
Automated Analysis and Synthesis of
Authenticated Encryption Schemes

Viet Tung Hoang
University of Maryland
Georgetown University

tvhoang@umd.edu

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Alex J. Malozemoff
University of Maryland

amaloz@cs.umd.edu

Abstract

Authenticated encryption (AE) schemes are symmetric-key encryption schemes ensuring strong no-
tions of confidentiality and integrity. Although various AE schemes are known, there remains significant
interest in developing schemes that are more efficient, meet even stronger security notions (e.g., misuse-
resistance), or satisfy certain non-cryptographic properties (e.g., being patent-free).

We present an automated approach for analyzing and synthesizing blockcipher-based AE schemes,
significantly extending prior work by Malozemoff et al. (CSF 2014) who synthesize encryption schemes
satisfying confidentiality only. Our main insight is to restrict attention to a certain class of schemes that
is expressive enough to capture several known constructions yet also admits automated reasoning about
security. We use our approach to generate thousands of AE schemes with provable security guarantees,
both known (e.g., variants of OCB and CCM) and new. Implementing two of these new schemes, we find
their performance competitive with existing, state-of-the-art AE schemes.

1 Introduction
Historically, symmetric-key encryption schemes were designed only to ensure confidentiality. With the re-
alization that practitioners were often (implicitly) assuming that such schemes also provided some form of
integrity, however, researchers began explicit consideration and analysis of encryption schemes additionally
satisfying that property [15, 7]. Since then, a tremendous amount of research has focused on the design of
authenticated encryption (AE) schemes ensuring both confidentiality and integrity.

While a generic construction of an AE scheme based on any CPA-secure encryption scheme and message
authentication code is possible [7], more efficient AE schemes can be devised. One example is OCB [24,
22, 16], which is online (i.e., requires only a single pass over the data), provably secure, and very fast.
Unfortunately, due to patent restrictions, the scheme has not gained widespread use. Other well-known AE
schemes include CCM [10] and GCM [19]; however, these schemes are slower than OCB [16] and have other
disadvantages as well.1

Designing AE schemes remains a nontrivial task, and even well-studied AE schemes can sometimes admit
surprising optimizations. For example, OCB was first introduced in 2001 [24] and its authors have been active
in maintaining and optimizing it, releasing OCB2 in 2004 [22] and OCB3 in 2011 [16]. In spite of all this,
Minematsu [20] was able to recently show that a simple change allows OCB to be constructed using only
the forward direction of the underlying blockcipher. Overall, the problem of designing AE schemes is still of
significant interest to the cryptographic community, as evidenced, e.g., by the CAESAR competition [9].

Motivated by the above concerns, we propose in this work an automated approach for analyzing and
synthesizing AE schemes. Our approach builds on and extends the work of Malozemoff et al. [18], who
explored a similar goal but for the case of encryption schemes achieving confidentiality only. (We also

1For example, GCM is fairly complex and has a problematic security proof [13], whereas CCM is not online and cannot
pre-process associated data.

1

explicitly consider messages of arbitrary length, whereas Malozemoff et al. only deal with messages whose
length is a multiple of the block length.) At a high level, as in their work, we view an encryption scheme as
being defined by a directed acyclic graph in which each node corresponds to an instruction (e.g., XORing two
values) and is associated with an intermediate n-bit value (where n is the block length). The graph defines
how individual message blocks are processed; messages of arbitrary length are encrypted by iterating the
computation defined by this graph over all the blocks of the message. (We actually consider processing two
message blocks at a time, as this allows us to capture more AE schemes within our framework.) We develop
a type system for the nodes of such graphs, and define constraints on how nodes can be typed based on their
parents’ types. We then show that any “well-typed” graph defines a secure AE scheme. This allows us to
automatically analyze a given scheme by checking whether the graph defining the scheme can be properly
typed, and to synthesize schemes by enumerating over valid graphs and determining whether each one is
secure.

Although our high-level approach is similar to that of Malozemoff et al., the technical details differ
greatly due to the added challenge of handling integrity (which was left as an explicit open question in their
work). Indeed, we were unable to directly extend their work to deal with integrity; instead, we modify their
approach and consider a restricted class of encryption schemes for which an automated analysis of integrity
is tractable. Specifically, we focus on schemes constructed from tweakable2 blockciphers [17] in a particular
way. Several existing AE schemes satisfy our requirements, indicating that our framework is not overly
restrictive. Despite our attention to this restricted class of schemes, our graphs turn out to be a lot more
complex than those considered by Malozemoff et al., and their analysis requires new techniques. As one
illustration of this, we note that in the prior work it is relatively easy to derive the decryption algorithm
from the encryption algorithm, as there is only one path (in the graph representing the encryption algorithm)
from a node representing a plaintext block to a node representing a ciphertext block. In our case, this no
longer holds—e.g., the graphs of schemes like OTR [20] have multiple paths between such pairs of nodes—
and so we instead work backward, starting from a description of the decryption algorithm and then applying
a nontrivial algorithm to derive the graph of the corresponding encryption algorithm.

Using our approach, we are able to synthesize thousands of secure AE schemes, hundreds of which are
“optimal” in the sense that they use only one tweakable blockcipher call per block, on par with OCB. These
schemes are provably secure, and our analysis tool not only verifies their security but also gives concrete
security bounds. (In contrast, the prior work of Malozemoff et al. [18] only implied asymptotic security.) We
also employ a simple algorithm to identify fully parallelizable constructions among the “optimal” schemes;
we discover seventeen new such schemes, five of which use the same number of instructions as OCB. We
implement two of those schemes and find that their efficiency is comparable to that of OCB. Thus, these
schemes may be of interest to practitioners looking for efficient, simple, and patent-free AE schemes. Finally,
in Appendix C, we devise a method for automatically searching for attacks on schemes that our approach
cannot prove secure. Interestingly, we find that most schemes that cannot be proven secure by our tools are
indeed susceptible to concrete attacks.

Related work. Recently there has been a growing interest in applying automated techniques to the analysis
and design of cryptographic primitives. In the public-key setting, Barthe et al. [4] introduced an approach
applicable to RSA-based encryption schemes. More recently, Tiwari et al. [25] developed a unified technique
for synthesizing both RSA-based encryption schemes and modes of operation, among other cryptographic
primitives. Other work has looked at automated analysis of assumptions in generic groups [5] with appli-
cations to automated synthesis of signature schemes having certain properties [5, 6]. Finally, Akinyele et
al. [1, 2] have developed tools for analyzing signature and encryption schemes to determine when (and how)
known secure transformations can be applied.

2Roughly, a tweakable blockcipher accepts a “tweak” in addition to a key and an input block; for a fixed key, different tweaks
should produce “independent-looking” permutations. See the following section for a formal definition.

2

2 Preliminaries
Notation. Let Z be the set of integers, and let N denote the set of positive integers. Let {0, 1}∗ be the set of
all binary strings, including the empty string. For a string M , let |M | be the length of M . For M ∈ {0, 1}∗
and 1 ≤ i ≤ j ≤ |M |, let M [i] denote the i-th bit of M , and M [i, j] the substring of M from the ith to the
jth bit, inclusive. For two strings X and Y , we write XY or X ‖Y to denote the concatenation of X and Y .

We write x←$ S to denote uniform sampling of x from finite set S. For finite sets S1, S2, and random
variables X,Y ∈ S1, Z ∈ S2, define ‖X − Y | Z‖, the statistical distance between X and Y given Z, as

1
2
∑

v∈S1,z∈S2

Pr[Z = z] ·
∣∣∣Pr[X = v | Z = z]− Pr[Y = v | Z = z]

∣∣∣.
Games. We use the code-based, game-playing framework of Bellare and Rogaway [8], and we assume the
reader is familiar with this framework.
Tweakable blockciphers [17]. Let n ∈ N. A tweakable blockcipher on n-bit strings with tweak space T
and key space K is a map E : K × T × {0, 1}n → {0, 1}n such that EK(T, ·) is a permutation on {0, 1}n for
any K ∈ K and T ∈ T . Let E−1 denote the inverse of E, meaning E−1

K (T,EK(T, x)) = x for K ∈ K, T ∈ T ,
and x ∈ {0, 1}n. For brevity we sometimes write ETK(x) for EK(T, x). Define the strong tweakable-PRP
advantage of an adversary A against E as

Adv±p̃rp
E (A) =

∣∣∣Pr[K←$ K : AEK(·,·),E−1
K

(·,·) ⇒ 1]− Pr[π←$ Perm(T , n) : Aπ(·,·),π−1(·,·) ⇒ 1]
∣∣∣,

where Perm(T , n) is the set of all T -indexed families of permutations on {0, 1}n. (I.e., Perm(T , n) is the
set of all functions π : T × {0, 1}n → {0, 1}n with the property that for each T ∈ T , the reduced function
π(T, ·) is a permutation on {0, 1}n.) If the adversary is prohibited from making queries to the second oracle,
we drop the word “strong” and write Advp̃rp

E (A) instead.
Authenticated encryption. Rather than view encryption schemes as being randomized or stateful, we
follow Rogaway [23] in viewing them as deterministic transformations that take as input a message along
with some associated data (which need not be kept secret) as well as a user-supplied nonce. Security is then
required to hold as long as the same nonce is never used twice.

Formally, an authenticated encryption (AE) scheme [7, 15, 21, 23] is a tuple Π = (K, E ,D) with key
space K, nonce space N , associated data space A, message space M, and tag length τ ∈ N. Both algorithms
E and D are deterministic. The encryption algorithm E maps an input tuple (K,N,A,M) ∈ K×N ×A×M
to a ciphertext C ∈ {0, 1}∗. Decryption D reverses encryption, mapping an input tuple (K,N,A,C) ∈
K × N × A × {0, 1}∗ to either a message M ∈ M or a distinguished error symbol ⊥. The correctness
requirement demands that DN,A

K (EN,AK (M)) = M for every (K,N,A,M) ∈ K ×N ×A×M.
We define the privacy advantage of an adversary A against an AE scheme Π as

Advpriv
Π (A) = Pr[K←$ K : AEK(·,·,·) ⇒ 1]− Pr[A$(·,·,·) ⇒ 1],

where $(·, ·, ·) is an oracle that, on any input (N,A,M), outputs a fresh, uniform (|M |+ τ)-bit answer. We
require here that the adversary never uses the same nonce twice as input to its oracle. Informally, a scheme
satisfies privacy if the privacy advantage of any efficient adversary is small. Nonces used by the honest party
during encryption need only be unique3, not uniform.

For authenticity, the adversary is again given access to an encryption oracle EK(·, ·, ·), and as before
must not use the same nonce twice. We say that A outputs a forgery if it outputs (N,A,C) such that
DK(N,A,C) 6= ⊥ and C was not the result of a prior oracle query EK(N,A,M) for some message M .
We define the authenticity advantage of A as Advauth

Π (A) = Pr[K←$ K : AEK(·,·,·) outputs a forgery].
Informally, a scheme satisfies authenticity if the authenticity advantage of any efficient adversary is small.

3The requirement that nonces be unique is necessary, since repeating (N, A, M) will repeat the corresponding ciphertext.
For real schemes such as OCB, reusing a nonce is devastating, damaging the privacy and authenticity of not just past queries,
but also future ones. It is the responsibility of the implementation to ensure that nonces are unique.

3

3 Automated Security Analysis
We now describe our approach to the automated analysis of AE schemes constructed from tweakable block-
ciphers following a particular template (cf. Section 3.1). Although this template does not capture all known
AE schemes, it is expressive enough to include simplified variants of, e.g., OCB [22], XCBC [12], COPA [3],
OTR [20], and CCM [10].4

As discussed in the Introduction, we view an encryption scheme as being defined by a directed acyclic
graph in which each node is associated with an instruction and carries an n-bit intermediate value. In
Section 3.2 we describe a type system for the nodes of such graphs, and show how to use these types for
reasoning about properties of the intermediate values that those nodes carry. Then, in Section 3.3, we
show how this reasoning enables us to automatically verify whether an AE scheme, given by its graph
representation, satisfies privacy and authenticity.

3.1 A Template for AE Schemes
Fix associated data space A, and let N = {0, 1}n. Let T = N ×A×Z and let E : K×T ×{0, 1}n → {0, 1}n
be a tweakable blockcipher.5 We consider AE schemes Π[E] = (K, E ,D) that use E as an oracle. The
schemes we consider have message space6 M = ({0, 1}2n)∗ and are built from algorithms (Enc,Dec,Tag)
having the following form:

• EncEK takes as input tweak T = (N,A, v) ∈ T , an initial state X ∈ {0, 1}2n, and a (double-length)
message block M ∈ {0, 1}2n. It outputs a (double-length) ciphertext block C ∈ {0, 1}2n and final state
Y ∈ {0, 1}2n. This algorithm makes a fixed number of queries to EK , denoted by Cost(Π), and we
require that the tweak in the ith such query is (N,A, v + i− 1).

• DecEK ,E
−1
K “inverts” algorithm Enc in the following sense: if EncEK (T,X,M) = (Y,C) then it holds

that DecEK ,E
−1
K (T,X,C) = (Y,M).

• TagEK takes as input tweak T ∈ T and initial state X ∈ {0, 1}2n, and produces a tag V ∈ {0, 1}n. It
makes a single query to EK using tweak T .

The encryption/decryption algorithms (E ,D) of Π are then defined as in Figure 3.1, where we require τ ≤ n.
Roughly, to encrypt a message M = M1M2 · · ·M2m using nonce N and associated data A, set the initial
state X = 02n and set T = (N,A, 1). Then, iteratively process two message blocks at a time using Enc, each
time updating the initial state and outputting the next two ciphertext blocks. After processing the entire
message, Tag is used to compute a tag based on the final state output by Enc and a designated tweak that
depends on the message length; the (truncated) tag is appended to the ciphertext.

Graph representation. As in the work of Malozemoff et al. [18], we represent algorithms Enc, Dec, and
Tag as directed acyclic graphs, where each node is associated with an instruction and carries an n-bit value.
The n-bit value on each node is determined by applying the instruction at that node to the values at the
parent nodes. In the next section we introduce a system for “typing” the nodes of such graphs; our main
theorem states that AE schemes built from Enc, Dec, and Tag algorithms whose graphs can be correctly
typed are secure.

The main instructions we support are XOR, which computes the XOR of two n-bit strings, and TBC,
which invokes the tweakable blockcipher or its inverse. We also have an instruction DUP that duplicates a

4For efficiency, the real-world variants are often built directly from a blockcipher instead of a tweakable one, and employ a
scheme-specific way to handle fragmentary data. The real-world CCM is not online due to its treatment of fragmentary data,
whereas our variant is online. OCB is built from a tweakable blockcipher, but the tweaks are (N, i) instead of (N, A, i). To
handle associated data, OCB employs an XOR-universal hash (based on a tweakable blockcipher), and XORs the hash image
to the tag.

5One can extend the XEX construction [22] of a tweakable blockcipher from any blockcipher to tweak space N ×{0, 1}∗×Z
as follows: On tweak (N, A, i), one applies a (keyed) universal hash to (N, A) to derive a synthetic nonce N ′, and apply the
XEX construction on (N ′, i). By buffering L, hashing need only be done once per message.

6Messages of arbitrary length can be handled by naive padding in the usual way. In Appendix B we describe a more efficient
approach for handling messages of arbitrary length.

4

EK(N,A,M)
X := 02n; v := 1; M1 · · ·M2m := M // |Mi| = n
for i = 1 to m do
T := (N,A, v)
(Y,C2i−1C2i) := EncEK (T,X,M2i−1M2i) // |Cj | = n
v := v + Cost(Π); X := Y

T := (N,A, 1− v); V := TagEK (T,X)
return C1 · · ·C2m ‖ V [1, τ]
DK(N,A,C)
if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2m ‖ tag := C // |Ci| = n and |tag | = τ
X := 02n; v := 1
for i = 1 to m do
T := (N,A, v)
(Y,M2i−1M2i) := DecEK ,E−1

K (T,X,C2i−1C2i)
v := v + Cost(Π); X := Y

T := (N,A, 1− v); V := TagEK (T,X)
if tag 6= V [1, τ] then return ⊥ else return M1 · · ·M2m

Figure 3.1: Code of an AE scheme Π = (K, E ,D) following our template. The scheme is based on a tweakable
blockcipher E and a triple of deterministic algorithms (Enc,Dec,Tag).

value. Nodes corresponding to input blocks are labeled IN, those corresponding to output blocks are labeled
OUT, those corresponding to the initial state are labeled INI, and those corresponding to the final state are
labeled FIN. These labels, along with their in-/out-degree, are summarized for convenience next:

Name In-deg Out-deg Meaning

IN 0 1 Input block
INI 0 1 Initial state
FIN 1 0 Final state
OUT 1 0 Output block
DUP 1 2 Duplicate
XOR 2 1 XOR operation
TBC 1 1 Tweakable blockcipher

Figure 3.2 illustrates the OCB scheme [22] and its Enc,Dec, and Tag graphs, whereas Figure 3.3 shows
the corresponding algorithms. (In OCB, only the first n bits of the state are used, so we treat the state as
an element of {0, 1}n.) Note that Figure 3.2 is informal and omits information needed to fully specify OCB;
see next for formal details of how graphs are specified.

Formally, we denote a graph G by a tuple (d, r, F, P, L), where d ∈ {2, 4} is the total number of IN and INI
nodes (Enc and Dec graphs have d = 4; Tag graphs have d = 2), and r ∈ N is the total number of nodes. Each
node in the graph is numbered from 1 to r, and we require that if node i is a parent of node j then i < j. (This
ensures that G is acyclic.) Let Nodes denote the power set of {1, . . . , r}, and let Inst = {IN, . . . , TBC} be the
set of instructions. Then F : {1, . . . , r} → Inst gives the instruction of each node and P : {1, . . . , r} → Nodes
gives the set of parents for each node. We require that F (1) = F (2) = INI and F (r) = OUT. For Enc and
Dec graphs, we additionally require that F (3) = F (4) = IN, F (r− 2) = F (r− 3) = FIN, and F (r− 1) = OUT.

For Enc and Dec graphs, let S ⊂ {1, . . . , r} be the set of all nodes corresponding to a TBC instruction.
Function L : S → Z specifies, for each such node i, whether the tweakable blockcipher is computed in the
forward direction (if L(i) ≥ 0) or the reverse direction (if L(i) < 0) at that node.7 (Note that L(i) ≥ 0 for

7While it might be conceptually simpler to use two different instructions for EK and E−1
K , instead of just a single TBC

instruction with positive/negative labels, our approach is an optimization that prunes the search space when synthesizing
schemes (cf. Section 4).

5

M3M1 M2

C1

Σ

C2 C3 tag

M4

C4

τ

N,A,1

EK

N,A,2
EK

N,A,3

EK

N,A,4
EK

N,A,−4

INI IN

OUT OUT

IN

XOR DUP DUP

TBC TBCXOR

FIN

INI

TBC

OUT

INI IN

OUT OUT

IN

XOR TBC TBC

DUP DUPXOR

FIN

EK

Figure 3.2: The OCB scheme (left) illustrated for a four-block message M1, . . . ,M4, where Σ is the checksum
M1⊕· · ·⊕M4, and the graph representations for its algorithms Enc (middle left), Dec (middle right), and Tag (right).

EncEK (T,X,M1,M2)
(N,A, v) := T
X1, X2 := X // |Xi| = n
C1 := EK(T,M1)
T := (N,A, v + 1)
C2 := EK(T,M2)
Y := (X1 ⊕M1 ⊕M2) ‖X2
return (Y,C1, C2)

DecEK ,E−1
K (T,X,C1, C2)

(N,A, v) := T
X1, X2 := X // |Xi| = n
M1 := E−1

k (T,C1)
T := (N,A, v + 1)
M2 := E−1

K (T,C2)
Y := (X1 ⊕M1 ⊕M2) ‖X2
return (Y,M1,M2)

TagEK (T,X)
X1, X2 := X
V := EK(T,X1)
return V

Figure 3.3: The algorithms (Enc,Dec,Tag) corresponding to OCB. We have Cost(OCB) = 2.

Enc graphs.) Moreover, |L(i)| determines the tweak at node i; i.e., on input tweak (N,A, v), the tweak at
node i is (N,A, v + |L(i)|).

Let G− = (d, r, F, P) denote the unlabeled graph corresponding to a graph G. In Section 3.2, we introduce
a type system and show that one can reason about the security of an AE scheme by evaluating the scheme’s
unlabeled graphs.

Fix some graph G, tweakable blockcipher E, and key K. Given a tweak T and n-bit values for all
INI/IN nodes in G, we can naturally define an n-bit value Zi associated with each node i in the graph.
We describe this formally as procedure Eval in Figure 3.4, which shows how to compute Zi given values
Z1, . . . , Zd ∈ {0, 1}n and tweak T .

3.2 A Type System for AE Schemes
Let Types = {$,⊥, 0, 1} be a set of “types” we can assign to nodes. Intuitively, ‘$’ indicates a node whose
output value is (pseudo)random (when the key K for E is random and secret), whereas ‘⊥’ indicates a node
whose output value is arbitrary (i.e., potentially controlled by an attacker). Looking ahead, types ‘0’ and ‘1’
will be used to compare values on the same node in two different decryption queries using the same nonce
and associated data; ‘0’ means the corresponding values are the same, and ‘1’ means they are different.

In Figure 3.5, we define a deterministic procedure Map that takes as input an unlabeled graph G−, pre-
assigned types type1, . . . , typed ∈ Types for all the INI/IN nodes, and a boolean flag rand, and returns a
map R that associates each node i with a pair (typei, ctri) ∈ Types × N. The procedure Map traverses the
graph in topological order and assigns types to each node of the graph based on the instruction associated
with that node and the types of its parents. These types are used for probabilistic reasoning about the
underlying n-bit values on that node; e.g., we show that if a node has type $ then the n-bit value of that
node is (pseudo)random. The ctr values are used as “timestamps” for values output by TBC nodes in order to

6

proc EvalEK ,E−1
K (G,T, Z1, . . . , Zd)

(d, r, F, P, L) := G
for i = d+ 1 to r do

if F (i) ∈ {DUP, OUT, FIN} then {p} := P (i); Zi := Zp
elseif F (i) = XOR then {p1, p2} := P (i); Zi := Zp1 ⊕ Zp2

else // F (i) = TBC
` := L(i); (N,A, v) := T
T ∗ := (N,A, v + |`|); {p} := P (i)
if ` > 0 then Zi := EK(T ∗, Zp) else Zi := E−1

K (T ∗, Zp)
return (Z1, . . . , Zr)

Figure 3.4: Procedure to compute the value Zi of each node i in a graph G, given input Z1, . . . , Zd and tweak T .

proc Map(G−, type1, . . . , typed, rand)
(d, r, F, P) := G−; maxCtr := 0
for i = 1 to d do

if typei = $ then R(i) := ($, 1); maxCtr := 1
else R(i) := (typei, 0)

for i = d+ 1 to r do
if F (i) ∈ {FIN, OUT, DUP} then
{p} := P (i); R(i) := R(p)

elseif F (i) = TBC then
{p} := P (i); (x, ctr) := R(p)
if x ∈ {1, $} or (rand = true) then

maxCtr := maxCtr + 1; R(i) := ($,maxCtr)
else R(i) := (x, ctr)

else // F (i) = XOR
{p1, p2} := P (i); (x, ctr) := R(p1); (y, ctr′) := R(p2)
// Assume that ctr ≥ ctr′

if (x, y) ∈ {(0, 0), (0, 1), (1, 0)} then R(i) := (x⊕ y, ctr)
elseif x = $ and ctr > ctr′ then R(i) := ($, ctr)
else R(i) := (⊥, ctr)

return R

Figure 3.5: A procedure for generating a mapping R : {1, . . . , r} → Types × N for a given unlabeled graph.

determine independence among values of type $. Finally, the rand flag denotes whether the nonce/associated
data are fresh.

For FIN, OUT, and DUP nodes, Map simply propagates the type of the parent node. For TBC nodes, if the
nonce or input is fresh then the output is (pseudo)random and independent of any prior random values, and
so the node gets type $; otherwise, we propagate the type of the parent node.

For XOR nodes, we have several cases. If the two input nodes x and y are typed typex and typey,
respectively, with (typex, typey) ∈ {(0, 0), (0, 1), (1, 0)}, then we type the XOR node as typex ⊕ typey. We
briefly explain this reasoning. The fact that typex, typey ∈ {0, 1} means there is a prior query using the
same nonce and associated data. If the two parents have type 0, indicating that the values computed at
those nodes are equal in the two queries, then clearly the value computed at the XOR node is also equal in
the two queries, and thus that node gets type 0. On the other hand, if one parent is typed 0 and the other
is typed 1, then the value computed at the XOR node will be different from the corresponding value in the
prior query, and thus the XOR node is assigned type 1. If (typex, typey) = (1, 1) then we cannot say anything
definitive and thus Map assigns type ⊥ to the XOR node. Finally, suppose input node x has type $. Here we
utilize the ctr values. If the ctr value at x is different from the ctr value of y, then the (random) value of x
is independent of the value of y, and hence we assign the XOR node type $.

7

In the next two lemmas we show how determining the types for an unlabeled graph can be used to reason
about the values that one obtains when evaluating the labeled graph. We first show that all values typed $
by Map (when inputs are typed ⊥ and hence may be under arbitrary control of the adversary) are indeed
random when computed using Eval and a truly random tweakable permutation.

Lemma 3.1. Let G = (d, r, F, P, L) and let n ≥ 1 be an integer. Set R := Map(G−,⊥, . . . ,⊥, true). Fix
arbitrary Z1, . . . , Zd ∈ {0, 1}n and T ∈ T , and consider the following probabilistic experiment:

1. Choose f ←$ Perm(T , n).
2. Run (Z1, . . . , Zr) := Evalf,f

−1
(G,T, Z1, . . . , Zd).

Then for any j with R(j) = ($, ctrj), the random variable Zj is uniform and independent of {Zi | ctri < ctrj}.

Proof. First note that for any node i and its parent p, we have ctri ≥ ctrp. Thus, there is a topological
ordering s1, . . . , sr of the nodes such that the sequence ctrs1 , . . . , ctrsr

is non-decreasing, and si = i for
i ≤ d. Write i ≺ j if node i precedes node j in this topological order. We prove by induction (with respect
to ≺) that for all j we have (i) typej ∈ {⊥, $} and (ii) if typej = $ then Zj is uniform and independent of
{Zi | ctri < ctrj}. Note that these claims are trivially true when j ≤ d, because then typej = ⊥.

Suppose both claims hold for all i ≺ j. If F (j) ∈ {FIN, OUT, DUP} then let p ≺ j be the parent of j. Since
(typej , ctrj) = (typep, ctrp), the claims follow for j. If F (j) = TBC then typej = $, proving claim (i). Since
f ←$ Perm(T , n), and Eval never repeats a tweak in querying f , we see that random variable Zj is uniform
and independent of {Zi | ctri < ctrj}, justifying claim (ii). Finally, say F (j) = XOR. Let i and t be the
parents of j, and assume t ≺ i. Then typet, typei ∈ {⊥, $}, and thus so is typej , proving claim (i). For
claim (ii), note that typej = $ only if typei = $ and ctri > ctrt. Since ctrj = ctri, the claim follows.

The next lemma proves a similar property as above for pairs of queries. Consider the query (Y1, . . . , Yr) :=
Evalf,f

−1
(G,T, Y1, . . . , Yd) followed by query (Z1, . . . , Zr) := Evalf,f

−1
(G,T, Z1, . . . , Zd), where each Zi is

either chosen equal to Yi (and thus typei = 0), distinct from Yi (and thus typei = 1), or uniformly (and
thus typei = $). We show that for all nodes j of type $ assigned by Map(G−, type1, . . . , typed, false), the
statistical difference between Zj and uniform is small, even conditioned on all the {Yi}.

Lemma 3.2. Let G = (d, r, F, P, L) and let n ≥ 1 be an integer. Fix arbitrary Y1, . . . , Yr ∈ {0, 1}n and
T ∈ T such that the set S = {f ∈ Perm(T , n) | (Y1, . . . , Yr) = Evalf,f

−1
(G,T, Y1, . . . , Yd)} is non-empty. For

each i ≤ d, choose Zi and typei in one of the following ways: (i) Zi = Yi and typei = 0, (ii) Zi 6= Yi and
typei = 1, or (iii) Zi←$ {0, 1}n and typei = $. Let R = Map(G−, type1, . . . , typed, false). Consider the
following probabilistic experiment:

1. Choose f ←$ S.
2. Run (Z1, . . . , Zr) := Evalf,f

−1
(G,T, Z1, . . . , Zd).

Then for any j with R(j) = ($, ctrj), the statistical difference between the random variable Zj and uniform,
conditioned on {Zi | ctri < ctrj} and all the {Yi}, is at most 2 · ctrj/2n.

Proof. As in the previous lemma, there is a topological ordering s1, . . . , sr of the nodes such that ctrs1 , . . . ,
ctrsr

is non-decreasing and si = i for i ≤ d. Write i ≺ j if i precedes j in this topological order. We prove
by induction (with respect to ≺) that for all j: (i) if typej = 0 then Zj = Yj , (ii) if typej = 1 then Zj 6= Yj ,
and (iii) if typej = $ then the statement of the lemma holds. These claims all trivially hold when j ≤ d.

Suppose that all three of the claims hold for all i ≺ j. If F (j) ∈ {FIN, OUT, DUP} then let p ≺ j be the
parent of j. Since (typej , ctrj) = (typep, ctrp), the claims follow easily in this case. If F (j) = XOR, let t, i ≺ j
be the parents of j, and assume t ≺ i. Note that typej ∈ {0, 1} only if typei, typet ∈ {0, 1} and at most
one of these values is 1, in which case the claims all hold. On the other hand, typej = $ only if typei = $
and ctri > ctrt, in which case the claims also follow. Finally, if F (j) = TBC then let i be the parent of j.
Let ` = L(j), and let T = (N,A, v). Then Yj = f(T ∗, Yp) and Zj = f(T ∗, Zp), where T ∗ = (N,A, v + |`|).
Consider the following cases:

8

proc Priv(G−1 , G
−
2)

// G−1 and G−2 are unlabeled graphs of Enc and Tag, respectively.
01 (d1, r1, F1, P1) := G−1 ; (d2, r2, F2, P2) := G−2

// Check that output of Tag is random
02 R := Map(G−2 ,⊥,⊥, true); (type, ctr) := R(r2)
03 if type 6= $ then return false

// Check that output blocks of Enc are random and independent
04 R := Map(G−1 ,⊥,⊥,⊥,⊥, true)
05 (type1, ctr1) := R(r1 − 1); (type2, ctr2) := R(r1)
06 return ((type1 = $) ∧ (type2 = $) ∧ (ctr1 6= ctr2))

proc Auth(G−1 , G
−
2)

// G−1 and G−2 are unlabeled graphs of Dec and Tag, respectively.
11 (d1, r1, F1, P1) := G−1 ; (d2, r2, F2, P2) := G−2

// Check that output of Tag is random when the nonce/associated data are fresh
12 R := Map(G−2 ,⊥,⊥, true); (type, ctr) := R(r2)
13 if type 6= $ then return false

// Check that if there are two executions of Dec with the same initial state
// but different input blocks, then the first half of the final state is random

14 for (x, y) ∈ {(0, 1), (1, 0), (1, 1)} do
15 R := Map(G−1 , 0, 0, x, y, false); (type, ctr) := R(r1 − 3)
16 if type 6= $ then return false

// Check that if the first half of the initial state input to Dec is random,
// then the first half of the final state output by Dec is random

17 for x, y, z ∈ {0, 1} do
18 R := Map(G−1 , $, x, y, z, false); (type, ctr) := R(r1 − 3)
19 if type 6= $ then return false

// Check that if there are two executions of Tag in which the first halves of the
// initial states are different, then the resulting tags are random and independent

20 for x ∈ {0, 1} do
21 R := Map(G−2 , 1, x, false); (type, ctr) := R(r2)
22 if type 6= $ then return false
23 return true

Figure 3.6: Tests to determine if a scheme Π satisfies privacy and authenticity, respectively.

Case 1. typei ∈ {0,⊥}. Then (typej , ctrj) = (typei, ctri) and the claims follow.

Case 2. typei = 1. Then typej = $ and ctrj ≥ 1. First, since ctrt ≥ ctrj when t is a descendant of j, we
see that no node t with ctrt < ctrj is a descendant of j. Next, since Zi 6= Yi and we use a different tweak
for each TBC node, Zj ←$ {0, 1}n\{Yj} is independent of {Yt | t ≤ r} and {Zt | ctrt < ctrj}. Hence the
statement of the lemma follows.

Case 3. typei = $. Then typej = $. By the induction hypothesis, Zi is (2ctri/2n)-close to uniform (even
conditioned on {Yt | t ≤ r} and {Zt | ctrt < ctri}). If Zi 6= Yi, which occurs except with probability at most
(2ctri+1)/2n, then Zj is 2−n-close to uniform (even conditioned on all the {Yt} values and {Zt | ctrt < ctrj}).
Hence, overall, Zj is (2ctri + 2)/2n-close to uniform (conditioned on {Yt | t ≤ r} and {Zt | ctrt < ctrj}) and
the statement of the lemma follows since we have ctrj ≥ ctri + 1.

3.3 Verifying Privacy and Authenticity
We use Lemmas 3.1 and 3.2 to automatically check if a candidate AE scheme is secure in the sense of both
privacy and authenticity. Specifically, Figure 3.6 shows procedures Priv and Auth to check for privacy and

9

INIIN

FIN

OUT

IN

DUP DUP

TBC TBC

XOR

OUT

XOR DUP

XOR

⊥,0⊥,0

⊥,0

$,2

⊥,0

⊥,0 ⊥,0

$,1 $,2

$,2

$,2

$,2 $,2

⊥,0

⊥,0⊥,0

⊥,0

$,2

⊥,0

⊥,0 ⊥,0

$,2 $,1

$,1

$,1

$,2 $,1

⊥,0

M1 M2

C1 C2

M3 M4

C3 C4 tag

τ

Figure 3.7: Left: A scheme that can be accepted or (incorrectly) rejected by Priv, depending on the topological
ordering of the nodes. Middle left: The corresponding Enc graph. Middle right: The (type, ctr) pairs in each
node of the Enc graph if the left TBC node is visited first. The graph is (incorrectly) rejected because the two OUT
nodes both have ctr = 2. Right: The (type, ctr) pairs in each node of the Enc graph if the right TBC is visited first.
This time, the graph is accepted because the two OUT nodes have different ctr values.

authenticity, respectively, of an AE scheme Π.
Intuitively, for privacy we verify that the tag and all the ciphertext blocks output by the scheme are

random and independent (namely, have type $ and distinct counter values) even when the inputs—that is,
the message blocks—are controlled by the adversary (namely, have type ⊥). We remark that the values of
ctr assigned to nodes by the map R output by Map depend on the topological order in which Map traverses
the input graph; see Figure 3.7 for an example. Thus, there are schemes which, depending on the order in
which the graph is traversed, are accepted or (incorrectly) rejected by Priv (due to the ctr values for the OUT
nodes being equal). This shows that the test is sound but not complete.8

The authenticity check for a scheme (Enc,Dec,Tag) is more complicated. We now argue informally that
if a scheme passes the checks of algorithm Auth (cf. Figure 3.6), then the scheme satisfies authenticity. To
see this, consider a candidate forgery (N,A,C) output by an adversary. First suppose there was no prior
query (N,A, ?) to the encryption oracle. Auth verifies that the Tag algorithm outputs a random tag when
the tweak for the TBC node in Tag was not used previously; thus, the candidate forgery will be invalid except
with probability 2−τ . (Recall that τ is the tag length.) Next, consider the case that there was a prior
encryption query (N,A,M), and let C ′ be the corresponding ciphertext. Then C 6= C ′; otherwise (N,A,C)
is not a valid forgery. If C and C ′ only differ in their tags, the candidate forgery must be invalid because
the tag is uniquely determined by N , A, and the rest of the ciphertext. Otherwise, consider the first pair of
blocks in which C and C ′ differ. Auth verifies that (i) the first half of the final state produced by Dec when
run on those blocks is random, (ii) Dec has the property that if the first half of its initial state is random,
then the first half of the final state it outputs is random, and (iii) Tag has the property that if the first half
of its initial state is random, then the tag it outputs is random9. Taken together, these imply that the tag
will be random, and hence the candidate forgery will be invalid except with probability 2−τ .

To demonstrate the strength of our approach, consider a modified version of the OTR scheme [20]. The
original OTR scheme (cf. Figure 3.8) is secure, which our automated tests confirm. If, however, the scheme
is changed so that Σ is computed as the checksum of the odd blocks M1 ⊕M3 ⊕ · · · , rather than the even
blocks, then it becomes insecure. And, indeed, the modified scheme does not pass our tests. Namely, on
input (0, 0, 1, 0) to Map we find that the required FIN node is typed 1 instead of $.

Proofs of correctness. We now prove that schemes that pass our tests are secure. We first show that if
Priv returns true when given the (unlabeled) graphs corresponding to the Enc and Tag components of some
AE scheme, then that scheme satisfies privacy when instantiated with a secure tweakable blockcipher.

8In Appendix C we describe a technique for generating attacks given a scheme which fails the tests of Figure 3.6. Looking
ahead, we find only a handful of schemes which we can neither prove secure nor find concrete attacks for; see Section 4.

9Although here we are considering just the first half of the final/initial state, if one switches to the second half then one will
get the same set of synthesized schemes: if one changes the topological ordering in the graphs so that the first FIN/INI node
becomes the second one, and vice versa, then the scheme remains the same.

10

M1 M2

C1 C2

M3 M4

C3 C4

Σ

tag

τ

IN

TBC

IN

DUP XOR

XOR DUP

OUT DUP

TBC

INI

XOR

FIN

0,0

$,1

1,0

0,0 1,0

$,1 1,0

$,1 1,0

0,0

0,0

1,0

1,0OUT 1,0

Figure 3.8: Left: The OTR scheme, illustrated for a four-block message M1 · · ·M4. Here, Σ is the checksum of the
even blocks M2 ⊕M4. Middle: The Dec graph of the insecure variant of OTR, where Σ is instead the checksum of
the odd blocks M1 ⊕M3. Right: The demonstration that the Dec graph of the insecure OTR variant does not pass
the test at lines 14–16 of Figure 3.6. Each node is shown with its (type, ctr) pair. The graph fails the test because
the FIN node has type 1 instead of $.

Theorem 3.3. Let Π[E] = (K, E ,D) be an AE scheme for which Priv(G−1 , G
−
2) = true, where G−1 and G−2

are the unlabeled graphs for algorithms Enc and Tag of Π, respectively. Then for any adversary A, there is
an adversary B with Advpriv

Π[E](A) ≤ Advp̃rp
E (B). Adversary B has the same running time as A and makes

at most (Cost(Π) + 1) · σ/2 queries, where σ is the number of message blocks in the queries of A.

Proof. Adversary B runs A. For each of A’s queries (N,A,M), adversary B runs the encryption scheme
Π[E] on (N,A,M) with each call to EK replaced by a query to B’s oracle, and returns the ciphertext to A.
Finally, B outputs the same guess as A. Let Π[π] be the ideal variant of Π[E], where calls to EK are replaced
by corresponding queries to π, with π←$ Perm(T , n). It suffices to show that Advpriv

Π[π](A) = 0.
Consider experiments H1–H4 in Figure 3.9. The adversary has oracle access to the encryption scheme

of Π[π] in experiment H1, and oracle access to $(·, ·, ·) in experiment H4. Experiment H2 is identical to H1,
except that we re-sample π←$ Perm(T , n) each time we use Enc or Tag. Since a tweak to π is never repeated,
Pr[HA

1 ⇒ true] = Pr[HA
2 ⇒ true]. In experiment H3, instead of calling Tagπ(T,X) to get the tag, we sample

the tag at random. Considering lines 02–03 of Priv (and the fact that Priv(G−1 , G
−
2) = true) in conjunction

with Lemma 3.1 shows that the string V := Tagπ(T,X) is uniform and so experiments H2 and H3 are
identical. Finally, experiment H4 is identical to H3, except that instead of calling Encπ(T,X,M2i−1M2i)
to get the blocks C2i−1C2i of the ciphertext, we sample them at random. Considering lines 04–05 of Priv
(and the fact that Priv(G−1 , G

−
2) = true) in conjunction with Lemma 3.1 shows that the output blocks of

Encπ(T,X,M2i−1M2i) are uniform and independent (and this is true even conditioned on all prior ciphertext
blocks). Hence H3 and H4 are identical, and Advpriv

Π[π](A) = Pr[HA
1 ⇒ true]− Pr[HA

4 ⇒ true] = 0.

Next, in Theorem 3.4, we show that if Auth in Figure 3.6 returns true when given graphs corresponding to
the Dec and Tag components of some AE scheme, then that scheme satisfies authenticity when instantiated
with a secure tweakable blockcipher. (Examination of the proof shows that if algorithm Dec does not use E−1

K ,
as in the case of OTR, then the term Adv±p̃rp

E (B) in Theorem 3.4 can be weakened to Advp̃rp
E (B).)

Theorem 3.4. Let Π[E] = (K, E ,D) be an AE scheme such that Auth(G−1 , G
−
2) = true, where G−1 , G

−
2

are the unlabeled graphs for algorithms Dec and Tag of Π, respectively. Then for any adversary A, there
is an adversary B with Advauth

Π[E](A) ≤ 2−τ + ` · (Cost(Π) + 2)/2n + Adv±p̃rp
E (B), where ` is the number

of blocks in the forgery output by A. Adversary B has the same running time as A and makes at most
(Cost(Π) + 1) · σ/2 queries, where σ is the total number of message blocks in the queries of A.

Proof. Adversary B runs A. For each of A’s encryption queries, B runs the encryption scheme of Π[E] but
with each call to EK replaced by a query to B’s first oracle, and returns the ciphertext to A. When A outputs
a forgery (N,A,C), adversary B runs the decryption scheme of Π[E] on (N,A,C), but with each call to
EK/E

−1
K replaced by a query to B’s oracles. Adversary B returns 1 if A output a valid forgery, and returns 0

11

proc Encrypt[π](N,A,M) // Experiments H1, H2

M1 · · ·M2m := M ; X := 02n; v := 1 // |Mi| = n
for i = 1 to m do
T := (N,A, v); π←$ Perm(T , n)
(Y,C2i−1C2i) := Encπ(T,X,M2i−1M2i)
v := v + Cost(Π); X := Y

π←$ Perm(T , n); T := (N,A, 1− v); V := Tagπ(T,X)
return C1 · · ·C2m ‖ V [1, τ]

proc Encrypt[π](N,A,M) // Experiments H3, H4

M1 · · ·M2m := M ; X := 02n; v := 1 // |Mi| = n
for i = 1 to m do
T := (N,A, v); π←$ Perm(T , n)
(Y,C2i−1C2i) := Encπ(T,X,M2i−1M2i)
C2i−1C2i←$ {0, 1}2n

v := v + Cost(Π); X := Y
T := (N,A, 1− v); V ←$ {0, 1}n
return C1 · · ·C2m ‖ V [1, τ]

Figure 3.9: Experiments H1–H4 in the proof of Theorem 3.3. Experiments H2 and H4 include the corresponding
boxed statements, but H1 and H3 do not.

otherwise. Let Π[π] be the ideal variant of Π[E], where calls to EK/E
−1
K are replaced by corresponding

queries to π/π−1, with π←$ Perm(T , n). It suffices to show that Advauth
Π[π](A) ≤ 2−τ + `(Cost(Π) + 2)/2n.

Consider experiments H1–H3 in Figure 3.10. In H1, the adversary has oracle access to the encryption
and decryption schemes of Π[π]. Experiment H2 is identical to H1, except that when running the decryption
algorithm, we re-sample π←$ Perm(T , n) before using it in Tag. Experiment H3 is identical to H2, except
that instead of using Tag to generate the tag, we sample the tag uniformly.

Let (N,A,C) be the forgery output by A. Suppose there is no encryption query (N,A,M ′) with |M ′| =
|C| − τ . Since decryption of the forgery query involves calling Tag with a tweak that has never been used
before, we have Pr[A forges in H1] = Pr[A forges in H2]. Considering lines 12–13 of Auth (and the fact that
Auth(G−1 , G

−
2) = true) in conjunction with Lemma 3.1 shows that the string V := Tagπ(T,X) is uniform.

Thus Pr[A forges in H2] = Pr[A forges in H3]. The probability that A can forge in H3 is at most 2−τ .
Hence Advauth

Π[π](A) ≤ 2−τ in this case.
Now, suppose that there is an encryption query (N,A,M ′) such that |M ′| = |C|−τ . (Note that there can

be at most one such query, since the attacker is not allowed to re-use a nonce value in two encryption queries.)
Let C ′ be the corresponding ciphertext output by this encryption query, and let C = C1 · · ·C2m ‖ tag and
C ′ = C ′1 · · ·C ′2m‖tag ′. If Cj = C ′j for every j ≤ 2m then tag and tag ′ must be different and thus, since Tag is
deterministic, the forgery is invalid. Otherwise, take the least index r ≤ m such that C2r−1C2r 6= C ′2r−1C

′
2r.

Consider experiments P1, . . . , Pm−r+4 in Figure 3.11. In P1, the adversary has two oracles: Encrypt and
Decrypt. The first implements the encryption scheme of Π[π], and the second implements the decryption
scheme of Π[π] but returns false if the decrypted value is ⊥ and returns true otherwise.

Let S be the subset of Perm(T , n) such that for any f ∈ S and query (T,X) that Encrypt[π](N,A,M ′)
makes to π, we have f(T,X) = π(T,X). Experiment P2 is identical to P1, except that in procedure
Decrypt, each time we call Dec or Tag we resample π←$ S. Since in the forgery query we do not repeat
the tweak of any encryption query other than (N,A,M ′), and π and π−1 are called with distinct tweaks, we
have Pr[A forges in P1] = Pr[A forges in P2]. In experiment P3 we sample Y uniformly instead of computing
Y := Decπ,π

−1
(T,X,C2r−1C2r). Considering lines 14–16 of Auth (and the fact that Auth(G−1 , G

−
2) = true)

in conjunction with Lemma 3.2, we have Pr[A forges in P2]− Pr[A forges in P3] ≤ 2Cost(Π)+2
2n .

12

proc Decrypt[π](N,A,C) // Experiments H1, H2

if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2m ‖ tag := C // |Ci| = n and |tag | = τ
X := 02n; v := 1
for i = 1 to m do
T := (N,A, v)
(Y,M2i−1M2i) := Decπ,π

−1
(T,X,C2i−1C2i)

v := v + Cost(Π); X := Y

π←$ Perm(T , n)
T := (N,A, 1− v); V := Tagπ(T,X)
if tag 6= V [1, τ] then return ⊥
return M1 · · ·M2m

proc Decrypt[π](N,A,C) // Experiment H3

if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2m ‖ tag := C // |Ci| = n and |tag | = τ
X := 02n; v := 1
for i = 1 to m do
T := (N,A, v)
(Y,M2i−1M2i) := Decπ,π

−1
(T,X,C2i−1C2i)

v := v + Cost(Π); X := Y
V ←$ {0, 1}n
if tag 6= V [1, τ] then return ⊥
return M1 · · ·M2m

Figure 3.10: Experiments H1–H3 in the proof of Theorem 3.4. Experiment H2 includes the corresponding boxed
statement, but experiment H1 does not. Each experiment also has a procedure Encrypt[π], implementing the
encryption algorithm of Π[π], that is not shown for simplicity.

For j = 1, . . . ,m − r, experiment P3+j is identical to P2+j , except that we sample Y uniformly in-
stead of computing Y := Decπ,π

−1
(T,X,C2r+2j−1C2r+2j). Considering lines 17–19 of Auth (and the

fact that Auth(G−1 , G
−
2) = true) in conjunction with Lemma 3.2, we conclude that Pr[A forges in P2+j]

− Pr[A forges in P3+j] ≤ 2Cost(Π)+2
2n .

Experiment Pm−r+4 is identical to Pm−r+3 except that we sample V uniformly when checking the
validity of the forgery instead of computing V := Tagπ(T,X). Let X ′ be the state used by Tag in
Encrypt[π](N,A,M ′). If X[1, n] 6= X ′[1, n], which happens with probability at least 1−2−n, then applying
Lemma 3.2 to lines 20–22 of procedure Auth, we have Pr[A forges in Pm−r+3]−Pr[A forges in Pm−r+4] ≤ 2

2n .
Finally, Pr[A forges in Pm−r+4] ≤ 2−τ . Summing up,

Advauth
Π[π](A) ≤ 2−τ + 2(m− r + 1)(Cost(Π) + 1) + 3

2n ≤ 2−τ + `(Cost(Π) + 2)
2n .

To summarize, Theorems 3.3 and 3.4 show that if the graphs induced by a given scheme Π satisfy Priv
and Auth as defined in Figure 3.6, then Π is a secure AE scheme.

4 Implementation and Results
We have implemented the Priv and Auth algorithms described in Section 3, and used them to synthesize AE
schemes. The code is written in OCaml and available at https://github.com/amaloz/ae-generator.10

10All results in this section were computed using the code from commit 515959bcf9fa805cbc102aa8a2772cf3c35906f7.

13

https://github.com/amaloz/ae-generator
https://github.com/amaloz/ae-generator/commit/515959bcf9fa805cbc102aa8a2772cf3c35906f7

proc Decrypt[π](N,A,C) // Experiments P1, P2

if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2m ‖ tag := C // |Ci| = n and |tag | = τ
X := 02n; v := 1
for i = 1 to m do
T := (N,A, v); π←$ S

(Y,M2i−1M2i) := Decπ,π
−1

(T,X,C2i−1C2i)
v := v + Cost(Π); X := Y

T := (N,A, 1− v); π←$ S; V := Tagπ(T,X)
if tag 6= V [1, τ] then return false
return true

// Experiments P3+j , for 0 ≤ j ≤ m− r + 1
proc Decrypt[π](N,A,C)
if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2m ‖ tag := C // |Ci| = n and |tag | = τ
X := 02n; v := 1
for i = 1 to m do
T := (N,A, v); π←$ S

(Y,M2i−1M2i) := Decπ,π
−1

(T,X,C2i−1C2i)
if r ≤ i ≤ r + j then Y ←$ {0, 1}n
v := v + Cost(Π); X := Y

π←$ S; V := Tagπ(T,X)
if j = m− r + 1 then V ←$ {0, 1}n
if tag 6= V [1, τ] then return false
return true

Figure 3.11: Experiments P1, . . . , P4+m−r in the proof of Theorem 3.4. Experiment P2 includes the corresponding
boxed statement, but P1 does not. Each experiment also has a procedure Encrypt[π], implementing the encryption
algorithm of Π[π], that is not shown for simplicity. Here S is the set of f ∈ Perm(T , n) such that for any query
(T,X) that Encrypt[π](N,A,M ′) makes to π, it holds that f(T,X) = π(T,X).

Our system has two modules: an analysis module that, given graphs corresponding to an AE scheme, verifies
whether the scheme is secure, and a synthesis module that synthesizes AE schemes by enumerating candidate
AE schemes and using the analysis module to see if they are secure. We describe these components below,
where throughout this section, the term graph denotes an unlabeled graph.
Analyzer. The analysis module takes as input a representation (in a stack-based language) of the Dec and
Tag graphs; the stack-based language makes it easy to both convert the inputs into their respective graphs
as well as to synthesize schemes. We first derive a graph for the Enc algorithm given the graph for the Dec
algorithm, as described below. Given graphs for the Enc, Dec, and Tag algorithms, we can then run the
privacy and authenticity checks described in Figure 3.6 to check security of the scheme. Our analyzer is able
to verify simplified variants of OCB [22], XCBC [12], COPA [3], OTR [20], and CCM [10], among others.
Deriving the Enc graph. We implement an algorithm Reverse that, given a Dec graph, computes a
corresponding Enc graph if one exists. The basic idea is to swap the IN and OUT nodes of the input graph
(recall that IN and OUT nodes in the Dec graph denote ciphertext blocks and plaintext blocks, respectively,
whereas IN and OUT nodes in the Enc graph are flipped), and then selectively reverse the edges to ensure that
each node has correct ingoing/outgoing degrees. Deriving the Enc graph is thus simple if there is at most
one path from an IN node to an OUT node and these paths do not cross, as in the case of OCB. However, in
other schemes, such as OTR, each IN node may have multiple paths to each OUT node. We handle this as
described next.

On input G−1 , let G1 be the undirected graph of G−1 . In G1, rename IN nodes as OUT nodes, and OUT nodes

14

OUT

TBC

OUT

DUP XOR

XOR DUP

DUP IN

TBC

INI

XOR

FIN

OUT

TBC

OUT

DUP XOR

XOR DUP

DUP IN

TBC

INI

XOR

FIN

OUT

TBC

OUT

DUP XOR

XOR DUP

DUP IN

TBC

INI

XOR

FIN

OUT

TBC

OUT

DUP XOR

XOR DUP

DUP IN

TBC

INI

XOR

FIN

IN

TBC

IN

DUP XOR

XOR DUP

DUP OUT

TBC

INI

XOR

FIN

OUT

TBC

OUT

DUP XOR

XOR DUP

DUP IN

TBC

INI

XOR

FIN

OUT

TBC

OUT

DUP XOR

XOR DUP

DUP IN

TBC

INI

XOR

FIN

OUT

TBC

OUT

DUP XOR

XOR DUP

DUP IN

TBC

INI

XOR

FIN

1 2 3 4

5 6 7 8

OUT IN IN IN

IN IN IN IN

Figure 4.1: Illustration of the first few steps of running Reverse on the Dec graph of OTR. The first picture is the
Dec graph of OTR.

as IN nodes; let G2 be the resulting graph. Reverse then assigns direction to the edges of G2 such that each
node has correct ingoing/outgoing degrees; the resulting graph G−2 is output. (If no assignment is possible,
then the output is ⊥.)

To implement this idea efficiently, we color each node either “red” or “blue”, where red nodes denote
nodes that have already been processed, and blue nodes denote unprocessed nodes. Starting from G2, we
initially color IN and INI nodes red and all other nodes blue. We repeatedly iterate over the blue nodes until
we reach a fixed point, where in each iteration we assign direction to some edges and re-color some nodes
red. If a fixed point is reached before all nodes have been colored red, we return ⊥; otherwise, we return G2,
which represents the reversed graph. If the graph G2 has r nodes then we have at most r iterations with
each iteration taking O(r) time.

In each iteration, we process each blue node x as follows. Let ord(x) = 2 if x is an XOR node, and let
ord(x) = 1 otherwise. If there are exactly ord(x) red neighbors of x then (1) for each such neighbor y, assign
the direction y → x, and (2) color x red. Note that in each step we ensure that the current node x has the
correct ingoing degree if we color it red. We never assign an ingoing edge to x in any other step. Hence
when there are no blue nodes, each node in the directed graph has the correct ingoing/outgoing degrees. See
Figure 4.1 for an illustration of Reverse on OTR.

We prove in Appendix A that Reverse is sound; namely, that if running Reverse on a Dec graph produces
an Enc graph, then Dec is a correct decryption algorithm for Enc.

As a side note, the Reverse algorithm allows us to easily check if a scheme is inverse-free (i.e., the scheme
only uses the forward direction of the TBC), which is important when constructing hardware realizations of
AE schemes due to the potential savings in chip space, among other benefits [14, 20]. After running Reverse,
we can check if the parent nodes for all the TBC nodes in the Enc and Dec graph are the same; if so, the
scheme is inverse-free.

Synthesizer. We synthesize schemes as follows. Fixing a Tag graph, we enumerate all possible Dec graphs
of a given size, pruning out “uninteresting” schemes such as ones with two (or more) TBC nodes chained
together, and feed each pair of (Dec,Tag) graphs to our analysis module. To generate the Dec graph, we
start from a graph containing just the IN and INI nodes, and add nodes and their corresponding edges until
the given size bound is reached. If the resulting graph is “well-formed” (i.e., there are no “dangling” edges
and no loops), we derive the corresponding Enc graph as discussed above and run the analysis module on
the result. Unfortunately, this approach is prohibitively expensive as described, especially as the size bound
increases. Thus, we use several optimizations to speed up the process.

Firstly, instead of synthesizing graphs with FIN and OUT nodes, we replace these with “terminal” nodes.

15

#Nodes Unique “Optimal” WP SP Time

12 13 (0) 13 7 5 47 sec
13 142 (0) 0 0 0 4.3 min
14 582 (2) 171 48 (4) 5 24.2 min
15 2826 (54) 40 18 6 2.8 hours
16 3090 (—) 66 25 (4) 1 3 hours∗

Total 6653 290 98 (8) 17

Figure 4.2: Synthesis results. The first column shows the number of instructions in the Dec graph of the given
scheme; the second column the number of secure (and unique) schemes, with the number in parentheses denoting the
number of schemes in which the security check fails but we cannot automatically find a concrete attack; the third
column the number of (secure) schemes that are “optimal”, i.e., having two TBC nodes per Dec graph; the fourth
column the number of “optimal” weakly parallelizable schemes, with the number in parentheses denoting the weakly
parallelizable schemes which only use the forward direction of the TBC; the fifth column the number of “optimal”
strongly parallelizable schemes; and the final column the total synthesis time, where an asterisk indicates that we
halted execution after the given time.

Upon deriving a well-formed graph, we replace the “terminal” nodes with all possible permutations of FIN
and OUT nodes and check security of each. Thus we no longer need to explore the search space for each
FIN and OUT node; instead, we explore the search space once using a “terminal” node, and later replace the
“terminal” node with all possible combinations of FIN and OUT nodes. Likewise, we can apply this same idea
to INI and IN nodes by introducing a “start” node.

Secondly, we observe that AE schemes like OCB, COPA, and OTR do not utilize one of the INI nodes
in the sense that they simply output the input value directly. Thus, we can remove two nodes from the
synthesis by only synthesizing schemes containing one INI and FIN node. The drawback of this optimization
is that it misses schemes such as XCBC and CCM which do in fact use both INI nodes; however, it greatly
speeds up synthesis. All the results that follow use this optimization. (It would, of course, be possible to
synthesize schemes without using this optimization.)

Results. Using the optimizations described above, we ran our synthesizer to find AE schemes with Dec and
Enc graphs of sizes between twelve and sixteen (we found no AE schemes with size less than twelve). Note
that our synthesizer does not remove duplicate schemes. In addition, there are many “equivalent” schemes in
the sense that one is the same as another except with the outputs and/or inputs flipped. We thus developed
a heuristic to remove duplicate and “equivalent” schemes as follows. Let F (·, ·, ·) be the encrypt operation
of a given scheme, where the first argument is the INI input (recall we consider the simplified variant where
we only use one INI node) and the other arguments are the IN inputs. Choosing arbitrary but fixed inputs
X, M1, and M2, we compute Y ‖C1‖C2 := F (X,M1,M2) and Y ′‖C ′1‖C ′2 := F (X,M2,M1). We maintain a
table of existing ciphertexts; if any of Y C1C2, Y C2C1, Y ′C ′1C ′2, or Y ′C ′2C ′1 exists in the table, we discard
the scheme as a “duplicate”; otherwise, we add each of these to the table and continue.

Figure 4.2 shows the results. The experiments were run on a commodity laptop; because of the long
running time for synthesizing schemes of size sixteen, we stopped the synthesis after three hours for this size.
Due to the large number of discovered schemes, we developed two algorithms to prune the result space. The
first simply filters out all schemes Π such that Cost(Π) > c for some integer c. In Figure 4.2 we set c = 2,
thus pruning out all non-“rate-1” schemes; this removes 95% of the found schemes.

Our second algorithm checks whether a scheme is parallelizable, an important criterion for AE schemes.
Note that we can view the encryption of a message M = M1 · · ·M2m as a single graph constructed from m
Enc graphs G1, . . . , Gm, where the FIN nodes of Gi coincide with the INI nodes of Gi+1. We can then assign
a “depth” to each node in this graph as follows:

• The INI nodes in G1 and the IN nodes in {Gi} get a depth of 0.
• For each node x, let t be the maximum depth of x’s parent(s). If x is a TBC node then depth(x) = t+1;

otherwise depth(x) = t.

16

M1 M2

C1 C2

M3 M4

C3 C4 tag

τ

M1 M2

C1 C2

M3 M4

C3 C4 tag

Σ M1 M2

C1 C2

M3 M4

C3 C4 tag

ττ

Figure 4.3: Three of our synthesized schemes of size twelve, illustrated for a four-block message M1, . . . ,M4. In the
second scheme, Σ is the checksum of the even blocks, i.e., Σ = M2 ⊕M4.

Scheme Enc (cycles/byte) Dec (cycles/byte)

OCB 0.7122 ± 0.0072 0.7650 ± 0.0025
1 0.7253 ± 0.0055 0.7485 ± 0.0047
2 0.7116 ± 0.0025 0.7643 ± 0.0023
3 0.8139 ± 0.0121 2.7566 ± 0.0010

Figure 4.4: Performance results of OCB and the three synthesized schemes in Figure 4.3 (Scheme 1 denotes the
left scheme, Scheme 2 the middle scheme, and Scheme 3 the right scheme). We report the time for encryption and
decryption when processing a 4096-bit message with empty associated data, along with the 95% confidence intervals
over 100 runs of each scheme. The experiments were run on a 4-core 2.90 GHz Intel Core i5-4210H CPU with
TurboBoost disabled.

(Intuitively, depth(x) represents the latency, in terms of the number of TBC calls, of computing the value at
node x.) We can use the same idea to compute a “depth” for decryption.

We now define our notion of parallelizability. We call an AE scheme Π weakly parallelizable if for any
integer m and any node x in the graph described above we have depth(x) ≤ Cost(Π) for both encryption
and decryption. A scheme is strongly parallelizable if depth(x) ≤ 1. Intuitively, weakly parallelizable schemes
are ones where the TBC calls can be parallelized across two-block chunks (but not necessarily within the
processing of a two-block chunk), and strongly parallelizable schemes are ones where the TBC calls can be
parallelized even within a two-block chunk. As an example, OTR (cf. Figure 3.8) is weakly parallelizable
while OCB (cf. Figure 3.2) is strongly parallelizable.

We can check these conditions efficiently by noting first that we only need to look at the OUT and FIN
nodes, since depth is strictly increasing. Now, suppose we run the analysis on graph Gi. If the depth of the
FIN nodes is zero, then it suffices to compute t = max{depth(OUT1), depth(OUT2)} (where OUT1 and OUT2 are
the two OUT nodes) and check whether t ≤ Cost(Π) or t ≤ 1. If the FIN nodes have depth greater than
zero (say, c), we need to rerun the analysis, this time setting the depths of the INI nodes to c (rather than
zero). We can then compute t′ = max{depth(OUT1), depth(OUT2)}. If t′ 6= t then this implies that depth
grows with m (and thus the scheme is not parallelizable); otherwise we can check whether t′ ≤ Cost(Π) or
t′ ≤ 1 to determine whether the scheme is parallelizable.

Looking at the results of Figure 4.2, we found thirteen secure AE schemes of size twelve, five of which
are strongly parallelizable. Of these schemes, as far as we know, only OCB exists in the literature. In
Figure 4.3 we show two of these newly synthesized schemes, along with one which is not parallelizable. (For
all the schemes in the figure, encryption is strongly parallelizable; for the third scheme, however, decryption
cannot be parallelized.) We implemented all three schemes and compared their performance with that of
an optimized implementation of OCB by Krovetz11 using AES-NI; see Figure 4.4. (Note that the results in
Figure 4.4 are preliminary timing numbers; the purpose of these experiments is to show that our schemes
are competitive with, not necessarily better than, OCB.) We find that the encryption procedure for all four
schemes is comparable. However, the decryption procedure of the third synthesized scheme is noticeably
slower than the others. This is because decryption for this scheme is not parallelizable; namely, to decrypt
ciphertext block Ci we need plaintext block Mi−1.

11See http://web.cs.ucdavis.edu/˜rogaway/ocb/news.

17

http://web.cs.ucdavis.edu/~rogaway/ocb/news

In addition, among the weakly parallelizable schemes, we found eight schemes which are inverse-free (we
found no such schemes for strongly parallelizable schemes). The schemes of size fourteen that we found use
one fewer XOR instruction than OTR, the fastest known inverse-free AE scheme we are aware of.

We also ran our attack generation algorithm (cf. Appendix C) over schemes of size 12–15 and found that
the number of schemes where no attack could be found closely matched the number of schemes our analysis
found secure, thus pointing to the fact that while our analysis is not sound, it appears to capture most
secure schemes. In particular, we found a total of 56 schemes which we could neither prove secure nor find
a concrete attack for sizes between 12 and 15.

We remark that our tool currently takes a given bound S and enumerates all schemes in which decryption
can be implemented using at most S instructions. In future work one could consider assigning a cost to
different instructions (e.g., letting DUP have cost 0, and letting TBC have cost some fixed multiple of XOR)
and enumerating all schemes having at most some given cost.

5 Conclusion
In this work, we present a methodology for automatically proving the security of a large class of authenticated
encryption (AE) schemes. Using our approach, we are able to synthesize thousands of schemes, most of
which have never been studied in the literature. Among these, we discovered five new schemes which are as
“compact” (in terms of the number of instructions per message block), as “efficient” (in terms of the number
of blockcipher calls per message block), and as parallelizable as OCB, with competitive performance.

There are several interesting avenues for future work. Further optimizing the synthesis procedure would
allow us to generate more schemes. Some of these schemes may have additional properties of interest,
such as misuse-resistance [11]; developing techniques for automatically checking schemes for these additional
properties would be very useful. Taking a different approach, it would be interesting to see if similar
techniques can be applied to more general classes of AE schemes.

Acknowledgments
We thank Samuel Neves for pointing out that on Haswell CPUs, TurboBoost must be disabled to measure
the timing accurately. We also thank the anonymous reviewers of CCS 2015 for their suggestion of automatic
generation of attacks on schemes that fail our tests.

Work of Jonathan Katz was done for Exelis under contract number N00173-11-C-2045 to NRL. Work of
Alex J. Malozemoff was conducted with Government support awarded by DoD, Air Force Office of Scientific
Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

References
[1] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. Using SMT solvers to automate de-

sign tasks for encryption and signature schemes. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, 20th ACM Conference on Computer and Communications Security (CCS), pages 399–410,
Berlin, Germany, November 4–8, 2013. ACM Press.

[2] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and Matthew W. Pagano. Machine-generated
algorithms, proofs and software for the batch verification of digital signature schemes. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, 19th ACM Conference on Computer and Communications
Security (CCS), pages 474–487, Raleigh, NC, USA, October 16–18, 2012. ACM Press. Full version
available at https://eprint.iacr.org/2013/175.

[3] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and Kan Yasuda.
Parallelizable and authenticated online ciphers. In Kazue Sako and Palash Sarkar, editors, Advances

18

https://eprint.iacr.org/2013/175

in Cryptology—Asiacrypt 2013, Part I, volume 8269 of Lecture Notes in Computer Science, pages 424–
443, Bengalore, India, December 1–5, 2013. Springer, Berlin, Germany. Full version available at https:
//eprint.iacr.org/2013/790.

[4] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine Lakhnech, Benedikt
Schmidt, and Santiago Zanella Béguelin. Fully automated analysis of padding-based encryption in the
computational model. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 20th ACM
Conference on Computer and Communications Security (CCS), pages 1247–1260, Berlin, Germany,
November 4–8, 2013. ACM Press. Full version available at https://eprint.iacr.org/2012/695.

[5] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov, and Benedikt Schmidt.
Automated analysis of cryptographic assumptions in generic group models. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology—Crypto 2014, Part I, volume 8616 of Lecture Notes
in Computer Science, pages 95–112, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin,
Germany. Full version available at https://eprint.iacr.org/2014/458.

[6] Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov, Benedikt Schmidt, and Mehdi Ti-
bouchi. Strongly-optimal structure preserving signatures from type II pairings: Synthesis and lower
bounds. In Jonathan Katz, editor, 18th International Conference on Theory and Practice of Public Key
Cryptography (PKC), volume 9020 of Lecture Notes in Computer Science, pages 355–376, Gaithers-
burg, MD, USA, March 30 – April 1, 2015. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2015/019.

[7] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. Journal of Cryptology, 21(4):469–491, October 2008.

[8] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology—Eurocrypt 2006, volume 4004
of Lecture Notes in Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006.
Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2004/331.

[9] Dan Bernstein. Cryptographic competitions: CAESAR call for submissions, final (2014.01.27). http:
//competitions.cr.yp.to/caesar-call.html.

[10] Morris Dworkin. Recommendations for block cipher modes of operation: The CCM mode for authenti-
cation and confidentiality. NIST Special Publication 800-38C, July 2007.

[11] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A family of almost foolproof on-line
authenticated encryption schemes. In Anne Canteaut, editor, Fast Software Encryption (FSE) 2012,
volume 7549 of Lecture Notes in Computer Science, pages 196–215, Washington, DC, USA, March 19–21,
2012. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2011/644.

[12] Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication: XCBC encryption and
XECB authentication modes. In Mitsuru Matsui, editor, Fast Software Encryption (FSE) 2001, volume
2355 of Lecture Notes in Computer Science, pages 92–108, Yokohama, Japan, April 2–4, 2002. Springer,
Berlin, Germany.

[13] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing GCM security proofs.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology—Crypto 2012, volume 7417
of Lecture Notes in Computer Science, pages 31–49, Santa Barbara, CA, USA, August 19–23, 2012.
Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2012/438.

[14] Tetsu Iwata and Kan Yasuda. BTM: A single-key, inverse-cipher-free mode for deterministic authenti-
cated encryption. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, SAC
2009: 16th Annual International Workshop on Selected Areas in Cryptography, volume 5867 of Lecture
Notes in Computer Science, pages 313–330, Calgary, Alberta, Canada, August 13–14, 2009. Springer,
Berlin, Germany.

19

https://eprint.iacr.org/2013/790
https://eprint.iacr.org/2013/790
https://eprint.iacr.org/2012/695
https://eprint.iacr.org/2014/458
https://eprint.iacr.org/2015/019
https://eprint.iacr.org/2004/331
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
https://eprint.iacr.org/2011/644
https://eprint.iacr.org/2012/438

[15] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure modes of operation.
In Bruce Schneier, editor, Fast Software Encryption (FSE) 2000, volume 1978 of Lecture Notes in
Computer Science, pages 284–299, New York, NY, USA, April 10–12, 2001. Springer, Berlin, Germany.

[16] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption modes. In
Antoine Joux, editor, Fast Software Encryption (FSE) 2011, volume 6733 of Lecture Notes in Computer
Science, pages 306–327. Springer, Berlin, Germany, 2011. Full version available at http://web.cs.
ucdavis.edu/˜rogaway/papers/ae.pdf.

[17] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor,
Advances in Cryptology—Crypto 2002, volume 2442 of Lecture Notes in Computer Science, pages 31–46,
Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin, Germany.

[18] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. Automated analysis and synthesis of
block-cipher modes of operation. In IEEE CSF 2014, pages 140–152, July 2014.

[19] David A. McGrew and John Viega. The security and performance of the Galois/counter mode
(GCM) of operation. In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptology—
Indocrypt 2004, volume 3348 of Lecture Notes in Computer Science, pages 343–355, Chennai, India,
December 20–22, 2004. Springer, Berlin, Germany. Full version available at https://eprint.iacr.
org/2004/193.

[20] Kazuhiko Minematsu. Parallelizable rate-1 authenticated encryption from pseudorandom functions. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology—Eurocrypt 2014, volume
8441 of Lecture Notes in Computer Science, pages 275–292, Copenhagen, Denmark, May 11–15, 2014.
Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2013/628.

[21] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor, 9th
ACM Conference on Computer and Communications Security (CCS), pages 98–107, Washington D.C.,
USA, November 18–22, 2002. ACM Press. Full version available at http://web.cs.ucdavis.edu/
˜rogaway/papers/ad.pdf.

[22] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and
PMAC. In Pil Joong Lee, editor, Advances in Cryptology—Asiacrypt 2004, volume 3329 of Lecture
Notes in Computer Science, pages 16–31, Jeju Island, Korea, December 5–9, 2004. Springer, Berlin,
Germany. Full version available at http://web.cs.ucdavis.edu/˜rogaway/papers/offsets.pdf.

[23] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and Willi Meier, editors, Fast
Software Encryption (FSE) 2004, volume 3017 of Lecture Notes in Computer Science, pages 348–359,
New Delhi, India, February 5–7, 2004. Springer, Berlin, Germany. Full version available at http:
//web.cs.ucdavis.edu/˜rogaway/papers/nonce.pdf.

[24] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In 8th ACM Conference on Computer and Communications
Security (CCS), pages 196–205. ACM Press, 2001. Full version available at http://web.cs.ucdavis.
edu/˜rogaway/papers/ocb-full.pdf.

[25] Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. Program synthesis using dual interpretation. In
CADE 2015, August 2015.

A Correctness of Reverse
Recall that Dec is supposed to reverse Enc: namely, for any f ∈ Perm(T , n), every T ∈ T , every initial
state X, and any input M , if (Y,C) = Encf (T,X,M) then (Y,M) = Decf,f

−1
(T,X,C). We call this the

20

http://web.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ae.pdf
https://eprint.iacr.org/2004/193
https://eprint.iacr.org/2004/193
https://eprint.iacr.org/2013/628
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/nonce.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/nonce.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ocb-full.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ocb-full.pdf

reversal condition. We now prove that Reverse produces a “correct” Enc graph given a Dec graph as input, by
showing that the input graph G−1 is a reversal of the output graph G−2 . That is, for any labeling of G−2 such
that the labels on TBC nodes are distinct positive integers, one can assign a corresponding labeling to G−1
such that the resulting algorithms Enc and Dec—that are derived from the corresponding labeled graphs G2
and G1, respectively—satisfy the reversal condition.
Lemma A.1. If Reverse(G−1) outputs G−2 6= ⊥, then G−1 is a reversal of G−2 .
Proof. We first describe how to label G−1 given the labeling for G−2 . For convenience, we use the same symbol
to refer to corresponding nodes in the two graphs. Recall that if a node x is a TBC node in G−2 then x is also
a TBC node in G−1 . Let ` be the label of x in G−2 and let y be the parent of x in G−2 . If y is also the parent
of x in G−1 , then assign label ` to x in G−1 ; otherwise assign x label −`.

We prove our result for general graphs, meaning that the number of INI, FIN, IN, and OUT nodes can be
arbitrary. Our proof is by induction on the total number s of TBC, XOR, and DUP nodes in G−1 . The base case
s = 0 is trivial.

Let G−2 6= ⊥ denote the output of Reverse(G−1). Fix some f ∈ Perm(T , n), and a labeling on G−2 such
that the labels on TBC nodes are distinct, positive integers. Fix a tweak T ∈ T , an initial state X and
input M for the resulting labeled graph G2. Evaluate G2 on input (T,X,M) using f , and let val(x) be the
value on node x. Let (Y,C) be the result of this evaluation. Among the DUP, TBC, and XOR nodes of G−1 , let
x0 denote the first node that Reverse(G−1) re-colors red. We consider the case that x0 is an XOR node; the
other cases are similar.

Let x1 and x2 be the red neighbors of x0, and let x3 be the other (blue) neighbor of x0. Note that x1
can’t be an IN node in G−1 (and thus an OUT node in G−2), since such a node will be re-colored red only after
its unique neighbor turns red, but here x1 is already red while x0 is still blue. Likewise, x2 can’t be an IN
node in G−1 . Then x1 and x2 must be INI or OUT nodes in G−1 , because x0 is the first among the DUP, XOR,
and TBC nodes of G−1 that is re-colored red.

Let H−1 be the graph obtained from G−1 by merging x0, x1, and x2 into a single node y. If both x1
and x2 are INI nodes in G−1 then let y be an INI node; otherwise, let y be an OUT node. Each node in H−1
has correct ingoing/outgoing degrees and there are s− 1 TBC, XOR, and DUP nodes in H−1 . Note that G−2 can
be obtained by (i) running Reverse(H−1) to get a graph H−2 , (ii) splitting the node y in H−2 into the nodes
x0, x1, x2 as in G−1 , and (iii) changing OUT nodes to IN nodes among the reinstated nodes, and reversing the
direction of their attached edges.

By the induction hypothesis, H−1 is a reversal of H−2 . Use the same labeling of G−1 and G−2 for H−1
and H−2 , respectively, and let H1 and H2 be the corresponding labeled graphs. In H2, assign the value val(z)
to each INI/IN node z, with val(y) := val(x1)⊕ val(x2), which is also val(x3). If we evaluate H2 on tweak T
and the assigned input using f , then the value at each node x is also val(x). Since H−1 is a reversal of H−2 ,
if we assign value val(x) on each INI/IN node x of H1, and evaluate H1 on tweak T and the assigned input
using f and f−1, then the value of each FIN/OUT node x is also val(x). Next, evaluate G1 on (T,X,C) using
f and f−1. We consider the following cases.
Case 1: Both x1 and x2 are INI nodes in G1. Then we are repeating the evaluation of H1, with the three
nodes x0, x1, and x2 simulating node y, and assigning value val(x1) ⊕ val(x2) = val(y) to x3. Thus, in the
evaluation of G1, the value at each FIN/OUT node x is also val(x), leading to the result (Y,M).
Case 2: One of x1 or x2 is an OUT node in G1. Without loss of generality, suppose that x1 is an OUT node.
Hence in G1, the XOR node x0 is the parent of x1, and so x2 must be an INI node. (Recall that x2 must
be either INI or OUT, but if it is an OUT node then the XOR node x0 has outgoing degree at least two, a
contradiction.) Then we are repeating the evaluation of H1 to get val(y) = val(x1) ⊕ val(x2) on node y,
inserting node x2 with value val(x2), and computing val(x2)⊕ val(y) = val(x1) = val(x0) at nodes x1 and x0.
Thus, for the evaluation on G1, the value at each FIN/OUT node x is also val(x), leading to result (Y,M).

B Arbitrary Message Lengths

21

]EncEK
∆ (T,X,M) // |M | < 2n

X1X2 := X; Y2 := X2 // |Xi| = n
(N,A, i) := T ; L := (N,A, i+ 1)
if M = ε then C := ε; Y1 := X1
elseif |M | > n then
M1M2 := M // |M1| = n
V := ETK(M1); C2 := V [1, |M2|]⊕M2; Y1 := X1 ⊕ V ⊕∆
C1 := ELK(C210∗)⊕M1; C := C1C2

elseif |M | = n then C := ETK(0n)⊕M ; Y1 := X1 ⊕M
else C := ETK(0n)[1, |M |]⊕M ; Y1 := X1 ⊕M10∗ ⊕∆
return (Y1Y2, C)

]DecEK
∆ (T,X,C) // |C| < 2n

X1X2 := X; Y2 := X2 // |Xi| = n
(N,A, i) := T ; L := (N,A, i+ 1)
if C = ε then M := ε; Y1 := X1
elseif |C| > n then
C1C2 := C // |C1| = n
M1 := C1 ⊕ ELK(C210∗); V := ETK(M1)
M2 := C2 ⊕ V [1, |C2|]; M := M1M2; Y1 := X1 ⊕ V ⊕∆

elseif |C| = n then M := ETK(0n)⊕ C; Y1 := X1 ⊕M
else M := ETK(0n)[1, |C|]⊕ C; Y1 := X1 ⊕M10∗ ⊕∆
return (Y1Y2,M)

Figure B.1: Algorithms]Enc and]Dec for handling a final (fragmentary) message block. For a string X with
|X| < n, we let X10∗ denote X10n−|X|−1.

M1 M2

C1 C2

X1

Y1

∆

M1

C1

X1

Y1

M1

C1

X1

Y1

0n ∆0n

Figure B.2: Illustration of algorithm]Enc when |M | > n (left), |M | = n (middle), or 0 < |M | < n (right). The
incoming state X = X1X2 and outgoing state Y = Y1Y2, with |Xi| = |Yi| = n, will satisfy Y2 = X2, so we show only
how to process X1 to get Y1. The trapezoids represent truncation and padding with 10∗.

Our template in Section 3.1 only handles messages in ({0, 1}2n)∗, yet in practice schemes should support
messages of arbitrary length. While arbitrary length messages can be handled by reversibly padding out to a
multiple of 2n bits, we show here how to extend our template to handle messages in {0, 1}∗ more efficiently.

The key for an AE scheme will now be a pair (K,∆). The first component K will be used as the key
for a tweakable blockcipher as before, while ∆ is an n-bit string used to handle the final (fragmentary)
block. In Figure B.1, we show algorithms]Enc and]Dec that operate on strings of length less than 2n bits
(see Figure B.2 for a graphical depiction); they are based on how OTR [20] handles fragmentary blocks.
Figure B.3 shows how to use]Enc and]Dec (along with Enc,Dec, and Tag) to construct encryption and
decryption algorithms for arbitrary length messages. Note that the code in Figure 3.1 is a special case of
that in Figure B.3 when the message length is a multiple of 2n bits. Below, we show that the extended
template indeed leads to secure schemes.

22

EK,∆(N,A,M)
X := 02n; v := 1; M1 · · ·M2mM2m+1 := M
// |Mi| = n for i ≤ 2m, and |M2m+1| < 2n

for i = 1 to m do
T := (N,A, v); (Y,C2i−1, C2i) := EncEK (T,X,M2i−1,M2i)
v := v + Cost(Π); X := Y

(X,C2m+1) :=]EncEK
∆ ((N,A, v), X,M2m+1)

v := v + d|M2m+1|/ne − 1 T := (N,A,−v); V := TagEK (T,X)
return C1 · · ·C2m ‖ V [1, τ]

DK,∆(N,A,C)
if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2mC2m+1 ‖ tag := C; X := 02n; v := 1
// |Ci| = n for i ≤ 2m, |C2m+1| < 2n, and |tag | = τ

for i = 1 to m do
T := (N,A, v); (Y,M2i−1,M2i) := DecEK ,E−1

K (T,X,C2i−1, C2i)
v := v + Cost(Π); X := Y

(X,M2m+1) :=]DecEK
∆ ((N,A, v), X,C2m+1)

v := v + d|C2m+1|/ne T := (N,A,−v); V := TagEK (T,X)
if tag 6= V [1, τ] then return ⊥
else return M1 · · ·M2m

Figure B.3: Code of an AE scheme Π = (K, E ,D) handling arbitrary length messages, based on a tweakable
blockcipher E and a triple of deterministic algorithms (Enc,Dec,Tag).

Theorem B.1. Let Π[E] = (K, E ,D) be an AE scheme on {0, 1}∗ for which Priv(G−1 , G
−
2) = true, where

G−1 , G−2 are the unlabeled graphs for Enc and Tag of Π, respectively. Then for any adversary A, there is an
adversary B with Advpriv

Π[E](A) ≤ Advp̃rp
E (B). Adversary B has the same running time as A and makes at

most (Cost(Π) + 1) · σ/2 queries, where σ is the number of (full) message blocks in the queries of A.

Proof. Adversary B runs A as follows. For each of A’s queries (N,A,M), adversary B runs the encryption
scheme Π[E] on (N,A,M) with each call to EK replaced by a query to B’s oracle, and returns the ciphertext
to A. Finally, B outputs the same guess as A. To compute the the number of queries of B, note that
Cost(Π) ≥ 2 and]Enc/]Dec, on message M , makes dM/ne ≤ dM/ne · Cost(Π)/2 calls to the tweakable
blockcipher or its inverse.

Let Π[π] be the ideal variant of Π[E], where EK calls are replaced by corresponding queries to π, with
π←$ Perm(T , n). It suffices to show that Advpriv

Π[π](A) = 0. Consider experiments H1–H5 in Figure B.4.
The adversary has oracle access to the encryption scheme of Π[π] in experiment H1, and oracle access to
$(·, ·, ·) in experiment H5. Experiment H2 is identical to H1, except that we re-sample π←$ Perm(T , n)
each time we use Enc or Tag. Since a tweak to π is never repeated, Pr[HA

1 ⇒ true] = Pr[HA
2 ⇒ true].

In experiment H3, instead of calling Tagπ(T,X) to get the tag, we sample the tag at random. We then
unroll procedure]Enc and remove the dead code that processes the state X. By applying Lemma 3.1 to
lines 02–03 of procedure Priv, the string V := Tagπ(T,X) is uniform and so experiments H2 and H3 are
identical. Next, in experiment H4, we directly sample C2m+1←$ {0, 1}|M2m+1| instead of processing via π.
Since we never call π on the same tweak twice, each output of π(·, ·) is an independent, uniform string, and
thus experiments H3 and H4 are identical. Finally, experiment H5 is identical to H4, except that instead
of calling Encπ(T,X,M2i−1M2i) to get the blocks C2i−1C2i of the ciphertext, we sample them uniformly.
By applying Lemma 3.1 to lines 04–05 of procedure Priv, the output blocks of Encπ(T,X,M2i−1M2i) are
uniform and independent (even conditioned on all prior ciphertext blocks). Hence H4 and H5 are identical,
and Advpriv

Π[π](A) = Pr[HA
1 ⇒ true]− Pr[HA

4 ⇒ true] = 0.

23

proc Encrypt[∆, π](N,A,M) // Experiments H1, H2

M1 · · ·M2mM2m+1 := M ; X := 02n; v := 1
// |Mi| = n for i ≤ 2n, and |M2m+1| < 2n

for i = 1 to m do
T := (N,A, v); π←$ Perm(T , n)
(Y,C2i−1C2i) := Encπ(T,X,M2i−1M2i)
v := v + Cost(Π); X := Y

(X,C2m+1) :=]Encπ((N,A, v), X,M2m+1)
v := v + d|C2m+1|/ne; π←$ Perm(T , n)
T := (N,A, 1− v); V := Tagπ(T,X)
return C1 · · ·C2mC2m+1 ‖ V [1, τ]

proc Encrypt[∆, π](N,A,M) // Experiment H3

M1 · · ·M2mM2m+1 := M ; X := 02n; v := 1
// |Mi| = n for i ≤ 2n, and |M2m+1| < 2n

for i = 1 to m do
T := (N,A, v); π←$ Perm(T , n)
(Y,C2i−1C2i) := Encπ(T,X,M2i−1M2i)
v := v + Cost(Π); X := Y

T := (N,A, v); L := (N,A, v + 1)
if M2m+1 = ε then C2m+1 := ε
elseif |M2m+1| > n then
M ′1M

′
2 := M2m+1 // |M ′1| = n

V := πT (M ′1); C′2 := V [1, |M ′2|]⊕M ′2
C′1 := πL(C′210∗)⊕M ′1; C2m+1 := C′1C

′
2

elseif |M2m+1| = n then C2m+1 := πT (0n)⊕M2m+1
else C2m+1 := πT (0n)[1, |M2m+1|]⊕M2m+1
V ←$ {0, 1}n
return C1 · · ·C2mC2m+1 ‖ V [1, τ]

proc Encrypt[∆, π](N,A,M) // Experiments H4, H5

M1 · · ·M2mM2m+1 := M ; X := 02n; v := 1
// |Mi| = n for i ≤ 2n, and |M2m+1| < 2n

for i = 1 to m do
T := (N,A, v); π←$ Perm(T , n)
(Y,C2i−1C2i) := Encπ(T,X,M2i−1M2i)
C2i−1C2i←$ {0, 1}2n

v := v + Cost(Π); X := Y
T := (N,A, v); L := (N,A, v + 1)
C2m+1←$ {0, 1}|M2m+1|; V ←$ {0, 1}n
return C1 · · ·C2mC2m+1 ‖ V [1, τ]

Figure B.4: Experiments H1–H5 in the proof of Theorem B.1. Experiments H2 and H5 include the corresponding
boxed statements, but H1 and H4 do not.

Theorem B.2. Let Π[E] = (K, E ,D) be an AE scheme on {0, 1}∗ such that Auth(G−1 , G
−
2) = true, where

G−1 , G
−
2 are the unlabeled graphs for algorithms Dec and Tag of Π, respectively. Then for any adversary A,

there is an adversary B with Advauth
Π[E](A) ≤ 2−τ + `(Cost(Π) + 2)/2n + Adv±p̃rp

E (B), where ` is the number
of (full) blocks in the forgery output by A. Adversary B has the same running time as A and makes at most
(Cost(Π) + 1) · σ/2 queries, where σ is the total number of (full) message blocks in the queries of A.

24

proc Decrypt[π](N,A,C) // Experiments H1, H2

if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2mC2m+1 ‖ tag := C
// |Ci| = n for i ≤ 2m, |C2m+1| < 2n, and |tag | = τ
X := 02n; v := 1
for i = 1 to ` do
T := (N,A, v); (Y,M2i−1M2i) := Decπ,π

−1
(T,X,C2i−1C2i)

v := v + Cost(Π); X := Y
(X,M2m+1) :=]Encπ((N,A, v), X,C2m+1)
π←$ Perm(T , n); v := v + d|M2m+1|/ne − 1
T := (N,A, 1− v); V := Tagπ(T,X)
if tag 6= V [1, τ] then return ⊥
return M1 · · ·M2mM2m+1

proc Decrypt[π](N,A,C) // Experiment H3

if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2mC2m+1 ‖ tag := C
// |Ci| = n for i ≤ 2m, |C2m+1| < 2n, and |tag | = τ
X := 02n; v := 1
for i = 1 to ` do
T := (N,A, v); (Y,M2i−1M2i) := Decπ,π

−1
(T,X,C2i−1C2i)

v := v + Cost(Π); X := Y
(X,M2m+1) :=]Encπ((N,A, v), X,C2m+1); V ←$ {0, 1}n
if tag 6= V [1, τ] then return ⊥
return M1 · · ·M2mM2m+1

Figure B.5: Experiments H1–H3 in the proof of Theorem B.2. Experiment H2 includes the corresponding boxed
statement, but experiment H1 does not. Each experiment also has a procedure Encrypt[π], implementing the
encryption algorithm of Π[π], that is not shown for simplicity.

Proof. Adversary B runs A. For each of A’s encryption queries, B runs the encryption scheme of Π[E] but
with each call to EK replaced by a query to B’s first oracle, and returns the ciphertext to A. When A
outputs a forgery (N,A,C), adversary B runs the decryption scheme of Π[E] on (N,A,C), but with each
call to EK/E−1

K replaced by a query to B’s oracles. Adversary B returns 1 if A output a valid forgery, and
returns 0 otherwise. Let Π[π] be the ideal variant of Π[E], where calls to EK/E−1

K are replaced by queries to
π/π−1, respectively, with π←$ Perm(T , n). It suffices to show that Advauth

Π[π](A) ≤ 2−τ +`(Cost(Π)+2)/2n.
Consider experiments H1–H3 in Figure B.5. In H1, the adversary has oracle access to the encryption

and decryption schemes of Π[π]. Experiment H2 is identical to H1, except that when running the decryption
algorithm, we re-sample π←$ Perm(T , n) before using it in Tag. Experiment H3 is identical to H2, except
that instead of using Tag to generate the tag, we sample the tag uniformly.

Let (N,A,C) be the forgery output by A. Suppose that there is no encryption query (N,A,M ′) with
d|M ′|/ne = d(|C| − τ)/ne. Since decryption of the forgery query involves calling Tag with a tweak that has
never been used before, we have Pr[A forges in H1] = Pr[A forges in H2]. An application of Lemma 3.1 to
lines 12–13 of Auth, shows that the string V := Tagπ(T,X) is uniform. Thus Pr[A forges in H2] is equal to
Pr[A forges in H3], which is in turn at most 2−τ . Hence Advauth

Π[π](A) ≤ 2−τ .
Now, suppose that there is an encryption query (N,A,M ′) such that d|M ′|/ne = d(|C| − τ)/ne. (Note

that there can be at most one such query, since the attacker is not allowed to re-use a nonce value in two
encryption queries.) Let C ′ be the corresponding ciphertext output by this encryption query. We say that
a ciphertext is complete if its length (excluding the tag) is a multiple of n. First consider the case that
one of C and C ′ is complete and the other is incomplete. For example, suppose that C is complete and C ′

is incomplete. Let S be the subset of Perm(T , n) such that for any f ∈ S and for any query (T,X) that

25

proc Decrypt[∆, π](N,A,C) // Experiments P1, P2

if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2mC2m+1 ‖ tag := C; X := 02n; v := 1
// |Ci| = n and |tag | = τ

for i = 1 to m do
T := (N,A, v); π←$ S

(Y,M2i−1M2i) := Decπ,π
−1

(T,X,C2i−1C2i)
v := v + Cost(Π); X := Y

M2m+1 := M ′2m+1 ⊕ C′2m+1 ⊕ C2m+1; X := X ⊕ (M2m+1 ‖ 0n)
T := (N,A, 1− v); π←$ S; V := Tagπ(T,X)
if tag 6= V [1, τ] then return false
return true

// Experiments P3+j , for 0 ≤ j ≤ m− r + 1
proc Decrypt[∆, π](N,A,C)
if |C| 6≡ τ (mod 2n) then return ⊥
C1 · · ·C2mC2m+1 ‖ tag := C; X := 02n; v := 1
// |Ci| = n, and |tag | = τ

for i = 1 to m do
T := (N,A, v); π←$ S

(Y,M2i−1M2i) := Decπ,π
−1

(T,X,C2i−1C2i)
if r ≤ i ≤ r + j then Y ←$ {0, 1}n
v := v + Cost(Π); X := Y

M2m+1 := M ′2m+1 ⊕ C′2m+1 ⊕ C2m+1; X := X ⊕ (M2m+1 ‖ 0n)
π←$ S; V := Tagπ(T,X)
if j = m− r + 1 then V ←$ {0, 1}n
if tag 6= V [1, τ] then return false
return true

Figure B.6: Experiments P1, . . . , P4+m−r in the proof of Theorem B.2. Experiment P2 includes the corresponding
boxed statement, but P1 does not. Each experiment also has a procedure Encrypt[∆, π], implementing the encryption
algorithm of Π[π], that is not shown for simplicity. Here S is the set of f ∈ Perm(T , n) such that for any query
(T,X) that Encrypt[∆, π](N,A,M ′) makes to π, f(T,X) = π(T,X).

encrypting (N,A,M ′) via Π[π] makes to π, we have f(T,X) = π(T,X). From the proof of Theorem B.1,
we have (i) the outputs of the encryption oracle are independent of the key ∆, and (ii) π(T, ·), for any
T ∈ N×A× Z+, is independent of ∆. Let X be the state that Tag receives on querying (N,A,C), and let
X ′ be the corresponding state on querying (N,A,C ′). Then X is independent of ∆, but X ′[1, n] is the xor
of ∆ and another string that is independent of ∆. Hence X[1, n] = X ′[1, n] with probability at most 2−n. If
X[1, n] 6= X ′[1, n], by applying Lemma 3.2 to lines 20–22 of Auth, the tag of C is within statistical distance
at most 2/2n from a uniform string, independent of the prior ciphertexts. Hence the chance of forgery is at
most 3/2n + 2−τ .

Suppose that either (i) both C and C ′ are complete, or (ii) both C and C ′ are incomplete. We consider
case (i); case (ii) is similar. Let C = C1 · · ·C2mC2m+1 ‖ tag and C ′ = C ′1 · · ·C ′2mC ′2m+1 ‖ tag ′. If |C2m+1| =
|C ′2m+1| = 0 then the situation is like the basic case, which is already proven by Theorem 3.4. What remains
is the case |C2m+1| = |C ′2m+1| = n. We consider the following cases.
Case 1: Cj = C ′j for every j ≤ 2m + 1. Then tag and tag ′ must be different and thus, since Tag is
deterministic, the forgery is invalid.
Case 2: Cj = C ′j for every j ≤ 2m, but C2m+1 6= C ′2m+1. Let X be the state that Tag receives on
querying (N,A,C), and let X ′ be the corresponding state on querying (N,A,C ′). Then X[1, n] = X ′[1, n]⊕
C2m+1⊕C ′2m+1 6= X ′[1, n]. By applying Lemma 3.2 to lines 20–22 of procedure Auth, the tag of C is within

26

statistical distance at most 2/2n from a uniform string, independent of the prior ciphertexts. Hence the
chance of forgery is at most 2/2n + 2−τ .

Case 3: There is r ≤ m such that C2r−1C2r 6= C ′2r−1C
′
2r, and Cj = C ′j for every j < 2r − 1. Consider

experiments P1, . . . , Pm−r+4 in Figure B.6. In P1, the adversary has two oracles: Encrypt and Decrypt.
The first implements the encryption scheme of Π[π], and the second implements the decryption scheme of
Π[π] but returns false if the decrypted value is ⊥ and returns true otherwise. Experiment P2 is identical
to P1, except that in procedure Decrypt, each time we call Dec or Tag we resample π←$ S. Since in the
forgery query we do not repeat the tweak of any encryption query other than (N,A,M ′), and π and π−1 are
called with distinct tweaks, we have Pr[A forges in P1] = Pr[A forges in P2]. In experiment P3 we sample
Y uniformly instead of computing Y := Decπ,π

−1
(T,X,C2r−1C2r). Applying Lemma 3.2 to lines 14–16 of

procedure Auth, we have Pr[A forges in P2]− Pr[A forges in P3] ≤ 2Cost(Π)+2
2n .

For j = 1, . . . ,m − r, experiment P3+j is identical to P2+j , except that we sample Y uniformly instead
of computing Y := Decπ,π

−1
(T,X,C2r+2j−1C2r+2j). Applying Lemma 3.2 to lines 17–19 of procedure Auth,

we can conclude that Pr[A forges in P2+j]− Pr[A forges in P3+j] ≤ 2Cost(Π)+2
2n .

Experiment Pm−r+4 is identical to Pm−r+3 except that we sample V uniformly when checking va-
lidity of the forgery instead of computing V := Tagπ(T,X). Let X be the incoming state for]Dec
on querying (N,A,C) and let Y be the outgoing state. Let X ′ and Y ′ be the corresponding states
on querying (N,A,C ′) respectively. Then X is a random string, independent of prior ciphertexts and
C,X ′, Y ′. Moreover, Y [1, n] = X[1, n] ⊕ M ′2m+1 ⊕ C ′2m+1 ⊕ C2m+1, which is independent of Y ′[1, n].
Hence Y [1, n] 6= Y ′[1, n] with probability at least 1 − 2−n. Note that Y and Y ′ are the state given to
Tag in Encrypt[∆, π](N,A,C) and Encrypt[∆, π](N,A,C ′) respectively. If Y [1, n] 6= Y ′[1, n], by applying
Lemma 3.2 to lines 20–22 of procedure Auth, we have Pr[A forges in Pm−r+3]−Pr[A forges in Pm−r+4] ≤ 2

2n .
Finally, Pr[A forges in Pm−r+4] ≤ 2−τ . Summing up,

Advauth
Π[π](A) ≤ 2−τ + 2(m− r + 1)(Cost(Π) + 1) + 3

2n ≤ 2−τ + `(Cost(Π) + 2)
2n .

C Generating Attacks Automatically
In this section we show how to automatically generate attacks on schemes that do not pass the Priv and
Auth tests. The attacks are sound, but it does not mean that schemes that generate no attack are secure.
We consider AE schemes that use the extension in Appendix B to handle fragmentary strings. Below, we
categorize the attacks based on the graphs (Tag, Enc, and Dec) in which the schemes fail to pass the required
tests. We begin by describing a simple property on graphs, which is a cornerstone to our attacks.

A simple linear relation. Let G = (d, r, F, P, L) be a graph and let E be a tweakable blockcipher with
key space K. Let S = {v1, . . . , vs} ⊆ {1, . . . , r} be the set of all IN, INI, and TBC nodes. Without loss
of generality, assume that vj = j for every j ≤ d. Then for any node i, there are constants a1, . . . , as ∈
{0, 1} such that the n-bit value of node i is the linear combination of the values at nodes v1, . . . , vs with
coefficients a1, . . . , as respectively. That is, for any Z1, . . . , Zd ∈ {0, 1}n, any key K ∈ K, and any tweak T ,
if (Z1, . . . , Zr) := EvalEK ,E

−1
K (G,T, Z1, . . . , Zd) then Zi = a1 · Zv1 ⊕ · · · ⊕ as · Zvs , where 1 · X = X and

0 ·X = 0n.
To justify this claim, we give an induction proof on i. If i ≤ d then let aj = 1 if vj = i, and let aj = 0

otherwise. The claim trivially holds for this base case. Suppose that the claim holds for 1, . . . , i − 1. We
now show that it holds for i as well.

• If i is a TBC node then let aj = 1 if vj = i and let aj = 0 otherwise.

• If i is a FIN/DUP/OUT node then let p be the parent of i. Due to the induction hypothesis, there are
constants b1, . . . , bs such that the claim holds for p. Let aj = bj for every j ≤ s.

27

• If i is an XOR node then let p1 and p2 be the parents of i. Due to the induction hypothesis, there are
constants b1, . . . , bs such that the claim holds for p1, and constants c1, . . . , cs such that the claim holds
for p2. Let aj = bj ⊕ cj for every j ≤ s.

This completes the proof.
We can thus conclude that node i can be represented by a corresponding vector (a1, . . . , as). Note that

the above inductive proof also gives an algorithm to identify the representative vectors of all nodes.

Attacks based on a Tag graph. There are two tests that Priv and Auth perform on a Tag graph. First,
in lines 02–03 (and also lines 12–13) of Figure 3.6, we check if the output value of the graph is random for
a fresh TBC tweak. If this test fails, then the representative vector (a1, a2, a3) of the OUT node must have
a3 = 0, since this coordinate corresponds to the TBC node (here we assume that Tag has only one TBC
instruction). We consider the following cases.

Case 1: (a1, a2) = (0, 0), meaning that the output value of the Tag graph is always 0n, regardless of the
input. This immediately leads the following privacy attack: query 02n and return 1 if the tag of the answer
is 0τ , and return 0 otherwise. The adversary wins with advantage at least 1− 2−τ .

Case 2: (a1, a2) is (1, 0) or (0, 1). Without loss of generality, assume that (a1, a2) = (1, 0), meaning that
that the output value of G1 is always the same as the value of the first INI node. This is a vulnerability if
the first input value of the Tag graph is a linear combination of the plaintext blocks, as in OCB or OTR. To
determine this linearity, we check if in the Enc graph, the representative vector (b1, . . . , bs) of the first FIN
node satisfies bj = 0 for every j > 4. If this happens then we can also launch the privacy attack in Case 1.
In the Enc graph, the values of the IN and INI nodes are 0n, and thus the value at the first FIN node must
be 0n as well. Hence the output value of the Tag graph is also 0n. The adversary wins with advantage at
least 1− 2−τ .

Case 3: (a1, a2) = (1, 1), meaning that that the output value of the Tag graph is always the same as the
XOR of the values at the two INI nodes. This is a vulnerability if this XOR value is a linear combination
of the plaintext blocks. We check if in the Enc graph, the representative vectors (b1, . . . , bs) and (c1, . . . , cs)
of the two FIN nodes satisfy bj = cj for every j > 4. If this happens then we can also launch the privacy
attack in Case 1. The adversary wins with advantage at least 1− 2−τ .

In the second test, in lines 20–22 of Figure 3.6, we check if the output values are independent when we
evaluate the Tag graph twice on the same tweak but different inputs. (Actually, in the test, the two inputs
must differ only in the first half.) Without loss of generality, assume that the Tag graph passes the test at
line 02–03. Then the representative vector (a1, a2, a3) of the OUT node must have a3 = 1. Let p be the parent
of the TBC node, and let (d1, d2, d3) be the representative vector of p. Then d3 = 0 because the Tag graph
has only a single TBC node, and this node is not an ancestor of p. We consider the following cases.

Case 1: d1 = 0, meaning that if we evaluate the Tag graph twice, on the same tweak, such that the inputs
agree on the second half, then the two results agree on the value at node p. We then check if a1 = 0. If this
happens then in the two evaluations above, they also agree on the value at the OUT node. We now give an
authenticity attack. First query 0n to get answer C ‖T , with |C| = n. (Note that this query is a fragmentary
string.) Next produce C∗ ‖ T as a forgery, for any arbitrary C∗ 6= C. In both the encryption query and the
forgery query, the values at the second INI node of the Tag graph are 0n. Hence tag T is also a valid tag
for C∗, and thus the adversary wins with advantage 1.

Case 2: d1 = d2 = 1. We first check if a1 ⊕ a1 = 0. If this happens then the output value of the
Tag graph depends solely on the XOR of the values at the two INI nodes. This will be a vulnerability if
the XOR value can be linearly determined from the ciphertext blocks. We check if in the Dec graph, the
representative vectors (x1, . . . , xs) and (y1, . . . , ys) of the two FIN nodes satisfy xj = yj for every j > 4. If
this happens then we launch the following authenticity attack. First query 02n to get ciphertext C1C2 ‖ T ,
with |C1| = |C2| = n. Recall that (x3, x4) and (y3, y4) are coordinates corresponding to the ciphertext blocks
in the FIN nodes of the Dec graph. Let b = x3⊕x4⊕y3⊕y4. If b = 0 then output (C1⊕1n)‖ (C2⊕1n)‖T as

28

a forgery. Note that in the encryption query, the XOR of the values at the two INI nodes of the Tag graph
is x3 · C1 ⊕ x4 · C2 ⊕ y3 · C1 ⊕ y4 · C2, whereas its counterpart in the forgery query is

x3 · (C1 ⊕ 1n)⊕ x4 · (C2 ⊕ 1n)⊕ y3 · (C1 ⊕ 1n)⊕ y4 · (C2 ⊕ 1n) = x3 · C1 ⊕ x4 · C2 ⊕ y3 · C1 ⊕ y4 · C2.

If b = 1 then one of x3 ⊕ y3 and x4 ⊕ y4 must be 0 while the other is 1. Without loss of generality, assume
that x3 ⊕ y3 = 0. Then output (C1 ⊕ 1n) ‖ C2 ‖ T as a forgery. Now in the forgery query, the XOR of the
values at the two INI nodes of the Tag graph is

x3 · (C1 ⊕ 1n)⊕ x4 · C2 ⊕ y3 · (C1 ⊕ 1n)⊕ y4 · C2 = x3 · C1 ⊕ x4 · C2 ⊕ y3 · C1 ⊕ y4 · C2.

Hence, regardless of the value of b, the encryption query and the forgery query always agree on the XOR of
the values at the two INI nodes of the Tag graph. The adversary thus wins with advantage 1.

Note that the case (d1, d2) = (1, 0) cannot happen, because it passes the test at line 20–22: if the two
inputs of the Tag graph differ in the first half then their values at the TBC node are independent random
strings and so are the values at the OUT nodes.

Attacks based on an Enc graph. There is a single test that Priv performs on an Enc graph. At lines
04–06 of Figure 3.6, we check if the output values of the graph are random and independent, for a fresh
TBC tweak. If the Enc graph fails this test, let (b1, . . . , bs) and (c1, . . . , cs) be the representative vectors of
the two OUT nodes of the Enc graph. We consider the following cases.

Case 1: bj = 0 for every j > 4, meaning that the value of the first OUT node can be linearly determined from
the values at the IN and INI nodes. We launch the following privacy attack: query 02n to get the answer
C, and then output 1 if the first n-bit block of C is 0n, and output 0 otherwise. The adversary wins with
advantage 1− 2−τ .

Case 2: cj = 0 for every j > 4. This case is similar to Case 1.

Case 3: bj = cj for every j > 4. Then the XOR of the values at two OUT nodes can be linearly determined
from the values at the IN and INI nodes. We launch the following privacy attack. First query 02n to get the
answer C1C2T , with |C1| = |C2| = n. Next, output 1 if C1 = C2, and output 0 otherwise. The adversary
wins with advantage 1− 2−τ .

Attacks based on a Dec graph. There are two tests that Auth performs on a Dec graph. First, in lines
14–16 of Figure 3.6, we evaluate the graph twice on the same tweak with distinct inputs that agree on the
values of the INI nodes to check if the values at the first FIN node are random and independent.

A possible way to fail this test is that the value in the first FIN node depends only on at most a single
IN node. We thus check if both IN nodes are ancestors of the first FIN node. If this does not happen then
without loss of generality suppose that the first IN node is not an ancestor of the first FIN node. We can
launch the following authenticity attack. First query 02n to get C1C2T , with |C1| = |C2| = n. Next, output
(C1 ⊕ 1n) ‖ C2 ‖ T as the forgery attempt. The adversary wins with advantage 1.

Now suppose that both IN nodes are ancestors of the first FIN node. An example of such a scheme that
still fails the test is the insecure variant of OTR as illustrated in Figure 3.8. We can exploit this if the Dec
graph satisfies the following additional constraints:

(i) There are b1, b2, c1, c2 ∈ {0, 1} such that (b1, b2) 6= (0, 0) and XORing b1 ·∆ and b2 ·∆ to the values
of the two IN nodes, respectively, while keeping the same values of the INI nodes, results in (c1 ·∆)-
and (c2 ·∆)-change in the values of the first and second FIN nodes, respectively. For example, in the
insecure variant of OTR, (i) holds for b1 = c1 = 1 and b2 = c2 = 0.

(ii) There exist a1, a2 ∈ {0, 1} such that for any ∆ ∈ {0, 1}n, XORing c1 · ∆, c2 · ∆, a1 · ∆, a2 · ∆ to the
values of the INI nodes and IN nodes, respectively, will not change the value of the first FIN node. For
example, in the insecure variant of OTR, (ii) holds for a1 = 1 and a2 = 0.

To check for these properties, we do the following:

29

• Consider all (r1, r2) ∈ {(1, 0), (0, 1), (1, 1)}. If all TBC ancestors (x1, . . . , xs) of at least one FIN node
satisfy x3r1 = x4r2 then let b1 = r1 and b2 = r2.

• Let (u1, . . . , us) and (w1, . . . , ws) be the representative vectors of the first and second FIN nodes,
respectively. Let c1 = u3b1 ⊕ u4b2 and c2 = w3b1 ⊕ u4b2.

• Consider all t1, t2 ∈ {0, 1}. If c1u1⊕ c2u2 = t1u3⊕ t2u4, and all TBC ancestors (x1, . . . , xs) of the first
FIN node satisfy c1x1 ⊕ c2x2 = t1x3 ⊕ t2x4, then let a1 = t1 and a2 = t2.

If in the first check, there are multiple pairs (r1, r2) then we find corresponding (t1, t2) for each such pair,
but only choose a tuple (r1, r2, t1, t2) to determine (a1, a2, b1, b2, c1, c2). If those checks pass, we launch the
following authenticity attack. Query 04n to get answer C1C2C3C4T , where |C1| = |C2| = |C3| = |C4| = n.
Then output (C1 ⊕ b1 · 1n) ‖ (C2 ⊕ b2 · 1n) ‖ (C3 ⊕ a1 · 1n) ‖ (C4 ⊕ a2 · 1n) ‖ T as the forgery attempt. The
adversary wins with advantage 1.

In the second test, in lines 20–22 of Figure 3.6, we evaluate the graph twice, on the same tweak, and
check if the values at the first FIN node are random and independent, where in one input, the value at the
first INI is chosen at random. If the Dec graph fails this test, we’ll determine if the value at the first FIN
node can be computed from just the input and the tweak. To achieve this, initially, in the Dec graph, we
color the two IN nodes red while all other nodes are blue. Our goal is to recolor some blue nodes of the
graphs to red, so that the value of any red node can be computed from the tweak and the input without
knowing the values at the INI nodes. We’ll traverse the graph in an arbitrary topological order. At each
node, if it’s a FIN/OUT/DUP/TBC node and its parent is red then color it red. If it’s an XOR node then let
(y1, . . . , ys) be the representative vector of this node. If the corresponding nodes for all coordinates i such
that yi = 1 are red then color the current node red. When the algorithm terminates, if the first FIN node
is red then we launch the following authenticity attack. First query 04n to get answer C1C2C3C4T , where
|C1| = |C2| = |C3| = |C4| = n. Next, query C∗1C2C3C4T , for any C∗1 6= C1, as a forgery attempt. The
adversary wins with advantage 1.

30

Changelog
• Version 2.1.1 (August 11, 2016): Letter instead of A4 paper size.

• Version 2.1 (May 4, 2016): Major revision, fixing some bugs in generating attacks.

• Version 2.0 (August 12, 2015): Major revision, with additional illustrations and an approach for gen-
erating concrete attacks on schemes not found secure by our analysis. The running time of OCB and
the three schemes in Figure 4.3 is updated: TurboBoost has to be disabled for accurate timing.

• Version 1.0 (June 23, 2015): First release.

31

	Introduction
	Preliminaries
	Automated Security Analysis
	A Template for AE Schemes
	A Type System for AE Schemes
	Verifying Privacy and Authenticity

	Implementation and Results
	Conclusion
	Correctness of Reverse
	Arbitrary Message Lengths
	Generating Attacks Automatically

