
Fault Attacks on the Montgomery Powering
Ladder

Jörn-Marc Schmidt1 and Marcel Medwed1,2

1 Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
joern-marc.schmidt@iaik.tugraz.at

2 Université catholique de Louvain, Crypto Group, Belgium
marcel.medwed@uclouvain.be

Abstract. Security-aware embedded devices which are likely to operate
in hostile environments need protection against physical attacks. For the
RSA public-key algorithm, protected versions of the Montgomery pow-
ering ladder have gained popularity as countermeasures for such attacks.
In this paper, we present a general fault attack against RSA implemen-
tations which use the Montgomery powering ladder. In a first step, we
discuss under which realistic fault assumptions our observation can be
used to attack basic implementations. In a second step, we extend our
attack to a scenario, where the message is blinded at the beginning of
the exponentiation algorithm. To the best of our knowledge this is the
first fault attack on a blinded Montgomery powering ladder.

Keywords: Montgomery Powering Ladder, Fault Attack, Blinded Ex-
ponentiation, Quadratic Residue

1 Introduction

In order to judge the security of the practical realization of a cryptographic algo-
rithm, the way it is implemented is as important as the theoretical security of the
algorithm itself. This is because an adversary can try to manipulate the compu-
tation and reveal secrets from the erroneous output of the device. These so-called
fault attacks were first described against public-key schemes by Boneh, DeMillo
and Lipton [1]. They showed for example how to recover an RSA secret exponent
by disturbing one of the two exponentiations of a CRT-RSA computation. In the
following years, further fault attacks on the RSA algorithm were published [2, 3].
In particular, those two works target the square-and-multiply exponentiation al-
gorithm. They iteratively disturb and skip respectively the square operation in
order to recover the secret key bit-by-bit.

In practice, a straightforward implementation of the square-and-multiply al-
gorithm is also weak against other side-channel attacks like timing attacks [4]
and Simple Power Analysis [5]. Therefore, the square-and-multiply algorithm is
often replaced by more regular algorithms like the Montgomery powering lad-
der. This replacement does not only thwart some side-channel attacks but also

hardens an adversary’s life for fault attacks. For instance, in [6] it is stated that
higher-order faults (several faults per algorithm invocation) are needed to apply
their attack to the Montgomery ladder.

An attack that combines side-channel analysis and fault attacks was pre-
sented by Park et at. [7]. In their work, they induce single faults either during
the multiplication or during the squaring and check which future intermediate
results are affected by looking at the device’s power consumption.

Our contribution: In this paper, we present a general fault attack against
the Montgomery powering ladder. We show that various fault models can be
used to put the attack into practice, such as tampering with the intermediate
variables or with the program flow. Moreover, we show how our approach can
be extended to blinded implementations. In particular, our attack can defeat
the blinded implementation of the Montgomery ladder proposed by Fumaroli
and Vigilant [8]. To the best of our knowledge this is the first fault attack on a
blinded Montgomery powering ladder.

The remaining paper is organized as follows: Section 2 gives a brief introduc-
tion into RSA and the Montgomery powering ladder. The general attack method
is detailed in Section 3. Afterwards, Sections 4 and 5 show how to launch the
attack in a realistic scenario. Finally, we extend the attack to work on blinded
implementations in Section 6. The complexity of the attacks is discussed in Sec-
tion 7. Conclusion is drawn in Section 8.

2 Preliminaries

In this section, we first discuss the RSA public-key algorithm. Afterwards, we
look at the Montgomery powering ladder and its protected version as proposed
by Fumaroli and Vigilant [8]. Finally, we revisit the Jacobi symbol.

The security of RSA is based on the hardness of factoring the product of
two large primes. Let p and q be such primes, n = pq their product, and φ(·)
denote Euler’s totient function. All computations of the RSA take place in the
ring Zn. The public exponent e is an element of Z∗

φ(n), its corresponding secret

exponent is d = e−1 mod φ(n). Due to this construction, m = (me)d mod n
holds for any m ∈ Zn. The owner of the secret key can sign messages by com-
puting s = md mod n or decrypt ciphertexts by calculating m = cd mod n. By
giving away the public key (N, e), he enables everybody else to either verify
signatures (m = se mod n) or to encrypt messages (c = me mod n). In order
to omit side-channel attacks on the exponentiation, it is recommended to use
regular exponentiation algorithms, which leak as little information as possible
about the secret exponent. As mentioned before, one such regular algorithm to
compute a modular exponentiation is the Montgomery powering ladder [9]. It is
depicted in Algorithm 1.

In each iteration of the ladder, one intermediate is assigned the product of
both, the other one is squared. If the current bit is one, R0 is set to R0 · R1

and R1 is squared, and vice versa if the bit is zero. Let d = (dt−1, . . . , d0)2 =

Algorithm 1 Montgomery ladder [9]

Require: n, d = (dt−1, . . . , d0)2, m ∈ Zn

Ensure: md mod n

R0 = 1
R1 = m
for i = t− 1 downto 0 do

Rd̄i
= R0 ·R1 mod n

Rdi = R2
di

mod n

end for
return R0

Algorithm 2 Protected ladder [8]

Require: d = (dt−1, . . . , d0)2, m ∈ Zn

Ensure: md mod n
r = rand() ∈ Z∗

n; R2 = r−1 mod n
R0 = r
R1 = r ·m mod n
for i = t− 1 downto 0 do

Rd̄i
= R0 ·R1 mod n

Rdi = R2
di

mod n
R2 = R2

2 mod n
end for
return R0 ·R2 mod n

[dL, di, dT]. Here, di denotes the bit which is currently processed and dL the
already processed (Leading) bits. The remaining (Trailing) bits are denoted by
dT . The intermediates after processing the bit di are

(R0, R1) =

 (m2·dL mod n, m2·dL+1 mod n) for di = 0

(m2·dL+1 mod n, m2·dL+2 mod n) for di = 1.

A basic property of the Montgomery ladder is that the quotient R1

R0
is constant.

This property is important for our attack. In a correct execution of the RSA
algorithm this quotient equals m.

In order to achieve further side-channel resistance, Fumaroli and Vigilant
suggested a blinded version [8]. Their proposal is depicted in Algorithm 2. It
includes a random mask r, which is a factor of both intermediates, R0 and R1.
Hence, r is squared in each step in both variables. As a consequence, the result
includes the factor r2

t

. By squaring the inverse of r in every iteration we get
r−2t at the end of the algorithm. Thus the result can be unblinded by calculating
R0 ·R2 mod n.

To counteract fault attacks, they suggested to include a checksum which is
updated at the end of every iteration. If one or more iterations (key bits) are
skipped due to a fault attack, the checksum is invalid at the end of the algorithm.
This prevents an adversary from tampering with the loop counter. However, this
checksum cannot detect our attack. Therefore, it is not included in Algorithm 2.

Finally, we use the Jacobi symbol for the attack on the blinded Montgomery
ladder. The Jacobi symbol is a generalization of the Legendre symbol for com-
posite moduli and is defined as(

c

k

)
=

(
c

p1

)α1
(

c

p2

)α2

· · ·
(

c

pk

)αk

where k = pα1
1 pα2

2 · · · pαk

k

with
(

c
p

)
denoting the Legendre symbol for primes p

(
c

p

)
=


0 if c = 0 (mod p)

+1 if c ̸= 0 (mod p) and ∃x s.t. x2 = c (mod p)

−1 otherwise.

The Jacobi symbol can be efficiently computed using the law of quadratic reci-
procity (see e.g. [10]), even if the factorization of the modulus is not known.
Note that the Jacobi symbol only gives a guarantee for quadratic non-residues
by evaluating to −1, but a result of 1 does not imply that c is a quadratic residue
modulo k.

3 General Attack Method

As already mentioned, the aim of a fault attack is to deduce information on
secrets involved in the internal computation of the device. In most cases, this is
done by manipulating the device and analyzing its erroneous output3. Normally,
an adversary is assumed to have access to the attacked device and can manipulate
it. Hence, the inputs of the device are chosen by the adversary.

In order to successfully attack a device, it is important to know the algorithm
that is computed internally. Furthermore, it is necessary to make assumptions
about the faults that occur and to set up relations between the intermediates
processed inside the device and the erroneous output.

In this paper, we discuss such relations for the Montgomery powering ladder.
A fault attack on its implementation can exploit a general observation: For two
arbitrary values in R0 and R1 the algorithm behaves as in Table 1. For a = 1

Table 1. The Montgomery powering ladder starting with R0 and R1 set to arbitrary
values. (·)d denotes the application of the ladder with the exponent d of length t.

Step R0 R1

a b

= a a · b
a

(·)d a2t · (b
a
)d a2t · (b

a
)d+1

= a2t−d · bd a2t−d · bd · b
a

and b = m this evaluates directly to md. In a fault attack an adversary would
set one of the two intermediates to a random (or partially random) value during

3 Note that for some fault attacks the behavior of the device itself, after a fault is
injected, is sufficient [11].

the exponentiation. As before, let d = (dt−1, . . . , d0)2 = [dL, di, dT]. After the
computation of dL, one intermediate is modified to contain a random value z. As
a consequence, the intermediate values develop as depicted in Table 2. This basic

Table 2. Fault injection during Montgomery ladder computation.

Fault in R0 Fault in R1

Step R0 R1 R0 R1

1 m 1 m

(·)dL mdL mdL+1 mdL mdL+1

Fault z mdL+1 mdL z

Output m(2i·di+dT)·(dL+1) · z2
i−(2i·di+dT) m(2i−(2i·di+dT))·dL · z(2

i·di+dT)

property can be exploited to retrieve the secret exponent. Therefore, the fault
must be injected in a way it is predictable. What is left is to reduce the number
of unknown bits of the exponent in the equation by exploiting the property of
RSA that d = e−1 (mod φ(n)). In the following, we are considering different
fault models that are suitable for an attack and show how to proceed in these
cases. Furthermore, we discuss how to mount an attack on blinded versions of
the algorithm.

4 Fault Model: A Guessable Fault

In the first model, we assume that an intermediate variable of an RSA imple-
mentation using the Montgomery powering ladder is modified by a fault at a
known point in time. Furthermore, this fault influences the variable in a way
that the result is within a limited range that can be searched exhaustively.

In order to inject such a fault, an adversary can use a focused laser beam to
flip/set some bits in a register [12]. Another method to cause a fault is to inter-
rupt the loading of a word into a register, e.g. by injecting glitches or spikes [13].
Hence, the size of the fault depends on the word size of the microcontroller. Both
methods can control the point in time when the fault is injected very precisely.

In particular, if fault w is injected into R0 after processing the exponent
bits of dL (a fault in R1 leads to similar equations), the intermediate variables
(R0, R1) contain (mdL ⊕ w,mdL+1). As a consequence, the final (erroneous)
signature is

S̃ = m(2i·di+dT)·(dL+1) · (mdL ⊕ w)2
i+1−(2i·di+dT) (mod n).

Since we assume that the fault is injected at the beginning of the computation,
dL is small and hence guessable, while dT is not. However, we can substitute

dT + 2i · di = d− 2i+1 · dL:

S̃ = m(d−2i+1·dL)·(dL+1) · (mdL ⊕ w)2
i+1−(d−2i+1·dL) (mod n).

From this we can eliminate d because we know e and we further know that
ed = 1 (mod φ(n)). Raising S̃ to the power of e delivers an expression in which
only w and dL remain unknown:

S̃e = m(1−2i+1·e·dL)·(dL+1) · (mdL ⊕ w)2
i+1i·e+2i+1·dL·e−1 (mod n). (1)

Now we can test hypotheses for w and dL. For correctly guessed values equation
(1) must hold.

The observations above allow an iterative attack: Inject an appropriate fault
while the first bits of d are processed. Using the public exponent, the result can
be transferred into a value that depends on the message and a few unknown
bits. Now the hypotheses for the fault and dL can be tested against this value.
A correct hypothesis increases the knowledge about d. The attack is repeated
until the whole exponent is known.

Note that the same attack is possible injecting a fault into R1 by substituting
R1 by R1 ⊕ w in Table 2. If a register that stores either R0 or R1 is attacked,
both possibilities have to be checked simultaneously.

5 Fault Model: Skipping an Instruction

Another possible fault model is based on a modification of the program flow.
Instead of manipulating the data directly by flipping bits, an instruction is not
executed. This reduces the overhead generated by guessing the flipped bits, since
only the position of the skipped instruction is required, which depends on the
point in time the fault is injected4. Using the public exponent e the same way
as in the previous attack delivers a value which contains only a small part of the
unknown secret exponent. In this way, the whole exponent can be determined
iteratively.

Let m be a message to be signed using the exponent d = [dL, di, dT] with
di the bit that is processed as the squaring is skipped. The resulting equation
depends on di, because if it is zero, a squaring of R0 is skipped, while for a one
the squaring of R1 is left out.
First, assume di = 0. By skipping the squaring, R0 stays unchanged and R1

contains the value m2·dL+1. This can be seen as skipping di and changing the
quotient to dL +1. Together with the last line of Table 2 and d = 2i+1 · dL + dT
this results in:

S̃ = m(2i−dT)·dL+(2dL+1)·dT (mod n)

= m2i·dL+d−2i+1·dL+dL·(d−2i+1·dL) (mod n)

⇒ S̃e = m1+dL−e·2i·dL·(1+2·dL) (mod n).

4 In this model, we allow the fault injection to be imprecise, since it is possible to
check whether the fault is exploitable for our attack.

Table 3. Intermediates of a Montgomery Powering ladder with a skipped squaring
instruction while di = 0 was processed.

Step R0 R1 Quotient

after dL mdL mdL+1 m

after di mdL m2·dL+1 mdL+1

next bit
di+1 = 0 (mdL)2 m3·dL+1 mdL+1

di+1 = 1 m3·dL+1 m4·dL+2 mdL+1

Erroneous Output m(2i−dT)·dL+(2dL+1)·dT

Table 3 details the content of the intermediate variables and the quotient for a
skipped squaring of di = 0. After the quotient between R0 and R1 is changed by
the fault, it stays constant for the rest of the computation. For di = 1, R1 stays
constant and R0 changes to 2 · dL +1. Together with d = 2i+1 · dL +2i + dT , we
get:

S̃ = mdT ·(dL+1)+(2i−dT)·(2dL+1) (mod n)

= m2i·(1+dL·(3+2·dL))−dL·d (mod n)

⇒ S̃e = me·2i·(1+dL·(3+2·dL))−dL (mod n).

The same equations can be set up for a skipped multiplication:

S̃e =

m1−dl·(1−2i+1·dl·e) (mod n) for di = 0

m(2+dL)·(1−2i+1·e·(1+dL)) (mod n) for di = 1.

Hence, a Montgomery powering ladder can be attacked by iteratively skipping
either squarings or multiplications and calculating the expected values. If they
do not match, the fault was not injected in the intended way.

Note that the attack works analogously starting from the least-significant
bits of the exponent. Furthermore, the attack can be applied to algorithms that
are based on ECC. Moreover, for an ECDSA implementation, guessing a block
of several bits for each ephemeral key and building a lattice is also possible, like
it is done in [6] for a double-and-add algorithm.

6 Attack on a Blinded Implementation

In order to provide a side-channel secure implementation, Fumaroli and Vigilant
proposed a blinded version of the Montgomery ladder [8]. Their suggestion also
includes a signature for preventing an adversary from tampering with the loop
counter. In this section, we assume the same fault model as in the previous

Algorithm 3 Schematic of the Attack

Require: A device that can be manipulated and uses the blinded Montgomery ladder
to produce faulty signatures S̃.

Ensure: The exponent d = (dt−1, . . . , d0)2 that is used by the device.
Set dt−1 = 1 (leading zeros are neglected)
for i = t− 2 downto 0 do

Choose m ∈ Zn with
(m
n

)
= −1

Calculate S̃ with the ith squaring operation skipped

if

(
S̃

n

)
= −1 then

di = di+1

else
di = 1⊕ di+1

end if
end for
return d

one. The only difference is that a precise fault injection is required. On the one
hand, each fault that is injected into only one operation i.e. the squaring or
the multiplication is not detected by the checksum. On the other hand, such
a fault produces an unpredictable output, since a part of the random mask is
still included in the return value. This makes a direct guessing of bit chunks
as in the previous attacks impossible. But there is still one bit of exploitable
information left in the output, namely if the result is a quadratic residue. More
precisely, we can compute the Jacobi symbol of the result, which indicates a
quadratic non-residue if it is negative5. A schematic view of the attack on a
blinded implementation is given in Algorithm 3.

Taking a closer look at the result shows that if a squaring is skipped during
the processing of Algorithm 2, the result S̃ is

S̃ = R
(2t)
2 · r2

t−1+2i−1·u ·md̃ with

u =

dT for di = 0

2i − dT for di = 1 and

d̃ · e =

1 + dL − e · 2i · dL · (1 + 2 · dL) (mod φ(n)) for di = 0

e · 2i · (1 + dL · (3 + 2 · dL))− dL (mod φ(n)) for di = 1.

Hence, the result can be split up into an unknown part, which includes the
random mask and another one that depends on the input message, on the ex-
ponent, and of the position of the fault. Raising the resulting S̃ to the power e
cancels the unknown bits of dT out. If the fault is chosen in a way that only di is
unknown and dL is known, the whole message-dependent part of the signature

5 Note that a positive result does not imply a quadratic residue.

depends on the one bit di. Furthermore, it follows that it directly depends on
this bit, whether the result is a quadratic residue assuming that m is a quadratic
non-residue. This is because the remaining part of the random mask is always a
quadratic residue due to its exponent, which is a multiple of two. In detail, if m

is chosen with a Jacobi symbol
(m
n

)
= −1, S̃ is a quadratic non-residue with(

S̃

n

)
= −1, iff d̃ is odd. Moreover, whether d̃ is even or not depends on the last

bit of dL and di. Since dL is known, the knowledge of the Jacobi symbol of S̃
determines di. This is because φ(n) is always even and d is always odd in the
case of RSA. Thus, computing the Jacobi symbol leads to an attack similar to
the one presented by Boreale on square-and-multiply [2]. In contrast, our result
is not probabilistic, if m can be chosen with a negative Jacobi symbol. Since the
loop itself is not manipulated, a checksum cannot prevent this attack.

6.1 Practical Considerations

The possibility of influencing the program flow by means of spike attacks was
demonstrated in [3]. In their work, the authors used the resulting fault model
for an attack on a square-and-multiply implementation. It turned out that in
a practical attack the probability of a successfully injected fault is smaller one.
Thus, a method to check whether the output of the device is the intended result
or not is favorable if not mandatory. For the unblinded version of the Mont-
gomery ladder, this can be easily done by checking if the output corresponds
to one of the desired (precalculated) results. For the blinded version, this is not
possible because a multiple of the random mask is still a part of the result.
Thus, an adversary cannot tell from the result whether computing the Jacobi
symbol delivers information about one bit of the exponent or not. Fortunately,
there is another kind of information that makes it possible to recognize a suc-
cessful fault injection. By measuring the time a computation takes, an adversary
can judge whether a whole multiplication was skipped. Thus, the adversary can
sweep through the algorithm and identify the positions where multiplications
are invoked. Additionally, there is a way of telling the three different multiplica-
tions of one loop iteration of the ladder apart: A skipped multiplication and the
skipped consecutive squaring respectively yield the same Jacobi symbol. For a
skipped squaring of the mask, the result has always a negative Jacobi symbol,
since d is odd. This leaves the adversary with the necessary tools for a successful
attack.

7 Complexity of the Attacks

Table 4 overviews the efforts the different attacks require. The first two attacks
allow to determine the exponent in chunks of several bits. This reduces the num-
ber of fault injections but increases the computational effort of the attack. This
is because an exponentiation is required for each possible value of such a chunk

Table 4. Required effort for the attacks with t denoting the bit-length of the secret
exponent and c the bit-size of the chunks the exponent is recovered in.

Attack Method (presented in Section) Fault Injections Exponentiations

Fault of Bit-Size v (4) t/c t/c · 2(c+v)

Skipping an Instruction (5) t/c t/c · 2c

Attack on Blinded Implementation (6) t -

to determine the corresponding exponent bits. Hence, it is possible to trade fault
injections for computational effort. In particular, if we assume a chunk of bit-size
c and an exponent of bit-size t, t/c fault injections are required. For each faulty
computation 2c values have to be guessed and tested with the corresponding
formulas, which requires an exponentiation each. In the first attack, the maxi-
mum possible bit-size v of the injected fault also needs to be considered. Each
unknown bit doubles the number of required tests.

The attack on a blinded implementation of the algorithm recovers the expo-
nent bit-by-bit. Thus, the number of injected faults equals the bit length of the
exponent. Since the test involves only the computation of the Jacobi symbol, it
does not require extra exponentiations.

8 Conclusion

In this paper, we presented new fault attacks on the Montgomery powering lad-
der. We demonstrated that our attacks are feasible for two realistic fault models:
(1) for random register faults that can be guessed and (2) for a manipulation
of the program flow. For both models, we discussed how to determine the se-
cret exponent of an unprotected implementation in bit-chunks. In addition, it is
possible to recognize a successful fault injection by the output of the device.

For the latter fault model, we also showed how to mount an attack on a
blinded implementation. In this attack, the exponent was recovered bit-wise by
measuring the execution time and checking the Jacobi symbol of the output. To
the best of our knowledge, this is the first fault attack on a blinded Montgomery
ladder.

The presented results show that fault attacks on the blinded Montgomery
ladder are possible. All attacks require the adversary to know the plaintext. For
the attack on the blinded version, knowing the Jacobi symbol of the plaintext is
sufficient.

We conclude that blinding in combination with a loop-checksum does not
prevent all fault attacks on the Montgomery powering ladder. Therefore, ad-
ditional protection by exponent blinding or by a check whether the quotient
between the two intermediate variables is correct should be implemented.

9 Acknowledgements

The work described in this paper has been supported in part through the Aus-
trian Science Fund (FWF) under grant number P22241-N23. The information in
this document reflects only the authors views, is provided as is and no guarantee
or warranty is given that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

References

1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults (Extended Abstract). In Fumy, W., ed.: Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceedings. Volume 1233 of Lecture Notes in Computer Science., Springer (1997)
37–51

2. Boreale, M.: Attacking Right-to-Left Modular Exponentiation with Timely Ran-
dom Faults. In Breveglieri, L., Koren, I., Naccache, D., Seifert, J.P., eds.: Fault
Diagnosis and Tolerance in Cryptography, Third International Workshop, FDTC
2006, Yokohama, Japan, October 10, 2006, Proceedings. Volume 4236 of Lecture
Notes in Computer Science., Springer (October 2006) 24–35

3. Schmidt, J.M., Herbst, C.: A Practical Fault Attack on Square and Multiply. In
Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.P., eds.: Fault Diag-
nosis and Tolerance in Cryptography, Fifth International Workshop, FDTC 2008,
Washington DC, USA, August 10, 2008, Proceedings, IEEE Computer Society
(August 2008) 53–58

4. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Koblitz, N., ed.: Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 1996, Proceedings. Number 1109 in Lecture Notes in
Computer Science, Springer (1996) 104–113

5. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In Wiener, M., ed.:
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings.
Volume 1666 of Lecture Notes in Computer Science., Springer (1999) 388–397

6. Schmidt, J.M., Medwed, M.: A Fault Attack on ECDSA. In Naccache, D., Os-
wald, E., eds.: Fault Diagnosis and Tolerance in Cryptography, Sixth International
Workshop, FDTC 2009, Lausanne, Switzerland September 6, 2009, Procceedings,
IEEE-CS Press (September 2009) 93–99

7. Park, J., Bae, K., Moon, S., Choi, D., Kang, Y., Ha, J.: A New Fault Cryptanalysis
on Montgomery Ladder Exponentiation Algorithm. In: ACM International Confer-
ence Proceeding Series; Vol. 403, Proceedings of the 2nd International Conference
on Interaction Sciences: Information Technology, Culture and Human, ACM Press
(2009) 896–899

8. Fumaroli, G., Vigilant, D.: Blinded Fault Resistant Exponentiation. In Breveglieri,
L., Koren, I., Naccache, D., Seifert, J.P., eds.: Fault Diagnosis and Tolerance in
Cryptography, Third International Workshop, FDTC 2006, Yokohama, Japan, Oc-
tober 10, 2006, Proceedings. Volume 4236 of Lecture Notes in Computer Science.,
Springer (October 2006) 62–70

9. Joye, M., Yen, S.M.: The Montgomery Powering Ladder. In Goos, G., Hartmanis,
J., van Leeuwen, J., eds.: Cryptographic Hardware and Embedded Systems – CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers. Volume 2523 of Lecture Notes in Computer Science., Springer
(2003) 291–302

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. Series on Discrete Mathematics and its Applications. CRC Press (1997)
ISBN 0-8493-8523-7, Available online at http://www.cacr.math.uwaterloo.ca/

hac/.
11. Yen, S.M., Joye, M.: Checking Before Output May Not Be Enough Against Fault-

Based Cryptanalysis. In: IEEE Transactions on Computers. Volume 49 of IEEE
Transactions on Computers., IEEE Computer Society (2000) 967–970

12. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In Jr.,
B.S.K., Çetin Kaya Koç, Paar, C., eds.: Cryptographic Hardware and Embedded
Systems – CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,
August 13-15, 2002, Revised Papers. Volume 2523 of Lecture Notes in Computer
Science., Springer (2003) 2–12

13. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Cryptology ePrint Archive (http://eprint.
iacr.org/), Report 2004/100 (2004)

