
A shortened version of this paper appears under the same title
in the proceedings of Indocrypt 2005 (S. Maitra, C.E. Venimadhavan, R. Venkatesan (eds.)), LNCS,

Springer-Verlag.

Near Optimal Algorithms for Solving Differential Equations of

Addition with Batch Queries∗

Souradyuti Paul Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001, Leuven-Heverlee, Belgium
{Souradyuti.Paul, Bart.Preneel}@esat.kuleuven.be

Abstract

Mixing modular addition (+) with exclusive-or (⊕) is extensively used in design of symmetric
ciphers as the operations are very fast and their combination is non-linear over GF(2). The paper
investigates the strength of modular addition against differential cryptanalysis (DC) where the dif-
ferences of inputs and outputs are expressed as XOR. In particular, we solve two very frequently
used equations (1) (x + y) ⊕ (x + (y ⊕ β)) = γ and (2) (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ, known
as the differential equations of addition (DEA), with a set of batch queries. Although solution
to this problem with adaptive queries, which is easier and less practical, was previously known,
a nontrivial solution with batch queries has remained open. The two major contributions of the
paper are (i) the determination of lower bounds on the required number of batch queries to solve
the equations and (ii) the design of two algorithms which solve them with queries close to optimal.
Our algorithms require 2n−2 and 6 queries to solve (1) and (2) where the lower bounds are 3

4 · 2n−2

(theoretically proved) and 4 (based on extensive experiments) respectively. This exponential lower
bound is an important theoretical benchmark which certifies (1) as strong against DC. On the other
hand, the constant number of queries to solve (2) discovers a major weakness of modular addition
against DC.
Muller, at FSE’04, showed a key recovery attack on the Helix stream cipher (presented at FSE’03)
with 212 adaptive chosen plaintexts (ACP). However, the data complexity of the attack with cho-
sen plaintexts (CP) was not known previously. Using our results we recover the secret key of the
Helix cipher with only 235.64 chosen plaintexts (CP) which has so far been the only CP attack on
this cipher (the attack is under the same assumption as that of Muller’s attack). Considering the
abundant use of this component, the results seem useful to evaluate the security of many block
ciphers against DC.

Keywords. Differential Cryptanalysis, Addition, Lower bound, Binary Tree.
∗This work was supported in part by the Concerted Research Action (GOA) Mefisto 2000/06 and Ambiorix

2005/11 of the Flemish Government and in part by the European Commission through the IST Programme
under Contract IST-2002-507932 ECRYPT. The information in this document reflects only the authors’ views,
is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

1

1 Introduction

Addition and XOR. Mixing two different group operations is a common technique adopted by the
designers of symmetric ciphers to make cryptanalysis difficult. The main reason behind the wide use
of mixing modular addition (or simply addition) with XOR is their high speed on modern machines
and their non-linearity over GF(2). Helix [8], IDEA [14], Mars [3], RC6 [19], Twofish [20] and the
MD-family of hash functions are a few applications of addition and XOR. Plenty of research has
also been spent on analyzing behaviors of addition, XOR and their mixing. Staffelbach and Meier
worked on determination of the probability distribution of the carry for integer addition [21]. Wallén
investigated the linear approximations of modular addition [23]. Lipmaa et al. dealt with the equation
(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ and its dual to investigate the differential properties [15, 16]. Paul
and Preneel showed that the satisfiability of an arbitrary set differential equations of addition is in
the complexity class P and designed algorithms to solve them efficiently [18].

Batch and Adaptive Queries. Cryptologic analogue of a query is a plaintext (or a ciphertext
depending on the mode of attack). Similarly, attacks based on batch and adaptive queries are equiva-
lent to chosen plaintext (CP) attack and adaptive chosen plaintext (ACP) attack respectively. A CP
attack is more practical than the corresponding ACP attack because, in the latter case, we assume
the attacker to be powerful enough to submit queries adaptively, i.e., the next query is submitted
based on the answers to the previous queries – a situation which is difficult to implement in practice.
There is a large number of research papers launching CP and ACP attacks on many practical ciphers.
For example, the boomerang attack introduced by Wagner is an ACP attack [22] and, therefore, less
practical. The slide attacks by Biryukov and Wagner can be implemented using both CP and ACP
but with different amount of data and time [5]. The time-memory trade-off attack by Hellman [9] and
the differential attack on DES by Biham and Shamir [4] are CP attacks; so they are attributed more
practical importance. In this paper we will deal with a very frequently encountered set of equations in
secret key cryptography, known as differential equations of addition (explained in the next paragraph),
to solve them with a set of batch queries (equivalent to a CP attack).

Summary of the Results. Addition mod 2n is extensively used as a block cipher component.
Differential Cryptanalysis (DC) is one of the most powerful attacks against block ciphers [4]. In this
paper we investigate the security of addition under DC. In particular, we deal with the following two
equations where differences of inputs and outputs of addition are expressed as exclusive-or

(x+ y)⊕ (x+ (y ⊕ β)) = γ , (1)
(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ . (2)

These equations are known as differential equations of addition (DEA). In course of cryptanalysis of
MD5, Berson observed in 1992 that, for large n, it is hard to analyze modular addition when differences
are expressed as XOR [2]. The apparent difficulty to analyze combination of addition and XOR seems
to justify its widespread application in symmetric cryptography. The solution to the above equations
with adaptive queries (an (α, β) is a query) was first given in [17] and subsequently improved to
optimality in [18]. However, a nontrivial solution with a set of batch queries remained elusive (the
problem, which was raised in [18], is elaborated in Section 2). As argued before, solution with adaptive
queries is easy and less practical because of the assumption of more powerful adversary. This paper
solves the equations with batch queries. Our algorithm solves (1) with 2n−2 queries where a lower

2

bound on the number of queries is 3
4 · 2n−2 (for all n > 3), i.e., the lower bound is optimal up to

a constant factor of 4
3 . This exponential lower bound constitutes an important theoretical reference

point which endorses the equations’s strong resistance against DC. On the other hand, (2) has been
solved with only 6 (for all n > 2) queries which is two more than a conjectured lower bound (note
that the total number of queries is 22n) – this fact shows a major cryptographic weakness of addition
under DC and therefore, this component should be used with caution. In practical cryptanalysis, using
these results we are successful to recover the secret key of a recently proposed stream cipher Helix [8],
which was a candidate for consideration in the 802.11i standard, with 235.64 chosen plaintexts which
has so far been the only CP attack on this cipher (the earlier attack was an ACP attack [17]). In view
of plenty of applications of addition and XOR, our analyses seem suitable to evaluate cryptographic
strength of many ciphers. In addition, solutions to the above equations emerge as typical tasks in many
branches of mathematics and computers science such as combinatorics, Boolean algebra, computational
complexity. For example, the results may be useful to solve equations involving modular multiplication
and T -functions [12, 11]. Last but not the least, the technique used to derive all the results of this
article, is purely combinatorial and easier than the traditional algebraic methods to solve multivariate
polynomial equations such as Gröbner bases and its variants [1, 7].

1.1 Notation

The ith bit of an n-bit integer l is denoted by li (l0 denotes the least significant bit or the 0th bit of l).
The operation addition modulo 2n over Z2n can be viewed as a binary operation over Zn2 (we denote this
operation by ‘+’) using the bijection that maps (ln−1, · · · , l0) ∈ Zn2 to ln−12n−1 + · · · + l020 ∈ Z2n .
The symbols ‘⊕’ and ‘∧’ denote the operations bit-wise exclusive-or and bit-wise and of two n-bit
integers respectively. We will denote a∧b by ab. Throughout the paper, [p, q] denotes a set containing
all integers between the integers p and q including both of them. Unless otherwise stated, n denotes
a positive integer. The size of a set S is denoted by |S|.

2 The Problem: Solving DEA with Batch Queries

In Sect. 1, we already gave the motivation for solving the following two differential equations of addition
(DEA) over Zn2 ,

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ, (3)
(x+ y)⊕ (x+ (y ⊕ β)) = γ , (4)

where x, y are the only fixed unknown variables. In the present context, solving (3) is understood
to be solving the set of all 22n equations generated by ranging (α, β) with the corresponding γ for
a fixed unknown (x, y) (for (4) the number of all equations is 2n). Such an (α, β) is referred to as
a query. The number of solutions satisfying all 22n equations is no more than that of any subset of
the equations. Therefore, solving these 22n equations reduces the search space of the secret (x, y)
to the minimum. This fact is the main motivation for dealing with all 22n equations. The most
captivating question that follows immediately is that whether it is possible to solve a subset of the 22n

equations and obtain the same solution as that of the entire 22n equations. Therefore, our problem is
an optimization problem which focuses on minimizing the number of equations to solve (3) and (4).
In cryptographic applications, optimizing the number of equations to solve DEA can be translated

3

into reduction of the data complexities of many attacks [17], [18]. Next, we formalize the problem for
the sake of easy understanding of many results.

2.1 The Power of the Adversary

The power of an adversary that solves (3) is defined as follows.

1. An adversary has unrestricted computational power and an infinite amount of memory.

2. An adversary submits a set of queries {(α, β)} in a batch, to an honest oracle1 which computes
the γ’s using the fixed unknown (x, y) in (3) and returns them to the adversary. We will often
refer to that fixed (x, y) as the seed of the oracle.

Such an oracle with seed (x, y) is viewed as a mapping Oxy : Zn2 × Zn2 → Zn2 and defined by

Oxy = {(α, β, γ) | (α, β) ∈ Zn2 × Zn2 , γ = (x+ y)⊕ ((x⊕ α) + (y ⊕ β))} . (5)

An adversarial model, similar to the one described above for (3), can be constructed for (4) by setting
(α, β) ∈ {0}n × Zn2 and the mapping Oxy : {0}n × Zn2 → Zn2 .

The model described above represents a practical chosen message attack scenario where the ad-
versary submits queries to an oracle in batch. Based on the replies from the oracle, the adversary
computes one or more unknown parameters.

2.2 Formalizing the Task: The Useful Set D̃ and the Solution Set D̃-consistent

Oxy, defined in (5), generates a family of mappings F = {Oxy | (x, y) ∈ Zn2 × Zn2}. If D ∈ F then
D is called a character set. Note that |D| = 22n and therefore, a character set uniquely represents a
set of 22n equations if we deal with (3). The aim of the adversary is to find all (x, y) satisfying these
22n equations from a subset of the character set D. The set of all such satisfiable (x, y)’s is called
D-satisfiable. If we work with (4) then |D| = 2n.

Equivalent Task. Applying the following transformation on a character set D we compute D̃,

D̃ = {(α, β, γ̃ = α⊕ β ⊕ γ) | (α, β, γ) ∈ D} .

We call D̃ a useful set. Note |D̃| = 22n if (3) is considered. An element (α, β, γ̃) ∈ D̃ corresponds to
the following equation

(x+ y)⊕ ((x⊕ α) + (y ⊕ β))⊕ α⊕ β = γ̃.

Let D̃-consistent denote the set of all (x, y)’s satisfying all 22n equations corresponding to D̃. It can
be shown that

D-satisfiable = D̃-consistent.

Therefore, the task is equivalent to determination of D̃-consistent from a subset of the useful set D̃.
Note that there is a bijection between D and D̃. If we deal with (4) then |D̃| = 2n.

1An honest oracle correctly computes γ and returns it to the adversary.

4

Equivalent Oracle Output. The oracle output γ on query (α, β) will be adjusted to γ̃ = α⊕ β⊕ γ
for easy understanding of many deductions.

Rules of the Game. Below, we describe the rules followed by the adversary who determines the set
D̃-consistent. The essence of the whole problem is brought out in the following points.

1. The adversary starts with no information about x and y except their size n.

2. The adversary submits a set of queries (α, β)’s in a batch, irrespective of the seed (x, y). The
oracle returns to the adversary the set of γ̃’s corresponding to the queries and the chosen (x, y).

3. The adversary fails if, with the submitted queries, she is unable to compute D̃-consistent for
some (x, y) ∈ Zn2 × Zn2 .

We search for an algorithm that determines D̃-consistent, for all (x, y) ∈ Zn2 × Zn2 , with the same set
of submitted queries. Furthermore, there is an additional challenge to reduce the number of required
queries as much close as possible to the minimum.

3 Preliminary Work: Computing the Number of Solutions

Before embarking on designing algorithms to solve the equations, we first establish the number of all
solutions for different seeds (x, y)’s, i.e., the size of D̃-consistent (see Sect. 2.2 for the definition). We
follow a series of steps (Sect. 3.1 and 3.2) leading up to the formulation of D̃-consistent in Sect. 3.3.
We shall heavily use the results of this section to obtain two important contributions of the paper:
(i) lower bounds on the number of queries (described in Sect. 4) and (ii) the proofs of correctness of
our algorithms which computes D̃-consistent (explained in Sect. 5). The results of this section are
provided in [18]. However, to make the paper self-contained, we include them.

3.1 Step 1: Relation among Input Bits

Let A ⊆ D̃ where D̃ is a useful set. Take an arbitrary element (α, β, γ̃) ∈ A (n > 1). Observe
that γ̃i+1 can be computed using only the preceding bits xi, yi, ci, αi, βi, γ̃i, ∀ i ∈ [0, n− 2], from the
following three equations

γ̃i+1 = ci+1 ⊕ c̃i+1, ci+1 = xiyi ⊕ xici ⊕ yici, c̃i+1 = x̃iỹi ⊕ x̃ic̃i ⊕ ỹic̃i
where ci is the carry at the ith position of (x+ y), x̃i = xi ⊕ αi, ỹi = yi ⊕ βi and c̃i = ci ⊕ γ̃i. Table 1
lists the values of γ̃i+1 as computed from all values of xi, yi, ci, αi, βi, γ̃i.

3.2 Step 2 : Computation of Parameters Gi, Si, 0 and Si, 1 from A

We now determine an important quantity, denoted by Gi, for nonempty A ⊆ D̃. In Gi, we store the
ith and (i+ 1)th bits of γ̃ and the ith bit of α and β for all (α, β, γ̃) ∈ A. We call Gi the ith core of
A. More formally (suppose n > 1),

Gi = {(αi, βi, γ̃i, γ̃i+1) | (α, β, γ̃) ∈ A}, i ∈ [0, n− 2] . (6)

5

Table 1: The values of γ̃i+1 corresponding to the values of xi, yi, ci, αi, βi, γ̃i. A row and a column
are denoted by R(l) and Col(k)

(xi, yi, ci) (αi, βi, γ̃i)
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) R(0)

(0,0,0) 0 0 0 1 0 1 1 1 R(1)
(1,1,1)
(0,0,1) 0 0 1 0 1 0 1 1 R(2)
(1,1,0)
(0,1,0) 0 1 0 0 1 1 0 1 R(3)
(1,0,1)
(1,0,0) 0 1 1 1 0 0 0 1 R(4)
(0,1,1)
Col(0) Col(1) Col(2) Col(3) Col(4) Col(5) Col(6) Col(7) Col(8)

We now discuss what the expression “Gi ⇒ (xi, yi, ci)” means for a known Gi. Let |Gi| = g. Take an
element (αi, βi, γ̃i, γ̃i+1) ∈ Gi. In Table 1, find the row(s) of the fourth coordinate γ̃i+1 in the column
specified by the first three coordinates (αi, βi, γ̃i) in R(0) and put them in set Fi1. Find Fi1, · · ·Fig
for all g elements of Gi. Let Fi =

⋂
j Fij and R(x)∈ Fi. If (xi, yi, ci) is in Col(0)×R(x) then we

say Gi ⇒ (xi, yi, ci). If Fi = φ then no such (xi, yi, ci) exists. We compute Si, j = {(xi, yi) |Gi ⇒
(xi, yi, ci = j)}. Now, we show a fundamental relation between Si, 0 and Si, 1 that will be used to
obtain several results.

Proposition 1 For all nonempty set A ⊆ D̃ and all n > 1, |Si, 0| = |Si, 1| ∀ i ∈ [0, n− 2].

We set,

|Si, 0| = |Si, 1| = Si ∀ i ∈ [0, n− 2]. (7)

The example, provided below, will also ease the understanding of the subsequent results.
Example. (Gi,Si, 0,Si, 1) Let n = 3 and A = {((0, 1, 0), (1, 0, 1), (0, 0, 0)), ((0, 0, 0), (1, 1,
1), (1, 0, 0)), ((0, 0, 1), (0, 1, 1), (1, 1, 0))}. Therefore, G0 = {(0, 1, 0, 0), (1, 1, 0, 1)}, G1 =
{(1, 0, 0, 0), (0, 1, 0, 1), (0, 1, 1, 1)} (see (6)). Now, from Table 1, F01 = {R(1), R(3)}, F02 =
{R(1), R(2)}, F11 = {R(1), R(4)}, F12 = {R(2), R(4)}, F13 = {R(1), R(4)}. Therefore, F0 =
F01∩F02 = {R(1)} and F1 = F11∩F12∩F13 = {R(4)}. Now G0 ⇒ (0, 0, 0), G0 ⇒ (1, 1, 1) as (0, 0, 0),
(1, 1, 1) are in Col(0)×R(1). Similarly, G1 ⇒ (1, 0, 0), G1 ⇒ (0, 1, 1). Thus, S0, 0 = {(0, 0)},
S0, 1 = {(1, 1)}, S1, 0 = {(1, 0)}, S1, 1 = {(0, 1)}. Therefore, S0 = S1 = 1. �

3.3 Step 3 (final): Formulation of the Size of D̃-consistent

Let A ⊆ D̃. The definition of A-consistent which denotes the set of all (x, y)’s satisfying the equations
represented by A is a natural extension of the definition of D̃-consistent. The general formula for the
number of solutions for any given set of DEA (the set may not contain all possible equations) is shown
in the following proposition (the proof is given in Appendix A.4).

6

Proposition 2 Let A 6= φ and S denote |A-consistent|. Then,

S =





0 if γ̃0 = 1 for some (α, β, γ̃) ∈ A,
4 ·∏n−2

i=0 Si if γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n > 1,
4 if γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n = 1.

The Si’s are defined in (7).

Now, as we are interested in the size of |D̃-consistent| for (4) and (3), we obtain the results in
Theorem 1 and Theorem 2 as special cases of Proposition 2.

Theorem 1 Let the position of the least significant ‘1’ of x in the equation

(x+ y)⊕ (x+ (y ⊕ β)) = γ

be t and x, y, β, γ ∈ Zn2 . Let a useful set D̃ be given. Then |D̃-consistent| is
(i) 2t+3 if n− 2 ≥ t ≥ 0,
(ii) 2n+1 otherwise (including the case when x = 0).

Proof. (i) n − 2 ≥ t ≥ 0. Using the procedure described in Sect. 3.2, we construct the ith core
Gi, ∀ i ∈ [0, n− 2], from the useful set D̃. We derive that

Gi = {(0, 0, 0, ai), (0, 1, 0, bi)} , ∀i ∈ [0, t] (8)
Gi = {(0, 0, 0, ci), (0, 0, 1, di) (0, 1, 0, ei), (0, 1, 1, fi)}, ∀i ∈ [t+ 1, n− 2] . (9)

In the above equations, ai, bi, ci, di, ei, fi ∈ [0, 1]. Note that only (8) is relevant if t = n−2. The fact
that we are able to extract only the first three coordinates of the elements of Gi, ∀i ∈ [0, n− 2], can
be proved using the following two auxiliary lemmas, the proofs of which are given in Appendix A.1.

Lemma 1 For all (0, β, γ̃) ∈ D̃, γ̃i = 0, ∀ i ∈ [0, t].

Lemma 2 For all i ∈ [t+ 1, n− 1] there exists (0, β, γ̃) ∈ D̃ with γ̃i = 1.

However, only the first three coordinates of the elements of the Gi’s are sufficient to determine the
Si’s (Si is defined in Sect. 3.2). It is easy to verify from Table 1 that Si = 2, ∀i ∈ [0, t] and Si =
1, ∀i ∈ [t+ 1, n− 2]. From Proposition 2

|D̃-consistent| = S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1︸ ︷︷ ︸
(n−t−2) times

· 2 · 2 · · · 2︸ ︷︷ ︸
(t+1) times

= 2t+3 .

(ii) The proof is similar to the above one using Proposition 2. �

Theorem 2 Let a useful set D̃ be given for the equation

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

with x, y, α, β, γ ∈ Zn2 . Then |D̃-consistent|=4.

Proof. The proof is similar to the above proof. Details are provided in Appendix A.2. �

7

4 Lower Bounds on the Number of Queries

Armed with the results derived in the previous section, we are now ready to establish one of the major
contributions of this article, i.e., lower bounds on the number of queries, submitted in a batch, to solve
the said equations. As it is already clear from the previous discussion that the trivial method is to
submit all possible queries and then solve it; the challenge lies with a nontrivial solution which uses
less number of queries. It is always regarded as an important theoretical benchmark as to how far it
is possible to reduce the number of queries. The significance of a lower bound is that no algorithm
can solve the equations with queries less than it.

We already noticed that more queries tend to reduce the search space of the secret (x, y). In our
formal framework, if A ⊆ B ⊆ D̃ then D̃-consistent ⊆ B-consistent ⊆ A-consistent. This implies that
|D̃-consistent| ≤ |B-consistent| ≤ |A-consistent|. Note that our algorithm constructs A ⊆ D̃, ∀(x, y) ∈
Zn2 × Zn2 , using the submitted queries and the corresponding outputs such that |D̃-consistent| = |A-
consistent|. The algorithm fails if |D̃-consistent| < |A-consistent|, for some (x, y) ∈ Zn2 × Zn2 . We will
use the condition – |A-consistent| cannot be strictly greater than |D̃-consistent| – to compute a lower
bound on the number of queries. In Theorem 3 we identify a property of A, in terms of the (n− 3)th
core Gn−3, where the above condition is violated. In Theorem 4, we use this fact to obtain a lower
bound.

Theorem 3 We consider the equation

(x+ y)⊕ (x+ (y ⊕ β)) = γ ,

where the position of the least significant ‘1’ of x is t with n − 3 ≥ t ≥ 0. Let all the submitted
queries and the oracle outputs be stored in the set A (note that φ ⊂ A ⊆ D̃ where D̃ is a useful
set). Suppose that there is no query (0, β) for which the oracle output is γ̃ with γ̃n−2 = 1. Then
|A-consistent| > |D̃-consistent|.
Proof. If there is no query (0, β) for which the oracle output is γ̃ with γ̃n−2 = 1 then the (n−3)th core
Gn−3 (corresponding to A) contains no element (0, βn−3, γ̃n−3, γ̃n−2) with γ̃n−2 = 1. This implies
Gn−2 contains no element (0, βn−2, γ̃n−2, γ̃n−1) with γ̃n−2 = 1 . Therefore, Gn−2 is of one of the
following forms,

Gn−2 = {(0, 0, 0, 0)} or {(0, 0, 0, 0), (0, 1, 0, b)} .
Now, from Table 1, Sn−2 = 2l for either of the cases, where l > 0. Similarly, using Theorem 1,
Si ≥ 2, ∀ i ∈ [0, t]. Also Si ≥ 1, ∀ i ∈ [t+ 1, n− 3] (when n− 4 ≥ t). Therefore, from Proposition 2,
|A-consistent| = 2t+3+k for some k > 0. From Theorem 1, |D̃-consistent| = 2t+3. Therefore, |A-
consistent| > |D̃-consistent|. �

Instead of establishing a lower bound for the entire seed space Zn2 × Zn2 , we derive a lower bound
for a subset of Zn2 ×Zn2 , denoted by Vn, 0 which is the collection of all (x, y)’s with x0 = 1 (that is, the
position of the least significant ‘1’ of x is zero). Note that |Vn, 0| = 22n−1. It is easy to conclude that
the lower bound derived for Vn, 0 is also a lower bound for the entire seed space Zn2 × Zn2 .

Theorem 4 A lower bound on the number of queries (0, β)’s, submitted in a batch, to solve

(x+ y)⊕ (x+ (y ⊕ β)) = γ

where (x, y) ∈ Vn, 0 is (i) 3 · 2n−4 if n ≥ 4, (ii) 2 if n = 3, (iii) 1 if n = 2 and (iv) 0 if n = 1.

8

Proof. (i) When n ≥ 4. Let all the submitted queries and the oracle outputs be stored in the set
A (φ ⊂ A ⊆ D̃ where D̃ is a useful set) and |A-consistent| = |D̃-consistent| for all (x, y) ∈ Vn, 0. By
Theorem 3, a necessary condition is that there must exist at least one query (0, β) for which the oracle
output is γ̃ with γ̃n−2 = 1 otherwise |A-consistent| > |D̃-consistent|. We shall henceforth denote a
query (0, β) by β.

We first encode the bit-string of a query β as the edges and the corresponding output γ̃ as the
nodes (denoted by circles) on a path of the full binary tree as shown in Fig. 1. The possible values of
βi are denoted as the edges of the tree between the depth i and the depth (i+ 1) (the root of the tree
is at depth 0). Similarly the possible values of γ̃i can be assigned to the nodes at the depth i. Note
that all possible 2n queries are encoded in the tree.

1 0

1

0 1

A

B C

1
P

~
n−2

n−2

depth 0

depth 1

depth 2

depth 3

γ_0

γ_1

γ_3

~

~

~

~

β_1

0 1

0 0 1

β_2 0 1 0 1 0 1 0 1

β_0

γ_2

γ_
β_

depth (n−2)

D D’
0 10 1

Figure 1: An arbitrary path P in the subtree (black node indicates value 1 and white node 0)

The Approach. We shall isolate a subtree and show that, if an arbitrary path in that subtree is
not present as the prefix of one of the submitted queries then there exists a seed (x, y) ∈ Vn, 0 such
that, on all other queries, the outputs are γ̃’s with γ̃n−2 = 0. Therefore a lower bound is the number
of all paths present in that particular subtree.

Node Assignment Rule. The rule shows how to select the values of γ̃’s for all the queries. In the
nodes of the entire tree we now put the values of γ̃. We select an arbitrary path P (which is a prefix
of a query) in the subtree whose leaf nodes are at the depth (n − 2) and whose first two edges are
(0, 1) and (1, 0) and (1, 1) (see Fig. 1). Note that the values at the nodes B and C will be 0 and
1 respectively because x0 = 1. Now we put 1 in all nodes on the path P from the depth 2 till the
depth (n− 2). The two child nodes D and D′ of the last node on P are assigned 0 and 1 arbitrarily.
All other nodes in the tree are assigned 0. The intuition that such an assignment rule gives a valid
solution is derived from an observation in Table 1 (see Sect. 3.1) that the matrix cut off by rows R(1),
R(2) and R(3) and columns Col(2), Col(3) and Col(4) has only diagonal elements 1 (formally proved
in Lemma 3).

Proof Continued. Suppose P is not a prefix of any query in A. As shown in Fig. 1, all nodes at
depth (n − 2), except the one on the path P , are assigned zero. Therefore, there is no query β in A
such that the corresponding output γ̃ has γ̃n−2 = 1. This leads to a contradiction. Therefore, there

9

must be a query in A whose prefix is P . Now P is an arbitrary path in the subtree constructed above.
Now the total number of paths (or prefixes of queries) in the subtree is 3 · 2n−4. The following lemma
completes the proof.

Lemma 3 For any arbitrary P with the first two edges (0, 1) or (1, 0) or (1, 1) in the tree constructed
above, all queries and their outputs encoded in the tree according to the Node Assignment Rule, produce
a valid solution (x, y) ∈ Vn, 0.

Proof. For any arbitrary P , the core Gi’s (0 ≤ i ≤ n − 2), computed from the values of γ̃’s and β’s
(according to the Node Assignment Rule), are of one of the following forms

G0 = {(0, 0, 0, 0), (0, 1, 0, 0)} ,
Gi = {(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, ai), (0, 1, 1, bi)} , 1 ≤ i ≤ n− 2

where ai, bi ∈ [0, 1] and ai = 1 ⊕ bi. Now each Si > 0 (obtained from Table 1 using the Gi’s).
Therefore, the number of valid solutions S = 4 ·∏n−2

i=0 Si > 0 (see Proposition 2). In fact the number
solutions is 8 (verification of a part of Theorem 1). ��
The proofs of (ii), (iii) and (iv) are immediate from Table 1. �

Lower Bound for the equation (x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ. For the equation lower bounds
on the number of batch queries, for n = 2 and 3, are 2 and 3 respectively. This can be proved by
searching through all possible x, y, α, β and γ̃ exhaustively. However, the situation becomes in-
tractable when n ≥ 4 when the number of all possible x, y, α, β and γ̃ for only 3 queries becomes
extremely large (260 for n = 4). We did extensive experiments with many test vectors and found that
three queries were insufficient to solve the equations when n ≥ 4. We state the following conjecture.

Conjecture 1 A lower bound on the number of queries (α, β), submitted in a batch, to solve

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

is 4 if n ≥ 4.

5 Algorithms

In this section, we present two algorithms Algorithm 1 and Algorithm 2 to solve (4) and (3) with a
set of batch queries. The inputs to the algorithms are the bit-length n, the oracle O and the Table 1.
The outputs are the Gi’s (defined in Sect. 3.2) computed from a set of queries and their replies. Our
target is to select a subset of all possible queries such that the set of solutions derived from the Gi’s is
the same as D̃-consistent, for all (x, y)’s. Algorithm to compute the actual solution set from the set of
Gi’s is described in Appendix A.3. Below we discuss the motivation and correctness of the algorithms;
we leave many smaller details, while the pseudocode covers all cases.

Discussion: Algorithm 1(sketch). The number of queries required by the algorithm is 2n−2

which is one fourth of all possible 2n queries (note that a lower bound in 3
4 · 2n−2). The two for loop’s

(in steps 8-17 and 10-13) are the most important parts of the algorithm. For easy understanding of
the algorithm, let us see how the algorithm works when the position of the least significant ‘1’, of x is
zero (i.e., x0 = 1). Note that we have to submit queries such that the Gi’s (0 ≤ i ≤ n − 2) obtained
from them correspond to S0 = 2 and Si = 1∀i ∈ [1, n− 2] (see Theorem 1). In the tth iteration of the

10

Algorithm 1 Algorithm to solve the equation (x+ y)⊕ (x+ (y ⊕ β)) = γ

Input: Oracle O, n, Table T
Output: The core Gi’s

1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating that all 4 solutions are possible and exit;
3: β = (1, 1, · · · , 1, 1)n; /*The first query*/
4: γ̃ = O(β); /*Oracle output*/
5: Q = {β} and A = {(0, β, γ̃)}; /*Collecting the query and the oracle output*/
6: If n = 2 then Go to Step 20;
7: If n > 3 /*If n = 3, the execution automatically jumps to Step 18)*/
8: For all t ∈ [1, n− 3] in increasing order
9: {Initialize Q′ = φ

10: For all β ∈ Q
11: {β′ = (1, 1, · · · , β′t = 0, βt−1, · · · , β0); /*Constructing a new query*/
12: O(β′) = γ̃′; /*Oracle output*/
13: Q′ = Q′ ∪ {β′} and A = A ∪ {(0, β′, γ̃′)};}/*Collecting the oracle output*/
14: β′ = (1, 1, · · · , β′t = 1, 0, · · · , 0); /*Constructing a new query*/
15: O(β′) = γ̃′; /*Oracle output*/
16: Q′ = Q′ ∪ {β′} and A = A ∪ {(0, β′, γ̃′)}; /*Collecting oracle output*/
17: Q = Q ∪Q′;}
18: β′ = (1, 1, · · · , β′n−2 = 1, 0, · · · , 0); /*Constructing the last query*/
19: O(β′) = γ̃′ and A = A ∪ {(0, β′, γ̃′)}; /*Oracle output*/
20: Return the core Gi’s for all i ∈ [0, n− 2] computed from A.

bigger loop we submit a set of queries which ensures that Gt = {(0, 1, 1, a), (0, 0, 1, b), (0, 1, 0, c)} which
implies that St = 1. The tth iteration also produces at least one output γ̃ with γ̃t+1 = 1 which will
be used in the next loop. If there is no output with γ̃t+1 = 1 then St+1 > 1 and hence the algorithm
fails (see Theorem 3). The proof of correctness of the algorithm when x0 6= 1 is similar to the above
argument.

Discussion: Algorithm 2 (sketch). The number of queries required by the algorithm is 6 which
is two more than the best known lower bound (also note that the number of all possible queries is 22n).
The proof of correctness of this algorithm is by showing that the submitted queries produce Si = 1 for
all i ∈ [0, n− 2] (Theorem 2). Six queries are submitted in steps 3, 5, 8, 10, 12, 14. Now we consider
only the first two queries in steps 3 and 5. For these queries, Gi = {(1, 0, γ̃i, γ̃i+1), (0, 1, γ̃′i, γ̃

′
i+1)} if

i even. Note that, in this case, if γ̃i = γ̃′i then Si = 1 otherwise Si = 2 (from Table 1). Also observe
that Gi = {(1, 0, γ̃i, γ̃i+1), (1, 0, γ̃′i, γ̃

′
i+1)} if i odd. In this case, if γ̃i 6= γ̃′i then Si = 1 otherwise

Si = 2. Next, we observe a combinatorial pattern in the precomputed Table 1 which shows that, if
Si = 2 then Si−1 = 1 (omitting proof). The 3rd and the 4th queries are generated from the second
query assuming Si = 2 for some odd i’s. We change all the even numbered bits of the second query
(α[2], β[2]). It can be shown that making (α[2]i, β[2]i) = (0, 0) and (1, 1) for all even i’s ensures that
Si = 1 for all odd i’s. Exactly the same way the 5th and the 6th queries are generated from the second
query (α[2], β[2]) assuming that Si = 2 for some even i’s. Now we change the odd numbered bits
of (α[2], β[2]) to (0, 0) and (1, 1) to ensure that all Si = 1 for all even i’s. Therefore, the number of
solutions derived from these 6 queries is S = 4 ·∏n−2

i=0 Si = 4 as suggested in Theorem 2.

11

Algorithm 2 Algorithm to solve the equation (x+ y)⊕ ((x+ α) + (y ⊕ β)) = γ

Input: Oracle O, n, Table T
Output: the core Gi’s

1: If n ≤ 0 then exit with a comment “Invalid Input”;
2: If n = 1 then return an empty set φ indicating that all 4 solutions are possible and exit;
3: (α[1], β[1]) = ((11 · · · 11)n, (00 · · · 00)n);/*First Query*/
4: γ̃[1] = O(α[1], β[1]); /*Oracle Output*/
5: (α[2], β[2]) = ((· · · 101010)n, (· · · 010101)n);/*Second Query*/
6: γ̃[2] = O(α[2], β[2]); /*Oracle Output*/
7: If n = 2 then Go to Step 16;
8: (α[3], β[3]) = ((· · · 101010)n, (· · · 000000)n);/*Third Query*/
9: γ̃[3] = O(α[3], β[3]); /*Oracle Output*/

10: (α[4], β[4]) = ((· · · 111111)n, (· · · 010101)n);/*Fourth Query*/
11: γ̃[4] = O(α[4], β[4]); /*Oracle Output*/
12: (α[5], β[5]) = ((· · · 000000)n, (· · · 010101)n);/*Fifth Query*/
13: γ̃[5] = O(α[5], β[5]); /*Oracle Output*/
14: (α[6], β[6]) = ((· · · 101010)n, (· · · 111111)n);/*Sixth Query*/
15: γ̃[6] = O(α[6], β[6]); /*Oracle Output*/
16: A = {(α[i], β[i], γ̃[i]) | for all i’s}
17: Return the core Gi’s for all i ∈ [0, n− 2] computed from A.

6 Cryptographic Applications

Strength of modular addition against DC. In view of the large scale application of modular
addition in symmetric cryptography, our results seem effective in the evaluation of security of cipher
components which mixes two different group operations addition and XOR. The fact that only 6
queries submitted in a batch (which is a more practical attack scenario than adaptive queries) are
sufficient to reduce the search space of the secret (x, y) from 22n to only 4 (for all n ≥ 4) should be
recognized as a warning to the designers (see Algorithm 2). On the other hand the high exponential
lower bound on the number of queries for another differential equation of addition (3 · 2n−4 for all
n ≥ 4) underlines an important theoretical reference point which advocates it as relatively stronger
under DC (see Theorem 4). One direct application of our results in practical cryptanalysis is described
below. At this moment, we are not aware of other applications of the results, yet it can very likely be
used to evaluate cryptographic strengths of many modern ciphers which use modular multiplication
combined with modular addition and XOR.

Cryptanalysis of Helix. Helix, proposed by Ferguson et al. [8], is a stream cipher with a com-
bined MAC functionality. This cipher was a candidate for consideration in the 802.11i standard. The
main component of the primitive is combination of addition and XOR. The fact that the internal state
of Helix depends on the plaintext allows for cryptanalysis with chosen plaintexts (CP) and adaptive
chosen plaintext (ACP). Muller mounted an ACP attack which recovers the secret key of the Helix
cipher with 212 plaintexts. We refer the readers to [17] for a detailed analysis of the attack. Our
key recovery attack goes on the same line as Muller’s attack. We cannot describe the attack in full
detail because of space constraints, however, we pick out a portion which is critical to our CP attack.
The crux of the whole attack is solving the equation (x + y) ⊕ (x + (y ⊕ β)) = γ with β’s and the
corresponding γ’s to recover the secret information (x, y), in the framework described in Sect. 2.1, for

12

50 times (n = 32 for the Helix cipher). Every time β corresponds to a CP. Algorithm 1 shows that the
above equation can be solved with 2n−2 CP’s (230 for n = 32). Therefore, the total data complexity
of our CP attack is 50 · 230, i.e., 235.64 plaintexts.
Note. Apparently, from the quantities of the required plaintexts, it may look that our attack is less
effective than Muller’s attack. However, comparison between a CP and an ACP attack in terms of
data complexities is unjustified. On the other hand, the working principles a CP attack makes it more
practical than an ACP attack. It was not known till now how to mount a CP attack on the Helix
cipher and its data complexity.

7 Conclusion and Further Research

The results of the paper contribute to both theory and practice. We showed a lower bound on the
number of batch queries to solve a DEA which is optimal up to a constant factor. For solving another
DEA, our algorithm uses number of queries which is constant asymptotically. Our results are used
directly to recover the key of the Helix cipher with chosen plaintexts rather than adaptive chosen
plaintexts which has so far been the best CP attack on this cipher. The paper also leaves many
interesting questions open. One possible research direction may be to close the gap between the lower
and upper bounds on the number of queries to solve DEA. Another way to extend the work is to
analyze components which combine more complex transformations such as modular multiplication,
T -functions with addition.

References

[1] I. A. Ajwa, Z. Liu, P. S. Wang, “Gröbner Bases Algorithm,” ICM Technical Report, February
1995, Available Online at http://icm.mcs.kent.edu/reports/1995/gb.pdf.

[2] T. A. Berson, “Differential Cryptanalysis Mod 232 with Applications to MD5,” Eurocrypt 1992
(R. A. Rueppel, ed.), vol. 658 of LNCS, pp. 71-80, Springer-Verlag, 1993.

[3] C. Burwick, D. Coppersmith, E. D’Avignon, Y. Gennaro, S. Halevi, C. Jutla, S. M. Matyas Jr.,
L. O’Connor, M. Peyravian, D. Safford and N. Zunic, “MARS – A Candidate Cipher for AES,”
Available Online at http://www.research.ibm.com/security/mars.html, June 1998.

[4] E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,” Crypto ’90
(A. Menezes, S. A. Vanstone, eds.), vol. 537 of LNCS, pp. 2-21, Springer-Verlag, 1991.

[5] A. Biryukov, D. Wagner, “Slide Attacks,”Fast Software Encryption 1999, (Lars R. Knudsen, ed.),
vol. 1636 of LNCS, pp. 245-259, Springer-Verlag, 1999.

[6] N. Courtois, J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined Systems of Equa-
tions,” Asiacrypt 2002 (Yuliang Zheng, ed.), vol. of LNCS, pp. 267-287, Springer-Verlag, 2002.

[7] J. Faugère, “A new effecient algorithm for computing Gröbner bases (F4),” Jour-
nal of Pure and Applied Algebra, vol. 139, pp. 61-88, 1999, Available Online at
http://www.elsevier.com/locate/jpaa.

[8] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, T. Kohno, “Helix: Fast Encryption
and Authentication in a Single Cryptographic Primitive,” Fast Software Encryption 2003 (T. Jo-
hansson, ed.), vol. 2887 of LNCS, pp. 330-346, Springer-Verlag, 2003.

13

[9] M. E. Hellman, “A Cryptanalytic Time-Memory Trade-off,” IEEE Transaction on Information
Theory, vol. IT-26, No. 4, July, 1980.

[10] D. E. Knuth, “The Art of Computer Programming,” vol. 2, Seminumerical Algorithms, Addison-
Wesley Publishing Company, 1981.

[11] A. Klimov, A. Shamir, “Cryptographic Applications of T-Functions,” Selected Areas in Cryptog-
raphy 2003 (M. Matsui, R. J. Zuccherato, eds.), vol. 3006 of LNCS, pp. 248-261, Springer-Verlag,
2004.

[12] A. Klimov, A. Shamir, “New Cryptographic Primitives Based on Multiword T-Functions,” Fast
Software Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of LNCS, pp. 1-15, Springer-Verlag,
2004.

[13] A. Kipnis, A. Shamir, “Cryptanalysis of the HFE Public Key Cryptosystems by Relinearization,”
Crypto 1999 (M. Wiener, ed.), vol. 1666 of LNCS, pp. 19-30, Springer-Verlag, 1999.

[14] X. Lai, J. L. Massey, S. Murphy, “Markov Ciphers and Differential Cryptanalysis,” Eurocrypt ’91
(W. Davis, ed.), vol. 547 of LNCS, pp. 17-38, Springer-Verlag, 1991.

[15] H. Lipmaa, S. Moriai, “Efficient Algorithms for Computing Differential Properties of Addition,”
FSE 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 336-350, Springer-Verlag, 2002.

[16] L. Lipmaa, J. Wallén, P. Dumas, “On the Additive Differential Probability of Exclusive-Or,” Fast
Software Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of LNCS, pp. 317-331, Springer-
Verlag, 2004.

[17] F. Muller, “Differential Attacks against the Helix Stream Cipher,” Fast Software Encryption 2004
(B. Roy, W. Meier, eds.), vol. 3017 of LNCS, pp. 94-108, Springer-Verlag, 2004.

[18] S. Paul and B. Preneel, “Solving Systems of Differential Equations of Addition (Extended
Abstract),” 10th Australasian Conference on Information Security and Privacy, ACISP 2005
(Colin Boyd and Juan Gonzalez, eds.), vol. 3574 of LNCS, pp. 75-88, Springer-Verlag,
2005, Extended Version available online on IACR ePrint Archive as Report 2004/294 at
http://eprint.iacr.org/2004/294, April 2005.

[19] R. L. Rivest, M. Robshaw, R. Sidney, Y. L. Yin, “The RC6 Block Cipher,” Available Online at
http://theory.lcs.mit.edu/ rivest/rc6.ps, June 1998.

[20] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C.Hall, N. Ferguson, “The Twofish Encryption
Algorithm: A 128-Bit Block Cipher,” John Wiley & Sons, April 1999, ISBN: 0471353817.

[21] O. Staffelbach, W. Meier, “Cryptographic Significance of the Carry for Ciphers Based on Inte-
ger Addition,” Crypto ’90 (A. Menezes, S. A. Vanstone, eds.), vol. 537 of LNCS, pp. 601-614,
Springer-Verlag, 1991.

[22] D. Wagner, “The Boomerang Attack,” Fast Software Encryption 1999, (Lars R. Knudsen, ed.),
vol. 1636 of LNCS, pp. 156-170, Springer-Verlag, 1999.

[23] J. Wallén, “Linear Approximations of Addition Modulo 2n,” Fast Software Encryption 2003
(T. Johansson, ed.), vol. 2887 of LNCS, pp. 261-273, Springer-Verlag, 2003.

14

A Appendix

A.1 Proofs of Lemma 1 and 2

Claim 1 For all (0, β, γ̃) ∈ D̃, γ̃i = 0 ∀ i ∈ [0, t].

Proof. If the position of the least significant ‘1’ of x is t then ci = c̃i = 0 ∀ i ∈ [0, t] and ∀β ∈ Zn2 .
Recall γ̃i = ci ⊕ c̃i. This proves the lemma. �

Claim 2 For each i ∈ [t+ 1, n− 1], there exists (0, β, γ̃) ∈ D̃ with γ̃i = 1.

Proof. We prove the lemma by induction on i. The statement is true if i = t + 1. Suppose, the
statement is true if i = k for some k ∈ [t + 1, n − 2], that is, there exists (0, a, b) ∈ D̃ with bk = 1
(induction hypothesis). We construct three n-bit integers from a,

1. a′ = (an−1, an−2, · · · , ak+1, 0, ak−1, · · · , a0)

2. a′′ = (an−1, an−2, · · · , ak+1, 1, ak−1, · · · , a0)

3. a′′′ = (an−1, an−2, · · · , ak+1, 1, 0, 0, · · · , 0).

Now we select three elements (0, a′, b′), (0, a′′, b′′), (0, a′′′, b′′′) ∈ D̃ (such elements exist since, for all
p ∈ Zn2 , there exists (0, p, q) ∈ D̃ for some q ∈ Zn2). Note that b′k = b′′k = bk = 1 and b′′′k = 0. From
Table 1, at least one of b′k+1, b

′′
k+1 and b′′′k+1 is 1. This proves the lemma. �

A.2 Number of Solutions for (3)

Claim 3 Let a useful set D̃ be given for the equation

(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ

with x, y, α, β, γ ∈ Zn2 . Then |D̃-consistent|=4.

Proof. Our approach is same as that of Theorem 1.
Case 1: n ≥ 2. Corresponding to the useful set D̃ we determine Gi, ∀ i ∈ [0, n− 2].

G0 = {(0, 0, 0, a0), (0, 1, 0, b0), (1, 0, 0, c0), (1, 1, 0, d0)}, (10)
Gi = {(0, 0, 0, ei), (0, 0, 1, fi), (0, 1, 0, gi), (0, 1, 1, hi),

(1, 0, 0, mi), (1, 0, 1, ni), (1, 1, 0, pi), (1, 1, 1, qi)}, ∀ i ∈ [1, n− 2] . (11)

In the equations a0, b0, c0, d0, ei, fi, gi, hi, mi, ni, pi, qi ∈ [0, 1]. From Table 1 we see that Si =
1, ∀ i ∈ [0, n− 2] (see Sect. 3.2 to compute Si from Gi). Therefore, from Proposition 2

|D̃-consistent| = S = 4 ·
n−2∏

i=0

Si = 4 · 1 · 1 · · · 1︸ ︷︷ ︸
(n−1) times

= 4 .

Case 2: n = 1. If n = 1 then |D̃-consistent| = 4. The proof is trivial using Proposition 2. �

15

A.3 Solving Systems of Equations from the Gi’s

In Algorithm 3, we omitted details of many operations for easy understanding. The detailed analysis
is provided separately. The correctness proof of the algorithm is the following theorem.

Theorem 5 Let φ ⊆ A ⊆ D̃ and n > 1. The following two statements are equivalent.
1. (x, y) ∈ Zn2 × Zn2 is such that Gi ⇒ (xi, yi, ci), ∀ i ∈ [0, n− 2].
2. (x, y) ∈ A-consistent.

Proof. From the construction of Gi, it can be shown that 1⇔ 2. �

Algorithm 3 Computing all solutions to a system of DEA from the Gi’s
Input: Gi, ∀i ∈ [0, n− 2]
Output: D̃-consistent

1: Li = {(xi, yi, ci) |Gi ⇒ (xi, yi, ci)} for all i ∈ [0, n− 2]
2: Compute M = {((xn−1, xn−2, · · · , x0), (yn−1, yn−2, · · · , y0)) | (xn−1, yn−1) ∈ Z2

2,
(xi, yi, ci) ∈ Li, i ∈ [0, n− 2], c0 = 0, ci+1 = xiyi ⊕ xici ⊕ yici}.

3: Return (M).

Detailed Construction. Let Gi be known ∀ i ∈ [0, n− 2] (n > 1) for A ⊆ D̃ where D̃ is a useful
set. Let Li = {(xi, yi, ci) |Gi ⇒ (xi, yi, ci)} ∀i ∈ [0, n− 2]. Let a set M be constructed from the Li’s
in the following way,

M = {((xn−1, xn−2, · · · , x0), (yn−1, yn−2, · · · , y0))
|(xn−1, yn−1) ∈ Z2

2, (xi, yi, ci) ∈ Li, i ∈ [0, n− 2], c0 = 0 ,
ci+1 = xiyi ⊕ xici ⊕ yici} .

We present an algorithm to construct M from the Li’s with memory O(n · S) and time O(S) where
S = |D̃-consistent| = |M |.

First we set

M1 = {((c1), (x0), (y0))|(x0, y0, 0) ∈ L0, c1 = x0y0} .
Now we construct a set Mk ∀ k ∈ [2, n− 1] using the following recursion.

Mk = {((ck), (xk−1, · · · , x0), (yk−1, · · · , y0))|(xk−1, yk−1, ck−1) ∈ Lk−1 ,

((ck−1), (xk−2, · · · , x0), (yk−2, · · · , y0)) ∈Mk−1, ck = xk−1yk−1 ⊕ xk−1ck−1 ⊕ yk−1ck−1} .
Now, we construct

Mn = {((xn−1, · · · , x0), (yn−1, · · · , y0))|(xn−1, yn−1) ∈ Z2
2 ,

((cn−1), (xn−2, · · · , x0), (yn−2, · · · , y0)) ∈Mn−1} .
Using Proposition 2 and Theorem 5 it is easy to show that M = Mn. Note that the size of each Li
is O(1) since the size of the Table 1 is O(1). Also note that |Mn| = S and therefore the asymptotic
memory requirement to construct Mn recursively following the above algorithm is O(n · S) since
k = O(n) and Mk+1 can be constructed from Mk only. It is trivial to show that the time to construct
Mn (i.e., M) from the Li’s is O(S). Thus, the set M can be constructed from the Li’s with memory
O(n · S) and time O(S).

16

A.4 Determination of |A-consistent|
Claim 4 Let A 6= φ and S denote |A-consistent|. Then,

S =





0 if γ̃0 = 1 for some (α, β, γ̃) ∈ A,
4 ·∏n−2

i=0 Si if γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n > 1,
4 if γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n = 1.

The Si’s are defined in (7).

Proof. We prove this result by considering all cases individually.

Case 1 If γ̃0 = 1 for some (α, β, γ̃) ∈ A then c0 = 1 which is impossible.

Case 2 If γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n > 1. From Theorem 5, S is the number of solutions
(x, y) ∈ Zn2 × Zn2 such that Gi ⇒ (xi, yi, ci),∀i ∈ [0, n − 2]. Let Mk denote the number of solutions
for ((xk, · · · , x0), (yk, · · · , y0)) such that Gi ⇒ (xi, yi, ci),∀i ∈ [0, k] where k ∈ [0, n− 2]. Note that
Gk depends only on the least (k + 1) bits of x, y,α,β. We consider two subcases.
Case 2(a): n > 2 . We determine |A-consistent| recursively. Let Ml = Ml, 0 + Ml, 1 such that Ml, 0

solutions produce cl+1 = 0 and Ml, 1 solutions produce cl+1 = 1. Therefore, ∀ l ∈ [0, n− 3]

Ml+1 = Ml, 0 · |Sl+1, 0|+Ml, 1 · |Sl+1, 1|
= Sl+1 ·Ml . (12)

as |Si, 0| = |Si, 1| = Si, ∀ i ∈ [0, n−2] (see Proposition 1). It is easy to show (a proof is by contradiction)
that Ml+1, so calculated, gives the number of solutions for ((xl+1, · · · , x0), (yl+1, · · · , y0)) such that
Gi ⇒ (xi, yi, ci),∀i ∈ [0, l + 1]. From (12),

Mn−2 =
n−2∏

i=0

Si (13)

as M0 = S0. Note that, for all (α, β, γ̃) ∈ A, γ̃ is independent of (xn−1, yn−1). Therefore,

S = 4 ·Mn−2 = 4 ·
n−2∏

i=0

Si if n > 2 . (14)

Case 2(b): n = 2 . It is easy to show that S = 4 · S0 if n = 2 .

Case 3 If γ̃0 = 0, ∀(α, β, γ̃) ∈ A and n = 1 . It is trivial to show that S = 4 if n = 1 since for all
(α, β, γ̃) ∈ A, γ̃ is independent of (xn−1, yn−1) . �

17

