods may each
have their own advantages, depending on other design aspects. For instance, when
using DLREP-based scheme I or II, it may be preferable to let (x1, . . . , xl−1) be
known to U and let xl be the sum of a secret key of S and the random blinding
factor α1 chosen by U in the issuing protocol; this enables the CA to encode l − 1
attributes into each certified key pair,7 instead of only l − 2. Another advantage is
that it is significantly easier to guarantee that a secret key of a certified key pair is
generated secretly at random, and therefore that the device holder is the only one in
possession of the secret key; it does not matter if another party can guess or determine
the share of the secret key that is generated by one of the two devices, as long as the
other device generates (part of) its share at random. Consequently, the legal status of
digital signatures is easier to establish than in the software-only and smartcard-only
paradigms.

In general, for any or all i ∈ {1, . . . , l}, one can set x i = αixiS + βixiU mod q,
for any αi, βi ∈ Zq, where xiS is S’s share and xiU that of U .

When combining our smartcard-enhanced showing protocols with a secret-key
certificate issuing protocol, the delegation strategy is never an issue. The simple
software-only measures described in Section 5.1.2, if necessary at all, suffice to en-
sure that Û cannot abuse delegation in order to circumvent the assistance of S in the
showing protocol, even in those cases where delegation is not prevented but merely
made harmless.

It is worth noting that S can provide its assistance in alternative manners that dif-
fer from a Schnorr proof of knowledge or the related proofs of knowledge described

7When a limited-show certificate is shown more times than allowed, this sharing method does not
allow the CA to trace the perpetrator by computing the secret key of S . To achieve this property, one of
x1, . . . , xl−1 should be an identifier.

236 SMARTCARD INTEGRATION

in Section 2.4.3. For instance, in the construction of Proposition 6.3.2 we may re-
place the verification relation of the Schnorr proof of knowledge, g rS

1 = hc
SaS , by

one that is closely related to that of the DSA signature scheme: g rS
1 = haS

S ac
S . S

must then compute its response as rS := cw1 +x1aS mod q; it is easy to modify the
actions of U correspondingly.

6.3.2 Technique based on the RSAREP function

For commitments based on the RSAREP function, the direct analogue of Proposi-
tion 6.3.1 applies. Specifically, if (x1, . . . , xl+1) is shared between S and U in such
a manner that Û cannot compute with non-negligible success probability an RSA-
representation of h :=

∏l
i=1 gxi

i xv
l+1 with respect to (g1, . . . , gl, v), then Û cannot

demonstrate any Boolean formula without the assistance of S . The technique of let-
ting x1 be a secret key of S and gx1

1 its public key is not recommendable, though.8

An efficient construction that achieves security for S is the following.

Proposition 6.3.6. Suppose that x l+1 is generated at random from Z
∗
n, and is known

to S but not to U . Regardless of the distribution of (x1, . . . , xl), <S, U> can demon-
strate to V any formula of the form (3.7), in such a manner that:

• The only task that S performs in each formula demonstration is one execution
of the Guillou-Quisquater proof of knowledge, in which it proves knowledge of
xl+1 to U .

• The view of Ṽ when interacting with <S , U> is the same as it would be when
interacting with P.

Proof. Let h = hShU , where hS = xv
l+1 and hU =

∏l
i=1 gxi

i . To show how the
demonstration of a formula takes place, we consider four cases:

Case 1. F is an atomic formula consisting of zero or more “AND” connectives and
no other connectives, in the form (3.3). To compute a in Step 1 of the showing
protocol, S generates a random number w l+1 ∈ Z

∗
n, computes aS := wv

l+1,
and sends aS to U . U generates l − t random numbers, w1, . . . , wl−t ∈ Zv,
and computes

a := aS

l−t∏
i=1

gwi

π(i)

t∏
i=1

g
−

∑
l−t

j=1
αijwj

π(l−t+i) .

8The following proof of knowledge, proposed by Girault [185] (see also Poupard and Stern [310]),
is conjectured to be witness-hiding: S sends an initial witness gw1

1 to U , receives a challenge c, and
sends the response cx1 + w1 (no modular reduction) to U . Unfortunately, the response size in a practical
implementation is much larger than |v| bits.

6.3 SECURE SMARTCARD INTEGRATION 237

To compute the l − t + 1 responses in Step 2, U sends V’s challenge c to S . S
computes rS := xc

l+1wl+1, and sends rS to U . U sets

rl+1 := rS

l−t∏
j=1

(gπ(j)

t∏
i=1

g
−αij

π(l−t+i))
(cxπ(j)+wj)divv,

and computes the other l− t responses in the manner specified in Step 2 of the
protocol (P, V).

The task performed by S is exactly an execution of the Guillou-Quisquater
proof of knowledge, in which it proves knowledge of the v-th root of h S to U ,
and the view of Ṽ is the same as it would be in (P, Ṽ).

Case 2. F is an atomic formula consisting of zero or more “AND” connectives, one
“NOT” connective, and no other connectives, in the form (3.4). It is easy to see
that S can provide its assistance in the same manner as in Case 1, and again
the two claimed properties are readily seen to hold.

Case 3. As in Case 3 of the proof of Proposition 6.3.2.

Case 4. As in Case 4 of the proof of Proposition 6.3.2.

This completes the proof.

This construction works regardless of whether V is to receive a signed proof, a 4-
move zero-knowledge proof, or otherwise.

Proposition 6.3.7. If the Guillou-Quisquater proof of knowledge is witness-hiding,
then Û in the construction in Proposition 6.3.6 needs the assistance of S in the t-th
formula demonstration with respect to h, for any integer t.

Assuming that interactively issued Guillou-Quisquater signatures are unforge-
able, one can also prove that if S follows the protocol, then signed proofs of formula
demonstrations with respect to h are unforgeable by Û , regardless of the distribution
of (x1, . . . , xl).

As with the DLREP-based variants, stronger provability can be achieved by let-
ting S perform an execution of Okamoto’s extension of the Guillou-Quisquater proof
of knowledge [288, page 39], or more efficiently its optimization described in Sec-
tion 2.4.4.

Proposition 6.3.8. Let l ≥ 1, and suppose that x1 is the outcome of a random coin
flip, that xl+1 is generated at random from Z

∗
n, and that (x1, xl+1) is known to S but

not to U . Regardless of the distribution of (x2, . . . , xl), <S , U> can demonstrate
to V any Boolean formula of the form (3.7) in which x1 does not appear, in such a
manner that:

238 SMARTCARD INTEGRATION

• The only task that S performs in each formula demonstration is one execution
of the three-move proof of knowledge described in Section 2.4.4, in which it
proves knowledge to U of an RSA-representation of g x1

1 xv
l+1 with respect to

(g1, v).

• The view of Ṽ when interacting with <S , U> is the same as it would be when
interacting with P.

This time, Proposition 6.3.7 can be proved under the weaker assumption that the
RSA function used to implement the commitment is one-way. In addition, if the
RSA function is one-way and S performs no more than polylogarithmically many
executions of the protocol with U , signed proofs of formula demonstrations with
respect to h are unforgeable by Û in the random oracle model, regardless of the
distribution of (x2, . . . , xl).

Other ways to share (x1, . . . , xl+1) can be used as well. In general, for any or
all i ∈ {1, . . . , l}, one can use the linear sharing xi = αixiS + βixiS mod v and
the multiplicative sharing xl+1 = x

αl+1
S x

βl+1
U , for any αi, βi. A sharing method that

fits well when combining the showing protocol with one of the RSA-based issuing
protocols described in Chapter 4 is to let (x1, . . . , xl) be the attributes of U , and let
xl+1 be the product of the secret key of S and the blinding factor α 1 used by U in the
certificate issuing protocol (x1 may be either an identifier of U or a part of the secret
key of S). Indeed, if the construction of Proposition 6.3.6 is used in combination with
an RSAREP-based issuing protocol, U for reason of privacy may not let S determine
the blinding factor α1.

The same considerations as described in Section 6.3.1 apply when combining
the showing protocol techniques with one of the issuing protocols in Chapter 3. In
particular, the delegation strategy is never an issue.

6.4 Privacy protection

In Section 6.1.1 we have seen that there are many ways in the smartcard-enhanced
setting to get around the privacy protections of the showing protocol. The techniques
that we will develop in this section build on top of those developed in the previous
section and enable U to prevent inflow, outflow, and even the development of com-
mon coin flips. They also ensure that the leakage through the halting, timing, and
computation error channels is at most 1 bit in total; this is the best result achiev-
able. Furthermore, the smartcard cannot learn any information about the formulae
demonstrated, and cannot determine the number of encoded attributes or whether or
not certificates are limited-show; all it can learn is (an upper bound on) the number
of times its holder has engaged in a showing protocol execution.

All the privacy guarantees hold in the strongest possible sense, namely in the
presence of conspiring S, CA, and V that have unlimited computing resources and

6.4 PRIVACY PROTECTION 239

may establish secret information in an preparatory phase (e.g., a strategy for deviating
from the protocol and keys for authenticating and encrypting covert messages). We
also show how to tune our smartcard techniques to design systems for which one or
more of the privacy protections cannot be achieved, while guaranteeing that U can
verify and control any information exchanged by S and V .

The security accomplishments of the previous section are fully preserved by the
new techniques.

6.4.1 Inflow prevention

Inflow cannot occur in any of the certificate issuing protocols, since the smartcard
does not receive any messages from the CA. In the smartcard-enhanced showing
protocols in Section 6.3, the only possibility for inflow is V’s challenge, c. If the
demonstration is in the form of a zero-knowledge proof, the entire s-bit data channel
(as well as part of V’s commitment) can be used for inflow. Even in signed proofs,
there may be ample opportunity for V to cause inflow. In this case, V’s challenge is
the result of the application of a sufficiently strong one-way hash function to certain
data that may be at least somewhat under the control of V , such as a nonce (e.g.,
a random number or an estimate of the time and date) or a random number γ as in
Section 5.3. Any such data fields can be misused by V to encode a covert message,
possibly encrypted under a key known to S .

Proposition 6.4.1. In the construction of Proposition 6.3.2, U can prevent inflow at
the cost of essentially one additional exponentiation, which can be precomputed. S
must now accept any challenge in Zq, but the tasks of S and V remain unchanged in
all other respects.

Proof. As in the proof of Proposition 6.3.2, we distinguish four cases:

Case 1. F is an atomic formula consisting of zero or more “AND” connectives and
no other connectives, in the form (3.3). U proceeds as in Case 1 of the proof
of Proposition 6.3.2, but when computing a from aS it also multiplies in a
factor hβ

S , for a randomly chosen β ∈ Zq . Furthermore, instead of sending
V’s challenge c to S , U sets cS := c + β mod q and sends cS to S . No further
changes are needed.

Case 2. F is an atomic formula consisting of zero or more “AND” connectives, one
“NOT” connective, and no other connectives, in the form (3.4). U proceeds as
in Case 2 of the proof of Proposition 6.3.2, but when computing a from a S it
also multiplies in a factor hβδ

S , for a randomly chosen β ∈ Zq. Furthermore,
instead of sending V’s challenge c to S , U sets cS := c + β mod q and sends
cS to S . No further changes are needed.

Case 3. F is a formula connecting atomic subformulae by zero or more “OR” con-
nectives and no other connectives, in the form (3.6). U proceeds as in Case 3

240 SMARTCARD INTEGRATION

of the proof of Proposition 6.3.2, applying the modification of either Case 1 or
Case 2.

Case 4. F is an arbitrary Boolean formula, in the form (3.7). U proceeds as in Case
4 of the proof of Proposition 6.3.2, with the restriction that it uses the same
random choice of β when forming a in each of the atomic subsubformulae
for which a genuine proof is due. This ensures that the same blinded form
of V’s challenge works for all subsubformulae demonstrations for which S’s
assistance is needed.

Because β is chosen at random, there can be no inflow.

This inflow prevention technique can also be applied to the construction in Proposi-
tion 6.3.4, and more generally to showing protocols based on any other kind of linear
sharing discussed in Section 6.3. It can also readily be adapted to prevent inflow in
any of the RSAREP-based smartcard-enhanced showing protocols in Section 6.3.2.

An even simpler technique to prevent inflow is to let U and V jointly develop V’s
challenge, in such a manner that it cannot contain covert message bits chosen by Ṽ .
This approach is not recommendable, though. It increases the number of message
exchanges between U and V, and makes it harder to encode meaningful data into
V’s challenge message (for the purpose of a signed proof). Also, the approach is
not always practical. For example, in the technique described in Section 5.3, V must
form a commitment γ; randomizing this requires the commitment function to be of a
number-theoretic nature (e.g., a DLREP or RSAREP function), which excludes much
faster alternatives. Another unique and important advantage of our inflow prevention
technique is that it destroys other data leakage channels as a by-product, as we will
see in Section 6.4.3.

6.4.2 Outflow prevention

Outflow cannot occur in any of the certificate issuing protocols, since the CA does
not receive any messages from S. In the showing protocols there is some opportunity
for outflow, through the response(s) provided by S. If V in the smartcard-enhanced
showing protocols in Section 6.3 knows S’s share of the representation of h, then S
can encode its outflow message in the “random” number(s) that it uses to compute
aS , possibly encrypted under a key of V or of the CA. For example, in the construc-
tion of Proposition 6.3.2 or 6.3.6, U demonstrates an atomic formula without “NOT”
connectives by passing S’s response rS on to V , enabling V to extract S’s covert
message by computing w1. In practice, V can guess S’s share with non-negligible
success probability if it knows the list of all smartcard secret keys. It could even de-
termine the correct secret key by verifying whether w 1 satisfies a redundancy pattern
or the like.

This outflow method does not work if an atomic formula with a “NOT” connec-
tive is demonstrated, because U applies δ to rS before passing it on. According to

6.4 PRIVACY PROTECTION 241

Proposition 3.4.3, if xl (or, in the RSAREP-based protocol, U ’s share of x l+1) is a
random number that does not occur in the formula, then the demonstration does not
leak any information about δ. S can still cause outflow if δ has smaller entropy than
a random number in Zq or Zv; this will be the case in most practical applications. In
fact, S can first leak δ (without knowing it), by generating aS in a manner known to
V, and in subsequent demonstrations with the same h (if any) use the full response
channel for outflow.

Also, if the formula that is demonstrated is of the form (3.7), then V may learn in-
formation about which of the atomic subsubformula are valid. For each of the atomic
subsubformulae for which U requires S’s assistance, V sees either rS or rSδi for
some δi, and can check for correlations. (See the construction of Proposition 6.3.2.)

Proposition 6.4.2. Suppose that U generates x l at random from Zq and only demon-
strates formulae in which xl does not appear. In the construction of Proposition 6.3.2,
U can prevent outflow at the cost of essentially one additional exponentiation, which
can be precomputed. The tasks of S and V remain unchanged.

Proof. As in the proof of Proposition 6.3.2, we distinguish four cases:

Case 1. F is an atomic formula consisting of zero or more “AND” connectives and
no other connectives, in the form (3.3). U proceeds as in Case 1 of the proof
of Proposition 6.3.2, but when computing a from aS it also multiplies in a
factor gγ

1 , for a randomly chosen γ ∈ Zq. Furthermore, instead of passing
S’s response rS on to V , it sets r1 := rS + γ mod q. No further changes are
needed.

Case 2. F is an atomic formula consisting of zero or more “AND” connectives, one
“NOT” connective, and no other connectives, in the form (3.4). U proceeds as
in Case 2 of the proof of Proposition 6.3.2, but when computing a from a S it
also multiplies in a factor gγ

1 , for a randomly chosen γ ∈ Zq . Furthermore, U
computes r1 := rSδ + γ mod q. No further changes are needed.

Case 3. F is a formula connecting atomic subformulae by zero or more “OR” con-
nectives and no other connectives, in the form (3.6). U proceeds as in Case 3
of the proof of Proposition 6.3.2, applying the modification of either Case 1 or
Case 2.

Case 4. F is an arbitrary Boolean formula, in the form (3.7). U proceeds as in Case
4 of the proof of Proposition 6.3.2. (For each atomic subsubformula for which
a genuine proof is due, U uses an independently generated γ.)

Because the γ’s are chosen at random, there can be no outflow.

Because S̃ cannot cause outflow, accepting views of Ṽ when interacting with U
are perfectly indistinguishable from those that result when interacting with P in the
showing protocols in Chapter 3. This immediately leads to the following results.

242 SMARTCARD INTEGRATION

Corollary 6.4.3. If U follows the construction described in the proof of Proposi-
tion 6.4.2, then Proposition 3.6.1(c) holds, regardless of the behavior of S̃ and any
joint initial set-up by S̃ and Ṽ .

Corollary 6.4.4. If U follows the construction described in the proof of Proposi-
tion 6.4.2, then Proposition 3.6.2 and 3.6.3 both hold, regardless of the behavior of
S̃ and any joint initial set-up by S̃ and Ṽ .

In Section 6.3.1 we already saw that these security results are true assuming S
follows the protocol but Û need not. In most applications both types of results are
desirable: S should prevent Û and V̂ from forging signed proofs and from making
them appear to pertain to formulae that do not apply, while U should prevent S̃ and
V̂ from framing its holder by forming a signed proof that U did not originate.

The same outflow prevention technique can be applied to the construction in
Proposition 6.3.4, and more generally to any other kind of linear sharing discussed in
Section 6.3. In cases where S provides more than one response to U , the latter must
independently randomize each of these responses, and the corresponding adjustments
must be made when forming a. It is also straightforward to apply the outflow preven-
tion technique to any of the RSAREP-based smartcard-enhanced showing protocols
discussed in Section 6.3.2.

Our outflow prevention technique actively prevents outflow by randomizing data
on the flight. It is much more powerful than the approach of Chaum [103], which
can only detect outflow after the fact with low probability. It is also highly preferable
over Chaum’s [97, 109] other outflow prevention technique (also applied by Cramer
and Pedersen [122]), which in our situation would proceed by letting S and U form
aS in a mutually random manner by means of a coin flipping protocol. This would
seriously degrade the communication and computation complexity, and would pre-
vent the optimization that will be introduced in Section 6.5.1. Another important
advantage of our outflow prevention technique is that other data leakage channels are
destroyed as a by-product, as we will now show.

6.4.3 Prevention of other data leakage channels

Inflow and outflow prevention are orthogonal measures. U can prevent both inflow
and outflow by randomizing V’s challenge c as well as any responses provided by S,
and multiplying the corresponding expressions into a when forming a S . Assuming
simultaneous repeated squaring, the computational cost for demonstrating an atomic
formula is approximately one exponentiation that can be precomputed.

Our issuing and showing protocols in Chapters 3 and 4 by their very design
greatly reduce the scope for leakage of covert messages: no interaction takes place
between S and the CA, and the interaction between S and V is minimal. What’s
more, the application of our inflow and outflow prevention techniques is so power-
ful that any other data leakage channels in the issuing and showing protocols are
destroyed as a by-product:

6.4 PRIVACY PROTECTION 243

• The smartcard learns virtually nothing:

– S̃ cannot learn U’s attributes, nor how many are encoded by the CA,
regardless of the behavior of Ṽ. S̃ cannot even learn the gi’s that it does
not use itself, unless they are known in advance. (In Section 6.5.1 we
will describe an optimization in which S̃ merely learns q and a secret
seed value to generate pseudorandom numbers.)

– When interacting with U , S̃ cannot learn any information about the for-
mula that is demonstrated, regardless of the behavior of Ṽ . This holds
even if U issues a signed proof and a unique description of the formula
is hashed along when computing V’s challenge. S̃ cannot even learn the
message that it helps sign.

– S̃ cannot learn whether it is assisting in showing a limited-show certifi-
cate or an unlimited-show certificate, regardless of the behavior of Ṽ ,
assuming S in both cases provides its initial witness in advance (e.g.,
during the corresponding issuing protocol). (Note, though, that U cannot
show a limited-show certificate more times than allowed, because S uses
a new random initial witness in each showing protocol execution.) Like-
wise, S̃ cannot decide whether multiple invocations of its assistance are
for the purpose of showing the same certificate or different certificates.

– S̃ cannot even learn any information on the number of certificates issued
to U , since U can query S even if it has not been issued any certificates.
(This practice is not recommendable when limited-show certificates rep-
resent value, such as in an electronic cash system.)

In other words, all that S̃ can learn about the actions of its holder is an upper
bound on the number of showing protocol executions.

• The verifier learns virtually nothing either (beyond the status of the formulae
demonstrated):

– Ṽ cannot decide from its accepting views in protocol executions whether
or not P is assisted by a smartcard, regardless of the behavior of S̃ . In
PKIs in which certificate applicants may but need not hold a smartcard,
this reduces the scope for discrimination and improves privacy.

– The computation error channel is destroyed as a by-product of our out-
flow prevention technique: S̃ cannot leak more than 1 bit. Therefore, U
may skip the verification of S’s response(s), thereby circumventing the
need for an exponentiation that cannot be precomputed. This holds even
if S provides more than one response to U’s challenge: the independent
randomization applied by U prevents Ṽ from learning any information
about how many or which of U’s responses were formed using an incor-
rect response supplied by S̃ .

244 SMARTCARD INTEGRATION

– Owing to the minimal interaction required in our smartcard-enhanced
protocols, S̃ can leak at most 1 bit using the halting channel, assuming U
does not engage in a showing protocol execution until after it has obtained
aS . This holds even if U interactively issues a signed proof or performs
a 4-move zero-knowledge demonstration. No bits at all can be leaked
when U non-interactively issues a signed proof to V .

– To prevent the timing channel,U should time the delay between incoming
and outgoing messages exchanged between the S and the other device.
If the delay exceeds a reasonable time bound, U aborts the protocol exe-
cution; otherwise it first adds its own delay to ensure that the total delay
time is approximately constant. What makes this approach truly practical
for the DLREP-based protocols is that S and V need never perform any
exponentiations that cannot be precomputed. (An upper bound on com-
putation time will be much looser for time-consuming operations, and
increases the delay that must be added.) As with the halting channel, the
minimal interaction in our protocols ensures that at most 1 bit can leak.

It is easy to see that S̃ can leak at most 1 bit in total to Ṽ via the halting channel,
the computation error channel, and the timing channel. This is the best result
that can be achieved, since S can always cause a protocol execution to abort
by not providing its response(s) to U . In practice the maximum leakage will
be significantly less than 1 bit, since there will be other possible causes for
incorrect responses to V or protocol abortion, such as incorrect behavior by
U or a communication failure. In fact, any attempt by S̃ to leak bits through
the halting channel or the computation error channel is futile, since it leaves Ṽ
unconvinced of the formula demonstrated.

Even common coin flips are prevented as a by-product. It is not hard to prove that
if U follows the issuing and showing protocols, then the views of S̃ are statistically
independent from the accepting views of the C̃A and Ṽ , regardless of the formulae
demonstrated by U . Thus, physical access to the contents of a smartcard does not
help the C̃A in cooperation with all verifiers to retroactively trace and link communi-
cations and transactions; all that can be learned is what certificate holders willingly
disclose in executions of the showing protocol. More importantly, the card cannot
leak information even if it could send out radio signals.

In general, however, it is impossible without breaking the tamper-resistance to
verify that a smartcard does not have a sense of time, place, temperature, sound,
or anything else that can be exploited by the CA once it gains physical access to
the contents of the card. For instance, ultra-thin batteries that meet the required
physical dimensions for smartcards are expected to become widely available within
a few years. In light of this, a much more effective approach is for certificate holders
to never return their smartcards to the CA (or anyone else) in the first place. This
simple measure protects privacy in the strongest possible manner. In Section 6.5.1

6.4 PRIVACY PROTECTION 245

we will show that our DLREP-based issuing and showing protocols can be efficiently
implemented using low-cost smartcards without a cryptographic coprocessor. These
cards might as well be destroyed, archived, or thrown away by their holders once
their physical security has become outdated or their expiry date has been reached;
there are no valid financial excuses for the CA to demand them returned.

An alternative is to enable cardholders to zeroize the contents of their smartcards
before returning them. By feeding S a (pseudo)randomly generated file as large as
S’s memory, and requiringS to output the file, U can forceS to overwrite its memory
contents. S can be programmed to perform this action only if U also provides it with
a MAC of the CA on a hash of the random file. Forensic experts may still be able
to reconstruct the previous memory contents, though, and sting operations are not
prevented (some cards may be given more memory than publicly specified).

We will now show that there are other persuasive reasons to prefer the model of
not returning cards over the prevention of common coin flips.

6.4.4 Restricting the level of privacy protection

As we have seen in Section 6.2.2, U’s ability to prevent S̃ and Ṽ from developing
common coin flips can be misused by an anonymous extortioner. When certificates
represent significant value, it is in U’s own interest that this level of privacy cannot
be achieved. In case an extortioner strikes, this would enable U to find out how and
where the extorted certificates have been misused, by comparing the common coin
flips stored by the smartcard with the views of all the verifiers; in case the CA stores
a copy of the relevant parts of all the showing protocol transcripts, this task is easy to
accomplish with the cooperation of the CA. In an electronic coin system, for instance,
this tracing ability strongly discourages the extortioner from making a large payment
to his or her own account or to that of an accomplice; the extortioner will have little
choice but to spend the money on goods or services that he or she can receive while
remaining untraceable.

Even more effectively, by designing the showing protocol in such a manner that
the verifier’s challenge contains a verifier identifier that cannot be hidden from S, the
victim of an extortioner can determine in real time to which verifier(s) the extortioner
is showing his or her certificates, since the identifiers must pass in unencrypted form
through the user-controlled computer. This enables the victim to immediately notify
the verifier that a fraud is going on, and so it will be very hard for the extortioner to
profit from his or her crime. Verifier traceability by the certificate holder is desirable
anyway, for many reasons: the certificate may need to obtain a digital receipt from
the verifier in the showing protocol; the certificate holder may need the ability to
complain about bad goods or services, or at least to warn others about the behavior
of an unscrupulous service provider or to have an investigation instigated; and, absent
verifier traceability it is impossible to recover (if needed) should the connection with
the verifier become permanently lost during the showing protocol execution. It is

246 SMARTCARD INTEGRATION

important to note that in this approach only the originator of the showing protocol
execution has the power to trace the verifier. To prevent smartcards from locking
their holders out of legitimate transactions to designated verifiers, smartcards should
learn only a salted hash or an encryption of the verifier’s identity.

In high-risk PKIs, this approach may be exploited to give law enforcement the
ability to trace the actions of a designated cardholder. Requirements should be in
place to ensure that a court order or search warrant must be presented to the desig-
nated cardholder, so that the cardholder can challenge the investigation. Although a
certificate holder can falsely claim that his or her smartcard has been lost, broken, or
stolen, this does not invalidate the approach. To most honest certificate applicants,
the inconvenience of having to obtain a new smartcard to retrieve new certificates is
sufficient reason to refrain from false claims. Furthermore, the police can resort to
traditional investigative techniques to locate a card claimed to have been lost, and
to forensic methods to retrieve the memory contents of a smartcard that has been
wrecked. Any audit logs by the user-controlled computer could be examined as well.
Also, if the CA requires timely reporting of the loss or theft of smartcards, it would
be suspect if an individual claims to have lost control over his or her smartcard right
after a court order was presented.

It may be cumbersome for law enforcement to make a physical presence to gain
access to the contents of a device. Moreover, physical access takes away the device
holder’s control over which parts of the transaction log are being inspected. It is
possible to give authorized third parties the ability to remotely (over a network) query
the contents of the smartcards of designated certificate holders. When presented
with a digitally signed electronic search warrant (or court order) demanding that
a part of the transaction log be disclosed (e.g., all transactions above a specified
threshold, all the transactions to a designated organizations, or the ten most recent
transactions), the user’s computer checks the warrant’s authenticity and contents,
passes the query on to the smartcard, receives the requested information from the
smartcard (authenticated using a MAC or a digital signature), checks the supplied
data against its own copy of the transaction log, and passes it onward to the requesting
party only if the verification holds.9

More generally, there may be a legitimate need for S to know information other
than (just) the verifier’s identity, to decide whether or not to assist U in performing the
showing protocol execution. For instance, S may need to know (part of) the formula
demonstrated, (part of) the message it is helping to sign, or the type of verifier to
which a signed proof is to be issued. To accommodate these and other legitimate
needs for restricting the level of privacy, we reject the goal of preventing common
coin flips and instead open up (in a controlled manner) one communication channel
from V to S: V’s challenge message, c. To prevent Û from altering c before passing
it on to S , we have S form by itself the challenge message it will respond to, by

9MAC outflow can be prevented by using commitments, while randomization or deterministic signa-
ture generation suffice for digital signatures.

6.5 OTHER TECHNIQUES 247

applying a sufficiently strong (publicly known) one-way hash function to the data
provided by U . For example, if U is to issue a signed proof to V , the protocol (S,
U) should be such that S computes c by applying H i(·) to data provided by U . This
forces U to provide (h, a, F, m) and any other data to be included in the hash.

To guarantee that S learns only the minimum information needed, we use chal-
lenge semantics based on hash structures. If, for example, S should be able to learn
only the message m in a signed proof, V’s challenge message could be set equal to
Hi(Fi(h, a, F), m), where F(·) and H(·) may be the same hash function. When S
provides responses only to challenges c formed by itself by applying H i(·) to data
provided by U , the latter is forced to provide at least F i(h, a, F) and m to S . To
improve privacy, U may hash along a random salt when applying F i(·). (Formally,
F(·) should be a commitment function that unconditionally hides the data; a DLREP
function can be used.) More generally, c can be defined as an arbitrary structure of
nested hashes of data fields, and the role of S in forming c can be arbitrarily defined
as well. In case of a dispute, the hash structure can be opened selectively.

Note that Û cannot block a message transfer from V to S without blocking the
entire showing protocol execution. On the other hand, U can unconditionally pre-
vent inflow and outflow, and can at all times see and control the common coin flips
developed by V and S .

Another benefit of rejecting the goal of preventing coin flips is related to attacks
on U . If S sees the message it is helping to sign and shows this on a display of its
own, and waits for its holder to accord its next step through an on-board key pad, then
a virus or a Trojan horse attack on U cannot trick S into signing a false message.

This technique of combining inflow and outflow protection with “controlled com-
mon coin flips” suffices to accommodate most legitimate needs to reduce the level of
privacy attainable. It does not, however, enable the verifier in the showing protocol
to distinguish whether or not the prover’s demonstration is conducted using the assis-
tance of a smartcard. This capability may be needed in case of high-risk limited-show
certificates for which the techniques in Section 5.5 to trace and contain fraud offer
inadequate security. One way to enable this capability is for the CA to encode into
each certified key pair a “policy attribute” that indicates at least whether or not the
verifier should resort to online certificate authorization. This policy attribute must
always be disclosed when performing a demonstration. (Any other data that must
always be disclosed, such as a certificate expiration date, can be encoded into the
same attribute.)

6.5 Other techniques

In this section we describe how to implement our DLREP-based techniques using
low-cost smartcards. We also design a protocol that enables certificate holders to re-
turn to the CA any retrieved certificates that have not yet been shown. Furthermore,

248 SMARTCARD INTEGRATION

we show how to discourage certificate holders from using their certificates to help
remote parties gain access to services for which they do not hold the proper certifi-
cates themselves. Finally, we design secure bearer certificates with optimal privacy
and address some loose ends.

6.5.1 Implementation in low-cost smartcards

The cheapest and most widely available smartcards contain a simple 8-bit micro-
processor that can perform a DES operation in software in about 4 milliseconds. A
single modular multiplication as needed in public-key cryptographic operations takes
many minutes, and may not even fit in memory. (RAM is typically between 124 and
1024 bytes, EEPROM between 1 and 16 kilobytes, and ROM between 4 and 16 kilo-
bytes.) Even can today’s fastest coprocessor smartcards cannot compute more than
3 full RSA exponentiations per second, assuming a 1024-bit modulus and no use of
the Chinese Remainder Theorem.10

Moreover, cryptographic coprocessors decrease reliability, are more vulnerable
to timing attacks (see Lenoir [245]), take up precious space, and add about three to
five dollars to the cost of each smartcard.

When using our DLREP-based techniques, two noteworthy optimizations are
available:

• An elliptic curve implementation over a field of the form GF 2m , with m ≈
160, guarantees that a conventional 8-bit smartcard microprocessor can rapidly
perform a high-strength public-key exponentiation in G q . For instance, the
Schlumberger Multiflex smartcard used in the first smartcard-based pilot of
SET [257] can compute an elliptic-curve DSA signature in exactly one sec-
ond, using a 163-bit modulus; this chip contains an 8-bit Motorola chip with
240 bytes of RAM, 8 kilobytes of EEPROM, and 12 kilobytes of ROM. Since
the Schnorr proof of knowledge requires virtually the same operations as the
DSA scheme, the same performance in a low-cost smartcard can be achieved
when using our techniques. For details on implementing elliptic curves in
smartcards, see Certicom [85].

• The bulk of the workload of S can be shifted to the CA, by having the latter
instead of the former provide aS to U ; this removes the need for S to perform
any exponentiations. The CA can provide aS during the execution of the issu-
ing protocol in which it issues the certified key pair that uses aS . Alternatively,
the CA provides a great many aS-values at once to U , possibly whenever the
latter makes a request. The only remaining task for S in an execution of the
showing protocol is to compute a linear relation over Z q and perhaps a few

10In November 1999, Bull and other major hardware manufacturers demonstrated a smartcard that can
perform the exponentiation in less than 350 milli-seconds. Their design features a RISC 32-bit processor,
64 kilobytes of EEPROM, 96 kilobytes of ROM, and 4 kilobytes of RAM.

6.5 OTHER TECHNIQUES 249

hashes. Even the cheapest of 8-bit smartcards can compute dozens of such re-
sponses within a second. Note that this optimization does not require the use
of elliptic curves.

To implement the latter optimization, the CA and S must share the list of random
numbers that S will deploy. In practice these numbers may be generated in a pseu-
dorandom fashion from a seed value that is known to both S and the CA, which the
CA may form by diversifying a smartcard identifier using a master key. (The use
of pseudorandom numbers is recommendable also to avoid physical attacks on noise
generators.) The preferred method of generating pseudorandom numbers depends on
certain characteristics of the certificates:

• In case certificates are shown in the order in which they are retrieved, S can
regenerate in constant time and space its contributions to the secret keys of up
to 2t certified key pairs by storing merely a t-bit index for the pseudorandom
number generator, and incrementing this upon each successful showing of a
certificate. The DSS [277, Appendix 3] specifies two algorithms for generat-
ing pseudorandom numbers in Zq for use with the DSA. Both algorithms feed
a secret seed value and the previous pseudorandom number into a one-way
function in order to derive the next pseudorandom number. Since U in a prac-
tical implementation need merely store some 40 bytes per certified key pair,
regardless of the number of attributes encoded into it, the user’s computer and
the smartcard can retrieve and store a number of certified key pairs that is, for
all practical purposes, virtually unlimited.

• In PKIs where the showing order of limited-show certificates may be unrelated
to the certificate retrieval order, it is preferable to generate each new pseudo-
random number by feeding the seed value and an increment of an index value
to a sufficiently strong one-way hash function, to facilitate random addressing.
S must keep track of all the indices for which it has already provided its assis-
tance, because it may not respond to two different challenges using the same
initial witness. The indices may be known to U , and form a convenient manner
for U to query S in the showing protocol: the CA in the issuing protocol can
provide U with the indices used to generate the pseudorandom contributions
of S , and when U needs to show a certificate it can send S the corresponding
index in order to have S regenerate its random contribution to the secret key of
the appropriate certified key pair.

Having the CA instead of S provide aS to U also allows U’s holder to leave S at a
safe place during certificate retrieval, for improved protection against theft. Another
advantage is that the same smartcard can be used for different PKIs, in fact even
for applications not known at the time of card issuance. Hereto each CA should
use the same q and preferably a different g1, and the pseudorandom numbers of

250 SMARTCARD INTEGRATION

each smartcard should be generated by feeding an additional CA identifier into the
pseudorandom generator.

Card performance can be pushed to the limit by either speeding up or circum-
venting the memory-intensive reduction modulo q that must be performed by S . To
achieve the former, one should use a modulus q of the form 2 t ± B, for small B. To
circumvent the modular reduction altogether, a technique due to Shamir [347] can be
applied. The idea is to replace the computation of cx1 + w1 mod q by the computa-
tion of cx1 + w1 + tq, for t chosen at random from a suitable range; the result can be
computed and output one byte after another by using a double convolution process.

6.5.2 Returning certificates

According to Proposition 6.3.1, the loss or theft of a smartcard prevents its holder
from showing his or her certificates, in spite of any access control mechanism that
may prevent others from operating the smartcard. In many PKIs it is desirable that
any previously retrieved certificates that have not yet been shown can be returned
to CA. The existence of a certificate return protocol would give the victims of lost,
stolen, or crashed smartcards the opportunity to recover value that might be asso-
ciated with their certificates. It also enables the CA to publish the certificates on
an update of its CRL, and in this manner prevents attackers able to get around the
smartcard access control mechanism from using the certified key pairs.

A return protocol may also be useful in the unlikely event that the cryptography
is broken (see Section 5.5.5); since the CA can keep a positive list at certificate is-
suing time, even an adversary with unlimited computing power cannot return forged
certificates. (In this particular case, it is recommended that each certificate appli-
cant initially establish a secret key or a one-time pad with the CA, for the purpose of
symmetric encryption and authentication of data sent in the return protocol.)

Furthermore, a return protocol is useful to resolve permanently lost connections
between a certificate holder and a verifier; if the transcripts of all the showing pro-
tocol executions are deposited with the CA, fault tolerance can be implemented by
returning the certificate to the CA so that the latter can find out whether the verifier
has received the certificate.

Other uses of a certificate return protocol include: to exchange expired certificates
for fresh ones; to cancel a transaction that has already been performed; and, to have
recourse to the CA if a smartcard enters into suspension mode or produces an error.

Returning a certificate to the CA is easy, assuming certificate holders keep backup
copies of their certified public keys (and, for secret-key certificates, their share of
the corresponding secret keys). Backups can be stored conveniently on the user-
controlled computer, on a floppy disc, in encrypted form in a cyberspace “strongbox,”
or in any other manner deemed secure by the certificate holder.

To perform the actual return of a certificate, U transmits the certified public key to
the CA. In case of a secret-key certificate, U must also provide the CA with sufficient

6.5 OTHER TECHNIQUES 251

information to enable it to determine S’s secret key, and must prove knowledge of
its share of the secret key of the certified key pair. To return a certificate obtained
using DLREP-based scheme I, for instance, U sends h ′, (c′0, r

′
0) to the CA and proves

knowledge of a DL-representation of h ′/hS . In the proof of knowledge, U may
selectively disclose properties about the encoded attributes, as in an execution of the
showing protocol.

Note that this return protocol is software-only: it does not involve the cooperation
of the smartcard. This is desirable not only to cope with loss, theft, and destruction
of smartcards, but also for certificate holders who have never been issued a smartcard
at all.

It is desirable, both for secret-key and for public-key certificates, that U always
provide the CA with a signed proof on a message stating the reason it is returning a
certificate. If the CA stores this signed message in a database, any disputes that may
arise later on can be resolved.

In case U is to be reimbursed in some way or another, and executions of the
showing protocol need not be authorized online, the CA may prefer to delay reim-
bursement until it is certain that the returned certificate has not been shown.

Care must be taken that a thief cannot return the certificate data stored on stolen
backups for his or her own benefit. In an off-line electronic coin system, for instance,
the CA should best redeem an account holder for a returned coin by crediting his or
her account.

6.5.3 How to discourage remote lending

In Section 5.5.2 we presented software-only measures to discourage lending of cer-
tified key pairs. For stronger protection, certificate holders should be required to use
smartcards with a biometric access control mechanism. In a face-to-face situation the
verifier can visually inspect that the biometric data is properly entered. In general,
a liveness detection mechanism is needed to prevent unauthorized cardholders from
using biometric templates; a cardholder’s fingerprints, for instance, may be all over
his or her smartcard. (The same measure also protects against loss and theft.)

This leaves open the possibility of remote lending. Here, the holder of a cer-
tified key pair provides the “borrower” with the certified public key, and assists in
the showing protocol execution by providing the required responses. The lender can
provide his or her assistance over a radio link or a network such as the Internet. Re-
mote lending is similar to the anonymous extortion attack described in Section 6.2.2,
with the difference that the borrower voluntarily cooperates with the lender and may
not be interested in hiding his or her identity and transaction details from the lender.
(Remote lending differs also from the “mafia fraud” studied first by Desmedt [134];
in the latter, the prover is not aware that the protocol execution is being relayed.)

In communications and transactions that are not face-to-face, remote lending can-
not be prevented, regardless of whether privacy-protecting certificates or fully trace-

252 SMARTCARD INTEGRATION

able identity certificates are used. Indeed, the “lender” might as well perform the
entire showing protocol execution and simply relay the provided service or goods to
the “borrower.” In many PKIs this is not considered a security problem, especially
not if lending occurs only incidentally; it may even be a feature. In PKIs where
large-scale lending is to be discouraged, the CA could issue limited-show certificates
and establish one account per certificate applicant (see Section 5.2.1). Large-scale
lenders will then be exposed because of their abnormal demand for certificates. An-
other measure is to charge a fee per certificate issued, so that a large-scale lender
faces the problem of being compensated for the cost of his or her service without
risking exposure.11 A further measure to discourage large-scale lending is to pro-
gram each smartcard in such a manner that it will only respond to a challenge when
its biometric access control mechanism detects the live presence of the cardholder.

In face-to-face situations, additional measures are available. The CA could en-
code biometric characteristics and apply the measure described in Section 5.5.2.
Even better, remote lending can be prevented altogether by having V bound its dis-
tance to the true certificate holder. The idea is for S and V in the showing protocol to
rapidly exchange a series of random bits. Each bit of S is to be sent out immediately
after receiving a bit from V . To ensure that S cannot simply send out its i-th bit
before receiving the i-th bit of V , the i-th bit of S must depend on the i-th bit of V .
One way to accomplish this is to require S to send bits chosen in such a manner that
the exclusive-or of these bits and those provided by V equals a previously established
binary string. After the rapid bit exchange has taken place, S’s binary string must be
authenticated using the secret key of the certified key pair; one way to accomplish
this is to hash along the binary string when forming V’s challenge. V accepts if and
only if the authentication is correct and its distance to the smartcard is sufficiently
small. To compute an upper bound on the distance, V takes the maximum of the
delay times between sending out its i-th bit and receiving the i-th bit of S; this en-
sures that the cheating probability decreases exponentially fast in the number of bits
exchanged. What makes this approach practical is that today’s electronics can easily
handle timings of a few nanoseconds, and light can travel only about 30cm during
one nanosecond. Even the timing between two consecutive periods of a 50 MgHz
clock allows light to travel only three meters and back. It is easy to integrate this
distance bounding technique with the techniques described in Sections 6.3 and 6.4.

The smartcard techniques in this section may be used in addition to the software-
only techniques in Section 5.5.2, rather than serving as a replacement.

6.5.4 Bearer certificates

As we have seen in Section 5.5.1, strong fraud prevention for software-only bearer
certificates requires online clearing. The closest we can come to realizing the digital

11A business model relying on certificate prepayment has other advantages as well in many circum-
stances, and is naturally based on the issuance of limited-show certificates.

6.5 OTHER TECHNIQUES 253

equivalent of paper-based bearer certificates is to implement digital certificates using
smartcards, to ensure that each certificate can be at only one place at any moment in
time.

Consider the following design of a digital bearer certificate system. The CA en-
dows each smartcard with a unique card identifier and a secret key (possibly derived
by diversifying the card identifier using a master secret key). Anyone can purchase
one or more of these smartcards via a myriad of retail outlets, without needing to
identify. Each smartcard can be used to open an anonymous account with the CA,
by communicating with the CA in cyberspace. To enable the CA to associate the
secret key of a smartcard with the account opened, the user’s computer sends the
card identifier to the CA, possibly together with a MAC of the smartcard on a chal-
lenge message of the CA. The CA issues only limited-show certificates, and encodes
into each certified key pair the secret key of the applicant’s smartcard. Retrieval
and showing of digital certificates take place using the techniques described in Sec-
tions 6.3 and 6.4. The additional option available to smartcard holders is to sell, lend,
or otherwise transfer their cards to others. For protection against theft, smartcards
should have an access control mechanism (based on a PIN, a password, or a biomet-
ric) that can be changed only when authorized by the current holder. Verifiers may
accept digital certificates without needing online authorization by the CA, but are
required to deposit transcripts of their showing protocol executions. If a smartcard
holder manages to physically extract the card’s secret key and show certificates more
times than allowed, the CA can compute the smartcard identifier, close the corre-
sponding account, and blacklist the certificates using its CRL. This ensures that the
perpetrator can continue only by physically compromising another smartcard.

This design offers adequate security assuming that the average cost of physically
extracting the secret key from a smartcard exceeds the expected profit that can be
made until the CRL update has been distributed and the account closed. At the same
time, the privacy of users is maximally protected: their showing protocol executions
are untraceable and unlinkable, and their certificate retrievals anonymous.

In PKIs with high-risk certificates, it is preferable that the perpetrators them-
selves can be traced, to stop them from opening new accounts and perhaps also to
recover some of the losses. Hereto our smartcard techniques should be combined
with the personalization techniques described in Section 5.5. This does not preclude
the possibility of anonymous withdrawal of certificates, as we have seen.

6.5.5 Loose ends

To prevent organizations and other verifiers from discriminating against certificate
holders who do not disclose their built-in identifier, the secret key of a smartcard
should serve as the cardholder’s identifier. The link between the cardholder’s identity
and the smartcard’s identifier can be made either when the card is issued or when the
account is opened. With this approach, the privacy interests of the cardholder and the

254 SMARTCARD INTEGRATION

security interests of the CA are perfectly aligned; identity bartering is out, because
cardholders cannot disclose the identifiers that have been encoded into their certified
key pairs.

In some situations it may be desirable that certificate holders can demonstrate
not to be the originator of a transaction. The technique described in Section 5.5.1 to
accomplish this is not in conflict with that of the previous paragraph. Namely, it is
possible for <S, U> to demonstrate that the secret key of S is not equal to the secret
key of one or more perpetrator smartcards. Consider by way of example the setting of
Proposition 6.3.2. With h :=

∏l
i=1 gxi

i , the goal is for U (with the assistance of S) to
demonstrate that x1 �= y mod q, for some y ∈ Zq , without Û learning the secret key
x1 of S . Hereto S demonstrates to U that x1 �= y mod q by means of our standard
interactive showing protocol for atomic formulae with a “NOT” connective: S sends
aS := (gy

1/hS)w1 to U , receives V’s challenge c from U , and responds by sending
r := cδ + w1 mod q, where δ := 1/(y − x1) mod q. It is not hard to see that U can
perform its part of the protocol with respect to V if U would know g w1

2 , . . . , gw1
l . U

would then form

a := aS(gy
1/hS)γ1

l∏
i=2

(
(gw1

i)wigγi

i

)

for random w2, . . . , wl ∈ Zq and random γ1, . . . , γl ∈ Zq , and compute r1 :=
r + γ1 mod q and ri := rwi + γi mod q, for all i ∈ {2, . . . , l}. (If desired, U can
be allowed to blind c before passing it on, as detailed in Section 6.4.2.) Having S
compute and provide gw1

2 , . . . , gw1
l to U would result in serious overhead to S , but as

with the technique in Section 6.5.1 this burden can be moved to the CA. Alternatively,
assuming that demonstrating a property of S’s secret key is an exceptional task, S
could store a precomputed tuple (w1, g

w1
1 , . . . , gw1

l) into its memory. Knowledge of
gw1
2 , . . . , gw1

l is believed to be of no help in attacking the protocol performed by S;
these numbers are essentially Diffie-Hellman keys.

The technique described in Section 5.5.3 can be applied straightforwardly to
achieve non-repudiation. For example, I can be formed as the sum of the secret
key of S and a random secret of U . Alternatively, non-repudiation can be based
on the tamper-resistance of the smartcard: if smartcards are tamper-evident, then a
smartcard holder can prove his or her innocence by showing that the smartcard has
not been tampered with in an attempt to physically extract the secret key.

6.6 Bibliographic notes

The smartcard techniques in Sections 6.3 and 6.4 originate from Brands [54]. The
presentation fills in some details that were previously only hinted at, and the for-
mal statements of security and their proofs appear here for the first time. Prior
to Brands [54], Brands [46, 48] applied a special case of the smartcard techniques

6.6 BIBLIOGRAPHIC NOTES 255

for the purpose of designing a secure off-line electronic coin system; coin payment
requires the demonstration of the formula TRUE, and the static one-show blind-
ing technique ensures that the bank can trace a doublespender who has defeated the
tamper-resistance of his or her smartcard. In a variation [46, 58], the bank encodes
an additional attribute into each coin to specify its denomination and expiry date.

The method in Section 6.5.1 for avoiding exponentiation by the smartcard is due
to Brands [57]. Naccache, M’Raı̈hi, Vaudenay and Raphaeli [271, Section 6] pro-
posed a similar method in a different context (“use-and-throw coupons” for smart-
cards).

The return protocol in Section 6.5.2 is similar to a protocol designed by Pfitzmann
and Waidner [304] for the purpose of loss-tolerance in the electronic coin system of
Brands [48]. New is the observation that certificate return is useful for many other
purposes.

The distance bounding technique in Section 6.5.3 originates from Chaum [97],
with improvements by Brands and Chaum [59].

Finally, the technique in Section 6.5.4 is based on Brands [54].

