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Abstract. We show that the multiplication operation c = a · b · r−1 in the field GF(2k) can be implemented
significantly faster in software than the standard multiplication, where r is a special fixed element of the
field. This operation is the finite field analogue of the Montgomery multiplication for modular multiplication
of integers. We give the bit-level and word-level algorithms for computing the product, perform a thorough
performance analysis, and compare the algorithm to the standard multiplication algorithm in GF(2k). The
Montgomery multiplication can be used to obtain fast software implementations of the discrete exponentiation
operation, and is particularly suitable for cryptographic applications where k is large.

Keywords: Finite fields, multiplication, cryptography.

1. Introduction

The arithmetic operations in the Galois field GF(2k) have several applications in coding theory,
computer algebra, and cryptography. We are especially interested in cryptographic applica-
tions where k is very large. Examples of the cryptographic applications are the Diffie-Hellman
key exchange algorithm (Diffie and Hellman 1976) based on the discrete exponentiation and
elliptic curve cryptosystems (Koblitz 1994) over the field GF(2k). The Diffie-Hellman algo-
rithm requires implementation of the exponentiation ge, where g is a fixed primitive element
of the field and e an integer. The exponentiation operation can be implemented using a series
of squaring and multiplication operations in GF(2k) using the binary method (Knuth 1981).

Cryptographic applications require fast hardware and software implementations of the arith-
metic operations in GF(2k) for large values of k. An important advance in this field has been
the Massey-Omura algorithm (Omura and Massey 1986) which is based on the normal bases.
Subsequently, the optimal normal bases were introduced (Mullin, Onyszchuk, Vanstone and
Wilson 1988), and their hardware (Agnew, Mullin and Vanstone 1993) and software (Schroep-
pel, O’Malley, Orman and Spatscheck 1995) implementations were given. While the hardware
implementations are compact and fast, they are also inflexible and expensive. The change
of the field in a hardware implementation requires a complete redesign. Software implemen-
tations, on the other hand, are perhaps slower, but they are cost-effective and flexible, i.e.,
the algorithms and the field parameters can easily be modified without requiring redesign.
Recently, there has been a growing interest to develop software methods for implementing
GF(2k) arithmetic operations for cryptographic applications (Schroeppel, O’Malley, Orman
and Spatscheck 1995; De Win, Bosselaers, Vandenberghe, De Gersem and Vandewalle 1996).
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In this paper, we present an algorithm for multiplication in GF(2k), which is significantly
faster than the standard multiplication, and is particularly useful for obtaining fast software
implementation of the discrete exponentiation operation. The algorithm is based on Mont-
gomery’s method for computing the modular multiplication operation. We use the polynomial
representation of the field GF(2k), and show that Montgomery’s technique is also applicable
here. We have performed a thorough analysis of the Montgomery multiplication algorithm,
and compared it to the standard multiplication algorithm in GF(2k). We show that this
operation would be significantly faster in software with the availability of a fast method for
multiplying two w-bit polynomials defined over GF(2), where w is the wordsize. For example,
the Montgomery multiplication is about 5 times faster for w = 8, and about 20 times faster
for w = 32.

2. Polynomial Representation

The elements of the field GF(2k) can be represented in several different ways (McEliece 1987;
Menezes 1993; Lidl and Niederreiter 1994). We find the polynomial representation useful
and suitable for software implementation. The algorithm for the Montgomery multiplication
described in this paper is based on the polynomial representation. According to this represen-
tation an element a of GF(2k) is a polynomial of length k, i.e., of degree less than or equal to
k − 1, written as

a(x) =
k−1∑

i=0

aix
i = ak−1x

k−1 + ak−2x
k−2 + · · · + a1x + a0 ,

where the coefficients ai ∈ GF(2). These coefficients are also referred as the bits of a, and
the element a is represented as a = (ak−1ak−2 · · · a1a0). In the word-level description of the
algorithms, we partition these bits into blocks of equal length. Let w be the wordsize of the
computer, also assume that k = sw. We can write a as an sw-bit number consisting of s
blocks, where each block is of length w. Thus, we have a = (As−1As−2 · · ·A1A0), where each
Ai is of length w such that

Ai = (aiw+w−1aiw+w−2 · · · aiw+1aiw) .

In the polynomial case, this is equivalent to

a(x) =
s−1∑

i=0

Ai(x)xiw

= As−1(x)x(s−1)w + As−2(x)x(s−2)w + · · · + A1(x)xw + A0(x) ,

where Ai(x) is a polynomial of length w such that

Ai(x) =
w−1∑

j=0

aiw+jx
j = aiw+w−1x

w−1 + aiw+w−2x
w−2 + · · · + aiw+1x + aiw .

The addition of two elements a and b in GF(2k) is performed by adding the polynomials a(x)
and b(x), where the coefficients are added in the field GF(2). This is equivalent to bit-wise
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XOR operation on the vectors a and b. In order to multiply two elements a and b in GF(2k),
we need an irreducible polynomial of degree k. Let n(x) be an irreducible polynomial of degree
k over the field GF(2). The product c = a · b in GF(2k) is obtained by computing

c(x) = a(x)b(x) mod n(x) ,

where c(x) is a polynomial of length k, representing the element c ∈ GF(2k). Thus, the
multiplication operation in the field GF(2k) is accomplished by multiplying the corresponding
polynomials modulo the irreducible polynomial n(x).

3. Montgomery Multiplication in GF(2k)

Instead of computing a · b in GF(2k), we propose to compute a · b · r−1 in GF(2k), where r
is a special fixed element of GF(2k). A similar idea was proposed by Montgomery in (Mont-
gomery 1985) for modular multiplication of integers. We show that Montgomery’s technique
is applicable to the field GF(2k) as well. The selection of r(x) = xk turns out to be very useful
in obtaining fast software implementations. Thus, r is the element of the field, represented
by the polynomial r(x) mod n(x), i.e., if n = (nknk−1 · · ·n1n0), then r = (nk−1 · · ·n1n0).
The Montgomery multiplication method requires that r(x) and n(x) are relatively prime, i.e.,
gcd(r(x), n(x)) = 1. For this assumption to hold, it suffices that n(x) be not divisible by x.
Since n(x) is an irreducible polynomial over the field GF(2), this will always be case. Since
r(x) and n(x) are relatively prime, there exist two polynomials r−1(x) and n′(x) with the
property that

r(x)r−1(x) + n(x)n′(x) = 1 , (1)

where r−1(x) is the inverse of r(x) modulo n(x). The polynomials r−1(x) and n′(x) can
be computed using the extended Euclidean algorithm (Lidl and Niederreiter 1994; McEliece
1987). The Montgomery multiplication of a and b is defined as the product

c(x) = a(x)b(x)r−1(x) mod n(x) , (2)

which can be computed using the following algorithm:

Algorithm for Montgomery Multiplication
Input: a(x), b(x), r(x), n′(x)
Output: c(x) = a(x)b(x)r−1(x) mod n(x)

Step 1. t(x) := a(x)b(x)
Step 2. u(x) := t(x)n′(x) mod r(x)
Step 3. c(x) := [t(x) + u(x)n(x)]/r(x)

In order to prove the correctness of the above algorithm, we note that u(x) = t(x)n′(x) mod
r(x) implies that there is a polynomial K(x) over GF(2) with the property

u(x) = t(x)n′(x) + K(x)r(x) . (3)
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We write the expression for c(x) in Step 3, and then substitute u(x) with the expression (3)
as

c(x) =
1

r(x)
[t(x) + u(x)n(x)]

=
1

r(x)
[t(x) + t(x)n′(x)n(x) + K(x)r(x)n(x)]

Furthermore, we have n′(x)n(x) = 1 + r(x)r−1(x) according to (1). Thus, c(x) is obtained as

c(x) =
1

r(x)
[t(x) + t(x)[1 + r(x)r−1(x)] + K(x)r(x)n(x)]

=
1

r(x)
[t(x)r(x)r−1(x) + K(x)r(x)n(x)]

= t(x)r−1(x) + K(x)n(x)
= a(x)b(x)r−1(x) mod n(x) ,

as required. The above algorithm is similar to the algorithm given for the Montgomery mul-
tiplication of integers. The only difference is that the final subtraction step required in the
integer case is not necessary in the polynomial case. This is proved by showing that the degree
of the polynomial c(x) computed by this algorithm is less than or equal to k − 1. Since the
degrees of a(x) and b(x) are both less than or equal to k−1, the degree of t(x) = a(x)b(x) will
be less than or equal to 2(k − 1). Also note that the degrees of n(x) and r(x) are both equal
to k. The degree of u(x) computed in Step 2 will be strictly less than k since the operation
is performed modulo r(x). Thus, the degree of c(x) as computed in Step 3 of the algorithm is
found as

deg{c(x)} ≤ max[deg{t(x)} , deg{u(x)} + deg{n(x)}] − deg{r(x)}
≤ max[2k − 2 , k − 1 + k] − k

≤ k − 1

Thus, the polynomial c(x) is already reduced.

4. Computation of Montgomery Multiplication

The computation of c(x) involves a regular multiplication in Step 1, a modulo r(x) multi-
plication in Step 2, and finally a regular multiplication and a division by r(x) operation in
Step 3. The modular multiplication and division operations in Steps 2 and 3 are intrinsically
fast operations since r(x) = xk. The remainder operation in modular multiplication using
the modulus xk is accomplished by simply ignoring the terms which have powers of x larger
than or equal to k. Similarly, division of an arbitrary polynomial by xk is accomplished by
shifting the polynomial to the right by k places. The precomputation of n′(x) required in
Step 2 constitutes an overhead for computing c(x). However, it turns out the computation
of n′(x) can be completely avoided if the coefficients of a(x) are scanned one bit at a time.
Furthermore, the word-level algorithm requires the computation of only the least significant
word N ′

0(x) instead of the whole n′(x).
Recall that we need to compute c(x) = a(x)b(x)r−1(x) mod n(x), where r(x) = xk. This

product can be written as
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c(x) = x−ka(x)b(x) = x−k
k−1∑

i=0

aix
ib(x) mod n(x) .

The product

t(x) = (ak−1x
k−1 + ak−2x

k−2 + · · · + a1x + a0)b(x)

can be computed by starting from the most significant digit, and then proceeding to the least
significant, as follows:

t(x) := 0
for i = k − 1 to 0

t(x) := t(x) + aib(x)
t(x) := xt(x)

The shift factor x−k in x−ka(x)b(x) reverses the direction of summation. Since

x−k(ak−1x
k−1 + ak−2x

k−2 + · · · + a1x + a0) =
ak−1x

−1 + ak−2x
−2 + · · · + a1x

−k+1 + a0x
−k ,

we start processing the coefficients of a(x) from the least significant, and obtain the following
bit-level algorithm in order to compute t(x) = a(x)b(x)x−k.

t(x) := 0
for i = 0 to k − 1

t(x) := t(x) + aib(x)
t(x) := t(x)/x

This algorithm computes the product t(x) = x−ka(x)b(x), however, we are interested in com-
puting c(x) = x−ka(x)b(x) mod n(x). Following the analogy to the integer algorithm, we
achieve this computation by adding n(x) to c(x) if c0 is 1, making the new c(x) divisible by x
since n0 = 1. If c0 is already 0 after the addition step, we do not add n(x) to it. Therefore,
we are computing c(x) := c(x) + c0n(x) after the addition step. After this computation, c(x)
will always be divisible by x. We can compute c(x) := c(x)x−1 mod n(x) by dividing c(x) by
x since c(x) = xu(x) implies c(x)x−1 = xu(x)x−1 = u(x) mod n(x). The bit-level algorithm
is given below:

Bit-Level Algorithm for Montgomery Multiplication
Input: a(x), b(x), n(x)
Output: c(x) = a(x)b(x)x−k mod n(x)

Step 1. c(x) := 0
Step 2. for i = 0 to k − 1 do
Step 3. c(x) := c(x) + aib(x)
Step 4. c(x) := c(x) + c0n(x)
Step 5. c(x) := c(x)/x

The bit-level algorithm for the Montgomery multiplication given above is generalized to the
word-level algorithm by proceeding word by word, where the wordsize is w ≥ 2 and k = sw.
Let Ai(x) represent one word of the polynomial a(x). The addition step is performed by
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multiplying Ai(x) by b(x) at the ith step. We then need to multiply the partial product c(x)
by x−w modulo n(x). In order to perform this step using division, we add a multiple of n(x)
to c(x) so that the least significant w coefficients of c(x) will be zero, i.e., c(x) will be divisible
by xw. Thus, if c(x) �= 0 mod xw, then we find M(x) (which is a polynomial of degree ≤ w−1)
such that c(x)+M(x)n(x) = 0 (mod xw). Let C0(x) and N0(x) be the least significant words
of c(x) and n(x), respectively. We calculate M(x) as

M(x) = C0(x)N−1
0 (x) mod xw .

We note that N−1
0 (x) mod xw is equal to N ′

0(x) since the property (1) implies that

xswx−sw + n(x)n′(x) = 1 (mod xw)
N0(x)N ′

0(x) = 1 (mod xw)

The word-level algorithm for the Montgomery multiplication is obtained as

Word-Level Algorithm for Montgomery Multiplication
Input: a(x), b(x), n(x), N ′

0(x)
Output: c(x) = a(x)b(x)x−k mod n(x)

Step 1. c(x) := 0
Step 2. for i = 0 to s − 1 do
Step 3. c(x) := c(x) + Ai(x)b(x)
Step 4. M(x) := C0(x)N ′

0(x) (mod xw)
Step 5. c(x) := c(x) + M(x)n(x)
Step 6. c(x) := c(x)/xw

The word-level algorithm requires the computation of the w-length polynomial N ′
0(x) instead

of the entire polynomial n′(x) which is of length k = sw. It turns out that the short algorithm
developed for computing n′

0 in the integer case (Dussé and Kaliski 1990) can also be gener-
alized to the polynomial case. The inversion algorithm is based on the observation that the
polynomial N0(x) and its inverse satisfy

N0(x)N−1
0 (x) = 1 (mod xi)

for i = 1, 2, . . . , w. In order to compute N ′
0(x), we start with N ′

0(x) = 1, and proceed as

Inversion Algorithm
Input: w, N0(x)
Output: N ′

0(x) = N−1
0 mod xw

Step 1. N ′
0(x) := 1

Step 2. for i = 2 to w
Step 3. t(x) := N0(x)N ′

0(x) mod xi

Step 4. if t(x) �= 1 then N ′
0(x) := N ′

0(x) + xi−1

5. Computation of Montgomery Squaring

The computation of the Montgomery multiplication for a(x) = b(x) can optimized due to the
fact that cross terms disappear because they come in pairs and the underlying field is GF(2).
It is easy to show that
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a2(x) =
k−1∑

i=0

aix
2i ,

and thus, the multiplication steps in the bit-level and word-level algorithms can be skipped.
The Montgomery squaring algorithm starts with the degree 2(k− 1) polynomial c(x) = a2(x),
i.e.,

c(x) = ak−1x
2(k−1) + ak−2x

2(k−2) + · · · + a1x
2 + a0

= (ak−10ak−20 · · ·0a10a0) ,

and then reduces c(x) by computing c(x) := c(x)x−k mod n(x). The steps of the bit-level
algorithm are illustrated below:

Bit-Level Algorithm for Montgomery Squaring
Input: a(x), n(x)
Output: c(x) = a2(x)x−k mod n(x)

Step 1. c(x) :=
∑k−1

i=0 aix
2i

Step 2. for i = 0 to k − 1 do
Step 3. c(x) := c(x) + c0n(x)
Step 4. c(x) := c(x)/x

Similarly, the word-level algorithm starts with the same polynomial c(x), however, then per-
forms the reduction steps by proceeding word by word, as follows:

Word-Level Algorithm for Montgomery Squaring
Input: a(x), n(x), N ′

0(x)
Output: c(x) = a2(x)x−k mod n(x)

Step 1. c(x) :=
∑k−1

i=0 aix
2i

Step 2. for i = 0 to s − 1 do
Step 3. M(x) := C0(x)N ′

0(x) (mod xw)
Step 4. c(x) := c(x) + M(x)n(x)
Step 5. c(x) := c(x)/xw

Example: We take the field GF(24) to illustrate the Montgomery product computation. The
irreducible polynomial is selected to be n(x) = x4 + x + 1. Furthermore, we have k = 4 and
r(x) = x4. Since n = (10011), the special field element r is (0011). The inverse of r(x) modulo
n(x) is computed as r−1(x) = x3 + x2 + x = (1110) using the extended Euclidean algorithm.
This result is easily verified by computing

r(x)r−1(x) = x4(x3 + x2 + x) (mod x4 + x + 1)
= x7 + x6 + x5 (mod x4 + x + 1)
= 1 (mod x4 + x + 1)

Furthermore, we compute n′(x) using the property (1) as

n′(x) =
1 + r(x)r−1(x)

n(x)
=

1 + x4(x3 + x2 + x)
x4 + x + 1

=
x7 + x6 + x5 + 1

x4 + x + 1
= x3 + x2 + x + 1 .
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Let a(x) = x3 + x2 + 1 = (1101) and b(x) = x3 + 1 = (1001). In order to compute the product
c = a ·b ·r−1 in GF(24), we use the algorithm for the Montgomery multiplication, and compute
t(x), u(x), and c(x) as follows:

Step 1: t(x) = a(x)b(x) = (x3 + x2 + 1)(x3 + 1)
= x6 + x5 + x2 + 1 .

Step 2: u(x) = t(x)n′(x) = (x6 + x5 + x2 + 1)(x3 + x2 + x + 1)
= x9 + x4 + x + 1 = x + 1 (mod x4) .

Step 3: c(x) = [t(x) + u(x)n(x)]/r(x)
= [(x6 + x5 + x2 + 1) + (x + 1)(x4 + x + 1)]/x4

= (x6 + x4)/x4 = x2 + 1 .

Thus, we conclude that a · b · r−1 is equal to c = (0101). This result is obtained using the
bit-level algorithm without computing n′(x) or r−1(x). The bit-level algorithm starts with
c(x) = 0, and obtains c(x) = x2 + 1 using the steps given on Table 1.

Table 1. The bit-level computation of a(x)b(x)x−4 mod n(x).

Step 3 Step 4 Step 5

i ai aib(x) c(x) := c(x) + aib(x) c0 c(x) := c(x) + c0n(x) c(x) := c(x)/x

0 1 x3 + 1 x3 + 1 1 x4 + x3 + x x3 + x2 + 1

1 0 0 x3 + x2 + 1 1 x4 + x3 + x2 + x x3 + x2 + x + 1

2 1 x3 + 1 x2 + x 0 x2 + x x + 1

3 1 x3 + 1 x3 + x 0 x3 + x x2 + 1

We now illustrate the steps of the word-level algorithm to compute c(x). The word-level
algorithm first computes N ′

0(x) using the inversion algorithm. Let w = 2. Since n(x) =
x4 + x + 1, we have N0(x) = x + 1. The inversion algorithm starts with N ′

0(x) = 1, and then
computes

t(x) = N0(x)N ′
0(x) = (x + 1)(1) = x + 1 (mod x2) .

Since t(x) �= 1, the value of N ′
0(x) is updated as N ′

0(x) = N ′
0(x) + x = 1 + x. Therefore, we

obtain N ′
0(x) = x + 1 using the inversion algorithm. This result is easily verified since

N0(x)N ′
0(x) = (x + 1)(x + 1) = x2 + 1 = 1 (mod x2) .

The word-level algorithm starts with c(x) = 0. Since a(x) = (1101), we have A0(x) = (01) = 1
and A1(x) = (11) = x + 1. Furthermore, N ′

0(x) = (11) = x + 1. The steps of the word-level
algorithm for computing the result c(x) = x2 + 1 are given below:
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i = 0 Step 3: c(x) = c(x) + A0(x)b(x) = (0) + (1)(x3 + 1) = x3 + 1
Step 4: M(x) = C0(x)N ′

0(x) = (1)(x + 1) = x + 1 (mod x2)
Step 5: c(x) = c(x) + M(x)n(x) = (x3 + 1) + (x + 1)(x4 + x + 1)

= x5 + x4 + x3 + x2

Step 6: c(x) = c(x)/x2 = (x5 + x4 + x3 + x2)/x2 = x3 + x2 + x + 1

i = 1 Step 3: c(x) = c(x) + A1(x)b(x) = (x3 + x2 + x + 1) + (x + 1)(x3 + 1)
= x4 + x2

Step 4: M(x) = C0(x)N ′
0(x) = (0)(x + 1) = 0 (mod x2)

Step 5: c(x) = c(x) + M(x)n(x) = (x4 + x2) + (0)(x4 + x + 1)
= x4 + x2

Step 6: c(x) = c(x)/x2 = (x4 + x2)/x2 = x2 + 1

Finally, we give an example illustrating the word-level Montgomery squaring algorithm. We
compute c = a ·a · r−1 where a = (1101) = x3 +x2 +1. The word-level Montgomery algorithm
starts with c(x) = a2(x) = x6 + x4 + 1, and performs the following steps in order to compute
the final result.

i = 0 Step 3: M(x) = C0(x)N ′
0(x) = (1)(x + 1) = x + 1 (mod x2)

Step 4: c(x) = c(x) + M(x)n(x)
= (x6 + x4 + 1) + (x + 1)(x4 + x + 1) = x6 + x5 + x2

Step 5: c(x) = c(x)/x2 = (x6 + x5 + x2)/x2 = x4 + x3 + 1

i = 1 Step 3: M(x) = C0(x)N ′
0(x) = (1)(x + 1) = x + 1 (mod x2)

Step 4: c(x) = c(x) + M(x)n(x)
= (x4 + x3 + 1) + (x + 1)(x4 + x + 1) = x5 + x3 + x2

Step 5: c(x) = c(x)/x2 = (x5 + x3 + x2)/x2 = x3 + x + 1

6. Analysis of the Word-Level Algorithm

In this section, we give a rigorous analysis of the word-level algorithm for computing the
Montgomery product. We calculate the number of word-level GF(2) addition and multipli-
cation operations. The word-level addition is simply the bitwise XOR operation which is a
readily available instruction on most general purpose microprocessors and signal processors.
The word-level multiplication operation receives two 1-word (w-bit) polynomials A(x) and
B(x) defined over the field GF(2), and computes the 2-word polynomial C(x) = A(x)B(x).
The degree of the product polynomial C(x) is 2(w − 1). For example, given A = (1101) and
B = (1010), this operation computes C as

A(x)B(x) = (x3 + x2 + 1)(x3 + x)
= x6 + x5 + x4 + x

= (0111 0010) .

Unfortunately, none of the general purpose processors contains an instruction to perform
the above operation. The implementation of this operation, which we call MULGF2, can be
performed in two distinctly different ways:
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• Emulation using SHIFT and XOR operations.

• Table lookup approach.

The emulation approach is usually slower than the table lookup approach, particularly for
w ≥ 8. The following function can be used to compute the 2-word result H,L given the inputs
A and B. The MULGF2 algorithm given below requires 2w SHIFT and w XOR operations.

H := 0 ; L := 0
for j=w-1 downto 0 do

L := SHL(L,1)
H := RCL(H,1)
if BIT(B,j)=1 then L := L XOR A

Here, SHL shifts its first operand to the left by the number of bits given in the second operand.
RCL is a rotate (circular shift) instruction shifting the first operand to the left circularly by
the number of bits given in the second operand.

On the other hand, a simple method for implementing the table lookup approach is to
use 2 tables, one for computing H and the other for computing L. The tables are addressed
using the bits of A and B, and thus, each table is of size 2w × 2w × w bits. We obtain the
values of H and L using two table reads. Other approaches are also possible. However, we
note that these tables are different from the tables in (Harper, Menezes and Vanstone 1992;
De Win, Bosselaers, Vandenberghe, De Gersem and Vandewalle 1996), which are used to
implement GF(2w) multiplications. Here we are using the tables to multiply two (w − 1)-
degree polynomials over the field GF(2) to obtain the product polynomial which is of degree
2(w − 1). In Table 2, we give the the number of MULGF2 and XOR operations required in each
step of the word-level Montgomery multiplication algorithm.

Table 2. Operation counts for the word-level Montgomery
multiplication algorithm.

MULGF2 XOR

for i=0 to s do - -
C[i]:=0 - -

for i=0 to s-1 do - -
for j=0 to s-1 do - -

MULGF2(H,L,A[j],B[i]) s2 -
C[j]:=C[j] XOR L - s2

C[j+1]:=C[j+1] XOR H - s2

MULGF2(H,M,C[0],N0’) s -
MULGF2(P,L,M,N[0]) s -
for j=1 to s-1 do - -

MULGF2(H,L,M,N[j]) s2 − s -
C[j-1]:=C[j] XOR L XOR P - 2s2 − 2s
P:=H - -

C[s-1]:=C[s] XOR P XOR M - 2s
C[s]:=0 - -

2s2 + s 4s2

We now compare the word-level Montgomery multiplication algorithm to the standard
GF(2k) multiplication using the polynomial representation. The standard GF(2k) multipli-
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cation can be accomplished in several different ways. We select the word-level interleaving
and reduction method for comparison since this algorithm is very similar to the word-level
algorithm for the Montgomery multiplication in terms of its data structure and the general
flow. This algorithm computes c = a · b using the polynomial representation by computing
c(x) = a(x)b(x) (mod n(x)).

Word-Level Standard Multiplication Algorithm
Input: a(x), b(x), n(x)
Output: c(x) = a(x)b(x) mod n(x)

Step 1. c(x) := 0
Step 2. for i = s − 1 downto 0 do
Step 3. c(x) := c(x)xw

Step 4. c(x) := c(x) + Bi(x)a(x)
Step 5. c(x) := c(x) (mod n(x))

In Step 5, the modular reduction is performed by aligning the most significant word of n(x)
with the most significant word of c(x), and then by performing a series of bit-level right shift
and polynomial additions until the most significant word of c(x) becomes zero. Table 3 gives
the number of MULGF2, XOR, and SHIFT operations required in each step of the word-level
standard multiplication algorithm.

Table 3. Operation counts for the word-level standard multiplication algorithm.

MULGF2 XOR SHIFT

for i=0 to s do - - -
C[i]:=0 - - -

for i=s-1 downto 0 do - - -
P:=0 - - -
for j=s-1 downto 0 do - - -

MULGF2(H,L,A[j],B[i]) s2 - -
C[j+1]:=C[j] XOR H XOR P - 2s2 -
P:=L - - -

C[0]:=P - - -
for j=s downto 1 do - - -

U[j]:=SHL(N[j],w-1) XOR SHR(N[j-1],1) - s2 2s2

U[0]:=SHL(N[0],w-1) - - s
for j=w-1 downto 0 do - - -

if DEGREE(C)>=DEGREE(U) then - - -
for k=0 to s do - - -

C[k]:=C[k] XOR U[k] - sw(s + 1)/2 -
for k=0 to s-1 do - - -

U[k]:=SHR(U[k],1) XOR SHL(U[k+1],w-1) - s2w 2s2w
U[s]:=SHR(U[s],1) - - sw

s2 3s2(w/2 + 1)+ 2s2(w + 1)+
sw/2 s(w + 1)

As can be seen from Tables 1 and 2, the word-level Montgomery multiplication algorithm
performs about twice as many MULGF2 operations as the standard algorithm, however, it re-
quires much fewer XOR operations and no SHIFT operation. Thus, if the MULGF2 operation
can be performed in a few clock cycles, the word-level Montgomery multiplication algorithm
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would be significantly faster. In Table 4, we tabulate the total number of operations for the
Montgomery and standard multiplication algorithms for w = 8, 16, 32 for comparison pur-
poses. We have also implemented these two algorithms in C, and obtained timings on a

Table 4. Comparing the Montgomery and standard multiplication.

Emulation Table Lookup
w Standard Montgomery Speedup Standard Montgomery Speedup

8 57s2 + 13s 52s2 + 24s 1.09 34s2 + 13s 6s2 + s 5.67
16 109s2 + 25s 100s2 + 48s 1.09 62s2 + 25s 6s2 + s 10.33
32 213s2 + 49s 196s2 + 96s 1.09 118s2 + 49s 6s2 + s 19.67

100-MHz Intel 486DX4 processor running the NextStep 3.3 operating system. We summarize
the experimental speedup values in Table 5.

As was mentioned, the table lookup approach can be implemented using 2 tables each of
which is of size 2w × 2w × w bits. For w = 8, each of the tables is of size 64 Kilobytes, which
is quite reasonable. However, for w = 16, the table size increases to 216 × 216 × 16 bits, or 8
Gigabytes. Thus, we have implemented the table lookup MULGF2 algorithm for only w = 8.
For w = 16 and w = 32, we have also implemented the MULGF2 operation using an hybrid
approach: 8-bit tables coupled with emulation to obtain the 16-bit or 32-bit result.

As the theoretical data in Table 4 and the experimental data in Table 5 indicate, the Mont-
gomery multiplication algorithm is about 2–5 times faster than the standard multiplication
for w = 8. Table lookup approach for w ≥ 16 seems unrealistic due to the size of the ta-
bles. An efficient way to implement the MULGF2 operation is to add an instruction to the
processor to perform this multiplication. The availability of a 16-bit or 32-bit MULGF2 instruc-
tion would make the Montgomery multiplication about 10–20 times faster than the standard
multiplication.

Table 5. Experimental speedup values.

w Method k → 64 128 256 512 1024 1536 2048

8 Table Lookup 4.51 3.82 3.17 2.94 2.83 2.43 2.45

16 Hybrid (8) 4.26 2.83 2.15 2.05 2.02 2.07 2.00
32 Hybrid (8) 4.49 2.99 2.24 2.08 2.27 1.59 1.53

8 Emulation 3.89 3.26 2.67 2.63 2.41 2.37 2.25
16 Emulation 4.70 2.92 2.11 1.99 2.09 1.93 2.01
32 Emulation 4.20 2.50 1.48 1.36 1.46 1.54 1.53

7. Conclusions

We have described the bit-level and word-level algorithms for computing the Montgomery
product a · b · r−1 in the field GF(2k). It turns out that this operation would be significantly
faster in software with the availability of a fast method for multiplying two w-bit polynomials
defined over GF(2), where w is the wordsize. This can be achieved using a table lookup
approach when the wordsize is small; another method is to implement an instruction on the
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underlying processor for performing this operation which is much simpler than the integer
multiplication due to the lack of carry propagation.

The Montgomery multiplication can be used to obtain fast software implementation of the
exponentiation over the field GF(2k). Let the field element a and the m-bit positive integer e
be given. In order to compute c = ae ∈ GF(2k), we can use the binary method (Knuth 1981).
The algorithm first computes c̄ = 1 · r and ā = a · r using the standard multiplication, and
then proceeds to compute c using only Montgomery squarings and multiplications.

for i = m − 1 downto 0 do
c̄ := c̄ · c̄ · r−1

if ei = 1 then c̄ := c̄ · ā · r−1

c := c̄ · 1 · r−1

Our findings regarding the efficiency of the Montgomery exponentiation algorithm are sum-
marized in (Koç and Acar 1997). We are currently working on extending the Montgomery
multiplication and squaring to the normal bases.
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