An Efficient Off-line Electronic Cash System Based On The
Representation Problem

Stefan Brands

Computer Science/Department of Algorithmics and Architecture

CS-R9323 1993

An Efficient Off-line Electronic Cash System Based On The Representation
Problem

Stefan Brands

CwWI
P.O. Boz 4079, 1009 AB Amsterdam
The Netherlands
e-mazil: brands@cwi.nl

Abstract

We present a new off-line electronic cash system based on a problem, called the representation problem, of
which little use has been made in literature thus far. Qur system is the first to be based entirely on discrete
logarithms. Using the representation problem as a basic concept, some techniques are introduced that enable
us to construct protocols for withdrawal and payment that do not use the cut and choose methodology of earlier
systems. As a consequence, our cash system is much more efficient in both computation and communication

complexity than previously proposed systems.

Another important aspect of our system concerns its provability. Contrary to previously proposed systems,
its correctness can be mathematically proven to a very great extent. Specifically, if we make one plausible
assumption concerning a single hash-function, the ability to break the system seems to imply that one can

break the Diffie-Hellman problem.

Our system offers a number of extensions that are hard to achieve in previously known systems. In our opinion
the most interesting of these is that the entire cash system (including all the extensions) can be incorporated
straightforwardly in a setting based on wallets with observers, which has the important advantage that double-
spending can be prevented in the first place, rather than detecting the identity of a double-spender after the
fact. In particular, it can be incorporated even under the most stringent requirements conceivable about the
privacy of the user, which seems to be impossible to do with previously proposed systems. Another benefit of
our system is that framing attempts by a bank have negligible probability of success (independent of computing
power) by a simple mechanism from within the system, which is something that previous solutions lack entirely.
Furthermore, the basic cash system can be extended to checks, multi-show cash and divisibility, while retaining

its computational efficiency.

Although in this paper we only make use of the representation problem in groups of prime order, similar
intractable problems hold in RSA-groups (with computational equivalence to factoring and computing RSA-
roots). We discuss how one can use these problems to construct an efficient cash system with security related

to factoring or computation of RSA-roots, in an analogous way to the discrete log based system.

Finally, we discuss a decision problem (the decision variant of the Diffie-Hellman problem) that is strongly
related to undeniable signatures, which to our knowledge has never been stated in literature and of which we
do not know whether it isin BPP. A proof of its status would be of interest to discrete log based cryptography
in general. Using the representation problem, we show in the appendix how to batch the confirmation protocol

of undeniable signatures such that polynomially many undeniable signatures can be verified in four moves.

AMS Subject Classification (1991): 94A60
CR Subject Classification (1991): D.4.6
Keywords and Phrases: Cryptography, Electronic Cash, Representation Problem

1 INTRODUCTION

Over the past years, quite some cryptographic research effort has been put in the design of
off-line electronic cash systems that can not only guarantee security for the bank (and shops),
but also absolute privacy for the users. As in many areas of cryptography, it is of interest to
have alternatives based on various underlying assumptions instead of placing all bets on one
horse. The system we present here is the first to be based on a problem (the representation
problem) equivalent in computational difficulty to computing discrete logarithms rather than
RSA-roots. The ability to factor does not affect the security of our system.

The main design goals for our cash system were to construct a system which is much more
efficient than previously proposed solutions, has a high degree of provability and extendibility,
and can be incorporated into a setting based on so-called wallets with observers under even
the most stringent of privacy requirements. We achieve these goals by representing an elec-
tronic coin (or check) as a commitment on a bunch of numbers that is unconditionally secure
for the committer. During its life-cycle, partial information about the numbers committed
to is gradually released in the form of points and lines (polynomials in general). For this
commitment, we use the so-called representation problem in groups of prime order. Simi-
lar problems hold in in RSA-groups, and almost all the tools and protocols we develop for
groups of prime order can be straightforwardly adapted to hold for RSA-groups, except for
the withdrawal protocol.

We feel it makes no sense to discuss the features of our cash system before we have given an
overview of the standard cryptographic model for off-line electronic cash systems that can
guarantee anonymity (introduced by [8]), together with a discussion of what has, and has
not, been achieved in this field. We therefore in Section 2 first give a general, rather detailed
discussion of off-line electronic cash systems. In Section 3, we sketch the contributions of this
paper, especially focusing on provability and efficiency.

Before developing the tools for our system, we discuss the environment we work in, and
the basic assumptions underlying our system in Section 4. We then come, in Section 5, to
the representation problem, which is at the hart of our cash system. Along with some other
fundamental properties, we prove the computational equivalence of the representation problem
in groups of prime order to that of computing discrete logarithms in such groups. In Section 6
we discuss the known vector addition chain techniques to efficiently compute with the basic
structure of the representation problem, as well as a simple new algorithm. The applicability
of such techniques is an important reason why extensions of our system (such as checks) remain
computationally efficient. In Section 7, we have listed the scarce cryptographic literature we
are aware of that in some way or another makes use of the representation problem. Then, in
Sections 8, 9, and 10, we discuss the basic tools we use for our cash system, and derive various
propositions. These include proving knowledge of a representation, a so-called restrictive blind
signature protocol, and ways to release partial knowledge of a representation.

This prepares us for Section 11, in which we explain our basic cash system and show specific
protocols for withdrawal, payment and deposit. Following this is a discussion of the correct-
ness (privacy and security) of our basic cash system. Although we cannot completely prove
the correctness in a mathematically rigorous way (for reasons discussed in Section 3), the
proof in our opinion comes very close. In Section 13, the extension of our system to one that
includes electronic checks is discussed. The extension to divisibility is outlined in Section 14.
Since transferability can be achieved in our system using the standard technique described

in [1, 14], we skip a description of this extension. In Section 15 we analyze the efficiency
of our system (including the extensions), and compare it to the efficiency of other systems
appearing in literature.

Then, in Section 16, we discuss how to incorporate our entire cash system straightforwardly
into a setting in which users have wallets with embedded observers (instead of user-modules
only), even under the most stringent of requirements concerning privacy. This is followed in
section 17 by a discussion of how to use several variations of the representation problem in
RSA-groups for off-line electronic cash systems (including checks and wallets with observers).
Almost all the tools and protocols we use for our discrete log based cash system can be
adapted fairly easy to hold for the RSA representation problems, except for (unfortunately)
the withdrawal protocol. We end this paper sketching some possible future directions and
some open problems in Section 18. This section includes a discussion of a decision problem
that to the best of our knowledge has never been stated in literature. We believe that a proof
of its status is of interest not only to digital signature schemes (and hence blind signature
schemes) based on discrete logarithms, but also to discrete log based cryptography in general.

2 OFF-LINE ELECTRONIC CASH SYSTEMS

It is often believed that electronic cash systems cannot simultaneously offer privacy for the
users as well as security for the bank(s) (and shops). Many of the systems that are nowadays
in use completely lack anonymity of users, and in addition are on-line in order for shops
to be able to check the credibility of payers. With the advent of public-key cryptography,
techniques have been developed that show that this belief is unjustified. These techniques,
initialized by [8], allow the construction of off-line (!) electronic cash systems that are secure
(albeit under certain intractability assumptions) for the bank, yet at the same time honest
users of the system are guaranteed to remain completely anonymous. This holds in a very
strong sense: the security of banks is not compromised even if all users and shops collaborate
in such an attempt, and the privacy of honest users cannot be violated in any cryptanalytic
way even under adversarial behaviour of the bank in coalition with all the shops. The fact
that such systems can be off-line reduces a lot of the overhead, expenses and inflexibility of
on-line cash systems.

2.1 The cryptographic model for off-line electronic cash

A model for off-line electronic cash that encompasses both the security and the privacy was
introduced in [8], and a system was proposed that seems to fit the model (although the nature
of the system is such that very little can be proven about this). Since then quite some other
systems have been proposed using basically the same ideas (see [1, 7, 8, 22, 23, 29, 30, 35]).
In that sense, our system is no exception.

In the model of [8], there are three distinct types of participant: a set of users {U1,..., U}, a
set of shops {S1,...,S;} and a bank B. For reasons related to mathematical rigor, k and [have
to be polynomial in the length of the security parameters of the system. Throughout the sys-
tem, users, shops and the bank correspond to (probabilistic) algorithms with polynomial-time
computing power. In a realistic implementation of such a system, users will be represented by
a user-module (which can be thought of as a smart-card, or perhaps even a personal computer
or workstation), and so one should think of ¢ being the user-module. The user-module is

also called a wallet since it actually carries money, albeit in digital form rather than physical.
Likewise, B and each shop & in a realistic situation would actually be represented by some
(more powerful) computing devices.

When a user U in the withdrawal phase contacts B to obtain information that is worth some
fixed amount of money (called a coin), the latter subtracts the appropriate amount from U’s
account at this very moment. When U wishes to pay later at a shop S (payment phase),
he reveals the information to S, which verifies that this information is indeed worth the
appropriate amount of money. Since the system is off-line, only after some some period of
time (e.g. at the end of the week) does S send all the information it gathered to B (deposit
phase). B also verifies that the information is valid and, if so, deposits the appropriate amount
of money on the account of S.

The privacy requirement for the users is that payments made by users should not be linkable
(informally, linkability means that the a posteriori probability of matching is nonnegligibly
greater than the a priori probability) to withdrawals, even when banks cooperate with all the
shops (untraceability). Untraceability guarantees that users remain anonymous, since their
identity is only linked to withdrawals. For this, it is necessary and sufficient that the informa-
tion that I/ in the payment protocol reveals to S is statistically independent of the information
that he gets from B during the withdrawal protocol. Since the withdrawn information in some
way has to be digitally signed with a secret key of B, at the withdrawal phase a suitable blind
signature protocol (see [11]) must be used. Usually the bank sets the security parameters,
and users have no influence over this, so it is customary in cryptographic literature to assume
that the bank and the shops have unbounded computing power when trying to compromise
privacy of the users. Often an even stronger requirement than untraceability is made, called
unlinkability. Unlinkability means that it is impossible for the bank (again colluding with the
shops and having infinite computing power) to link at least two payments made by the same
user. The ability to link payments that belong to the same user also is a threat to the privacy
of the user (although not a purely cryptographic one, since the entire chain of payments is
still unlinkable to a withdrawal by the untraceability property), since if the user would be
identified in one payment (e.g., because the shopkeeper knows him), all the payments in the
chain are recognized as having been made by him (so the only situation in which this really
does not matter is when all these payments are made in the same transaction). Note that the
privacy requirement implies that wallets should be freely obtainable anywhere, in fact users
should be allowed to make their wallets themselves, since wallets that are not under control
of the user can leak information concerning the user’s identity at payment time.

The security for the bank consists of users not being able to forge cash, and there must be
some way to prevent users from spending the same cash more than once (double-spending).
Double-spending is clearly a major concern in off-line electronic cash systems with user-
controlled wallets, since digital information is easy to copy. Contrary to on-line systems,
where the deposit is immediately performed at the time of payment, in an off-line system
there is no way to prevent double-spending at the time of payment by purely cryptographic
means. [t seems that one must necessarily resort to tamper-resistant wallets, thus getting
in conflict with the privacy requirement. However, one can resolve this problem by using a
cryptographic technique that allows the bank to catch double-spenders after the fact. This
technique consists of encoding the withdrawer’s identity in some way in the information he
obtains during the withdrawal phase. In the payment phase, the user then has to reveal some
partial information (depending on a challenge of the shop) such that when double-spending

is detected at deposit phase, the identity of the user can be computed efficiently from the two
(different) pieces of partial information. However, by the privacy requirements, when the users
are honest their privacy should be unconditional, i.e. the identity should not be extractable
from one such piece. Observe that this implies that the payment protocol necessarily has to
be of the challenge-response type. Furthermore, from a practical point of view it implies that
this model for off-line cash is not suitable for high-value payments, because a double-spender
can for example leave the country after double-spending (and before deposit). High-value
payments would therefore typically be made on-line.

The technique to catch double-spenders after the fact introduces another way for banks to
compromise users, which is unrelated with their privacy. Namely, the bank can try to falsely
accuse a user of having double-spent the same information. This is called a framing attempt
of the bank. Therefore, there must also be a way for honest users to prove their innocence
before a judge.

If one can come up with an efficient system that provably satisfies all the requirements of
this model, it seems that one would have an almost ideal off-line cash system. However,
there is one drawback. The term double-spending actually refers to spending the same piece
of information more than once (not merely twice). Even if the system is used for low-value
payments only (say up to 50 dollars), the fact that double-spending will be detected only
afterwards implies that a user can spend the same $50 worth of information many times and
still be able to illegitimately make a large profit (say, the same as could be achieved in a
high-value payment when spending the same information twice) before being identified.

2.2 FElectronic cash systems using wallets with observers

Recently, in [15], a new kind of transaction setting was proposed which, when used for off-line
electronic cash purposes, can prevent double-spending, rather than detect it after the fact.
That is, this setting can offer all the benefits concerning privacy and security we discussed,
and yet does not suffer from the double-spending problem. It seems intuitively clear that this
setting therefore cannot be based on user-controlled wallets only, and this is true indeed. The
new setting uses wallets that have so-called observers embedded within them. An observer
is a small tamper-resistant device that represents the organizations in the system (the bank,
in the off-line cash model). By way of convention, we will call the wallet the ensemble of
user-module and observer.

The idea of having an observer is that it can be incorporated in the wallet in such a way
that no user-module can do a transaction on its own: in order for any transaction protocol
to be executed by the wallet, it needs help (secret information) from the observer. In effect,
the observer authorizes the transaction. For the double-spending problem this would simply
mean that the observer takes part in the payment protocol, and would register information
that is used in a payment. When a user wants to spend the same information a second time,
the observer simply does not authorize the transaction. In order to be able to double-spend,
users therefore are faced with the problem of having to break the tamper-resistance of the
observer: the user can then find out the secret information of the observer, and have the
user-module simulate the part of the observer in the payment protocol. A secure off-line cash
system must therefore definitely be such that even in that case the same security as achievable
in the setting with user-modules only is guaranteed, i.e., the double-spender is identified after
the fact. Not minding about additional properties for the moment, an efficient system which

provably accomplishes all this in our opinion can be qualified as being close to the ideal off-line
electronic cash system.

So far, so good. However, it seems that we have actually arrived at an impasse: how is the
privacy of the users to be guaranteed if they carry a tamper-resistant module with them which
takes part in all the protocols, and has to inform e.g. the shop whether a certain action of the
user is legitimate? It seems that the observer can always be programmed (by an adversarial
provider) such that it can leak information related to the identity of its accompanying user-
module, and hence the person to whom the wallet belongs. If users would recognize such
an attempt, it would not be much of a problem since they would complain about it (and
the system would be stopped). However, any unnoticeable information that flows from the
observer to e.g. the shop (or vice versa) that is not specified by the protocol can greatly
compromise the user’s privacy, in fact to such an extent that there is no benefit over using
a system with tamper-resistant user-modules (i.e., no privacy guarantee) in the first place.
An example of such information is a random challenge that the shop sends to the wallet: if
the observer gets to know it, the shop can encode compromising information in it (using an
encoding recognizable by the observers) without the user being aware of it (inflow). Vice
versa, the observer could try to secretely encode the identity of its owner into the information
sent to e.g. the shop (outflow), which usually will be an even more serious threat to the
privacy of the user.

It may be somewhat of a revelation that there is no impasse at all (see [15]). As a necessary
(but not sufficient) requirement, the observer must thereto obviously be incorporated in the
user-module in such a way that any message it sends to the outside world has to pass through
the user-module, thereby enabling the user-module to verify (and moderate) these messages.
In this way, the user-module can recognize attempts of the observer to leak information
(outflow), and vice versa. However, it should not be able to moderate to such an extent
that it can authorize transactions by itself. Using special cryptographic protocols, all the
requirements concerning security can be satisfied, as well as those related to privacy. In
particular, protocols can be constructed such that there is no (undetectable by the user-
module) inflow or outflow. This implies for example that all random numbers chosen in the
protocol by the observer or the outside party (i.c. the shop) are moderated by the user-module
before they are sent through.

In [17] the privacy aspect of the wallet setting has been investigated under the most stringent
requirement one can think of: even if each observer were to store all information it receives
during the period it is embedded within a user module, it still should be impossible (indepen-
dent of computing resources) to match a user module and an observer afterwards by looking
at the information inside the observers and all information gathered by the organizations (this
could be called traceability after the fact, since once e.g. the bank can do so, all the payments
made with the wallet can be traced). This possibility is not excluded by preventing inflow
and inflow, since for example a single random number known to both an observer and a shop
would enable linking: the fact that the user-module took part in generating it (so that no
information could be encoded within it, thus preventing both inflow and outflow) is irrelevant
for this. Such mutually known information which enables linking is called shared information,
and it comprises both inflow and outflow. One of the essential techniques needed to prevent
shared information is that of divertability of protocols (see [31]). For further information
about the cryptographic techniques used to prevent inflow, outflow and, if desirable, shared
information while retaining security, we refer the reader to [3, 4, 12, 15, 17].

We note that prevention of shared information may in reality not always be that important
an issue, since, in contrast to inflow and outflow, shared information cannot affect the privacy
of the user during the time it is with the user. It is only when observers must systematically
be handed in to the provider for some reason, that information about the payment history
of their owners can be extracted if there is shared information. In an electronic cash system
this is quite realistic to assume, and therefore in our opinion it is of interest to have electronic
cash systems using wallets with observers that satisfy even the requirement of no shared
information. In any case, one can consider the ease with which an off-line electronic cash
system can be incorporated into the wallet setting with observers under the condition of no
shared information to be a testcase for the flexibility of the cash system under consideration.

2.8 Towards provably correct and efficient systems

Summarizing the discussion in the previous subsections, it seems that cryptographic tech-
niques are available that enable the construction of off-line electronic cash systems that can
guarantee privacy and security at the same time. If one is content with detecting double-
spending after the fact, it can be realized using wallets which are totally under control of the
users (i.e. no observers). When double-spending is to be prevented in the first place, it can
be realized in a setting in which users have wallets with embedded observers.

However, the first mathematical proof of correctness of the existing cash systems has yet to be
given. In fact, all cash systems in literature have in common that they use such complicated
constructions that almost nothing has been proven about their correctness, and intuitive
arguments are given instead. Moreover, the entire discussion so far has not been concerned
with efficiency considerations at all. Therefore, from a practical point of view, it remains to
construct a system which is really efficient, and of which we can mathematically prove that all
the requirements are met (correctness). With hardware technology having rapidly progressed
over the past decade, systems that would be efficient from a complexity-theoretic viewpoint
(i.e., small degrees of polynomials in computation-time estimates, protocols with only a few
moves and consisting of a few numbers only) could be implemented with current hardware
(e.g., in smart-cards) in a way that satisfies all the speed and storage requirements usually
imposed.

Concerning the mathematical provability of correctness, one can argue that this is perhaps
the most important issue to be resolved. Unfortunately, the issue of P versus NP is likely
to remain unresolved for a long time to go, and hence the best one can actually do is to
reduce certain well-known intractable problems (such as factoring and extracting discrete
logarithms) to the security of the system. However, the current state of cryptographic proof
techniques is that no mathematical framework is known to derive such a reduction in for
complex cryptographic systems (i.e. systems consisting of more than one protocol, like off-
line electronic cash systems).

2.4 Additional properties

Additional properties that one may impose on an ideal off-line electronic cash system are
transferability and divisibility of electronic cash, and electronic checks. Transferability means
that both shops and users can act as payers and payees, and can pay with money they receive
to other participants in the system without intervention of the bank. A generic method to

add transferability to essentially any off-line electronic cash system (including ours) can be
found in [1, 14]. There are some drawbacks of transferability, the most important of them
being that information-theoretically it can be proven that, during transfer, electronic cash
grows in size (see [14]).

Divisibility (as achieved in [30]) means that electronic cash can be split into pieces in an
arbitrary way, summing up to the total amount of the withdrawn information, such that
each piece can be spent individually. This also seems to have various drawbacks related
to privacy and especially efficiency, although in contrast to transferability no information-
theoretic results like that of [14] are known. A particular problem with divisibility is that it
seems very difficult to achieve without introducing (full) linkability of the payments.

Electronic checks can be spent for any amount up to a certain maximum, thereby reducing
the deposit workload since payers need not pay a certain amount with several coins (each of
which during deposit phase is accompanied by a challenge and response), but can pay with a
single check. During withdrawal of the check, the user is charged for the maximum amount,
and he can get a refund of the unspent part later on. For this, an extra protocol (refund
protocol) is needed in the model.

Using user-controlled modules only, each of these three additional properties has its own
drawbacks. However, in many practical situations there is no need at all for transferability, and
in fact it would probably even be rather awkward since transferred money grows. The same
holds to some extent for divisibility, unless it can be achieved efficiently without linkability.
In contrast, one may really want to use checks in a system, which in our opinion is the
only additional property which has a fair chance of being efficiently realizable without the
drawbacks. In a system with a really efficient payment protocol (from the viewpoint of
storage and amount of computation needed to verify the validity of a coin) there is probably
no advantage at all in having electronic checks, since the deposit phase will not be that less
ineflicient, whereas on the positive side there is no need for a refund protocol. If the payment
is not that efficient, it seems best to have a cash system in which one can pay with checks
as well as with coins. Paying certain amounts with a check can then be more efficient if the
amount to be paid would require many coins, and vice versa it makes no sense to pay with a
check an amount of money that can be paid with just a few coins.

Contrary to the setting with user-controlled modules only, in the setting based on wallets with
observers it is conceivable that all the additional properties can be realized efficiently without
most of the drawbacks, since one can have the observer handle certain problems which are
hard to solve in the setting with user-modules only. Basically, there are two possible ways to
go in achieving the additional (but also the basic) properties in the observer setting. The first
is to transplant a (seemingly) correct system designed for a setting without observers, into one
with observers. If one is not concerned about prevention of shared information, this can often
be done straightforwardly. In case shared information must also be prevented, this becomes
a much more difficult thing to do, since in essence it depends on whether the protocols of the
system that is to be transplanted can be diverted. The other way is to make use of unique
possibilities of the three-party wallet-with-observer setting. For example, although we can
transplant our check system over into the observer setting, checks in this setting can probably
be achieved more efficiently by having the observer take care of the amount the user should
get refunded. At the point of writing of this paper, the second way to deal with off-line cash
in wallets with observers is almost unexploited.

3 FEATURES OF OUR CASH SYSTEM

In this section we sketch the contribution of this paper to off-line electronic cash systems.
With the discussion of the previous section in mind, a categorization can be made into several
categories:

(Efficiency) Our system is much more efficient in communication complexity (both in the
withdrawal and the payment phase) and computation complexity than previously pro-
posed solutions. In particular, the withdrawal and payment protocols both consist of
only three moves, and the deposit protocol requires one move. Using the standard tech-
nique of having the challenge of the shop be a one-way function of certain information,
we can condense the payment protocol to a single move. All previously proposed so-
lutions use binary challenge-response protocols in the withdrawal phase (to ensure the
user’s identity will be in the signed information he receives) and in the payment phase
(to ensure that he will be caught when double-spending), and therefore need polynomi-
ally many repetitions (often done in parallel) to achieve the desired degree of security.
In our check extension, the withdrawal protocol consists of four moves, the payment
and refund of three moves, and the deposit of one. For the payment and the refund,
the same remarks hold concerning the challenge as above. Since vector addition chain
techniques can be applied, even the verification relations are much more efficient to
compute than those of previous systems.

(Provability) We can prove the correctness of our cash system to a very high degree, which
in our view is the main problem with earlier systems ([1, 7, 8, 22, 23, 29, 30, 35]).
Specifically, the security of our system seems to be equivalent to some well-known hard
problem (the Diffie-Hellman assumption), under only a single assumption concerning an
unspecified hash-function that is likely to be weaker than the Diffie-Hellman assumption.

(Extendibility) Our basic cash system can be extended in a number of ways quite easily,
while retaining its efficiency. For example, users can be allowed to spend their coins
k times (k-show signatures) instead of only once (one-show signatures), in such a way
that £ 4+ 1 spendings reveal the identity of the user, whereas up to k spendings still
hide it unconditionally. Although all these k payments are linkable, the entire chain of
k payments is still unconditionally unlinkable to a specific user. This extension does
not affect the number of rounds of the protocols, and causes only a linear increase in
the length of the transmitted information and (due to vector addition chain techniques)
computation complexity.

Another way to extend our system is the use of checks. We construct a check system
that is quite efficient, and of which our basic system with coins only is in fact just a
special case. Checks with different maximum values can be used.

In a similar approach, the divisibility property can be achieved in our system. Except
for the system of [30], all systems in literature lack this extension. Like with the coins,
it can even be arranged that the user can spend the check in this way multiple times,
without his identity getting known. We remark that all k-show extensions as well as
the extension to divisible cash have the drawback of full linkability of payments, and
therefore maybe are only useful in environments where users can easily make decisions
with respect to how their own privacy is to be protected: in case a user then is worried

10

about linkability of certain transactions, he can decide to spend other information in
certain transactions than e.g. the unspent part of a check which has been paid with
before.

Since transferability can be added to our cash system with the standard technique de-
scribed in [1, 14], it therefore meets all the requirements of [30]. Moreover, there is
another extension that in our opinion is quite of interest, which is that our system (in-
cluding all the extensions) can straightforwardly be incorporated into a setting based
on wallets with observers (see e.g. [12, 15]), thereby increasing security even more: in
order to double-spend, users in addition to the cryptographic assumptions also have
to break a tamper-resistant device (i.e. we have security in a very strong sense). Due
to the representation problem, most of our protocols can easily be diverted (see [31]).
As a consequence, the entire cash system can be incorporated in the wallet setting
fairly straightforward even under the strong privacy requirement that no shared infor-
mation arise. In contrast, previously proposed electronic cash systems are very hard to
incorporate into the wallet setting under this requirement.

(Functionality) Our system offers some extra functionality. For example, framing attempts
of the bank (given unlimited computing power throughout the entire system when trying
to compromise users) are prevented by a mechanism from within the system: users
will be able to prove that they are falsely being accused of e.g. double-spending. In
previous systems, the identifying information of users is always completely known to the
bank, hence in order to prevent framing these systems have to apply some less elegant
techniques. In our system, the identifying information of users consists of a secret part
which cannot be computed by the bank, regardless of computing power.

(Analogues in other groups) Almost all previously proposed cash systems make use of
special tricks that are hard to adapt to other groups. In contrast, our system uses
many tools which can easily be adapted to hold for RSA-groups (i.e. multiplicative
groups modulo the products of two primes) as well, due to the representation problem.
More specifically, there are a few variations with computational difficulty equivalent to
factoring or computing RSA-roots (see Section 17). In fact, the only tool that we do
not know how to adapt for RSA-groups is the blind signature scheme, which is needed
for the withdrawal protocol. We state this as an open problem in Section 18.

Despite these nice features, there are still several parts of our system that could be improved.
It may well be that a more efficient restrictive blind signature scheme exists from the point
of view of storage space, since in our cash system one signature of the bank consists of four
numbers. In Section 18 we discuss one of the problems in coming up with a more efficient
signature scheme. The blind signature scheme is also the reason that the computational
effort needed to break the system is no greater than that needed to break the Diffie-Hellman
problem. It would of course be nicer to have the security equivalent to the Discrete Log
problem.

3.1 A brief discussion of the techniques that we use in our cash system

The electronic cash systems that have been proposed in literature thus far share the fact
that, presuming that they are indeed secure, it is hard to prove anything about this (i.e.,

11

come up with reductions). With this, we are not aiming at a rigorous mathematical proof
of correctness, since, as we earlier remarked, as yet a mathematical framework for this is not
available. Instead, we mean the kind of partial proofs of security that have become common-
place in cryptography, and which go a long way towards such a rigorous proof. One of the
main problems in coming up with formal proofs of security of complex cryptographic systems,
such as off-line electronic cash systems, is that it seems hard to prove that the composition
of minimum-knowledge protocols is minimum-knowledge. Although such a general result is
known for (auxiliary input) zero-knowledge protocols, signature schemes can by definition not
be derived from zero-knowledge protocols. That is, the requirements impose that we cannot
resort to these composition theorems when proving correctness of electronic cash systems.

Currently, the best one can do is to try to get as close as possible to a proof of correctness.
However, with the previously proposed systems, even this turns out to be very difficult. Al-
though this is often thought to be an inherent aspect of designing electronic cash systems (as
well as of other complex models), there are some explicit causes that can be pinpointed. The
most obvious of these is the use of several unspecified functions in the protocols, of which the
interactions are almost impossible to analyze. Typically, such functions are introduced be-
cause manipulations in various groups throughout the system require mappings between the
elements of the various groups. Another reason for their occurrence it that certain require-
ments are often hard to solve (constructing off-line electronic systems is not easy!) without
introducing unspecified functions (which must then be assumed to have certain desired prop-
erties). As a result, the solution arrived at usually has a structure that is hard to subject to
analysis.

Hence, it is crucial to start with a flexible underlying problem from which the system is
designed. In that way, one is much more likely not to have to use unspecified functions. For
this reason, our electronic cash system makes use of essentially only one basic underlying
problem, the representation problem, which allows very flexible manipulations. A system
with protocols that consist only of a few moves clearly also helps to prove correctness.

Being able to detect double-spending by encoding the identity in the electronic cash is proba-
bly the single most difficult problem to resolve in privacy-protecting off-line cash systems not
relying on tamper-resistance, and is what accounts for much of the inefficiency and unspecified
functions. In our cash system, whether the identity of a user is in the withdrawn information
(coins and checks) depends entirely on his knowledge about it. That is, how much certain
withdrawn information is worth, whose identity is in it and whether it can be spent depends
entirely on the knowledge of the user about the information. Although it is true that the
identity must necessarily be encoded in knowledge of the payer about the signed information
if untraceability is to be unconditional, and this hence is also the case in all previously pro-
posed off-line electronic cash systems, our system is the first one in which this is used as a
basic concept rather than being an awkward necessity.

This way of encoding identity in conjunction with the representation problem allows us to
do virtually all manipulations in our system in two (isomorphic) groups (G4 and Zg) without
needing to introduce any unspecified functions except one hash function. More importantly, it
enables us to apply some techniques in our cash system that benefit provability of correctness
and efficiency to a great extent. The first of these is applied in the withdrawal protocol,
and allows us to dispose of the cut-and-choose method normally used to ensure that the
information (or knowledge) a user ends up with contains his identity. Rather than having

12

the user put his own identity in blinded numbers, and convince the bank that he did so
by opening all but a few (chosen by the bank), we use what we will call a restrictive blind
signature scheme. This is a blind signature scheme in which the user is restricted in the kind
of blinding manipulations he can do: he can establish the statistical independence needed for
untraceability, yet a certain structure (in which we encode his identity) in the knowledge he
has of the blinded information will always be the same as that of the unblinded information,
regardless of the specific blinding manipulations chosen by the user. As a consequence, the
user need only blind a single number (instead of polynomially many, of which he opens all
but some). The second technique is also applied in the blind signature scheme: we effectively
separate different executions of the withdrawal protocol by having each signature consist of
a new random number, generated by the bank and infeasible to compute by the user. This
accounts for provability of infeasibility of chosen message and multi-user attacks applied to
the withdrawal protocols. The third technique is applied in the payment protocol and uses
the well-known idea that the slope of a line in the plane is completely determined by two
different points on the line, yet is completely undetermined if only one point on the line is
known (this technique has been used in the cash system of [22]). This allows us to construct
a very fast payment protocol, since there is no need for polynomially many challenges and
responses.

We use several proof-techniques in proving the security aspect of our system. The most
important of these, of which we make use at various places, stems from the fact that our
constructions are such that the bank need not know any more secret information (although
it might) than all other participants of the system, except for the secret key it uses to make
the (blind) signature with. This allows us to view the entire system as one entity which, since
all participants of the protocols can be polynomial-time algorithms (even if the bank does
not need to be), in effect can be simulated by a probabilistic polynomial-time algorithm. In
this way, we can prove that many conceivable attacks on the system are infeasible, because
they would imply that the attacker can determine some relative discrete logarithm with
nonnegligible probability. This in turn implies that there must exist a feasible algorithm
which computes discrete logarithms with nonnegligible probability, namely that simulating
the system (simulating the random choices and actions of the participants).

As we discussed, the reason that we can derive an almost similar system in RSA-groups (if it
weren’t for the restrictive blind signature scheme, which we do not know how to adapt to RSA-
groups) is that all our tools make use only of properties characteristic to the representation
problem. Although we use the restriction of this problem to groups of prime order, variations
of it in RSA-groups are also computationally difficult, and hence almost all our tools can be
adapted to RSA-groups.

Due to the fact that we can divert (see [31]) all the protocols, since they are based mainly
on the representation problem, we can incorporate the system in the wallet-with-observer
setting even under the most stringent requirements concerning privacy (as described in [17]).
In addition, the efficiency of the check and divisibility extensions of our cash system clearly
benefit much from the applicability of vector addition chain techniques, and this (although
to a lesser extent) also holds for the basic cash system.

13

4 NOTATION AND BASIC ASSUMPTIONS

Throughout the paper, all arithmetic is performed in a group G4 of (known) prime order g
(so G4 is Abelian) for which polynomial-time algorithms are known to determine equality
of elements, test membership, compute inverses, multiply, and to randomly select elements.
There is a vast variety of groups known to satisfy these requirements (see e.g. [27]). The
advantages of working in such a group are that it is hard to distinguish between elements
because they are all (except the unity element) generators of the group, and manipulating
with indices is very convenient because one in effect is dealing with arithmetic in a field.

Although our results are valid for any such group, for explicitness we use the subgroup Gy of
Z;, with p = kg + 1 a prime (for some k € N). In a practical implementation of our system,
the length of p would probably be at least 512 bits, and that of ¢ at least 140 bits. We remark
that, when working in a group of this specific form, no methods are known to compute partial
information of discrete logarithms.

When we speak of polynomial-time algorithms, we implicitly allow them to be probabilistic
(more specifically, of the Monte Carlo and Las Vegas type). The terms ‘negligible/overwhelming
probability’ and ‘feasible/infeasible’ have the familiar complexity-theoretical meanings.

Each protocol that can be used in our cash system is described in text and, for convenience of
the reader, displayed in a figure. In the figures, we also display some extra information that is
strictly speaking not part of the protocol but has to be computed, looked up or transmitted
beforehand. To make clear that this information is not part of the actual protocol, we
separate it from the rest of the figure using vertical dots. Where verifications are needed, some
extra symbols are introduced, since otherwise the verification relations are mathematically
superfluous (they are always true). Extra symbols are also used in proving various propositions
about the protocols, because we then usually have to assume that (at least) one participant
does not transmit the information specified in the description of the protocol.

The security of our cash system is related to the Discrete Log and Diffie-Hellman assumptions,
both of which we state here with respect to Gj.

DEFINITION 1 Finding the unique index log, h € Zq of h € G4 with respect to g € Gy \ {1}
s the Discrete Log problem. An algorithm is said to solve the Discrete log problem 1if, for
inputs g # 1, h generated uniformly at random, it outputs log, h with at least nonnegligible
probability of success. The Discrete Log assumption states that there is no polynomial-time
algorithm which solves the Discrete Log problem with overwhelming probability of success.

It is well known that the Discrete Log assumption is equivalent to assuming that there cannot
exist even a single ¢ € G4 and a polynomial-time algorithm such that, on input A € G,
chosen at random, the algorithm has nonnegligible probability of outputting log, h. Clearly
this increases our believe in the validity of the Discrete Log assumption. This is due to the
following propositions.

PROPOSITION 2 If there exists an algorithm which solves the Discrete Log problem, then there
exists an algorithm which solves the Discrete Log problem with overwhelming probability of
success.

PROOF. To compute log, h, one can feed (g™ ,h") for random choices of r1,72 into the
algorithm. After an expected number of polynomially many steps, the algorithm correctly

14

outputs log -, (R"2). One knows when this occurs since one can recognize a correct answer (!),
and then log, h can be computed by multiplying by r1/r2 mod q. O

PROPOSITION 3 The following two statements are equivalent:

(a) There ezists a polynomial-time algorithm A(a) which, for randomly chosen inputs g # 1
and h, outputs logg h.

(b) There ezxist a g # 1, and a polynomial-time algorithm Ay which, for randomly chosen
input h, outputs log, h.

PROOF. Proving (a) = (b) is obvious. To prove the other implication, suppose we have
inputs g1, h and want to receive log, h. Algorithm A(,) first feeds g1 into A(3,) to receive
a = log, g1, then feeds h into A to receive b = log, h, and outputs b/a mod q. O

Due to Proposition 2, in the latter proposition algorithms A,y and A(}), rather than being
deterministic, can be allowed to have success nonnegligible probability.

Observe that the Discrete Log assumption as stated here is weaker than the one that is
normally encountered in literature: if one can compute discrete logarithms in Z; with respect
to arbitrary elements, then one certainly can compute them in G4, but the reverse is not
necessarily true.

DEFINITION 4 Finding the unique Diffie-Hellman key g®° of g1(= %) and go(= ¢°) with respect
to g is the Diffie-Hellman problem. An algorithm is said to solve the Diffie-Hellman problem
to the base g if, for inputs g1 and go generated uniformly at random, it outputs the Diffie-
Hellman key of g1 and go with respect to g with at least nonnegligible probability of success.
The Diffie-Hellman assumption states that, for all g # 1, there is no such polynomzial-time
algorithm.

For the Diffie-Hellman problem, no similar results are known. There is an important cause for
this unsatisfactory state of affair: the Decision Diffie-Hellman problem. Since this decision
problem is also intimately related to undeniable signatures, which we in turn implicitly use
in the blind signature scheme (although it is unrelated to the security of our system), we
postpone further discussion to Section 18.

If we were to state the Discrete Log and Diffie-Hellman assumptions with respect to other
input probability distributions than the uniform one, then clearly this would affect all state-
ments based on these assumptions. Since incorporating the allowed input distributions into
our results would distract attention too much from the essentials, we from now on by def-
inition always imply a uniform probability distribution when we choose or generate certain
elements ‘at random’, and denote this with the symbol “€5”.

5 THE REPRESENTATION PROBLEM

In this section we introduce the main problem underlying our constructions, and prove some
basic properties.

15

DEFINITION 5 Let k > 2 be a constant. A generator-tuple of length k is a k-tuple (g1,...,9k%)
with, for all 1,5 € {1,...,k}, gi € Gg\ {1} and g; # g; if 1 # 7. An indez-tuple of length k
is a k-tuple (ai,...,ar) with a; € Zg for alli € {1,...,k}. For any h € G, a representing
indez-tuple (also called a representation) of h with respect to a generator-tuple (g1,...,9x) s
an indez-tuple (a1,...,ar) such that Hle g = h.

In fact, £ can be polynomial in the length of the input without this affecting any of our
results. Since we make no use of this anywhere, we do not incorporate it into the definition.

Usually, it will be clear with respect to which generator-tuple we take the representing index-
tuple, and we therefore often do not mention it explicitly. If we take A = 1, one representation
immediately springs to mind, namely (0,...,0). We call this the trivial representing index-
tuple. If we would take £ = 1 in the definition, we simply have the familiar Discrete Log
situation with a € Z, representing h € G4 with respect to g # 1. We deliberately exclude
this situation from the definition, since there are important distinctions with & > 2.

PROPOSITION 6 For all h € G4 and all generator-tuples of length k there are exactly g1

representing k-tuples of h.

PROOF. Since G4 has prime order, each element # 1 is a generator of G,. We can therefore

choose the first k — 1 elements of the representing k-tuple (ai,...,ax) at random from Z,.
The k-th element ay is then uniquely determined as the discrete logarithm of h/ Hi-:ll g
with respect to g. O

This simple result implies that the density of representing k-tuples of h is negligible with
respect to the set containing all index-tuples of length k. Therefore, any polynomial-time
algorithm that applies an exhaustive search strategy to find one has negligible probability of
success. The next proposition shows that there is no essentially better strategy, assuming the
Discrete Log assumption.

PROPOSITION 7 Define V to be the set of all functions of the form q(-)/r(:), such that q(-)
and 7(-) are polynomials with integer domain and integer coefficients, and q(k) > r(k) > 1
for all sufficiently large k. For any functions fi(-), fo(-), f3(-), fa(-) € V, the following four

statements are equivalent:

(1) There ezists a polynomial-time algorithm A1) which, on inputs a generator-tuple of
length k and h € Gy, outputs a representing index-tuple of h with probability of success
at least 1/ f1(|p|) for all sufficiently large p.

(2) There exists a polynomial-time algorithm A 9) which, on input a generator-tuple of length
k, outputs a montrivial representing index-tuple of 1 with probability of success at least

1/ fa(|p|) for all sufficiently large p.

(3) There exists a h € Gy \ {1} and a polynomial-time algorithm A(s) which, on input a
generator-tuple of length k, outputs a representing index-tuple of h with probability of
success at least 1/ f3(|p|) for all sufficiently large p.

(4) There exists a polynomial-time algorithm A(4) which solves the Discrete Log problem
with probability of success at least 1/ f4(|p|) for all sufficiently large p.

16

PROOF. We only need to show probabilistic polynomial-time transformations of (4) to each
of (1), (2) and (3), since we can come up easily with feasible algorithms A1), A(g) and A(3)
if we have A(4). For this, we proceed as in the proof of Proposition 6 and use the fact that
the probability of success of A(4) can be arbitrarily boosted (see Proposition 2).

Assume that we have two elements g,h € G¢, g # 1, and want to compute log, h.

(1) = (4) Algorithm A4y proceeds as follows:

[Step 1] Generate a k-tuple (u1,...,u;) at random, and compute the generator-tuple
(91,---,9x) according to g; = g% for ¢ € {1,...,k}. Feed this generator-tuple
together with A into A(q).

Step 2] Receive an index-tuple (a1,...,a;) from A(y. If it is not a representation of
(1)
h, go to Step 1.

[Step 3] Compute (and output) log, h = ¥ au; mod g.

After an expected number of fi(|p|) repetitions of Step 2, A(4) receives a representation
of h.

(2) = (4) We have to apply a different strategy, since A(y) does not compute representing
index-tuples with respect to h of one’s own choice. We take advantage of the fact that for
randomly chosen u;,u;, there is no way to distinguish between A*: and g“/. Moreover,
in this particular situation we exploit the fact that ¢ = 1 for all g. Algorithm A
proceeds as follows:

[Step 1] Generate a k-tuple (u1,...,u;) at random, and compute the generator-tuple
(g91,---,9k) according to g1 = A1, go = g“2,..., gk = g“*.

[Step 2] Generate at random a permutation 7(-) of k elements. Apply «(:) to the
generator-tuple computed in Step 1 and feed the resulting generator-tuple

(g'rr(l)a - 7g7r(k:))

into A(z)

[Step 3] Receive an index-tuple (ai,...,ax) from A(gy. If it is not a representation of
1, orif ay-1(;) = 0 go to Step 1.

[Step 4] Compute (and output) log, h from the following linear equation, (induced by

™

the equation Hle g“"(i) = go):

k

u1a,-1(1)logy b + Zuiaﬂq(i) = 0 mod g.
1=2

In Step 3, in the worst case situation (k > 3), A(9) always sets k — 2 elements of a
representing index-tuple to zero. So, for all k > 2, with probability at least 2/k, a rep-
resenting index-tuple received in Step 3 does not have a,-1(;) (the index corresponding
to h) equal to zero. Since A 4) receives a representation of 1 in Step 3 after an expected
number of fo(|p|) repetitions, in the worst case it takes an expected number of fa(|p|)k/2
repetitions of Step 3 before log, h can be extracted.

17

(3) = (4) Again we have to alter the strategy somewhat, since under the Discrete Log as-
sumption we cannot in general compute log, h. Algorithm A4y proceeds as follows:

(Initialization) Put i=1.
e enerate a k-tuple (u;1,...,%;) at random, and compute from this the
[Step 1] G t k-tuple (u;1,...,%;%) at dom, and pute f: this th
generator-tuple (gi,1,...,0ik) as gi1 = h*1, gip = g*2, ..., gik = g**.
e enerate at random a permutation 7;(-) of k elements. e selecte
Step 2] G te at d P tati f kel ts. Apply the selected
permutation to the generator-tuple computed in Step 1 and feed the resulting
generator-tuple (g; r;(1),- - -, 9i,m(k)) into Acs).
ep eceive a nontrivial index-tuple (a;1,...,a;) from . If it is not a repre-
Step 3] Recei trivial index-tupl , k) f As). If it is not
sentation of h go to Step 1.
[Step 4] If : =1, increase ¢ by 1 and go to Step 1.
[Step 5] If 2,105 =1 (1) = UL10y -1 () mod ¢, go to Step 1.
ep ompute (and output) lo rom the following linear equation, (induced by
Step 6] C t d output) log, h f the following li ti induced b

. k a 7 k a J .
the equation [[7_; 92,27r]2(j) = [1j= gl,17r]1 (j))'

k k
U215 1-1(1) log, h + Z U189 p=1(py = UL,10) 1=1(p) log, h + Z U118y 1) mod gq.

In Step 2, if 2 = 1 we can as well take the identity permutation.

It takes an expected number of f3(|p|) repetitions of Step 3 before we receive a repre-
sentation for the first time (¢ = 1). For ¢ = 2 it takes a worst-case expected number of
kf3(|p|) repetitions of Step 3 before we can extract log, h, since we have to repeat Step
5 a worst-case expected number of k times. Therefore even in the worst case we can
extract log, h in expected polynomial time.

Note that, for all reductions, the probability that the received index-tuple in Step 1 is not a
generator-tuple is negligible even if k were polynomial in |p| (despite the birthday paradox).

In the proof of the last two implications, we can optimize the resulting algorithm A(4) con-
siderably by inputting blinded versions of h in |k/2| elements instead of in just one. Note
that algorithm A(4) as constructed from A(y) respectively A(s) is of the Las Vegas type even
if A(2) and A(3) always give correct outputs. O

We now define the representation problem in its general form (using a standard specifi-
cation format).

Name: Representation problem.
Instance: A group G, elements g1,...,gx € G (with k polynomial in |G|), h € G.

Question: Is there a representation of h with respect to (g1,...,gx) and, if so, find one.

In our cash system we only use a restricted form of this problem, the representation problem
for groups of prime order. Proposition 7 states that the representation problem for groups of
prime order is equivalent in computational difficulty to the Discrete Log problem.

18

We note that similar restrictions of the representation problem to other groups are very likely
to have the same kind of applicability as the representation problem in groups of prime order.
For example, if the input group is always an RSA-group, the problem can be shown to be
equivalent in computational difficulty to factoring. One then is interested in solutions of
Xt X,':’“ mod n in terms of the a;’s, for fixed X;’s. Another variation is to find the Xj’s,
and fix the a;’s, which is a problem as difficult as extracting RSA-roots. A combination of
these two variants is to find solutions of mixed forms X{* --- X*B{" --- B{* mod n in terms
of X1,..., Xk, y1,-..,yx for fixed a;’s, B;'s. In Section 17, we discuss how these variations
can be used to construct a cash system with the techniques of this paper.

In Proposition 7, we can allow certain elements of the input generator-tuple to be selected
with a different probability distribution than the uniform one. To the extreme, the proposition
still holds if we substitute (1) respectively (2) by:

(1) There exists a generator-tuple of length k and an algorithm A1y which, on input h € Gy,
outputs a representing indez-tuple of h with probability of success at least 1/f1(|p|) for
all |p| large enough.

(2) There exists a generator g, and a polynomial-time algorithm A(9) which, on input a
generator-tuple (g1,...,9k—1), outputs a nontrivial representing indez-tuple of 1 with
respect to (g1, . .., gr) with probability of success at least 1/ fa(|p|) for all |p| large enough.

Similar changes in the distribution of the input generator-tuple can be applied to most of the
results in this paper, but we will not mention these from now on since they are always fairly
obvious.

An immediate but very important consequence of Proposition 7 is the following:
COROLLARY 8 Under the Discrete Log assumption, there cannot exist a polynomial-time al-

gorithm which, on input a generator-tuple (g1,...,9r) chosen at random, outputs a number
h € G4 and two different representing index-tuples of h with nonnegligible probability.

PROOF. If there were such an algorithm A(;), we could use it to build the following algorithm:

[Step 1] Feed the generator-tuple (g1,...,gx) into A(;) and receive h and two representing
index-tuples (a1,...,ar) and (af,...,a}) of .

[Step 2] Output (a1 —a} mod gq,...,ar — a} mod q).

We now have constructed algorithm Ay of Proposition 7, and therefore have a contradiction
with the Discrete Log assumption. O

A consequence of this is that, for n such that 0 < n < k, under the Discrete Log assumption
any polynomial-time algorithm which, on input a generator-tuple (g1, ..., gx) chosen at ran-
dom, outputs h € G4 and at least 1+ g™~ ! different representing index-tuples of h, must have
access to the relative discrete logarithms of at least n distinct pairs (g;, g;).

The above results imply that one can regard the function f(-), defined as

k
f(a'l>"'>a'k) = Hg;,'lia
=1

19

with g1,...,gr a randomly chosen generator-tuple, as a collision-free hash-function.

Alternatively, it can be used as a means to commit to kK — 1 elements a1,...,a,_1 such that
the commitment is unconditionally secure for the committer. This use of the representation
problem as a means to commit to multiple numbers has the important feature that one can
gradually release certain parts of the information committed to (for example, one can open
certain functions of the a;’s) to a verifier with unbounded computing power, without releasing
any additional information about the numbers committed to. In a way, one can consider our
cash system as being build from commitments on several numbers, partial information about
which is gradually opened in the form of certain relations between the numbers. Although
strictly speaking it is not correct, due to this viewpoint it benefits the informal discussions
to speak of the responses as if they are polynomials. From now on, we will therefore speak of
a response that is an index of a representation (e.g. ai) as being a point, of a response that
is linear in the challenge (e.g. a; + ca; mod ¢) as a line, and in general of a response that is
polynomial in the challenge as a polynomial — although the response is actually a value of a
constant, linear, or polynomial function in the challenge for one particular challenge.

We discuss ways to do this in detail in Section 8 and further. For now, we remark that the
propositions in this section imply that if (g1, ..., g%) is a randomly chosen generator-tuple, for
any number A a polynomially bounded user comes up with, he either knows one representation
of h with respect to this tuple, or none at all. If he knows one, he must have taken part in
determining h, for example by having chosen an index-tuple (a1, ..., ax) and computing h as
h= Hle g:*. We therefore will speak of this representation as being “the representation” of
the user, or “his” representation.

6 KEFFICIENCY OF COMPUTING WITH THE REPRESENTATION PROBLEM

Using vector addition chain techniques (see [16] and [28]), one can compute [[¥_; g% even for
large k almost as efficiently as computing a single exponentiation. We investigate here a new
algorithmic idea. The basic steps are as follows:

[Step 1] Receive as input p, ¢, an index-tuple (ai,...,ar) and a generator-tuple (g1,...,gx)-

[Step 2] Sort the k elements (g1,a1),-..,(gk, ar) in descending order on the a;’s. (The new
sequence (g1,a1),--.,(gk,ar) is such that a; > ag > --- > ay.)

[Step 3] Fori=1to k—1do a; < a; — ai+1, gi+1 < gigi+1. If “stop-condition” holds then
output Hle g;* else go to Step 2.

Note that we use Horner’s rule in Step 3 to compute the new g;’s, and we reduce the indices
by successively using a generalization of g®h® = (gh)?g®~® (with a > b), the basic idea behind
Euclid’s algorithm for computing ged’s. The sorting algorithm in Step 2 should of course be
one suitable for this specific algorithm, since the numbers it has to sort come from an ordered
set whose maximum rapidly decreases. In fact, if k is rather large, then many of the a; will
rapidly become 0. In Step 2 we can check for this. Under suitable conditions (e.g. if k is not
too large), it may be advantageous to reduce more efficiently using g?h® = (g divb)bgamod?d,
For very large k however, it will be a waste of time to compute a mod b. The stop-condition
in Step 3 depends on the particular environment the algorithm is implemented in. In general,

20

it will mainly depend on how small the index-tuple has become. The meaning of small itself
depends on whether one can apply table lookup or do precomputations and so on.

The resulting algorithm seems quite suitable for use in computing devices with little storage
capacity (such as smart cards in off-line electronic cash systems). Basically only the generator-
tuple and the index-tuple need to be stored in memory, since in Step 3 the two new tuples
can overwrite the old ones.

In the full paper, we fill in all the details we are vague about here, and give an analysis of
the running time which for obvious reasons is quite similar to that given in [26] of Euclid’s
algorithm. We note that the action of first sorting the indices a; and then forming sequence
of successive differences is strongly related to a statistical test for randomness known as the
birthday spacings test. We hence can apply some limiting statistics determined for this test
(by J. Komlos) to determine how rapidly the sequence of differences collapses.

7 AN OVERVIEW OF THE LITERATURE USING THE REPRESENTATION PROBLEM

The nucleus of Proposition 7 is mentioned without proofin [6] which, as far as we know, is the
first article to clarify the status of the representation problem for groups of prime order. In
the same paper the authors, as a variation of their basic protocol for proving possession of a
discrete logarithm, show a protocol for proving knowledge of a representation (see Section 8).
Since then, the representation problem has been used in literature surprisingly little, and no
reference is made to [8] anywhere. Corollary 8 can be found in [13], together with a sketch of
(a different) proof.

To the best of our knowledge, the representation problem for groups of prime order has
furthermore been used as a tool in a handful of articles. For commitment purposes, it was
used in [33], [2] and in the confirmation protocol of undeniable signatures ([9, 10]), all with
k = 2. Furthermore, it has been put to use for signatures unconditionally secure for the signer
in [13] and [24] (fail-stop signatures, k = 2), and for an identification scheme unconditionally
secure for the prover in [32] (k = 2). The protocol in this latter article has a striking similarity
to the fail-stop signature in [24], the difference being that in the identification scheme one of
the two numbers of the public key in the fail-stop signature is chosen randomly by the prover.

Note that when only k& = 2 is used, as in all the above mentioned articles, Proposition 7 can
be proven much easier, and Corollary 8 in fact even becomes superfluous since knowing a
representation of A with respect to (g1, g2) immediately enables one to compute log,, g2. We
can hence simply invoke Propositions 2 and 3.

On the basis of Proposition 7, most of the main results in the articles mentioned above can
generalized. For example, a straightforward generalization of the protocol of [32] can actually
be used to prove knowledge of at least one representation with respect to a generator-tuple
of any length. We discuss this in Section 8. As another example, the confirmation protocol
of undeniable signatures can be batched (verification of polynomially many signatures in one
protocol, rather than just one). Since we do not use this protocol at all for our cash system,
but yet think it is a nice result, we include this protocol and the proof in the appendix.

As this paper wishes to show, the applicability of the representation problem is much more
general than suggested by the use made of it in the aforementioned articles. This is illustrated
already by the fact that for our check extension we use the representation problem for &

21

Prover P Verifier ¥V
(gla" - 7gk)7h
w; €ER Zq
k i yA
z [, QEU
¢ cCER Zq
Tl vy Tk

74 < w; + ca; mod g

? k i
c -
zh¢ =[[;;1 g;°

FIGURE 1. Proof of knowledge of a representation.

much larger than 2. In particular, its use extends beyond being just a simple tool for e.g.,
commitments unconditionally secure for the committer.

We discuss the literature on the three basic RSA-variations in Section 17. In this Section,
we also sketch how to apply the RSA variations to build an off-line electronic cash system
analogous to our discrete log based variant.

8 PROVING KNOWLEDGE OF A REPRESENTATION

In order to allow a polynomial-time prover P to prove knowledge of a representation (say
(a1,...,ax)) of a number h with respect to (g1,...,gx) to a verifier V, we can use a straight-
forward generalization of the identification protocol described in [32] (see Figure 1). Note
that, since the density of representing index-tuples is negligible by Proposition 6, such a
protocol certainly makes sense.

Step 1 P generates at random k numbers wi, ..., wy €ER Zq, and sends z = i-“zl g to V.
Step 2 V generates at random a challenge ¢ €g Z, and sends it to P.

Step 3 P computes the responses r; = w; + ca; mod ¢, for 2 = 1,...,k, and sends them to

V.
V accepts if and only if zh® = le g, foralli=1,... k.

PROPOSITION 9 Under the Discrete Log assumption, the following statements hold:

1. (Completeness) If P is honest (i.e., he knows a representation and follows the protocol),
then V accepts.

22

2. (Soundness) If P does not know a representation of h with respect to (g1,...,9k), there
does not exist a strategy for him such that V accepts with nonnegligible probability of
success.

3. (Witness hiding) Even with all the information gathered from previous ezecutions of the
protocol and unlimited computing power, V cannot find out any information about the
precise representation known by P, if P followed the protocol in all these executions.

The proof is similar to that given in [32].

If V is polynomially bounded in this protocol, he receives information which he couldn’t
have simulated himself. In order to turn the protocol into one that is zero-knowledge, one
can restrict ¢ to a polynomial-sized set and repeat it polynomially many times. In fact, if
c €x {0,1} we precisely get a protocol described in [6].

We now discuss how this protocol can be used to prove certain relations between represen-
tations a polynomially bounded prover P knows of different numbers. To this end, suppose
that P knows one representation (ai,...,ax) of k1, and one representation (by,...,bg) of hg,
both with respect to some generator-tuple (gi1,...,gx). We suppose P does not know a rep-
resentation of 1 with respect to this generator-tuple (which can be accomplished for example
by choosing the generator-tuple at random). Rather than showing the general protocol, we
show how P can prove a specific relation, say na; = b1 mod g, for some n € N. To this end,
we observe that if the relation holds, then

n _ _a2n—bz apn—>bg
I/h2 = g5 T 9k :

Hence, if P is honest (i.e. the relation na; = b; mod ¢ indeed holds for his representations),
he can prove knowledge of a representation of h}'/hg with respect to (go,...,gk), using the
protocol discussed above. However, in case this relation does not hold for his representations,
there is no way that he can prove such knowledge. To see this, suppose that P can have V
accept. Then, by Proposition 9, he must know a representation (co,...,ct) of hT/hy with
respect to (go,...,gk), i.e.

T/ha =93> g

However, we also have hl/hs = gfln_bl ggzn_bZ e g,‘:’“n_b" from the two representations of P.

This implies that

ain—by c2—(azn—b2) cx—(agn—bg)
b gs g ~1.

5

If na; # by mod ¢, P therefore knows a non-trivial representation of 1, with respect to
(91,---,9%), which contradicts the assumption.

In general, this protocol can be applied to prove that na; = b; mod g for various ¢ at the same
time. If P wants to prove that e.g. mia; = b1 mod g, nsas = by mod ¢, with ny # ng, the
protocol is executed twice (once for hi*/hga, once for h7?/hs).

9 BASIC TOOLS FOR THE WITHDRAWAL PROTOCOL

In our cash system, the identity of a user is encoded entirely in the representation the user
knows with respect to a fixed generator-tuple. Due to this approach, we can use a technique
that allows us to get rid of the cut and choose methodology that earlier systems use, thus

23

greatly increasing efficiency. This technique is the following. Suppose a user is known to the
bank by a pseudonym m = gi* - - - g;*, which links him to his account and his real-life identity.
The signature scheme of the bank, whose public key is (g, h(= g®)), is such that the user can
do his own blinding of his pseudonym, yet is restricted in the degree of flexibility in doing so.
The user will end up with a new number, which is unknown to the bank, together with a valid
signature of the bank. Due to the restricted types of manipulations the user can perform in
the blinding, a certain structure in the representation the user knows of his pseudonym will
remain in the representation the user knows of the new number. This structure is sufficient
to distill the users’ identity when he double-spends.

Before we discuss the actual blind signature scheme, we clarify this with an example. The
user will start at the withdrawal knowing exactly one representation (a,...,ax) of a number
m with respect to a generator-tuple (g1,...,9%). In our cash system, we accomplish this by
having the user choose his own a;’s, and compute m. By Corollary 8, he cannot end up
knowing more than one representation. Suppose the blinding were such that the user could
only end up with (m",sign(m)) if he is to end up with a number which he knows how to
represent with respect to the same generator-tuple. The representation he then knows of
the new number m" clearly is simply (air,...,ag7), if of course the signature scheme is such
that the user cannot compute extra representations of m” from it. As one sees, the structure
which has remained is that induced by taking quotients: for all ¢, 7, the quotient of a;r and
a;r is the same as that of a;,a; (with induced, we mean that this holds for functions like e.g.
(a? + a4a7)/(azas) mod q in general).

Inspired by this idea, we can encode the user’s identity for example as the quotient of say
a;,a;. During payment, the user will then have to release a line a; + ajc in Zg, with ¢ a
challenge of the shop. That is, he opens some partial information about his representation,
and then convinces the shop (with a signature) that he did so honestly. When the user double-
spends, with overwhelming probability (or without exception if the challenge is forced to be
unique for each execution of the payment protocol, which will be the case in a cash system)
a;,a; can be computed and hence the user’s identity. Note however that if the user would be
able to blind m to say m"g;, this would no longer be the case. Therefore, we must be able to
precisely say to what extend the blinding can be performed by the user. Proposition 12 tells
us that the only kinds of blinding that can be performed (if one is to end up with a number
of which still a representation is to be known) are those in which m is transformed to m"g®,
with g being the first element of the public key (g, k) of the bank. Therefore, if we make sure
that g;,9; # g, we seem to have a workable idea.

Obviously, amongst others the amount of money the information is worth also has to be
encoded in some way in the withdrawn information, so the above is a (slight) simplification.

9.1 The restrictive blind signature scheme

We now describe the blind signature scheme we use in the withdrawal protocol. Precisely
stated, the purpose of a blind signature protocol is for a receiver to obtain a signature sign(m)
on a message m # 1 in such a way that not only (m, sign(m)) remains unknown to the
signer, but even with infinite computing power it is impossible to link any pair (m,sign(m))
to any specific execution of the protocol. The blind signature scheme we use is actually a
signature scheme of [15] (an adaptation from the three-move identification scheme of [36]),
although we need some extra features of it. Namely, [15] is not concerned with knowledge

24

of representations of the transformed number, merely with the fact that the blinding (for
unconditional unlinkability) can indeed be achieved. For our purposes, this is not sufficient,
as we saw in the example: it is essential that there is a restriction on the types of blinding
manipulations one can perform (if one is to end up with a number of which a representation
is known).

In order to get the reader to understand the blind signature scheme, we first consider some
simplifications. We follow the lines of [15] in doing so. Let g # 1, h(= g*) # 1 be the public
key of the signer, and m # 1 a message from the receiver. The signer is supposed to sign m
with z(=m®) and a signed proof that log, h = log,, z (note that 2 by itself is an undeniable
signature on m). This can be accomplished with the following protocol.

In Step 1, the signer generates at random a number w €g Z,4, and sends z = m®, a = g%
and b = m" to the receiver. In Step 2, the receiver generates at random a challenge ¢ € Zq
and sends it to the signer. In Step 3, the signer sends the response r = w 4+ cx mod ¢ to
the receiver. The receiver accepts if and only if A4 = ¢" and 2°6 = m". Note that the
only difference so far with the scheme of [36] is that, in Step 1, two extra numbers z and
b are sent along. Using the technique introduced in [21], the receiver can transform this
minimum-knowledge protocol into a signature scheme by computing ¢ as H(m, 2z, a,b), with
H(-) a suitable (see [15]) one-way hash-function. Since this ¢ can just as well be computed
by the signer, actually only one transmission from the signer to the receiver is needed then,
consisting of the signature sign(m) = (z,a,b,7) on m. The signature is valid if and only if the
relations h°a = ¢g" and 2°b = m” hold, with ¢ computed by a verifier from the signature as
H(m, z,a,b). There exist exponentially many such signatures on m, depending on the choice
of w made by the signer, but their density among all possible four-tuples of the above form
is negligible. In fact, the assumption concerning H(-) implies that one cannot generate pairs
(m,sign(m)), i.e., existential forgery of pairs is infeasible (see [15]).

Clearly, this scheme is certainly not a blind signature scheme because one can easily match
a pair (m,sign(m)) with a specific execution of the signature protocol (m as well as all
numbers in sign(m) remain completely unchanged in the protocol). To achieve unconditional
unlinkability, the receiver in the above protocol determines a new message m/, new numbers
a/,b' and 2’, and sends a blinded version ¢ of ¢’ = H(m/,2',a’,b’) to the signer. The signer
responds with 7 = w+bc mod ¢, which the receiver transforms in some way to a number 7’ such
that (2',a/,b',7") is a valid signature on m’. Observe that in fact also w must be transformed
to some w' (whereas it is unknown to the receiver), because the signer is given unconditional
computing power and could otherwise still link by computing w from the signature and
comparing it to all his executions of the protocol. With this in mind, we now show the actual
blind signature protocol (see Figure 2).

T

Step 1 The signer generates at random a number w € Z,, and sends z = m®, a = g* and

b= m" to the receiver.

Step 2 The receiver generates at random four numbers s,t and u,v (all in Z,;). Using the
first two of these numbers, he computes m’' = m®gt. With the other two, he computes
new numbers o', and z’ as follows (with w' = ww 4 v mod q): a' = ag? (= g*'), b/ =
a®b*(m')? (= (m")*') and z' = z°ht (= (m')*). He then computes ¢ = H(m/,2',a’, V)

and sends ¢ = ¢//u mod g to the signer.

Step 3 The signer responds with 7 = w + ¢z mod gq.

Receiver Signer
(9,h=4g")
m
_

wER Zq
z «— m"
a«— g%
z,a,b b m¥

s,t eER Zq

ml — msgt

u,v ER Lg

al — aug'u

bl — autbus(ml)u

2! — z%ht
d —H(m' 2 d V)

c
¢+ c'/umod g N

T

- 7 «— w + cx mod g
’

ha = g"
[? T
zb=m

r! «— ur +v mod g

FIGURE 2. Blind signature protocol

25

26

As before, the receiver accepts if and only if h°a = g" and 2°b = m". Note that (z,a, b, 7) itself
is not a correct signature on m, since 7 is a response to a challenge different from H(m, z, a, b).
However, the receiver can compute 7 = ur + v mod g and, as easily can be verified, ends up
with a valid signature sign(m') = (2/,a’,b',7') on m’. This is a digital signature, which can
be verified by anyone.

It is clear that if the receiver follows the protocol, he ends up with a number m’ plus signature,
such that he knows a representation of m’ with respect to (m, g) (namely (s,1)).

PRrROPOSITION 10 The following statements hold:

1. If the receiver follows the protocol, then pairs (m,sign(m)) obtained via this signature
protocol are unconditionally unlinkable to any specific execution of the protocol.

2. Even if the signer would know the m' obtained by the receiver, the precise representation
(s,t) with respect to (m,g) known by the receiver is unconditionally hidden among the
set of all representations of m/'.

SKETCH OF PROOF. Given any h # 1, for each pair (m,sign(m)) and the information that
a signer gets during the execution of any protocol in which the receiver accepts, there are
exactly ¢ possible random choices of sets (s,t,u,v) that could have been made by the receiver
that bring about the link. The reader is referred to [15] for the precise proof. The second
statement is trivial. |

The following proposition tells us what kind of blinding manipulations can be feasibly per-
formed, under the condition that one must end up with a number (signed by the bank) of
which one knows a representation with respect to (m,g). We first give a lemma.

LEMMA 11 Under the Diffie-Hellman assumption there does not exist a polynomial-time algo-
rithm A that, on input a randomly chosen triple g1, g2, (g192)", outputs g3 with nonnegligible
probability of success.

ProOOF. Using algorithm A as a subroutine we construct the following algorithm, which takes
as inputs g1 (= g%), ga(= ¢°) for random a,b € Zg:

[Step 1] Generate at random an element g € G4\ {1}, and feed g1, 9/g1, g2 into algorithm A.
[Step 2] Output the output of algorithm A.

1 h
If one writes A = (g192)", then it is clear that A, on inputs g1, g2, outputs glog“” . Observe
that since g is randomly chosen in Step 1, g; and g/g; are independently distributed. There-
fore, the algorithm we just constructed outputs (g“)logg 9 = g®® with nonnegligible probabil-
ity of success, i.e. we have constructed a polynomial-time algorithm that with nonnegligible

probability of success outputs Diffie-Hellman keys. This contradicts the Diffie-Hellman as-
sumption. O

Clearly, if one can break the Diffie-Hellman assumption then one can compute g}’ from
91,92, (9192)", and hence the two problems are actually polynomial-time equivalent.

The following proposition is essential for proving the security of our cash system.

27

PROPOSITION 12 Let m, g be elements of G, (as in the blind signature protocol), such that
the receiver does not know log, m. Then the following two statements hold:

1. Under the Discrete Log assumption, there is no strategy that has nonnegligible probability
of success for the receiver such that he ends up with a pair (m', sign(m’)) for which he
knows two different representations of m' with respect to (m, g).

2. Let ¢’ # 1 be randomly chosen, independently from m and g, and assume that the hash-
function H(-), in addition to being as in [15], is collision-free. Under the Diffie-Hellman
assumption, there is no strategy for him that has nonnegligible probability of success of
ending up with a pair (m', sign(m')) for which he knows a representation (s,t,t' # 0)
of m' with respect to (m,g,9').

Both statements hold even if the receiver has access to polynomially many transcripts of
previous executions in which he played the role of the receiver.

SKETCH OF PROOF. (1) The first statement follows from the fact that being able to end up
with (m, sign(m)) such that two different representations (s,t) and (s',t') of m are known
implies that log, m = (' —t)/(s — s') mod q. However, the signer himself need not know
log, m in order to perform the blind signature protocol and, in particular, could just as well
be polynomial-time.

(2) The second statement follows from the fact that in order to obtain a valid signature
sign(m) = (z,a,b,7) on a message m, the third component b of the signature must equal m",
by assumption on the collision-freeness of the hash-function H(-). Therefore, if the receiver
can end up with b’ corresponding to m' of the form m' = m®gt(¢')t (with ¢ # 0), he can
compute the undeniable signature (¢')* on ¢', since (¢')¥ = (b'/(atbs)l/t’ (note that this holds
regardless of the distribution with which (s,t,t') is generated by the receiver).

To see how difficult this task is, we have to know what information the receiver has at his
disposal to achieve this. First, observe that ¢ must be determined by the receiver before he
receives the response w + cx mod g, hence only the information in the first two transmissions
of this execution can be of help, and that of previous executions. However, since w is chosen
uniformly at random by the signer in each execution of the protocol, previous executions of
the protocol cannot help the receiver in determining (g')* since w is uncorrelated to z and
the choices of w in previous executions (and hence to the responses in those executions), and
so the receiver might as well have simulated all the choices of the signer in those previous
executions. For the same reason, from the specific execution in which the receiver is to come
up with (¢')*, the numbers h(= ¢g*) and z(= m?) cannot help him.

Furthermore, since ¢’ is randomly chosen, independent from m, g, the receiver does not know
how to represent g’ with respect to (m,g). Therefore, it remains to prove that under the
Diffie-Hellman assumption it is infeasible to compute (g')* given g,g*,m,m",g’, with ¢’
such that no representation (a,b) of g’ is known with respect to (m,g). But this is easy
to prove. To see this, note that the existence of a polynomial-time algorithm to compute
(¢')* on inputs the same inputs (i.e. g,g*, m,m",g’) and in addition also log, m, implies the
existence of a polynomial-time algorithm that, on inputs g, g%, g’, outputs (¢')* (since the
inputs m,m® can then be simulated because g’ and g are independently distributed from m).
This latter algorithm in turn is trivially convertible to an algorithm that solves the Diffie-
Hellman assumption, in fact it already is one (see Section 18). That is, there does not exist a

28

polynomial-time algorithm that, on inputs g, g%, m,m", ¢, log, m, outputs (¢)*, if and only
if the Diffie-Hellman assumption holds. As a consequence, no polynomial-time algorithm can
exist that outputs (¢')” on inputs g, g¥, m, mY, ¢’ (since it receives even less information).

Therefore, assuming the Diffie-Hellman assumption, if and only if the receiver knows a rep-
resentation of ¢’ with respect to (m,g), he can feasibly compute (g')*. This completes the
proof. O

For the security of our withdrawal scheme, this proposition it not sufficient. However, in that
case we can use two extra requirements concerning the representation a user begins with, and
the representation he is to end with (see Section 12).

From now on, we implicitly assume that the hash-function H(-) in addition to satisfying the
requirements of [15] is collision-free. This requirement is only to ensure that we can apply the
second statement of Proposition 12 when we want to prove that the receiver in the protocol
cannot obtain certain representations. The requirement of [15] is to ensure that existential
forgery of pairs m, sign(m) is infeasible. We do not know whether the assumption that H(-)
be collision-free can be weakened significantly. However, the existence of a collision-free hash-
function is a weaker assumption then the Diffie-Hellman assumption whereas breaking the
security of our system is no harder than breaking the Diffie-Hellman assumption, so weakening
the assumption on the hash-function does not increase the security of our system. Note that
in Section 5 we described a hash-function that is collision-free if and only if the Discrete Log
assumption is true.

We apply Proposition 12 to our cash system as follows. At the start of the withdrawal
protocol, suppose the user knows exactly one representation of m with respect to a generator-
tuple (g1,...,9k), say (a1,...,ax) (if he does not know any, the entire argument becomes even
more simple). A sufficient condition to ensure that the user does not know more than one
representation is that he does not know a representation of 1 with respect to (g1,--., gk, 9)-
This is easily taken care of by the bank by for example generating the k+1-tuple (g1,..., 9%, 9)
at random.

During the protocol, the user blinds m to m’, which is the number that he will receive a
signature on. As we saw in the proof of the second statement of Proposition 12, the only way
in which he can do this is by choosing numbers s,t,# and ¢/, and computing m' = msgt(g')t’.
If ' # 0, in addition he must know a representation (z,y) of ¢’ with respect to (m,g). It is
easy to show that the numbers ¢’ for which this latter requirement is met are precisely those

g’ of which the user knows a representation (b1,...,bgs1) with respect to (g1,...,9%,9) for
which b; = za; mod ¢ (for 1 <7 < k) and byy; = y. From this it is clear that the user might
as well have computed m/ as m/ = mst=gity.

We give a small example of this. Suppose the user knows (ai,a2) such that m = g7*g52,

but does not know a representation of g with respect to (gi1,92). He can then compute
m' = m®gt = ¢{*°g52°g" for random choices of s,t. Suppose he can compute m’ (and obtain
a signature) as e.g. m' = msgt(glg)tl: he would then have to know by Proposition 12 a pair
(z,y) such that g1g = m®gY. But then (a1 — 1,a9,y — 1) is a representation of 1. Since this
must be trivial (not even the signer need know anything more), this imposes the condition
a1 =1,a9 =0, and y = 1. That is, m = g1, and the user might as well have computed m' as

m! = m*tlgt instead.

Observe that, in general, the user therefore always ends up with a signed number m' for which

29

the representation (by,...,bg,c) he knows of m' with respect to (g1,..., gk, g) is always such
that b; = a;s (with 1 <7 < k) and ¢ = t for some pair (s,t). As one sees, b;a; = a;b; for all
1,7. The fact that certain relations between the indices of the representation the user knows
of m' are precisely the same as of the representation of m is a crucial point in our system.

In the protocols for the cash system (including the extension to checks) which we discuss in
Section 11, the blinding manipulations that the user could actually perform if he is to be able
to pay at a shop with this information, is even more restricted in that he can only transform
m to m' = m® (i.e. ¢ =0). This is due to the fact that the payment protocol requires him
to know a representation of m' with respect to (g1,...,gx), rather than (g1,...,9%,9). If he
would transform it to m’ = m®g? such that he knows (s,t # 0), it is easy to show that he
ends up with m’ which he does not know how to represent with respect to m.

Because of the above discussion, the second statement of Proposition 12 is crucial to the
security of our cash system, and is why the system can be broken if one can break the Diffie-
Hellman assumption (the identity of the double-spender, which is encoded in the structure
that remains in the representations, then no longer is revealed since the structure is destroyed).
We here note that if there would exist a polynomial-time algorithm that with nonnegligible
probability of success computes Diffie-Hellman keys, by the Decision Diffie-Hellman assump-
tion (to be discussed in Section 18) one cannot recognize a correct answer. Yet it means that
having access to such an algorithm, one has a nonnegligible probability of success of receiving
a pair m, sign(m), which allows one to double-spent this information without being identified.

Observe that if in the first transmission of the blind signature protocol m=g~¢

is sent, then
the signature scheme allows the receiver to end up with a signature on a number m of his own
choice. In our cash system, m will never be a choice of the user, but it is more or less fixed in
advance. A similar thing holds true for the extension to checks. Note that in the withdrawal
protocol of previous systems the information to be signed is sent in an blinded form, and then
unblinded after the signature has been made, whereas in our withdrawal protocol almost
the opposite happens. This has the extra advantage that it is infeasible for users to obtain
blind signatures on arbitrarily chosen messages (since, given some fixed numbers m, g, and a
“target” message n, one cannot compute (s,t) such that n = m®g*). Compare this to the RSA
blind signature scheme of [11], in which the user sends r”H(m) mod =, the bank supplies the
v-th root of this number, and the user transforms it to the pair (m, H(m)/?): the user can get
a signature on any message he likes, which clearly can only help in attacking the system by
multi-user and/or chosen message attacks. Not being able to choose freely the message that
will be signed also has the advantage that multi-user attacks have less probability of being
successful. So the restrictive blind signature scheme that we use also helps us in proving
correctness of the system.

10 BASIC TOOLS FOR THE PAYMENT PROTOCOL

In order to prevent double-spending of a coin (or check), the user at the shop has to reveal
some information that has the property that one such piece of information does not reveal
any Shannon information about his identity, whereas knowledge of two such pieces enables
one to extract this identity in polynomial time (one-show signature). As we explained in
Section 3, the technique we apply for this is based on the simple fact that the slope of a
line is uniquely determined by two points, yet completely indeterminate from one. In the
previous section we gave an example of how we use this technique in conjunction with the

30

withdrawal protocol. Since a polynomial of degree k is uniquely identified by & + 1 different
points, we can generalize this to allowing the users to spend their money k times. In general
case, k spendings of the same user are untraceable to him, but the payments themselves are
linkable. We note that in case a user pays say $10 with a 10-show coin worth $1 (i.e. in the
same transaction), this is no problem at all, whereas it is more efficient than using a check
of which the unspent part then must be refunded. It is also conceivable that users that are
particularly keen on their privacy only pay with k-show information in transactions of which
they are sure not to be identified by some external means.

There are various ways in which the payment protocol can be achieved: in essence, we have
to come up with a challenge-response protocol of which the response is a line (a polynomial
in general). Furthermore, a valid transcript of the payment protocol must be unforgeable in
polynomial time, since shops should not be able to deposit transcripts they forged. That is,
the payment protocol has to consist of a signature, and it must be such that the user can
release points (for the check extension), lines, and in general polynomials, and prove with a
signature that no bogus information was given.

We first show a simple protocol to randomize a representation. We then discuss two basic
methods that enable the prover to reveal partial information about the representation he
knows in the form of a line. The second of these has the nice property that the responses of
the prover at the same time constitute a signature on the challenge (we call this property self-
certifiability of the responses), and hence uses only three moves. The first method needs two
more moves, but has the advantage that it can also be used for minimum-knowledge proofs
(the responses are not self-certifiable), and is more efficient for responses that are polynomials
of high degree.

We then consider some how to use method 1 or 2. Finally, it is shown how these protocols
can be used to simultaneously reveal partial information of knowledge in the form a bunch of
points, lines, and polynomials of higher degree.

10.1 Randomization of representations

In the set-up of our cash system, the user (P, polynomially bounded) must establish an
account with the bank. This will consist of a number h = g7*g5?, such that (ai,as) is
unconditionally hidden in the set of all representations of A with respect to (g1,g92). In some
situations, the bank (V, unbounded) may want each element of the representation known
to P to be mutually random. In general, ¥V may want to establish in cooperation with P a
number h and a representation of A with respect to a generator-tuple (g1,...,gx) such that
each element of the representation (and hence h) is mutually random. To this end, let gg41

be a generator distinct from the others. Then the following simple protocol can be used:

Step 1 P generates uniformly at random an index-tuple (z1,...,Zg4+1), and sends A’ =
k+1 x;
[;27 g;° to V.

Step 2 V sends a randomly chosen index-tuple (y1,...,¥%) to P.

Step 3 P sends zpy1 to V.

If P was honest in Step 3, (z1 + y1 mod g, ...,z + yr mod q) is a representation of h =
(Hi-“zl gfi)h'/gZ:fll with respect to (g1,...,gk), which satisfies the above requirement. It is

31

easy to show that the only way in which P can end up knowing a representation of A is if he
follows the protocol.

10.2 Method 1.

Before giving the general protocol, we start with an example which comes close to the actual
payment protocol we use in our basic cash system.

ay _az az

Suppose P has obtained a signature of the bank on a number gi* g5?g3*. The partial informa-
tion P will have to reveal is the response r = a; + agc mod ¢, with ¢ being a challenge from
a verifier V (who is not necessarily polynomially bounded). In our cash system the identity
of P is a certain relation between a;,a2 and ag, namely (ai/a3 mod g,a2/a3 mod q). For
simplicitly, we assume the identity here to be aj/a2 mod g. Since V has no way to convince
himself of the fact that P gave the correct response, some protocol is needed which enables
P to prove this to V, without revealing any Shannon information about a;/as mod g (see
Figure 3).

Step 1 V generates at random a challenge ¢ €g Zg and sends this to P.
Step 2 P computes the response 7 = a; + agc mod ¢ and sends this to V.

Step 3 P proves knowledge of a representation of h/g] with respect to (g2/95, 93)-

V accepts if and only if he accepts P’s proof of knowledge in Step 3.

In Step 3, any protocol for proving knowledge of a representation can be used (we can use the
one described in Section 8), as long as it does not reveal any information about the specific
representation known by P. However, when used in a payment protocol, it must actually be
a signature. Since the shop will send the transcript of this protocol to the bank, who has to
be able to verify its validity and be assured that is is not a forgery, in a payment protocol A is
accompanied by a signature of the bank. This will guarantee that transcripts of the payment
protocol cannot be forged existentially. We discuss this further in Section 12.

PROPOSITION 13 Under the Discrete Log assumption, the following statements hold:

1. (Completeness) If P knows a representation of h and follows the protocol, V accepts.

2. (Soundness) Suppose P knows at most one representation of h at the start of the proto-
col. Then P cannot determine an incorrect response v in Step 2, such that there exists
a strategy for him leading V to accept with nonnegligible probability of success.

3. (Witness hiding) If P follows the protocol, then V cannot obtain any Shannon informa-
tion about aj/as mod q (the identity) from one execution of the protocol.

SKETCH OF PROOF. First, note that if r = a; + agc mod g, then h/g] = (g2/9f)*2g5°. Hence,
if P is honest, (a2, a3) is a representation of h/g] with respect to (g2/95, 93). This proves the
completeness property of the protocol.

Suppose P is able to come up with a response r such that he can successfully convince V in
Step 3 (i.e., V accepts). Then, according to Proposition 9, he must know a representation in

32

Prover P Verifier ¥V
(h =TI o)
h7 (91792793)
¢ cCER Zq
T

T < a1 + agc mod ¢

(proof of correctness)

FIGURE 3. Partial release of knowledge

Step 3 of h/g] with respect to (g2/gf, 93), say (u1,u2). More specifically, P knows r,u; and us
such that h/g] = (g2/95)" 932, implying that he knows 7,u;,us such that A = g7 “*“g5* g32.
Under the assumption that P knows exactly one representation of h, if r # a1+4asc mod g then
apparently P knows two different representing index-tuples of h with respect to (g1, g2, 93)-
According to Corollary 8, this contradicts the Discrete Log assumption. If P did not know

any representation at all, then apparently he knows one now, contradicting Proposition 7.

To prove the third statement, observe that in Step 3 no information about the representation
of h/g] with respect to (g2/g5, g3) is revealed. Since P is honest, this representation is (ag, a3).
Furthermore, 7 and h together also do not reveal any information on either of a1, a2 and as,
because for each guess of V for a}, ab (such that r = a} + ahc mod g), there is exactly one aj

3 9
such that A =[[;_; g;". O

However, if P performs this protocol twice with V, then with overwhelming probability a1, as
(and g3°, but we do not need this) is revealed, and the identity a;/a2 mod g of the double-
spender can be computed.

We can generalize this protocol straightforwardly in various ways. For example, the protocol
can be adapted in such a way that the identity a1 of P knowing a representation (ai,...,ax)
of h with respect to (gi,...,gk), is revealed after 7 + 1 executions of the protocol (2 < j < k)
but remains unconditionally hidden after up to 7 executions (j-show signatures). To this end,
the response must simply be a polynomial of degree j.

In Proposition 13, the witness hiding property obviously extends beyond just a;/a2 mod g.
However, it is not true for just any function of the a;’s. For example, it is clearly not true
for a1 + azlog,, g2 + aslog,, g3, since this can be extracted by the receiver even without
any execution of the protocol. For the cash system, this means that, in order to apply this

33

proposition, the identity has to be encoded as a function of the a;’s in a suitable way, such
that one execution of this protocol still does not release any Shannon information about
the identity. In the full paper, we will formalize this using a set of so-called valid identity-
encodings. This is the set of all functions of the a;’s satisfying this witness-hiding property.
Note that the definition of this set clearly is dependent on the particular protocol under
consideration.

10.3 Method 2.

We now describe another method to achieve the same goal. Because we assume the previous
discussion explains the basic idea, we right away show the most general version of the protocol,
relating to (k — 1)-show signatures. To this end, suppose that there are £ numbers A1, ..., hg,
and P knows how to write them as hy = g7 ... g/"", hy = g7* ... g/*. The identity of P
again is encoded using a function from the set of suitable identity-encodings. The elements
hi,...,hg,91,..., 9k are also known to V before the protocol starts (see Figure 4).

Step 1 V generates at random a challenge (message) ¢ €g Z4 and sends this to P.
Step 2 P computes the [responses r1,...,7; as
s =a;1 +apc+ -+ aikck_l mod ¢

and sends these to V.

V accepts if and only if
l

k —
[1# =Tl4
=1

=1

This protocol can be viewed as a generalization of a fail-stop signature protocol of [24] (or
of [32], for that matter), although we use it in yet another way. This is already obvious from
the property that in the cash system users remain anonymous, and hence we in fact even
cannot use the special properties of fail-stop signatures (we prevent framing in another way).
Instead, we use this protocol for our cash system as a means for the prover to release lines
(we extend this in the next Subsection). As the next proposition will show, there are no extra
moves necessary to prove correctness of the revealed information, since the responses are self-
certifiable. In contrast, the response in method 1 is not self-certifiable (there is no verification
relation), hence the certification must be provided interactively, for which extra moves are
needed. Note however that in order to reply with a polynomial of degree k, in method 2, &k
numbers are needed in the first move (for self-certifiability), whereas with method 1 this is
independent of k.

Although the protocol of method 2 has the self-certifiability property, it cannot be used in our
cash system precisely as described here, since transcripts can easily be forged (by the shop) by
choosing numbers for the second and third moves, and computing the corresponding numbers
of the first move according to the verification relation. In our cash system, the numbers in
the first transmission are accompanied by a signature of the bank, which guarantees that
transcripts cannot feasibly be forged. Since shops also have to be able to verify whether a
user is giving them validated cash, this signature has to be included anyway. This remark
also applies to method 1.

34

Prover P Verifier ¥V

hi,...,hg,91,...,0k

cCER Zq

T1,---,T]

k —1
T; — Ej:l a;;¢? " mod ¢

k cj71 l l T3
iz hi =lIliz1 9"

FIGURE 4. Partial release of knowledge

For the next proposition, we assume that the identity is encoded using a function from the
set of valid identity-encodings. Again, we formally define this set in the full paper.

PROPOSITION 14 Under the Discrete Log assumption, the following two statements hold:

1. P cannot determine any of the responses r; in Step 2 to be incorrect, in such a way that
V accepts with nonnegligible probability.

2. If P 1is honest, there is no way for any V to obtain any Shannon information about the
tdentity of P from k — 1 executions of the protocol.

The proof is quite simple and can be found in the full paper.

Responses to k different challenges reveal all the a;;. That is, if P executes this protocol
k times with V, his identity is revealed. Note that, in contrast to method 1, not only his
identity is revealed, but his entire knowledge (all the a;’s) is revealed.

10.4 Method 1 versus method 2

In our basic cash system (discussed in the next section), we use the protocol of method 2,
with £ = 2, [= 3, and use an extra technique to increase efficiency. After performing the
withdrawal protocol, the user ends up with a number m = g{"g5%g3® (plus the signature
of the bank), together with the representation (a1, a9, ag). His identity is encoded as some
some suitable (i.e. from the set of valid identity-encodings) function of a1, as,a3. He then
determines a splitting of m into two (k in general for a (k—1)-show signature) different parts,
say A and B. If he is to know a representation of both A and B with respect to (g1, g2, 93)
(say (z1,¥1,21) and (z2,y2, 23), respectively), then the following relations must necessarily
hold for these representations:

z1 + o = a1 mod ¢, y1 +y2 = ag mod g, z1 + 22 = a3z mod g,

35

otherwise we would have a contradiction with Proposition 7 (or Corollary 8, for that matter).
Double-spending reveals all the z;’s, y;’s and z;’s, and hence aj1,a9 and a3. Therefore the
bank can compute the identity of the double-spender.

We of course have to make sure that the user commits himself to the specific splitting (A4, B),
for otherwise he could make a new splitting for each payment and his identity would never
be revealed. We achieve this by having the bank during the withdrawal put his signature on
A (and hence B) as well (without getting to know A and B). What then actually happens
is that the user gets a signature on (A, B). This holds for a setting in which a coin can be
spent k£ — 1 times as well: using the splitting technique in conjunction with the protocol of

method 2, the user in the withdrawal phase ends up with m = H?:l A;, plus a signature on
(A1,...,Ag).

It is important to note that if it weren’t for this splitting trick, in general it would be more
efficient to use the protocol of method 1: in method 2, actually the only reason why k numbers
(h1,...,hy) are used (instead of just one, as in method 1) is to achieve the self-certifiability
property for responses that are polynomials of degree k. Without the splitting technique, the
withdrawal protocol would in effect have to be performed k times (once for each number m;),
and it would have to be clear from each of the k signatures (in the interest of e.g. the shops)
that they belong to the same withdrawn ensemble. Although the withdrawal could be done
in parallel, it would obviously be quite inefficient (unless k is very small). In our cash system
(including the extension to checks), the splitting technique can be applied without difficulties,
and so we use method 2 even for the multi-show extensions.

10.5 Revealing bunches of points, lines, and polynomials

We now show how to extend both methods in such a way that the prover can release a bunch
of points, lines, and polynomials. The ability to release both points and lines is needed for
the extension of our system to checks and divisibility.

The basic idea is very simple and can be applied to all the tools we described. Assume a
polynomially bounded P has a number m and knows one representation (ai,...,ar) of m
with respect to a generator-tuple (gi,...,9x). Consider the case where P wants to release
some of the a;’s (points) of his representation to V. Before the protocol starts, P just sends
them to V and the rest of the protocol is then performed with the products of the gi* for
which the a;’s have been revealed, divided out first. For example, in the general protocol of
method 1, if P first opens ay, ..., a; for some [< k, the protocol remains the same, with the
new h being h/ Hle g%, and the new generator-tuple (g1,...,g1-1)-

We illustrate this with an example. Suppose P wishes to reveal a; and ag of his representation

of m. We note that m/(g7" g5?) = f=3 g%, hence in case P honestly computed his responses
T1,T2 as 71 = a1, T2 = ag, he knows how to represent m/(g;* g5°) with respect to (g3, ..., gk)-
Vice versa, if P was dishonest (71 # a1 or r2 # a2), he cannot prove knowledge of m/(g7* g5?)
with respect to (gs,...,gk), since he must then know a representation (by definition), say
(c3,...,ck), of m/(g1'gs?) with respect to (g3,...,9k). This however implies that P knows
the representations (r1,72,¢3,...,c;) and (ai,...,ax) of m with respect to (g1,...,9%). If

T1 # a1 or 79 # ap, then these two representations are distinct, which is in contradiction
with the assumption. Note that if P originally knew no representation of m at all, he cannot
succeed either in proving knowledge.

36

In general, P can release certain points a;, with ¢ € S C {1,...,k}. If and only if P honestly
reveals these points (i.e. 7; = a; for i € §), he knows a representation of m/[[;c5g;* with
respect to the tuple of generators g; for which ¢ ¢ S. For the checks and the divisibility we
use this in the following way.

The user P sends to V (the shop) the numbers A, B, plus the signature of the bank on these
numbers. P knows representations (ai,...,ax), respectively (b1,...,b;) of A, respectively
B with respect to (g1,...,9%). In our cash system, P knows at most one representation
(c1,...,ck) of AB (we assume for the moment that he knows exactly one), and during the
withdrawal phase he splits AB at random in two parts A, B (in k+ 1 parts in the general case
of k-show cash). By Corollary 8, always a; + b; = ¢; mod g. Suppose the protocol at the shop
is such that P must release information about say c;41,...,c; such that two executions of the
protocol enable V' to extract ¢;y1,...,ck, and only one execution is needed to obtain c1,...,¢;
(for some j such that o < j < k). To this end, information about c;,...,¢; is released in the
clear (points) by P, and about ¢j41,...,c in the form of lines.

The following exemplary protocol enables P to reveal points and lines about his representation
of AB in such a way that V accepts if and only he is honest. Making use of the splitting A, B,
this protocol then is as follows:

Step 1 P sends A, B, sign(A, B) to V as well as the 25 responses r14 = a1, r1p = b1, ...,
T;4 = aj, and r;p = b;.

Step 2 V sends a challenge ¢ € Z, \ {1} to P.

Step 3 If ¢ # 1, P computes the £ — 7 responses r;41 = aj41 + cbjp1modyg, ..., rp =
ay, + cb,, mod ¢, and sends them to V.

As in method 2, V accepts if and only if
J . J . k '
A/Il1e) - B/11e) = 11 ¢
i=1 i=1 i=j+1

Again, suppose at least one of the k + j responses of P is incorrectly formed (P cheated).
Rewriting the verification relation gives us

ABE = gpatens . gATenB il gn
That is,
(a1 +¢by = (ria+ecriB),...,a; +cbj — (rja+ cr5B),aj41 + cbjy1 — 7541, ..., ap + chp — 1)
is a representation of 1 with respect to (g1,...,gx). If one of the responses is incorrect, this

representation is nontrivial, and we have a contradiction (Proposition 7). For a similar reason,
if P starts out with knowing no representation at all of AB, he cannot have V accept in the
protocol.

Therefore, P can only have V accept in this protocol if he knows a representation of AB,
and is honest. The requirements are met: from one execution of the protocol, ¥ can compute
¢ =ria+7r;g mod g for 1 <17 < j, and gets no information about the rest of the ¢;’s (strictly
speaking, there must be a power of a dummy generator in AB: we discuss this further in

37

Section 13). From two executions of the protocol (with different challenges), V can also
compute ¢; for 7 <1 < k.

It is easy to see that, for the correctness of the protocol, it does not matter whether the points
are revealed in Step 1 or in Step 3. Observe that the reason why ¢ # 1 is that in that case ¢;
can be computed for 7 < 2 < k from just one execution of the protocol.

In general, we can apply this idea to polynomials of degree k, using a splitting in k£ + 1 parts
instead of in 2 parts. We will state and prove the general result in a formal way in the full

paper.

11 THE BASIC CASH SYSTEM

We now show the basic form of our cash system, i.e. in this system we only have coins
(of various denominations). We describe this here using a user identity of the form (uj,us)
(and the bank knows g}*g5?), which also has the feature that framing of the bank of a
user is prevented unconditionally. If one is content with a system in which framing is only
computationally prevented, we can get an even more eflicient scheme by having the identity

of the user being simply of the form u (and the bank knows g*).

11.1 The set-up of the system

The set-up of the system consists of the bank generating at random the following five (distinct)
elements:

1. A generator-tuple (g,h). This is the public key of the bank, which it uses to make
signatures with in the withdrawal protocol. The index z = log,h is obviously kept
secret.

2. A generator-tuple (g1, g2) which is used throughout the system.

3. A so-called dummy generator d (unequal to g; and gp), which is to ensure that the
identity of honest users cannot be computed from an execution of the payment protocol
(independent of computing power).

For now, we assume that there is only one denomination (coin) in the system, and so we do
not yet have to deal with how to encode different denominations. We discuss how to do this
in the end of this section.

The safety of our scheme depends on no one being able to express any of g,h,91,92,d as a
combination of powers of the other elements. Since this is at least as difficult as the problem
of finding a nontrivial representation of 1 with respect to the generator-tuple (g, k, g1, g2, d),
by Proposition 7 this is guaranteed to be infeasible (assuming the Discrete Log assumption).
We furthermore remark that not even the bank need know any discrete logarithms except for
z. As we discussed earlier in this paper, we can make use of this in various stages of the proof
of security (but not privacy) of our cash system.

When a user U opens an account at the bank, he generates at random (possibly in cooperation
with B, using the protocol of 10.1) numbers u1,us € Zg, and computes I = gi* g3*>. The bank,
not knowing (u1,us), stores I together with the user’s real identity and account number. In

38

case the user double-spends the same cash, the bank will be able to find out (u1,u2). By
computing I = g7?g52, he can then determine his account and hence his identity. Therefore,
we will speak more loosely of (u1,ug) or g7 gy” of a user as being “his identity”.

11.2 The withdrawal protocol

When a user U wants to withdraw a coin from his account (corresponding to say I = g;* g5?),
he first convinces B that the money will indeed be withdrawn from his own account. To this
end, U proves to B knowledge of a representation, using for example the scheme discussed
in Section 8. We here observe that the user might show it in the clear, although this might
not be smart because the bank can then frame him or there might be eavesdroppers who can
then misrepresent themselves. If B accepts U’s proof then (for each coin that U wishes to
withdraw) the actual withdrawal protocol is executed (see Figure 5).

Step 1 B subtracts the appropriate amount of money (which we assumed for the moment
to be fixed) from the account and forms the number m = Id (note that &/ can compute
this number himself, so there is no need for B to transmit it to /). B sends m*, g* and
m" to the user, with w randomly chosen from Z,.

Step 2 U generates random numbers s € Z;,
to m'(= m*® = ¢1"°g5*°d*). He now randomly splits each of the three exponents in
two parts, i.e., determines splittings u1s = z1 + z2 mod ¢, uss = y1 + y2 mod g and
s = z1 + zp mod ¢, and then computes A = g7*g5'd**. He then computes B = m*®/A,
and also the other blinded terms (using u,v) for the hash-function (we call them, as

before, 2’,a’,b"). He then sends challenge ¢ = H(m',2',a’,b’, A)/u mod ¢ to B.

u,v €R Zgq, and transforms m, using s,

Step 3 B sends the response back as in the blind signature scheme, and U transforms it to
a corresponding response 7’.

In Step 2, there is actually no need for the bank to send m® to the user: in the set-up phase,
the bank can also publish (g¥,g5,d"), so each user can compute m?® corresponding to their
own identity (but by the Diffie-Hellman assumption not those of others if one is to end up
with knowledge of a representation, although this is not important for the security of the
system). This has the advantage that the user can do even more precomputing before the
actual withdrawal protocol begins (see Section 15).

By Proposition 10, i ends up with a triple (A4, B,sign(A4, B) = (Z/,a’,b',7')) that is uncon-
ditionally unlinkable to the withdrawal, and for which AB = m'. Note that if &/ followed
the protocol, then he knows representations of m’, A and B with respect to (g1, 92,d) (re-
spectively (u1s,uss,s), (1,91, 21), and (z2,¥2,22)). By Corollary 8, the representations are
always such that u1s = z1 + 29 mod ¢, uas = y1 + y2 mod g and s = z1 + 23 mod ¢ (otherwise
the Discrete Log assumption was broken since, as we discussed, not even the bank needs to
know a nontrivial representation of 1 with respect to (g1, g2,d)).

11.83 The payment.

When U wants to spend his coin at a shop S, the following protocol is executed (see Figure 6):

(I =g1"95%) (9.h =g%)

Proof of knowledge of (u1,us)

w ER Zq
m «— Id
z — m®
a«—g¥
z,a,b b m¥
m «— g gp*d
S ER Z;
ml — mSs
zl — 25
Split m' in A, B
u,v ER Ly
al — augv
bl — bsu(ml)'u
d —H(m! 2 d b, A)
¢ c'/umod q ¢
" 7 «— ¢+ w mod ¢
g"' ; hCa
m" = 2%

v’ «— ru+ v mod ¢

FIGURE 5. Withdrawal protocol for coins

39

40

A, B,sign(A, B)

?
AB#1
Verify sign(4, B)
¢ c € Z,

71 < T1 + cxo mod g

79 < Y1 + cyo mod g

73 < 21 + cz9 mod ¢ m,72,73

g'{'l 952 d7‘3 ; ABc

FIGURE 6. Payment protocol for coins

Step 1 U sends the triple
A= g{*g8'd*, B = ¢7?¢%2d**,sign(A, B) = (2',d/, V', ")

to S. (In case there are different denominations in the system, U also has to inform S
of the amount of money the coin is supposedly worth.)

Step 2 S first verifies that AB # 1. Then S verifies the signature, by first computing
d = H(AB,Z2',da',b', A) and verifying with this ¢’ the relations as in the basic blind
signature protocol. If the verification holds, S sends a challenge ¢ € Z; to U.

Step 3 U responds with r1 = 21 + czo mod ¢, ro = y1 + cy2 mod ¢, r3 = 21 + czo mod q.

S verifies whether g7'g52d™ = AB°€, and, if so, accepts. Note that if AB = 1, then s was
chosen to be zero, which is not allowed since w1, us will then not be revealed when the user
double-spends.

11.4 The deposit.

After some units of time, all the shops send their gathered information of payments to B
(see Figure 7), who will now immediately discover any double-spent coins, since the same
A, B, sign(A, B) have been used. From the responses to the challenges, B can compute
z1,%2,Y1, Y2, 21, 22, and hence the identifying information of the user who double-spent as:

u; = (21 + z2)(21 + 22)_1 mod g and ug = (y1 + y2)(21 + 22)_1 mod gq.

Hence B can compute I = g7* g5?, and search its account-list to identify the double-spender.

For later comparison with the way the bank identifies a double-spender in the wallet-with-
observer setting (Section 16), we here derive the precise formulas that the bank needs to

41

Aa Ba Sign(Aa B)) C,T1,7T2,T3

verification as in the
payment protocol, and
check for double-spending

FIGURE 7. Deposit protocol for coins

apply to extract ui,us. If the bank detects that information A, B, sign(A, B) has been spent
more than once, it then has at its disposal two sets of responses (r1,r2,73) and (7], 74, 75),
corresponding to two different challenges ¢ and ¢. By the verification relations, the following
equations must hold:

r1or2 T3

i, 9,95 = = AB,

From this, we derive that

ETmerI(e=e) (emamer)(¢=0) (era—erh) /(=)
B=g (n r)/(e—e') (rz i e=d) (e'ra= St /(! ~)

We know that . .
A=g7"93" 93",

B = gi*95° 95"

Since the system cannot have come up with a non-trivial representation of 1 with respect to
(91,92, 93), it must be that

(dry—erl)/(d —¢) = 1 mod g,
(crg —erh)/(d —¢) = 31 modg,
(cdrg —cry)/(d —¢) = 2z mod g,
(r1—7))/(c—¢) = z2mod g,
(re—m3)/(c—¢') = yamodyg,
(rg—75)/(c—¢') = 2zymodgq.

This in turn implies that the bank can compute

ws = z1+zo=(cr1—crl)/(c —¢c)+ (r1 —7})/(c — ') mod g,
ups = y1+y2 = (c'ra—crp)/(c' = ¢) + (r2 = 75)/(c — ¢/) mod g,
s = z1+zp=(dr3—cry)/(c —¢c)+ (r3 —15)/(c— ') mod g,

and so
up = (ri(c +1) =ri(c+1)))/(r3(c’ = 1) —r3(c+1)) mod g,
ug = (ro(c' +1) —74(c+1)))/(r3(c' = 1) = r§(c+ 1)) mod gq.

42

11.5 Remarks concerning denominations, the shop’s challenge, framing and k-show coins

Various denominations There are various ways in which we can have our system consist
of coins with several distinct denominations. The most obvious of these is (like in cash systems
based on RSA, where usually the root that the bank extracts denotes the denomination) to
have the bank use a different public key for each denomination. That is, if there are to be &
distinct coins, the bank publishes (g,h1),...,(g, ht) as its public keys, and z1,...,z; (with
z; = log,, h;) are its corresponding secret keys.

A more efficient (and elegant) way to encode denominations, which makes use of the structure
in the representation problem, is to have ¥ dummy generators dj, d; published by the bank
(in this context, it would make more sense to speak of denomination generators than of
dummy generators). Each of these generators is used to denote some fixed amount of money
(i.e. a coin). This encoding has the advantage that one can have d; denote for example
$2°~1 and hence one can then use all denominations from $1 up to $2*, multiplying suitable
generators according to the binary expansion of the denomination. For example, $11 would be
represented by g1g2g4. That is, with k generators, 2¥ —1 different amounts can be represented,
without this affecting the efficiency of the protocols for withdrawal, payment, and deposit.

We observe here that, when this latter encoding of denominations is used there is no way
that a user can withdraw say $1 (corresponding to di), and spent it in a shop for say $6
(corresponding to dad3) for a reason discussed already before in a different context: assuming
that in the withdrawal protocol the user ends up with a number m (plus sign(m)) of which
he knows a representation with respect to (gi,g92,d1), if he succeeds in having the shop
accept this information for $6, he must necessarily know a representation of m with respect
to (g1,92,d2d3). Hence, the user knows a non-trivial representation of 1 with respect to
(91, 92,d1,dad3). However, not even the bank needs to know this, and can be assumed to be
(since the security for the bank needs only be proven for an honest bank) polynomially
bounded. This would imply that the system (viewed as a probabilistic polynomial-time
algorithm whose random choices simulate the actions of its participants) has come up with
a nontrivial representation of 1 whereas it only got inputs (g, k,91,92,d1,...,dx). Note that
the only situation in which this argument, which clearly holds in general, does not give us a
contradiction is if the user in the withdrawal protocol ends up with an m of which he knows
indeed a representation with respect to (g1, g2, d2ds). We discuss this possibility further in
Section 12.

The choice of the shop’s challenge The challenge ¢ from S in the payment protocol
can (and probably should be in a realistic implementation) be computed as a one-way hash-
function of several data (the first transmissions, the time of transaction etc.). In particular,
the challenge should be unique to each shop, hence the value of the above function should
be concatenated with a string that was generated by the bank, and which is unique for each
shop. Therefore, in principle the entire payment protocol can be condensed to a single move.
We refer the reader to [8] for a further discussion of this matter. Observe that even if ¢ is
generated (to some extent) at random, and hence the responses must be computed in real
time, this still is extremely efficient (two multiplications and additions). We believe this
constitutes as fast a payment as one would like to have from the point of view of the user.

43

Framing If the bank falsely accuses a user of having double-spent a coin, the user can
falsify this before a judge. To this end, the bank has to tell the representation (say (u1,u2))
it found. If this representation is not that of the user (which is the case with overwhelming
probability if the user was honest), the user now knows a non-trivial representation of 1 with
respect to (g1,92) (or log,, go, for that matter). Since he could not have come up with this
by himself, it proves that the bank tried to frame the user. We note that it would in fact be
very unwise for the bank to try to frame a user, since the user could prefer not to deny this.
Since this user would then know log, g2, he can from this moment on double-spend to his
heart’s content, without ever being caught.

In our basic cash system, the identity of the user is encoded as g;”g5?, which is to make

sure that framing attempts of the bank have negligible probability of success, regardless of
computing power. We can also encode the user-identity more simply as g“. The entire system
then becomes even a little more efficient (only two responses are needed in the payment
protocol, and the verification relations are easier to compute). However, as we discussed
before, the bank usually will choose the security parameters, so it may be better to prevent
framing unconditionally rather than it being merely infeasible. This remark also applies to
all extensions we will discuss.

Multi-show cash Using the general protocol described in subsection 10.5, the protococols
can be straightforwardly adapted in such a way that the user can spend the same coin say
k times. If he spends it for the (k + 1)-th time (“double-spending”!), his identity can be
extracted by the bank. To this end, the user at the withdrawal splits m’ into k + 1 parts,
and in the payment phase gives responses that are polynomials of degree k in the challenge.
Clearly, at withdrawal time the bank then subtracts k£ times the value of the coin from the
account of the user, in the payment phase the user also has to inform the shop of the number
of times he is allowed to spend the coin, and H(-) must be a has-function with &k + 4 inputs.
Multi-show cash can be advantageous in certain circumstances, since the storage requirement
of the user much less then if he would store k copies of the coin. Moreover, contrary to checks,
no refund protocol is needed, and the withdrawal protocol remains about as efficient as it was.
When tre user pays with a multi-show coin in one transaction, there is no disadvantage with
respect to his privacy at all over paying with a check or many one-show coins.

12 THE CORRECTNESS OF THE BASIC CASH SYSTEM

In this section we sketch the correctness of our cash system. a detailed proof of the contents
of this section will be in the full paper. First, we remark that actually everything has already
been proven about the privacy of the honest users, and almost everything concerning the
security (the privacy of honest users is unconditionally guaranteed due to Propositions 10
and 13). It remains to show that in the withdrawal protocol, the user cannot obtain signatures
on numbers of which he knows a representation for which the structure in the representation
(in which we encode his identity) no longer remains.

In order to prove this, we make use of Proposition 12 in combination with some extra restric-
tions that must hold. The first restriction is that at the start of the withdrawal protocol, a
number m is used of which the user knows exactly one representation (u1,ug,1) with respect
to (g1,92,d). This is true since the user proves knowledge of a representation (ui,us) of
(91,92) when he wants to get access to his account, and not even the bank need know any

44

nontrivial representation of 1 with respect to (g1, g2, d). The second restriction is that if the
user wants to have any chance of having the shop accept in the payment protocol, he must
know at least one representation of m' with respect to (g1, g2,d). Again, since not even the
bank need know any nontrivial representation of 1 with respect to (g1, g2, d), the best that
the user can do is to end up knowing exactly one representation of m'. As we discussed, the
user will not be identified after double-spending, in case he can obtain a representation of
m’ that is not a multiple of the representation he knows of m. That is, during the blinding,
he then has to multiply in e.g. a factor g] in (g7'gy*d)®. However, it is easy to prove that
he does not know a representation of g; with respect to (m, g), since he then would know a
non-trivial representation of 1. As in the proof of Proposition 12, we hence have that the only
blinding manipulations that the user can perform are such that his representation of m’ is
a multiple of his representation of m, and this holds independent of the information he may
have gathered from polynomially many transcripts of previous executions of the withdrawal
protocol.

Furthermore, we observe that it is infeasible to forge pairs m, sign(m). This follows directly
from the choice of the hash-function (see [15]). We remark that even if the user could obtain
such a pair, he can only pay with it if he knows a representation of m with respect to (g1, g2, d).
Hence, his task to forge cash is even harder: not only must he come up with a pair m, sign(m),
but he must also know a representation of m.

Finally, we outline the proof of the infeasibility of forging transcripts of valid executions of
the payment protocol. In fact, this is an almost immediate consequence of the fact that the
challenge must be chosen as a one-way hash function of the information sent in Step 1. Hence,
well-known arguments show that forgeability is infeasible (since the protocol is constructed in
fact by the Fiat-Shamir technique to transform minimum-knowledge protocols to signature
schemes). Again, we observe that the task of the forger is actually even harder: even if he
could find A, B such that he obtains a valid transcript of the protocol (for example by working
“backwards” or applying a meet-in-the-middle attack), he must also determine sign(4, B),
which is infeasible.

13 EXTENSION TO CHECKS

In this section, many symbols are needed to denote the indices and responses and we conse-
quently even run out of letters of the alphabet. We therefore remark here that it might be
desirable to use a vector notation, such as g? instead of Hf’zl g;*. In the full paper, we will
introduce such a notation.

The basic payment protocol is quite efficient, and does not require that much storage space
if a user pays at a shop with a bunch of coins. However, although introducing checks in the
system has the disadvantage that an extra protocol for refund is necessary, it can still be
more efficient when amounts that can only be paid with many coins are involved.

We first sketch the basic idea of how to extend the basic system to one that includes checks.
Suppose we have a generator-tuple (f1,..., fr) of length k, with f; representing some amount
of money, say $2°~'. As we discussed in Section 11, any amount up to $2* — 1 can then be
represented by multiplying the appropriate generators according to the binary expansion of
the particular amount. Due to the vector addition chain techniques, computations involving
such amounts are still efficient. During the withdrawal phase, a user who intends to withdraw

45

a check that can be spent up to $2% — 1, generates at random an index-tuple (a1, ...,ax) of
length k, and computes m = le fi*. The a;’s are called refund terms. Neglecting all
privacy issues for the moment, suppose the user has this number signed by the bank, and
the bank stores this check m with the users account. At the shop, when the user wants to
spend some amount of money (say $7), he reveals not only (m,sign(m)), but also (a1, a2, a3),
and the shop makes sure that he receives a signed proof of correctness of this information.
At deposit phase, it sends this information to the bank, who (after verifying its correctness)
stores (a1, a2, a3) on a special refund-list. When the user wants to get a refund for the unspent
part of the check m (corresponding to f4,..., fi), he sends a4, ..., ar to the bank. The bank
verifies whether m is indeed stored with the user’s account, and also that a4,...,a; are not
already on its refund-list. To ensure that the user honestly sent the a;’s, he has to prove to
the bank knowledge of a representation of m/ e, f{ with respect to (f1, fo, f3). If the bank
accepts, it refunds the user the appropriate amount of money, erases m from the account of
the user, and stores (a4, ..., a)) on the refund-list.

Of course, since the check is unblinded, there is no privacy yet. Before we discuss how to
achieve this, we remark that the bank can, after the refund, link the refund to numbers on
the refund-list in the following way: for all tuples on the refund-list, the bank can simply
find out which is a representation of m/ Hf:4 fi* with respect to (f1, f2, f3). Hence, an extra
dummy generator d is needed, i.e. m is of the form (Hle f{#)d%+1. The index ap41 also is
a random choice of the user, and he never reveals it. This prevents the kind of linking just
described, since for each tuple on the refund-list there is a number agy; such that this tuple
is a representation with respect to m/([]f_, f™ d%+1).

We now incorporate anonymity. Since a user can cheat in this scheme (without being identified
after the fact) by simply spending the same parts of the check over and over again in case
of anonymity, the actual check system is somewhat more complicated. First of all, to ensure
that the user remains anonymous, we have a check consist of 2k terms, (e1, f1),..., (ex, fx)-
The pair (e;, f;) replaces the f; in the above discussion. The denomination part now becomes
the product of powers of these 2k elements, and the quotients of the exponents of e;, f; will
perform the role of the a; above. The reason for this is the same as in the basic cash system,
namely to make sure that during the blinding the refund terms are not altered. Secondly,
to be able to identify a user who spends (the same parts of) a check more than once, we in
addition build in the double-spending property as in the basic cash system. A check in our
system hence looks like the following product of powers of 2k + 4 different generators (chosen

by the bank):

identity-part denomination-part

2 k

(ngm) . dfl . (H e;:"iffi) . dgk+1)

i=1 i=1
As in the basic cash system, a user is known to the bank as I = gi* g3* (or, as in the basic
system, as I = g} if it is sufficient that framing of the bank is infeasible rather than having
negligible success probability independent of computing power). The generators dj,ds are
dummies, the purpose of d; being the same as that of d in the cash system (i.e. to make
sure the identity of the user is still hidden unconditionally after spending the check once and
having requested refund), and that of g being to prevent linking by the bank after the refund
phase.

46

13.1 The withdrawal protocol

After the user has identified himself to the bank as in the basic cash system, the following
withdrawal protocol is performed (see Figure 8):

Step 1 U generates at random 2k + 1 distinct non-zero random numbers, a;, b; (with 1 <

i < k) and aj;1. He then computes m; = ([[%_; ef"fib")d;’”’”, and sends this to B.

Step 2 B subtracts the maximum amount for which the check can be spend from the U’s
account, and lists m1 with U’s account. With mg = Id;, B then computes m = mima,
and sends m®, g* and m® to the user, with w randomly chosen from Z,.

Step 3 U generates random numbers s €x Z;, u,v €g Zg, and transforms m, using s, to
m/. Note that

I __ 85 __ [u1S _U2S s a1s pbls ags pbps j0k4+18
m' =m® = (g1"°g5%°d]) (e1"°f1° - " frF dy"TT).

He now randomly splits each of the 2k + 4 exponents into two parts, i.e., determines

splittings

18 = 1+ xo mod g
ugs = y1+y2 modgq

s = z1+zymodgq
a1s = a4+ ajp mod g
bis = [1a+ f1p modq
aps = apa+ opp mod g
bps = PkA+ Brp modq

ap+1S = ag+apmodgqg

and computes

A= gflggl dfl E?IAff;lA L. ezkAfgkAdgA.
U then computes B = m'/A, and also the other blinded terms (using u,v) for the
hash-function (we call them, as before, z’,a’,b'). He then sends challenge

c=H(m' 2 d,b,A)/umod q
to B.

Step 4 B sends the response back as in the blind signature scheme, and U/ transforms it to
a corresponding response 7.

Again, as in the basic cash system, there is actually no need for the bank to send m® to the
user.

We note that for checks the public key of the bank must be different from that used to
sign coins. If this were not the case, a user could ask for a check in the withdrawal, send
my = g4 for some random ¢ to the bank, and receive a signature on m” from the bank, with
m = g{“ggz"'tdl. Hence, if he could use this information as a coin, he could double-spend it
without his identity falling out. Another way to prevent this than using another public key is
for the bank to require of the user that (after Step 1) he proves knowledge of m; with respect
to the generator-tuple (e1, fi1,...,ek.fk, d2), but this is less efficient and not necessary in view
of the above.

(Proof of knowledge of uj,us2)

U
(917 92%)
a1, .., 0p1 ER Ly

b1,...,br €ER Z;
(all different)

k a; rb; Ak 1
my — [Tizg el f;* - do™*

m «— g1 95> dimy
S ER Z;

ml — ms

Z’ — Zs

Split m' in A, B
U,V ER Lyg

a’ — aug'u

bl — bsu(ml)'u

d —H(m' 2 d b, A)

¢ — c'/umod q

?
g" = ha
m’ = 2%
7' «— ru+ v mod ¢

(9,h =g%)

(store my)
wER Zq

m «— Idimq
z+—m"
a<«— g%

b— m¥

7 «— zc+ w mod ¢

FicUrE 8. Withdrawal protocol for checks

47

48

13.2 The payment protocol

When U wants to spend his check at a shop S, the following protocol is executed (see Figure 9):

Step 1 U sends the triple A, B, sign(A4, B) to S. U also informs S of the amount of money for
which he wishes to spend this check. Without loss of generality, we assume he wishes to

spend an amount corresponding to (e1, f1), ..., (ej, f;) (i.e. $27 —1 if the denominations
are as in the example), with 1 < j < k.

Step 2 S first verifies that AB # 1. Then § verifies the signature as before and, if the
verification holds, sends a challenge ¢ € Z; \ {1} to U.

Step 3 U verifies that ¢ # 1, and if this holds he computes (and transmits to V) the appro-
priate responses:

For i =1 to j (points):
ri = (731, Ti2, Ti3, Tia) — (c4a, oB, Bia, BiB)

For i = j+ 1 to k (lines):
ri = (ri1, ri2) — (44 + caipmod g, Bia+ cfip mod q)

Thtl = (T(h41)1> T(k+1)2 T(k+1)3) < (Z1 + cza mod g, y2 + cy2 mod g, 21 + czg mod g)
T2 “— @4+ cap mod g.

That is, for each part he wishes to spend, he reveals the corresponding numbers (points),
and for the identity-part he reveals lines (corresponding to 7541. The other lines (cor-
responding to 7;41,...,7, and 742) are, as before, in fact merely to ensure the self-
certifiability property.

The points might as well be sent before the challenge, in Step 1.

S verifies this information as follows (see Subsection 10.5):

?
r13+r1a # 0,

Ti3 + 754 ;é 0,
?
AB # 1,

R .) .
c L7 Ti1 £Ti3 7 Ti2 £Ti4\c k Ti1 £Ti2 2 T(k+1)s | gT(k+1)3 JTk42
AB® =Tl e 72 - (i &2 f7) - Tlimjpa & 2 - Tz 9 ~dy dy 7,

and accepts if and only if these verifications hold.

13.3 The deposit protocol

After some units of time, S sends all the information of the payment to B (see Figure 10).
This consists of

A, B,sign(A, B),71,...,Tkt2-

c ;é 1
For 2 =1 to 3:
i — (@4, @B, Bia, BiB)

Fort=7+4+1 to k:
7i — (a;4 + ca;p mod g,
Bia + ¢B;p mod q)

Tk+1 « (21 + czo mod g,
y2 + cy2 mod g,
21 + ¢zo mod q)

Tk42 ¢ a4 + cap mod ¢

49

S
A, B,sign(A, B)
?
AB 41
Verify sign(A, B)
¢ c € Zg \ {1}
T1y. - Tk42
(Verify)

FIGURE 9. Payment protocol for checks

50

A, B,sign(A, B),c,T1,...,Tkt2

(Verification as in the
payment protocol, and
check for double-spending)

(Store (i1 + mi2)(riz + 7‘1-4)_1 mod ¢
on refund list, for 1 <1 < j)

FIGURE 10. Deposit protocol for checks

The bank verifies it, applying precisely the same verifications as S did after Steps 1 and 3 of
the payment. If the verifications hold then B stores, for z = 1 to 7, the following terms on the
refund list:

(i1 + ri2) (i3 + 7i4) 7! mod g.

Observe that if the check has been double-spent, B detects this and distills (from two responses
Tk+1 and T;c+1) the identity of the double-spender as in the basic cash system.

13.4 The refund protocol

When the user wants a refund for the amount of the check which he did not spent, the user
first informs the bank of his account number, and of m;. The bank verifies that this mi is
listed with the user’s account and, if so, the following protocol is performed (see Figure 11):

Step 1 U sends a;,b;, for j < i < k, to B (i.e. the points corresponding to the part of the
check which is to be refunded).

Step 2 B verifies that for all 7 < 7 < k, b; # 0. If this holds, B verifies that the quotients
a;/b; mod ¢ that U sent to him in Step 1 are not already on the refund-list. If this is
also the case, U proves to B knowledge of a representation of ml/(]_[i-czj+1 efifz.b") with
respect to (e, fi,...,e;, fj,d2). In Figure 11 we explicitly use the proof of knowledge
of Section 8 for this.

Step 3 If B accepts, he refunds the appropriate amount of money to U, and puts a;/b; mod g,
for 7 <2 <k, on the refund list. He then erases m; from U’s account.

18.5 The security of the check extension

It is easy to prove that the untraceability of the user is guaranteed unconditionally, i.e. that
the lines for the unopened denomination parts do not reveal any information that can later
be used to link payments to refunds. The rest of the proof of correctness follows directly from

Forz=1to 7+ 1:
’l)iE'RZq

For 2 =1 to 3:
wiERZq

2 ([€ f7) - dy'

For:=1toj+1 do:
741 — V; + ca; mod ¢

For 2 =1 to 5 do:

742 — w; + ¢b; mod g

B

Is mq listed with account?

Z,05+41, bj+la sy Ak, bk

Forj<i1<k:
?
b; #0
a;/b; not on refund-list?
c

¢ € Ly

T11,712,-- -, 752, T(54+1)1

k i £b;
Z (_m/ [l e f°)°
= HZ:l e:“ i?‘iz _d;(1+1)1

erase m1 from account of user
for 1 <1 < 7, store a;/b; mod ¢

FIGURE 11. Refund protocol

51

52

the proof of correctness of the basic cash system. Note that the basic cash system is in fact a
special case of the check system, in that we just leave out the denomination part of the check.
We will give a detailed proof of correctness in the full paper.

In our check extension, there still is the problem of what one might call linking by complemen-
tary amounts. This means that the bank can obtain some information from the amount for
which a refund is requested, since on its refund-list complementary amounts appear. Hence,
the bank can exclude many of the tuples on the refund-list, since they do not form the com-
plementary amount to that requested for refund. This can be prevented to a great extent by
having the user request for refund in batches (see [1]). We show how to do this in the full

paper.

14 EXTENSION TO DIVISIBILITY

We briefly sketch how to extend the system to divisibility here. The details will be worked
out in the full paper. The underlying principle is actually the same as that used for checks. A
divisible amount of money can be viewed as a check, the unspent parts of which can be spent
until the total amount is reached. Clearly, the check extension as described in the previous
section cannot be used to this end, since a user is identified as soon as he spents the check a
second time, even if he honestly intends to use only the unspent part.

To achieve divisibility, we modify the check extension therefore in the following way: instead
of having one identity part and several denominations, we build a check as a product of &
denomination-terms, each of which has its own identity-part. For example, a divisible check
looks like

m= (67957 dr) (e [A7) - (et SRR d*

In the payment protocol, the user releases for the denominations that he wishes to spend, the
points a;, b;, and lines a;s. For the unspent parts, he releases “no information” (clearly, if we
use method 2 for the payment protocol, it is not immediately clear how to do this).

When the user spends the blinded divisible check m" at various places, using only the unspent
parts, the bank (after deposit) can keep track of which parts have been spent already (A, B
are always the same). As soon as a user double-spends a specific denomination, the blinded
form a;sr of a;s is revealed (since this information was released in the form of a line). Because
the blinded forms a;r of a; have been released, as well as the blinded forms uisr, ussr,r of
u18,u2s and 1, the bank can compute s and hence the identity of the user. Observe that the
exponents of the h;’s must depend on at least one of the other exponents a;, b; in the same
denomination part: if this were not the case, the identity could be extracted as soon as two
denomination-parts that are spent once are known to the bank. Nevertheless, other ways in
which to encode the information needed to identify double-spenders are also possible.

Since there must be a certain relation between the exponents in each separate denomination
term, in the withdrawal protocol for divisible money (which remains in essence the same as
that for checks) the user (sending the denomination-part in the first transmission) has to
prove that this knowledge is correctly formed. Note that the user can even request a refund
for the unspent part of the divisible check.

There is one drawback of the above, in that all the payments made with the same check are
linkable. We do not know how to dispose of this.

53

15 AN ANALYSIS OF EFFICIENCY

We here make some remarks on the efficiency of the cash system. A detailed analysis will
appear in the full paper.

First of all, the user in the withdrawal protocol can precompute many numbers. Specifically,
he can generate the random numbers s, u,v beforehand, and hence can precompute all of the
following numbers (we here also assume that the user knows g7, g5, d? beforehand):

v Ay
m,m,z,g a(m) ,SU,A,B,$1,$2,y1,y2,21,22.

Hence only o/, need (partly) be computed as well as ¢’,c. Not counting the verification
(since this is actually post-computation), a user therefore need only do approximately 2
exponentiations and computation of one hash-value in real time. The bank can precompute
everything except for the response. Furthermore, if we use k-show signatures, essentially
no extra real-time computing time is needed, due to the vector addition chain techniques.
Therefore, all the multi-show extensions remain very efficient.

In the payment protocol, the user need perform only three multiplications (k in general) in
real time, which is highly efficient. The computational effort of the shop, which must perform
some verifications, is approximately four exponentiations.

In the extension to checks, the computation time for both the shop and the user increases only
linearly. However, it seems that quite a lot of points and lines have to be released (2(k + j7)
if 7 is the number of denominations that are spent in a check with k¥ denomination terms).
However, if on the average half of the denomination terms of a check are spent, a simple
calculation (in which only the number of elements involved in the deposit is counted) learns
that if there are at least five denominations terms in a check, then it is more efficient to use
a check than separate coins. So our check extension actually is more efficient already for
amounts that can only be paid with at least three diffferent coins (not considering the extra
workload from the refund and withdrawal protocols).

An idea which may increase efficiency even further is that users do not need to compute
all their random numbers in the withdrawal protocol (this especially applies to checks and
divisibility) from Zg4, but can restrict part of them to a smaller range. The exponentiations
then require even less computational effort. This need not diminish privacy at all, if the
information that must remain hidden is a function of several indices (this idea is inspired by
the fact that the product — or sum — of k elements from Z; is uniformly distributed over Z;
if at least one of the elements is uniformly chosen from Z;).

16 OFF-LINE CASH IN WALLETS WITH OBSERVERS

In this section we discuss how to transplant our cash system into a setting based on wallets
with observers. Our system is the first that can be incorporated without great difficulty into
this setting in such a way that even shared information is prevented. This is a due to the
flexible structure of the representation problem, which allows all protocols used in our system
(including the extensions) to be diverted. As we explained in Subsection 2.2, the important
extra benefit one gets from this setting is that double-spending can be prevented (by the
observer) rather than being detected after the fact. We would like to have a system that
closely resembles our basic cash system, and it should preferably be such that if the observer

54

is broken even before the account of its owner at the bank has been established, we still have
the correctness of the basic cash system.

In order to achieve prevention of double-spending, the information that a user withdraws must
be divided between the user-module and the observer in such a way that the user cannot spend
it by himself. For our basic cash system, this amounts to making sure that the user by himself
does not know a representation of m/, yet the observer and the user together do know one. To
this end, we first observe that if the observer O knows one representation of m; with respect
to a certain generator-tuple, and the user(-module) U one of mg, then only together they
know a representation of mimso (compare this to the protocol of Subsection 10.1).

16.1 Diverting the protocol for proving knowledge of a representation

Before we discuss a protocol which enables O and U together to prove knowledge of a repre-
sentation of mime to a verifier V, we add the extra requirements that O should not be able
to leak any information about his particular representation of m; and need not even know
mg in order to perform his part of the protocol. These requirements are imposed upon us
(see [17]) if we want to avoid shared information.

The following protocol meets these requirements, and is the diverted version of the protocol
described in Section 8 for proving knowledge of a representation. We assume that at the start

of this protocol (see Figure 12), O knows the representation (z1,...,z;) of m; with respect

to (g1,---,9k), whereas U knows the representation (yi,...,yx) of ma and also m = mimas.

Step 1 O generates at random k numbers v; € Zg, computes A’ = [[*_; g** and sends A’
to U.

Step 2 U generates at random k numbers w; €r Zg and a number d €r Z,;. He then
computes A = A’ - (T[7_; g*) - m% and sends A to V.

Step 3 V generates uniformly at random a challenge ¢ €g Z, and sends it to V.
Step 4 U computes ¢’ = ¢ + d mod ¢ and sends challenge ¢’ to O.

Step 5 As in the basic proof of knowledge, O responds with the k numbers r, = v; +
c'z; mod g.

Step 6 U verifies whether the responses of O are correct, i.e. whether Hi-“zl g;-ri = A'mil. If
this is the case, U computes, for ¢ € {1,...,k}, the responses r; = 7\ + w; + cy; mod g,
and sends them to V.

V accepts if and only if Hle gt = Am°.
It is easy to prove that the following proposition holds.

PROPOSITION 15 V accepts if and only if O and U follow the protocol.

We can consider this three-party protocol as being a special combination of two sub-protocols,
one between O and U, and the other between U and V. FEach of these two sub-protocols
corresponds precisely to the two-party protocol for proving knowledge of a representation
described in Section 8.

55

O U 1%

(my = f:lgfi) (mg = leggﬁ)

m(=mima)

v; ERZq
k A AI
w; ER Zq
degp Zq
! k w; d A
A=A (Il g) m¢ — 2
; CERZq
/
. ¢ ' —c+dmodgq
.
c#0
rh — v; + c'z; mod M- "k
7 7 7 q —_—
k ri ? !
i=19;" = A'm§
T1,...,Tk

Ti « 7 + w; + cy; mod q
k i 7
[li=1 ;" = Am®

FIGURE 12. Diverting the protocol for proving knowledge of a representation

56

PROPOSITION 16 IfU follows the protocol, then transcripts of the sub-protocol between O and
U are statistically independent of transcripts of the sub-protocol between U and V.

That is, no shared information can arise in this protocol (see [17]). The simple proof of this
will be given in the full paper.

16.2 A first attempt to transplant the basic two-party cash system

From this protocol to diverting the basic payment protocol seems only a minor step. However,
there are some difficulties that one encounters when trying to meet all the requirements of
the wallet-with-observer setting. We therefore first discuss an attempt which unfortunately
leads us to a dead-end street. This will give the reader a feeling of how to proceed in order
to avoid the main difficulties.

In the basic cash scheme, the user withdraws a number m’ with the signature of the bank,
such that he has committed to a splitting m’ = AB. In the three-party setting, each of
A, B must be split up between O and Y. That is, A = ApAy and B = BpBy, with one
representation of Ap and one of By known only to O and one representation of Ay and one
of By known only to U. We have to choose this specific division of knowledge since, in order
to prevent shared information, O may not even know either of A, B.

To achieve the statistical independence property in the diverted payment protocol, the precise
form of A and B must unavoidably be somewhat more complicated. Specifically, if we let

__ 01 02 03
Ao = g1'95°93°,
04 _O5 _Og

Bo=91 9293,

Ay = 91" 95°93°,
By = 91*95°95°,
we then take
A= ApAyBS
B = BoBy.

The number d € Z, is a random choice of the user that must remain unknown to O. With
this split-up, it turns out that the payment protocol can be diverted. To this end, in the
withdrawal protocol AB must be withdrawn in such a way that the above division of knowl-
edge of a representation of AB is accomplished. That is, the observer must end up knowing
only a representation (01, 02,03) of Ap and a representation (o4, 05,06) of Bp with respect
to (g1, 92,93), and nothing more. The user-module must end up knowing a representation
(u1,ug,us) of Ay, a representation (us,us,ug) of By with respect to (g1, g2, 93), the numbers
Ao, Bo, and the signature sign(A4, B) of the bank on A = A@AuBé, B = BpBy.

It is clear from this split-up that the user-module on its own does not know a representation of
either of A, B, and hence cannot spend this information without cooperation of the observer.
The identity of the user must be encoded in the representations in a suitable way, if the
requirement that the identity of a double-spender (who hence broke the tamper-resistance)
is to be revealed. We return to how to do this after showing the diverted payment protocol,
since it depends on the form of the verification relation of that protocol how the identity must
be encoded (however, it will turn out that there is no nice way to encode the identity, i.e. we
are already in the dead-end street).

@) Uu
(Ao = 97" 95°93°, (Au = 91" 95%93°,
Bo = ¢7°95°95°) Bu = 91°95° 93°)

*
d E712Zq
- - ¢ «—c+dmodgq
c'7?é0
r] <« 01 + c'o4 mod ¢q
rh «— 09+ c'o5 mod ¢

! ! !
rh ¢« 03+ clogmod ¢ 1272273 |

rhorl ol ? !
91'92°93° = Ao Bj
71— 7 + u1 + cuqa mod g
T9 «— Th + us + cus mod ¢

73 < 75 + u3 + cug mod g

A, B,sign(A, B)
_—

T1,7T2,7T3
_—

57

S

CEZ;

r1 T2 T3 ° c
91 92793 = AB

FIGURE 13. A first attempt to achieve a suitable diverted payment protocol

The diverted payment protocol, from which it will be clear why A must be of this somewhat

more complicated form, is as follows (see Figure 13):

Step 1 U sends the triple A, B, sign(A, B) to the shop S. (In case there are several de-
nomiations, U also has to inform S of the amount of money the coin is supposedly

worth.)

Step 2 S verifies the signature as in the basic cash system. If the verification holds, S sends

a challenge ¢ € Zg to U.

Step 3 U computes ¢’ = ¢ + d mod g, and sends the challenge ¢’ to O.

Step 4 O computes the responses r{ = o1 + /o4 mod g, 5 = 02 + /oy mod ¢ and r§ =

03 + c'0og mod ¢, and sends these to U.

' 1
T2 T3

Step 5 U verifies whether gIng g3 il A@Bg. If this verification holds, he computes r1 =
i +u1 + cug mod g, r9 = 75 + ug + cus mod ¢q and r3 = 5 + u3 + cug mod ¢, and sends

these responses to S.

71 .72 T3

S accepts if and only if g7' g5°g5° = AB°.

58

Again, as in the basic cash protocol, we can increase efficiency even a little further if it is
sufficient that framing is merely infeasible, by using only two generators instead of three. The
same remarks as in the basic cash system concerning the choice of the challenge ¢ of the shop

hold.

As with the diverted protocol for proving knowledge of a representation, one can easily prove
the following two propositions for this payment protocol.

PROPOSITION 17 S accepts if and only if © and U follow the protocol.

PROPOSITION 18 IfU follows the protocol, then transcripts of the sub-protocol between O and
U are statistically independent of transcripts of the sub-protocol between U and S.

This ensures that the privacy of the user is unconditionally guaranteed since, as in the basic
cash system, the numbers AB and the signature are also statistically independent from the
information that the bank sees. If the user wants to spend the same money a second time, the
observer simply refuses to cooperate in the payment protocol. So in order to double-spend,
the user has to break the tamper-resistance of the observer and extract o1, ..., 0g.

Nevertheless, even in that case he must be identified after the fact, as in the basic cash system.
This is where we run into troubles. To see this, observe that the identity of the user must have
been encoded in such a way that two sets of responses (71,72,73), (71,75,75) to two different
challenges c respectively c’ reveal the identity of the user. We first investigate what equations
the bank can extract from double-spending. We have by the verification relations

o a5 af = AB",
™ T T !
911922933 — AB¢ .

Hence, it follows that B = ggrl_Tll)/(c_c')ggz_le)/(C_c’)gys_?ls)/(c_c’). Since B is of the form
B = BoBy = g7*t* ¢35t ¢3¢ 8 it must be that

o4+ ug = (r1 —7])/(c — ') mod g,
05+ us = (rg — 74)/(c — ¢’) mod g,

o6 +ug = (r3 — r3)/(c — ¢’) mod gq.

In the same way, also

01+ u1 + dog = (c'r1 —cr}) /(' — ¢) mod g,
02 + ug + dog = (c'ra — cry) /(' — ¢) mod g,
01+ ug + dog = (c'r3 — cry) /(' — ¢) mod ¢

can be computed from two different executions of the payment protocol.

Therefore, we must make sure that in the withdrawal protocol the identifying information of
the user is encoded in the representations in such a way that from these six equations the
bank can compute the identifying information of the double-spender. The splitting that must
be made in the withdrawal protocol, dictated by this diverted payment scheme, is
A B
——— A
AB = ApAyB% -BoBy .

59

We make the simple observation that if the user and the observer together (in a two-party
protocol) come up with AB as above, and the user wants to have this signed thereafter by the
bank (in a two-party protocol) in order to end up with information that can be used to pay,
he had better not blind AB. If he does so, the payment protocol will not function properly
sinds the responses that the observer gives only function for AB. As a consequence, if the
user makes a random choice s € Z,, and sends ABg® to the bank in order to have it signed,
he had better unblind this number to AB (he can do so by Proposition 12) if he wants to be
able to pay with this information at a shop.

In view of the above, it seems that we must construct the withdrawal protocol as follows.
First, the observer and the user-module together determine Ap, Ay, Bo and By in such a way
that the identity of the user is encoded in a suitable way, and A, B must remain unknown to
the observer. Hereto, By must be chosen at random by the user-module in such a way that it
remains unknown to the observer. To ensure that A remains unknown to the observer, either
d or Ay must be randomly chosen by the user-module. Then, the user-module generates at
random two numbers s,d € Zg,, and sends m; = AuBuBg)gs to the observer. Clearly, there
must be some proof of correctness of m1 here. If the observer accepts this proof, it computes
m = m1ApBp and signs m with its native signature scheme (see [17]). This finishes the
protocol with the observer. Next, the user-module sends m together with the signature of
the observer to the bank. The bank, after having verified the correctness of this signature,
then performs the basic withdrawal protocol with the user-module, as described in Section 11.

Hereby, the user-module transforms m to m’' = mg~5.

It is easy to see from that if the user-module follows these actions, it ends up with a signature
of the bank on (A4, B), such that A = AoAuBg and B = BpBy. Furthermore, both A, B are
not only unknown but also statistically independent from the view of the observer because
of the two random choices d,s € Z; made by the user-module. However, and this is what
goes wrong, a detailed study will reveal that there is no way (without this amounting to a lot
of patching, that is) to encode the user’s identity in Bp, By, basically because By must be
blinded by the user.

16.8 How to avoid these problems

The attempt of the previous subsection failed. This is actually due to the fact that there is
but little flexibility left to encode the identity in a way that meets all requirements. So, in
order to get greater flexibility, we start looking again at the diverted payment protocol. It
seems that this is where the difficulties started, because all further relations were imposed
by the form of the payment protocol. Therefore, we first show how to divert the payment
protocol in a very general way. To this end, let o, 3,7,6, € be elements from Z,. As before,
let
Ao =47'95°95°, Bo = 97" 95°95°
Ay =91"95°95", Bu = g7"92°95°.
We now take the general form
A= A%Ag B},
B = By, Bj,.
A suitable choice of values of the parameters will be made after we decide how to encode the

identity. That is, we will work backwards and choose values of these five parameters in the

end.

60

@) u S
(Ao = 97" 95°95°, (Au = 91" 95°93°,
Bo = 97*95°95°) By = 91"95°93°)
A, B,sign(A, B)
—_—_—
¢ c € 2Ly
/
¢ e (bc+7)/amodgq
7] < 01 + c'og mod ¢
rh «— 09+ c'o5 mod ¢
T1,75,T5

T4 < 03 + c'0og mod ¢
rhorl orlo? !
91'92°95° = Ao Bj

r1 — ar] + Buy + ecuq mod ¢

T9 — arh + Bug + ecus mod ¢

r3 « arh + fuz + ecug mod ¢ _"L 273 |

r1 T2 T3 °

91'92°93° = AB®

FIGURE 14. Diverting a generalized form of the payment protocol

The diverted payment scheme for this general choice of A, B, is as follows (see Figure 14):

Step 1 U sends the triple A, B, sign(A, B) to the shop S.

Step 2 S verifies the signature as in the basic cash system. If the verification holds, S sends
a challenge ¢ € Zg to U.

Step 3 U computes ¢’ = (6c + v)/a mod ¢, and sends the challenge ¢’ to O.

Step 4 O computes the responses] = 01 + c'os mod g, 75 = 02 + c'os mod ¢ and 75 =
03 + c'og mod ¢, and sends these to U.

! ! ! ' . . .
Step 5 U verifies whether gzlggzggs Z ApBg,. If this verification holds, he computes r; =
ar] + Buy + ecug mod g, 7o = arh + Bus + ecus mod ¢ and r3 = arj + Buz + ecug mod g,
and sends these responses to S.
r1 T2 T3

S accepts if and only if gj'gy®g3* = AB“.

Again, we can easily prove the next two propositions.

PROPOSITION 19 S accepts if and only if O and U follow the protocol.

PROPOSITION 20 IfU follows the protocol, then transcripts of the sub-protocol between O and
U are statistically independent of transcripts of the sub-protocol between U and S.

61

Observe that we used three parameters to blind ¢ to ¢/, yet only one is actually needed for
the latter proposition to hold. It will turn out that the specific blinding of ¢ is quite different
than that used in the previous subsection.

As before, the bank must be able to identify a double-spender (who hence broke the tamper-
resistance of the observer), and so the information that the bank can extract from two different
sets of responses (r1,79,73), (71, 75, 75), corresponding to two different challenges c respectively
¢/, must reveal the identity of the user. Again, from the verification relations

9195’95’ = ABS,
91 92793 = ABC’;
the bank can extract
bo4 + eug = (r1 — 71)/(c — ') mod g,
o5 + eus = (ro — 75)/(c — ') mod g,
bog + eug = (r3 — 75)/(c — ') mod ¢
and
ao1 + Bui + yog = ('r1 — crf) /(¢! — ¢) mod g,
a0 + Bug + yos = (c'ro — cry) /(' — ¢) mod g,
ao1 + Buz + yog = (c'rg — cry) /(¢! — ¢) mod gq.
This must reveal the identifying information of the double-spender. We now will make the
following choice for the five parameters:

a=f#, v=-6 €e=0.

This ensures that almost all parameters can be cancelled out by adding certain equations.
Namely,

(604 + euq) + (@01 + Bus + yos) = (01 + u1) mod g,

(605 + eus) + (o2 + Bug + yo5) = (o1 + u1) mod g,

(606 + €ug) + (o3 + fug + yo) = o1 + u1) mod g

for these specific values of the parameters. Therefore, the bank can compute from the two
sets of responses the following three numbers:

(ri=r))/(c=c)+ (1 —cr))/(c' = ¢) = a(o1 + u1) mod g,
(ra—=r14)/(c—=c)+ ('ra —crh) /(' — ¢) = a(o2 + u2) mod g,
(rs —13)/(c — ') + (c'r3 —er)/(c' — ¢) = a(03 + u3) mod g.

Now we compare this with the basic (two party) cash system, and let the a here replace the s
used there to blind m = AB to m' = m®, and replace the (u1,us,1) of the basic cash scheme
by (01 +u1, 09+ ug, (03 + ug =)1). Note that the fact that uj 4+ 01 must equal 1, implies that
there is no sense in sharing this between O and U.

It turns out that this is precisely a choice of parameters with which we can meet all the
requirements of the observer setting in such a way that all the protocols closely resemble
those of the basic two-party setting. What we will do is have O and U generate uniformly at
random a number I = g71 113272 We let

01 02

A(’) =491 92
Bo = g7° g5*
Ay = 91" 99°

62

and
A = (Ao Ay)*By,
B =B’

Due to our choice of the parameters, and this is very important, By drops out when forming
the product AB (that is, AB = (ApAy)®). Moreover, we no longer need By (although U can
multiply it into the splitting, it does not bring him anything). We deal with g3 separately,
since its exponent need not be divided between O and U.

We now show the correct form of our cash system in wallets with observers, using the previous
ideas.

16.4 The set-up phase of the system

When the user wants to open an account at the bank B the following protocol is executed

(see Figure 15):

Step 1 U generates at random three numbers ui,us,t €g Zg. U computes Ay = g7 g5°, and
sends 1" = Ayg® to O. Note that #’s function is merely to blind Ay.

Step 2 O generates at random two numbers 01,02 €x Z4 and computes Ap = g7'g5*>. He
then signs T = T'Ap with his native signature scheme (see [17]), and sends both Ap
and the signature to U.

Step 3 U verifies the correctness of the signature and, if this verification holds, sends T' =
T'Ap, the signature of O, and ¢ to B.

Step 4 B verifies the signature. If the verification holds, B computes T/g*. Observe that if

U was honest, this equals gf1+u1g52+u2.
Step 5 O and U together proof knowledge of a representation of T'/g* with respect to (g1, g2)-
To this end, they use the protocol of Subsection 16.1 (with k = 2).

If B accepts the proof of knowledge of O and U, it stores I = T'/g* together with the user’s
real identity with his new account.

Note that the signature of O guarantees to B that &/ did not simulate the part of O in the
protocol. Furthermore, Step 5 can actually be left out since it also has to be performed when
the user wants to withdraw a coin in a later stage. That is, if i does not know a representation
of his part Ay of I, he will never be able to succesfully enter the withdrawal protocol.
Informally, what has happened in this protocol is that O has ended up knowing Ap =
g7'g5% and the secret information (01, 02), and U knowing Ay = g1 g**. Moreover, O has no
information about A;; whatsoever, whereas U also knows Ap (but not 01,02). The bank has
listed I as the identifying information of the user, and due to signp(7’) can be assured that
U by itself does not know a representation of I. It is easy to prove that that if and only if U
follows the protocol, the bank accepts, and the above split-up of the representation of Ap Ay
is established.

In case the user breaks open the observer and double-spends the same cash, the bank will be
able to find out (07 4 1,02 + us). By computing I = ¢{*1*1¢227"2 he can then determine
the double-spender’s identity.

63

Ui, U2 ER Zq
tERr Zq
Ay — g1 95°

TI

— T Augt
01,02 ER Lyg
Ao — g7 95" .
ey Aosimo(T)
T —T Ap

Verify sign(T') T, signo(T)) ¢

Verify signn(T')

(Diverted proof of knowledge of a representation of 7'/g%)
—

FIGURE 15. The set-up protocol for establishing an account

16.5 The withdrawal protocol

When a user wants to withdraw a coin from his account, O and U together first prove to B
knowledge of a representation of I, using the protocol described in Subsection 16.1 with k£ = 2.
If B accepts the proof of the wallet, then (for each coin that the user wishes to withdraw) the
following withdrawal protocol is executed (see Figure 16):

Step 1 O generates at random two number 03,04 € Zg4, and computes Bp = g¢7°gy*. He
then sends By to U. We remark that, although this step is part of the protocol, O can
actually send By at any time before U makes the splitting. By is a number that O
uses in the payment protocol when U wants to pay with the information he withdraws.

Step 2 U and B perform the withdrawal protocol as in the basic cash system, with only one
minor change. Namely, the splitting that &/ applies to the blinded number m' = m*
(note that we used the symbol s instead of « in the basic cash system — we use « here
because it is more in line with the discussion so far) is not a completely random one
(although the resulting splitting of m’ has the same distribution as a random split-
ting). More specifically, with m’ = AB, U computes A,B as A = (A@Au)o‘ngg,
B = Baﬁgg‘_'y, with «, 3,7 being random choices of his own, not equal to zero. We
remark that I must store «, 3,7, since otherwise he will not be able to compute correct
responses in the payment protocol. Furthermore, U can also multiply A by g7*go* (for
randomly chosen u3,u4), and divide B by this term. However, this does not bring him
anything at all, and since it only costs extra computations we leave this out.

O

(Ao = g7 95°)

03,04 €ER Z
Bo « ¢7° g5

FIiGURE 16. Withdrawal protocol for coins in wallets with observers

(Diverted proof of knowledge of a representation of I)
—>

U
(Au=g

Ul U2

1 92

)

m — (ApAy)gs

a,B,7 €r Z,

m' «—

ZI(—

ma
Za

U,V ER Lq
al — aug'u

bsu()

Y
g =
r?
m =

.
h¢a

2b

Split m/ in A, B
B «— B(’) g3

d <—'H(m 2 al b, A)

¢ — c'/umod ¢

7' «— ru+ v mod q

B

64

(9,h=g%)

wERZq
m «— Ig3
z—m®
a«—g"”

b— m"

7 xc+ w mod ¢

65

16.6 The payment protocol
From the withdrawal protocol, the user has ended up with numbers A, B, sign(A, B) and
random numbers o, § € Z,, such that

A= (AoAy)*Bhg],

B=B, ¢5.

When the user wants to pay with the withdrawn information, the following protocol with
shop S is followed (see Figure 17):

Step 1 U sends the triple A, B, sign(4, B) to S.

Step 2 S verifies the signature as in the basic cash system. If the verification holds, S sends
a challenge ¢ € Z, to U.

Step 3 U verifies that ¢ # 1. If this is the case, U computes ¢’ = 3(1 — ¢)/a mod ¢, and
sends the challenge ¢’ to O.

Step 4 First, O verifies that the coin the user wants to spend has not already been spent
before. If this is the case, and also ¢’ # 0, O computes the two responses] = o1 +
c'o3 mod q and 79 = 0y + c’04 mod ¢q and sends these to U.

Step 5 U verifies whether gzllg;,2 z A@Bg. If this verification holds he computes, using the
responses of the observer, r; = a(r] + u1) mod ¢ and r2 = a(r5 + u2) mod g. The third
response 73 he can compute all by himself as r3 = 7 + ¢(a —) mod q. He then sends
these three responses to S.

S accepts if and only if g]* g5%93* = AB°.

16.7 The deposit protocol

This is exactly the same as in the two-party system, and hence we refer the reader to Sub-
section 11.4. Now suppose that the bank detects that information A, B, sign(A, B) has been
spent more than once. The bank then has at its disposal two sets of responses (71,72, 73) and
(r],rh,7%), corresponding to two different challenges ¢ and ¢’. By the verification relations,
the following equations must hold:

91‘1 g’é‘zggs — ABc
gl g2 g33 = ABC .
As explained before, from these relations we get:

A— (c ri—cry)/(c'=c) (c ro—cry)/(c'—c) (c7'3 cry)/(c —c)
B= (Tl)/ (e=¢") (Tz r5)/(e=¢") (Ts Ta)/(c —).

Now, we know that
_ (A(’JAZ/I)QB(%QE;Y _ gix(ol+u1)+ﬁosg<21(02+u2)+504gg
B = B = g7 g5P g3

66

O U S

(Ao = g7 952, (Au = 91" 95%)
Bo = ¢7°95*)

A, B,sign(A, B)

AB #1
o c€ Z;
c7?é 1
/
¢ e p(l-c)/amodgq
Coin unspent?
c 7?50
T} < 01+ c'o3 mod ¢
! !
rh < 09 + c'o4 mod ¢ "1, 72
riorh ?

91792 = A(’)Bfo'
71— a(r] +u1) mod ¢
r9 — a(rh + ug) mod ¢

r3 e~y +cla—y)modq 27273 |

1 T2 T3 ?

91799293 = AB°¢

FIGURE 17. The payment protocol for wallets with observers

67

As before, it follows from this that

(dr1—crl)/(d —¢c) = alo1+u1)+ Loz mod g,
(c'rg —cry) /(' —¢c) = a0z +ug) + fos mod g,

(c'rs —ery)/(c"—¢) = ymody,
(ri—=r))/(c=¢) = —Poszmod g,
(ro—71h)/(c—¢) = —Posmod g,
(rs—715)/(c—¢) = a—vmodyg.

This in turn implies that the bank can compute

alor +u1) = (dri—cer)/(d —¢)+ (r1 —7})/(c— ') mod g,
alog+ug) = (dra—crh)/(cd —c)+ (ra —74)/(c — ') mod g,
a = (drs—cry)/(d —c)+ (r3 —15)/(c — ') mod g,

and so
o1 +u; =(ri(c+1)=ri(c+1)))/(r3(c' = 1) — r5(c+ 1)) mod g,
o2 +ug = (r2(c’ +1) = rh(c+1)))/(r3(c' = 1) = r5(c+1)) mod gq.

That is, we have proven that if U followed both the withdrawal protocol and the payment
protocol, the bank can compute I from the challenges and responses of two transcripts of the
payment protocol.

16.8 Various remarks concerning this cash system

If the bank tries to frame the user, i.e. falsely accuses him of having double-spent the same
information, the user can prove his innocence to a judge with a procedure that is merely a
slight variation of that discussed in the two-party case. This procedure requires the observer
to reveal his knowledge (01, 02) of Ap, and the bank must reveal the identifying information
(v1,v2) he supposedly extracted. Since the observer does not know (u1,us) of the user, it
is easy to show that (v; — 01,v9 — 02) and (uj,us) are different representations of Ay with
respect to (g1, g2) with overwhelming probability if and only if the user did not double-spend
(i.e. the bank tried to frame the user), and so an honest user can prove his innocence by e.g.
coming up with log, ga. That is, even if the observer would lie (which it could if B also built
in log,, go within the observer, although this obviously would be very unwise), the probability
of U not being able to prove his innocence is negligible.

In the full paper, we will prove that all the requirements for correctness are met. We here
sketch the line of the proof. In the set-up phase, S accepts if and only if I/ is honest. Hence,
I is such that U on its own does not know a representation. Now, during the withdrawal
protocol, after O and U have proven knowledge of a representation of I, O sends to U a
random number Bp. This number will be used by O when the user wants to pay with the
withdrawn information. Hence, it is not difficult to prove that &/ must make the splitting
as dictated by the withdrawal protocol (possibly also using a term g¢7*g5*, but this does not
alter anything as remarked earlier), since otherwise he will never be able to have the shop
accept at payment time. If U follows the withdrawal protocol, it follows that the numbers
A, B he ends up obtaining a signature on, are perfectly hidden from both B and O. In the
payment protocol, the fact that By is only used once also ensures that ¢ will never be able
to find out (o1, 02) from its responses (this is also why O must check that the challenge that

68

U sends him is not equal to 0). The transcript between O and U of valid executions of the
payment protocol are easily shown to be statistically independent from those between U and
S, which is due to the blinding factors «, 8 of . Finally, we have already shown that the bank
can extract a double-spender’s identifying information, and hence we have indeed achieved
the fact that even if a user can break the tamper-resistance, he will still be identified after
double-spending, as in the basic two-party cash system.

Finally, observe that if the observer was broken by the user even before he established an
account with the bank in the set-up phase, we have the correctness of the basic (two-party)
cash system. In fact, the way the bank computes (01 + u1) and (o2 + u2) is precisely the
same. This is clearly an important reason why the cash system in the observer setting must
resemble the basic cash system as closely as possible.

We end this section by remarking that one can adapt the withdrawal protocol and divert
the payment protocol for the extension of our system to checks and divisibility in a similar
manner. We believe however that these extensions in the observer setting can be achieved
probably more efficiently, althought we have not investigated this yet.

17 ANALOGUES IN RSA-GROUPS

As we discussed, the representation problem is also computationally difficult in RSA-groups.
More specifically, there are a few variations in case the input group is always an RSA-group.
In the descriptions of these three variations, n is the product of two (or more) distinct primes.

e Given k distinct elements (g1,...,gx) and h, find a representation (a1,...,ax) of h such
that Hi-czl gi* = hmod n. As we mentioned, this problem is mentioned in [6], and it is
stated to be equivalent in computational difficulty to factoring.

e Given k distinct exponents (v1,...,v;) and h, find a representation (Xi,...,X%) such
that Hi-czl X" = hmod n. As far as we know, this problem is equivalent in computa-
tional difficulty to computing RSA-roots (see [19] for a discussion that is of interest in
this matter).

e This is a combination of the previous two variations. Given [distinct exponents
(v1,...,v;), k — [distinct elements (g;41,...,9%) and h, find a representation

(X1, X, a1, -, ag)

such that Hé:l X7 Hi‘c=1+1 g = hmod n. The problem with [= 1, k = 2 has been
used in [25, 32] and is equivalent to factoring.

For a similar result to Corollary 8 to hold, the elements v; must be pairwise co-prime.

We remark that in [25, 32] a scheme is discussed that is suitable for the payment protocol,
since one of the responses (but not both!) is linear in the challenge. For our viewpoint
the other response (which is not a line) can be viewed as necessary to guarantee the self-
certifiability property. Furthermore, the splitting technique can be applied here as well. It
is easy to see that almost all tools we used in our cash system can be adapted to all three
variations, except unfortunately the blind signature scheme. That is, we have not yet been
able to find a restrictive blind signature scheme in RSA.

69

We further remark that in our cash system, we can use a group G, with the order of the group
g unknown to the participants in the system other than the bank. To this end, the bank can
for example generate a prime p such that p — 1 = gr, with ¢, primes of approximately equal
length, and take G, to be the subgroup of Z; of order g. One can then apply the technique
of [5] in the payment protocol. This consists of the responses being taken modulo p — 1
instead of modulo g. In order to attack the payment protocol (not using the withdrawal
protocol), one is faced with a more difficult task since it also requires the ability to factorize.
Nevertheless, the correctness of this slight variation of our system still hinges on the Diffie-
Hellman assumption.

18 THE DECISION DIFFIE-HELLMAN PROBLEM AND OTHER OPEN PROBLEMS

In this final section, we discuss a few open problems related to our cash system. The first
of these is of more general importance, and we hence devote a separate paragraph to it.
We further remark that in a realistic implementation of our system, all kinds of signatures
(receipts proving that a certain action occurred) must be included. Since this is easy to
incorporate and falls outside the scope of the cryptographic model, we have not discussed
this.

The Decision Diffie-Hellman problem It is conceivable that there may be blind sig-
nature schemes in groups of prime order that need somewhat less space and verification
computations than the one we use. In our system, there is one unspecified hash-function,
which we would like to get rid of (in a nice way, that is) since that would probably increase
the degree of provability of correctness even more. Currently known digital signature schemes
in a discrete log setting (i.c. Z, or G,), such as described e.g. in [5, 36], other than that
of [15] are all similar in the sense that they use the hash-function technique to turn a proof of
knowledge into a signature scheme, and cannot be converted to blind signature schemes that
have the property of restricted blinding manipulations. It would obviously be beneficial to
the degree of provability of correctness of our system if there were a digital signature scheme
suitable for Z; that does not contain an unspecified hash-function (such as extracting v-th
roots in RSA), and that can be converted easily into a blind signature protocol. Ideally, it
would have the property of restrictive blinding.

From this point of view, it would be beneficial for our cash system (and for discrete log
based cryptography in general) if the undeniable signature of [9, 10] were actually a digital
signature. To this end, we here observe that there is an intimate relation between this
undeniable signature and the Diffie-Hellman problem, which as far as we know has been
overlooked in literature. We state this relation in the form of a decision problem:

DEFINITION 21 The Decision Diffie-Hellman problem is the problem of deciding whether,
given wnputs g, g1, g2, and h, the latter is the Diffie-Hellman key of g1 and go with respect
to g. An algorithm is said to solve this problem to the base g if, for randomly chosen inputs
g1, g2 and h, it decides correctly with nonnegligible probability. The Decision Diffie-Hellman
assumption states that, for all g # 1, there is no such polynomial-time algorithm.

With g” being the signer’s public key, m a message and m® the undeniable signature on m, the
Diffie-Hellman problem is equivalent to the problem of forging undeniable signatures on given

70

messages, and the problem of being able to determine without help of the signer whether an
undeniable signature is correct is equivalent to the Decision Diffie-Hellman problem. If the
Decision Diffie-Hellman assumption is false, then the undeniable signatures are in fact digital
signatures.

We here remark that the same problem has been overlooked in the cash system of [22]: linking
withdrawals to payments in that system is at most as difficult as breaking the Decision Diffie-
Hellman problem.

At the same time, if the Decision Diffie-Hellman assumption turns out to be false then one
has as an important consequence the fact that a proposition similar to Proposition 2 is true
for the Diffie-Hellman problem, which would obviously greatly increase our believe in the
Diffie-Hellman assumption. More importantly, it would imply that, as in RSA, there is a
trapdoor one-way function in discrete logarithms, and so in general this would probably allow
the construction of many cryptographic tools based on discrete logarithms analogue to those
in RSA-groups.

Note that not only is it of interest to know whether the Decision Diffie-Hellman problem is in
the complexity class P, but even whether it is in R or in BPP. In the case latter cases, the
unusual situation arises that the undeniable signatures in literature are digital signatures that
are probabilistically recognizable, which is probably just as good for all practical purposes.

Other open problems We list some other open problems, some of which have already
been mentioned earlier in the text:

e Do there exist suitable restrictive blind signature schemes in RSA-groups? We could
then build cash systems in RSA-groups in a similar way to the one descibed in this

paper.
e [s there a more efficient restrictive blind signature scheme in G4?

e Can the extensions be achieved in the setting of wallets with observers in a more eflicient
way, under the requirement of no shared information?

e In our extensions to multi-show cash and divisibility, there is full linkability. Can one
achieve the extensions without linkability?

19 ACKNOWLEDGEMENTS

The technical report lying before you is the result of research that took place over the past
half year. I owe many thanks to my colleagues Ronald Cramer, Niels Ferguson and Berry
Schoenmakers at CWI, and Torben Pedersen at MI Aarhus for inspiring discussions while this
work was in progress. I am in particular grateful to Ronald for discussions about the basic
payment protocol, and to Torben for pointing out that my earlier proof of Proposition 12
was incorrect, as well as for his help with the batched confirmation protocol of Section 20.
The way in which Niels Ferguson, concurrently working on an off-line electronic cash system
based on RSA, avoided the cut-and-choose methodology in the payment protocol inspired me
to try to achieve this property in a discrete logarithm environment. Recently, Niels and I
found out that Franklin and Yung in their article also apply this technique, although they

71

still use the cut-and-choose methodology in the withdrawal protocol. The fact that there are
hence currently three different cash systems that all have such an efficient payment protocol
to me indicates that secure privacy-protecting electronic cash systems are rapidly becoming
efficiently realizable.

I especially want to thank David Chaum. This work would never have existed at all if it
weren’t for his innovative work, giving rise to the exciting field of privacy-protecting electronic
cash, and the stimulating working environment he created for me at CWI’s cryptogroup.

I want to end this report by remarking that only a few sections of this technical report
have been read by others than myself. Especially, none of the extensions has been read yet.
Although I feel pretty confident about the correctness of the system, it clearly is necessary
that it is studied by other people as well. I therefore encourage you to try to break the system.
If you find any flaws whatsoever, I would be pleased to be informed about them. You can
contact me by e-mail.

72

REFERENCES

[1] Antwerpen, H. van, “Electronic Cash”, Centre for Mathematics and Computer Science,

Amsterdam (1990).

[2] Bos, J. and Purdy, G., “A voting scheme”, Rump session of Crypto ’88 (does not appear
in the proceedings).

[3] Brands, S. and Chaum, D., “How to prevent the mafia-fraud by using distance-bounding
protocols”, Tech. Rep., C.W.IL. (to appear). An abstract was submitted to Eurocrypt ’93.

[4] Brands, S., Chaum, D., Cramer, C., Ferguson, N. and Pedersen, T., “Transaction systems
with observers”, Tech. Rep., C.W.I., (to appear).

[5] Brickell, E. and McCurley, K., ‘An interactive identification scheme based on discrete
logarithms and factoring’, Journal of Cryptology, Vol. 5, no. 1 (1992), pages 29-39.

[6] Chaum, D., Evertse, E. and Graaf, J. van der, “An improved protocol for demonstrating
possession of discrete logarithms and some generalizations”, Eurocrypt 87, LNCS 304,
Springer-Verlag, pages 127-141.

[7] Chaum, D., Boer, B. den, Heyst, E. van, Mjolsnes, S. and Steenbeek, A., “Efficient
off-line electronic checks”, Eurocrypt '89, LNCS 434, Springer-Verlag, pages 294-301.

[8] Chaum, D., Fiat, A. and Naor, M., “Untraceable Electronic Cash”, Crypto '88, LNCS
403, Springer-Verlag, pages 319-327.

[9] Chaum, D. and Antwerpen, H. van, “Undeniable Signatures”, Crypto ’89, LNCS 435,
pages 212-216.

[10] Chaum, D., “Zero-knowledge undeniable signatures”, Eurocrypt ’90, LNCS 473,
Springer-Verlag, pages 458-464.

[11] Chaum, D., “Blind signatures for untraceable payments”, Crypto '82, Springer-Verlag,
pages 199-203.

[12] Chaum, “Achieving electronic privacy”, Scientific American, Aug. 1992, pages 96-101.

[13] Chaum, D., Heijst, E. van, and Pfitzmann, B., “Cryptographically Strong Undeniable
Signature, Unconditionally Secure for the Signer”, Crypto '91, LNCS 576, pages 470-484.

[14] Chaum, D. and Pedersen, T., “Transferred money grows in size”, presented at Eurocrypt
'92.

[15] Chaum, D. and Pedersen, T., “Wallet databases with observers”, Preproceeding of
Crypto ’92, pages 3.1-3.6.

[16] Coster, M., “ Some algorithms on addition chains and their complexity”, TR CS-R9024,
Centrum voor Wiskunde en Informatica, Amsterdam (June 1990).

[17] Cramer, R. and Pedersen, T., “Improved privacy in wallets with observers’, submitted
to EuroCrypt 1993.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

73

Diffie, W. and Hellman, M., “New Directions in Cryptography”, IEEE Transactions on
Information Theory 22/6 (1976), pages 644—654.

Evertse, J. and Van Heijst, E., “Which new RSA-signatures can be computed from given
RSA-signatures?”, Journal of Cryptology, Vol. 5, no. 1 (1992), pages 41-52.

Feige, U., Fiat, A. and Shamir, A., “Zero-knowledge proofs of identity”, Journal of
Cryptology 1 (1988), pages 77-94.

Fiat, A. and Shamir, A., “How to prove yourself: practical solutions to identification and
signature problems”, Crypto ’86, Springer-Verlag, (1987), pages 186-194.

Franklin, M. and Yung, M., “Towards provably secure eflicient electronic cash”, Columbia

Univ., Dept of Comp. Sc., TR CUCS-018-92, April 24, 1992.

Hayes, B., “Anonymous one-time signatures and flexible untraceable electronic cash”,

Auscrypt '90, LNCS 453, pages 294-305.

Heijst, E. van, and Pedersen, T., “How to Make Efficient Fail-stop Signatures”, Eurocrypt
92, Extended Abstracts, 24-28 Mai 1992, Balatonfiired, Hungary, pages 337—-346.

Heijst, E. van, Pedersen, T. and Pfitzmann, B., “New constructions of fail-stop signatures
and lower bounds”, Crypto '92, pages 1.9-1.14.

Knuth, D.E., Seminumerical Algorithms, Volume 1 of The Art of Computer Program-
ming, Addison-Wesley (1968). Second edition (1973).

McCurley, K., “The discrete logarithm problem”, AMS Proc. Symp. Appl. Math, Vol.
42: Cryptology and Computational number theory (1991), pages 49-74.

Olivos, J., “On vectorial addition chains”, Journal of Algorithms 2 (June 1981), pages
13-21.

Okamoto, T. and Ohta, K., “Disposable Zero-knowledge authentications and their ap-
plications to untraceable electronic cash”, Crypto 89, LNCS 435, Springer-Verlag, Hei-
delberg 1992, pages 481-496.

Okamoto, T. and Ohta, K., “Universal electronic cash”, Crypto 91, LNCS 576, Springer-
Verlag, Berlin 1992, pages 324-337.

Okamoto,T. and Ohta,K., ” Divertible zero knowledge interactive proofs and commutative
random self-reducibility”, Eurocrypt ’89, Springer-Verlag, pages 134-149.

Okamoto, T., “Provably Secure and Practical Identification Schemes and Corresponding
Signature Schemes”, Proceeding of Crypto ’92, pages (1-15) — (1-25).

Pedersen, T., “Non-interactive and information-theoretic secure verifiable secret shar-
ing”, CRYPTO 91, LNCS576, pages 129-140.

Pedersen, T., “Distributed provers and verifiable secret sharing based on the discrete
logarithm problem”, Ph. D. Thesis, DAIMI PB - 388 (March 1992), Computer Science
Dept. Aarhus University, Denmark.

74

[35] Santis, A. de, and Persiano, G., “Communication efficient zero-knowledge proofs of
knowledge (with applications to electronic cash)”, STACS ’92, LNCS 577, pages 449—-460.

[36] Schnorr, C.P., “Efficient Signature Generation by Smart Cards”, Journal of Cryptology,
Vol. 4, No. 3, (1991), pages 161-174.

[37] Shamir, A., “How to share a secret”, Communications of the ACM 22 (1979), pages
612-613.

75

20 APPENDIX

Batching the Confirmation Protocol of Undeniable Signatures. In an undeniable
signature scheme there are two basic types of protocol, being a confirmation protocol and
a disavowal protocol. In the confirmation protocol for the undeniable signatures of [1, 9],
the signer (with public key (g, g*)) proves to a verifier that the signature z he obtained on
a message m is such that log,, 2 = log, h. By the Decision Diffie-Hellman assumption, he
cannot feasibly determine this himself.

There are two zero-knowledge versions of the confirmation protocol known in literature, one
([34]) being a slight variation of the original ([10]). The protocol we show how to batch
here is, although the choice is arbitrary, the former. In the protocol, ¥ has polynomial-time
computing power and P unlimited computing power.

We show here how the confirmation protocol can be batched such that the signer convinces

the receiver of the correctness of polynomially (i.e. k& = O(|p|™) for some n € N) many
undeniable signatures z1, ..., 25_1 on messages m1, ..., my_1. Before the protocol takes place,
V has received k — 1 numbers z1,...,2z,_1, supposedly constructed by P from m1,...,mp_1

by raising each to his secret key z. For clarity, this “initialization step” is also depicted in
Figure 18, together with the actual protocol itself. This consists of the following steps:

ak

Step 1. V generates at random an index-tuple (a1,...,a;), computes h = (Hfz_ll mit) g%,
and sends the result to P.

Step 2. P generates a number ¢ €g Z, at random, computes Ag = A and A; = h°®, and
sends these two numbers to V.

Step 3. V sends his representation (a1, ...,ar) of h with respect to (mi,...,mg_1,9) to P.
Step 4. P verifies that h = (I;_ll m;*) g% . If the verification holds, he sends ¢ to V.

Step 5. V verifies that Ag = h¢ and A; = ((Hi-:ll z") (¢®)*)¢, and accepts if and only if
both verifications hold.

P (whom we allowed to have unlimited computing power) is said to cheat in this protocol if
he can have V accept whereas at least one of the signatures z; is incorrect.

PROPOSITION 22 IfV follows the protocol, P cannot cheat with nonnegligible probability of
success.

PRrROOF. Writing all numbers to the base g (for g # 1), we denote Ay by g*°, A; by g, and,
(for all z > 1), log, m; by l;, and log,, z; by s;. We then see that an honest V accepts if and
only if

(ghalglzaz . glk—lak—lgak)c = ¢ and (gllslalglzsza2 . glk—18k—1ak—1g¢ak)c = g%

That is, if the honest V accepts, the following relations must hold:

M a c
7~ % ~
I R] 1 a1 logg h
I cee g 1 = Co/c mod gq.

lis1 -+ lpy_15p—1 = ag c1/c

76

Observe that if s; =z for all ¢ € {1,...,k — 1}, then rank(IM) = 1. Hence there is a solution
if and only if ¢g/c = log, h mod ¢ and c1/c = zlog, h mod g, and because the arithmetic is

k—1

in a field, there are exactly ¢ solutions a of Ma=c. These are precisely the representing

index-tuples of h with respect to (my,...,mg).

If, on the other hand, not all s; are the same (P is cheating), then rank(M) = 2. With
co/c = log,h mod g and cg # c1 (otherwise, there is no solution at all), there are gk—2
solutions a. These solutions constitute a negligible fraction 1/q of all representing index-
tuples of h. Because V follows the protocol, each of the representing index-tuples of A has
equal probability of having been chosen by V in Step 1, so P has no better cheating strategy
than hoping that ¥ chooses his representing index-tuple of A in the subset of representing
index-tuple that are solutions Ma = c. The probability of successful cheating is hence at
most 1/q. O

Since k is assumed to be polynomial in the length of the input, it follows straightforward from
the proof of zero-knowledgeness in [34] that this batched protocol is still zero-knowledge.

Prover P Verifier ¥V

(Unbounded) (Poly-time)
(9,9%)
mi,...,MEg—1
Z,i<—m:-: 2155 2k—1
ai,...,a €ER Zq
L b ([TE] m) g
CER Zq
Ay — A€
Al «— he= A07A1
ai,...,ax
? k-1, a c
h= Lz mi¥)g* — =
”
Ag = h°

A1 = (T2 28 (g7))

FIGURE 18. The batched confirmation protocol of undeniable signatures

