
Chapter 16
Leakage from Montgomery Multiplication

Colin D. Walter

16.1 Introduction

Modular multiplication P = A×B mod M is a fundamental operation in most public
key cryptography. Its efficiency is usually critical in determining the overall effi-
ciency of a system because it is the main component in modular exponentiation
and in elliptic curve point multiplication. There are several algorithms which can
be chosen for performing modular multiplication, of which those by Barrett [1],
Montgomery [6] and Quisquater [2] are the most widely known. Most optimisations
which can be applied to one modular multiplication algorithm can also be applied to
the others, so that all have the same overall complexity [9]. However, Montgomery’s
method is rather more straightforward to implement; generally less work is involved
in achieving the optimisations.

This chapter delves into certain aspects of Montgomery’s algorithm: it seeks to
retain the advantages of simple and efficient code while at the same time addressing
the issue of side channel leakage from the final conditional subtraction. We study
the main loop and the final conditional subtraction separately in order to determine
a fully precise specification for the output and hence determine how much data are
leaked through the conditional subtraction side channel. This enables us to fix the
leakage very satisfactorily.

16.2 Montgomery Reduction

Modular multiplication is really a combination of two processes: multiplication and
modular reduction. These are generally interleaved for space efficiency reasons: this
keeps the intermediate values within a very small multiple of the modulus. This is
also called the integrated approach. With the separated technique, the multiplication
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is performed completely beforehand, allowing more time-efficient methods to be
employed. This is then followed by modular reduction of the product. We start by
looking at this process of reduction.

Definition 16.1. Suppose positive integers M and R have no common factor. Then,

i) A′ is called the Montgomery reduction of A modulo M with respect to R if A′ ≡
AR−1 mod M and AR−1 ≤ A′ < AR−1+M.

ii) Conversely, A is called a Montgomery representation or Montgomery residue of
A with respect to R if it satisfies A ≡ AR mod M. When R is clear, A is called an
M-residue.

Note that this definition contains two different inverses of R: one is the residue
modulo M which is the modular inverse of R in Z/MZ, the other is the rational
number which is the fractional inverse of R in Q. The context, indicated by the
presence or absence of “ mod M”, makes the intended choice clear.

Co-primality of M and R guarantees that there is a one-to-one correspondence
between a complete set of residues mod M and the set of residues {R′.R mod M |
0 ≤ R′ < M}. So there is a value R′ such that R′.R ≡ 1 mod M, i.e., R has an inverse
mod M. So the Montgomery reduction exists when M and R have no common fac-
tor, and the bounds ensure that it is unique. For cryptographic applications the co-
primeness property usually holds: R is generally a power of 2 so that division by R
is easily performed by shifting, whereas M is a product of some large primes, and
hence odd.

The Montgomery reduction A′ of A mod M can be obtained by finding integers
A′ and Q satisfying

A′R−QM = A

and such that Q is in the interval [0. . .R[. When R has the form R = rn, the solution
can be generated using the same process as in Hensel’s lemma, which solves the
equation iteratively modulo higher and higher powers of r.

When A and M have representations over base (or radix) r with digits ai and mi,
respectively, the Henselian process for obtaining the Montgomery reduction A′ with
respect to R = rn is given in Figure 16.1. There, m0

−1 is the inverse of m0 modulo
r. Usually the digits occupy words of memory, so that r = 2k where k is the number

Function MonRed(A,M, r,n): A′

Pre-condition: M and r are co-prime.
Post-condition: A′ ≡ Ar−n mod M with Ar−n ≤ A′ < Ar−n+M.

A′ ← A
For i ← 0 to n−1 do

qi ←−a′0m−1
0 mod r

A′ ← (A′ +qiM) div r
Return A′

Fig. 16.1 Montgomery modular reduction.
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of bits per word. Then the division by r in the last line of that figure is simply a shift
by one position of an array of words.

The choice of digit qi in the loop guarantees that the division by r is exact. Thus,
if the digits qi are formed into the “quotient” Q = ∑n−1

i=0 qiri then the output satisfies
A′ = (A+QM)r−n where Q < rn = R, as required. The bounds on A′ now follow,
showing it is the Montgomery reduction of input A.

The term Ar−n becomes smaller as n is increased. Hence, by choosing n such
that A < Mrn the output satisfies A′ < 2M and an extra conditional subtraction
of M will yield the least non-negative residue of AR−1 mod M. For example, if
the input A were obtained as a product of two reduced residues modulo M (i.e.,
least non-negative) then A < M2 and we would just need n such that M < rn in
order to achieve an output which is also fully reduced by the extra conditional
subtraction.

Unlike classical modular reduction, the choice of quotient digit qi does not de-
pend on the most significant digit of A′ but on its least significant. This means that qi

can be determined precisely without waiting for carry propagation to be completed
in the previous loop iteration. This is advantageous for application in a systolic array
where the processing elements perform digit level computations [10].

16.3 Montgomery Modular Multiplication

Instead of pre-computing the product A×B, the Montgomery reduction of A×B
modulo M can be obtained by interleaving the multiplication and the reduction,
as in Figure 16.2. We need one of the inputs, say B, to have a representation to base
r with at most n digits.

It is easy to verify the code of Figure 16.2 from its similarity to MonRed and by
observing that the non-modular operations compute A×B with a shift equivalent to a
factor of r−n. In fact, taking B = 1 yields the MonRed algorithm. As in the MonRed
algorithm, there is no upper bound on the value of input A. Moreover, the bound on
B is in terms of n and not M. Thus there is no need to ensure the inputs are least
non-negative residues modulo M.

Function MonPro(A,B,M, r,n): C

Pre-condition: M and r are co-prime, B = ∑n−1
i=0 biri < rn.

Post-condition: C ≡ ABr−n mod M and ABr−n ≤C < M+ABr−n.

C ← 0
For i ← 0 to n−1 do

qi ←−(c0 +a0bi)m−1
0 mod r

C ← (C +biA+qiM) div r
Return C

Fig. 16.2 Montgomery modular multiplication without conditional subtraction.
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Since the output of the ith iteration is exactly analogous to the output of the nth,
for which B < rn, we know that the partial product C is less than M+A throughout
the calculation. This gives a bound on how large the register for C needs to be. For
most applications M < rn and A < rn so that C requires one more bit than rn. A
further extra word may also be needed for intermediate results before the shift down
corresponding to the division by r. A detailed time and space efficiency analysis of
different methods to compute the update to the partial product C is given by Koç,
Acar and Kaliski [3].

Setting Q = ∑n−1
i=0 qiri gives C = (AB+QM)r−n and so Q ≈ ABr−n/M when C

is bounded by a small multiple of M. To be precise, if C−δM is the smallest non-
negative residue, then Q+δ = �ABr−n/M� yields the integer quotient. So further
conditional subtractions of M from C to obtain the least non-negative residue can be
combined with incrementing Q to yield the integer quotient.

The normal presentation of the algorithm includes a final conditional subtraction
of M to yield an output less than M. It is omitted in this first version of Mont-
gomery multiplication for three reasons: it is unnecessary when MonPro is used for
exponentiation, it is a strong source of side channel leakage and, for non-fully re-
duced inputs, more than one subtraction of M may be necessary. However, there are
two useful versions of Montgomery multiplication which include a final conditional
subtraction. They are given in Figures 16.3 and 16.4.

It is easy to check that the input bounds imply the output bounds in both cases.
Moreover, the bounds are such that outputs can be used as inputs to another ex-
ecution of the same algorithm. This is very convenient for applications involving
exponentiation. The second version, with bound R, is marginally more efficient than
the first for two reasons. First, this is because the comparison is easier to implement:
typically it just requires looking at an overflow bit rather than performing a poten-

Function MonPro(M)(A,B,M, r,n): C

Pre-condition: M and r are co-prime, A < M, B < rn.
Post-condition: C ≡ ABr−n mod M and C < M.

C ← MonPro(A,B,M, r,n)
if C ≥ M then C ←C−M

Fig. 16.3 Montgomery modular multiplication with bound M.

Function MonPro(R)(A,B,M, r,n): C

Pre-condition: M and r co-prime, A<R, B<R, M<R for R = rn.
Post-condition: C ≡ ABr−n mod M and C < R.

C ← MonPro(A,B,M, r,n)
if C ≥ R then C ←C−M

Fig. 16.4 Montgomery modular multiplication with bound R.
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tially full-length subtraction. Second, the frequency of the subtractions is usually
lower for the second version.

16.4 Exponentiation

All exponentiation algorithms consist of a sequence of products. Therefore, in order
to use MonPro for modular exponentiation, it suffices to adjust for the extra power
of R and to check that the output from one use of MonPro satisfies the bounds on
the input required for its use in any subsequent MonPro. If

Z = X×Y mod M

is one of the modular multiplications during the exponentiation when normal mod-
ular products are computed, then the usual choice for the corresponding multiplica-
tion using MonPro is

Z = MonPro(X ,Y ,M,r,n)

which operates on the corresponding M-residues. Comparing powers of R, we
find MonPro(X ,Y ,M,r,n) ≡ X×Y×R−1 ≡ XR×Y R×R−1 ≡ X×Y×R ≡ Z×R ≡
Z mod M. Thus, the entire exponentiation is done correctly with MonPro on the
corresponding M-residues if the input is adjusted to an M-residue and the output is
re-adjusted back from an M-residue. An example of this is given in Figure 16.5 for
the square-and-multiply method of exponentiation.1

To ensure the correct power of R in all operands, the evaluation of S = T N mod M
requires a pre-processing step to convert T to its M-residue:

Function MonExp(R)(T,N,M, r,n,R(2)) : S

Pre-conditions: M and r co-prime, T<M<R for R = rn, R(2) < R,
R(2) ≡ R2 mod M, and N = (nk−1...n2n1n0)2 with nk−1 = 1.

Post-condition: S = T N mod M and 0 ≤ S < M.

T = MonPro(R)(TR(2),M, r,n)
S ← T
For i ← k−2 downto 0 do

S ← MonPro(R)(S,S,M, r,n)
If ni = 1 then S ← MonPro(R)(S,T ,M, r,n)

S ← MonPro(R)(S,1,M, r,n)

Fig. 16.5 Square-and-multiply exponentiation with MonPro(R) .

1 Strictly speaking, M must be square-free to avoid the possibility of output S = M, which is
forbidden in the post-condition of the code. The output bound is treated later in this section.
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T = MonPro(T,R2 mod M,M,r,n)

and the post-processing step to convert back from an M-residue:

S = MonPro(S,1,M,r,n).

It is easy to see that the first of these introduces a factor of R, while the second
removes such a factor. Corresponding similar pre- and post-processing steps also
correctly introduce and eliminate a factor of R when MonPro(M) or MonPro(R) is
used throughout the exponentiation instead of MonPro – simply replace MonPro by
MonPro(M) or MonPro(R) as appropriate.

For the large exponents N typical of public key cryptography, these two extra
modular multiplications have a negligible cost when compared with the advantages
of a simpler multiplication algorithm. However, R(2) ≡ R2 mod M also needs to be
pre-computed and stored. Since M is usually fixed for many exponentiations, the
time penalty for this can normally be amortized over the lifetime of the modulus.

The other main requirement for using Montgomery modular multiplication in
exponentiation is that the output from one multiplication satisfies the pre-conditions
for inputs to the subsequent multiplications. This is plainly the case if MonPro(R)

is used throughout: inputs and outputs are both bounded by R. To use MonPro(M)

throughout, the condition M < R must be added in order to guarantee that the “B”
input is small enough. Then all inputs and outputs are bounded by M.

Now suppose MonPro is used in the exponentiation algorithm. In order to achieve
a common bound, say B, on all inputs and outputs of MonPro, it is necessary that
M+B2R−1 ≤ B. This just requires that the quadratic B2R−1−B+M has real roots,
i.e., 4M < R. This is achieved by choosing a large enough value for R, that is, a
sufficiently large n where R = rn. Then any bound B can be chosen as long as it is
between the two roots. This is readily seen to be the case for bounds such as B = 2M
or B = 1

2 R, or even a weighted average B = 2λ M+ 1−λ
2 R where 0 ≤ λ ≤ 1 [13].

For all three modular multiplication algorithms, the above bounds are sensible
conditions on cryptographic inputs T to an exponentiation. With bound B = M or
B = R for MonPro(B), the initial conditions T < B and R(2) < R ensure that T <
B, making T suitable for subsequent use in the exponentiation. Thereafter, every
input to MonPro(B) is bounded above by B, so that its output is also bound by B.
For MonPro, the initial conditions T < M and R(2) < R ensure that T < B for the
acceptable bound B = 2M. Thus, the pre-processing input R(2) need not be fully
reduced in any of three cases; R is an adequate bound for it in each case.

For MonPro(B) with bound B = M or R, and for MonPro with bound B = 2M or
1
2 R, the loop of the post-processing modular multiplication by 1 generates output
S satisfying S < M+BR−1 < M+1. Hence, for none of the three algorithms does
a final subtraction take place nor is it necessary to obtain a fully reduced output,
except possibly when S = M occurs.

However, a loop output of S = M is almost impossible. For MonPro(M), this is
irreconcilable with the obvious properties 0 < S < M and S ≡ 0 mod M. When M
is square free, S ≡ 0 mod M implies T ≡ 0 mod M. In this case, a pre-condition
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of 0 ≤ T < M forces T = 0. Then the output of every modular multiplication is 0,
ensuring that S = 0, so that S = M does not occur. So exponentiation with MonPro
never uses even a single subtraction to achieve a fully reduced output. Otherwise,
with MonPro(R) or MonPro in the non-square-free case, a single subtraction may be
required to obtain a fully reduced output [11].2

16.5 Space and Time Comparisons

In this section, the time and space requirements of exponentiation methods using the
three modular multiplication algorithms are compared: the standard MonPro(B) with
conditional subtraction and bound B = M or R, and MonPro with no subtraction and
bound B = 2M or 1

2 R.
The radix of the number representations here is r = 2k where k is the native bit

length of words in the processor which performs the modular multiplication. Typical
word lengths are small powers of 2, such as 8-, 16-, 32- and 64-bit. Standard key
lengths for RSA normally coincide with multiples of these, such as 1024, 1536 and
2048. The same is true for many of the standard prime fields Fp used in elliptic
curve cryptography [8]. Consequently, to achieve the property M < R required for
MonPro(B) with minimal cost, the property R < 2M frequently holds as well, that
is, R is the smallest power of 2 greater than M. So, discarding the final subtraction
and using MonPro for exponentiation instead of MonPro(B) comes at an initial cost
of increasing the number of iterations n, probably by just 1, to ensure 4M < R = rn.

So, with standard key and word lengths and the minimal choice for n, the register
containing C in MonPro(B) needs to have one more bit or one more word than M
because loop output values can be up to M+B in magnitude where B = M or R.
Increasing n by 1 to make 4M < R with an input bound of B = 2M or 1

2 R generates
intermediate values also less than M+B, but this is still below R. So MonPro expo-
nentiation needs no extra words for the intermediate calculations. Indeed, it requires
only two more bits for C than for M. So the loops in the modular multiplications
of MonPro and MonPro(B) exponentiations have the same computational space re-
quirements in a fully word-based implementation, and MonPro uses only one more
register bit when the top word is reduced to contain only the bit positions that are
needed.

Because both manipulate the same number of words, there is also unlikely to
be any time difference between single loop iterations in MonPro and MonPro(B).
The topmost incomplete word or equivalent individual bits cannot be processed any
faster than full words because the clock speed is set to that of the slowest word
operation.

So the main time and space differences will be between the final conditional
subtraction when MonPro(B) is used for exponentiation and the extra loop itera-
tion when MonPro is used. A leak-resistant implementation of MonPro(B)

2 See Exercise 2 for the non-square-free case.
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exponentiation will always perform the subtraction, but needs an extra register to
hold the pre-subtraction value of C (the “minuend”) as well as its post-subtraction
value. On the other hand, being more complex than a subtraction, the extra iteration
of MonPro may require more time. Taking into account their relative complexity,
the loop iteration is most likely to take the same time as a subtraction or double
that time since the clock frequency will probably be chosen to make word-level
multiply accumulate and subtraction operations take the same time. At a theoretical
level, the subtraction itself might be equivalent to about half an extra loop iteration,
and selecting the result of the subtraction or its minuend equivalent to another half
of a loop iteration. This would make MonPro and MonPro(B) take essentially the
same time.

The subtractor itself may require significant extra dedicated hardware and asso-
ciated data manipulation may require extra time. Moreover, code size will be in-
creased by having to incorporate instructions for the subtraction. As observed in
Section 16.4, MonPro exponentiation requires no final subtraction, so that the extra
hardware and code may not be necessary, although it is likely that other crypto-
graphic operations on the chip will require them.

Although the precise cost will be implementation specific, this discussion indi-
cates that using MonPro(B) with its conditional subtraction will be more expensive
in hardware than using MonPro for exponentiation, and the time requirements are
essentially identical. In conclusion, exponentiation using MonPro with 4M < R and
no final subtraction is a cost-effective and straightforward solution to the problem
of side channel leakage from conditional subtractions.

16.6 Side Channel Analysis

A substantial embarrassment to many smart card manufacturers in the 1990s was the
public discovery that naı̈ve implementations of Montgomery’s algorithm can cause
substantial side channel leakage, enabling private keys to be recovered from fewer
than a 100 uses of the key [4, 12]. The main problem arises from the conditional
subtraction in MonPro(M) and MonPro(R) which, because of the length of keys, takes
a large number of clock cycles to complete. It is therefore very evident in any EMR
or power trace.

Nowadays there are many effective counter-measures to prevent such leakage,
not least of which is using MonPro for exponentiation rather than MonPro(M)

or MonPro(R). Another counter-measure is to modify MonPro(M) and MonPro(R)

slightly so that the subtraction is always performed. Then the original loop output
value C is kept, and the new or old value is selected according to the sign of the new
value. In this way the leakage is considerably reduced. Other counter-measures are
discussed in other chapters; here we limit ourselves to measuring the leakage from
MonPro(M) and MonPro(R) and varying the parameter R in order to minimise it.

Assume that an implementation of exponentiation using a public modulus and
private exponent is under attack and that all conditional subtraction events can be
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observed clearly through a side channel. First, we make the simple observation that
when the conditional subtraction occurs in one modular multiplication but not in
another, then the multiplications must involve different arguments. Suppose an at-
tacker can choose the input to an exponentiation with the secret key on the target
device and he can observe individual conditional subtractions. With knowledge of
the public modulus and exponentiation algorithm, he can also write a software sim-
ulation of the exponentiation which will generate the same sequence of conditional
subtractions when it has the same input and uses a correct guess at the secret key.
He then guesses the bits of the key in the order that they are consumed by the al-
gorithm. Whenever there is a difference between the conditional subtractions in the
side channel leakage and his simulation, he knows the operands at that point differ
between the two exponentiations. So he has guessed incorrectly and he backtracks
to change his most recent guesses; several previous bits may need to be adjusted.
Providing the subtractions occur with probability not too close to 0 or 1, he has a
good chance of recovering the whole of the private key in this way.3 Such an attack
uses leakage from a single exponentiation and can be applied to both RSA and ECC,
as well as other exponentiation-based protocols. The obvious counter-measure is to
blind the input text T before exponentiating.

Second, in elliptic curve cryptography, the classical formulae for point addition
and point doubling are so different that it is easy to distinguish them in side chan-
nel traces. Then, with an algorithm such as square-and-multiply, it becomes trivial
to read the pattern of adds and doubles and deduce the secret key. One counter-
measure is to use “unified” formulae for both doubling and adding, so that the same
sequence of field operations is performed in both cases. Unfortunately, for a point
doubling some pairs of these operations have identical arguments, whereas they are
different for point additions. When MonPro(M) or MonPro(R) is used to implement
the associated modular arithmetic, a difference in the behaviour of the conditional
subtractions indicates a point addition unequivocally, whereas identical behaviour
makes a point doubling more likely to be the case. With the shorter keys which oc-
cur in ECC, the attacker is left with a small search space of possible keys which it
is often computationally feasible to traverse [15]. This attack does not require the
opponent to be able to input data of his own choosing to the exponentiation although
it may require repeated use of the key until a sufficiently favourable exponentiation
occurs.

Third, a number of side channel attacks depend on recording the frequency of
the conditional subtraction at different points in an exponentiation algorithm over
a number of executions of it with different data and the same unblinded (secret)
exponent. In particular, as we see in the next section, the frequency is different for
squarings and multiplications. Hence repeated use of the square-and-multiply algo-
rithm with MonPro(R) (Figure 16.5) or MonPro(M), the same secret exponent and
random input data T , would enable the sequence of squarings and multiplications to
be deduced, and hence the bits of the secret key obtained.

3 In the next section we find that the probability of a subtraction is at most 1
2 and, by increasing R,

the probability can be made as close to 0 as desired.
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From this summary of attacks, it is clear that no implementation of Montgomery
modular multiplication or reduction should be allowed a final conditional subtrac-
tion which takes execution time which is not constant. The only exception is if
the subtraction is extremely rare – a case that may actually arise below for certain
choices of the parameters. Otherwise MonPro(M) and MonPro(R) should always per-
form their subtraction and choose the original or updated value as appropriate.

16.7 Frequencies of Conditional Subtractions

In this section we consider a set S of executions of MonPro(M) with common mod-
ulus M. The aim is to estimate the expected frequency of the conditional subtraction
for the main ways in which the set might have arisen. Then side channel leakage
about the conditional subtractions can be used to deduce which of the causes is the
most likely for S . The set might represent corresponding operations in a number of
different exponentiations using the same unblinded key, and the aim may be to de-
termine if these operations were all multiplications or all squarings. Similar results
can be obtained for MonPro(R), but they are considerably complicated by having
non-uniform distributions for the inputs and outputs: inputs and outputs have ranges
greater than M, so that some residue classes modulo M have more than one repre-
sentative.

As an example, consider the set of all MonPro(M) multiplications A×B modM
for M=7 and R=8. Since R−1 ≡ 1 mod M, the output C satisfies C ≡ AB mod M.
So, with ABR−1 as a lower bound, the outputs from the MonPro loop are those given
in Table 16.1. The overall frequency of the conditional subtraction is 5

49 . However,
restricting to squares A×A mod M, the frequency of the subtraction becomes 1

7 ,
which is a little greater. If the input A is fixed to A=5, then the probability of the
subtraction for random B rises to 2

7 . Different fixed values of A result in other quite
different probabilities.

There are three main types of set S to consider: those arising from squaring,
those arising from multiplications in which both arguments are free to assume any
values independently and those arising from multiplications in which one argument

Table 16.1 A modular multiplication table: unreduced outputs from MonPro(A,B) when M =
7,R = 8. The five bold entries require reduction.

0 0 0 0 0 0 0
0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 8 4
0 4 1 5 2 6 3
0 5 3 8 6 4 9
0 6 5 4 3 9 8
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has the same value for the whole set. There are other sets of interest which are not
discussed. For example, none of the above matches the set of all multiplications
from a single m-ary or sliding windows left-to-right exponentiation (unless m = 2):
because one input, say A, is taken from a set of only log2 m distinct multipliers, it is
neither constant nor uniformly distributed.

Several reasonable, simplifying assumptions are made in order to derive the fre-
quencies of the subtraction for S . They are often very hard to justify theoretically,
but several are closely related to the diffusion properties on which the associated
cryptography relies. First,

• it is assumed that φ(M) ≈ M.

The “Euler phi” function having a value close to M means that M is a product of a
small number of large, not necessarily distinct, primes, as in the case of RSA and
Fp. The property φ(M) ≈ M just states that almost every number is prime to M.

Suppose input A of MonPro is prime to M. Then A has an inverse modulo M.
Therefore, if the other argument B has a uniform distribution modulo M, so will the
output C. So at least one input being uniformly distributed means that, to a very
good approximation, the output is also uniformly distributed. Such uniformity is
propagated from input to output through every instance of MonPro in an exponenti-
ation if the initial input is uniformly distributed. Due to formatting and construction
restrictions, the inputs to the exponentiation may not be uniform in practice, but dif-
fusion occurs so rapidly during exponentiation that, except possibly for the initial
one or two multiplicative operations, the uniformity can be assumed.

Let A, B and Z be discrete random variables over the interval of integers 0. . .M−1
corresponding respectively to the two MonPro(M) inputs and the variation in output
C of the MonPro loop within the interval [ABr−n,M+ABr−n[. Suppose

• A, B and Z are all independent and uniformly distributed

and let πmu be the probability that the final subtraction takes place. Then πmu

= pr(Z+ABR−1≥M) = 1
M3 ∑M−1

Z=0 ∑M−1
A=0 ∑M−1

B=0 (Z+ABR−1≥M) ≈ 1
M3 ∑M−1

A=0 ∑M−1
B=0

ABR−1 ≈ 1
M3

∫M
0

∫M
0 ABR−1dAdB where Z+ABR−1≥ M is 0 or 1 according to the

truth of the inequality. (The approximations arise from using real numbers instead
of integers and are very accurate for cryptographic-sized moduli.) So

πmu ≈
1
4

MR−1 (16.1)

This is the probability of the subtraction for a set S of multiplications under the
above hypotheses. Suppose the ith operation in a set of exponentiations is always
a multiplication and that the inputs to the exponentiations are uniformly distributed
modulo M. Then πmu is the probability of a subtraction when S is the corresponding
set of instances of MonPro(M).

Now let πsq be the probability that the final subtraction takes place when
MonPro(M) is used to square a uniformly distributed input. For the same definitions
as above, suppose
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• A and Z are independent and uniformly distributed.

Then πsq = pr(Z+A2R−1≥M) = 1
M2 ∑M−1

Z=0 ∑M−1
A=0 (Z+A2R−1≥M) ≈

1
M2 ∑M−1

A=0 A2R−1 ≈ 1
M2

∫M
0 A2R−1dA, whence

πsq ≈
1
3

MR−1 (16.2)

Unlike sets of multiplications, in practice most sets of squarings satisfy the criteria
to apply this value for πsq. Since πmu < πsq, the subtraction is less frequent for
multiplications than for squarings, as in the example with M=7.

Now suppose the value of A is fixed but the argument B is uniformly distributed
on 0 . . .M−1. Let πA be the probability that the conditional subtraction takes place.
For definitions as before, assume also that

• B and Z are independent and uniformly distributed.

Then πA = pr(Z+ABR−1≥M) = 1
M2 ∑M−1

Z=0 ∑M−1
B=0 (Z+ABR−1≥M)≈ 1

M2 ∑M−1
B=0 ABR−1

≈ 1
M2

∫M
0 ABR−1dB. Hence

πA =
1
2

AR−1 (16.3)

So, for fixed multiplier A, the frequency of subtractions depends strongly on its size.
For large A, such as 5 and 6 in the example with M = 7, the frequency is highest.
At the other extreme, note that the value is correct even for A = 0, although it is not
prime to M and so causes the output not to be uniformly distributed. As expected,
the average value of πA is πmu when A is uniformly distributed.

16.8 Variance in Frequencies and SCA Errors

If the frequency of the conditional subtraction is used to determine whether the
set S consists of multiplications or squarings, then the accuracy of the decision is
important to know.

Let Si be the set of ith modular multiplications in a collection of t square-and-
multiply exponentiations using the same 1024-bit key. So |Si| = t. There are about
1500 sets Si to classify in order to recover the bit pattern of the secret exponent. If
e errors are made, then, with a simple-minded approach in which every bit might
be one that has been misclassified, approximately 1500e different alternatives might
have to be tried before the correct exponent is discovered. Of course, operations for
sets Si with frequencies close to the average of πmu and πsq are the most likely to
be mis-classified, and the search should begin there. This would find the correct key
much more quickly. Nevertheless, it is clear that the error count e has to be kept very
small for this to become the foundation of a computationally feasible attack.

Assuming the inputs to the t exponentiations are independent, the conditional
subtractions should occur independently within each Si. Then the behaviour is that
of a binomial random variable for t trials with probability p = πmu or πsq. The
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expected number of subtractions is t p and its variance is σ2 = t p(p−1). To make
use of tables for the normal distribution, it is more likely that we will prefer to work
with the probability of the subtraction rather than its total count. In this case, the
mean is p and the variance is

σ2
mu =

1
4t

MR−1(1−1
4

MR−1)

σ2
sq =

1
3t

MR−1(1−1
3

MR−1)

or

σ2
A =

1
2t

AR−1(1−1
2

AR−1)

The point at which classification as a squaring or multiplication is equally likely
is the weighted average

π =
πsqσmu + πmuσsq

σmu + σsq
(16.4)

If the conditional subtraction occurs less often than this in Si then the set proba-
bly contains multiplications; if it is greater then the set probably contains squarings.
The probability of making an incorrect decision can be obtained by looking up ta-
bles for the normal distribution, which approximates the binomial distribution when
t is large. It uses the fact that if X is a normal random variable with mean μ and
variance σ2, then σ−1(X−μ) has the N(0,1) distribution, which is tabulated [7]. So,
the probability of the count being on the wrong side of π is easily seen to be approx-
imately Pr(Z >

πsq−πmu
σmu+σsq

), where Z is an N(0,1) random variable. This is the average
probability of mis-classifying an operation, but clearly the operation is much more
likely to be correctly classified when its subtraction probability is well away from π
than when it is close to π .

This error probability is roughly Pr(Z >
√

t
13.2) for a typical value of MR−1 ≈ 3

4 .
Then t > 1800 would lead to less than 1 error in the 1500 or so operations for a
1024-bit exponentiation. If R is doubled, the value of interest in the N(0,1) tables
is divided by about

√
2. Then around 18 errors appear. More refined attacks on the

same data can deduce the key with many fewer exponentiations [14]. However, as
the example shows, a very suitable counter-measure is to reduce MR−1 by increasing
R, because this reduces the incidence of conditional subtractions and hence reduces
the side channel leakage.

16.9 A Surprising Improvement

The formulae for πmu and πsq show that one of the easiest ways to reduce leak-
age is to reduce MR−1. Since the bit length of M is generally fixed, this means
increasing the number of iterations n in the Montgomery modular multiplica-
tion algorithm MonPro (Figure 16.2). This reduces the frequency of conditional
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subtractions. However, as noted in the last paragraph of Section 16.4, MonPro can
be used for exponentiation on its own without the final conditional subtraction once
MR−1 < 1

4 . This is because the extra shifting down then makes the output small
enough for re-use as an input to the next occurrence of MonPro.

A straightforward solution to side channel leakage would be to reduce standard
key lengths by 2 bits. Then 4M < R would hold automatically for the minimum
choice of n in a word-based implementation. Consequently, MonPro could be used
throughout an exponentiation without the need for extra iterations or conditional
subtractions, and all intermediate values would remain within the word boundaries.
However, suppose that M reaches the top of the word boundary, so that MonPro
requires one more iteration than MonPro(M) or MonPro(R). We will now look in
more detail at how this affects the bounds on intermediate values when MonPro is
used.

So, assume also that the word size is at least 2 bits and that n is chosen min-
imally to ensure 4M < R. This means r ≥ 4 and rM < R < 2rM. Let R′ denote
the Montgomery multiplier which the standard version MonPro(M) or MonPro(R)

would have used. So R = rR′ and M < R′ < 2M. This standard version produces
loop outputs bounded by ABR′−1+M, which is only just larger than R′. But here
MonPro performs an extra division by r. Consequently, the upper bound ABR−1+M
on the output is less, making it more likely to satisfy ABR−1+M < R′. An interesting
question is therefore whether all inputs and outputs would be bounded by R′ when
the extra iteration is performed, because the hardware requirements would then be
lower. Substituting in the bound R′, the desired property holds if R′r−1+M < R′,
i.e., if M < R′(1−r−1). Writing this as M < R′r−1(r−1) shows the condition is just
that the top word of M is not r−1, i.e., not entirely 1s.

Theorem 16.1. ([13], Thm 5.) Suppose the top digit of M is not r−1, that r ≥ 4
and that MonPro is executed with n iterations where M < R′ = rn−1, i.e., one more
iteration than normal. Then inputs bounded by R′ generate outputs bounded by R′.

In other words, in almost all cases M is such that a single extra iteration of the Mon-
Pro loop avoids any need for a conditional subtraction. In effect, it is equivalent to
using MonPro(R′) but without the conditional subtraction side channel. Intermediate
values of C at the end of a loop iteration in MonPro are bounded above by A+R′ so
that, as usual, one extra register bit is needed.

If one is prepared to exclude the rare cases of inconvenient moduli M with top
digit r−1, this means that exponentiation can be carried out successfully using Mon-
Pro with the usual register sizes and omitting conditional subtractions, providing
only that an extra iteration is done in the MonPro loop. Of course, at the end of the
exponentiation there is also no need for a conditional subtraction: as noted before,
the adjusting MonPro multiplication by 1 reduces the output to less than M.

With the extra iteration, the exceptional cases can be included simply by restor-
ing the conditional subtraction, i.e., by using MonPro(M) or MonPro(R′) with an
incremented value of n. Then, as in Section 16.7, Equation (16.3), the output can be
assumed to be uniformly distributed modulo M, so the probability of exceeding M
or R′ is at most 1

2 r−1. With a typical key lifetime of 10000 uses, and the difficulty
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of capturing that number of side channel traces, we just require 16-bit or larger
words for the conditional subtraction to have negligible probability of happening
even once per key bit during the lifetime of the key. This effectively eliminates the
side channel leakage since there is insufficient data at the information theoretic level
to reconstruct the key. To summarise, MonPro(B) (B=M or R′) can be used securely
for exponentiation with all keys if an extra iteration is performed and a 16-bit or
larger processor is used.

16.10 Conclusions

This chapter has carefully derived input and output bounds for several versions of
Montgomery modular multiplication in order for it to be of use in exponentiation.
Some pre- and post-processing is necessary, and the pre-computation of a multiplier
R(2) whose one-time cost can be amortised over the lifetime of the modulus M.

This analysis enabled the frequencies of conditional subtractions to be deduced
accurately, showing that there could be considerable side channel leakage from the
ability to observe the subtractions.

It was shown how this side channel could be closed by increasing the number
of iterations in the MonPro algorithm. At the further cost of one extra register bit,
or the exclusion of some extreme modulus values, the conditional subtraction can
be totally eliminated. However, even if the conditional subtraction were retained
to include the exceptional cases, the extra iteration reduces the side channel to an
unusable level except for these extreme moduli on hardware with a very small word
size.

The chapter therefore provides several choices for implementing Montgomery
modular multiplication in a manner which effectively eliminates any side channel
leakage emanating from the final, conditional subtraction.

16.11 Exercises

1. a. Find 16−1 mod 11. Using the output bounds given in Figure 16.2, compute a
complete table of output from MonPro when M = 11, R = 16 and A and B are
least non-negative residues modulo M.

b. Use this table to determine the probability of the conditional subtraction in
MonPro(M) for (a) multiplications and (b) squarings which have uniformly
distributed inputs. (c) For each value of A calculate the probability of the sub-
traction for multiplications by fixed A. (d) Compare these probabilities with
the theoretical ones derived in Section 16.7.

c. Repeat (b) with MonPro(R) in place of MonPro(M) (including part (d)).
d. Compute a complete table of output from MonPro when M = 7, R = 32 and

A and B are strictly bounded above by 2M. What is the largest value in the
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table? For each value B = M,M+1, ...,2M−1, if both inputs are strictly less
than B, find out how many outputs are B or larger.

2. a. Let M = 9, T = 3, N = 2, R = 16 in the computation of S = T N mod M using
MonPro(R). Find R−1 mod M and determine the two possible values for R(2).
Deduce the values of T and S. Hence show that the output S still requires a
final subtraction to be fully reduced. Why does this not contradict the claim
in the text that final subtractions are unnecessary?

b. Repeat (a) for the same inputs but with MonPro and R = 64.
c. Prove that using MonPro or MonPro(R) to compute S = 3N mod 9 will always

give output S = 9 when N ≥ 2 and R satisfies the usual constraints.
d. Suppose P is a prime such that P2 divides M, T = M/P and N ≥ 2. With the

usual requirements on R, prove that using MonPro or MonPro(R) to compute
S = T N mod M will always give output S = M.

3. Let N = DDMMYY be today’s date (a pseudo-random exponent), M the first
prime greater than the number of this page, R the first number greater than 9

8 M
which is prime to M and chosen input text T = � 1

4 M�.

a. Use a calculator to compute a value for R(2) and hence calculate the pre-
processing value T given by MonPro(M) for an exponentiation.

b. Convert N into binary and hence list the operations required to perform a
left-to-right square-and-multiply exponentiation with exponent N. Use this
list to create a list of the associated values of S when MonPro(M) is used to
evaluate T N mod M. Include in the list information about whether or not the
conditional subtraction occurs.

c. Now, using the values for T , R and M, reconstruct all the possible exponents
which generate the same list of the conditional subtractions as N. You should
create a binary tree of options for the bits and traverse the tree systematically,
calculating the corresponding values of S and checking to see whether or not
the behaviour of the conditional subtraction is the same. When the behaviour
of the subtraction is different, the branch can be pruned as it cannot represent
the true value of N.

d. Count the number of nodes in the tree which have been visited. Build an argu-
ment to justify that this number is linear in the length of the exponent. Is such
a search computationally feasible for a large exponent? What would happen
to this count if (a) R/M were larger? or (b) T/M were larger?

16.12 Projects

1. Choose any modulus M with no factors less than 28, say, such that (M−1)2 mod
M can be computed correctly and easily in the machine arithmetic that is avail-
able to you. Select a Montgomery constant R > M. R need not be a power of 2
for this exercise, but must be prime to M.



16 Leakage from Montgomery Multiplication 447

a. Write a program to perform exponentiation with 16-bit exponents using
MonPro(M).

b. Check that your code performs correctly by comparing results with a classical
implementation of modular exponentiation.

c. Check also that no final subtraction is required to get output less than M.
d. Modify your code to collect data about the occurrences of the conditional

subtraction in the ith modular multiplication for each i. (Clearly 1 ≤ i < 32.)
e. Generate t = 103 random exponentiations using the same modulus and same

exponent and collect the conditional subtraction frequencies for each position
i in the exponentiation.

f. Verify that the frequencies match those expected from Section 16.7, at least
on average.

g. Compute the means and standard deviations of the frequencies for (a) the
multiplications and (b) the squarings. Hence compute the value of π given in
Equation (16.4).

h. Use your value for π to partition the operations into multiplications and squar-
ings. How many operations are mis-classified in this way? If the number of
multiplications is known and used as the partitioning point, how many are
mis-classified then?

i. Repeat (e)–(h) several times for different numbers of exponentiations to see
how the number of mis-classified operations varies with t.

2. a. Repeat Project 1 with MonPro(R) in place of MonPro(M), this time selecting R
such that (R−1)2 mod M is easily computable on your available machine.

b. Divide the interval [0,R] into, say, 50 or 100 sub-intervals and modify the ex-
ponentiation code to collect the frequencies for the output of MonPro(R) lying
in each sub-interval. Plot these frequencies on a graph for several different
values of M such that 1

2 R < M < R. Explain why the curve representing these
frequencies rises from 0 to R−M, is horizontal between R−M and M and then
falls from M to R.

c. Modify your data collection in (ii) to separate the sub-interval frequencies for
multiplication outputs from those of squaring outputs. Are the graphs of these
frequencies different? If so, attempt to explain the difference.

3. Collect subtraction frequencies from the exponentiation software from Projects
1 or 2 when the same modulus and exponent are used for a set of t = 103 expo-
nentiations.

a. Use the length of the exponent (16 here) and the total number of modular
multiplications in an exponentiation to deduce the number m of multiplica-
tions and the number s of squarings.

b. Let M be the set consisting of the m operations with the lowest frequencies
for the conditional subtraction, and let S be the complementary set consisting
of the other s operations. As before, count how many operations are mis-
classified if those in M are assumed to be multiplications and those in S are
assumed to be squarings.
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c. Modify your software to collect the data from the ith operation as a t-
dimensional vector over {0,1}where 0 indicates that no subtraction took place
and 1 that a subtraction did take place. Call the vector vi. For each operation,
compute the average Hamming distance between vi and the vectors in M .
Does this distance depend on whether the operation is a multiplication or a
squaring?

d. Suppose the m operations for which the distance of part (iii) is smallest rep-
resent multiplications. Re-allocate all the operations in M and S under this
assumption. Does this decrease the number of errors?

e. Repeat the re-allocation process of part (d) a number of times and observe
whether the number of errors decreases or increases with each iteration of the
process.

f. Repeat a similar re-allocation process on the initial partition of part (b) using
the average Hamming distance of vi from the vectors in set S .

g. Inconsistencies between the results of (v) and (vi) must represent allocation
errors in one or the other case. However, are there any operations which are
still incorrectly allocated? If not, reduce the value of t to see when errors start
appearing. If so, increase t to see if the number of errors decreases. Also, how
does the number of inconsistencies vary with t?

h. Repeat all the above for exponents with a variety of larger and larger lengths.
Does the proportion of errors change as the length increases when t is fixed?
How does the total number of errors vary for fixed t as the length varies?

4. Following on from Exercise 2, investigate more thoroughly the cases where the
computation of S = T N mod M using MonPro(M) might require a final condi-
tional subtraction in the post-processing phase. Look first at when M is a prime
power, then at more general non-square-free M.
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