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Abstract. We study block cipher modes that turn a block cipher into a
tweakable block cipher, which accepts an auxiliary variable called tweak
in addition to the key and message. Liskov et al. first showed such a mode
using two keys, where one is the block cipher’s key and the other is used
for some non-cryptographic function. Later, Rogaway proposed the XEX
mode to reduce these two keys to one key. In this paper, we propose a
generalization of the Liskov et al.’s scheme with a concrete security proof.
Using this, we provide an improved security proof of the XEX and some
improvements to the LRW-AES, which is a straightforward AES-based
instantiation of Liskov et al.’s scheme proposed by the IEEE Security in
Storage Workgroup.

1 Introduction

Tweakable block ciphers are block ciphers that accept a variable called tweak in
addition to the key and message. They were formally defined by Liskov, Rivest,
and Wagner [10]. In their definition, a tweak is used to provide variability: any
two different tweaks give two instances of an ordinary (i.e., not tweakable) block
cipher. Formally, tweakable block ciphers are defined as a function ˜E : M ×
K × T → M, where (M, K, T ) denotes (message space, key space, tweak space).
For any two tweak values, T �= T ′, the outputs of ˜EK,T should appear to be
independent of outputs of ˜EK,T ′ even if T and T ′ are public but K is secret.
Liskov et al. showed that a standard block cipher could be easily converted into
a tweakable one by using a mode of operation similar to DESX [9]. They also
pointed out that tweakable block ciphers are key components to build advanced
modes such as authenticated encryption modes. Their proposal, which we call
the LRW mode, is as follows. For plaintext M with tweak T , the ciphertext is
C = EK(M ⊕ Δ(T )) ⊕ Δ(T ), where Δ is a keyed function of T called the offset
function. They proved that the LRW mode was provably secure if the key of
Δ, denoted by KΔ, was independent of K, and Δ was ε-almost XOR universal
(ε-AXU) for sufficiently small ε (see Def. 2). The security considered here is the
indistinguishability from the ideal tweakable block cipher using any combination
of chosen-plaintext attack (CPA) and chosen-ciphertext attack (CCA) for chosen
tweaks. A tweakable block cipher with this property is called a strong tweakable
block cipher.
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The LRW mode needs two independent keys. However, what would happen
if KΔ is not independent of the block cipher key, K? For example, is it safe to
use EK(constant) as (a part of) KΔ? In this paper, we study this problem. Our
main contribution is a general construction of strong tweakable block ciphers
with a concrete security proof. Our scheme has basically the same structure as
that of the LRW mode, but we allow Δ to invoke EK and/or another function
which is possibly independently keyed of K. Using our scheme, we provide some
improvements to the previous modes. The first target is the XEX mode [19], an
one-key tweakable block cipher similar to the LRW mode. Here, ‘one-key’ means
that the key of the mode is the block cipher key, and only one block cipher key
scheduling is needed. XEX mode has a parameter, and in the initial definition
of XEX, it was claimed that it was strongly secure if its parameter provided
“unique representations” [18]. However, providing unique representations is not
a sufficient condition. XEX having a bad parameter is vulnerable to a very sim-
ple attack even if it provides unique representations (see [19] and Sect. 4.1 of this
paper). The published version of XEX fixed this problem [19]. Our generalized
construction clearly explains why this fix works well (which is only briefly men-
tioned in [19]) and provides a security proof of the fixed XEX, which improves
the one shown in [19].

Our second target is the LRW-AES, which is a straightforward instantiation
of LRW mode using AES [23]. It has been discussed by the IEEE security in
storage working group (SISWG) as a standard mode for storage encryption.
The offset function of LRW-AES uses multiplication in GF(2128), where a tweak
is multiplied by the 128-bit key independent of the block cipher’s key. Using our
scheme, we demonstrate how to reduce two keys of the LRW-AES to one key
without increasing the computational cost or reducing the allowed tweak set.
The underlying idea is similar (but not identical) to one applied to XEX. We
also present an alternative mode of AES using the 4-round AES as the offset
function. That is, the mode is essentially AES-based and no dedicated AXU
function is needed. XEX mode of AES has this property too; however, it allows
only incremental update of a tweak. In contrast, our proposal enables us to
update a tweak arbitrarily at the cost of 4-round AES invocation. We provide
an experimental implementation of our AES-based mode and demonstrate that
ours is much more efficient than the reference LRW-AES implementation.

2 Preliminaries

2.1 Notation

Σn denotes {0, 1}n. If a random variable X is uniformly distributed over a
set X , we write X ∈u X . An n-bit block uniform random function (URF),
denoted by R, is a random variable uniformly distributed over {f : Σn → Σn}.
Similarly, a random variable distributed over all n-bit permutations is an n-bit
block uniform random permutation (URP) and is denoted by P. A tweakable n-
bit URP with the tweak space T is defined by the set of |T | independent URPs
(i.e., an independent n-bit URP is used for each tweak in T ) and is denoted



98 K. Minematsu

by ˜P. If FK : X → Y is a keyed function, then FK is a random variable (not
necessarily uniformly) distributed over {f : X → Y}. If its key, K, is uniform
over K, we have Pr(FK(x) = y) = {k ∈ K : f(k, x) = y}/|K| for some function
f : K × X → Y. If K is fixed to k ∈ K, Fk denotes a function f(k, ∗). If K is
clear from the context, we will omit the subscript K and write F : X → Y.
Elements of GF(2n). We express the elements of field GF(2n) by the n-bit
coefficient vectors of the polynomials in the field. We alternatively represent n-
bit coefficient vectors by integers 0, 1, . . . , 2n − 1. For example, 5 corresponds to
the coefficient vector (00 . . . 0101) (which corresponds to the polynomial x2 + 1)
and 1 corresponds to (00 . . .01), i.e., the identity element.

2.2 Security Notion

Definition 1. Let F and G be two keyed n-bit block functions. Let us assume
that the oracle has implemented H, which is identical to one of F or G. An
adversary, A, guesses if H is F or G using CPA. The maximum CPA-advantage
in distinguishing F from G is defined as

AdvcpaF,G(q, τ) def= max
A:(q,τ)-CPA

∣

∣ Pr(AF = 1) − Pr(AG = 1)
∣

∣, (1)

where AF = 1 denotes that A’s guess is 1, which indicates one of F or G, and
(q, τ)-CPA denotes a CPA that uses q queries with time complexity τ (see [1] for
a detailed description of τ). If the attacks have unlimited computational power,
we write AdvcpaF,G(q).

Let EK be an n-bit block cipher and let ˜EK be an n-bit tweakable block cipher
with tweak space T . For any x ∈ Σn, t ∈ T , and w ∈ {0, 1}, we define:

E±
K(x, w) def=

{

EK(x) if w = 0
E−1

K (x) if w = 1,
˜E±

K(x, t, w) def=

{

˜EK(x, t) if w = 0
˜E−1

K (x, t) if w = 1,

where E−1
K denotes the inversion of EK . The securities of EK and ˜EK are mea-

sured by

AdvsprpEK
(q, τ) def= AdvccaEK ,P(q, τ) def= Advcpa

E±
K ,P±(q, τ), and (2)

Advs̃prp
˜EK

(q, τ) def= Advc̃ca
˜EK ,˜P

(q, τ) def= Advcpa
˜E±

K ,˜P
±(q, τ), (3)

where P (˜P) is an n-bit URP (tweakable URP with tweak space T ). A keyed
permutation that can not be efficiently distinguished from URP (i.e., CPA-
advantage is negligibly small for any practical (q, τ)) is called a pseudorandom
permutation (PRP) [3]. A PRP with a negligibly small Chosen ciphertext at-
tack (CCA)-advantage (i.e., AdvsprpEK

(q, τ)) is a strong PRP (SPRP). We focus
on modes that turn an n-bit SPRP into an n-bit strong tweakable block cipher,
which has negligibly small ˜CCA-advantage, i.e., Advs̃prp

˜EK
(q, τ), for any practical

(q, τ).
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3 Previous Tweakable Block Cipher Modes

3.1 General DESX-Like Mode

All modes dealt within this paper including our proposals have the form defined
as

˜EK,KΔ(T, M) = EK(M ⊕ Δ(T )) ⊕ Δ(T ), (4)

where T ∈ T is a tweak and M ∈ Σn is a plaintext. Here, EK is n-bit block and
Δ : T → Σn is a keyed function of tweak and called an offset function. Its key
is denoted by KΔ. Δ can invoke EK and/or another function which is fixed or
independently keyed of K. Thus KΔ is not always independent of K.

3.2 LRW Mode

Liskov et al.’s scheme, which we call the LRW mode, uses the offset function
Δ, where its key KΔ is independent of the block cipher key, K. To prove its
security, we need the notion of an ε-almost XOR universal hash function, which
is as follows.

Definition 2. Let FK : X → Σn be a keyed function with K ∈u K. If Pr(FK(x)⊕
FK(x′) = c) ≤ ε for any x �= x′ and c ∈ Σn, then FK is an ε-almost XOR
universal (ε-AXU) hash function.

The following theorem proves the security of LRW mode. The proof is in Ap-
pendix B.

Theorem 1. Let ˜EK,KΔ be the LRW mode using the offset function Δ, where
its key is KΔ ∈u KΔ and tweak T ∈ T (see Eq. (4)). If Δ is ε-AXU (for input
T ) and KΔ is independent of the block cipher key K, then Advs̃prp

˜EK,KΔ

(q, τ) ≤
AdvsprpEK

(q, τ ′) + εq2, where τ ′ = τ + O(q).

This is better than the result of Liskov et al. (theorem 2 of [10]), as they showed
3εq2 instead of εq2. A straightforward instantiation of the LRW is to define
Δ(T ) = KΔ · T , where KΔ ∈u Σn and T ∈ Σn, and · denotes multiplication in
GF(2n). This apparently has bias ε = 1/2n. The mode of AES with this offset
function has been considered by the IEEE SISWG under the name LRW-AES.

3.3 XEX Mode

XEX mode was proposed by Rogaway [19]. It was designed to be a strong tweak-
able block cipher. According to the definition of XEX, a base is an element
of Σn \ {0}, and a set I

d
1

def= I1 × I2 × · · · × Id is called an index set, where
Ii ⊆ {0, 1, . . . , 2n − 1} for all i. A pair of a list of bases α1, . . . , αd and an index
set I

d
1 is a parameter setting of XEX.

A XEX mode with a parameter setting ((α1, . . . , αd), Id
1) has the tweak space

I

d
1 × Σn. Let (i1, . . . , id, N) ∈ I

d
1 × Σn. The offset function of XEX is defined as:

Δ(i1, . . . , id, N) = αi1
1 · αi2

2 · · · · · αid

d · V, where V = EK(N). (5)
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Here, multiplications are done in GF(2n). Since Δ uses EK as the source of ran-
domness, XEX mode is one-key and needs only one block cipher key scheduling.
XEX mode is highly efficient: if we want to increment a tweak (i.e., increment
one of ij w/o changing other indexes), then it is done with one bitshift and
one XOR operation. This technique is called the powering-up construction and
has been adopted by other modes [5,6]. Consequently, XEX mode requires no
special functions other than the block cipher. Although we can not change a
tweak arbitrarily, we can still increment a tweak (with respect to one of ij) with
negligibly small cost.

4 Construction of Strong Tweakable Block Cipher

4.1 A Bug in the Initial XEX and an Attack Against OCB1

A parameter setting of the XEX is said to provide unique representations if it
contains no collisions, i.e.,

∏d
j=1 α

ij

j �=
∏d

j=1 α
i′
j

j for any (i1, . . . , id), (i′1, . . . , i
′
d)

such that (i1, . . . , id) �= (i′1, . . . , i
′
d). The following example is a parameter setting

providing unique representations shown by Rogaway [18].

Example 1. α1 = 2, α2 = 3 and I1 = {0, 1, . . . , 2n/2}, I2 = {0, 1}.

In the initial definition of XEX [18], it was claimed that XEX was a strong
tweakable block cipher if its parameter setting provided unique representations.
However, this claim turned out to be false, as pointed out by [19]. In general,
XEX is broken if its parameter setting allows an index vector, (i1, . . . , id), such
that αi1

1 · · · · αid

d = 1. We call it a “reduced-to-1” index vector. For example, the
parameter setting described in Ex. 1 allows the following attack [19].

1. Ask the oracle to decrypt C1 = 0 with tweak T1 = (0, 0, N) for some N , and
obtain a plaintext M1 = E−1

K (EK(N)) ⊕ EK(N) = N ⊕ EK(N). Compute
EK(N) = M1 ⊕ N .

2. Then, the encryption of M2 = 2 · (M1 ⊕ N) ⊕ N with tweak T2 = (1, 0, N),
which is denoted by C2, is predictable from EK(N): C2 = EK(N)⊕2·EK(N).

On The Security of OCB1. The above attack can be used as an attack
against OCB1 [18,19], which is an improvement to the famous OCB mode pro-
posed by Rogaway [17]. He proved that (a generalized form of) OCB1 could use
any tweakable block cipher as its component, and that it was a secure AE mode
if the underlying tweakable block cipher was strong, i.e., ˜CCA-secure. It would
be natural to wonder if one can attack against OCB1 using the XEX with a
bad parameter setting (i.e., one containing a ”reduced-to-1” index vector). We
show this holds true1, if the inverse of XEX, denoted by XEX−1, is used to
instantiate OCB1. For instance, let us use the parameter setting of Ex. 1. Then,
XEX−1 gives the ciphertext C = E−1

K (M ⊕ Δ(i1, i2, N)) ⊕ Δ(i1, i2, N) where

1 The OCB1 defined in [18] and [19] are slightly different, however, our attack can be
applied to both versions.
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Δ(i1, i2, N) = 2i13i2EK(N). Although this implementation was not mentioned
in [19], it was as efficient as the XEX-based one. Moreover, using XEX−1 would
be preferable to using XEX in some situations. For example, it would be desir-
able to use XEX−1 if EK is faster2 than E−1

K and fast operation of the receiver
(rather than the sender) is required. Our attack is presented in Appendix C.

4.2 The Security of Fixed XEX

The attack presented in the previous section crucially depends on the existence
of reduced-to-1 index vector. Thus it would be natural to think of the idea of
removing reduced-to-1 index vector from the allowed tweak set. Here, we prove
that this simple fix is theoretically fine.

Theorem 2. Let XEX[EK ] be the XEX mode of EK with a parameter setting
providing unique representations and containing no “reduced-to-1” index vector.
Then, we have Advs̃prpXEX[EK ](q, τ) ≤ AdvsprpEK

(2q, τ ′) + 4.5q2

2n , where τ ′ = τ + O(q).

For example, we can fix the parameter setting of Ex. 1 by removing (i1, i2) =
(0, 0). If n = 128, the fixed XEX is secure if q 	 263. The same fix has already
been proposed in [19]. However, our proof improves the one shown in [19], which
proved 9.5q2

2n instead of 4.5q2

2n . The proof of Theorem 2 will be provided in Sect. 4.3.
One of our purposes is to provide a clear and comprehensive explanation why
this fix works well.

4.3 The Proof of Theorem 2

Tools for the Proof. Since we will uses a methodology developed by Mau-
rer [11], we briefly describe his notations. Consider event ai defined for i in-
put/output pairs (and possibly internal variables) of a keyed function, F . Here,
we omit the description of key throughout. Let ai be the negation of ai. We
assume ai is monotone; i.e., ai never occurs if ai−1 occurs. For instance, ai is
monotone if it indicates that all i outputs are distinct. An infinite sequence of
monotone events A = a0a1 . . . is called a monotone event sequence (MES). Here,
a0 denotes some tautological event. Note that A ∧ B = (a0 ∧ b0)(a1 ∧ b1) . . . is
a MES if A = a0a1 . . . and B = b0b1 . . . are both MESs. For any sequence of
random variables, X1, X2, . . . , let X i denote (X1, . . . , Xi). After this, dist(X i)
will denote an event where X1, X2, . . . , Xi are distinct. If dist(X i, Y j) holds true,
then we have no collision among {X1, . . . , Xi, Y1, . . . , Yj}.

Let MESs A and B be defined for two keyed functions, F : X → Y and
G : X → Y, respectively. Let Xi ∈ X and Yi ∈ Y be the i-th input and output.
Let PF be the probability space defined by F . For example, PF

Yi|XiY i−1(yi, xi)
means Pr[Yi = yi|X i = xi, Y i−1 = yi−1] where Yj = F (Xj) for j ≥ 1. If
PF

Yi|XiY i−1(yi, xi) = PG
Yi|XiY i−1(yi, xi) for all possible (yi, xi), then we write

2 For instance, some AES software implementations, including the reference code [22],
have this property.
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PF
Yi|XiY i−1 = PG

Yi|XiY i−1 . Inequalities such as PF
Yi|XiY i−1 ≤ PG

Yi|XiY i−1 are simi-
larly defined.

Definition 3. We write FA ≡ GB if PF
Yiai|XiY i−1ai−1

= PG
Yibi|XiY i−1bi−1

holds
for all i ≥ 1, which means PF

Yiai|XiY i−1ai−1
(yi, xi) = PG

Yibi|XiY i−1bi−1
(yi, xi)

holds for all possible (yi, xi) such that both PF
ai−1|Xi−1Y i−1(yi−1, xi−1) and

PG
bi−1|Xi−1Y i−1(yi−1, xi−1) are positive.

Definition 4. We write F |A ≡ G|B if PF
Yi|XiY i−1ai

(yi, xi)= PG
Yi|XiY i−1bi

(yi, xi)
holds for all possible (yi, xi) and all i ≥ 1.

Note that if FA ≡ GB, then F |A ≡ G|B (but not vice versa).

Definition 5. For MES A defined for F , ν(F, aq) denotes the maximal proba-
bility of aq for any (q, ∞)-CPA that interacts with F .

Note that, for any tweakable block cipher ˜EK, ν( ˜E±
K , aq) is themaximal probability

of aq for any ˜CCA-attacker, i.e., CPA/CCA for chosen tweaks. For simplicity, it will
be abbreviated to ν( ˜EK , aq). These equivalences are crucial to the information-
theoretic security proof. For example, the following theorem holds true.

Theorem 3. (Theorem 1 (i) of [11]) Let A and B be MESs defined for F and
G. If FA ≡ GB or F |A ≡ G, then AdvcpaF,G(q) ≤ ν(F, aq).

We will use some of Maurer’s results including Theorem 3 to make simple and
intuitive proofs3. For completeness, these results are cited in Appendix A.

General Scheme and Its Security Proof. We proceed as follows. First, we
describe a general scheme (which has the form of Eq. (4)) for a tweakable block
cipher. Then, we prove that it is a strong tweakable block cipher if its offset
function satisfies certain conditions. As the fixed XEX satisfies these conditions,
we immediately obtain Theorem 2 as a corollary.

For any two keyed n-bit block functions EK and GK′ , let TW[EK , GK′ ] be
an n-bit block tweakable block cipher with tweak space T = (L, Σn) for some
finite set L. Here EK must be invertible. Its offset function is defined as

Δ(T ) = (FK′′ (L, GK′(N))), where T = (L, N) ∈ L × Σn. (6)

Here, FK′′ is a keyed function : L × Σn → Σn with key K ′′ ∈u K′′ (see Fig. 1).
The key of the offset function is (K ′, K ′′). We assume that K and K ′ are not
necessarily independent (e.g., GK′ = EK is possible). We also assume that K ′′

is independent of (K, K ′) or a constant k′′ (i.e., FK′′ can be a fixed function
Fk′′ ). The ranges of keys can be different. What we want to do is to clarify the
3 Maurer’s methodology [11] can only be applied to information-theoretic settings. In

most cases information-theoretic proofs can be easily converted into computational
ones, but this is not always the case [12,16]. However, we do not encounter such
difficulties in this paper. His methodology can also be applied to random systems, i.e.,
stateful probabilistic functions. However, none of our proposals require underlying
functions to be stateful.
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Fig. 1. General scheme for a tweakable block cipher

sufficient condition for FK′′ to make TW[EK , EK ] provably secure. As a first
step, we have

Advs̃prpTW[P,P](q) = Advc̃ca
TW[P,P],˜P

(q) ≤ Advc̃caTW[P,P],TW[P,R](q) + Advs̃prpTW[P,R](q), (7)

which follows from the triangle inequality. Here, P and R are the n-bit URP
and URF, and ˜P is the n-bit tweakable URP with tweak space T . Note that
P and R in TW[P, R] are independent, however, two Ps in TW[P, P] denote the
same function. We start by analyzing Advc̃caTW[P,P],TW[P,R](q) in Eq. (7), which is
the main technical part. We need some definitions before the analysis. For any
TW[EK , GK′ ], let Mi (Ci) denote the i-th plaintext (ciphertext). In addition,
let Ti = (Li, Ni) be the i-th tweak. We define internal variables of TW[EK , GK′ ]
such as Vi

def= GK′(Ni) and ̂Vi
def= FK′′(Li, Vi). Moreover, we have Si

def= Mi ⊕ ̂Vi

and Ui
def= Ci ⊕ ̂Vi.

The following lemma tells us what probability we have to analyze.

Lemma 1. Let aq be dist(Sq, uni(N q)), where uni(N q) consists of all distinct
elements among N q. I.e., aq means that all elements in {S1, . . . , Sq, N1, . . . , Nq}
are distinct except for the collisions between Nis. Similarly, let bq denote
dist(U q, uni(V q)). Here, if uni(N q) = (Ni1 , . . . , Niθ

) for some {i1, . . . , iθ} ⊆
{1, . . . , q}, then uni(V q) = (Vi1 , . . . , Viθ

). Then, we have

Advc̃caTW[P,P],TW[P,R](q) ≤ ν(TW[P, R], aq ∧ bq). (8)

Proof. Let us consider the following probabilistic functions: Σn×{0, 1, 2} → Σn.

PP(x, w) =

{

P(x) if w = 0 or 2,

P−1(x) if w = 1,
PR(x, w) =

⎧

⎪

⎨

⎪

⎩

P(x) if w = 0,

P−1(x) if w = 1,

R(x) if w = 2.

Here, P and R are independent n-bit URP and URF. Observe that there exists
a procedure, F, such that TW[P, P] (TW[P, R]) is equivalent to F[PP] (F[PR]).
Consider the game of distinguishing PP from PR using CPA (note that this game
is quite easy to win). For PP and PR, let (Xi, Wi) ∈ Σn × {0, 1, 2} be the i-th
query, and Yi ∈ Σn be the i-th output. For convenience, we allow adversaries
to make colliding queries having Wi = 2 such as (X1, 2) and (X2, 2) where
X1 = X2. Let I = {i ∈ {1, . . . , q} : Wi ∈ {0, 2}}. Let a′

q be the event that all
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Xis with i ∈ I are distinct, except for the trivial collisions (i.e., Xi = Xj such
that Wi = Wj = 2 and i �= j). Similarly, b′q denotes the event that all Yis with
i ∈ I are distinct, except for the trivial collisions. Note that a′

q is equivalent to
b′q in PP, but not in PR. Then, for two MESs A′ = a′

0a
′
1 . . . and B′ = b′0b

′
1 . . . ,

PP|A′ ∧ B′ ≡ PP|A′ ≡ PR|A′ ∧ B′ (9)

holds. Let Zq be the q-th transcript (Xq, W q, Y q). Then, we obtain

PPR
a′

qb′
q|Zq−1Xqwqa′

q−1b′
q−1

≤ PPP
a′

q|Zq−1Xqwqa′
q−1

(10)

since the r.h.s. of Eq. (10) is always 0 or 1 and if it is 0, then the l.h.s. is also 0
(recall that Eq. (10) means that the inequality holds for all possible arguments).
From Eqs. (9) and (10) and Lemma 3, there is an MES defined for PP, C′, such
that

PPA′∧B′∧C′
≡ PPA′∧C′

≡ PRA′∧B′
(11)

holds true. It is easy to see that A′∧B′ is equivalent to A∧B where A = a0a1 . . .
and B = b0b1 . . . are defined for TW[P, P] and TW[P, R]. From this fact, and
Eq. (11), and Lemma 4, we obtain

TW[P, P]A∧B∧C ≡ TW[P, R]A∧B, for some MES C defined for TW[P, P]. (12)

Combining Eq. (12) and Theorem 3 proves the lemma. ��

Next, we have to evaluate the r.h.s. of Eq. (8). Our result is the following.

Lemma 2. Let γ, ε, and ρ be given such that FK′′ satisfies the following three
conditions when V, V ′ ∈u Σn and V is independent of V ′.

1. maxl∈Σn,c∈Σn Pr(FK′′(l, V ) = c) ≤ γ (here, probability is defined by K ′′ ∈u
K′′ and V ∈u Σn).

2. maxl,l′∈L,l �=l′,c∈Σn Pr(FK′′ (l, V ) ⊕ FK′′(l′, V ) = c) ≤ ε and
maxl,l′∈L,c∈Σn Pr(FK′′(l, V ) ⊕ FK′′(l′, V ′) = c) ≤ ε.

3. maxl∈L,c∈Σn Pr(FK′′ (l, V ) ⊕ V = c) ≤ ρ.

Then we have

ν(TW[P, R], aq ∧ bq) ≤
(

γ + ε + ρ +
1

2n+1

)

q2. (13)

Proof. Let ˜P be the n-bit tweakable URP with tweak space T = L×Σn. All vari-
ables and events defined for TW[P, R] are similarly defined for ˜P by using dummy
functions. For example, Si = FK′′(L, R(N)) ⊕ Mi and aq = dist(Sq, uni(N q)).
Note that dist(Sq) and dist(U q) are equivalent in TW[P, R], but not in ˜P. Let
Zq be the q-th transcript (M q, Cq, T q), and Xq be the q-th query (i.e., Xq is
(Mq, Tq) or (Cq, Tq)), and Yq be the q-th answer from the oracle, which is Mq or
Cq. Let KΔ be the key of Δ, which determines the instance of (R, FK′′). From
the assumption, KΔ is uniformly distributed over KΔ

def= {f : Σn → Σn} × K′′

and independent of P.



Improved Security Analysis of XEX and LRW Modes 105

Then, it is easy to verify that P
TW[P,R]
Yq |Zq−1XqaqbqKΔ

= P
˜P
Yq|Zq−1XqaqbqKΔ

and

P
TW[P,R]
KΔ|Zq−1Xqaqbq

= P
˜P
KΔ|Zq−1Xqaqbq

hold. Therefore, we have

P
TW[P,R]
Yq|Zq−1Xqaqbq

=
∑

KΔ

P
TW[P,R]
Yq |Zq−1XqaqbqKΔ

· P
TW[P,R]
KΔ|Zq−1Xqaqbq

(14)

=
∑

KΔ

P
˜P
Yq |Zq−1XqaqbqKΔ

· P
˜P
KΔ|Zq−1Xqaqbq

= P
˜P
Yq |Zq−1Xqaqbq

, (15)

where summations are taken for all δ ∈ KΔ. This indicates the following condi-
tional equivalence.

TW[P, R]|A ∧ B ≡ ˜P|A ∧ B. (16)

Then, we determine if

P
˜P
aqbq|Zq−1Xqaq−1bq−1KΔ

≤ P
TW[P,R]
aqbq |Zq−1Xqaq−1bq−1KΔ

(17)

holds. We first analyze the r.h.s. of Eq. (17). Let us assume the variables in
the condition are fixed such as (Zq−1, Xq, KΔ) = (zq−1, xq, δ) and the q-th
query is a chosen-plaintext query. Then, all variables except Uq are uniquely
determined. Therefore, whether a+

q
def= aq ∧ dist(U q−1, uni(V q)) holds or not

is a function of (Zq−1, Xq, KΔ). If a+
q holds, then Uq is uniform over Ω

def=
Σn \ {U1 . . . , Uq−1}, and aq ∧ bq occurs if Uq ∈ Ω \ {V1, . . . , Vq−1}. Note that
{U1 . . . , Uq−1} ∩ {V1, . . . , Vq} = ∅ if a+

q holds. From these observations, we have

P
TW[P,R]
aqbq|Zq−1Xqaq−1bq−1KΔ

=

{

0 if a+
q does not hold,

1 − θ
2n−(q−1) otherwise ,

(18)

where θ denotes the number of unique elements among {V1, . . . , Vq}. How about
the l.h.s. of Eq. (17)? The occurrence of a+

q is a function of (Zq−1, Xq, KΔ) as
well as the r.h.s. However, the distribution of Uq is different. Let Ψ be a set
of indexes defined by Ψ = {i ∈ {1, . . . , q − 1} : Tq = Ti} and let |Ψ | be ψ. If
a+

q holds, Uq is uniform over Ω′ def= Σn \ {Ui : i ∈ Ψ} and aq ∧ bq occurs if
Uq ∈ Ω′ \ {{V1, . . . , Vq} ∪ {Ui : i ∈ Ψ c}}. Therefore, we have

P
˜P
aqbq|Zq−1Xqaq−1bq−1KΔ

=

{

0 if a+
q does not hold,

1 − θ+q−ψ−1
2n−ψ otherwise .

(19)

Note that 0 ≤ ψ ≤ q − 1 and 1 ≤ θ ≤ q. Thus, when q ≤ 2n − θ + 1 we obtain

θ + q − ψ − 1
2n − ψ

− θ

2n − (q − 1)
=

(q − ψ − 1) · (2n − (q − 1) − θ)
(2n − ψ) · (2n − (q − 1))

≥ 0. (20)

Since θ ≤ q, Eq. (20) holds unless q > 2n−1 + 0.5. The same analysis holds when
the q-th query is a chosen-ciphertext query. Therefore, Eq. (17) holds if q ≤ 2n−1.
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It is almost trivial to see that P
TW[P,R]
KΔ|Zq−1Xqaq−1bq−1

= P
˜P
KΔ|Zq−1Xqaq−1bq−1

. By
combining this and Eqs. (17), we have

P
˜P
aqbq|Zq−1Xqaq−1bq−1

≤ P
TW[P,R]
aqbq|Zq−1Xqaq−1bq−1

, if q ≤ 2n−1. (21)

From this inequality, and Eq. (16), and Lemma 3, TW[P, R]A∧B∧C ≡ ˜P
A∧B

holds
for some MES C = c0c1 . . . , if q ≤ 2n−1. Therefore, using Lemma 5, we obtain

ν(TW[P, R], aq ∧ bq) ≤ ν(TW[P, R], aq ∧ bq ∧ cq) = ν(˜P, aq ∧ bq), if q ≤ 2n−1.

Note that any adversary’s strategy against ˜P must be independent of R and FK′′ ,
as they do not affect the input or output of ˜P. Therefore, evaluating ν(˜P, aq ∧ bq)
is quite easy: we only have to consider non-adaptive strategies. Let P

˜P denote
the probability space defined by ˜P and some fixed q inputs. Then, the second
condition of Lemma 2 implies that P

˜P(Si = Sj) ≤ ε and P
˜P(Ui = Uj) ≤ ε if

i �= j. Moreover, we have P
˜P(Si = Nj) = P

˜P(̂Vi = Nj ⊕ Mi) ≤ γ for any i, j,
and P

˜P(Ui = Vj) = P
˜P(̂Vi = Ci ⊕ Vj) ≤ ρ for any i, j (more precisely, it is at

most ρ if Ni = Nj and 1/2n otherwise). Therefore, if q ≤ 2n−1, we have

ν(˜P, aq ∧ bq) ≤ P
˜P(dist(Sq)) + P

˜P(dist(U q)) + P
˜P(Si = Nj for some i, j ≤ q)

+ P
˜P(Ui = Vj for some i, j ≤ q) + P

˜P(Vi = Vj for some i, j ≤ q, i �= j)

≤ 2
(

q

2

)

ε + q2γ + q2ρ +
(

q

2

)

2−n ≤ q2(ε + γ + ρ + 2−n−1). (22)

This upper bound reaches 1 if q ∼ 2n/2, thus the condition q ≤ 2n−1 is redundant.
This concludes the proof. ��

Note that the second condition of Lemma 2 implies that the offset function is
ε-AXU for input T = (L, N) ∈ L × Σn. By combining Eq. (7) and Lemmas 1, 2
and Theorem 1, the security of TW[P, P] is proved in the following theorem.

Theorem 4. If the assumption of Lemma 2 holds true for FK′′ , we have

Advs̃prpTW[P,P](q) ≤
(

2ε + γ + ρ +
1

2n+1

)

q2. (23)

The proof of Theorem 2. From Theorem 4, we can easily see that the fol-
lowing offset function enables a simple one-key tweakable block cipher.

Corollary 1. Let TW[P, P] use the offset function defined as Δ(T ) = L·EK(N),
where T = (L, N) ∈ (Σn \ {0, 1}) × Σn. Then, we have Advs̃prpTW[P,P](q) ≤ 4.5q2

2n .
Moreover, for any block cipher EK ,

Advs̃prpTW[EK,EK ](q, τ) ≤ AdvsprpEK
(2q, τ ′) +

4.5q2

2n
, where τ ′ = τ + O(q).
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Proof. Note that L · V , L · V ⊕ L′ · V , and L · V ⊕ V are permutations of V
for any L, L′ ∈ Σn \ {0, 1} such that L �= L′. This indicates ε = γ = ρ = 1/2n

and thus Theorem 4 proves the first claim. The second claim follows from the
first and the standard conversion from the information-theoretic setting to the
computational setting. ��

Recall that an output of XEX’s offset function is
∏d

j=1 α
ij

j · EK(N), where

a tweak is (i1, . . . , id, N). In the fixed XEX,
∏d

j=1 α
ij

j �=
∏d

j=1 α
i′
j

j whenever

(i1, . . . , id) �= (i′1, . . . , i
′
d), and

∏d
j=1 α

ij

j never be 0 or 1 (in GF(2n)). Therefore,
Theorem 2 is immediately obtained from Corollary 1.

Applications of Theorem 4. Theorem 4 provides not only the improved proof
of XEX, but also useful tools for the design of strong tweakable block cipher. For
example, consider the LRW mode based on a dedicated AXU hash function such as
MMH or NMH (see e.g., [2]). Then, Theorem 4 tells us what properties are needed
(in addition to the AXU property) if we want to substitute (a part of) the key
of LRW’s offset function with an encryption of the block cipher. This is achieved
by our generalized construction. In particular, for the offset function of the form
Δ(L, N) = g(L ⊕ EK(N)) where g is a fixed n-bit permutation, the conditions of
Lemma 2 become simpler: since g(l⊕V ) and g(l⊕V )⊕g(l′⊕V ′) are permutations
of V , γ and the second ε in the second condition are naturally 1/2n. The remaining
conditions can be interpreted such that g is differentially ε-uniform [15] and is a
(2nρ−1)-almost orthomorphism [21] (equivalently, a permutation with maximum
self-differential probability ρ [13], where self-differential means the differential be-
tween the input and output). An example of such a permutation is the inversion on
GF(2n), inv(∗), where inv(x) = x−1 if x �= 0, and inv(0) = 0. If g is the inversion
on GF(2n), ε = 4/2n holds from [15], and a simple analysis proves that ρ = 3/2n.
Consequently, the mode with the offset function Δ(L, N) = inv(L ⊕ EK(N)) is
provably secure and has the bound (2ε+γ+ρ+0.5) q2

2n = 12.5q2

2n . This demonstrates
that strong tweakable ciphers with arbitrary tweak update are possible from per-
mutations with gooddifferential and self-differential property.We will use this idea
in the next section.

5 Improving LRW-AES

Theorem 4 also gives some improvements to the LRW-AES described in Sect. 3.2.
Here, we propose two improvements.

LRW-AES-Sqr: One-Key LRW-AES having 2n
tweak values. As men-

tioned, LRW-AES is the mode for AES that provides a strong tweakable block
cipher using Δ(T ) = KΔ · T , where T ∈ Σn and KΔ ∈u Σn is independent of
the key of the AES. Although the original LRW-AES needs two keys, Corollary
1 provides some ways to reduce these two keys to the one AES key. The simplest
fix is the same as one used for the XEX: let KΔ = EK(0) and T ∈ Σn \ {0, 1}.
However, the resulting mode is not strictly compatible with LRW-AES because
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of the reduced tweak set. However, we still have several options to achieve one-
key LRW-AES having 2n tweak values. An efficient one among these options
is to use squaring, which is as follows. We first generate V = EK(0) in the
preprocessing. For tweak T ∈ Σn, the offset function is defined as:

Δ(T ) =

⎧

⎪

⎨

⎪

⎩

V 2 if T = 0,
a · V 2 if T = 1,
T · V otherwise.

(24)

Here, a is a fixed element of Σn \ {0, 1}. This requires only one AES encryption
in the preprocessing, and the cost for updating a tweak (i.e., the cost for com-
puting Δ(T )) is almost the same as that of the original LRW-AES, namely one
GF multiplication. To be precise, the computation of a · V 2 requires two mul-
tiplications; however the cost for multiplication by constant a can be negligibly
small with the powering-up construction. The security of this scheme, which we
call LRW-AES-Sqr, is proved as follows.

Theorem 5. Advs̃prpLRW-AES-Sqr(q, τ) ≤ AdvsprpAESK
(q + 1, τ ′) + 7.5q2

2128 , where τ ′ =
τ + O(q).

Proof. We apply Lemma 2 to the offset function in Eq. (24). Since squaring
in a field with characteristic two is a permutation, both V 2 and a · V 2 are
permutations of V . Also, T · V with T �∈ {0, 1} is a permutation. Thus we have
γ = 1/2n. Every sum of two offset values (i.e., T ·V ⊕T ′ ·V , V 2⊕a·V 2, V 2⊕T ·V ,
and a · V 2 ⊕ T · V for any T, T ′ ∈ Σn \ {0, 1} with T �= T ′) is a quadratic or
linear function of V , but can not be reduced to a constant since a �∈ {0, 1}. As
a function with degree d has at most d solutions, every sum has bias of at most
2/2n, which means ε = 2/2n. Moreover, both V 2 ⊕ V and a · V 2 ⊕ V have bias
2/2n, and T · V ⊕ V with T �∈ {0, 1} has bias 1/2n. Therefore we have ρ = 2/2n.
Note that AES is invoked q + 1 times in LRW-AES-Sqr. Combining these facts
and Theorem 4 proves the theorem. ��
LRW-AES-4r: LRW-AES without multiplication. Both LRW-AES and
LRW-AES-Sqr require GF multiplication in order to be able to update a tweak
arbitrarily. Here, we provide an interesting alternative to the multiplication: the
reduced-round of AES. This idea is basically the same as the recent proposal
of AES-based message authentication codes [13]. More precisely, what we use is
the 4-round AES, denoted by AES(4)

Ksub
, where Ksub ∈u (Σ128)3 consists of the

round keys for the last three rounds. The first round key is set to 0. We first
generate V = AESK(0) and Ksub ∈u (Σ128)3. For tweak T ∈ Σ128, we use the
offset function such as Δ(T ) = AES(4)

Ksub
(T ⊕ V ). This scheme, which we call

LRW-AES-4r is essentially AES-based while the cost for updating a tweak is
less than an AES encryption. XEX mode also has this property (if we fix N to
some constant), but a tweak can be updated only in an incremental order.

Security of LRW-AES-4r. The differential and linear properties of the AES
and its reduced-round version have been extensively studied. Particularly,
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Table 1. Mean speed of LRW-AES and our improvements for random 220 messages
and tweaks on a PC (Pentium III (Coppermine), 1 GHz, 16KB L1 cache). Alg 1 and
2 denote the multiplication algorithms specified in [23]. Preprocessing includes key
schedulings for both AES and its inverse, and precomputation for multiplication, and
one AES encryption: V = AESK(0).

Mode Preproc (cycles) Enc (cycle/byte) Dec (cycle/byte)
LRW-AES (alg 1) 1248 234 241
LRW-AES (alg 2) 289506 155 161
LRW-AES-Sqr (alg 1) 1696 235 241
LRW-AES-Sqr (alg 2) 289966 155 161
LRW-AES-4r 1653 39 45

Keliher proved that the maximum expected differential probability of AES(4)
Ksub

was at most 2−113 [8], if Ksub ∈u (Σ128)3. This means that AES(4)
Ksub

(T ⊕ V ) is
2−113-AXU, when (Ksub, V ) is the key and T is the input.

The security of LRW-AES-4r is proved as follows.

Theorem 6. Advs̃prpLRW-AES-4r(q, τ) ≤ AdvsprpAESK
(q+1, τ ′)+ (216+2.5)q2

2128 , where τ ′ =
τ + O(q).

Proof. We have ε < 2−113 = 215/2128 from [8]. Moreover, we have γ = 1/2128.
Note that the output of AES(4)

Ksub
is completely random and independent of the

input, as each round key is XORed to the intermediate message and uniformly
distributed. This indicates ρ = 1/2128. ��

We have to mention that LRW-AES-4r is not an ideal substitute for the LRW-
AES. The security of the LRW-AES-4r is moderately degraded compared with
the original LRW-AES. That is, LRW-AES-4r has 112/2 = 56-bit security (i.e.,
q must be much smaller than 256), while the original LRW-AES has 63-bit
security. This means that the lifetime of key should be slightly shortened. In
addition, the key of the LRW-AES-4r is longer (512 bits) than that of the
LRW-AES (256 bits), though both require only one AES key scheduling. We
implemented our proposals and the original LRW-AES in software. Our im-
plementation was based on the reference AES code [22]. We used two naive
algorithms for multiplication in GF(2128) that were specified in the document of
LRW-AES [23]. The performance of LRW-AES-4r is quite remarkable, as Table 1
shows.
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A Theorems and Lemmas Proved by Maurer [11]

Let us now describe some of Maurer’s results [11] other than Theorem 3. They
were used in our analysis.

Lemma 3. (Lemma 1 (iv) of [11]) Let MESs A and B be defined for F and G.
Moreover, let Xi and Yi denote the i-th input and output of F (or G), respec-
tively. Assume F |A ≡ G|B. If PF

ai|XiY i−1ai−1
≤ PG

bi|XiY i−1bi−1
for i ≥ 1, which

means PF
ai|XiY i−1ai−1

(xi, yi−1) ≤ PG
bi|XiY i−1bi−1

(xi, yi−1) holds for all (xi, yi−1)
such that PF

ai−1|Xi−1Y i−1(xi−1, yi−1) and PG
bi−1|Xi−1Y i−1(xi−1, yi−1) are positive,

then there exists an MES C defined for G such that FA ≡ GB∧C.

Lemma 4. (Lemma 4 (ii) of [11]) Let F and G be two compatible keyed func-
tions, and F be the function of F and G (i.e., F[F ] is a function that internally
invokes F , possibly several times, to process its inputs). Here, F can be proba-
bilistic, and if so, we assume F is independent of F or G. If FA ≡ GB holds
for some MESs A and B, we have F[F ]A

′ ≡ F[G]B
′
. Here, MES A′ = a′

0a
′
1 . . .

is defined such that a′
i denotes A-event is satisfied for the time period i. For

example, if F[F ] always invoke F c times for any input, then a′
i = aci. B′ is

defined in the same way.

Lemma 5. (Lemma 6 (ii) of [11]) If FA ≡ GB, then ν(F, aq) = ν(G, bq).

Lemma 6. (Lemma 6 (iii) of [11]) ν(F, aq ∧ bq) ≤ ν(F, aq) + ν(F, bq).

B Proof of Theorem 1

The structure of the proof is almost the same as the proofs of Lemmas 1 and
2. Let ˜E denote the LRW mode using the offset function Δ, and ˜P denote the
URP compatible (i.e., the block size and tweak space are the same as those of
˜E) with ˜E. Let Mi and Ci be the i-th plaintext and ciphertext, and let Ti be
the i-th tweak. Let Si be the i-th input to EK , i.e., Si = Δ(Ti) ⊕ Mi. Similarly,
we define Ui = Δ(Ti) ⊕ Ci. Note that these variables can be defined for both ˜E

and ˜P. We use two MESs A = a0a1 . . . and B = b0b1 . . . where ai
def= dist(Si)

and bi
def= dist(U i). An analysis similar to that used in the proof of Lemma 2

provides that the equivalences ˜E|A ≡ ˜P|A ∧ B and ˜EA∧C ≡ ˜P
A∧B

hold for some
MES C = c0c1 . . . defined for ˜E. Thus we have

Advs̃prp
˜E

(q) = Advc̃ca
˜E,˜P

(q) ≤ ν(˜P, aq ∧ bq) ≤ ν(˜P, aq) + ν(˜P, bq), (25)

http://homes.esat.kuleuven.be/~rijmen/rijndael/rijndael-fst-3.0.zip
http://www.siswg.org/docs/LRW-AES-10-19-2004.pdf
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where the first inequality follows from ˜EA∧C ≡ ˜P
A∧B

and Theorem 3, and the
last follows from Lemma 6. It is almost trivial to see that any adaptive strategy
against ˜P to invoke aq or bq is no better than the best non-adaptive strategy.
Therefore, we have

ν(˜P, aq) ≤ max
mq,tq

P
˜P(Si = Sj for some 1 ≤ i < j ≤ q|M q = mq, T q = tq) ≤ εq2/2,

where P
˜P denotes the probability space defined by ˜P and the maximum is taken

for all q plaintexts and tweaks satisfying (mi, ti) �= (mj , tj) for any i �= j.
The second inequality follows from the assumption on Δ. Similarly, we obtain
ν(˜P, bq) ≤ εq2/2, and thus, ν(˜P, aq) + ν(˜P, bq) ≤ εq2. This concludes the proof.

C An Attack Against OCB1 Using Flawed XEX−1

OCB1 [18] is an authenticated encryption mode for any finite-length message. A
ciphertext consists of a nonce, and an encryption of a message, and an authen-
tication tag, which we simply call a tag. The OCB1 defined in [18] and [19] are
slightly different, but our attack is applicable to both. For simplicity, we only
describe a version of OCB1 defined in [18] for a message of length cn bits for
some positive integer c. We also assume that the tag is n-bit. Let the message M
be (M [0], . . . , M [c−1]), where each M [i] ∈ Σn. Let ˜EK be an n-bit block strong
tweakable block cipher having the tweak space {0, 1, . . . , 2n/2}×{0, 1}×Σn. To
encrypt M with nonce N ∈ Σn, we first let C[i] = ˜EK(M [i], (i, 0, N)), where
the second argument of ˜EK is a tweak, for i = 0, . . . , c − 2. The last block,
M [c − 1], is encrypted such as C[c − 1] = M [c − 1] ⊕ ˜EK(v, (c − 1, 0, N)), where
v denotes the bit length of the last block, which is assumed to be n, in some
deterministic encoding. Then, we compute the sum of all message blocks, namely
sum = M [0] ⊕ M [1] ⊕ · · · ⊕ M [c − 1]. The tag is tag = ˜EK(sum, (c − 1, 1, N)),
and the ciphertext C is (N, C[0], . . . , C[c − 1], tag). To decrypt it, we compute
̂M [i] = ˜E−1

K (C[i], (i, 0, N)) for 1 ≤ i ≤ c − 2. For Cc−1, we have ̂M [c − 1] =
Cc−1 ⊕ ˜EK(v, (c − 1, 0, N)) and ŝum = ̂M [0] ⊕ ̂M [1] ⊕ · · · ⊕ ̂M [c − 1]. Then, we
check if ˜EK(ŝum, (c − 1, 1, N)) and tag are the same. If they are the same, we
say the ciphertext is authenticated, and otherwise it is faked.

XEX−1 gives ciphertext C = E−1
K (M ⊕ Δ(i1, i2, N)) ⊕ Δ(i1, i2, N) where

Δ(i1, i2, N) equals 2i13i2EK(N) for all (i1, i2) ∈ {0, 1, . . . , 2n/2} × {0, 1}. Recall
that this provides unique representations but does not exclude a reduced-to-1
index vector. Our attack is against the tag-generation part and is based on the
information of two ciphertexts. We assume the nonce is set to N at the beginning
of the attack.

1. Ask the oracle (who implemented the XEX−1-based OCB1) to encrypt a 2n-
bit message, M1 = (M1[0], M1[1]) = (0, m), for some m ∈ Σn and receive the
ciphertext C1 = (N, C1[0], C1[1], tag1), where C1[0] = ˜EK(M1[0], (0, 0, N)) =
EK(N) ⊕ N and C1[1] = m ⊕ E−1

K (v ⊕ 2 · EK(N)) ⊕ 2 · EK(N). The tag is
tag1 = E−1

K (m ⊕ 2 · 3 · EK(N)) ⊕ 2 · 3 · EK(N).
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2. Ask the oracle to encrypt M2 = (M2[0], M2[1]) = (0, m′) for some m′ ∈
Σn, m′ �= m and receive the ciphertext C2 = (N ′, C2[0], C2[1], tag2), where
C2[0] = ˜EK(M2[0], (0, 0, N ′)) = EK(N ′) ⊕ N ′ and N ′ �= N . We do not use
C2[1] and tag2.

3. Then, issue the faked ciphertext C′ = (N, C′[0], C′[1], tag′). Here, C′[0] =
C1[0]⊕N ⊕N ′, and C′[1] = C1[0]⊕C1[1]⊕C2[0]⊕N ⊕N ′, and tag′ = tag1.

The above faked ciphertext will be always accepted as authentic by the oracle,
since the decrypted message will be:

̂M ′[0] = EK(C′[0] ⊕ EK(N)) ⊕ EK(N) = EK(N) ⊕ EK(N ′) (26)
̂M ′[1] = C′[1] ⊕ E−1

K (v ⊕ 2 · EK(N)) ⊕ 2 · EK(N) = EK(N) ⊕ EK(N ′) ⊕ m.
(27)

These equations indicate that ŝum′ = ̂M ′[0]⊕ ̂M ′[1] = m, and therefore, we have
tag′ = tag1.
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