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Abstract. Unprotected implementations of cryptographic primitives are
vulnerable to physical attacks. While the adversary only needs to succeed
in one out of many attack methods, the designers have to consider all
the known attacks, whenever applicable to their system, simultaneously.
Thus, keeping an organized, complete and up-to-date table of physical
attacks and countermeasures is of paramount importance to system de-
signers. This paper summarises known physical attacks and countermea-
sures on Elliptic Curve Cryptosystems. For implementers of elliptic curve
cryptography, this paper can be used as a road map for countermeasure
selection in the early design stages.

Keywords: Elliptic curve cryptosystems, side-channel attacks, fault
attacks.

1 Introduction

The advent of physical attacks on cryptographic device has created a big chal-
lenge for implementers. By monitoring the timing, power consumption, electro-
magnetic (EM) emission of the device or by inserting faults, adversaries can
gain information about internal data or operations and extract the key with-
out mathematically breaking the primitives. With new tampering methods and
new attacks being continuously proposed and accumulated, designing a secure
cryptosystem becomes increasingly difficult. While the adversary only needs to
succeed in one out of many attack methods, the designers have to prevent all
the applicable attacks simultaneously. Moreover, countermeasures of one attack
may surprisingly benefit another attack. As a result, keeping abreast of the most
recent developments in the field of implementation attacks and with the corre-
sponding countermeasures is a never ending task.

In this paper we provide a systematic overview of implementation attacks and
countermeasures of one specific cryptographic primitive: Elliptic Curve Cryptog-
raphy (ECC) [32,39]. This survey is an updated version of a previous report [16],
and has been influenced by Avanzi’s report [2], by the books of Blake et al. [6]
and by Avanzi et al. [3]. Due to the space limit, we only give a catalogue-like
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summary of the known attacks and countermeasures. Implementers can use this
paper as a road map. For the details of each attack or protection, we refer the
readers to the original papers.

The rest of this paper is organised as follows. Section 2 gives a short intro-
duction about the background of ECC. Section 3 and 4 gives details of known
passive and active attacks on ECC, respectively. In Section 6, we discuss known
countermeasures and their effectiveness. Section 6 gives several cautionary notes
on the use of countermeasures. We conclude the paper in Section 7.

2 Background

We give a brief introduction to Elliptic Curve Cryptography in this section. A
comprehensive introduction to ECC can be found in [6,3]. For a thorough sum-
mary of power analysis attacks, by far the most popular class of implementation
attacks, we refer the reader to [35].

Throughout this paper we assume the notations below are defined as follows:

– K: a finite field (Fp for prime field and F2m for binary field);
– char(K): the characteristic of K;
– E(a1, a2, a3, a4, a6) : an elliptic curve with coefficients a1, a2, a3, a4, a6;
– P (x, y): a point with coordinates (x, y);
– O: point at infinity;
– E(K) : a group formed by the points on an elliptic curve E defined over the

finite field K;
– #E: the number of points on curve E, i.e. the order of E;
– weak curve: a curve whose order does not have big prime divisors;
– the order of point P : the smallest integer r such that rP = O;
– affine coordinates: a point is represented with a two-tuple of numbers (x, y);
– projective coordinates: a point (x, y) is represented as (X,Y, Z), where x =
X/Z, y = Y/Z;

– Jacobian projective coordinates: a point (x, y) is represented as (X,Y, Z),
where x = X/Z2, y = Y/Z3.

2.1 Elliptic Curve Cryptosystems

An elliptic curve E over a field K can be defined by a Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where a1, a2, a3, a4, a6 ∈ K and Δ �= 0. Here Δ is the discriminant of E. A
Weierstrass equation can be simplified by applying a change of coordinates. If
char(K) is not equal to 2 or 3, then E can be transformed to

y2 = x3 + ax+ b (2)

where a, b ∈ K. If char(K) = 2, then E can be transformed to

y2 + xy = x3 + ax2 + b (3)

if E is non-supersingular.
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For cryptographic use, we are only interested in elliptic curves over a finite
field. Elliptic curves defined over both prime fields and binary extension fields
are used in reality. Given two points, P1(x1, y1) and P2(x2, y2), the sum of P1

and P2 is again a point on the same curve under the addition rule. For example,
for elliptic curve E over F2m , one can compute P3(x3, y3) = P1 + P2 as follows:

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −y1 − (x3 − x1)λ− a1x3 − a3

where

λ =

{
3x2

1+2a2x1+a4−a1y1

2y1+a1x1+a3
(x1, y1) = (x2, y2),

y1−y2

x1−x2
otherwise.

Algorithm 1. Montgomery powering ladder [40]

Input: P ∈ E(F) and integer k =
∑l−1

i=0
ki2

i.
Output: kP .

1: R[0]← P , R[1]← 2P .
2: for i = l − 2 downto 0 do
3: R[¬ki]← R[0] +R[1], R[ki]← 2R[ki].
4: end for

Return R[0].

2.2 Scalar Multiplication

The set of points (x, y) on E together with the point at infinity form an abelian
group. Given a point P ∈ E(K) and a scalar k, the computation kP is called
point multiplication or scalar multiplication. Algorithm 1 shows the Montgomery
powering ladder for scalar multiplication. The security of ECC is based on the
hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP), namely,
finding out k for two given points P and Q such that Q = kP .

3 Passive Attacks

In practice, execution of an Elliptic Curve Scalar Multiplication (ECSM) can
leak information of k in many ways. The goal of the attacker is to retrieve the
entire bit stream of k 1 using physical attacks. Physical attacks include mainly
two types of attacks: Side Channel Analysis (SCA) and Fault Analysis (FA). In
this section, we briefly recap the known SCA (also known as passive attacks) on
an ECC implementation.

1 Note that for some scenarios, the attackers only need to recover a few bits of k to
break the scheme. For example, Nguyen and Shparlinski [43] have shown that a few
bits of k from a couple of signatures are enough to break ECDSA [47].
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Most SCA attacks are based on power consumption leakage. Most often, elec-
tromagnetic (EM) radiation is considered as an extension of the power consump-
tion leakage and the attacks/countermeasures are applied without change [41].
For the sake of simplicity, we will only mention power traces as the side-channel
to describe the known attacks. However, it is important to point out that EM
radiation can serve as an better leakage source since radiation measurements can
be made locally [18].

3.1 Simple Power Analysis

Simple power analysis (SPA) attacks make use of distinctive key-dependent pat-
terns shown in the power traces [33]. As shown by Coron [14], when double-
and-add algorithm is used for a point multiplication, the value of scalar bits can
be revealed if the adversary can distinguish between point doubling and point
addition from a power trace.

3.2 Template Attacks

A template attack [9] requires access to a fully controllable device, and proceeds
in two phases. In the first phase, the profiling phase, the attacker constructs
templates of the device. In the second phase, the templates are used for the
attack. Medwed and Oswald [37] showed the feasibility of this type of attacks
on an implementation of the ECDSA algorithm. In [23] a template attack on a
masked Montgomery ladder implementation is presented.

3.3 Differential Power Analysis

Differential power analysis (DPA) attacks use statistical techniques to pry the
secret information out of the measurements [33]. DPA sequentially feeds the
device with N input points Pi, i ∈ {1, 2, .., N}. For each point multiplication,
kPi, a measurement over time of the side-channel is recorded and stored. The
attacker then chooses an intermediate value, which depends on both the input
point Pi and a small part of the scalar k, and transforms it to a hypothetical
leakage value with the aid of a hypothetical leakage model. The attacker then
makes a guess of the small part of the scalar. For the correct guess, there will
be a correlation between the measurements and the hypothetical leakages. The
whole scalar can be revealed incrementally using the same method.

3.4 Comparative Side-Channel Attacks

Comparative SCA [24] resides between a simple SCA and a differential SCA.
Two portions of the same or different leakage trace are compared to discover
the reuse of values. The first reported attack belonging to this category is the
doubling attack [19]. The doubling attack is based on the assumption that even
if the attacker does not know what operation is performed, he can detect when
the same operations are performed twice. For example, for two point doublings,
2P and 2Q, the attacker may not know what P and Q are, but he can tell if
P = Q. Comparing two power traces, one for kP and one for k(2P ), it is possible
to recover all the bits of k.



An Updated Survey on Secure ECC Implementations 269

3.5 Refined Power Analysis

A refined power analysis (RPA) attack exploits the existence of special points:
(x, 0) and (0, y). Feeding to a device a point P that leads to a special pointR(0, y)
(or R(x, 0)) at step i under the assumption of processed bits of the scalar will
generate exploitable side-channel leakage [21]. Especially, applying randomised
projective coordinates, randomised EC isomorphisms or randomised field iso-
morphisms does not prevent this attack since zero stays after randomization.

3.6 Zero-Value Point Attack

A zero-value point attack (ZPA) [1] is an extension of RPA. Not only considering
the points (i.e. R[1] and R[0]) generated at step i, a ZPA also considers the
value of auxiliary registers. For some special points P , some auxiliary registers
will predictably have zero value at step i under the assumption of processed
bits of the scalar. The attacker can then use the same procedure of RPA to
incrementally reveal the whole scalar.

3.7 Carry-Based Attack

The carry-based attack [18] is designed to attack Coron’s first countermeasure
(also known as scalar randomisation). Instead of performing kP , Coron suggested
to perform (k + r#E)P where r is a random number. The crucial observation
here is that, when adding a random number a to a fixed number b, the probability
of generating a carry bit c = 1 depends solely on the value of b (the carry-in has
negligible impact [18]). If (k + r#E) is performed with a w-bit adder, where w
is the digit size, the attacker can learn k digit by digit from the distribution of
the carry bit.

3.8 Address-Bit DPA

The address-bit attack (ADPA) [38] explores the link between the register ad-
dress and the key. The first ADPA applied to ECC is by Itoh et al. [25]. For
example, an implementation of Alg. 1 performs point addition and doubling
regardless to the value of the key bit, but the address of the doubled point de-
pends solely on ki. As a result, ki can be recovered if the attacker can distinguish
between data read from R[0] and from R[1].

4 Fault Attacks

Besides passive side-channel analysis, adversaries can actively disturb the cryp-
tographic devices to derive the secret. Faults on the victim device can be induced
with a laser beamer, glitches in clock, a drop of power supply and so on. Readers
who are interested in these methods are referred to [34].

In this section, we give a short description of the known fault analysis on
ECC. Based on the scalar recovery method, we divide fault attacks on ECC into
three categories, namely, safe-error based analysis, weak-curve based analysis
and differential fault analysis.
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4.1 Safe-Error Analysis

The concept of safe-error was introduced by Yen and Joye in [49,30]. Two types
of safe-error are reported: C safe-error and M safe-error.

C safe-error. The C safe-error attack exploits dummy operations which are
usually introduced to achieve SPA resistance. Taking the add-and-double-always
algorithms [14, Alg. 1] as an example, the dummy addition in step 3 makes safe-
error possible. The adversary can induce temporary faults during the execution
of the dummy point addition. If the scalar bit ki = 1, then the final results will
be faulty. Otherwise, the final results are not affected. The adversary can thus
recover ki by checking the correctness of the results.

M safe-error. The M safe-error attack exploits the fact that faults in some
memory blocks will be cleared. The attack was first proposed by Yen and Joye [49]
to attack RSA. However, it also applies to ECSM. Assuming that R[ki] in Alg. 1
is loaded from memory to registers and overwritten by 2R[ki], then faults in R[1]
will be cleared only if ki = 1. By simply checking whether the result is affected
or not, the adversary can reveal ki.

4.2 Weak Curve Based Analysis

In 2000, Biehl et al. [5] described the first weak curve fault attack on an ECC
implementation. The key observation is that a6 in the diffinition of E (Eq.1) is
not used in the addition formulae. As a result, the addition formulae for curve
E generates correct results for any curve E′ that differs from E only in a6:

E′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a′6. (4)

Thus, the adversary can cheat an ECC processor with a point P ′ ∈ E′(F) where
E′ is a cryptographically weak curve. The adversary can then solve ECDLP on
E′ and find out k.

The method ofmoving a scalar multiplication from a strong curve E to a weak
curve E′ often requires fault induction. With the help of faults, the adversary
makes use of invalid points [5], invalid curves [12] and twist curves [17] to hit a
weak curve. These methods are described below.

Invalid point attacks. Invalid point attack lets the scalar multiplication start
with a point P ′ on the weak curve E′. If kP is performed without checking the
validity of P , then no faults need to be induced. If the ECC processor does check
the validity of P , the adversary will try to change the point P right after the
point validation. In order to do so, the attacker should be able to induce a fault
at a specific timing.

Invalid curve attacks. Ciet and Joye [12] refined the attack in [5] by loos-
ening the requirements on fault injection. They show that any unknown faults,
including permanent faults in non-volatile memory or transient faults caused on
the bus, in any curve parameters, including field representation and curve pa-
rameters a1, a2, a3, a4, may cause the scalar multiplication being performed on
a weak curve.
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Twist curve based FA. In 2008, Fouque et al. [17] noticed that many crypto-
graphically strong curves have weak twist curves. A scalar multiplication kP not
using the y-coordinate gives correct results for point on both the specified curve
E and it’s quadratic twist, and the result of kP on weak twists can leak k. On
an elliptic curve defined over a prime field Fp, a random x ∈ Fp corresponds to
a point on either E or its twist with probability one half. As a result, a random
fault on the x-coordinate of P has a probability of one half to hit a point on the
(weak) twist curve.

4.3 Differential FA

The Differential Fault Attack (DFA) uses the difference between the correct
results and the faulty results to deduce certain bits of the scalar.

Biehl-Meyer-Müller DFA. Biehl et al. [5] reported the first DFA on an
ECSM. We use an right-to-left multiplication algorithm (Alg. 2) to describe
this attack. Let Qi and Ri denote the value of Q and R at the end of the ith

iteration, respectively. Let k(i) = k div 2i. Let Q′
i be the value of Q if faults

have been induced. The attack reveals k from the Most Significant Bits (MSB)
to the Least Significant Bits (LSB).

1. Run ECSM once and collect the correct result (Ql−1).
2. Run the ECSM again and induce an one-bit flip on Qi, where l−m ≤ i < l

and m is small.
3. Note thatQl−1=Qi+(k(i)2i)P andQ′

l−1=Q
′
i+(k(i)2i)P . The adversary then

tries all possible k(i) ∈ {0, 1, .., 2m − 1} to generate Qi and Q
′
i. The correct

value of k(i) will result in a {Qi,Q
′
i} that have only one-bit difference.

The attack works for the left-to-right multiplication algorithm as well. It also
applies if k is encoded with any other deterministic codes such as Non-Adjacent-
Form (NAF) and w-NAF. It is also claimed that a fault induced at random
moments during an ECSM is sufficient [5].

Sign change FA. In 2006, Blömer et al. [7] proposed the sign change fault
(SCF) attack. It attacks implementations where scalar is encoded in Non-Adjacent
Form. When using curves defined over the prime field, the sign change of a point

Algorithm 2. Right-To-Left (upwards) binary method for point multiplication

Input: P ∈ E(F) and integer k =
∑l−1

i=0
ki2

i.
Output: kP .

1: R← P , Q← O.
2: for i = 0 to l − 1 do
3: If ki = 1 then Q← Q+R.
4: R← 2R.
5: end for

Return Q.
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Table 1. Physical Attacks on Elliptic Curve Cryptography Implementations

Attack
Single Multiple Chosen Using Incremental

Execution Executions Base Point Output Point key Recovery

SPA
√

DPA
√ √

Template attack † √

Doubling attack
√ √

RPA
√ √ √

ZPA
√ √ √

Carry-based attack
√

ADPA
√ √

Safe-error attack
√ √

Weak-curve attack
√
*

√
*

√ √

Differential FA
√ √ √

† Attack is reported to recover only a small number of bits of the scalar.

* It may need more than one trial to hit a weak curve.

implies only a sign change of its y-coordinate. The SCF attack does not force
the elliptic curve operations to leave the original group E(Fp), thus P is always
a valid point.

4.4 Summary of Attacks

Physical attacks have different application conditions and complexities. For ex-
ample, SPA and Template SPA require a single trace, while DPA and ADPA
require multiple traces. Besides, some attacks make use of the final results while
others don’t. These conditions reveal the applicability of each attack and sug-
gest possible protections. Table 1 summarises the attacks and their application
conditions.

5 Countermeasures

Many protection methods have been proposed to counteract the reported at-
tacks. However, countermeasures are normally proposed to prevent an imple-
mentation from a specific attack. It has been pointed out that a countermea-
sure against one attack may benefit another one. In this section, we discuss the
cross relationship between known attacks and countermeasures. We first give
a summary of known countermeasures. The computational overhead of each
countermeasure is estimated using a curve that achieves 128-bit security. The
Montgomery power ladder without y-coordinates is used as the benchmark.

Table 3 summarises the most important attacks and their countermeasures.
The different attacks, grouped into passive attacks, active attacks and combined
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attacks are listed column-wise, while each row represents one specific counter-
measure. Let Aj and Ci denote the attack in the jth row and countermeasure in
the ith column, respectively. The grid (i, j), the cross of the ith column and the
jth row, shows the relation between Aj and Ci.

–
√
: Ci is an effective countermeasure against Aj .

– ×: Ci is attacked by Aj .
– H: Ci helps Aj .
– ?: Ci might be an effective countermeasure against Aj , but the relation

between Ci and Aj is unclear or unpublished.
– Blank : Ci and Aj are irrelevant (Ci is very likely not effective against Aj).

It is important to make a difference between × and blank. Here × means Ci is
attacked by Aj , where blank means that the use of Ci does not affect the effort
or results of Aj at all. For example, scalar randomisation using a 20-bit random
number can be attacked by a doubling attack, so we put a × at their cross. The
Montgomery powering ladder is designed to thwart SPA, and it does not make
a DPA attack harder or easier, so we leave the cell a blank.

Below we discuss each countermeasure and its relation to the listed attacks.

5.1 SPA Countermeasures

Indistinguishable Point Operation Formulae (IPOF) [8]. IPOF try to
eliminate the difference between point addition and point doubling. The usage
of unified formulae for point doubling and addition [8] is a special case of IPOF.
However, even when unified formulae are in use, the implementation of the un-
derlying arithmetic, especially the operations with conditional instructions, may
still reveal the type of the point operation (addition or doubling) [48,46]. When
using add-and-double method, the Hamming weight of the secret scalar can be
easily leaked.

Double-and-add-always [14]. The double-and-add-always algorithm, intro-
duced by Coron, ensures that the sequence of operations during a scalar multi-
plication is independent of the scalar by inserting of a dummy point additions.
Due to the use of dummy operations, it makes C safe-error fault attack possible.

Atomic block [10]. Instead of making the group operations indistinguishable,
one can rewrite them as sequences of side-channel atomic blocks that are indis-
tinguishable for simple SPAs.

If dummy atomic blocks are added, then this countermeasure may enable
C safe-error attacks. Depending on the implementation, it may also enable M
safe-error attack.

Montgomery Powering Ladder. The Montgomery ladder [40, 30] for ECC,
shown as Alg. 1, shows protection against SPA since the scalar multiplication is
performed with a fixed pattern inherently unrelated to each bit of the scalar.
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Table 2. Countermeasures and overhead

Cost estimation: negligible (< 10%), low (10%-50%) and high (> 50%)

Countermeasures Target Attacks Computation Overhead

Indistinguishable Point Operation SPA Low

Double-and-add-always SPA Low

Atomic block SPA Negligible

Montgomery Powering Ladder +y SPA Low

Montgomery Powering Ladder −y SPA -

Scalar randomisation DPA Low

Random key splitting DPA High

Base point blinding DPA Negligible

Random projective coordinates DPA Negligible

Random EC isomorphism DPA Low

Random field isomorphism DPA Low

Random register address ADPA Low

Point Validation Invalid Point Negligible

Curve Integrity Check Invalid Curve Negligible

Coherence Check DFA Low †
Combined curve check Sign change Low

Co-factor multiplication Small group (RPA) Negligible

+y Using y-coordinate; −y Not using y-coordinate;
† Depends on the number of coherence checks performed in each ECSM.

It avoids the usage of dummy instructions and also resists the normal doubling
attack. However, it is attacked by the relative doubling attack proposed by Yen
et al. [50]. This attack can reveal the relation between two adjacent secret scalar
bits, thereby seriously decreases the number of key candidates.

With Montgomery powering ladder, y-coordinate is not necessary during the
scalar multiplication, which prevents sign-change attacks. However, for curves
that have weak twist curves, using Montgomery powering ladder without y-
coordinate is vulnerable to twist curve attacks.

Joye and Yen pointed out that Montgomery powering ladder may be vulnera-
ble to M safe-error attacks (See [30] for details). They also proposed a modified
method that allows to detect faults in both R[0] or R[1].

5.2 DPA Countermeasures

Scalar randomisation [14]. This method blinds the private scalar by adding a
multiple of #E. For any random number r and k′ = k+r#E, we have k′P = kP
since (r#E)P = O. Coron suggested choosing r to be around 20-bit.
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The scalar randomisation method was analysed in [44] and judged weak if
implemented as presented. Also, due to the fact that #E for standard curves
has a long run of zeros, the blinded scalar, k′, still has a lot of bits unchanged.

It makes the safe-error and sign-change attacks more difficult. On the other
hand, it is shown in [18] that the randomisation process leaks the scalar under
the carry-based attack. Moreover, as mentioned in [19] the 20-bit random value
for blinding the scalar k is not enough to resist the doubling attack.

Base point blinding [14]. This method blinds the point P , such that kP
becomes k(P + R). The known value S = kR is subtracted at the end of the
computation. The mask S and R are stored secretly in the cryptographic device
and updated at each iteration.

It can resist DPA/DEMA as explained in [14]. In [19], the authors conclude
that this countermeasure is still vulnerable to the doubling attack since the point
which blinds P is also doubled at each execution. This countermeasure makes
RPA/ZPA more difficult since it breaks the assumption that the attacker can
freely choose the base point (the base point is blinded).

This countermeasure might make the weak-curve based attacks more difficult
since the attacker does not know the masking point R. In an attack based on an
invalid point, the adversary needs to find out the faulty points P ′ and Q′ = kP ′.
With the point blinding, it seams to be more difficult to reveal either P ′ or Q′.
However, in the case of an invalid curve attack, base point blinding does not
make a difference.

While neither blinding the base point or the scalar is effective to prevent the
doubling attack, the combined use of them seems to be effective [19].

Random projective coordinates [14]. This method randomizes the homo-
geneous projective coordinates (X,Y, Z) with a random λ �= 0 to (λX, λY, λZ).
The random variable λ can be updated in every execution or after each doubling
or addition. This countermeasure is effective against differential SCA. It fails to
resist the RPA as zero is not effectively randomized.

Random key splitting [11]. The scalar can be split in at least two different
ways: k = k1 + k2 or k = �k/r�r + (k mod r) for a random r.

This countermeasure can resist DPA/DEMA attacks since it has a random
scalar for each execution. In [19], the authors have already analysed the effective-
ness of Coron’s first countermeasure against the doubling attack. If we assume
that the scalar k is randomly split into two full length scalars, the search space
is extended to 281 for a 163-bit k (the birthday paradox applies here). This is
enough to resist the doubling attack. It can also help to thwart RPA/ZPA if it
is used together with base point randomisation [21, 1, 22]. However, this coun-
termeasure is vulnerable to a carry-based attack if the key is split as follows:
choose a random number r < #E, and k1 = r, k2 = k − r.

Random EC isomorphism [29]. This method first applies a random iso-
morphism of the form ψ : (x, y) �→ (r2x, r3y) and then proceeds by computing
Q = k · ψ(P ) and outputting ψ−1(Q).
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Random field isomorphism [29]. This method makes use of isomorphisms
between fields. To compute Q = kP , it first randomly chooses a field F ′ isomor-
phic to F through isomorphism φ, then computes Q = φ−1(k(φ(P ))).

Random EC isomorphism and random field isomorphism have similar strength
and weakness as random projective coordinates.

Random register address [26, 27]. This method randomises the register
addresses to break the link between key bits and register address. In Alg. 1, the
address of the destination register for point doubling is ki. If k is not randomised,
then the attacker can recover ki with address-bit DPA. May et al. proposed
Random Register Renaming (RRR) as a countermeasure on a special processor
[36]. Itoh et al. [26] proposed a way to randomise register address for double-
and-add-always, Montgomery powering ladder and window method. Izumi et
al. [27] showed that the MPL version is still vulnerable and proposed an improved
version.

5.3 FA Countermeasures

Point Validation [5, 12]. Point Validation (PV) verifies if a point lies on the
specified curve or not. PV should be performed before and after scalar multi-
plication. If the base point or result does not belong to the original curve, no
output should be given. It is an effective countermeasure against invalid point
attacks and BMM differential fault attacks. If the y-coordinate is used, it is also
effective against a twist-curve attack.

Curve Integrity Check [12]. The curve integrity check is to detect faults on
curve parameters. Before starting an ECSM the curve parameters are read from
the memory and verified using an error detecting code (i.e. cyclic redundancy
check) before an ECSM execution. It is an effective method to prevent invalid
curve attacks.

Coherence Check [20]. A coherence check verifies the intermediate or final
results with respect to a valid pattern. If an ECSM uses the Montgomery pow-
ering ladder, we can use the fact that the difference between R[0] and R[1] is
always P . This can be used to detect faults during an ECSM [15].

Combined curve check [7]. This method uses a reference curve to detect
faults. This countermeasure makes use of two curves: a reference curve Et :=
E(Ft) and a combined curve Ept that is defined over the ring Zpt. In order to
compute kP on curve E, it first generate a combined point Ppt from P and
a point Pt ∈ Et(Ft) (with prime order). Two scalar multiplications are then
performed: Qpt = kPpt on Ept and Qt = kPt on Et. If no error occurred, Qt

and Qpt (mod t) will be equal. Otherwise, the one of the results is faulty and the
results should be aborted. It is an effective countermeasure against sign-change
fault attack.
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Co-factor multiplication [45]. To prevent small subgroup attacks, most pro-
tocols can be reformulated using cofactor multiplication. For instance, the Diffie-
Hellman protocol can be adapted as follows: a user first computes Q = h ·P and
then R = k ·Q if Q �= O.

This method is an effective countermeasures against Goubin’s RPA if the ex-
ploited special points are of small order. However, it does not provide protection
against ZPA (since it does not necessarily use points of small order) and the
combined attack.

6 Some Cautionary Notes

In this section, we discuss several issues on the selection and implementation of
countermeasures.

6.1 On the Magic of Randomness

As shown in Table 3, adding randomness into data, operation and address serves
as a primary method to prevent differential power (and some fault analysis).
One underlying assumption of randomisation is that only a few bits of the scalar
are leaked from each (randomised) execution, and these pieces of information
can not be aggregated. In other words, since DPA (or DFA) recover the scalar
incrementally, multiple (randomised) executions do not leak more bits of k than
one execution. However, the history has shown that randomness may not work
as good as expected. A good example is the use of a Hidden Markov Model
(HMM) to analyze Oswald-Aigner randomised exponentiation [31] and random
scalar splitting [42]. Another example is the horizontal analysis [13] that uses
only a single trace. It is not clear whether there is an efficient and general
aggregation algorithm to break randomised executions. However, randomness as
a protection to DPA (and DFA) should definitely be used with caution.

6.2 Countermeasure Selection

While unified countermeasures to tackle both the passive and active attacks are
attractive, they are very likely weaker than what is expected. Baek and Vasyltsov
extended Shamir’s trick, which was proposed for RSA-CRT, to secure ECC from
DPA and FA [4]. However, Joye showed in [28] that a non-negligible portion of
faults was undetected using the unified countermeasure and settings in [4].

For the selection of countermeasures, we believe three principles should be
followed: Complete, Specific and Additive.

Complete: An adversary needs to succeed in only one out of many possible
attack methods to win, but the implementation has to be protected from all
applicable attacks.

Specific: For an ECC processor designed for a specific application, normally
not all the attacks are applicable. For example, RPA and ZPA is not applicable
if an ECC processor is designed solely for ECDSA since the base point is fixed.
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Additive: The combination of two perfect countermeasures may introduce new
vulnerabilities. Therefore, selected countermeasures should be evaluated to make
sure they are additive.

6.3 Implementation Issues

An obvious yet widely ignored fact is that the implementing process (coding
in software or hardware) may also introduce vulnerabilities. For instance, an
implementation of Montgomery powering ladder will inevitably use registers or
memory entries for intermediate results. These temporary memory entries are
not visible on the algorithm level, and safe-errors may be introduced in those
memory locations. In order to avoid vulnerabilities introduced during the imple-
mentation process, an systematic analysis at the each representation level (from
C to netlist) should be performed.

7 Conclusion

In this paper we give a systematic overview of the existing implementation at-
tacks and countermeasures on ECC. While we have no intentions to provide new
countermeasures, we do give a complete overview of a wide range of attacks and
the common classes of countermeasures. We strongly believe that keeping track
of the ever evolving field of implementation attacks is of crucial importance to
a cryptosystem designer. This paper provides a digest of existing attacks and
countermeasures, and Table 3 can be used for countermeasures selection during
the early design stages.
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