
princeton university F’02 cos 597D: a theorist’s toolkit

Lecture 4: The Dimension Method

Lecturer: Sanjeev Arora Scribe:Miroslav Dud́ık

The “Dimension Method” is Sanjeev’s name for elementary linear algebra arguments.
This is all the algebra one needs 80% of the time; only occasionally (one example is num-
ber theoretic cryptography) does one need anything more powerful than elementary linear
algebra.

1 Basics: Fields and Vector Spaces

We recall some basic linear algebra. A field is a set closed under addition, subtraction,
multiplication and division by nonzero elements. By addition and multiplication, we mean
commutative and associative operations which obey distributive laws. The additive identity
is called zero, the multiplicative identity is called unity. Examples of fields are reals R,
rationals Q, and integers modulo a prime p denoted by Z/p. We will be mostly concerned
with finite fields. The cardinality of a finite field must be a power of prime and all finite
fields with the same number of elements are isomorphic. Thus for each power pk there is
essentially one field F with |F| = pk. We shall denote this field by GF(pk).

A vector space V over a field F is an additive group closed under (left) multiplication by
elements of F. We require that this multiplication be distributive with respect to addition
in both V and F, and associative with respect to multiplication in F.

Vectors v1, . . . ,vk are said to be linearly independent if
∑k

i=1 αivi = 0 implies that
α1 = α2 = · · · = αk = 0. A maximal set of vectors {vi}i∈I whose every finite subset is
linearly independent is called a basis of V ; all such sets have the same cardinality, called
the dimension of V (denoted dimV). If V has a finite dimension k and {vi}k

i=1 is a basis
then every vector v ∈ V can be uniquely represented as

v =
k∑

i=1

αivi,

where αi ∈ F. Thus all finite-dimensional vector spaces are isomorphic to F
k. If F is finite

then |V | = |F|k. An example of a vector space over a finite field is the field GF(pk) when
viewed as a vector space over GF(p).

Let Am×n = {aij} be a matrix over a field F. Rank of A, denoted by rankA, is the
maximum number of linearly independent rows in A. It is equal to the maximum number
of linearly independent columns. Hence rankA = rankAT .

Let M = {mij} be an n by n matrix. The determinant of M is defined as follows:

detM =
∑
σ∈Sn

(−1)π(σ)
n∏

i=1

miσ(i),

where Sn is the group of permutations over [n], and π(σ) is the parity of the permutation
σ. The matrix Mn×n has rank n if and only if detM �= 0. We will use this fact to prove
the following result, which is our first example of the Dimension Method.

1

2

Theorem 1
Let Mn×n be a random matrix over GF(2). Then Pr[detM �= 0] ≥ 1/4.

Proof: Denote the columns of M by Mi, where i = 1, 2, . . . , n. It suffices to bound the
probability that these columns are linearly independent:

Pr[M1, . . . ,Mn linearly independent]

=
n∏

i=1

Pr[M1, . . . ,Mi linearly independent | M1, . . . ,Mi−1 linearly independent]

=
n∏

i=1

(1 − Pr[Mi ∈ span(M1, . . . ,Mi−1) | M1, . . . ,Mi−1 linearly independent].

Now, if M1, . . . ,Mi−1 are independent then their span is of dimension i − 1 and hence it
contains 2i−1 vectors. The column Mi is picked uniformly at random from the space of 2n

vectors, independently of M1, . . . ,Mi−1. Thus the probability that it will lie in their span
is 2i−1/2n.

=
n∏

i=1

(1 − 2i−1−n) ≥
n∏

i=1

exp{−2i−1−n · 2 ln 2}

≥ exp{−2 ln 2
∞∑
i=1

2i−1−n} = exp{−2 ln 2} = 1/4.

�

2 Systems of Linear Equations

The system of m linear equations in n unknowns over a field F can be represented by a
matrix Am×n and a vector bm×1 as

Ax = b, (∗)

where xn×1 is the vector of unknowns.

Proposition 2
1. The system (∗) is feasible if and only if b ∈ span(A1, . . . ,An), which occurs if and

only if rank(A|b) = rankA. (Here A|b is the matrix whose last column is b and the
other columns are from A.)

2. Suppose F is finite. If rankA = k then the system (∗) has either 0 solutions (if
infeasible) or F

n−k solutions (if feasible). In particular, if n = k then the solution is
unique if it exists.

3. If b = 0 then a nontrivial solution exists if and only if rankA ≤ n − 1. In particular,
if n > m then nontrivial solutions always exist.

3

Example 1 Suppose M is a random matrix over GF(2) and b is a random n × 1 vector.
What is the probability that the system Mx = �b has a unique solution? By Theorem 1 it
is at least 1/4.

Theorem 3
A nonzero polynomial of degree d has at most d distinct roots.

Proof: Suppose p(x) =
∑d

i=0 cix
i has d + 1 distinct roots α1, . . . , αd+1 in some field F.

Then
d∑

i=0

αi
j · ci = p(αj) = 0,

for j = 1, . . . , d + 1. This means that the system Ay = 0 with

A =




1 α1 α2
1 . . . αd

1
1 α2 α2

2 . . . αd
2

.
1 αd+1 α2

d+1 . . . αd
d+1




has a solution y = c. The matrix A is a Vandermonde matrix, hence

detA =
∏
i>j

(αi − αj),

which is nonzero for distinct αi. Hence rankA = d + 1. The system Ay = 0 has therefore
only a trivial solution — a contradiction to c �= 0. �

Theorem 4
For any set of pairs (a1, b1), . . . , (ad+1, bd+1) there exists a unique polynomial g(x) of degree
at most d such that g(ai) = bi for all i = 1, 2, . . . , d + 1.

Proof: The requirements are satisfied by Lagrange Interpolating Polynomial:

d+1∑
i=1

bi ·
∏

j �=i(x − aj)∏
j �=i(ai − aj)

.

If two polynomials g1(x), g2(x) satisfy the requirements then their difference p(x) = g1(x)−
g2(x) is of degree at most d, and is zero for x = a1, . . . , ad+1. Thus, from the previous
theorem, polynomial p(x) must be zero and polynomials g1(x), g2(x) identical. �

3 Dispersal of Information Using Polynomials

Polynomials are often useful in situations where information needs to be dispersed in an
error-tolerant way, so that it can be reconstructed even if it is partially corrupted or de-
stroyed.

Suppose we want to encode a message into a finite number of packets to be transmitted
through a faulty network. This network can drop up to 1/2 of packets, but it does not
corrupt the contents of the remaining packets. To achieve a successful transmission, we can
use polynomial interpolation:

4

Encoding. Without loss of generality assume the message is a d+1-tuple c0, c1, . . . , cd ∈ F,
where |F| > 2d. Take 2d + 1 distinct points α1, . . . , α2d+1 ∈ F and determine values of the
polynomial p(x) =

∑d
i=0 cix

i at αi. Send packets (α1, p(α1)),. . . ,(α2d+1, p(α2d+1)).

Decoding. Packets describe the polynomial p with sufficient redundancy. Even when d
packets are dropped, the polynomial p and hence the original message is uniquely determined
by the remaining d + 1 pairs.

Now suppose that the network can corrupt up to 1/4th of the packets. We will use
a strategy developed by Berlekamp and Welch in 1985. In order to transmit a message
described by a polynomial p(x) of degree d, we will send 20d pairs (αi, p(αi)). Let the
received pairs be (α′

i, β
′
i) (for missing packets, we can set α′

i = β′
i = 0). A pair (α′

i, β
′
i)

will be considered corrupted if p(α′
i) �= β′

i. Then there exists a nonzero polynomial e(x) of
degree at most 5d, which is zero at all corrupted values α′

i — this is called an error locator
polynomial.

Lemma 5
There exist nonzero polynomials e(x) and c(x) such that

deg e ≤ 5d

deg c ≤ 6d

and c(α′
i) = β′

ie(α
′
i) for i = 1, 2, . . . , 20d.

Proof: Taking the error locator polynomial e(x) and c(x) = p(x)e(x) we obtain

c(α′
i) = p(α′

i)e(α
′
i) =

{
β′

ie(α
′
i) if pair (α′

i, β
′
i) is not corrupted

p(α′
i) · 0 = 0 = β′

i · 0 if pair (α′
i, β

′
i) is corrupted.

�

Corollary 6
Polynomials e(x) and c(x) that satisfy conditions of previous lemma can be found in time
polynomial in d.

Proof: Equations c(α′
i) = β′

ie(α
′
i), where coefficients of c and e are unknown, form a

system of 20d linear equations in 11d + 2 unknowns. The lemma guarantees its feasibility.
We can solve for coefficients by Gaussian elimination. �

Theorem 7 (Berlekamp-Welch)
If c(x), e(x) satisfy the conditions of the lemma then e(x)|c(x) and p(x) = c(x)/e(x).

Proof: Consider the polynomial c(x) − p(x)e(x). It has degree at most 6d, but it has at
least 15d roots because it is zero on all noncorrupted α′

i’s. Therefore, c(x) − p(x)e(x) ≡ 0
and c(x) ≡ p(x)e(x). �

Remark 1 This strategy will work whenever a fixed δ-fraction of packets is corrupted,
where δ < 1/2. Somebody asked if a scheme is known that recovers the polynomial even if
more than 1/2 the packets are corrupted. The answer is Yes, using Sudan’s list decoding
algorithm. See the homework.

5

4 Hashing: An introduction

Most schemes for Hashing also rely on a simple dimension argument.
Suppose we want to store n numbers from the set 1, 2, . . . , q with a fast look-up. We will

use an array of size p and each element insert into a bucket indexed by the hash function.
Each bucket contains a chained list of elements with the same value of hash function. During
a look-up, it suffices to examine contents of a single bucket. If we can guarantee that the
number of elements stored in a bucket (the bucket size) is small, the operation will be fast.

We will assume that q and p are prime, p ≈ 2n and choose a hash function h at
random. We pick a, b ∈ GF(q) at random and define h as x → (ax + b mod q) mod p.
The probability of collisions, i.e. events when h(x) = h(y) for x �= y, should be low. We
might for example require that the family of hash functions be 2-universal:

(∀x �= y) Pr
h

[h(x) = h(y)] ≤ 2
p
.

It is often possible to prove a stronger statement:

(∀x �= y)(∀u, v) Pr
h

[h(x) = u, h(y) = v] =
1
p2 .

Families satisfying this condition are called pairwise independent.

Example 2 Consider a hash function h : x
→ ax+b mod p, where a, b are picked randomly
from GF(p). For fixed x, y, u, v ∈ GF(p), where x �= y, the system

ax + b = u

ay + b = v

has a single solution a, b ∈ GF(p). Hence the probability that h(x) = u, h(y) = v is 1/p2.

Example 3 Element Distinctiveness Problem. We want to determine if there are two
identical numbers in a given sequence. We can hash all elements and then examine each
bucket separately. We could do it by sorting elements in every bucket, but for simplicity
assume that we examine every pair in a given bucket. If the number of buckets is O(n) and
the expected number of pairs in a bucket is O(1) then the expected runtime will be O(n).

Suppose we use a hash function h : X → U , |U| = p ≈ 2n, picked at random from a
pairwise independent family. Fix a bucket u and consider random variables

Xx =

{
1 if h(x) = u,

0 otherwise,

where x is an element of the sequence. By pairwise independence, choosing arbitrary y ∈ X
such that y �= x, we obtain

Pr[h(x) = u] =
∑
v∈U

Pr[h(x) = u, h(y) = v] = 1/p.

6

The size of bucket u is S =
∑

x Xx. Calculate the expectation of S2:

E[S2] =
∑
x,y

E[XxXy] =
∑

x

E[X2
x] +

∑
x �=y

E[XxXy]

=
∑

x

Pr[h(x) = u] +
∑
x �=y

Pr[h(x) = u, h(y) = u]

= n/p + n(n − 1)/p2 ≈ 1/2 + 1/4 = O(1).

Since the number of pairs in a bucket is O(S2), we obtain by linearity of expectation that
the expected runtime is

O(
∑

u

E[S2
u]) = O(n).

(Aside: The element distinctness problem is impossible to solve (even using randomness)
in linear time in the comparison model, where the algorithm is only allowed to compare two
numbers at every step.

5 Pairwise and k-wise Independent Sampling

Consider a randomized algorithm that uses n random bits and gives a Yes/No answer.
Suppose we know that one of the answer happens with probability at least 2/3 but we
do not know which. We can determine that answer with high probability by running the
algorithm m times with independent random bits and taking the majority answer; by the
Chernoff bounds the error in this estimation will by exp(−m). Can we do this estimation
using fewer than mn random bits? Intuitively speaking, the algorithm converts n random
bits into a single random bit (Yes/No) so it has thrown away a lot of randomness. Can we
perhaps “reuse” some of it? Later in the course we will see some powerful techniques to do
so; here we use more elementary ideas. Here we see a technique that uses 2n random bits
and its error probability is 1/m. (We need m < 2n.) The idea is to use random strings that
are pairwise independent and use Chebyshev’s inequality.

A sequence of random variables z1, z2, z3, . . . is pairwise independent if every pair is
independent.

We can construct a sequence of m pairwise independent strings {zi} , zi ∈ GF(q), q ≈ 2n

using 2 log q random bits. Let {xi} , xi ∈ GF(q) be any fixed sequence. Pick a, b ∈ GF(q)
at random and set zi = axi + b. Running the algorithm on z1, . . . , zm will guarantee that
answers are pairwise independent.

Analogously, we can construct k-wise independent sequences by picking a0, . . . , ak−1 at
random and applying the map x
→ ∑k−1

j=0 ajx
j to an arbitrary sequence {xi} , xi ∈ GF(q).

Chebyshev inequality generalizes to higher moments:

Pr
{∣∣X − E[X]

∣∣ > γ
(
E

[|X − E[X]|k])1/k
}

< γ−k.

This uses k log q random bits but the error in the estimation goes down as 1/mk.

7

Example 4 Secret Sharing (A. Shamir, How to share a secret, Comm. ACM 1979). We
want to design a scheme for sharing a secret a0 among m people so that k + 1 people can
recover the secret, but k or fewer people cannot.

If a0, . . . , ak are picked randomly and person i receives the pair (αi, p(αi)) where p(x) =∑
aix

i then any set of k people will receive a random k-tuple of strings, whereas k + 1
people will be able to recover the polynomial p(x) by interpolation.

