
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

Previously Published Works
UC Berkeley

A University of California author or department has made this article openly available. Thanks to
the Academic Senate’s Open Access Policy, a great many UC-authored scholarly publications
will now be freely available on this site.
Let us know how this access is important for you. We want to hear your story!
http://escholarship.org/reader_feedback.html

Peer Reviewed

Title:
Tweakable block ciphers

Author:
Liskov, Moses
Rivest, Ronald L
Wagner, David

Publication Date:
01-01-2002

Series:
UC Berkeley Previously Published Works

Permalink:
https://escholarship.org/uc/item/311931t6

Additional Info:
The original publication is available at www.springerlink.com in Advances in Cryptology - Crypto
2002, Proceedings.

Keywords:
block ciphers, tweakable block ciphers, initialization vector, modes of operation

Abstract:
We propose a new cryptographic primitive, the "tweakable block cipher." Such a cipher has not
only the usual inputs - message and cryptographic key - but also a third input, the "tweak." The
tweak serves much the same purpose that an initialization vector does for CBC mode or that a
nonce does for OCB mode. Our proposal thus brings this feature down to the primitive block-cipher
level, instead of incorporating it only at the higher modes-of-operation levels. We suggest that (1)
tweakable block ciphers are easy to design, (2) the extra cost of making a block cipher "tweakable"
is small, and (3) it is easier to design and prove modes of operation based on tweakable block
ciphers.

Copyright Information:
All rights reserved unless otherwise indicated. Contact the author or original publisher for any
necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more
at http://www.escholarship.org/help_copyright.html#reuse

https://escholarship.org
https://escholarship.org
https://escholarship.org
https://escholarship.org
https://escholarship.org/uc/ucb_postprints
https://escholarship.org/uc/ucb
http://escholarship.org/reader_feedback.html
https://escholarship.org/uc/search?creator=Liskov%2C%20Moses
https://escholarship.org/uc/search?creator=Rivest%2C%20Ronald%20L
https://escholarship.org/uc/search?creator=Wagner%2C%20David
https://escholarship.org/uc/ucb_postprints
https://escholarship.org/uc/item/311931t6
http://www.springerlink.com
http://www.escholarship.org/help_copyright.html#reuse

Tweakable Block Ciphers

Moses Liskov1, Ronald L. Rivest1, and David Wagner2

1 Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
e-mail: mliskov@theory.lcs.mit.edu, rivest@mit.edu

2 University of California Berkeley
Soda Hall

Berkeley, CA 94720, USA
e-mail: daw@cs.berkeley.edu

Abstract. We propose a new cryptographic primitive, the “tweakable
block cipher.” Such a cipher has not only the usual inputs—message and
cryptographic key—but also a third input, the “tweak.” The tweak serves
much the same purpose that an initialization vector does for CBC mode
or that a nonce does for OCB mode. Our proposal thus brings this feature
down to the primitive block-cipher level, instead of incorporating it only
at the higher modes-of-operation levels. We suggest that (1) tweakable
block ciphers are easy to design, (2) the extra cost of making a block
cipher “tweakable” is small, and (3) it is easier to design and prove
modes of operation based on tweakable block ciphers.

Keywords: block ciphers, tweakable block ciphers, initialization vector,
modes of operation

1 Introduction

A conventional block cipher takes two inputs—a key K ∈ {0, 1}k and a message
(or plaintext) M ∈ {0, 1}n—and produces a single output—a ciphertext C ∈
{0, 1}n. The signature for a block cipher is thus (see Figure 1(a)):

E : {0, 1}k × {0, 1}n → {0, 1}n . (1)

On the other hand, the corresponding operators for variable-length encryp-
tion have a different signature. These operators are usually defined as “modes of
operation” for a block cipher, but they may also be viewed abstractly as another
set of encryption operators. They take as input a key K ∈ {0, 1}k, an initial-
ization vector (or nonce) V ∈ {0, 1}v, and a message M ∈ {0, 1}∗ of arbitrary
length, and produce as output a ciphertext C ∈ {0, 1}∗. The signature for a
typical encryption mode is thus:

E : {0, 1}k × {0, 1}v × {0, 1}∗ → {0, 1}∗ .

Block ciphers (pseudorandom permutations) are inherently deterministic: ev-
ery encryption of a given message with a given key will be the same. Many modes
of operation and other applications using block ciphers have nonetheless a re-
quirement for “essentially different” instances of the block cipher in order to
prevent attacks that operate by, say, permuting blocks of the input. Attempts to
resolve the conflict between keeping the same key for efficiency and yet achieving
variability often results in a design that uses a fixed key, but which attempts
to achieve variability by manipulating the input before encryption, the output
after encryption, or both. Such designs seem inelegant—they are attempting to
solve a problem with a primitive (a basic block cipher) that is not well suited
for the problem at hand. Better to rethink what primitives are really wanted for
such a problem.

This paper proposes to revise the signature of a block cipher so that it con-
tains a notion of variability as well. The revised primitive operation, which we
call a tweakable block cipher, has the signature:

Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n . (2)

For this operator, we call the new (second) input a “tweak” rather than a “nonce”
or “initialization vector,” but the intent is similar. A tweakable block cipher thus
takes three inputs—a key K ∈ {0, 1}k, a tweak T ∈ {0, 1}t, and a message (or
plaintext) M ∈ {0, 1}n—and produces as output a ciphertext C ∈ {0, 1}n (see
Figure 1(b)).

(a)

M

EK

C

(b)

M

K

C

T

(c)

M

K

C

TE E

Fig. 1. (a) Standard block cipher encrypts a message M under control of a key K to
yield a ciphertext C. (b) Tweakable block cipher encrypts a message M under control
of not only a key K but also a “tweak” T to yield a ciphertext C. The “tweak” can be
changed quickly, and can even be public. (c) Another way of representing a tweakable
block cipher; here the key K shown inside the box.

In designing a tweakable block cipher, we have certain goals. First of all,
obviously, we want any tweakable block ciphers we design to be as efficient as
possible (just as with any scheme). Specifically, a tweakable block cipher should
have the property that changing the tweak should be less costly than changing

the key. Many block ciphers have the property that changing the encryption key
is relatively expensive, since a “key setup” operation needs to be performed. In
contrast, changing the tweak should be cheaper. 1

A tweakable block cipher should also be secure, meaning that even if an
adversary has control of the tweak input, we want the tweakable block cipher
to remain secure. We’ll define what this means more precisely later on. But
intuitively, each fixed setting of the tweak gives rise to a different, apparently
independent, family of standard block cipher encryption operators. We wish to
carefully distinguish between the function of the key, which is to provide uncer-
tainty to the adversary, and the role of the tweak, which is to provide variability.
The tweak is not intended to provide additional uncertainty to an adversary.
Keeping the tweak secret need not provide any greater cryptographic strength.

The point of this paper is to suggest that by cleanly separating the roles of
cryptographic key (which provides uncertainty to the adversary) from that of
tweak (which provides independent variability) we may have just the right tool
for many cryptographic purposes.

1.1 Related Work

One motivating example for this introduction of tweakable block ciphers is the
DESX construction introduced by Rivest (unpublished). The reason for intro-
ducing DESX was to cheaply provide additional key information for DES. The
security of DESX has been analyzed by Kilian and Rogaway [10]; they show that
DESX with n-bit inputs (and tweaks) and k-bit keys has an effective key-length
of k +n−1− lg m where the adversary is limited to m oracle calls. In the DESX
construction secret pre- and post-whitening values were added as additional key
information.

Even and Mansour [8] have also investigated a similar construction where the
inner encryption operator F is fixed and public, and encryption is performed by
EK1K2

(M) = K2⊕F (K1⊕M). They show (see also Daemen[7]) that the effective
key length here is n − lg l − lg m where the adversary is allowed to make l calls
to the encryption/decryption oracles and m calls to an oracle for F or F−1.

Similarly, if one looks at the internals of the recently proposed “offset code-
book mode” (OCB mode) of Rogaway et al. [12], one sees DESX-like modules
that may also be viewed as instances of a tweakable block ciphers. That is,
the pre- and post-whitening operations are essentially there to provide distinct
families of encryption operators, i.e. they are “tweaked.”

1 Some cryptographic modes of operation such as the Davies-Meyer hash function
(see Menezes et al. [11, Section 9.40]) have fallen into disfavor because they have a
feedback path into the key input of the block cipher. Since for many block ciphers
it is relatively expensive to change the key, these modes of operation are relatively
inefficient compared to similar modes that use the same key throughout. See, for
example, the discussion by Rogaway et al. [12] explaining the design rationale for
the OCB mode of operation, which uses the same cryptographic key throughout.

In a similar vein, Biham and Biryukov [4] suggest strengthening DES against
exhaustive search by (among other things) applying a DESX-like construction
to each of DES’s S-boxes.

Finally, two block cipher proposals, the Hasty Pudding Cipher (HPC) [14]
and the Mercy cipher [6] include an extra input for variability, called in their
design specifications a “spice,” a “randomiser,” or a “diversification parameter.”
These proposals include a basic notion of what kind of security is needed for a
block cipher with this extra input, but no formal notions or proofs are given.

1.2 Outline of this paper

In Section 2 we then discuss and formalize the notion of security for tweak-
able block ciphers. In Section 3 we suggest several ways of constructing tweak-
able block ciphers from existing block ciphers, and prove that the existence of
tweakable block ciphers is equivalent to the existence of block ciphers. Then in
Section 4 we suggest several new modes of operation utilizing tweakable block
ciphers, and give simple proofs for some of them. Section 5 concludes with some
discussion and open problems.

2 Definitions

The security of a block cipher E (e.g. parameterized as in equation (1)) can be
quantified as SecE(q, t)–the maximum advantage that an adversary can obtain
when trying to distinguish E(K, ·) (with a randomly chosen key K) from a
random permutation Π(·), when allowed q queries to an unknown oracle (which
is either E(K, ·) or Π(·)) and when allowed computation time t. This advantage
is defined as the difference between the probability the adversary outputs 1
when given oracle access to E and the probability the same adversary outputs
1 when given oracle access to Π. A block cipher may be considered secure when
SecE(q, t) is sufficiently small.

We may measure the security of a tweakable block cipher Ẽ (parameterized
as in equation (2)) in a similar manner as the maximum advantage Sec eE(q, t)

an adversary can obtain when trying to distinguish Ẽ(·, ·) from a “tweakable

random permutation” Π̃(·, ·) where Π̃ is just a family of independent random

permutations parametrized by T . That is, for each T , we have that Π̃(T, ·) is
an independent randomly chosen permutation of the message space. Note that
the adversary is allowed to choose both the message and tweak for each oracle
call. A tweakable block cipher Ẽ may be considered secure when Sec eE(q, t) is
sufficiently small.

A tweakable block cipher should also be efficient: both encryption ẼK(·, ·)

and decryption D̃K(·, ·) should be easy to compute.

2.1 Strong tweakable block ciphers

A stronger definition for a block cipher, Sec′E(q, t), can be defined as the max-
imum advantage than an adversary can obtain when trying to distinguish the

pair of oracles E(K, ·), D(K, ·) from the pair Π,Π−1, when allowed q queries
and computation time t. This advantage is defined as the difference between the
probability the adversary outputs 1 when given oracle access to E,D and the
probability the same adversary outputs 1 when given oracle access to Π,Π−1.
A block cipher is considered “chosen-ciphertext” secure when Sec′E(q, t) is suffi-
ciently small.

Similarly, we define Sec′eE(q, t) as the maximum advantage an adversary can

obtain when trying to distinguish ẼK(·, ·), D̃K(·, ·) from Π̃, Π̃−1, when given q
queries and t time. We say a tweakable block cipher is chosen-ciphertext secure
when Sec′eE(q, t) is sufficiently small, and we call such a secure tweakable block
cipher a “strong tweakable block cipher.”

3 Constructions

In this section we show that the existence of block ciphers and the existence of
tweakable block ciphers are equivalent. One direction is easy: if we let EK(M) =

ẼK(0t,M), it is easy to see that if Ẽ is a secure tweakable block cipher then E
must be a secure block cipher.

The other direction is more difficult. Some simple attempts to construct a
tweakable block cipher from a block cipher fail.

For example, the DESX analogue:

ẼK((T1, T2),M) = EK(M ⊕ T1) ⊕ T2

fails because an adversary can notice that flipping the same bits in both T1 and
m has no net effect.

Similarly, taking an ordinary block cipher and splitting its key into a key for
the tweakable cipher and a tweak:

ẼK(T,M) = EK‖T (M)

or xoring the tweak into the key:

ẼK(T,M) = EK⊕T (M)

need not yield secure tweakable block ciphers, since a block cipher need not
depend on every bit of its key. (Biham’s related-key attacks of Biham [3] would
be relevant to this sort of design.)

The following theorem gives a construction that works.

Theorem 1. Let
ẼK(T,M) = EK(T ⊕ EK(M)).

Ẽ is a secure tweakable block cipher. More precisely,

Sec eE(q, t) < SecE(q, t) + Θ(q2/2n) .

Proof. We assume that E has security function SecE(q, t) and assume that an
adversary A? exists that achieves and advantage Sec eE(q, t) when distinguishing

Ẽ from a tweakable random permutation.

We have the following cases.

Case i: A can distinguish between ẼK and H1, where H1(T,M) = Π(T⊕Π(M)).
If this is the case, we can use A to distinguish E from Π.

Case ii: A can distinguish between H1 and H2 where H2(T,M) = R(T⊕R(M)),
where R is a random function. It is easy to see that the advantage in distinguish-
ing a random function from a random permutation is Θ(q2/2n).

Case iii: A can distinguish H2 from H3, where H3(T,M) = R2(T ⊕ R1(M)),
where R1 and R2 are random functions. Suppose (T1,M1), . . . , (Tq,Mq) are all
the queries A makes to the oracle, and suppose no collisions of the following type
happen: Ti ⊕R(Mi) = Mj . With no such collisions, H2 cannot be distinguished
from H3 as the outer application of R takes place on a set of inputs disjoint
from the inputs to the inner application of R, and so the outer outputs are
independently random, just as the outputs of R2 would be.

Furthermore, the probability of any such collisions occuring is Θ(q2)/2n.
What is the probability that (Ti,Mi) collides with any previous pair? If Mi is a
new value then it is easy to see that the probability is at most (i− 1)/2n. What
if Mi is not new? In this case, either (Ti,Mi) will collide or it won’t, since all the
random decisions have been made. However it is important to note that if no
collisions have happened before, then every oracle response the adversary gets is
just a new random value. Thus, the values the adversary gets are independent
from the T ’s the adversary produces. Conversely, Ti must be independent from
the distribution of R. Thus, even though Ti is not necessarily chosen randomly,
no matter how the adversary picks Ti, it has a probability of at most (i− 1)/2n

of being one that causes a collision. Adding all these probabilities up, we see
that the probability that any collision occurs is Θ(q2)/2n.

Case iv: A can distinguish H3 from H4, where H4(T,M) = R(T,M), where R
is a random function.

In order for there to be a difference between H3 and H4, the output of R
must be constrained for two different input pairs. Thus, there must be a pair
i, j such that Ti ⊕ R1(Mi) = Tj ⊕ R1(Mj) for i 6= j. What is the probability
that this happens for any given j? Well, if Mj is a new M , this will only happen
with probability (j − 1)/2n. Now suppose that up through the jth query there
have been no collisions. The adversary then receives purely random values back
in response. Thus, since the outputs the adversary sees are independent of the
queries, the queries must be independent of the values Ti ⊕ R1(Mi).

If Mj is not a new value, but Tj has never been asked with Mj before, then
the probability of a collision is at most (j − 2)/2n, since the only possible values
to collide with are those where Mi 6= Mj . This critically relies on the observation
that the adversary’s queries are independent of the values so long as there have
been no collisions. Thus, we can bound the total probability of collisions in the
same way. The probability of distinguishing can be bounded by q2/2n where q
is the number of queries.

Case v: A can distinguish between H4 and Π̃. Note that R(T,M) differs from

Π̃(T,M) only in that for any given T , one will be a random function and the
other will be a random permutation. Since random functions and random permu-
tations are indistinguishable, this is impossible: we use a simple hybrid argument,
providing permutations for more and more T .

Thus, we see that this construction only “degrades” SecEq, t by Θ(q2/2n) to
obtain Sec eE(q, t). 2

Note that this construction has the nice property that changing the tweak is
easy (no “key setup” required). Furthermore, we do not require a longer key than
the block cipher did for the same level of security. However, the construction has
an overall cost (running time) that is twice that of the underlying block cipher.

This completes our proof that the existence of (secure) tweakable block ci-
phers is equivalent to the existence of (secure) block ciphers. We leave it as an
open problem to devise a construction with a tighter bound than Theorem 1.

3.1 Another construction

We can do better than this, however. We now give a construction that is more
efficient, and is also a strong tweakable block cipher.

First, we need a definition. A set H of functions with signature {0, 1}t →
{0, 1}n is said to be ε-almost 2-xor-universal (ε-AXU2, for short) if Prh[h(x) ⊕
h(y) = z] ≤ ε holds for all x, y, z, where the probability is taken over h chosen
uniformly at random from H.

With these definitions, we prove

Theorem 2. Let ẼK,h(T,M) = EK(M⊕h(T))⊕h(T), and let H be an ε-AXU2

family with ε ≥ 1/2n. Then Ẽ is a strong tweakable block cipher. Specifically,

Sec′eE(q, t) ≤ Sec′E(q, t) + 3εq2.

We give the proof in Appendix A.

As there are plenty of known constructions of AXU2 hash families with ε ≈
1/2n, the security theorem shows that we can obtain a construction with good
security against adaptive chosen-ciphertext attacks for up to the birthday bound,
i.e., for q � 2n/2.

Moreover, we expect that our construction will be reasonably fast. For in-
stance, for t = n = 128, a generalized division hash runs in something like 300
cycles [15], UMAC/UHASH runs in about 200 cycles [5], hash127 runs in about
150 cycles [2] and a DFC-style decorrelation module should run in about 200
cycles [9] (all speeds on a Pentium II class machine, and are rough estimates).
If we compare to AES, which runs in about 230–300 cycles [1], we expect that a
version of AES tweaked in this way will run about 50–80% slower than the plain
AES. Though this is likely to be faster than the previous construction, it does
require a longer key.

4 Tweakable Modes of Operation

The new “tweak” input of a tweakable block ciphers enables a multitude of
new modes of operation. Indeed, these new modes may really be the “payoff”
for introducing tweakable block ciphers. In this section we sketch three such
possible modes, and leave the remainder to your imagination. We just describe
the first two, and prove secure the third, which is the most interesting of the
three (it is an analogue to OCB mode for authenticated encryption).

4.1 Tweak Block Chaining (TBC)

Tweak block chaining (TBC) is similar to cipher block chaining (CBC). An
initial tweak T0 plays the role of the initialization vector (IV) for CBC. Each
successive message block Mi is encrypted under control of the encryption key K
and a tweak Ti−1, where Ti = Ci for i > 0. See Figure 2.

M

C

T0
EK EK EK EK

M M M

C C C

1

1

2

2

3

3

m

m

Fig. 2. Tweak block chaining: a chaining mode for a tweakable block cipher. Each
ciphertext becomes the tweak for the next encryption.

To handle messages whose length is greater than n but not a multiple of n,
a variant of ciphertext-stealing [13] can be used; see Figure 3.

One can also adapt the TBC construction to make a TBC-MAC in the same
manner that one can use the CBC construction to make a CBC-MAC, though
these constructions still need a security analysis.

4.2 Tweak Chain Hash (TCH)

To make a hash function, one can adapt the Matyas-Meyer-Oseas construction
(see Menezes et al. [11, Section 9.40]). See Figure 4, using a fixed public key K
in the tweakable block cipher, and chaining through the tweak input.

We don’t know if this construction is secure. With a strong additional prop-
erty on the tweakable block cipher, namely that for a fixed known key and fixed

EK EK

M

C

m-1

C || C'm

M || C'
m

m-1

X || C
m

Fig. 3. Ciphertext stealing for tweak block chaining handles messages whose length is
at least n bits long but not a multiple of n. Let r denote the length of the last (short)
block Mm of the message. Then |Cm| = |Mm| = r and |C ′| = n − r. Here X denotes
the rightmost n − r bits of Cm−2 (or of T0 if m = 2).

T0

M M M1 2 3

EK

M
m

HEK EK EK

Fig. 4. The tweak chain hash (TCH). Here T0 is a fixed initialization vector. A fixed
public key K is used in the tweakable block cipher. The message M is padded in some
fixed reversible manner, such as by appending a 1 and then enough 0’s to make the
length a multiple of n. The value H is the output of the hash function.

unknown tweak, we still get a pseudorandom permutation, we could adapt the
proof of the Davies-Meyer hash function. However, as we noted in section 2, this
is not the case for all tweakable block ciphers.2

4.3 Tweakable Authenticated Encryption (TAE)

In this section we suggest an authenticated mode of encryption (TAE) based on
the use of a tweakable block cipher. This mode can be viewed as a paraphrase
or restatement of the architecture of the OCB (offset codebook) mode proposed
by Rogaway et al. [12] to utilize tweakable block ciphers rather than DESX-like
modules. The result is shown in Figure 5. (The reader may need to consult the
OCB paper to follow the rather terse description given here.)

E

M

C

Z 1

1

1

K E

M

C

Z 2

2

2

K E

M

C

Zm-1

m-1

m-1

K

M
m

len

EKZm

Checksum

EZ 0 K

C
m

first τ bits τ

Tag

Fig. 5. Authenticated encryption based on a tweakable block cipher. This mode takes as
input an n/2-bit nonce N . The tweak Zi for i > 0 is defined as the concatenation of the
nonce N , an n/2−1-bit representation of the integer i, and a zero bit 0: Zi = N‖i‖0. The
tweak Z0 is defined as the concatentation of the nonce N , an n/2−1-bit representation
of the integer b, where b is the bit-length of the message M , and a one bit 1: Z0 = N‖b‖1.
The message M is divided into m − 1 blocks M1, . . . , Mm−1 of length n and one last
block Mm of length r for 0 < r ≤ n (except that if |M | = 0 then the last (and only)
block has length 0). Each ciphertext block Ci has same length as Mi. The function
len(Mm) produces an n-bit binary representation of the length r of the last message
block. The last message block Mm is padded with zeros if necessary to make it length
n before xoring. The checksum is (M1 ⊕ · · · ⊕ Mm−1 ⊕ (Mm‖0∗)). The parameter τ ,
0 ≤ τ ≤ n specifies the desired length of the authentication tag.

The OCB paper goes to considerable effort to analyze the probability that
various encryption blocks all have distinct inputs. We feel that an authenticated
encryption mode such as TAE should be much simpler to analyze, since the use
of tweaks obviate this concern.

2 One tweakable block cipher construction that does have this property is eEK(T, M) =
EK(ET (EK(M))), but this is not as desirable a construction as it is not easy to
change the tweak.

We will in fact give a fairly easy proof that a tweakable block cipher used in
TAE mode gives all the security properties claimed for OCB mode. Rogaway et
al claim that OCB mode is:

– Unforgeable. Any nonce-respecting3 adversary can forge a new valid encryp-
tion with probability at worst negligibly greater than 2−τ .

– Pseudorandom. To any nonce-respecting adversary, the output of OCB mode
is pseudorandom. In other words, no adversary can distinguish between an
OCB mode oracle and a random function oracle. [12]

We now prove that TAE mode satisfies these properties.

Theorem 3. If Ẽ is a secure tweakable block cipher, then Ẽ used in TAE mode
will be unforgeable and pseudorandom.

Proof. To prove that TAE mode is pseudorandom, we note that no tweak is ever
repeated when the adversary is nonce-respecting. Now, if an adversary A were
able to distinguish between a random function oracle and a TAE mode oracle,
then we could distinguish the tweakable block cipher Ẽ from Π̃ as follows. Given
an oracle O, we simply run A, and answer A’s oracle queries by simulating TAE
mode with O instead of Ẽ. Now, if O = Ẽ then we are in fact providing A with
a TAE mode oracle. However, if O = Π̃ we are providing a random oracle. To
see this, note that since no tweak is ever repeated, every part of every output is
an independent random value. Thus, if we just give the answer A gives, we are
correct whenever A is correct, and thus we defeat the security of Ẽ.

To prove that TAE mode is unforgeable, we do the same thing. Suppose some
adversary A can forge encryptions in TAE mode. We will break Ẽ as follows.
Given an oracle O we just run A and answer A’s oracle queries by simulating
TAE mode with O. When A gives an answer, we check to see if the answer is
a successful forgery. If it is, we guess that O = Ẽ and if not, we guess that
O = Π̃. Since A is a successful adversary, if O = Ẽ, it forges successfully with
probability nonnegligibly greater than 2−τ . We will now show that if O = Π̃
then A forges with probability at most 2−τ . Once we prove this we’ll be done,
since this reduction will be correct non-negligibly more often than it is incorrect.

Suppose now that O = Π̃. First we note that if A returns an answer with
a new nonce, then Z0 for the answer will be new and thus the correct answer
will be a totally random τ -bit string. In other words, A will be correct with
probability exactly 2−τ . Secondly, if A returns an answer with an old nonce,
then there are several cases. In the first case, all the ciphertext blocks are the
same ciphertext blocks that were returned when that nonce was used previously.
In this case, the forgery cannot possibly be correct since either it will be wrong or

3 By “nonce-respecting,” it is meant that while the adversary has oracle access and
control of the nonce, the adversary may never ask that a nonce be used more than
once; the idea is that any oracle a real adversary would have access to would still
not repeat nonces, even if manipulated in order to accept nonces from elsewhere.

it will not be new. In the second case, the message is a different length than the
message this nonce was queried with before. In this case, the forgery is correct
with probability 2−τ since Z0 will be different from before. In the final case, the
message is the same length but there is at least one new ciphertext block. Now,
the preimage of every block which is different is a random new value. Thus, the
checksum is a random value, so the input to the Π̃ that computes the tag is a
new value. Thus, with probability exactly 2−τ , the forgery is correct. Thus, the
probability that the forgery is correct is at most 2−τ , which concludes the proof.
2

It is interesting to note that the construction loses nothing in terms of its
advantage compared to the advantage of the tweakable block cipher! This is
somewhat remarkable, and helps to emphasize our main point that tweakable
block ciphers may be the most natural and useful construct for designing higher-
level modes of operation. What’s more, we note that if we use Ẽ from section
3.1, TAE mode is very similar to OCB mode. One critical difference is that
OCB mode (essentially) derives its choice of h from the key K whereas our
construction would require h to be additional key information. Also, OCB mode
uses a Gray code to fine-tune efficiency, which we do not. However, this proof
is significantly shorter and simpler than the proof for OCB mode, which further
strengthens our point that tweakable block ciphers are the right primitive for
this kind of task.

5 Conclusions and Open Problems

By introducing tweakable block ciphers, we have “re-partitioned” the design
problem into two (new) parts: designing good tweakable block ciphers, and de-
signing good modes of operation based on tweakable block ciphers. We feel that
this re-partitioning is likely to be more useful and fruitful than the usual struc-
ture, since certain issues (e.g. having to do with collisions, say) can be handled
once and for all at the lower level, and can then be ignored at the higher levels,
instead of having to be dealt with repeatedly at the higher levels.

We feel that the notions of a tweakable block cipher and tweakable modes of
operation (that is, modes of operation based on tweakable block ciphers) are
interesting and worthy of further study.

One advantage of this framework is the new division of issues between design
and analysis of the underlying primitive and the design and analysis of the
higher-level modes of operation. We feel that the new primitive may result in a
more fruitful partition.

Some interesting open problems are:

– What is the security of TAES (AES with our proposed “standard tweak”)?
– Design efficient and secure tweakable block ciphers directly.
– Improve the construction of Theorem 1 to achieve a tighter bound.
– Analyze the security of the tweak-block-chaining mode of encryption.
– Analyze the security of the tweak chain hash.

– Devise and analyze the security of other modes of operation based on tweak-
able block ciphers.

– Define, devise and analyze the security of tweakable stream ciphers.

Acknowledgments

We would like to thank Rogaway, Bellare, Black, and Krovetz for inspiring this
line of research with their proposed OCB mode and Mihir Bellare, Burt Kaliski,
Zulfikar Ramzan, and Matthew Robshaw for very helpful discussions. Moses
Liskov would like to acknowledge support from NTT grant #6762700.

References

1. Kazumaro Aoki and Helger Lipmaa. Fast implementations of AES candidates. In
Third AES Candidate Conference, April 2000.

2. D.J. Bernstein. Floating-point arithmetic and message authentication, March 2000.
3. Eli Biham. New types of cryptanalytic attacks using related keys.

Journal of Cryptology, 7(4):229–246, Fall 1994. Also available at:
citeseer.nj.nec.com/biham94new.html.

4. Eli Biham and Alex Biryukov. How to strengthen DES using existing hard-
ware. In Proceedings ASIACRYPT ’94, volume 917 of Lecture Notes in
Computer Science, pages 398–412. Springer-Verlag, 1994. Also available at:
citeseer.nj.nec.com/biham94how.html .

5. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.
UMAC: Fast and secure message authentication. In Proceedings CRYPTO ’99, vol-
ume 1666 of Lecture Notes in Computer Science, pages 216–233. Springer-Verlag,
1999.

6. Paul Crowley. Mercy: A fast large block cipher for disk sector encryption. In
Fast Software Encryption: 7th International Workshop, volume 1978 of Lecture
Notes in Computer Science, pages 49–63. Springer-Verlag, 2000. Also available at:
www.ciphergoth.org/crypto/mercy .

7. Joan Daemen. Limitations of the Even-Mansour construction. In Pro-
ceedings ASIACRYPT ’91, volume 739 of Lecture Notes in Computer Sci-
ence, pages 495–499. LNCS, Springer-Verlag, 1991. Also available at:
citeseer.nj.nec.com/daemen92limitation.html .

8. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseu-
dorandom permutation. Journal of Cryptology, 10(3):151–161, Summer 1997. Also
available at: citeseer.nj.nec.com/even91construction.html .

9. L. Granboulan, P. Nguyen, F. Noilhan, and S. Vaudenay. DFCv2. In Selected
Areas in Cryptography, volume 2012 of Lecture Notes in Computer Science, pages
57–71. Springer-Verlag, 2001.

10. Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive
search (an analysis of DESX). In Proceedings CRYPTO ’96, volume 1109
of Lecture Notes in Computer Science, pages 252–267. Springer, 1996. See
http://www.cs.ucdavis.edu/~rogaway/papers/desx.ps for an updated version.

11. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

12. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. A block-cipher mode
of operation for efficient authenticated encryption. In Eighth ACM Conference on
Computer and Communications Security (CCS-8), pages 196–205. ACM Press,
Aug 16 2001. See http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-doc.htm.

13. Bruce Schneier. Applied Cryptography, Second Edition: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, New York, 1996.

14. Rich Schroeppel. The hasty pudding cipher. Available at
http://www.cs.arizona.edu/~rcs/hpc/ ., 1999.

15. Victor Shoup. On fast and provably secure message authentication based on uni-
versal hashing. In Proceedings CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 313–328. Springer, 1996.

16. Serge Vaudenay. Provable security for block ciphers by decorrelation. In Pro-
ceedings STACS ’98, volume 1373 of Lecture Notes in Computer Science, pages
249–275. Springer-Verlag, 1998.

A Proof of Theorem 2

In this section, we give a proof of Theorem 2. First, though, we establish some
notation. We use Pr0[·] to represent the probability measure in the case where A

interacts with ẼK,h, where the probability is taken over the choice of K ∈ {0, 1}k

and h ∈ H uniformly and independently at random. Also, we let Pr1[·] denote

the measure where A interacts with Π̃. In either case, we write O for A’s oracle,
so in the former case O = ẼK , and in the latter case O = Π̃.

We let the random variable Ti denote the tweak input on A’s i-th oracle
call, and we let Mi and Ci denote the plaintext and ciphertext corresponding
to this call, so that O(Ti,Mi) = Ci. In other words, if A’s i-th oracle query is
an encryption query (to O), then (Ti,Mi) denotes the input and Ci the return
value, whereas if A’s i-th oracle query is a decryption query (to O−1), then
the input is (Ti, Ci) and the result of the query is Mi. Moreover, we define
the random variables Ni, Bi by Ni = Mi ⊕ h(Ti) and Bi = Ci ⊕ h(Ti). Note

that if O = ẼK , then EK(Ni) = Bi. We define the random variable τn by
τn = 〈(T1,M1, C1), . . . , (Tn,Mn, Cn)〉, and we use τ = τq to represent the full
transcript of interaction with the oracle.

We fix an adversary A, and we assume without loss of generality that A does
not make any repeated or redundant queries to its oracle. As a consequence of
this assumption, the pairs (Ti,Mi) are all distinct, or in other words, for all
i 6= j, we have (Ti,Mi) 6= (Tj ,Mj). Similarly, the pairs (Ti, Ci) are also distinct,
as are the (Ti, Ni)’s and the (Ti, Bi)’s. Also, the output of A can be viewed as a
function of the transcript τ , so we sometimes write the output of A as A(τ).

Our proof is separated into two parts. In the information-theoretic part,
we let EK = Π denote a permutation chosen uniformly at random, we set
Ẽ′(T,M) = Π(M ⊕ h(T)) ⊕ h(T), and we show that Ẽ′ is a secure tweakable
block cipher. Then, in the computational part, we let E be arbitrary, and we
show that if EK and Π are computationally indistinguishable, then Ẽ will also
be a secure tweakable block cipher.

The information-theoretic part of the proof uses the following strategy. We
define a bad event Bad. We show that when conditioning on the complement
event, the probability measures Pr0[·|Bad] and Pr1[·|Bad] are in fact identical.
Then, we show that Pr0[Bad] and Pr1[Bad] are both small. The result will then
follow using standard arguments.

In our arguments, we define Badn to be the event that, for some 1 ≤ i < j ≤
n, either Ni = Nj or Bi = Bj . Also, we let Bad = Badq.

Lemma 1. For every possible transcript t, if EK = Π, then Pr0[τ = t|Bad] =
Pr1[τ = t|Bad].

Proof. We show this by induction on the length of the transcript, q. Consider
the q-th oracle query: it is either an encryption or a decryption query. Suppose
first that the q-th oracle query is an encryption query, with inputs (Tq,Mq).
By the inductive hypothesis, we can assume that the distribution of τq−1 is the
same for both the Pr0[·|Badq−1] and Pr1[·|Badq−1] probability measures, hence
the same is true of the distribution of (τq−1, Tq,Mq).

Now fix any h such that Nq /∈ {N1, . . . , Nq−1}, so that the only remaining

random choice is over Π or Π̃. When O = Π̃, Cq = Π̃(Tq,Mq) is uniformly
distributed on the set S = {0, 1}n \ {Ci : Ti = Tq and 1 ≤ i < q}, if we

condition on Badq−1 (but before conditioning on Badq). When O = Ẽ′, we
find something slightly different: Bq = Π(Nq) is uniformly distributed on the
set {0, 1}n \ {B1, . . . , Bq−1} (conditioned on Badq−1, but before conditioning
on Badq), hence Cq = Bq ⊕ h(Tq) is uniformly distributed on the set S ′ =
{0, 1}n \ {Ci ⊕ h(Ti) ⊕ h(Tq) : i = 1, . . . , q − 1}. In both cases, the probabilities
are independent of the choice of h. Also, note that S ′ ⊆ S, since when Ti = Tq

we have Ci ⊕h(Ti)⊕h(Tq) = Ci. Adding the condition Badq amounts to adding
the condition that Bq ∈ {0, 1}n \ {B1, . . . , Bq−1}, i.e., that Cq ∈ S′. Thus,
after conditioning on Badq, we see that Cq is uniformly distributed on S ′ and
independent of the rest of the transcript, and hence the distribution of τ is the
same for both the Pr0[·|Badq] and Pr1[·|Badq] probability measures. (Here we
have used the following simple fact: if the random variable X is uniform on a
set S, and if S′ is some subset of S, then after conditioning on the event X ∈ S ′

we find that the resulting r.v. is uniform on S ′.)
This covers the case where the q-th query is a chosen-plaintext query. The

other case, where the q-th query is a chosen-ciphertext query, is treated similarly.
This concludes the proof of Lemma 1.

Lemma 2. If H is ε-AXU2, then Pr1[Badq] ≤ εq(q − 1).

Proof. Note that, when O = Π̃, h is independent of the transcript τ . Hence, we
can defer the choice of h until after A completes all q of its queries and the val-
ues of Ti,Mi, Ci are fixed. Then, we find Pr 1[Badq] = Prh[∃i, j.Ni = Nj ∨ Bi =
Bj](by the definition of Badq) ≤

∑
1≤i<j≤q Prh[Ni = Nj] + Prh[Bi = Bj](by a

union bound) =
∑

1≤i<j≤q Prh[h(Ti) ⊕ h(Tj) = Mi ⊕ Mj] Prh[h(Ti) ⊕ h(Tj) =
Ci ⊕ Cj](by the definition of Ni, Bi) ≤

∑
1≤i<j≤q 2ε = εq(q − 1).(since H is

ε-AXU2)

Lemma 3. If H is ε-AXU2 for ε ≥ 1/2n, and if EK = Π, then Pr0[Badq] ≤
1.5εq(q − 1).

Proof. We will prove Pr0[Badq] ≤ 1.5εq(q − 1) by induction on q. Let E de-
note that event that, for some i, we have Ni = Nq, and let E

′ denote the
event that, for some i, we have Bi = Bq. Note that Pr0[Badq] = Pr0[Badq−1] +
Pr0[Badq|Badq−1] Pr0[Badq−1]. By the inductive hypothesis, Pr0[Badq−1] ≤
1.5ε(q−1)(q−2). Also, Pr0[Badq−1] ≤ 1. Hence all that remains is to bound the
term Pr0[Badq|Badq−1].

Applying a union bound shows Pr0[Badq|Badq−1] ≤ Pr0[E|Badq−1] + Pr0[E
′

|E ∧ Badq−1]. We next bound each of these two terms in turn. By Lemma 1,
and since H is ε-AXU2, we see Pr0[E|Badq−1] = Pr1[E|Badq−1] ≤ ε(q − 1).
Moreover, Pr0[E

′|E ∧ Badq−1] = Pr0[Π(Nq) ∈ {B1, . . . , Bq−1}|E ∧ Badq−1] ≤
(q − 1)/(2n − q + 1) ≤ 2(q − 1)/2n ≤ 2ε(q − 1), since Π(Nq) is uniformly
distributed on a set of size at least 2n − q + 1 and since ε ≥ 1/2n. Finally,
1.5ε(q − 1)(q − 2) + ε(q − 1) + 2ε(q − 1) ≤ 1.5εq(q − 1). The statement of the
lemma now follows.

We are now ready to prove the security theorem.

Proof (of Theorem 2). First, we do a simple calculation:

Sec′fE′
(q, t) = max

A
|Pr 0[A(τ) = 1] − Pr 1[A(τ) = 1]| (by definition)

= max
A

|Pr 0[A(τ) = 1|Bad] Pr 0[Bad] + Pr 0[A(τ) = 1|Bad] Pr 0[Bad]

− Pr 1[A(τ) = 1|Bad] Pr 1[Bad] − Pr 1[A(τ) = 1|Bad] Pr 1[Bad]|
(by conditional probabilities)

≤ max
A

|Pr 0[A(τ) = 1|Bad] Pr 0[Bad] − Pr 1[A(τ) = 1|Bad] Pr 1[Bad]|

+ |Pr 0[A(τ) = 1|Bad] Pr 0[Bad] − Pr 1[A(τ) = 1|Bad] Pr 1[Bad]|
(by the triangle inequality)

≤ max
A

|Pr 0[A(τ) = 1|Bad] Pr 0[Bad] − Pr 1[A(τ) = 1|Bad] Pr 1[Bad]|

+ 1.5εq(q − 1) (since Pr[Bad] ≤ 1.5εq(q − 1))

≤ max
A

Pr[A(τ) = 1|Bad] · |Pr 0[Bad] − Pr 1[Bad]| + 1.5εq(q − 1)

(by Lemma 1)

≤ 3εq(q − 1) (since 1 − 1.5εq(q − 1) ≤ Pr[Bad] ≤ 1)

The result then follows from the triangle inequality: Sec′eE(q, t) =

maxA |Pr 0[A
eEK , eE−1

K = 1] − Pr 1[A
eΠ, eΠ−1

= 1]| ≤ maxA |Pr 0[A
eEK , eE−1

K = 1] −

Pr 0[A
fE′

K ,fE′
−1

K = 1]| +|Pr 0[A
fE′

K ,fE′
−1

K = 1] − Pr 1[A
eΠ, eΠ−1

= 1]| ≤ Sec′E(q, t) +
Sec′fE′

(q, t) ≤ Sec′E(q, t) + 3εq(q − 1).

