
Dynamic Accumulators and Application to Efficient Revocation

of Anonymous Credentials

Jan Camenisch

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
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Abstract

An accumulator scheme, as introduced by Benaloh and de Mare [BdM94] and further
studied by Barić and Pfitzmann [BP97], is an algorithm that allows one to hash a large set
of inputs into one short value, called the accumulator, such that there is a (short) witness
that a given input was incorporated into the accumulator. At the same time, it is infeasible
to find a witness for a value that was not accumulated.

We put forward the notion of a dynamic accumulator, which is an accumulator that
allows one to dynamically add and delete inputs, such that the cost of an add or delete is
independent of the number of accumulated values. We achieve this under the strong RSA
assumption. For this construction, we also show an efficient zero-knowledge protocol for
proving that a committed value is in the accumulator.

Dynamic accumulators enable efficient membership revocation in the anonymous
setting. Our construction is especially suitable for membership revocation in group
signature and identity escrow schemes, such as the one due to Ateniese et al. [ACJT00],
and efficient revocation of credentials in anonymous credential systems, such as the one
due to Camenisch and Lysyanskaya [CL01a]. Applying our method to these schemes
enables membership revocation and yet does not significantly increase the complex-
ity of any of the operations. In particular, the cost of a membership verification or
credential showing increases by only a small constant factor, less than 2. All previ-
ously known methods (such as the ones due to Bresson and Stern [BS01] and Ateniese
and Tsudik [AT01]) incur an increase in these costs that is linear in the number of members.

Keywords. Dynamic accumulators, anonymity, certificate revocation, group signatures,
credential systems, identity escrow.

1 Introduction

Suppose a set of users is granted access to a resource. This set changes over time: some users are
added, and for some, the access to the resource is revoked. When a user is trying to access the
resource, some verifier must check that the user is in this set. The immediate solution is to have
the verifier look up the user in some database to make sure that the user is still allowed access
to the resource in question. This solution is expensive in terms of communication. Another
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approach is of certificate revocation chains, where every day eligible users get a fresh certificate
of eligibility. This is somewhat better because the communication burden is now shifted from
the verifier to the user, but still suffers the drawback of high communication costs, as well as the
computation costs needed to reissue certificates. Moreover, it disallows revocation at arbitrary
time as need arises. A satisfactory solution to this problem has been an interesting question
for some time, especially in a situation where the users in the system are anonymous.

Accumulators were introduced by Benaloh and de Mare [BdM94] as a way to combine a set
of values into one short accumulator, such that there is a short witness that a given value was
incorporated into the accumulator. At the same time, it is infeasible to find a witness for a value
that was not accumulated. Extending the ideas due to Benaloh and de Mare [BdM94], Barić
and Pfitzmann [BP97] give an efficient construction of so-called collision-resistant accumulators,
based on the strong RSA assumption.

We propose a variant of the cited construction with the additional advantage that, using
additional trapdoor information, the work of deleting a value from an accumulator can be
made independent of the number of accumulated values, at unit cost. Better still, once the
accumulator is updated, updating the witness that a given value is in the accumulator (provided
that this value has not been revoked, of course!) can be done without the trapdoor information
at unit cost. Accumulators with these properties are called dynamic. Dynamic accumulators
are attractive for the application of granting and revoking privileges.

In the anonymous access setting, where a user can prove eligibility without revealing his
identity, revocation appeared impossible to achieve, because if a verifier can tell whether a user
is eligible or ineligible, he seems to gain some information about the user’s identity. However,
it turns out that this intuition was wrong! Indeed, using accumulators in combination with
zero-knowledge proofs allows one to prove that a committed value is in the accumulator. We
show that this can be done efficiently (i.e., not by reducing to an NP-complete problem and
then using the fact that NP ⊆ ZK [GMW87] and not by using cut-and-choose for the Barić and
Pfitzmann’s [BP97] construction).

From the above, we obtain an efficient mechanism for revoking group membership for the
Ateniese et al. identity escrow/group signature scheme [ACJT00] (the most efficient secure
identity escrow/group signature scheme known to date) and a credential revocation mechanism
for Camenisch and Lysyanskaya’s [CL01a] credential system. The construction can be applied
to other such schemes as well. The idea is to incorporate the public key for an accumulator
scheme into the group manager’s (resp., organization’s) public key, and the secret trapdoor of
the accumulator scheme into the corresponding secret key. Each time a user joins the group
(resp., obtains a credential), the group manager (resp., organization) gives her a membership
certificate (resp., credential certificate). An integral part of this certificate is a prime number e.
This will be the value added to the accumulator when the user is added, and deleted from the
accumulator if the user’s privileges have to be revoked. This provably secure mechanism does
not add any significant communication or computation overhead to the underlying schemes
(at most a factor of 2). We note that both our dynamic accumulator scheme and the ACJT
identity escrow/group signature scheme rely on the strong RSA assumption. While one could
add membership revocation using our dynamic accumulator also to other group signature and
identity escrow schemes, such a combination would not make much sense as one would get a
less efficient scheme and might even require additional cryptographic assumption. We therefore
do not discuss the detail involved here.
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1.1 Related Work

For the class of group signature schemes [CP95, Cam97] where the group’s public key contains
a list of the public keys of all the group members, excluding a member is straightforward:
the group manager only needs to remove the affected member’s key from the list. These
schemes, however, have the drawback that the complexity of proving and verifying member-
ship is linear in the number of current members and therefore becomes inefficient for large
groups. This drawback is overcome by schemes where the size of the group’s public key as
well as the complexity of proving and verifying membership is independent of the number of
members [CS97, KP98, CM99, ACJT00]. The idea underlying these schemes is that the group
public key contains the group manager’s public key of a suitable signature scheme. To become
a group member, a user chooses a membership public key which the group manager signs.
Thus, to prove membership, a user has to prove possession of membership public key, of the
corresponding secret key and of a group manager’s signature on a membership public key.

The problem of excluding group members within such a framework without incurring big
costs has been considered, but until now no solution was satisfactory. One approach is to change
the group’s public key and reissue all the membership certificates (cf. [AT01]). Clearly, this
puts quite a burden on the group manager, especially for large groups. Another approach is
to incorporate a list of revoked certificates and their corresponding membership keys into the
group’s public key [BS01]. In this solution, when proving membership, a user has to prove that
his or her membership public key does not appear on the list. Hence, the size of the public
key as well as the complexity of proving and verifying signatures are linear in the number of
excluded members. In particular, this means that the size of a group signature grows with the
number of excluded members.

Song [Son01] presents an alternative approach in conjunction with a construction that yields
forward secure group signature schemes based on the ACJT group signature scheme [ACJT00].
While here the size of a group signature is independent of the number of excluded members,
the verification task remains computationally intensive, and is linear in the number of excluded
group members. Moreover, her approach does not work for ordinary group signature schemes
as it relies heavily on the different time periods peculiar to forward secure signatures. Ateniese
and Tsudik [AT01] adapt this approach to the ACJT group signature/identity escrow scheme.
Their solution retains the property that the verification task is linear in the number of excluded
group members. Moreover, it uses so-called double discrete logarithms which results in the
complexity of proving/signing and verifying to be rather high compared to underlying scheme
(about a factor of 90 for reasonable security parameters).

Finally, we point out that the proposal by Kim et al. [KLL01] is broken, i.e., excluded
group members can still prove membership (after the group manager changed the group’s key,
excluded members can update their membership information in the very same way as non-
excluded members).

Thus, until now, all schemes have a linear dependency either on the number of current
members, or on the total number of deleted members. As we have noted above, this linear
dependency comes in three flavors: (1) the burden being on the group manager to re-issue
certificates in every time period; (2) the burden being on the group member to prove that his
certificate is different from any of those that have been revoked and on the verifier to check
this; or (3) the burden being on the verifier to perform a computational test on the message
received from the user for each item in the list of revoked certificates.

In contrast, in our solution no operation is linearly dependent on the number of current or
total deleted members. Its only overhead over a scheme without revocation is the following:
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We require some public archive that stores information on added and deleted users. Then, the
public key (whose size depends only on the security parameter) needs to be updated each time
a user is added or deleted. Each user must read the public key from time to time (e.g., prior to
proving his membership), and if the public key has changed since the last time he looked, he
must read the news in the public archive and then perform a local computation. The amount
of data to read and the local computation are linear in the number of changes that have taken
place in the meantime, but not in the total number of changes. The additional burden on the
verifier is simply that he should look at the public key frequently (which seems unavoidable);
the verifier need not read the archive.

2 Preliminaries

Let A(·) be an algorithm. By y← A(x) we denote that y was obtained by running A on input
x. In case A is deterministic, then this y is unique; if A is probabilistic, then y is a random
variable.

Let A and B be interactive Turing machines. By (a← A(·)↔ B(·)→ b), we denote that a
and b are random variables that correspond to the outputs of A and B as a result of their joint
computation.

Let b be a boolean function. By (y ← A(x) : b(y)) we denote the event that b(y) is true
after y was generated by running A on input x. The statement

Pr[x1 ← A1(y1); x2 ← A2(y2); . . . ; xn ← An(yn) : b(xn)] = α

means that the probability that b(xn) is TRUE after the value xn was obtained by running
algorithms A1, . . . , An on inputs y1, . . . , yn, is α.

We say that ν(k) is a negligible function, if for all polynomials p(k), for all sufficiently large
k, ν(k) < 1/p(k).

Let a be a real number. We denote by bac the largest integer b ≤ a, by dae the smallest
integer b ≥ a, and by dac the largest integer b ≤ a+1/2. Let q be a positive integer. Sometime
we need to do modular arithmetic centered around 0; in these cases we use ‘rem’ as the operator
for modular reduction rather than ‘mod’, i.e., (c remq) = c− dc/qcq.

The flexible RSA problem is the following. Given an RSA modulus n and a random element
v ∈ Z∗n find e > 1 and u such that z = ue. The strong RSA assumption states that this problem
is hard to solve. The strong RSA assumption [BP97, FO97] is a common number-theoretic
assumption that, in particular, is the basis for several cryptographic schemes (e.g., [ACJT00,
CM98, CS98, GHR99]). By QRn we denote the group of quadratic residues modulo n.

We use notation introduced by Camenisch and Stadler [CS97] for the various zero-knowledge
proofs of knowledge of discrete logarithms and proofs of the validity of statements about
discrete logarithms. For instance,

PK{(α,β, γ) : y = gαhβ ∧ y = gαhγ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that y = gαhβ

and y = gαhγ holds, where v < α < u,” where y, g, h, y, g, and h are elements of some groups
G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is Greek letters denote quantities the
knowledge of which is being proved, while all other parameters are known to the verifier. Using
this notation, a proof-protocol can be described by just pointing out its aim while hiding all
details.
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3 Dynamic Accumulators

3.1 Definition

Definition 1. A secure accumulator for a family of inputs {Xk} is a family of families of
functions G = {Fk} with the following properties:

Efficient generation: There is an efficient probabilistic algorithm G that on input 1k produces a
random element f of Fk. Moreover, along with f, G also outputs some auxiliary informa-
tion about f, denoted aux f.

Efficient evaluation: f ∈ Fk is a polynomial-size circuit that, on input (u, x) ∈ Uf×Xk, outputs
a value v ∈ Uf, where Uf is an efficiently-samplable input domain for the function f; and
Xk is the intended input domain whose elements are to be accumulated.

Quasi-commutative: For all k, for all f ∈ Fk, for all u ∈ Uf, for all x1, x2 ∈ Xk,
f(f(u, x1), x2) = f(f(u, x2), x1). If X = {x1, . . . , xm} ⊂ Xk, then by f(u,X) we denote
f(f(. . . (u, x1), . . . ), xm).

Witnesses: Let v ∈ Uf and x ∈ Xk. A value w ∈ Uf is called a witness for x in v under f if
v = f(w, x).

Security: Let U ′f×X ′k denote the domains for which the computational procedure for function f ∈
Fk is defined (thus Uf ⊆ U ′f, Xk ⊆ X ′k). For all probabilistic polynomial-time adversaries
Ak,

Pr[f← G(1k);u← Uf; (x,w, X)← Ak(f,Uf, u) :

X ⊂ Xk;w ∈ U ′f; x ∈ X ′k; x /∈ X; f(w, x) = f(u,X)] = neg(k)

Note that only the legitimate accumulated values, (x1, . . . , xm), must belong to Xk; the
forged value x can belong to a possibly larger set X ′k.

(This definition is essentially the one of Barić and Pfitzmann, with the difference that
they do not require that the accumulator be quasi-commutative; as a consequence they need to
introduce two further algorithms, one for generation and one for verification of a witness value.)

The above definition is seemingly tailored for a static use of the accumulator. In this
paper, however, we are interested in a dynamic use where there is a manager controlling the
accumulator, and several users. First, let us show that dynamic addition of a value is done at
unit cost in this setting.

Lemma 1. Let f ∈ Fk. Let v = f(u,X) be the accumulator so far. Let v ′ = f(v, x ′) = f(u,X ′)
be the value of the accumulator when x ′ is added to the accumulated set, X ′ = X ∪ {x ′}. Let
x ∈ X and w be the witness for x in v. The computation of w ′ which is the witness for x in v ′,
is independent on the size of X.

Proof. w ′ is computed as follows: w ′ = f(w, x ′). Let us show correctness using the quasi-
commutative property: f(w ′, x) = f(f(w, x ′), x) = f(f(w, x), x ′) = f(v, x ′) = v ′.

We must also be able to handle dynamic deletions of a value from the accumulator. It is
clear how to do that using computations that are linear in the size of the accumulated set X.
Here, we restrict the definition so as to make the complexity of this operation independent of
the size of X:

Definition 2. A secure accumulator is dynamic if it has the following property:
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Efficient deletion: there exist efficient algorithms D, W such that, if v = f(u,X), x, x ′ ∈ X,
and f(w, x) = v, then (1) D(aux f, v, x ′) = v ′ such that v ′ = f(u,X \ {x ′}); and (2)
W(f, v, v ′, x, x ′) = w ′ such that f(w ′, x) = v ′.

Now, we show that a dynamic accumulator is secure against an adaptive adversary, in the
following scenario: An accumulator manager sets up the function f and the value u and hides
the trapdoor information aux f. The adversary adaptively modifies the set X. When a value is
added to it, the manager updates the accumulator value accordingly. When a value x ∈ X is
deleted, the manager algorithm D and publishes the result. In the end, the adversary attempts
to produce a witness that x ′ /∈ X is in the current accumulator v.

Theorem 2. Let G be a dynamic accumulator algorithm. Let M be an interactive Turing
machine set up as follows: It receives input (f, aux f, u), where f ∈ Fk and u ∈ Uf. It maintains
a list of values X which is initially empty, and the current accumulator value, v, which is
initially u. It responds to two types of messages: in response to the (“ADD”, x) message, it
checks that x ∈ Xk, and if so, adds x to the list X and modifies v by evaluating f, it then sends
back this updated value; similarly, in response to the (“DELETE”, x) message, it checks that
x ∈ X, and if so, deletes it from the list and updates v by running D and sends back the updated
value. In the end of the computation, M outputs the current values for X and v. Let U ′f × X ′k
denote the domains for which the computational procedure for function f ∈ Fk is defined. For
all probabilistic polynomial-time adversaries Ak,

Pr[((f, aux f)← G(1k);u← Uf; (x,w)← Ak(f,Uf, u)↔M(f, aux f, u)→ (X, v) :

w ∈ U ′f; x ∈ X ′k; x /∈ X; f(w, x) = f(u,X)] = neg(k)

Proof. Let us exhibit a reduction from the adversary that violates the theorem to the adver-
sary that breaks the collision-resistance property of a secure accumulator. The reduction will
proceed in the following (straightforward) manner: On input (f,Uf, u), feed these values to the
adversary. To respond to an (“ADD”, x) query, simply update X and compute v = f(u,X). To
respond to a (“DELETE”,x) query, compute v = f(u,X \ {x}), and then update X. The success
of the adversary directly corresponds to the success of our reduction.

Finally, in the application we have in mind we require that the accumulator allows for an
efficient proof that a secret value given by some commitment is contained in a given accumulator
value. That is, we require that the accumulator be efficiently provable with respect to some
commitment scheme (Commit).

Zero-knowledge proof of member knowledge: There exists an efficient zero-knowledge proof of
knowledge system where the common inputs are c (where c = Commit(x, r) with a r being
a randomly chosen string), the accumulating function f and v ∈ Uf, and the prover’s inputs
are (r, x ∈ Xk, u ∈ Uf) for proving knowledge of x, w, r such that c = Commit(x, r) and
v = f(w, x).

If by “efficient” we mean “polynomial-time,” then any accumulator satisfies this property. How-
ever we consider a proof system efficient if it compares well with, for example, a proof of
knowledge of a discrete logarithm.
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3.2 Construction

The construction due to Barić and Pfitzmann [BP97] is the basis for our construction below.
The differences from the cited construction are that (1) the domain of the accumulated values
consists of prime numbers only; (2) we give a method for deleting values from the accumulator,
i.e., we construct a dynamic accumulator; (3) we give efficient algorithms for deleting a user
and updating a witness; and (4) we provide an efficient zero-knowledge proof of membership
knowledge.

• Fk is the family of functions that correspond to exponentiating modulo safe-prime prod-
ucts drawn from the integers of length k. Choosing f ∈ Fk amounts to choosing a random
modulus n = pq of length k, where p = 2p ′ + 1, q = 2q ′ + 1, and p,p ′,q,q ′ are all prime.
We will denote f corresponding to modulus n and domain XA,B by fn,A,B. We denote
fn,A,B by fn and by f when it does not cause confusion.

• XA,B is the {e ∈ primes : e 6= p ′, q ′ ∧ A ≤ e ≤ B}, where A and B can be chosen
with arbitrary polynomial dependence on the security parameter k, as long as 2 < A

and B < A2. X ′A,B is (any subset of) of the set of integer from [2,A2 − 1] such that
XA,B ⊆ X ′A,B.

• For f = fn, the auxiliary information aux f is the factorization of n.

• For f = fn, Uf = {u ∈ QRn : u 6= 1} and U ′f = Z∗n .

• For f = fn, f(u, x) = ux mod n. Note that f(f(u, x1), x2) = f(u, {x1, x2}) = ux1x2 mod n

• Update of the accumulator value. As mentioned earlier, adding a value x̃ to the accu-
mulator value v can be done as v ′ = f(v, x̃) = vx̃ mod n. Deleting a value x̃ from the
accumulator is as follows. D((p, q), v, x̃) = vx̃

−1mod(p−1)(q−1) mod n.

• Update of witness: As mentioned, updating the witness u after x̃ has been added can be
done by u ′ = f(u, x̃) = ux̃. In case, x̃ 6= x ∈ Xk has be deleted from the accumulator, the
witness u can be updated as follows. By the extended GCD algorithm, one can compute
the integers a,b such that ax + bx̃ = 1 and then u ′ = W(u, x, x̃, v, v ′) = ubv ′a. Let us
verify that f(u ′, x) = u ′x mod n = v ′:

(ubv ′
a
)x = (1)

((ubv ′
a
)xx̃)1/x̃ = (2)

((ux)bx̃(v ′
x̃
)ax)1/x̃ = (3)

(vbx̃vax)1/x̃ = v1/x̃ = v ′ (4)

Equation (2) is correct because x̃ is relatively prime to ϕ(n).

We note that adding or deleting several values at once can be done simply by letting x ′ be
the product of the added or deleted values. This also holds with respect to updating the witness.
More precisely, let πa be the product the x’s to add to and πd be the ones to delete from the
accumulator value v. Then, the new accumulator value v ′ := vπaπ

−1
d mod(p−1)(q−1) mod n. If u

was the witness that x was contained in v and x was not removed from the accumulator, i.e.,
x - πd, then u ′uaπav ′b mod n is a witness that x is contained in v ′, where a and b satisfy
ax+ bπd = 1 and are computed using the extended GCD algorithm.

Theorem 3. Under the strong RSA assumption, the above construction is a secure dynamic
accumulator.
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Proof. Everything besides security is immediate. By Theorem 2, it is sufficient to show that the
construction satisfies security as defined in Definition 1. Our proof is similar to the one given
by Barić-Pfitzmann for their construction (the difference being that we do not require x ′ to be
prime). The proof by Barić-Pfitzmann is actually the same as one given by Shamir [Sha83].

Suppose we are given an adversary A that, on input n and u ∈R QRn, outputs m primes
x1, . . . , xm ∈ XA,B and u ′ ∈ Z∗n, x ′ ∈ X ′A,B such that (u ′)x

′
= u

∏
xi . Let us use A to break the

strong RSA assumption.
Suppose n = pq that is a product of two safe primes, p = 2p ′+ 1 and q = 2q ′+ 1, is given.

Suppose the value u ∈ QRn is given as well. To break the strong RSA assumption, we must
output a value e > 1, y such that ye = u.

We shall proceed as follows: Give (n,u) to the adversary. Suppose the adversary comes up
with a forgery (u ′, x ′, (x1, . . . , xm)). Let x =

∏m
i=1 xi. Thus we have u ′x

′
= ux.

Claim. Let d = gcd(x, x ′). Then either d = 1 or d = xj for some 1 ≤ j ≤ m.

Proof of claim: Suppose d|x and d 6= 1. Then, as x1, . . . , xm are primes, it follows that d
is the product of a subset of primes. Suppose for some xi and xj we have xixj|d. Then xixj|x ′.
But this is a contradiction as xixj > x ′ must hold due to the definitions of XA,B and X ′A,B:
Because x ′ ∈ X ′A,B we have x ′ < A2. For any xi, xj ∈ XA,B, xixj ≥ A2 > x ′, as x1, x2 ≥ A.

Back to the proof of the theorem: Suppose that d 6= 1 is not relatively prime to φ(n). Then,
by the claim, for some j, d = xj. Because d = xj ∈ XA,B, d > 2 and d is prime. φ(n) = 4p ′q ′,
therefore d = p ′ or d = q ′. Then 2d + 1 is a non-trivial divisor of n, so in this case we can
factor n.

Suppose d is relatively prime to φ(n). Then, because (ux/d)d = ((u ′)x
′/d)d, it follows that

ux/d = (u ′)x
′/d. Let x̃ = x/d, and x̃ ′ = x ′/d. Because gcd(x, x ′) = d, the equation gcd(x̃, x̃ ′) =

1 holds and thus one can compute a, b such that ax̃ + bx̃ ′ = 1 by extended GCD algorithm.
Output (y := ũaub, x̃ ′). Note that yx̃

′
= (yx̃x̃

′
)1/x̃((ũx̃

′
)ax̃(ux̃)bx̃

′
)1/x̃ = ((ux̃)ax̃+bx̃

′
)1/x̃u and

thus y and x̃ ′ are a solution to the instance (n,u) of the flexible RSA problem.

3.3 Efficient Proof That a Committed Value Was Accumulated

Here we show that the accumulator exhibited above is efficiently provable with respect to the
Pedersen commitment scheme. Suppose that the parameters of the commitment scheme are
a group Gq, and two generators g and h such that logh g is unknown. Recall that to commit
to a value x ∈ Zq, one picks a random r ∈R Zq and outputs Commit(x, r) := gxhr. This
information-theoretically hiding commitment scheme is binding under the discrete-logarithm
assumption.

For the definitions of XA,B and the choice of q, we require that B2k
′+k ′′+2 < A2 − 1 < q/2

holds, where k ′ and k ′′ are security parameters, i.e., k ′ is the bit length of challenges in the PK
protocol below and k ′′ determines the statistical zero-knowledge property of the same protocol.
We set X ′A,B the largest possible set, i.e., to [2,A2 − 1].

Finally, we require that two elements g and h of QRn are available such that logg h is not
known to the prover, where n is the public key of the accumulator.

To prove that a given commitment Ce and a given accumulator v contain the same (secret)
value e, the following protocol is carried out. The common inputs to the protocol are the values
Ce, g, h, n, g, h, and v. The prover’s additional inputs are the values e, u, and r such that
ue = v mod n and Ce = gehr.

The prover will form a commitment Cu to u and prove that this commitment corresponds
to the e-th root of the value v. This is carried out as follows:
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1. The prover chooses r1, r2, r3 ∈R Zbn/4c, computes Ce := gehr1 , Cu := uhr2 , Cr := gr2hr3 ,
and sends Ce, Ce, Cu, and Cr to the verifier.

2. The prover and verifier carry out the following proof of knowledge:

PK
{
(α,β, γ, δ, ε, ζ,ϕ,ψ, η, σ, ξ) :

Ce = gαhϕ ∧ g = (
Ce

g
)γhψ ∧ g = (gCe)

σhξ ∧

Cr = hεgζ ∧ Ce = hαgη ∧ v = Cαu(
1

h
)β ∧ 1 = Cαr (

1

h
)δ(
1

g
)β ∧

α ∈ [−B2k
′+k ′′+2, B2k

′+k ′′+2]
}
.

The details of this protocol can be found in Appendix A.

Theorem 4. Under the strong RSA assumption the PK protocol in step 2 is a proof of knowl-
edge of two integers e ∈ X ′A,B = [2,A2 − 1] and u such that v ≡ ue (mod n) and Ce is a
commitment to e.

Proof. Showing that the protocol is statistical zero-knowledge is standard. Also, it is easy to
see that Ce, Ce, Cu, and Cr are statistically independent from u and e.

It remains to show that Ce if the verifier accepts, then a value e and a witness w that e
is in v can be extracted from the prover. Using standard rewinding techniques, the knowledge
extractor can get answers (sα, sβ, sγ, sδ, sε, sζ, sη, sϕ, sψ) and (s ′α, s

′
β, s

′
γ, s
′
δ, s
′
ε, s
′
η, s
′
ζ, s
′
ϕ, s

′
ψ)

for the two different challenges c and c ′. Let ∆α = sα − s ′α, ∆β = sβ − s ′β, ∆γ = sγ − s ′γ,
∆δ = sδ − s ′δ, ∆ε = sε − s ′ε, ∆ζ = sζ − s ′ζ, ∆η = sη − s ′η, ∆ϕ = sϕ − s ′ϕ mod q, ∆ψ = sψ − s ′ψ,
∆σ = sσ − s ′σ, ∆ξ = sξ − s ′ξ, and ∆c = c ′ − c. Then we have

C∆ce = g∆αh∆ϕ , g∆c = (
Ce

g
)∆γh∆ψ , g∆c = (gCe)

∆σh∆ξ (5)

C∆cr = h∆εg∆ζ , C∆ce = h∆αg∆η , (6)

v∆c = C∆αu (
1

h
)∆β , 1 = C∆αr (

1

h
)∆δ(

1

g
)∆β . (7)

We first show that Ce commits to an integer different from 1 and consider the first two
equations (5). Let α̃ := ∆α∆c−1 mod q, γ̃ := ∆γ∆c−1 mod q, ϕ̃ := ∆ϕ∆c−1 mod q, and
ψ̃ := ∆ψ∆c−1 mod q. Then we have

Ce = gα̃hϕ̃ and g = (
Ce

g
)γ̃hψ̃ = g(α̃−1)γ̃hϕ̃γ̃hψ̃ .

Under the hardness of computing discrete logarithms, 1 ≡ (α̃ − 1)γ̃ (mod q) must hold and
therefore α̃ 6= 1 (mod q) as otherwise γ̃ would not exists. Similarly, from the first and third
equation of (5) one can conclude that α̃ 6= −1 (mod q).

We next show that α̃ is accumulated in v. From the next two equations (6) one can derive
that ∆c divides ∆α, ∆η, ∆ε, and ∆ζ provided the strong RSA assumption. (While we do not
investigate this claim here, one can show that if ∆c does not divide ∆α, ∆η, ∆ε, and ∆ζ, then
from the Equations (6) one can compute a non-trivial root of g with probability at least 1/2.
This, however, is not feasible under the strong RSA assumption. We refer to, e.g., [DF01] for
the details of such a reduction.) Let α̂ = ∆α/∆c, η̂ = ∆η/∆c, ε̂ = ∆ε/∆c and ζ̂ = ∆ζ/∆c.
Because |c|, |c ′| < p ′, q ′, we get Cr = ahε̂gζ̂ for some a such that a2 = 1. Moreover, the value
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a must be either 1 or −1 as otherwise 1 < gcd (a− 1, n) < n and we could factor n. Plugging
Cr into the second equation of (7) we get

1 = a∆αh∆αε̂g∆αζ̂(
1

h
)∆δ(

1

g
)∆β ,

where a∆α must be 1 as 1, g, and h are in QRn and a2 = 1 otherwise. Under the hardness of
computing discrete logarithms we can conclude that ∆αζ̂ ≡ β̂ (mod ord(g)) and hence we get

v∆c = (
Cu

hζ̂
)∆α and v = b(

Cu

hζ̂
)α̂

with some b such that b2 = 1. Again b = ±1 as otherwise 1 < gcd (b± 1, n) < n and we could
factor n. Let s = −1 if α̂ < 0 and s = 1. Thus we have v = u|α̂|,

u =

(bCu
hζ̂

)s if α̂ is odd

(Cu
hζ̂

)s if α̂ is even.

The latter holds because v ∈ QRn and −1 6∈ QRn and therefore b = −1 is not possible.
Also note that α̂ 6= 0 as v 6= 1. Because sα, s ′α ∈ [−B2k

′+k ′′+1,−B2k
′+k ′′+1] we have ∆α, α̂ ∈

[−B2k
′+k ′′+2,−B2k

′+k ′′+2]. Because B2k
′+k ′′+2 < q/2 it follows that α̂ = (∆αĉ rem q)(α̃ rem q),

and hence that the absolute value committed to by Ce is indeed accumulated in v. As
B2k

′+k ′′+2 < A2 − 1, α̂ 6= ±1 mod q and α̂ 6= 0 we can conclude that |α̂| ∈ X ′A,B. There-
fore, due to Theorem 3, we can conclude that |α̂| must be contained in the accumulator value
v.

4 Application to ID Escrow, Group Signatures and Credential
Systems

In this section we describe how dynamic accumulators can be used to obtain membership revo-
cation for identity escrow and group signature schemes and credential systems. In particular,
we provide an efficient identity escrow scheme with membership revocation. We first informally
discuss the properties of identity escrow schemes with membership revocation. The translation
to group signatures scheme and credential systems is straightforward.

An identity escrow scheme with membership revocation consists of the following procedures:

Setup: An algorithm for the group manager to generate the system parameters, the group’s
public key, and her secret key.

Join: A protocol between a group member and the group manager. Their common input is
the group’s public key. Their common output is the user’s membership public key and
membership certificate. The user’s output is the membership secret key. In addition, the
group manager gets some information to be made available in a public archive as well as
an updated version of the group’s public key.

Prove membership: A protocol between a group member and a verifier (whose sole input consist
of the group’s public key) that allows the former to convince the latter of his membership
in the group.
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Anonymity revocation: A procedure that allows the group manager on input her secret key and
a verifier’s transcript of the membership-proof protocol outputs the membership public
key of the user with whom the verifier ran the protocol in question.

Membership revocation: A procedure for the group manager to remove a member from the
group. This procedure results in an updated group’s public key as well as some information
to be made available in a public archive.

Membership update: A procedure for the group members to update their membership certifi-
cates using the information available in the public archives and the current public key of
the group.

The scheme must provide the following properties.

Correctness: The scheme functions properly if all participants are honest.
Unforgeability and traceability: Upon revocation of its anonymity, each transcript of a success-

ful membership-proof reveals the identity of a user who was a member of the group at
the time the protocol in question took place.

Exculpability: It is infeasible (even to the group manager) to make it appear that an honest
user participated in a membership-proof if he did not.

Anonymity and unlinkability: Linking a transcript of membership-proof protocol (run with a
possible dishonest verifier) to a user is computationally infeasible to everyone but the
group manager and so is determining whether two transcripts stem from the same or
from different users. We stress that in case a user’s membership is revoked, anonymity
and unlinkability is retained for transcripts stemming from the interaction with that user
prior to his membership revocation.

All of the above properties must hold even in the presence of an adversary that is allowed
to run all the protocols and procedures adaptively with the honest parties. This can be made
formal in an ideal-world/real-world model (c.f. [Can95, Can00, PW00] ) similarly as is done by
Camenisch and Lysyanskaya [CL01b] for identity escrow schemes.

4.1 Overview of Efficient Group Signatures and Credential Systems

Recall the ACJT [ACJT00] identity escrow scheme. (Recall that the ACJT group signature
scheme is obtained from the ACJT identity escrow by applying the Fiat-Shamir heuristic to
the protocol for proving membership.) The group manager has a public key PK , consisting
of a number n, which is a product of two safe primes, the values a, b, g, h, and y which are
quadratic residues modulo n, and two intervals Γ and ∆. The value z = logg y is a secret key
of the group manager used for revocation. A user Ui’s membership certificate consists of a
user’s secret xi selected jointly by the user and the group manager (it is selected in a secure
manner that ensures that the group manager obtains no information about this value) from an
appropriate integer range, i.e., ∆, and the values vi and ei, where ei is a prime number selected
from another appropriate range, i.e., Γ , and veii = axib mod n. The value axi is user Ui’s public
key. When Ui proves membership in a group, he effectively proves knowledge of a membership
certificate (x, v, e). This proof is as follows. The group member chooses r ′1, r

′
2 ∈R∈R Zbn/4c and

computes T1 := vyr
′
1 , T2 := gr

′
1 , and T3 := gehr

′
2 . The group member sends T1, T2, and T3 to

the verifier and carries out with the verifier the protocol denoted

PK
{
(α,β, γ, δ, ε) : b = Tα1

(1
a

)β(1
y

)γ
∧ 1 = Tα2

(1
g

)γ
∧ T2 = gδ ∧ T3 = gαhε ∧

α ∈ Γ ∧ β ∈ ∆
}
.
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As with all group signature and identity escrow schemes, only the group manager can assert
a signature/protocol transcript to a group member, i.e., knowing z, the group manager can
compute the value v̂ = T1/T2

z that identifies the user.
The Camenisch and Lysyanskaya [CL01a] credential system has a similar construction. An

organization’s public key consists of a number n, which is a product of two safe primes, and
the values a, b, c, g and h which are all quadratic residues modulo n. A user Ui’s secret key
xi, selected from an appropriate integer range, is incorporated into all of Ui’s credentials. A
credential tuple for user Ui consists of his secret key xi, a secret value si selected jointly by the
Ui and the organization (via a secure computation which ensures secrecy for the user) from an
appropriate integer range, and the values vi and ei such that ei is a prime number selected by
the organization from an appropriate integer interval, and vi is such that veii = axbsc mod N.
Proving possession of a credential is effectively a proof of knowledge of a credential tuple.

Variations of these schemes incorporate such features as anonymity revocation, non-trans-
ferability, one-show credentials, expiration dates, and appointed verifiers. For all these vari-
ations, an integral part of a group membership certificate and of a credential, is the prime
number ei. Using one-way accumulators, we can accumulate ei’s into a single public value u.
Proof of group membership will now have to include proof of knowledge of a witness to the fact
that ei was accumulated into u.

In the sequel, we will talk about augmenting the ACJT identity escrow scheme with the
membership revocation property; however, all our results and discussion applies immediately
to the credential scheme and group signature discussed above.

4.2 Incorporating Revocation into the ACJT Identity Escrow Scheme

To make certificate revocation possible, the additions outlined below have to be made to the
usual operations the ACJT identity escrow scheme.

Modifications to the group manager’s operations are as follows:

Setup: In addition to setting up the identity escrow scheme, the group manager creates the
public modulus n for the accumulator, chooses a random u, g, h ∈ QRn and publishes
(n,u, g, h). She sets up (empty for now) public archives Eadd for storing values that
correspond to added users and Edelete for storing values that correspond to deleted users.
Set X ′A,B = Γ and XA,B to the interval from which the group manager chooses e in the
ACJT scheme ( XA,B ⊆ X ′A,B ⊆ [2,A2 − 1] will be satisfied).

Join: Issue the user’s membership certificate, as in the identity escrow scheme. Add the current
u to the user’s membership certificate. (Denote it by ui.) Let ei be the prime number
used in this certificate. Update u in the public key: u := fn(u, ei). Update Eadd: store ei
there.

Revoke membership: Retrieve ei which is the prime number corresponding to the user’s mem-
bership certificate. Update u in the public key: u := D(ϕ(n), u, ei). Update Edelete: store
ei there.

We stress that the archives are Eadd and Edelete are not part of the group’s public key, i.e.,
the verifier is not required to read them for any verification purposes. Also, note that is it not
necessary to restrict read access to these archives only to group members.

A user Ui must augment the ACJT protocol as follows:

Join: Store the value ui along with the rest of the membership certificate. Verify that
fn(ui, ei) = u

ei
i = u.
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Update membership: An entry in the archive is called “new” if it was entered after the last
time Ui performed an update.

1. Let y denote the old value of u.

2. For all new ej ∈ Eadd, ui := f(ui,
∏
ej) = u

∏
ej

i and y := y
∏
ej

3. For all new ej ∈ Edelete, ui := W(ui, ei,
∏
ej, y, u).

(Note that as a result u = f(ui, ei).)
Prove membership: Proving membership is augmented with the step of proving that a commit-

ted value is part of the accumulated value v (contained in the current public key). That
is, in addition to T1, T2, and T3 the group member computes the values Ce := gehr1 ,
Cu := uhr2 , and Cr := gr2hr3 and sends them to verifier, with random choices
r1, r2, r3 ∈R Zbn/4c. Then the verifier and the group member engage in the protocol
denoted

PK
{
(α,β, γ, δ, ε, ξ, ζ,ϕ,ψ, η) :

w ≡ Tα1
(1
a

)β(1
y

)γ
∧ 1 ≡ Tα2

(1
g

)γ
∧ T2 ≡ gδ ∧ T3 ≡ gαhε ∧

Cr = hξgζ ∧ Ce = hαgη ∧ v = Cαu(
1

h
)ϕ ∧ 1 = Cαr (

1

h
)ψ(

1

g
)ϕ ∧

α ∈ Γ ∧ β ∈ ∆
}
.

This protocol is already an optimized union of the PK protocol given in the previous
section and the ACJT PK protocol for proving group membership. That is, different
from the previous section, we do not require the group Gq for the commitment scheme
because here the value T3 acts as commitment to the value whose membership in the
accumulator is claimed. Furthermore, as −1, 0, 1 6∈ Γ , we need not show that α 6= −1, 0, 1.

The complexity of this augmented proof is about twice that of the original one. The
definition of Γ is compatible with the accumulator and the proof that a committed value
is contained in the accumulator as presented in the previous section. Also, Γ excludes 1
and hence it is not required to explicitly prove that the committed value is not 1.

Remark. Updates after a users joined the group can be avoided if the group managers chooses
all the ei at setup-time and already accumulates them, i.e., u := fn(u,

∏
ei). Note that the

group manager can always compute the witness for ei as u1/ei . If this is done, only deletion
of member requires updates by the group manager and the group members (or if the group
manager runs out of ei’s).

Lemma 5. Under the strong RSA assumption the above is a secure identity escrow scheme
with membership revocation.

Proof (sketch). It is not hard to show the security of this lemma in a formal model given the
security proofs of the ACJT scheme and the proof of Theorem 4. Let us provide an informal
argument here.

First of all, note that all the properties of the original ACJT scheme are retained as the
amount of information revealed by Ce, Cu, and Cr about the group member’s certificate is
negligible (i.e., Ce, Cu, and Cr are statistically hiding commitments and the PK -protocol is
statistical zero-knowledge). It remains to argue that excluded group members can no longer
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prove group membership even if they collude in an adaptive attack against the group manager.
Similarly as in the proof of Theorem 4, one can show that the above of a protocol is a proof
of knowledge of a quadruple (x̂, v̂, ê, û) such that ax̂b = v̂ê and ûê = u hold, i.e., such that
(x̂, v̂, ê) is valid group membership certificate and ê is contained in the accumulator value u.
In [ACJT00], Ateniese et al. show that under the strong RSA assumption an adaptive adversary
controlling all users cannot find a triple (x̃, ṽ, ẽ) that is different from the ones legitimately
obtained through the join protocol. On other words, the values axi and ei are tightly linked.
Therefore, the user with public key axi is no longer able to prove membership of the group once
an ei is removed from the accumulator value as the accumulator is secure against an adaptive
adversary (Theorem 2). We note that all these arguments hold in spite of the fact that all
members’ (current and past one) ei’s are public. It follows that anonymity and unlinkability is
retained for actions past members made prior to their exclusion from the group.
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A Protocol to Prove that a Committed Value is Accumulated

This section provides the details of the protocol denoted

PK
{
(α,β, γ, δ, ε, ζ,ϕ,ψ, η) : Ce = gαhϕ ∧ g = (

Ce

g
)γhψ ∧ Cr = hεgζ ∧

Ce = hαgη ∧ v = Cαu(
1

h
)β ∧ 1 = Cαr (

1

h
)δ(
1

g
)β ∧ α ∈ [−B2k

′+k ′′+2, B2k
′+k ′′+2]

}
.

that can be used (as described in §3.3) to prove that value committed to in Ce is accumulated
in v. The values Cu, Ce and Cr are auxiliary commitments (c.f. §3.3).

1. The prover chooses

rα ∈R (−B2k
′+k ′′ , . . . , B2k

′+k ′′) ,

rγ, rϕ, rψ, rσ, rξ ∈R Zq ,

rε, rη, rζ ∈R (−bn/4c2k ′+k ′′ , . . . , bn/4c2k ′+k ′′) , and

rβ, rδ ∈R (−bn/4cq2k ′+k ′′ , . . . , bn/4cq2k ′+k ′′) ,

computes

t1 := grαhrϕ , t2 := (
Ce

g
)rγhrψ , t3 := (gCe)

rσhrξ ,

t1 := hrεgrζ , t2 := hrαgrη , t3 := Crαu (
1

h
)rβ , and

t4 := Crαr (
1

h
)rδ(

1

g
)rβ

and sends t1, t2, t3, t1, t2, t3, and t4 to the verifier.

2. The verifier chooses c ∈R {0, 1}k and sends it to the prover.

3. The prover computes

sα := rα − ce , sη := rβ − cr1 , sϕ := rϕ − cr mod q ,

sβ := rβ − cr2e , sε := rε − cr2 , sγ := rγ − c(e− 1)−1 mod q ,

sζ := rζ − cr3 , sδ := rδ − cr3e , sψ := rψ − cr(e− 1)−1 mod q ,

sσ := rσ − c(e+ 1)−1 mod q , and sξ := rξ − cr(e+ 1)−1 mod q

and sends them to the verifier.
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4. The verifier accepts if the following equations hold:

t1
?
= Cceg

sαhsϕ , t2
?
= gc(

Ce

g
)sγhsψ , t3

?
= gc(gCe)

sσhsξ ,

t1
?
= Ccrh

sεgsζ , t2
?
= Cceh

sαgsη , t3
?
= vcCsαu (

1

h
)sβ ,

t4
?
= Csαr (

1

h
)sδ(

1

g
)sβ , and sα

?
∈ [−B2k

′+k ′′+1, B2k
′+k ′′+1] .
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