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Abstract. At CHES 2001, Walter introduced the Big Mac attack against an imple-
mentation of rsa. It is an horizontal collision attack, based on the detection of common
operands in two multiplications. The attack is very powerful since one single power
trace of an exponentiation permits to recover all bits of the secret exponent. Moreover,
the attack works with unknown or blinded input. The technique was later studied and
improved by Clavier et alii and presented at INDOCRYPT 2012. At SAC 2013, Bauer
et alii presented the �rst attack based on the Big Mac principle on implementations
based on elliptic curves with simulation results.
In this work, we improve the attack presented by Bauer et alii to considerably increase
the success rate. Instead of comparing only two multiplications, the targeted imple-
mentation permits to compare many multiplications. We give experiment results with
traces taken from a real target to prove the soundness of our attack. In fact, the exper-
imental results show that the original Big Mac technique given by Walter was better
that the technique given by Clavier et alii. With our experiments on a real target, we
show that the theoretical improvements are not necessarily the more suitable methods
depending on the targeted implementations.

Keywords: Elliptic Curve Cryptography, Side-Channel Attack, Big Mac Attack, Side-
Channel Atomicity

1 Introduction

rsa and Elliptic Curve Cryptography (ecc) are vulnerable to side-channel attacks.
Walter introduced at CHES 2001 the Big Mac attack on rsa [14]. It consists in com-
paring the power trace of two multiplications, and detect if they share a common
operand. The Big Mac attack as presented in [14] is not applicable on ecc because
the manipulated integers are too small. The size of the integers is an important factor
for the success of the attack [14,5,1]. The Big Mac was then improved at INDOCRYPT
2012 for rsa implementations in [5]. Finally, in their publication at SAC 2013, Bauer et
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al. were able to perform an improved Big Mac attack on ecc [2]. They target a partic-
ular implementation on ecc. The implementation uses a side-channel countermeasure
called Side-Channel Atomicity [8,10]. In [2], the authors noticed a vulnerability in the
Side-Channel Atomicity. If an attacker is able to detect if two di�erent multiplications
share a common operand, she can recover the scalar. They illustrated the soundness
of their attack with simulation results.

In this paper, we extend the work of [2]. If the Side-Channel Atomicity is used, the
attacker is able to compare many multiplications (precisely fourteen pairs) instead of
only two. Moreover, we present experimental results on a real target. With our ex-
perimentation, it turns out that the method presented in the �rst place by Walter
[14] works better (in practice) than the improved ones (from a theoretical standpoint)
presented in [14,2].

The rest of the paper is organized as follows. In Section 2, we give the backgrounds
on ecc. In Section 2.3, we recall on the Side-Channel Atomicity countermeasure, which
brings protection on ecc against the Simple Power Analysis. Section 3 describes the
Big Mac attack of Walter [14] and the improved ones of [5,2]. Our attack is presented
in Section 4. Finally, we conclude in Section 6.

2 Elliptic Curve Cryptography

An elliptic curve over a �nite prime �eld Fp of characteristic p > 3 can be described
by its reduced Weierstraÿ form:

E : y2 = x3 + ax+ b . (1)

We denote by E(Fp) the set of points (x, y) ∈ F2
p satisfying equation (1), plus the

point at in�nity O.
E(Fp) is an additive abelian group de�ned by the following addition law. Let

P = (x1, y1) 6= O and Q = (x2, y2) 6∈ {O,−P} be two points on E(Fp). Point
addition R = (x3, y3) = P +Q is de�ned by the formula:

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

where λ =

{
y1−y2
x1−x2

if P 6= Q,
3x2

1+a
2y1

if P = Q.

The inverse of point P is de�ned as −P = (x1,−y1).

ecc relies on the di�culty of the elliptic curve discrete logarithm problem (ecdlp,
compute k given P and Q = [k]P ) or on the hardness of related problems such as
ecdh or ecddh, which can be solved if ecdlp can be.
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2.1 Jacobian Projective Arithmetic

To avoid costly divisions when using the formulæ previously described, projective or
Jacobian are preferably used.

The equation of an elliptic curve in the Jacobian projective coordinates system in
the reduced Weierstraÿ form is:

EJ : Y 2 = X3 + aXZ4 + bZ6 .

The projective point (X,Y, Z) corresponds to the a�ne point (X/Z2, Y/Z3) and there
is an equivalence relation between the points: the point (X,Y, Z) is equivalent to any
point (r2X, r3Y, rZ) with r ∈ F∗p. The point at in�nity is de�ned as O = (1, 1, 0) in
Jacobian coordinates.

We give addition (ecadd) and doubling (ecdbl) formulas in the Jacobian pro-
jective coordinates system. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) two points of
EJ (K).

� ecdbl. P3 = (X3, Y3, Z3) = 2P1 is computed as:
X3 = T, Y3 = −8Y 4

1 +M(S − T ), Z3 = 2Y1Z1,
S = 4X1Y

2
1 , M = 3X2

1 + aZ4
1 , T = −2S +M2

� ecadd. P3 = (X3, Y3, Z3) = P1 + P2 is computed as:
X3 = −H3 − 2U1H

2 +R2, Y3 = −S1H3 +R(U1H
2 −X3), Z3 = Z1Z2H,

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1, R = S2 − S1

For speeding up the doubling, Cohen et al. introduced the modi�ed Jacobian
coordinates [6]. A point P is represented by the coordinates (X,Y, Z,W ) whereX,Y, Z
are the Jacobian coordinates of P and W = aZ4. The doubling of the point P1 =
(X1, Y1, Z1,W1) is given below.

� modecdbl. P3 = (X3, Y3, Z3,W3) = 2P1 is computed as:
X3 = A2 − 2C, Y3 = A(C −X3)−D, Z3 = 2Y1Z1, W3 = 2DW1

A = 3X2
1 +W1, B = 2Y 2

1 , C = 2BX1, D = 2B2

Remark 1. We summarize in this remark the conventional use of indices for �eld
variables names in ECC operations. The inputs of ecdbl and ecadd, namely variables
X,Y, Z in Jacobian coordinates (X,Y, Z,W in modi�ed Jacobian coordinates), have
indices 1 and 2. Of course, for ecdbl, indices 2 are not used. Index 3 is reserved for
the ecdbl, ecadd and modecdbl outputs.

The indices used in the other (temporary) variables simply serve to uniquify them.

2.2 Elliptic Curve Scalar Multiplication

In ecc applications, one has to compute scalar multiplications (ecsms), i.e. compute
[k]P , given P and an integer k. Several methods exist to perform such a computation.
This study focuses on the Right-to-Left binary NAF mixed coordinates multiplication

[11]. Indeed, the countermeasure that we target was presented on this ecsm.
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Algorithm 1 Right-to-Left binary NAF multiplication using mixed coordinates [11]

Input: k, P = (X,Y, Z)
Output: [k]P

(X1, Y1, Z1)← O
(T1, T2, T3, T4)← (X,Y, Z, aZ4)
while k ≥ 1 do

if k0 = 1 then
u← 2− (k mod 4)
k ← k − u
if u = 1 then

(X1, Y1, Z1)← ecadd((X1, Y1, Z1), (T1, T2, T3))
else

(X1, Y1, Z1)← ecadd((X1, Y1, Z1), (T1,−T2, T3))
end if

end if

k ← k/2
(T1, T2, T3, T4)← modecdbl(T1, T2, T3, T4)

end while

(X1, Y1, Z1)← ecadd((X1, Y1, Z1), (T1, T2, T3))
return (X1, Y1, Z1)

2.3 Side-Channel Atomicity

Naive ecsm, such as the Right-to-Left binary NAF mixed coordinates multiplication
(Algorithm 1), is vulnerable to the Simple Power Analysis [7]. Indeed, the �eld opera-
tions involved for a doubling or an addition are quite di�erent. Using the power trace
of the ecsm, an attacker can detect which operation (doubling or addition of points)
is performed and therefore deduce the scalar with a single trace.

Chevallier-Mames, Ciet and Joye introduced the concept of side-channel atomicity

[8]. The formulæ to perform a doubling and an addition are rewritten into sequences
of identical atomic patterns.

It was later improved by Giraud and Verneuil for ecadd and modecdbl for the
Right-to-Left binary NAF mixed coordinates multiplication [10]. Figure 1 describes
the computation of ecadd((X2, Y2, Z2), (X1, Y1, Z1)) and modecdbl(X1, Y1, Z1,W1)
(see [10] for the details). Each column represents an atomic pattern. The addition is
written with two patterns while the doubling is written with only one.

This implementation is not vulnerable to SPA anymore since the attacker cannot
distinguish between the operations performed simply by regarding the power con-
sumption trace during the execution of the scalar multiplication.
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ecadd - part 1 (A1) ecadd - part 2 (A2) modecdbl (D)

1. T1 ← Z2
2 T1 ← T 2

6 T1 ← X2
1

2. ? ? T2 ← Y1 + Y1

3. T2 ← Y1 × Z2 T4 ← T5 × T1 Z3 ← T2 × Z1

4. ? ? T4 ← T1 + T1

5. T5 ← Y2 × Z1 T5 ← T1 × T6 T3 ← T2 × Y1

6. ? ? T6 ← T3 + T3

7. T3 ← T1 × T2 T1 ← Z1 × T6 T2 ← T6 × T3

8. ? ? T1 ← T4 + T1

9. ? ? T1 ← T1 +W1

10. T4 ← Z2
1 T6 ← T 2

2 T3 ← T 2
1

11. T5 ← T5 × T4 Z3 ← T1 × Z2 T4 ← T6 ×X1

12. ? T1 ← T4 + T4 T5 ←W1 +W1

13. T2 ← T2 − T3 T6 ← T6 − T1 T3 ← T3 − T4

14. T5 ← T1 ×X1 T1 ← T5 × T3 W3 ← T2 × T5

15. ? X3 ← T6 − T5 X3 ← T3 − T4

16. ? T4 ← T4 −X3 T6 ← T4 −X3

17. T6 ← X2 × T4 T3 ← T4 × T2 T4 ← T6 × T1

18. T6 ← T6 − T5 Y3 ← T3 − T1 Y3 ← T4 − T2

Fig. 1. ecadd and modecdbl operations written with the same atomic pattern (? represents a
dummy operation)

3 Big Mac Attack

3.1 Big Mac Attack on rsa

We present in this section the Big Mac Attack introduced by Walter against rsa
implementations [14].

Long Integer Multiplication. We give in Alg. 2 the classical �eld multiplication.
w is the word size (w is generally equal to 8, 16, 32 or 64 in common architectures).

Algorithm 2 Long Integer Multiplication
Input: A = (am−1, . . . , a0)2w , B = (bm−1, . . . , b0)2w

Output: C = (c2m−1, . . . , c0)2w = A×B
1: C ← 0
2: for i = 0 to m− 1 do
3: u← 0
4: for j = 0 to m− 1 do
5: (u, v)2w ← ai × bj
6: (u, v)2w ← (u, v)2w + ci+j + u
7: ci+j ← v
8: end for

9: ci+m ← u
10: end for

11: return S
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Modular multiplication is performed either with the classical modular multiplica-
tion followed by a reduction, like the Montgomery [13] or the Barrett reduction [3],
or with an interleaved modular multiplication. The important feature for the attack
is the word-wise multiplication.

Goal of the attack. Denote T1, T2 the traces during the computation of respectively
two multiplications A×B, C ×D, with A 6= C. The attacker tries to assert if B = D
given T1 and T2.

Averaging. We suppose that the device leaks the Hamming Weight (denoted HW)
of the manipulated values.

The power consumption during the computation of ai× bj (line 5 of Algorithm 2)
can be expressed with HW(bj), and other activities of the device (including HW(ai),
HW(ai × bj)) and the noise.

si,j = HW(bj) + ri,j . (2)

with ri,j corresponds to other activities and the noise. The sample points of the trace
T1, in which each bj , j ∈ [0,m[ is manipulated, are averaged into one single value sj .

sj =

m−1∑
0

si,j (3)

= HW(bj) + rj (4)

with rj having a much smaller value compared with each ri,j . The computation of s0
is illustrated in Figure 2.

Fig. 2. Illustration of the computation of s0 with a modular multiplication of integers of four words
(256-bit integers in a 64-bit architecture)

Euclidean Distance. Denote S1 = s0|| . . . ||sm−1 the concatenation of the sj . The
same is done with T2 to obtain S2.

If B = D, the Euclidean distance between S1 and S2 is small. In the case of B 6= D,
the distance is high.
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Big Mac CoCo. Instead of using a Euclidean Distance, the authors of [5] suggest
to use the Pearson correlation instead of the Euclidean Distance. This re�ned attack
is called Big Mac CoCo (CoCo for collision-correlation) in[5].

Comparison between Big Mac and Big Mac CoCo. They give simulation results
to compare the Euclidean Distance with the Pearson correlation. The Big Mac CoCo
gives much better results than the original Big Mac of Walter.

3.2 Big Mac Attack on ecc

The classical Big Mac of Walter is considered not applicable on ecc because the
number of words is large compared to ecc4.

However, Bauer et al. give simulation results of the Big Mac CoCo on elliptic curves
size [2]. They target the Side-Channel Atomicity. Indeed, they notice that there are
common operands regarding the side-channel atomicity formulæ. For instance, to dis-
tinguish an addition from a doubling, they suggest to compare the �rst multiplication
(line 1) and the second multiplication (line 3) of Figure 1. If it is a doubling, the two
multiplications share a common operand. They give the success rate on simulation
results using a correlation which was high enough even for a 32 architecture.

We experimentally tried both the Big Mac and the Big Mac CoCo on real mea-
surements on a 64 bits architecture and we failed. In the next section, we present a
signi�cant improvement of the attack of [2]. We also present experimental results of
our attack.

4 Improving the Big Mac Attack on the Side-Channel Atomicity

We describe in this section our attack. Instead of trying to di�erentiate between elliptic
curves operations (addition or doubling) and only two patterns, we will analyses a
sequence of several patterns depending of a bit of the scalar. The attack is recursive.
For a better clarity, we will see how to recover the �rst bit of the scalar. The next bits
are recover in the same way.

The core idea of the attack is to identify which operations are performed by
analysing the possible repetitions of variables in the patterns.

4.1 Possibilities of the atomic patterns

For the �rst iteration of algorithm 1, the possible operations of the three �rst atomic
patterns are:

1. A1;A2;D. In this case, k0 6= 0.

4 For a 128 bits security, ecc must use 256-bit integers length, while rsa must use 3072-bit integers.
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2. D;A1;A2. In this case, k0 = 0.
3. D;D;A1. In this case, k0 = 0.
4. D;D;D. In this case, k0 = 0.

More precisely, the four cases are for the three �rst bits of k equal to 1xx, 01x, 001
and 000 respectively, where x represents any value (0 or 1). We want to assert if the
�rst three patterns correspond to A1;A2;D (k0 6= 0).

4.2 Same values in the di�erent patterns.

With Figure 1 and the di�erent possibilities of the three �rst patterns, we label the
operations with a common operand only if the operations areA1;A2;D; we neglect the
multiplications sharing a common operand if they possibly occur in another sequence
of patterns.

The common operands are illustrated in Figure 3. They are denoted with boxes
with the same index. For example, the square at line 1 of the 1st pattern and the
multiplication at line 3 of the 1st pattern share a common operand (Z2) only if the
sequence is A1;A2;D. Note that the multiplication at line 17 of the 1st pattern and
the multiplication at line 11 of the 3rd pattern share a common operand (X2 and X1)
only if A1;A2;D is performed. The same holds for Z2 in A1;A2 and Z1 in D. Indeed,
the point (X2, Y2, Z2) of A1;A2 and the point (X1, Y1, Z1) of D both correspond to
the point R or −R in Algorithm 1.

The total number of pairs of multiplications or squares sharing a common operand
is sixteen in the sequence A1;A2;D.

4.3 Assembling the pieces of the puzzle

We want to apply the method of the Big Mac attack to detect if the three �rst patterns
indeed correspond to A1;A2;D. The low number of words is compensated by the large
number of modular multiplications we compare. We can compare sixteen pairs (see
Figure 3) instead of one, thanks to the atomicity countermeasure.

First, we split the trace of the three �rst patterns; we separate the �eld operations.
We denote s(·) the method for constructing S1 or S2 as previously described for the
Big Mac attack.

We then construct two sets U1, U2 as follows. U1, U2 are �rst set empty. We perform
s(·) for the power traces of the multiplications that might share a common operand.
One element of each pair is put in U1, the other is put in U2. The construction of
U1, U2 is illustrated in Figure 4 for the �rst three pairs possibly sharing the same
operand Z2.

The Euclidean distance between U1 and U2 is low if each pair share a common
operand. In this case the three patterns observed are actually A1;A2;D, and the
attacker concludes that k0 6= 0. She then iterates the method with the next three
patterns to target the digit k1. The Euclidean distance between U1 and U2 is high if
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ecadd - part 1 (A1) ecadd - part 2 (A2) modecdbl (D)

1. T1 ←
�� ��Z2

2

1,2,14
T1 ←

�� ��T6

2

9,10
T1 ←

�� ��X1

2

12

2. ? ? T2 ← Y1 + Y1

3. T2 ← Y1 ×
�� ��Z2

1,3,15
T4 ← T5 × T1 Z3 ← T2 ×

�� ��Z1
14,15,16

4. ? ? T4 ← T1 + T1

5. T5 ← Y2 ×
�� ��Z1

4,5
T5 ← T1 ×

�� ��T6
9,11

T3 ← T2 × Y1

6. ? ? T6 ← T3 + T3

7. T3 ←
�� ��T1

7
× T2 T1 ←

�� ��Z1
5,6
×
�� ��T6

10,11
T2 ← T6 × T3

8. ? ? T1 ← T4 + T1

9. ? ? T1 ← T1 +W1

10. T4 ←
�� ��Z1

2

4,6
T6 ← T 2

2 T3 ← T 2
1

11. T5 ← T5 ×
�� ��T4

8
Z3 ← T1 ×

�� ��Z2
2,3,16

T4 ← T6 ×
�� ��X1

13

12. ? T1 ← T4 + T4 T5 ←W1 +W1

13. T2 ← T2 − T3 T6 ← T6 − T1 T3 ← T3 − T4

14. T5 ←
�� ��T1

7
×X1 T1 ← T5 × T3 W3 ← T2 × T5

15. ? X3 ← T6 − T5 X3 ← T3 − T4

16. ? T4 ← T4 −X3 T6 ← T4 −X3

17. T6 ←
�� ��X2

12,13
×
�� ��T4

8
T3 ← T4 × T2 T4 ← T6 × T1

18. T6 ← T6 − T5 Y3 ← T3 − T1 Y3 ← T4 − T2

Fig. 3. Common operands in the atomic patterns

Fig. 4. Assembling the pieces of the puzzle of three atomic patterns

no multiplication among all multiplications shares a common operand. In this case,
the three patterns observed are not A1;A2;D, and the attacker concludes that k0 = 0.
She starts again with the two last patterns of the three, added together with the fourth
pattern of the ecsm to target k1.
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4.4 Experimental Results

We implemented a modular multiplication on a 64-bit architecture in the Side-channel
Attack Standard Evaluation Board SASEBO-GII [SASEBO]. We mounted the attack
with 384-bit integers (six words of 64 bits).

Characterization. The �rst step of the attack is the characterisation of the arith-
metic module. We constructed U1, U2 as previously described with fourteen pairs of
multiplications sharing a common operand5 1000 times. The average Euclidean dis-
tance was 2.165. The same was done with fourteen pairs of multiplication with random
operands. The average Euclidean distance was 3.198. We established that a distance
lower than the mean 2.682 correspond to A1;A2;D.

Attack on real operations. We then assembled the pieces of the puzzle as previously
described with a trace of A1;A2;D 100 times. Only three distances were higher than
2.682. We conclude that the attacker can detect A1;A2;D with a success of 97%. The
same was done with D;D;A1 100 times. Only four distances were lower than 2.682.
We conclude that the attacker wrongly detects a patterns triplet as A1;A2;D with
probability 4%.

We performed the experiment with 256-bit integers (four words) as well. We ob-
tained a probability of 96% to correctly detect A1;A2;D, and a probability of 16%
that D;D;A1 was detected as A1;A2;D, which is still acceptable to perform the
attack.

We believe that the success probability is higher on a 32-bit architecture because
of the larger number of words.

Big Mac CoCo. We also tried using the Pearson correlation as in [5,2]. Surprisingly,
the coe�cient was high (around 0.9) each time, even if the guess was incorrect (i.e.
even if there are no common operand for all multiplications).

The reason is that there are similarities in long integer multiplications even if
the values are di�erent such as the variation of the word numbers manipulated. Our
experiment shows that in certain cases, the Euclidean Distance is better than the
correlation.

5 Countermeasures

In this section, we discuss on the classical countermeasures on ecc that thwart or not
our attack.

5 We use fourteen pairs instead of sixteen as shown in Figure 3 because we avoid the pairs where
the possibly same operand is not in the same side: boxes 5 and 13.
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5.1 Ine�ective Countermeasures

Scalar Randomization [7, �5.1]. If k is the scalar and P ∈ E the base point,
Coron suggests to randomize the scalar as k′ = k + r#E with #E the number of
points in the curve and r a random integer. This prevents from the Di�erential Power
Analysis [7]. When applying our attack, the attacker recovers k′ and trivially recovers
the original previous secret k = k′ mod #E.

Scalar Splitting [9, �4.2]. Clavier and Joye proposed a method to randomize the
scalar. Instead of computing [k]P , one can compute Q = [k−r]P+[r]P with a random
r. If the two scalar multiplications are performed successively, the attack presented
in this paper can trivially be applied for both ecsms and recover the initial scalar
k. On the other hand, if the two ecsms are performed in parallel, it is quite more
di�cult. Indeed, when attacking the scalar of one ecsm, the power consumption or
the electromagnetic radiation coming from the second ecsm is necessarily considered
as noise. To conclude, the attack can still be applied in theory but the success rate
should be decreased considerably.

Point Binding [7, �5.2]. The countermeasure, by Coron, consists in computing
Q = [k](P + R) instead of [k]P , with R a pseudo-random point. The chip returns
Q − [k]R. Our attack does not need the knowledge of the base point and therefore
the countermeasure is ine�ective. We focus on possible collisions of values that will
happen even if the base point is randomized this way.

Random Projective Coordinates [7, �5.3]. A point P = (X,Y, Z) in Jacobian
coordinates is equivalent to any point (r2X, r3Y, rZ), with r ∈ F∗p. Coron suggests to
randomize the base point at the beginning of the ecsm by choosing a random nonzero
r. The previous analysis on the point blinding stands here.

Random Curve Isomorphism [12]. Elliptic curves E : y2 = x3 + ax + b and
E′ : y2 = x3 + a′x + b′ are isomorphic if and only if there exists u ∈ F∗p such that
u4a′ = a and u6b′ = b. The isomorphism ϕ is de�ned as:

ϕ : E
∼−→ E′,

{
O → O

(x, y)→ (u−2x, u−3y)

The countermeasure, introduced by Joye and Tymen, consists in computing the ecsm
on a random curve E′ instead of E. The previous analysis on the point blinding stands
here.

5.2 E�ective Countermeasures

Multiplication with Random Permutation [CFG+10,1]. Clavier, Feix, Gag-
nerot, Rousselet and Verneuil introduced the Multiplication with Random Permuta-
tion countermeasure [CFG+10]. It consists in randomizing the order of the manipula-
tion of the words during a long multiplication. For example, in Algorithm 2, it consists
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in randomizing the order of both loops (lines 2 and 4) with two random permutations
in [0,m[ (m being the word number of the manipulated integers). The construction
of s0, 0 ≤ j < m is no longer possible for the Big Mac attack. Another method for
randomizing the loops was proposed in [1].

No Same Values Algorithm. We suggest to implement elliptic curves without
the possible repetitions of values depending on the scalar. The side-channel atomicity
brings too much multiplications that we can compare. That makes our attack possible
and practicable.

Other countermeasures exist to prevent the Simple Power Analysis aside the Side-
Channel Atomicity. Regularizing the ecsm, i.e. perform the same elliptic curve op-
erations at each iteration of the ecsm prevents the Simple Power Analysis without
bringing many multiplications that possibly share common operands.

6 Conclusion

A practical horizontal attack on ecc is presented against the Side-Channel Atomicity
countermeasure, based on the Big Mac principle [14]. It is an extension of the attack
presented in [2]. The di�erence is that we compare many multiplications instead of
only one. The Side-Channel Atomicity permits to compare many multiplications.

This attack is powerful since it permits to recover the entire scalar with a single
trace. The secret scalar can thus be recovered with a single execution of the ecsm and
we can target protocol such as ecdsa where the scalar is randomly chosen for each
new signature. Also, scalar randomization techniques are ine�ective.

Moreover, the base point does not matter for the attack. Therefore, countermea-
sures which consist in randomizing the inputs are ine�ective.

To prove the soundness of our attack, we give experimental results. We emphasis
in the fact that the correlation used as a distinguisher is not the optimal solution in
our case (in fact we failed) as presented in [5,2]. The Euclidean Distance, as presented
in the original Big Mac attack [14].

We target a particular countermeasure which has the particularity to bring mul-
tiple possible common operands during the elliptic curve operations (addition and
doubling). However, we believe that the method might be adapted on other imple-
mentations, where many modular multiplications can be compare. This is not the case
for classical implementations of ecc (with classical addition and doubling formulæ)
but might the case for other speci�c implementations.
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