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Abstract. In this paper,we introduce Farfalle, a newpermutation-based construction for build-
ing a pseudorandom function (PRF). The PRF takes as input a key and a sequence of arbitrary-
length data strings, and returns an arbitrary-length output. It has a compression layer and an
expansion layer, each involving the parallel application of a permutation. The construction also
makes use of LFSR-like rolling functions for generating input and output masks and for up-
dating the inner state during expansion. On top of the inherent parallelism, Farfalle instances
can be very efficient because the construction imposes less requirements on the underlying
primitive than, e.g., the duplex construction or typical block cipher modes. Farfalle has an in-
cremental property: compression of common prefixes of inputs can be factored out. Thanks to
its input-output characteristics, Farfalle is really versatile. We specify simple modes on top
of it for authentication, encryption and authenticated encryption, as well as a wide block ci-
pher mode. As a showcase, we present Kџюѣюѡѡђ, a very efficient instance of Farfalle based on
Kђѐѐюј-p[1600, nr] permutations and formulate concrete security claims against classical and
quantum adversaries. The permutations in the compression and expansion layers of Kџюѣюѡѡђ
have only 6 and 4 rounds respectively and the rolling function is lightweight. We provide a
rationale for our choices and report on soĞware performance.
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1 Introduction

Until recently, symmetric cryptography was dominated by block ciphers. With the excep-
tion of somededicated stream ciphers, standards and commercial products performed en-
cryption, authentication, authenticated encryption and even hashing with block-cipher-
based modes. AĞer the introduction of the AES [22], a lot of innovation has been brought
to block-cipher-based cryptography in the form of the definition of new modes, particu-
larly for authentication and authenticated encryption.

Upon closer inspection of these modes, one can see a tendency towards modes that do
not use the inverse mapping of the block cipher. Remarkably, the support for this inverse
mapping imposes a separation of the processing of the b = k + n bits of the input, with k
the key length and n the block size. Namely, the key is processed in a key schedule and the
data in the data path, and there can be no diffusion from the data path to the key schedule.
This strongly limits the potential diffusion as illustrated by the birthday bounds in both
block size and key length. So we think using a block cipher in a mode that does not use its
inverse is a waste. Well-known examples of block-cipher based functions that do not use
the inverse mapping are the NIST hash function standards SHA-1 and SHA-2 [45,46] but
also counter mode encryption and any block-cipher based authentication.

As opposed to block ciphers, cryptographic permutations do not make a distinction be-
tween key and data input and hence do not suffer from this limitation. Their use gained
popularity in the years 2000, in particular during the SHA-3 competition, as several candi-
dates were based on this type of primitive. Furthermore, the selection of the permutation-
basedKђѐѐюј sponge function as the SHA-3 standard gave increased visibility to this type



of cryptographic primitive [10,47].We introduced the concept of sponge functions in 2007,
initially aimed at hashing, although soon aĞer we developed modes for efficient encryp-
tion, authentication and authenticated encryption. For the laĴer we had to do some refac-
toring, leading to the (full-state) keyed duplex construction [21]. Today, sponge-based
cryptography has become a full-fledged alternative to its block-cipher-based counterpart.

Yet, the sponge and duplex constructions are inherently serial. The bulk of the compu-
tation consists of the repeated evaluation of a permutation, and for every evaluation we
need the output of the previous one.Modern high-endCPUs are so powerful that evaluat-
ing n permutations simultaneously is faster than evaluating them in sequence. For hash-
ing, optimal performances can be obtained by using tree hashing. A concrete example
of a hash function that can exploit a high degree of parallelism is KюћєюџќќTѤђљѣђ [14].
For separate authentication or encryption, similar techniques can be applied. However,
for duplex-based authenticated encryption, the amount of available parallelism must be
known in advance. An example of a mode for authenticated encryption that supports
configurable parallelism is Motorist, the mode underlying KђѦюј [13].

Also, the sponge and duplex constructions limit the number of output bits per evaluation
of the permutation to r = b − c, with b the width of the permutation and c a parame-
ter, called the capacity, that determines the security strength. Depending on the mode of
use and the adversary’s capabilities, in order to achieve s bits of security, one must take
c somewhere between s and 2s. Consequently, for a security strength of 128 bits, the rate
r is 128 to 256 bits smaller than the permutation width. This restricts the underlying per-
mutation to have some minimum width, and for relatively small widths the efficiency is
not optimal.

To address these concerns, we set out to define a parallelizable counterpart for sponge-
based cryptography. The ambition quickly became to have permutation-based modes for
all keyed operations in symmetric cryptography that can exploit arbitrary parallelism and
that can make use of permutations as small as the birthday bound (b = 2s). We called the
result Farfalle.

Similarly to sponges, the Farfalle offering is built around a (composite) primitive and
modes on top of it. This primitive is a pseudorandom function (PRF) that takes as input
a key and a string (or a sequence of strings), and produces an arbitrary-length output.
To an adversary not knowing the key, these output bits look like independent uniformly-
drawn random bits. Such a PRF is a powerful primitive that can readily be used as a
message authentication codes (MAC), a stream cipher or a key derivation function. With
some very simple modes, one can turn it into an authenticated encryption scheme and
even a block cipher supporting variable block length.

In more details, Farfalle builds a PRF from a b-bit cryptographic permutation, or a family
of permutations possibly with different number of rounds. The constructed PRF takes as
input a key and a sequence of arbitrary-length data strings, and it generates an arbitrary-
length output. It consists of a mask derivation, a compression layer and an expansion layer,
each of them involving the parallel application of a permutation. The compression layer
applies one of the permutations to input blocks, each blinded with a rolling b-bit input
mask, and it (bitwise) adds their outputs in a b-bit accumulator. For the expansion layer,
the accumulator is subject to a permutation and then used as a rolling state to generate
the output. Each output block is the sum of the (rolling) output mask and the result of a
permutation applied to the rolling state.
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We depict the compression and expansion stages of Farfalle in Figure 1. The construc-
tion aims for simplicity and efficiency and has some features in common with the sponge
construction [6]. As in sponges, the inverse of the permutation is not used. Another inter-
esting feature it has in common with sponges is the ability to compute it for incremental
inputs. While in sponges this is modeled by the duplex construction [8], in Farfalle this is
achieved by the fact that the contribution of input strings to the accumulator only depends
on their value and position in the input.

Farfalle can be seen as a parallelizable counterpart of the sponge for keyed applications. In
particular, its permutation calls can be performed in parallel as soon as the input masks
have been generated. This can be exploited on many platforms, including on modern
processors with single-instruction multiple-data (SIMD) units. Moreover, it can be made
very efficient as the number of rounds in the permutations can be taken much smaller
than in sponge-based modes, thanks to the fact that in Farfalle an adversary never has
access to both the input and the output of a permutation call.

Thanks to its input-output characteristics, Farfalle is really versatile. We specify concrete
modes on top of it for authentication, encryption and authenticated encryption, as well
as a wide block cipher mode.

Farfalle can be instantiated with any cryptographic permutation. In particular, we instan-
tiate it with the Kђѐѐюј-p permutations and with a rolling function similar to those pro-
posed in [28], aĴach concrete security claims to it and call the result Kџюѣюѡѡђ. Reference
and optimized code for Kџюѣюѡѡђ will be soon made available in KђѐѐюјTќќљѠ and in the
Kђѐѐюј code package, respectively [11,16].

1.1 Overview of the paper

AĞer introducing our notation and themain components of Farfalle in Section 2, we spec-
ify the Farfalle construction in Section 3. In Section 4we define (authenticated) encryption
modes: a session-supporting mode for authenticated encryption (AE), a synthetic initial
value (SIV) AE mode and a wide block cipher. Section 5 gives a rationale for the basic
construction and Section 6 discusses some prior art for Farfalle and its modes. Finally, in
Section 7 we specify Kџюѣюѡѡђ, a concrete instance of Farfalle making use of Kђѐѐюј-p, the
permutation underlying Kђѐѐюј, make a security claim and provide some rationale.

Appendix A is dedicated to an analysis of linear rolling functions that can be used in
conjunction with any permutation with low algebraic degree. In Appendix B, we list the
changes since the preliminary version of Farfalle.

2 Notation and components

In this sectionwe introduce notation related to strings and the two types of functions used
in Farfalle: permutations and rolling functions.

2.1 Strings

Farfalle operates on strings of bits, that we will just call strings in the following. Inside
Farfalle, strings are processed in chunks of b bits, where b is the width of the underly-
ing permutations.We use uppercase characters for arbitrary-length strings and lowercase
characters for b-bit strings.
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We denote the length of a string X by |X|. The set of strings of length n is Zn
2 and the set

of strings of any length is Z∗2 .

When applied to strings, the + operator is the bitwise addition, a.k.a. modulo 2 addition
or exclusive-or (XOR). The || operator is the concatenation.

Converting an input string to an array of b-bit strings requires a padding rule. We use
simple padding that appends a single 1-bit followed by the minimum number of 0-bits
resulting in a string with a length that is a multiple of b. We write P = pad10∗(M). The
string P can be seen as an array of b-bit blocks pi. It is convenient to have index i start
from a value of our choice I. We denote this as P = pI , pI+1 . . . pI+n−1, with n denoting
the number of n-bit blocks in P.

A sequence ofm strings M(0) to M(m−1) is denoted M(m−1) ◦ · · · ◦M(1) ◦M(0). The notation
deliberately reminds of the composition of functions. The set of all sequences of at least
one string is (Z∗2)+.

Farfalle yields a PRF that returns a string of arbitrary output length. In our notation, we
let the length of this string be determined by the context. In particular, X + FK (M)means
that the required output length of FK (M) is |X|. In some cases it is convenient to skip the
first q bits of the output. For this we use the notation X + FK (M)≪ q to indicate that we
take the output starting from offset q, i.e., the bits q to q + |X| − 1 of the output produced
by FK (M).

2.2 Permutations

Farfalle makes use of four cryptographic permutations, each operating on b-bit strings:

pb for deriving the initial mask from the key K

pc in the compression layer

pd between the compression and expansion layer

pe in the expansion layer

Specific security requirements apply for each of them, see Section 5. It is however not a
security requirement that they are different. One may specify instances of Farfalle where
the four permutations are the same. We think the way to instantiate the most efficient
Farfalle instances is by taking a permutation with variable number of rounds and tuning
the rounds for the four different cases to optimize the ratio efficiency vs. safety margin.

2.3 Rolling functions

A rolling function, denoted as roll, is a permutation of Zb
2. Farfalle makes use of three

rolling functions, each operating on b-bit strings:

rollc for generating masks that are added to the input blocks in the compression layer

rolle to update the internal state during expansion

rollf for generating masks that are added to the permutation outputs in the expansion

We write roll(k) for the result aĞer applying the rolling function once and rolli(k) for the
result aĞer applying it i times.
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Typically, rolling functions are lightweight linear functionswith huge order, like updating
functions of linear feedback shiĞ registers. The main security requirement for the rolling
function is the following. Informally, an adversary not knowing k shall not be able to
predict the mask value rolli(k) for any i in a reasonable range nor the difference between
any pair ofmask values rolli(k)+ rollj(k) for any i ̸= j in that range. The combinationwith
permutations of low algebraic degree introduces an additional security requirement: the
set {rolli(k)|0 ≤ i < n} shall not contain high-dimensional affine spaces for n a reasonable
value (see Section A.1). Finally, to preserve the parallelism, as explained later, wewish the
computation of roll to be lightweight.

3 Specification of Farfalle

We define Farfalle, a PRF construction that takes as input a variable-length secret key K
and a data string sequence, and returns an extract of the output stream at a desired offset
and for a desired length. It makes use of four permutations and three rolling functions.
Informally, Farfalle consists of three parts. First, the key derivation computes a b-bit mask
k from the key K. Then, the compression layer computes a b-bit accumulator from the data
string sequence using themask k. And finally, the expansion layer computes a b-bit rolling
state from the accumulator and then generates the output from the rolling state and amask
derived from k. We provide the definition in Algorithm 1 and an illustration in Figure 1.

The compression layer applies a permutation pc to b-bit blocks, each the sum of a data
block and a rolling mask rollci(k) with i the index of the block in the sequence and (bit-
wise) adds them into the accumulator x. It enjoys a rather powerful incremental property.
The block index i only depends on the length and number of input blocks accumulated
already. Clearly, if multiple Farfalle computations share the same data block x with the
same block index, their contribution to the accumulator is the same and pc(x + rollci(k))
needs to be computed only once. A special case of this is Farfalle applied tomultiple string
sequences with a common prefix and the same initial mask k.

Note that to separate input strings, the value of the index for the first block of M(j) is 2
higher than that for the last block of M(j−1). There is hence a block index value for which
there is no contribution to the accumulator. We call this a blank index, a concept elucidated
in Figure 2.

While the application of the rolling function in the compression layer of Farfalle is essen-
tially serial, the application of pc for index i can be done as soon as the input block has
been formed and rollci(k) is available. Hence if rollc is relatively lightweight, the main
part of the computation, namely the evaluations of pc, can be done in parallel.

The compression and expansion layers of Farfalle require a secret mask k of exactly b
bits. We wish to accommodate variable-length keys and for that purpose we generate the
initial mask k by applying pb to the padded user key K.

The expansion layer computes the rolling state y from the accumulator x simply by ap-
plying a permutation pd and uses the rolling state in a stream generator. For an output
block with index j, it applies a permutation pe to the rolling state rolle j(y) and (bitwise)
adds the rolling mask rollf j(k′) to the result before presenting it at the output.
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Fig. 1: The Farfalle construction.

Algorithm 1 Definition of Farfalle[pb, pc, pd, pe, rollc, rolle, rollf]
Parameters: b-bit permutations pb, pc, pd andpe and rolling functions rollc, rolle and rollf.
Input:
key K ∈ Z∗2 , |K| ≤ b− 1
input string sequence M(m−1) ◦ · · · ◦M(0) ∈ (Z∗2)

+

requested length n ∈N and offset q ∈N

Output: string Z ∈ Zn
2

K′ = pad10∗(K)
k← pb(K′) {mask derivation}

x ← 0b

I ← 0
for j running from 0 to m− 1 do

M = pad10∗(M(j))
Split M in b-bit blocks mI to mI+µ−1

x ← x + ∑
I+µ−1
i=I pc(mi + rollci(k))

I ← I + µ + 1 {skip the blank index}
k′ ← rollc I(k)

y← pd(x)
while all the requested n bits are not yet produced do

produce b-bit blocks as zj = pe(rolle j(y)) + rollf j(k′)
Z ← n successive bits from concatenation of z0||z1||z2 . . . starting from bit with index q.
return Z = 0n + FK

(
M(m−1) ◦ · · · ◦M(0)

)
≪ q
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Fig. 2: A closer look at the compression of example string sequence B ◦ A in Farfalle.

4 Modes of use

Farfalle can be readily used for MAC computation, key derivation and keystream gener-
ation. It allows amortizing the computation of k among different computations with the
same key K.

We now define three (authenticated) encryption modes on top of Farfalle.

These modes are parameterized by tag length t and/or an alignment unit length ℓ. We
assume that for any given key the parameter values are fixed. If there are instances of any
of these modes with different parameters or different modes altogether, we assume their
keys have been chosen independently. In other words, we claim no security for different
mode instances with the same key or with different modes with the same key.

4.1 Session-supporting authenticated encryption scheme

In many use cases where one wishes confidentiality, authentication is required too and it
makes sense to offer a scheme that provides both: an authenticated encryption scheme.
Doing this with a PRF is simple: one enciphers the plaintext by adding to it the output of
a PRF applied to a nonce and computes a tag on the ciphertext (and possibly metadata).
OĞen, one does not only want to protect a single message, but rather a session where
multiple messages are exchanged, such as in the Transport Layer Security (TLS) protocol
[26] or the Secure Shell (SSH) protocol [50]. Examples of session-supporting authenticated
encryption schemes are the CAESAR submissions KђѦюј [13] and Kђѡїђ [12]. They require
only a nonce at the startup of the session and each tag authenticates all messages already
sent in the session.
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Wedefine a session-supporting authenticated encryption scheme similar to theMotoristmode
defined in [13]. The session keeps track of a history that is presented to an (incrementable)
PRF for generating tags and keystream. Starting a session initializes the history to a nonce
N. From then on, it supports messages consisting of metadata A and/or plaintext P. The
wrapping of a message consists of three phases. First, Farfalle-SAE adds to the plaintext,
if non-empty, the output of the incremental PRF applied to the history in order to generate
the ciphertext. Second, it appends the metadata and/or ciphertext to the history. Finally,
it generates the tag by applying the PRF to the history. Note that a tag authenticates the
complete history of the session. Unwrapping is similar.

Farfalle-SAE has two parameters: the tag length t and an alignment unit length ℓ. It re-
serves the first t bits of the PRF output for tags and takes keystream from the PRF out-
put stream from an offset that is the smallest multiple of ℓ not shorter than t. More-
over, Farfalle-SAE applies domain separation between metadata and ciphertext strings
in the history to skip the first phase for plaintext-only messages or the second phase for
metadata-only or even emptymessages.Weprovide a formal specification inAlgorithm2.

Algorithm 2 Definition of Farfalle-SAE[F, t, ℓ]
Parameters: PRF F, tag length t ∈N and alignment unit length ℓ ∈N

Initialization taking key K ∈ Z∗2 and nonce N ∈ Z∗2 , and returning tag T ∈ Zt
2

offset = ℓ
⌈ t
ℓ

⌉
: the smallest multiple of ℓ not smaller than t

history← N
T ← 0t + FK (history)
return T

Wrap taking metadata A ∈ Z∗2 and plaintext P ∈ Z∗2 , and returning ciphertext C ∈ Z
|P|
2 and tag T ∈ Zt

2
C ← P + FK (history)≪ offset
if |A| > 0 OR |P| = 0 then

history← A||0 ◦ history
if |P| > 0 then

history← C||1 ◦ history
T ← 0t + FK (history)
return C, T

Unwrap taking metadata A ∈ Z∗2 , ciphertext C ∈ Z∗2 and tag T ∈ Zt
2, and returning plaintext P ∈ Z

|C|
2 or

an error
P← C + FK (history)≪ offset
if |A| > 0 OR |C| = 0 then

history← A||0 ◦ history
if |C| > 0 then

history← C||1 ◦ history
T′ ← 0t + FK (history)
if T′ = T then
return P

else
return error!

Clearly, this mode requires the PRF to have the incremental property. When instantiated
with Farfalle, themask derivationmust be done only once and in every call to Farfalle only
the recently appended string must be compressed. Like in Motorist [13], the initialization
returns a tag that can be sent along with the nonce (sender) or verified at the beginning
of a session (receiver).
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4.2 SIV authenticated encryption scheme

Farfalle-SAE, as well as Motorist, require the management of nonces: each session shall
be started with a unique combination key and nonce. Nonce management is perceived as
a difficult task by some, and for that audience we define a so-called synthetic initial value
(SIV) authenticated encryption scheme [49,36]. SIV authenticated encryption schemes have
the feature that one can securely encipher different plaintexts with the same key without
requiring the overhead of nonce management. It simply uses the tag computed over the
message as a nonce for the encryption function and security only breaks down when two
messages have the same tag. SIV modes were originally proposed for key transport, but
system architects that are not sure about their ability to manage nonces now also propose
it for other use cases. An example is the mode GCM-SIV [31] that was proposed to the
Internet Research Task Force (IRTF) and the Crypto Forum Research Group (CFRG) as
specified in a RFC [30].

Farfalle-SIV takes as input a secret key K, an arbitrary-length plaintext P and arbitrary-
length metadata A and returns a ciphertext C with the same length as the plaintext and a
fixed-length tag T. It first computes the tag by applying a PRF to P ◦ A and enciphers P
by adding to it the output of the PRF applied to T ◦ A. We provide a formal specification
in Algorithm 3.

Algorithm 3 Definition of Farfalle-SIV[F, t]
Parameters: a PRF F and tag length t ∈N

Wrap taking metadata A ∈ Z∗2 and plaintext P ∈ Z∗2 , and returning ciphertext C ∈ Z
|P|
2 and tag T ∈ Zt

2
T ← 0t + FK (P ◦ A)
C ← P + FK (T ◦ A)
return C, T

Unwrap taking metadata A ∈ Z∗2 , ciphertext C ∈ Z∗2 and tag T ∈ Zt
2, and returning plaintext P ∈ Z

|C|
2 or

an error
P← C + FK (T ◦ A)
T′ ← 0t + FK (P ◦ A)
if T′ = T then
return P

else
return error!

The security of this mode relies on Farfalle to be a PRF. For confidentiality, it requires
that all messages that are enciphered with the same key and that have the same metadata
A result in a different tag T. Two such messages with colliding tags will use the same
keystream to encipher their plaintexts and hence the sum of their ciphertexts will be equal
to the sum of their plaintexts. For a chosen value of the parameter t, the probability of a
tag collision occurring in n messages is upper bounded by n2/2t+1. For example, if in an
application it is reasonable to assume that only 240 messages with the same (or empty)
metadata and the same key will be processed, and one is willing to accept a risk of a
collision up to 2−40, tags of length 128 bits will do the job. For tag collisions between
messages with different metadata A there is no security problem as the keystream also
depends on the metadata A.

When instantiatedwith Farfalle, themask derivation and the compression of A that are in
common to both calls to FK ()must be done only once, thanks to the incremental property.
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4.3 Wide block cipher

There are use cases where it would be practical to have a block cipher with a custom block
size, or where the block size is adaptable to the task at hand and that supports next to the
key an additional diversification parameter, called a tweak. Examples include disk encryp-
tion, where the block size would equal the size of sectors. Another example is encryption
in the Tor anonymity network [48]. Here every block of data must be encrypted recur-
sively multiple times in such a way that the cryptogram is not longer than the plaintext
and this joint encryption must achieve a certain authentication. This can be achieved with
a tweakable wide block cipher with a width of 509 bytes.

We define a tweakable wide block cipher based on two PRFs. The global construction is an in-
stantiation of the HHFHFHmode as presented by Dan Bernstein at the Symmetric Cryp-
tography Dagstuhl seminar in January 2016 [5], that is in turn based on work of Naor and
Reingold [44], that is based on a paper by Stefan Lucks [40], that builds further on work
of Luby and Rackoff [39].

It takes as input a secret key K, an arbitrary-length plaintext P and an arbitrary-length
tweak W and returns a ciphertext C of same length as the plaintext. It performs a 4-round
Feistel network to the plaintext. The laĴer is split in a leĞ and a right part, with length
determined by the function split[b, ℓ]. This function takes the block length n and returns
the length of the leĞ part nL, which is a multiple of the given alignment unit length ℓ. The
function G (corresponding to F ◦H inHHFHFH) used in the twomiddle roundsmust be a
PRF and takes as input part of the intermediate result and the tweak. The function H used
in the first and last round does not necessarily have to be a PRF but must be differentially
uniform. We provide a formal specification of the split function in Algorithm 4 and of the
Feistel network in Algorithm 5. A rationale for the split function is given at the end of this
section.

A (tweakable) wide block cipher can be converted to an authenticated encryption scheme
by applying a very simplemode [32]. Themetadata is used as tweak and as encipherment
input one uses the plaintextwith some agreed verifiable redundancy, such as 8 bytes equal
to zero appended to the end. The cryptogram is the encipherment output. One can au-
thenticate the cryptogram by verifying that the decipherment output ends in the agreed
fixed string. This verification process can be performed before full decipherment is com-
pleted, allowing for early rejection of unauthentic cryptograms. As observed in [2], in
comparison to SIV, a wide block cipher mode has the advantage of smaller overhead for
the same forgery resistance. We provide a formal specification in Algorithm 6.

The wide block cipher in principle supports any length. However, the generic security it
can achieve is limited by the ability to generate collisions in the leĞ or right part of the in-
termediate result. Such collisions become likely as soon as the number of processed blocks
reaches 2min(nL,nR)/2 ≤ 2n/4. For that reason, one cannot claim a security level higher than
the width divided by 4 and hence the width cannot be taken too small.

When instantiating H andGwith two instances of Farfalle that have the samepermutation
for pb, the mask derivation can be pre-computed. Similarly, the compression of the tweak
W can be shared among the computations of GK (R||1 ◦W) and GK (L||0 ◦W).

Rationale for the split function The function split[b, ℓ] returns a value nL that minimizes
mL + mR, where mL is the number of b-bit blocks to hold the L string in Algorithm 5
and mR is defined similarly for R. We further require that L is aligned on ℓ bits, i.e., that
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Algorithm 4 Definition of split[b, ℓ]
Parameters: permutation width b ∈ N and alignment unit length unitLength ∈ N, satisfying ℓ ≥ 2 and
ℓ|b
Input: block length n ∈N

if n ≤ 2b− (ℓ+ 2) then
nL = ℓ

⌊
n+ℓ
2ℓ

⌋
else

q =
⌈

n+ℓ+2
b

⌉
, i.e., q is smallest multiple of b that n + ℓ+ 2 fits in

x = ⌊log2(q− 1)⌋, i.e., x is largest integer such that 2x < q
nL = (q− 2x)b− ℓ

return nL = split(n)

Algorithm 5 Definition of encryption in Farfalle-WBC[H, G, ℓ]
Parameters: two PRFs H and G and alignment unit length ℓ ∈N

Encipher taking key K ∈ Z∗2 , tweak W ∈ Z∗2 and plaintext P ∈ Z∗2 and returning ciphertext C ∈ Z
|P|
2

L gets first split(|P|) bits of P and R the remaining ones
R0 ← R0 + HK(L||0), with R0 the first min(b, |R|) bits of R
L← L + GK (R||1 ◦W)
R← R + GK (L||0 ◦W)
L0 ← L0 + HK(R||1), with L0 the first min(b, |L|) bits of L
return C← the concatenation of L and R

Algorithm 6 Definition of Farfalle-WBC-AE[H, G, t, ℓ]
Parameters: two PRFs H and G, the expansion length t ∈N and alignment unit length ℓ ∈N

Wrap taking key K ∈ Z∗2 , metadata A ∈ Z∗2 and plaintext P ∈ Z∗2 , and returning ciphertext C ∈ Z
|P|+t
2

P′ ← P||0t

return C← Encipher(K, A, P′)

Unwrap taking key K ∈ Z∗2 , metadata A ∈ Z∗2 and ciphertext C ∈ Z∗2 , and returning plaintext P ∈ Z
|C|−t
2

or an error
L gets first split(|C|) bits of C and R the remaining ones
L0 ← L0 + HK(R||1), with L0 the first min(b, |L|) bits of L
R← R + GK (L||0 ◦ A)
if |R| ≥ b + t then
if the last t bits of R ̸= 0t then return error!
L← L + GK (R||1 ◦ A)
R0 ← R0 + HK(L||0), with R0 the first b bits of R

else
L← L + GK (R||1 ◦ A)
R0 ← R0 + HK(L||0), with R0 the first min(b, |R|) bits of R
if the last t bits of L||R ̸= 0t then return error!

P′ ← L||R
return P← the first |C| − t bits of P′
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nL is a multiple of ℓ. More precisely, the number of blocks at the leĞ is mL =
⌈

nL+2
b

⌉
,

since Algorithm 5 requires appending one frame bit for domain separation and Farfalle
adds one bit of padding. As ℓ ≥ 2 and we want that nL|ℓ, these two bits are absorbed
in a buffer of at least ℓ bits that ensures the alignment, and we can equivalently write
mL =

⌈
nL+ℓ

b

⌉
. Similarly, the number of blocks at the right is mR =

⌈
nR+2

b

⌉
. Because of the

domain separation bits, padding bits and buffer for alignment, the total number of blocks
mL + mR is at least q as defined in Algorithm 4. An optimal solution means mL + mR = q.

This function split[b, ℓ] addresses an additional requirement, namely that min(nL, nR) is
not too small, to take into account the difference uniformity of HK with output truncated
to nL or nR bits. The function split distinguishes between two cases.

– For n ≤ 2b− (ℓ+ 2), we have mL = mR = 1. The function splitmaximizesmin(nL, nR)
within the constraint that nL is a multiple of ℓ. More precisely, it is easy to show that
|nL − nR| ≤ ℓ.

– For n > 2b− (ℓ+ 2), we first translate the requirement on the lengths tomin(nL, nR) ≥
b− ℓ. Algorithm 4 realizes this by taking nL = mLb− ℓ ≥ b− ℓ for some number of
blocks mL ≥ 1 on the leĞ side. For the right side, we have q ≥ 3, so that mR ≥ 2 and
nR ≥ b− 1. Second, nL is a multiple of ℓ bits since b is a multiple of ℓ. Then, we reach
optimality since nR = n− (mLb− ℓ) and thus mR =

⌈
nR+2

b

⌉
= q−mL. (Note that this

works independently of the choice of mL.) Finally, the function splits these q blocks
into the largest power of two for R. As the parallelism degree is oĞen a power of two,
this enables its optimal exploitation.

5 Rationale for Farfalle

A Farfalle function loaded with a secret key K can be distinguished from a random func-
tion in several ways. We list here the types of aĴack that have played an important role in
shaping Farfalle and that impose criteria on the used permutations and rolling functions:

1. accumulator collision: finding two input strings leading to identical accumulators;

2. weaknesses in the mask derivation;

3. distinguishing the output for a single input from a random string

– retrieving rolling state and mask using algebraic aĴacks

– detecting bias in the output sequence using higher-order differentials

– detecting bias in the output sequence using correlation propagation

4. distinguishing the output for multiple inputs from random strings;

5. finding the values of y and k from input-output pairs.

We discuss these aĴacks in the following subsections.

5.1 Accumulator collision

Recall that the accumulator is the value x that sums the contributions of pc(mi + rollci(k)).
Finding two string sequences M and M′ leading to the same value of the accumulator
can be used to aĴack Farfalle. The difficulty of finding collisions in the accumulator is

12



based on the differential propagation properties of pc and is helped by the fact that before
being subject to pc, each input blocks mi is whitened with the rolling input mask rollci(k)
and that the accumulator cannot be directly observed. One may aĴempt to generate such
collisions in several ways. We describe them in this subsection.

Sets of input blocks that contribute 0 to the accumulator The simplest method, at least
conceptually, is to form M′ by appending a block at the end of M and hope its b-bit con-
tribution to the accumulator is zero. Succeeding in doing this is equivalent to successfully
guessing k.

One may try to append two blocks where the input to the permutation is equal: mi +

rollci(k) = mi+1 + rollci+1(k). The ability of the adversary to do this critically relies on her
ability to predict rollci(k) + rollci+1(k), imposing the requirement for the rolling function
that it shall be hard to predict k + roll(k) for unknown k. This aĴack can be generalized
by not only appending blocks to M, but also puĴing input blocks in M′ where there are
blank indices in M. Then it shall be hard to predict k + rollcδ(k) for unknown k and any
offset δ in a reasonable range.

Appending multiple blocks and saying something meaningful on their joint contribution
to the accumulator is possible if the permutation has sufficiently low algebraic degree
and the rolling function allows predicting mask differences. Basically, if one chooses the
input blocks such that the corresponding inputs to pc form an affine space of sufficient
dimension, their joint contribution is zero. We refer to Section A.1 for more explanation.
This imposes a requirement on the rolling function that a sequence of masks with reason-
able index values shall not contain an affine space of dimension higher than the algebraic
degree of the permutation.

Input block variants swapping pc inputs One may try to construct M′ from M by mod-
ifying two input blocks mi and mj into m′i and m′j, such that the input to pc for mi equals
that of m′j and vice versa. This will just swap the contribution of blocks i and j to the ac-
cumulator. As the addition is associative, the joint contribution is the same in both cases.
This boils down to finding mi + rolli(k) = m′j + rollj(k) and a similar expression for mj

and m′i. The ability of the adversary to come upwith such input blocks again critically de-
pends on her ability to predict k + rollδ(k) for unknown k and any offset δ in a reasonable
range.

High-probability differentials in pc Another approach exploits high-probability differ-
entials in pc. One applies two different inputs M and M′ that have the same length but
differ in a limited number of blocks, denoted as active. Due to the invertibility of pc, the
smallest number of active blocks that may lead to a collision is 2. Let the difference in the
first block be ∆ and that in the second block ∆′. We have a collision if these differences
propagate to the same difference through the permutation. Assuming the adversary does
not know the mask values for the active blocks, the probability of a collision is

Pr(collision) = ∑
γ

DP(∆, γ)DP(∆′, γ) , (1)

with DP(x, y) the differential probability of differential (x, y) over pc. The differential
probabilities DP(∆, γ) for fixed ∆ and varying γ can be seen as a vector with 2b compo-
nents, all positive and summing to 1. Equation (1) can be seen as an inner product of such
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vectors. From this it follows that the highest values can be obtained by taking ∆ = ∆′,
yielding:

Pr(collision) = ∑
γ

DP2(∆, γ) . (2)

This presents a clear criterion for pc.

In the initial rounds an adversary may try to guide the difference propagation by making
assumptions on the masks rolli(k) and rollj(k) and choose the corresponding message
blocks mi and mj to satisfy certain conditions in the propagation. If the number of bits
to be guessed is smaller than the number of conditions to be satisfied, this may result in
some gain. This hence presents a criterion for the rolling function.

5.2 Properties of the mask derivation

To derive the mask k, we apply the pb permutation to a variable-size key K aĞer padding
it in a reversible way. This ensures that no collision can happen between different keys,
even with different sizes.

We would like to highlight two properties that we expect from the mask derivation.

– As explained in Section 5.1, the adversary should have no effective way to predict the
value of k + rollcδ(k) for reasonable values of δ. Otherwise, she can easily produce
accumulator collisions, e.g., by swapping input blocks.

– Regarding differential aĴacks, the input to pc, namely, mi + rollci(k), should look suf-
ficiently random to an adversary, so as to prevent her from choosing input values that
significantly decreases the workload to propagate a difference according to a differ-
ential trail.

To satisfy these properties, we express the requirement on pb that for every matrix M of
rank r, the min-entropy of M × k is close to the minimum of r and the min-entropy of
the key K. This encompasses the first property when rollc is a linear function, as in the
case of Kџюѣюѡѡђ, by choosing M = I + rollδc, with I the identity matrix. For the second
property, when pc employs a degree-two round function, the conditions on the absolute
values for the propagation of differences are linear. Hence, by choosing M accordingly,
this requirement ensures that the difference cannot be propagated with a higher propa-
bility than expected.

We may need to restrict on the allowed distribution of keys K to exclude (artificial) key
distributions that would pose a problem for particular rolling functions. As in the case of
Kџюѣюѡѡђ, a rolling functions can operate on e bits of the mask, its support, and leave the
remaining b− e bits invariant. One could craĞ a distribution of K such that k always has
a particular key-independent value in the support of rollc. This would allow switching
blocks as the difference between the masks of two different blocks, k + rollcδ(k), is known
for any δ. Despite the fact that this distribution would be fairly artificial and involve the
definition of pb

−1, a solution could be to require that the keys K are drawn uniformly.

5.3 Distinguishing the output from a random string (single input)

In this section, we assume that rollf is the identity. AĴacks discussed in this section tend
to become more complex if rollf is a true rolling function.
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Clearly, one may have a collision in the sequence of rolle j(y) values if there is a short cycle
or if different accumulator values x and x′ lead to rolling state values y = pd(x) and y′ =
pd(x′) such that rolleδ(y′) = y for some reasonably small value of δ. As a consequence,
the rolling function rolle must be chosen such that the states are in very long cycles.

Every output block depends on an output mask and a rolling state. Hence, it requires
at least two output blocks to determine the value of the rolling state and/or the output
mask. When performing an algebraic aĴack using two output blocks, the adversary must
solve a system of equations with unknown variables spread over two full instances of the
permutation pe. Usingmore than two output blocks leads to an overdetermined system of
equations, with even more variables. Due to the application of the rolling function to the
rolling state, every additional output block will introduce many additional variables. The
main criterion for pe due to these aĴacks is the difficulty of solving a system of non-linear
equations involving (at least) two instances of pe.

One may try to distinguish the output by observing biases in its bits, or combination
of bits. If pe has sufficiently low algebraic degree, one may try to find affine spaces of
dimension at least equal to that degree in the sequence of rolling states. If such an affine
space can be found, the corresponding output blocks sum to zero allowing to distinguish
it from a random sequence. This presents a criterion for rolle.

Another method to distinguish the output is to find biases in linear combinations (pari-
ties) of output bits using the correlation properties of the permutation. Consider the case
where these bits are spread across two blocks. The output block with index i + j is com-
pletely determined by the output blockwith index j and the outputmask: pe

−1(zi+j + k) =
rollei(pe

−1(zj + k)), or equivalently

zi+j = k +
(

pe ◦ rollie ◦ pe
−1
)
(zj + k) .

The sign of the bias in any parity of output bits vTzj + uTzi+j depends on k, but its ampli-
tude is independent of k and equal to the absolute value of

∑
w

Corrpe(u, rollei(w))Corrpe(v, w).

This comes down to a joint criterion for pe and rolle.

5.4 Distinguishing the output from a random string (multiple inputs)

We now describe a distinguishing aĴack that requires 2d chosen input strings with d− 1
the algebraic degree of pe ◦ pd. For a given key K, we compute Farfalle for 2d input strings,
each consisting of d input blocks and one block of padding. Each string has the form
m(λ) = mλ0

0 ||m
λ1
1 || . . . ||mλd−1

d−1 , where λ ∈ Zd
2 and m0

i ̸= m1
i for all i.

If we denote ri = pc(m0
i + rolli(k)) and r∗i = pc(m1

i + rolli(k)) and r′i = ri + r∗i ̸= 0,
then the value of the accumulator for the input string with label λ is x = ∑i ri + ∑i λir′i .
Over the space of input strings, this is an affine space. So summing the Farfalle outputs
for these input strings corresponds to taking the d-th derivative of the function applied to
the accumulator. If this function has degree less than d, this sum becomes zero. Hence, we
can use this to distinguish the Farfalle output from a random string. Clearly, this imposes
a criterion on the algebraic degree of pe ◦ pd. Note that this works independently from the
algebraic degree of pc and of the concrete values of the blocks m0

i and m1
i .
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5.5 Finding the value of k from input-output pairs

Finally, finding the value of k from input-output pairs can be seen as a variant to doing
key retrieval in an Even-Mansour [27] cipher, where the permutation is pe ◦ pd ◦ pc. Here
the complete spectrum of classical block cipher aĴacks can be applied. The main differ-
ences are that in Farfalle an adversary has the additional degree of freedom of exploiting
rollei(y) to alter the rolling state that forms the intermediate state aĞer pd ◦ pc rounds, and
that in most Even-Mansour use cases an adversary can query the inverse cipher, which is
not the case for Farfalle.

A key point for Farfalle is that themarginal cost for processing an input block is executing
pc, for generating an output block is executing pe but that an adversary performing an
aĴack using input-output pairs must span pe ◦ pd ◦ pc.

6 Comparison with prior art

We describe the prior art for Farfalle in Section 6.1, for the session-supporting authenti-
cated encryption mode in Section 6.2, for the SIV authenticated encryption mode in Sec-
tion 6.3 and finally for the wide block cipher in Section 6.4.

6.1 Farfalle

The Farfalle construction reminds of the keyed sponge construction, with most efficient
version the full-width keyed sponge [7,1,43,21]. It differs in that the keyed sponge is
strictly serial while Farfalle consists of two main layers that are by themselves paral-
lel. The keyed sponge can be duplexed, i.e., incremental inputs can be processed, with
consequence that the partial input and output to an underlying permutation f are avail-
able to the adversary. Duplexing works in Farfalle too but in a slightly different manner
and never leads to the input and output of a single call to pc, pd or pe being available
to the adversary. This implies that for equal safety margins in Farfalle one can afford to
take permutations with less rounds than in the keyed sponge. Moreover, in the sponge
construction the (squeezing) rate is limited to b − c with c the capacity. As the capacity
determines the security strength, the sponge construction tends to become less efficient
for small permutation widths. In Farfalle, one can plug in much smaller permutations for
the same target security strength. The size is basically limited by the birthday bound on
having collisions in the input to pc or pe.

Farfalle can readily be used for MAC computation, keystream generation, key derivation
and as building blocks in more elaborate schemes. Its computational cost is a single per-
mutation pb for seĴing up the key, the single call to pd and then one execution of pc per
input block and one execution of pe per output block. We compare to some similar MAC
modes (seĴing aside the fact that these modes do not support arbitrary-length outputs):

Protected counter sum This is a method proposed in [3] to build an unpredictable func-
tion with arbitrary-length input from an unpredictable function with fixed-length in-
put. The Farfalle mode, with its output restricted to a single block, can be seen as an
instantiation of this method. In Farfalle, the unpredictable function with fixed-length
input is implementedwith a permutation,where the rolling function (implicitly) codes
the block index. The permutations pd and pe and the whitening of the output with a
mask take the place of the final call of the unpredictable function in the protected
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counter sum. Farfalle has several key ideas in common with protected counter sums,
but there are also some differences. The most important differences are that Farfalle
has an arbitrarily extendable output and that Farfalle has the ambition to be unpre-
dictable (in the terminology of [3]) even if the underlying building blocks are not un-
predictable as such.

PMAC This is a block cipher mode for MAC computation proposed in [17] and a variant
of protected counter sum. The random function is instantiated by a block cipher and
it has a specific coding for the counter block in the inputs. The compression layer
of Farfalle is similar to PMAC as it performs the block cipher calls in parallel and
(bitwise) adds their outputs. In PMAC the input blocks are b bits and before applying
the block cipher, their value is offset by a rolled version (with rolling function based
on a Gray code) of a b-bit secret k derived from the user key K with a block cipher
call. The tag is obtained by offseĴing the accumulator with a rolled version of k and
applying the block cipher to the result.

Alred This was one of the first permutation-based modes proposed for MAC computa-
tion in [23,25] and is mostly known for the instance Pelican-MAC based on AES [24].
The main difference with Farfalle is that it is strictly serial and can therefore not take
advantage of available parallelism (e.g., pipelining in the AES-NI instructions) in re-
sources. On the other hand, it shares with Farfalle that never an input and output to a
permutation f is available and uses that to reduce the number of rounds in f drasti-
cally compared to more generic modes such as CBC-MAC or C-MAC. Moreover, the
output length of Alred is limited to the width of the underlying block cipher and it
does not support multiple input strings.

MARVIN This is a mode for MAC computation proposed in [34,33] that was inspired
at the same time by Alred and by PMAC and uses both a block cipher and a permu-
tation. The compression layer of Farfalle is similar to that of MARVIN that applies
a permutation to the input blocks in parallel and (bitwise) adds their outputs in an
accumulator. The input blocks to the permutation calls are formed in a way similar
to PMAC, but here a variant of Hugo Krawczyk’s cryptographic CRC [35] is used
for rolling. In MARVIN, all input blocks pass through the permutation before being
added into the accumulator. Moreover, the tag is obtained by applying the block ci-
pher to the accumulator offset with the secret k and some constants coding message
and tag lengths.

We can also compare to some stream ciphermodes (seĴing aside the fact that thesemodes
do not support arbitrary-length inputs):

Counter mode of a block cipher In counter mode, a priori no distinction is made be-
tween the long-term nonce and the short-term block index. Depending on the size of
the nonce, an adversary can apply differences of large choice and observe correspond-
ing outputs.

Mode underlying Salsa and ChaCha These stream ciphers proposed in [4] can be con-
sidered as amode on top of a permutation. This is very close to countermode of a block
cipher, where the block cipher is rather of type Even-Mansour. Again, the adversary
has more degrees of freedom than in Farfalle.

Finally, we can compare to the pseudorandom function HS1 that is used in the CAE-
SAR submission HS1-SIV [36]. This pseudorandom function uses two strongly different
functions for compression and for expansion: a differentially uniform hash function for
compression and ChaCha (in a non-standard mode) for expansion. The expansion part
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is purely parallel but the compression part has only limited parallelizability. Farfalle has
the advantages that it can be constructed with a single permutation only, it is in general
much simpler and it takes sequences of input strings rather than a single one, simplifying
the modes built on top of it.

6.2 Session-based authenticated encryption mode

For Farfalle-SAE a comparison with duplex-based session-supporting authenticated en-
cryption seems appropriate. The most recent mode realizing this is the Motorist mode
underlying KђѦюј [13]. Functionally, Farfalle-SAE and Motorist are almost the same. The
difference is in the way this is realized. Motorist supports parallelism but it is limited and
must be determined or negotiated at session setup. Farfalle-SAE on the other hand is fully
parallel for each metadata A or plaintext P.

When considering protection against differential power analysis (DPA) or differential
electromagnetic analysis (DEMA), Motorist offers a high level of leakage resilience. Its
key is only applied at session setup. From that point on, the state evolves and its value
depends on all input received. If nonce uniqueness is respected, state values for different
sessions will be completely decorrelated and a DPA/DEMA aĴack can only be applied to
the session setup phase. The consequence is that DPA countermeasures such as masking
must only be applied during that phase. Achieving something similar for Farfalle-SAE
requires adopting appropriate rolling functions. First, rollc and rollf must affect all bits
of the mask. A suitable choice would be a single round of a cryptographic permutation
operating on the full b-bit string. The rolling state can be protected in the same way by
adopting a similar rolling function for rolle. For dealing with multiple Farfalle calls with
the same key, it would be necessary to tweak Farfalle slightly and allow taking in as ini-
tial mask the final mask of the previous call to Farfalle. Notice that the introduction of
leakage resilience goes at the expense of some parallelism as the rolling function becomes
heavier.

6.3 SIV authenticated encryption mode

Ourmode Farfalle-SIV is a close variant of the SIV construction [49]. The SIV construction
was proposed mostly for the purpose of key wrapping and that was later adopted in the
CAESAR submission HS1-SIV [36] for authenticated encryption. The main advantage of
Farfalle-SIV in comparison to these two examples is the following. In the original SIV
construction, the input consists of only metadata A and plaintext P. These are subject to
a first keyed PRF that results in a tag (called IV) that serves as input to a second keyed
PRF for generating the keystream. In case the two inputs have colliding tags, the same
keystream is used to encipher two different plaintexts. In HS1-SIV this is addressed by
having an additional nonce that is input to both PRFs and having a tag collision is only
problematic if also the same nonce is used for both messages.

In contrast, Farfalle-SIV has no dedicated nonce, but the metadata A are input in both
PRFs. So now there is only a problem if there is a tag collision and if the two message
have the same metadata A. Thanks to the incremental property of Farfalle, the only cost
this incurs is the caching of the contribution of the metadata to the accumulator.
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6.4 Wide block cipher

The novelty of Farfalle-WBCwith respect toHHFHFH [5] is that thanks to the incremental
property of Farfalle, the compression of the tweak must be done only once.

Another tweakablewide block cipher construction is AEZ-Core proposed in the CAESAR
submission AEZ [32]. It is not easy to compare Farfalle-WBC with AEZ-Core, as the for-
mer is based on permutations and the laĴer on tweakable block ciphers. Although it is
hard to measure simplicity, we feel that Farfalle-WBC is a significantly simpler construc-
tion than AEZ-Core.

7 Kџюѣюѡѡђ: Farfalle based on Kђѐѐюј-p

In this section, we present a Farfalle instance based on Kђѐѐюј-p, the permutation under-
lying Kђѐѐюј, KђѦюј and Kђѡїђ and standardized in FIPS 202 [10,12,13,47].

Definition 1. Kџюѣюѡѡђ is Farfalle[pb, pc, pd, pe, rollc, rolle, rollf]with the following parameters:

– pb = pc = Kђѐѐюј-p[1600, nr = 6],

– pd = pe = Kђѐѐюј-p[1600, nr = 4],

– rollc as specified below,

– rolle = rollc,

– rollf is the identity.

The rolling function rollc applies a linear transformation to the five lanes of the plane y = 4 of the
Kђѐѐюј-p state and leaves the other 20 lanes unchanged:

a[x][4]← a[x + 1][4] ∀x ̸= 4
a[4][4][z]← a[0][4][z− 7 mod 64] + a[1][4][z] ∀z > 60
a[4][4][z]← a[0][4][z− 7 mod 64] + a[1][4][z] + a[1][4][z + 3] ∀z ≤ 60

7.1 Security claim

We make the following security claim on Kџюѣюѡѡђ.

Claim 1 Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and indepen-
dently chosen from Zκ

2 with κ ≤ 320. Then, the advantage of distinguishing the array of functions
KџюѣюѡѡђKi(·) with i ∈ Zu from an array of random oraclesRO(i, ·), is at most

uN + (u
2)

2κ
+

N
2256 +

M
2137 +

√
uN′

2κ/2−1 +
N′

2127 . (3)

Here,

– N is the computational complexity expressed in the (computationally equivalent) number
of executions of Kђѐѐюј-p[1600, nr = 4],

– N′ is the quantumcomputational complexity expressed in the (equivalent) number of quan-
tum oracle accesses to Kђѐѐюј-p[1600, nr = 4], and

19



– M is the online or data complexity expressed in the total number of input and output blocks
processed by KџюѣюѡѡђKi(·).

In (3), the first term accounts for the effort to find one of the u secret keys by exhaustive
search, and for the probability that two keys are equal. The second term expresses that
the complexity of recovering the accumulator or any rolling state inside Kџюѣюѡѡђ must
be as hard as recovering 256 secret bits. The third term expresses the effort to find a colli-
sion in the accumulator. The number 137 in the denominator follows the lower bound on
differential trails inside Kђѐѐюј-p as detailed in Section 7.4.

The fourth and fiĞh terms only apply if the adversary has access to a quantum computer.
The fourth term accounts for a quantum search (or quantum amplification algorithm) to
find a κ-bit key among u possibilities [29,19]. The probability of success aĞer N′ iterations
is sin2 ((2N′ + 1) θ) with θ = arcsin

√
u/2κ. We upper bound this as 2N′

√
u/2κ. The fiĞh

term similarly accounts for a quantum search over 256 secret bits.

Note that we assume that Kџюѣюѡѡђ is implemented on a classical computer. In other
words, we do not make claims w.r.t. adversaries who would make quantum superpo-
sitions of queries to the device implementing Kџюѣюѡѡђ and holding its secret key(s).

We limit ourselves to fixed-length keys that are chosen uniformly and independently to
keep our claim simple. We expect the construction to be secure for nonuniformly chosen
and variable-length keys too, but it is possible to come up with pathological cases that
would not offer good security and that hence should be excluded in the security claim
(see Section 5.2).

In the multi-user seĴing, we require the keys to be independently drawn. If an adversary
can manipulate K, such as in so-called unique keys that consist of a long-term key with a
counter appended, we recommend hashing the key and the counter with a proper hash
function such as KюћєюџќќTѤђљѣђ [15].

7.2 Kџюѣюѡѡђ-SIV and -SAE

Functions and schemes based on Kџюѣюѡѡђ follow the same naming conventions as for
Farfalle and adopt specific values for the parameters. In particular:

– Kџюѣюѡѡђ-SIV has t = 256,

– Kџюѣюѡѡђ-SAE has t = 128 and ℓ = 8.

7.3 Kџюѣюѡѡђ-WBC and -WBC-AE

The wide block cipher and the authenticated encryption scheme based on it make use of
two Farfalle instances: one for H and one for G. In Kџюѣюѡѡђ-WBC, the laĴer is instanti-
ated with Kџюѣюѡѡђ and the former is a variant of Kџюѣюѡѡђ that we call Sѕќџѡ-Kџюѣюѡѡђ.
Sѕќџѡ-Kџюѣюѡѡђ has the same parameters as Kџюѣюѡѡђ, with the sole exception of pd that
is the identity function instead of Kђѐѐюј-p[1600, nr = 4]. In addition,we set the following
parameters:

– Kџюѣюѡѡђ-WBC has ℓ = 8,

– Kџюѣюѡѡђ-WBC-AE has t = 128 and ℓ = 8.
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Making joint use of Kџюѣюѡѡђ and Sѕќџѡ-Kџюѣюѡѡђ is not somethingwe support in general,
as it is specific to the definition of Kџюѣюѡѡђ-WBC.Wemake a dedicated security claim on
Kџюѣюѡѡђ-WBC.

Claim 2 Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and independently
chosen from Zκ

2 with κ ≤ 320 and let PKi(·) with i ∈ Zu be instances of Kџюѣюѡѡђ-WBC. Each
of these instances support two interfaces:

Encipherment denoted as C = PKi(W, P) taking as input a tweak and a plaintext and returning
a cryptogram;

Decipherment denoted as P = PKi
−1(W, C) taking as input a tweak and a cryptogram and

returning a plaintext.

We express as Advsprp the probability of distinguishing PKi(W, ·) from an array of uniformly and
independently drawn random permutations πi,W,n indexed by the key index i, the value of W and
the length n = |P| = |C|, where the adversary can query the inverse permutations.

Let nmin be the minimum length n among all the queries. When nmin ≥ 512 bits, Advsprp is
claimed to be upper bounded by

(3)+
M2

2nmin/2−4 . (4)

Here, N, N′ and M are as in Claim 1, except that M also counts the number of input and output
blocks processed by Sѕќџѡ-Kџюѣюѡѡђ.

The terms in (4) are those of Claim 1 and an additional term. This additional term covers
the case of an adversary aĴempting a collision in one of the branches of the Feistel net-
work. For small values of nmin, we believe there are no beĴer aĴacks than generic ones.
In particular, when n < 3184, the size of either branch is at least n−ℓ

2 bits, thanks to the
definition of split[b, ℓ] function, and this explains the additional term.We do not explicitly
care about the case nmin ≥ 3184, as this additional term becomes negligible compared to
the term in M in (3).

7.4 Rationale for the design choices

The number of rounds in pc The choice of taking 6 rounds for pc is motivated by the
difficulty of generating collisions in the accumulator. Our investigations of differential
propagation in Kђѐѐюј-p provide evidence that differentials with high DP over a small
number of rounds are dominated by a single trail [10,9]. For our reasoning in this para-
graph, we explicitly assume that this is the case for all differentials with relatively highDP
over 5 and 6 rounds of Kђѐѐюј-p. Hence, for any such differential (∆, γ) there exists one
trail Q from ∆ to γ with DP(∆, γ) ≈ DP(Q) = 2−w(Q). We will denote such a dominant
trail by Q(∆, γ).

Using our assumption, we can substitute the differentials in Equation (2) in Section 5.1 by
trails, yielding:

Pr(collision) ≈∑
γ

DP2(Q(∆, γ)) = ∑
γ

2−2w(Q(∆,γ)) .

In iterated primitives with a round function of degree 2 such as Kђѐѐюј-p, the DP of a
round differential (or equivalently, its weight) only depends in the difference paĴern at
the input of a round. Let us apply this to our 6-round trails Q(∆, γ):

Q = ∆
χ◦π◦ρ◦θ−→ q1

χ◦π◦ρ◦θ−→ q2
χ◦π◦ρ◦θ−→ q3

χ◦π◦ρ◦θ−→ q4
χ◦π◦ρ◦θ−→ q5

χ◦π◦ρ◦θ−→ γ.
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The weight of its last-round differential (q5, γ) is fully determined by q5 and we can ex-
press it as w(q5). The output difference γ is a value that is compatible with q5 through
the round function. There are exactly 2w(q5) output differences that can be reached from
q5, with exactly the same DP. Hence, for each trail Q(∆, γ), the 2w(q5) − 1 other trails with
the same first five difference paĴerns have the same weight. The set of 2w(q5) six-round
trails that have the same sequence of differences as Q(∆, γ), except the last one, have the
same weight. In [20,42] such sets of trails are called trail prefixes. For the weight of a trail
prefix, we take the weight of any trail in it. Clearly, Q(∆, γ) is in trail prefix Q′(∆, q5). For
our approximation of the collision probability above, we can now write:

Pr(collision) ≈ ∑
γ compatible with q5

2−2w(Q(∆,γ)) (5)

= 2w(q5)2−2w(Q′(∆,q5))

= 2−2w(Q′(∆,q5))+w(q5)

= 2−w(Q′(∆,q5))−w(Q′(∆,q4)) .

Summarizing, Equation (5) gives the probability of a collision if we apply two messages
that differ in two blocks, with the same difference ∆, making the following assumptions:

– There is a single difference q5 such that DP(∆, q5) ≫ DP(∆, a) for any a ̸= q5 ,

– The differential DP(∆, q5) is dominated by a single trail.

If we apply n message pairs to Kџюѣюѡѡђ with the given difference, the probability to have
an accumulator collision within at least one such pair is close to n times the expression of
Equation (5). However, there can also be collisions between members of different pairs.
Due to the symmetry in Kђѐѐюј-p, we can increase the total collision probability signifi-
cantly by choosing the values of the pairs in a careful way.

For difference propagation, the round function of Kђѐѐюј-p is invariant with respect to
translation in the direction of the z-axis. If the round differential (a, b) has some weight
w(a), then any round differential (a ≪ τ, b ≪ τ) has the same weight, where (a ≪
τ, b ≪ τ) denotes (a, b) circularly shiĞed (or rotated) along z by some offset τ. This
carries over to trails and hence if Q′(∆, q5) has some weight, Q′(∆ ≪ τ, q5 ≪ τ) has the
same weight.

We can use this to boost the collision probability in the following way. As a starter, we
apply four messages M, M′, M′′ and M′′′ such that Mi + M′i = M′′i + M′′′i = ∆ and
Mi + M′′i = M′i + M′′′i = ∆ ≪ 1 and the same for blocks with index j. This set has
two pairs with difference ∆, two with difference ∆ ≪ 1 and two with difference (∆ ≪
1) + ∆. The former four pairs each have a collision probability given by Equation (5). The
laĴer two pairs have an input difference (∆ ≪ 1) + ∆ that typically does not have a
low-weight 5-round trail prefix starting from it. Hence, this structure of 4 inputs has a
collision probability four times that of Equation (5). The two differences ∆ and ∆ ≪ 1
can be seen as basis vectors of a two-dimensional vector space. We can generalize this
by adding ∆ ≪ 2, ∆ ≪ 3, etc. as additional basis vectors. Each additional basis vector
adds another difference and hence in a hypercube of dimension d there are in total d2d−1

pairs with collision probability of Equation (5). This technique reaches its limit when we
have exhausted all shiĞ offsets, i.e., when d = 64. A 64-dimensional vector space has
26364 = 269 pairs with each a collision probability given by Equation (5).

22



Applying n inputswith n = n′264 for an integer n′ andwith the inputs structured in vector
spaces described as above, gives rise to the following collision probability:

Pr(collision) ≈ n′2692−w(Q′(∆,q5))−w(Q′(∆,q4)) = n25−w(Q′(∆,q5))−w(Q′(∆,q4)) .

It is easy to see thatw(Q′(∆, q5))+w(Q′(∆, q4)) is lower bounded by the sumof the lower
bound for 5-round trail weights plus that for 6-round trails. As such, the lower bounds of
50 for the weight of trails in Kђѐѐюј-p[1600, nr = 5] that of 92 in Kђѐѐюј-p[1600, nr = 6] as
proven in [20] are directly applicable. Taking these bounds would result in an estimation
of the collision probability of n2−92−50+5 = n2−137. Note that no trails have been found of
the givenweights and that it is likely that the best trails havemuch higher weight, leading
to an even lower collision probability.

The rolling functions For understanding this section, we recommend first reading Ap-
pendix A. The rolling function rollc restricted to the last plane is a linear transformation
of maximum-order. As a consequence, each mask value with non-zero last plane will be
in a cycle of length 2320− 1. Mask values with a last plane equal to zero form fixed points
for our rolling function. We think the probability that a user key K maps to such a mask
value is negligible.

We found our rolling function using themethod proposed in [28], that goes as follows.We
try candidate rolling functions with an efficient implementation until we have found one
that is maximum-order. Many candidates can be generated by varying some parameters
of a simple linear mapping. For each candidate, we determine the minimal polynomial of
the sequence formed by one bit of the state using the Berlekamp-Massey algorithm [41].
We check whether this is a primitive polynomial of degree e and if so, we have found a
maximum-order rolling function. In the notation adopted in [28], the rolling function rollc
looks like this:

(x0, x1, x2, x3, x4)→ (x1, x2, x3, x4, (x0 ≪ 7) + x1 + (x1 ≫ 3)) ,

where ≪ denotes a cyclic shiĞ (or rotation) to the leĞ and ≫ a shiĞ to the right. We
looked for a rolling function where the new value of x4 only depends on x0 and x1. This
allows the parallel computation of four subsequent iterations.

The subspace properties of the rolling function are determined by itsminimal polynomial:

1 + x58 + x74 + x86 + x102 + x116 + x118 + x122 + x129 + x134 + x137 + x138 + x144

+x148 + x186 + x187 + x189 + x195 + x197 + x203 + x211 + x214 + x215 + x218 + x221

+x223 + x229 + x230 + x231 + x232 + x239 + x244 + x246 + x250 + x251 + x253 + x256

+x257 + x259 + x260 + x261 + x262 + x265 + x267 + x272 + x273 + x275 + x276 + x279

+x281 + x282 + x285 + x287 + x292 + x293 + x295 + x296 + x303 + x305 + x313 + x320 .

As this is not a trinomial, we expect the Equation (8) in Appendix A.3 to give a reliable
estimate for the affine spanprofile. In particular, it predicts thatwewouldhave to generate
a sequence of more than 2103 masks even before we see an affine space of dimension 2.

Examining Equation (5) reveals that the weight of the first round differential in the trails
Q′ contributes twice to the exponent. This is based on the assumption that the absolute
values of the inputs are randomized sufficiently by the (unknown) mask difference so
that there is not exploitable overlap in guessing bits at the input of χ for the two active
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blocks. To achieve this, the rolling function rollc operates on a full plane and the difference
between any two inputs to pc is spread over the full plane. The application of θ, ρ and π
spreads this difference over all bits of the state at the input of the nonlinear step χ of
the first round. Hence, the conditions imposed by the first round differentials translate to
conditions on different bit parities of the pc input.

Sѕќџѡ-Kџюѣюѡѡђ The requirement for Sѕќџѡ-Kџюѣюѡѡђ is that for any differential (∆, σ),
its mean (or expected) DP over all keys K, denoted as EDP(∆, σ), is below some limit ϵ.
Clearly, if the output is only n bits, then ϵ is at best 2−n. We conjecture that for Sѕќџѡ-
Kџюѣюѡѡђ, with output 1600− 8 bits, ϵ is below 2−137. We base this conjecture on the fact
that Sѕќџѡ-Kџюѣюѡѡђ has 10 rounds between its input and output and it is likely that the
best aĴack is to try constructing a collision in the accumulator. For block length of the
block cipher below 3184 bits the output of Sѕќџѡ-Kџюѣюѡѡђ is truncated to roughly half
this block length and for block cipher width below 274 bits ϵ will inevitably be larger than
2−137.

The number of rounds in pd and pe For pe we estimate that taking 4 rounds is suffi-
cient. The difference between any pair of rolling state values is unknown and can cover a
complete plane. Moreover, this difference is guaranteed to be outside the column parity
kernel and hence it will quickly propagate to high-weight differences [10]. As for state
recovery aĴacks based on the output only, they require an aĴack covering 8 rounds of
Kђѐѐюј-p. The number of rounds in pd is 4, so that pe ◦ pd has algebraic degree 256. The
result is that between any input and any output of Kџюѣюѡѡђ, there are always 14 rounds.
We believe this to be sufficient to resist known types of cryptanalysis.

7.5 Implementations

Reference and optimized code for Kџюѣюѡѡђ will be soon made available in KђѐѐюјTќќљѠ
and in the Kђѐѐюј code package, respectively [11,16].

Following a similarworkwedid for theKюћєюџќќTѤђљѣђ extendable output function [15],
we report on the speed of our current optimized implementation on the Intel® Core™ i5-
6500 (Skylake). This processor supports the AVX2 instruction set with bitwise operations
on 256-bit registers. Using these instructions, we can exploit the parallelism present in
Kџюѣюѡѡђ and efficiently evaluate 4 instances of the Kђѐѐюј-p permutation at once.

We list the result in Table 1, not only of Kџюѣюѡѡђ itself, but also of Kџюѣюѡѡђ-SAE, Kџю-
ѣюѡѡђ-SIV and Kџюѣюѡѡђ-WBC. It reports on number of cycles for in- and outputs that
are short (below 200 bytes) and of intermediate size 4096 bytes and the number of cy-
cles per byte for long in- and outputs. In general, one can observe a discontinuity as the
input/output size crosses a multiple of 200 bytes. In Table 1 this is apparent for Kџюѣюѡѡђ-
WBC: the first bump occurs just below 400 bytes, the point where the right part of the
plaintext becomes two blocks instead of one (the leĞ part remains 1 block).

8 Conclusions

Farfalle is a versatile new construction for keyed functions in permutation-based symmet-
ric cryptography. It can be seen as an inherently parallelizable counterpart of sponge/duplex.
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Kџюѣюѡѡђ
mask derivation 475 cycles

input and output less than 200 bytes 1045 cycles
MAC computation use case:

4096-byte input, output less than 200 bytes 3410 cycles
long inputs 0.59 cycles/byte

Stream encryption use case:
input less than 200 bytes, 4096-byte output 2880 cycles

long outputs 0.41 cycles/byte
Kџюѣюѡѡђ-SAE

Processing of metadata:
metadata less than 200 bytes, no plaintext 1160 cycles

metadata of 4096 bytes, no plaintext 3590 cycles
long metadata 0.62 cycles/byte

Processing of plaintext:
plaintext less than 200 bytes, no metadata 1195 cycles

plaintext of 4096 bytes, no metadata 6695 cycles
long plaintexts 1.20 cycles/byte

Kџюѣюѡѡђ-SIV
plaintext and metadata both less than 200 bytes 2945 cycles

plaintext of 4096 bytes, metadata less than 200 bytes 7490 cycles
long plaintexts 1.22 cycles/byte

Kџюѣюѡѡђ-WBC
≤ 398 bytes 5200 cycles
≤ 598 bytes 6550 cycles
≤ 798 bytes 7750 cycles
≤ 998 bytes 8450 cycles

2048 bytes 11650 cycles
4096 bytes 14100 cycles
8192 bytes 21100 cycles

16384 bytes 36300 cycles
long block lengths 1.98 cycles/byte

Table 1: Performance measured on Skylake.
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It can beĴer exploit resources available on high-end CPUs such as SIMD instructions. Yet,
the sponge remains the best choice for unkeyed hashing and for full-state keyed duplex in
keyed applications on embedded platforms where dedicated hardware can be afforded.

Acknowledgments: We would like to thank Monika Seidlová for her investigations on
higher-order differential aĴacks, Kay Lukas for his investigations of rolling functions and
Joost Renes for his help on finite fields.
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A Nonlinearity properties of linear rolling functions

In this section, we give some background on how a linear rolling function can contribute
to the resistance against higher-order differential aĴacks. We explain higher-order differ-
ential aĴacks in the context of Farfalle in Section A.1. Section A.2 explains how we can
investigate the resistance a rolling function can offer against such aĴacks and Section A.3
gives a formula to estimate these characteristics. Finally, in Section A.4 we report on some
experiments on toy-size rolling functions that confirm our estimations.

A.1 Higher-order differential aĴacks

For building pb, pc, pd and pe we have in mind iterating a round function consisting of
a non-linear layer and a linear layer. We think non-linear layers of algebraic degree 2 are
an excellent choice for several reasons. Among others, this brings the study of difference
propagation and correlation to the realm of linear algebra. The downside is that an nr-
round permutation only has algebraic degree at most 2nr .

Permutations of low algebraic degree are vulnerable to aĴacks exploiting higher-order
differentials [37]. We denote a vector space (over GF(2)) by ⟨vi⟩, with {vi} a set of linearly
independent vectors that forms its basis. Its dimension is the number of basis vectors. An
affine space is a vector space translated over an offset (vector) a that is not in the basis and
we denote it as a + ⟨vi⟩. Its dimension is that of the vector space ⟨vi⟩. In a higher-order
differential aĴack, one exploits the fact that the (bitwise) sum of the output of a function
of algebraic degree d over an affine space of dimension m is a function of algebraic degree
at most d − m of the bits of a. OĞen, one can even reduce this degree by choosing the
vector space ⟨vi⟩ appropriately. One could aĴack Farfalle by aĴempting to construct an
input string such that the corresponding sequence of inputs to pc form an affine space of
dimension higher than d. The contribution of such a string to the accumulator, i.e., the
sum of the images of these inputs through pc, is zero. Similarly, if an adversary could
identify in the sequence of rolling state values rolle j(y) a subset that forms an affine space
of dimension higher than d, the corresponding output blocks of pe would to zero yielding
a distinguisher.

Clearly, these aĴacks can be prevented by taking sufficiently many rounds nr and by lim-
iting the maximum number of blocks in Farfalle. However, for computational efficiency
and latency, we wish to limit the number of rounds. Therefore, adopting a rolling func-
tion that prevents forming affine spaces at the input of pc and at the input of pe is a more
interesting countermeasure against higher-order algebraic aĴacks.

Let us take a look at the problem of generating four input blocks mi to Farfalle for index
values a, b, c and d such that the input blocks to pc form an affine space of dimension 2 for
an adversary that does not know the mask k. Four binary vectors A, B, C, D from an affine
space iff they sum to zero, i.e., A + B + C + D = 0. This affine space can be expressed
as A + ⟨v0, v1⟩ with v0 = A + B and v1 = A + C, yielding A = A + 0, B = A + v0,
C = A + v1 and D = A + v0 + v1. So the adversary must generate the input blocks mi

such that ma + rolla(k) + mb + rollb(k) + mc + rollc(k) + md + rolld(k) = 0 or equivalently

ma + mb + mc + md = rolla(k) + rollb(k) + rollc(k) + rolld(k) . (6)

The adversary only has to guess the sum in the righthand side of Equation (6) and any
set of input blocks summing to that value will do. It follows that for this to be infeasible,
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the sum at the righthand side must be hard to predict for unknown k. For a linear rolling
function, the sum in the righthand side of Equation (6) is a linear function of k that can be
wriĴen as M× k with M a matrix that only depends on indices a, b, c, d. If this matrix has
rank r, knowing the righthand side of Equation (6) requires correctly guessing r bits. So
we must choose our rolling function such that there are no indices a, b, c, d in range [0, n]
for some reasonable value of n that give a matrix M of low rank.

Generating sets of input blocks that form an affine space of higher dimension is even
harder becausemultiple such equationsmust be satisfied. This is because any affine space
has several subspaces of smaller dimensions. For example, a set of input blocks with
indices a, b, c, d, e, f , g, h form an affine 3-dimensional space if four equations like Equa-
tion (6) are satisfied with following index sets: {a, b, c, d}, {e, f , g, h}, {a, b, e, f }, {a, c, e, g}.
Note that the indices can be grouped differently. In general, a set of 2d input blocks forms
an affine d-dimensional space if 2d − d equations like Equation (6) are satisfied.

A.2 Subspace properties of linear rolling mask sequences

Any linear permutation acting on e bits can be expressed as a multiplication of the e-bit
vector k with a non-singular binary matrix R, so roll(k) = R × k. Iterating the rolling
function corresponds to exponentiating the matrix: rollt(k) = Rt× k. So nowwe consider
the affine spaces in sets {Rj × k|i ≤ j < i + n}. A priori, this leaves many cases to investi-
gate as there is a huge number of possible rolling functions R, namely ∏0≤d<e

(
2e − 2d) ≈

2e2−1. Moreover, even for a single rolling function there are three parameters: k, i and n.
Fortunately, this can be greatly simplified by considering equivalence.

We can transform R into F = P × R × P−1 for P any non-singular matrix and prove
following lemma.

Lemma 1. Let F = P× R× P−1 and I an index set of cardinality 2d for some d. Then, {Rj ×
k|j ∈ I} is an affine space iff {Fj × (P× k) |j ∈ I} is an affine space.

Proof. Clearly Fj = P× Rj × P−1. Then we can write {Fj × (P× k) |j ∈ I} as {P× Rj ×
k|j ∈ I}. This is simply equal to {Rj × k|j ∈ I} where P is applied to all its elements. As
an affine space remains an affine space aĞer applying a linear mapping to its elements,
this is an affine space. The proof for the other direction is similar. ⊓⊔

By choosing P carefully, we can obtain a matrix F with a particularly simple structure,
called the Frobenius normal form of R [38]. It follows that we can focus our aĴention to
such matrices. For the rolling functions we are interested in, we can simplify even more.
In particular, we aim for rolling functions with the maximum-order property: the iterated
application to a non-zero mask k results in a single cycle of length 2e − 1.

The Frobenius normal form of a maximum-order mapping simply corresponds to the
update function of a linear feedback shiĞ register (LFSR) with the minimal polynomial of
the Frobenius normal form as feedback polynomial [38]. It follows that we can limit our
analysis to state sequences of LFSRs with primitive feedback polynomials. The state of
such an LFSR at time t is simply xtk(x) mod p(x) with p(x) its feedback polynomial and
k(x) its initial state. So, the sequences we investigate are now {xtk(x) mod p(x)|0 ≤ t <
n}.
Let us now return to our problemat the endof SectionA.1, in particular, the righthand side
of Equation (6) now becomes k(x)(xa + xb + xc + xd) mod p(x): it is the multiplication of

29



k(x) with a sum of four monomials. As these are elements in a field, their sum is simply
another field element. Let xa + xb + xc + xd mod p(x) = d(x). There are now two cases:
Either d(x) is zero or it is non-zero. If zero, the leĞhand side of Equation (6) is also zero
and the adversary has an easy job in forming an affine space: she just has to choose mi
values that sum to zero. If d(x) ̸= 0, guessing the leĞhand side of Equation (6) implies
guessing k fully as k(x) can be computed from it by multiplying with the multiplicative
inverse of d(x). It follows that for the laĴer case the success probability of forming an
affine space of dimension 2 is 2−e.

It follows that it should be hard to find a subset of a sequence of mask values that forms
an affine space. In general, the property that we wish to have is that for any sequence
{rollj(k)|j ≤ i < j + n} to contain an affine space of high dimension, n must be very
large.

Multiplication by k(x) modulo p(x) is an invertible linear mapping that can be factored
out and hence we can limit our analysis to sequences {xt mod p(x)|0 ≤ t < n}. In partic-
ular, we will study the so-called affine span profile of a primitive polynomial.

Definition 2. The affine span for dimension d of a primitive polynomial p(x) is the minimum
length of a sequence {xi mod p(x)|0 ≤ i < n} containing an affine space of dimension d. We
denote it as Lmin(p(x), d),

We call the sequence of values Lmin(p(x), d) for increasing d the affine span profile of p(x).

For the case d = 2 there is an interesting alternative description. As four vectors t, u, v and
w form an affine space iff t + u + v + w = 0, Lmin(p(x), 2) is the smallest value of n such
that there exist values n1, n2 smaller than n such that 1 + xn1 + xn2 + xn = 0 (mod p(x)).
In other words, n is the degree of the polynomial with smallest degree and Hamming
weight 4 that is a multiple of p(x). For higher dimensions (d > 2), there must be multiple
such polynomials.

A.3 Estimating the affine span profile

In this section, we try to estimate the affine span profile of primitive polynomials using
combinatorics andmaking randomness assumptions.We can verify the quality of our esti-
mations by actually computing affine span profiles for primitive polynomials of relatively
low degree.

Lemma 2. The probability that a random set of 2d vectors of dimension e forms an affine space is

∏0≤i<d 2e − 2i

(2e−1
2d−1)∏0≤i<d 2d − 2i

.

Proof. The total number of possible vector spaces of dimension d of e-bit vectors is (see
e.g. [18])

∏0≤i<d 2e − 2i

∏0≤i<d 2d − 2i .

An affine space is a vector space shiĞed over an offset. If we select the offset from the
space orthogonal to the vector space, each choice will give another affine space. So, we
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choose the offset from a space with dimension e− d and hence the total number of affine
spaces of dimension d of e-bit vectors is:

2e ∏0≤i<d 2e − 2i

2d ∏0≤i<d 2d − 2i

The total probability is this expression divided by the total number of different sets of
e-bit vectors of cardinality 2d, namely (2e

2d).

2e ∏0≤i<d 2e − 2i

(2e

2d)2d ∏0≤i<d 2d − 2i
=

∏0≤i<d 2e − 2i

(2e−1
2d−1)∏0≤i<d 2d − 2i

.

⊓⊔

For the sake of our estimation we assume a sequence of successive LFSR states behaves
like a sequence of different random independent values. A subsequence of length n of
the LFSR states has ( n

2d) subsets. As discussed in Section A.1, these can however not be
considered independent. Namely, if 2d elements with indices in some index set I form an
affine space, this is also the case for the elements in positions I + j. This partitions the ( n

2d)
subsets of the length-n sequence in classes and in each class all subsets are affine spaces
or none are. Each class has exactly one member with smallest index equal to 0 and hence
we can fix the smallest index to 0. The total number of classes is hence ( n−1

2d−1).

If we assume that modulo this symmetry property, a sequence of LFSR states behaves like
a sequence of different random independent values, the expected number of affine spaces
of dimension d in a subsequence of length n of an e-bit LFSR is:

( n−1
2d−1)∏0≤i<d 2e − 2i

(2e−1
2d−1)∏0≤i<d 2d − 2i

=
(n− 1)(2d−1) ∏0≤i<d 2e − 2i

(2e − 1)(2d−1) ∏0≤i<d 2d − 2i .

In order to manipulate this expression so that it can be used for our estimations, we sim-
plify it by making a number of approximations, namely (n − 1)(2d−1) ≈ n2d−1, (2e −
1)(2d−1) ≈ 2e(2d−1) and ∏0≤i<d 2e − 2i ≈ 2ed. These approximations are justified as long as
2d ≪ 2e and 2d ≪ n. This yields

n2d−1

2(2d−1−d)e ∏0≤i<d 2d − 2i
. (7)

We can now estimate Lmin(p(x), d) for some dimensions d and e. A set of n randomvectors
is likely to contain an affine space of dimension d if the expected number as expressed in
Equation (7) equals 1. SeĴing it equal to 1 and solving for n yields

Lmin(p(x), d) ≈ 2
(

1− d
2d−1

)
e
(

∏
0≤i<d

(
2d − 2i

)) 1
2d−1

(8)

If we express Lmin(p(x), d) by its logarithm with base 2: Lmin(p(x), d) = 2ν we obtain a
simple expression:

ν ≈
(

1− d
2d − 1

)
e + ϵ(d) ,

with ϵ(d) the binary logarithm of the rightmost term of Equation (8). Table 2 lists the
coefficients for computing Equation (8) for small dimensions.
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d 2 3 4 5 6 7(
1− d

2d−1

)
1
3

4
7

11
15

26
31

57
63

120
127

ϵ(d) 0.86 1.06 0.95 0.75 0.54 0.37
Table 2: Coefficients for estimating the affine span values.
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Fig. 3: Measured affine span of some primitive pentanomials (marks) vs. estimates (lines).

A.4 Experimental verification

Clearly, we agree with John von Neumann that assuming a sequence of successive LFSR
states behaves like a sequence of different random independent values puts us in a state
of sin. To verify the validity of Equation (8) we have done some experimental verification.

We startedwith primitive trinomials and found that their affine span for dimension 2 does
not obey Equation (8). Namely primitive trinomials systematically exhibit a low value
Lmin(p(x), 2). The reason is that low-degree multiples of trinomials exist with Hamming
weight 4. For trinomial 1+ xa + xe we have (1 + xa + xe) (1 + xa) = 1+ x2a + xe + xa+e. It
follows that Lmin(1+ xa + xe, 2) = a+ e. This does not generalize to primitive polynomials
of higher Hamming weight. Naturally, this does not mean that no similar effects would
exist for other types of polynomials, but in our experiments, we did not observe any.

We further computed the affine span values for small dimension d (2, 3 and 4) for the
pentanomials listed in [51] of degrees e from 8 to 48. We report the results in Figure 3.
Although we see large deviations (up to a factor 5) between the measured and estimated
values, the estimates clearly give the trend. The largest deviations occur for dimension 2
and as the dimension grows, the deviations get smaller.
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B On this version of the paper

We here list the changes we made in this paper since its preliminary version, posted on
the IACR ePrint archive on December 29, 2016.

We have changed the Farfalle construction in the following way:

– There is now a single algorithm for Farfalle, which integrates also themask derivation,
as in the former Farfalle-PRF. The split between Far and Falle has been removed.

– Message blocks are b bits rather than r < b bits. In the preliminary version, a message
block and the encoding of the block index were added to the secret mask. Now the
message block is added to the mask, that itself undergoes the rolling function. This
changes the role of the rolling function. In the preliminary version, input blocks to the
permutation could not collide within a single message. Now collisions are possible.
We count on the unpredictability of the rolling masks for this to be hard. This modifi-
cation allowed us to simplify Farfalle by removing the parameter rate r and the need
for the aligned mode.

– Different strings in a sequence of strings are now separatedusing a blank index instead
of frame bits.

– An additional permutation step has been introduced between the accumulator and
the rolling state. This was needed to thwart higher-order differential aĴacks that are
generic in pc. Moreover, we specify four permutations rather than one, allowing us to
fine-tune the number of rounds for the different layers of the Farfalle computation.

– We allow a rolling function in the mask addition just before output and allow the
rolling functions at input and in the rolling state to be different.

– A specific notation allows to easily express that a chosen segment of the output stream
is requested.

– We removed the generic security claim template, andmade a specific one for Kџюѣюѡѡђ
instead.

These changes in Farfalle of course also affect Kџюѣюѡѡђ. In addition, we made the follow-
ing changes to Kџюѣюѡѡђ:

– Kџюѣюѡѡђ is defined with 6, 6, 4 and 4 rounds respectively for permutations pb, pc, pd
and pe instead of 6 and 6 rounds for the now-removed Kra and VaĴe.

– Kџюѣюѡѡђ-WBC and Kџюѣюѡѡђ-WBC-AE are now defined in terms of Kџюѣюѡѡђ and
Sѕќџѡ-Kџюѣюѡѡђ in light of the removal of the separate Kra and VaĴe.

– The rolling function specified for Kџюѣюѡѡђ now operates on a support of 320 bits as
opposed to 61 bits, and the nroll limit on a single input size has been removed.

– There are two dedicated security claims, one for Kџюѣюѡѡђ and another one for Kџю-
ѣюѡѡђ-WBC. Compared to the preliminary version, we take into account adversaries
equipped with a quantum computer, and we restict keys to be uniformly distributed.

– We expanded the design rationale specific to Kџюѣюѡѡђ.

The encryption modes were also improved:

– Farfalle-SAE has been changed to more efficiently handle authentication-only and
encryption-only scenarios by using frame bits for domain separation.

– Farfalle-WBC has undergone the following changes:
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• For improved space efficiency, Farfalle-WBC now domain separates the L and R
parts by appending frame bits instead of using standalone strings.

• Farfalle-WBC is now defined entirely in terms of two Farfalle functions H and F,
instead of Far and Farfalle.

• The split function has been made more elaborate in the sense that alignment and
parallelism are optimized in accordance with an alignment unit length.

• A new mode Farfalle-WBC-AE has been added to demonstrate authenticated en-
cryption implemented on top of Farfalle-WBC, with support for early rejection of
invalid cryptograms.

Wemoved the discussion on the properties of the linear rolling functions toAppendixA to
improve the flow, and we extended our numerical experiments. As we now adopt rolling
functions constructed with the methods proposed in [28], we do not use the name “cara-
colle” any more.

We have also added a reference, Dan Bernstein’s paper on protected counter sums [3].
This paper was brought to our aĴention by Bart Mennink and we were not aware of it
before. It already contained several of the key ideas underlying Farfalle.

And last but not least, Seth Hoffert has joined the team of co-authors of Farfalle and Kџю-
ѣюѡѡђ.
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