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1. INTRODUCTION 

Let E be an elliptic curve over ij. A celebrated theorem of Mordell asserts 
that E(ij) , the (abelian) group of rational points of E, is finitely generated. 
By the rank of E we mean the rank of E(ij). Thus the rank of E is positive 
if and only if E possesses an infinity of rational points. Relatively few general 
qualitative assertions can be made about the rank as E varies. 

How large can the rank get? Although we expect that there are elliptic curves 
over ij with arbitrarily high ranks, this is presently unknown. 

What is the average size of the rank? Recently Brumer and McGuinness have 
reported on their study of 310,716 elliptic curves of prime conductor less than 
108 where they have found that 20.06% of those curves have even rank;::: 2. 
(Cf. [BM]; also see forthcoming work of Brumer where, subject to a number of 
standard conjectures, he shows that 2.3 is an upper bound for the average rank 
for all elliptic curves over ij ordered in terms of their Faltings height.) 

What is the behavior of the rank over the family of twists of a given elliptic 
curve? Here, one has three natural kinds of families of twists: 

(1) Quadratic twists. One can take any elliptic curve and systematically twist 
it by all quadratic characters (this is the type of family of elliptic curves we are 
concerned with in this paper). Specifically, if E is an elliptic curve over ij 
given by the Weierstrass equation y2 = X3 + A . X + B , and D is any square-
free integer, the (quadratic) twist of E by D, ED' is given by the equation 
D· y2 = X3 + A. X + B. Put 9/£(D) := rank(ED ). Goldfeld has conjectured 
[Go] that the average value (suitably defined) of 9/£ is !. Conditional upon 
some standard conjectures (made explicit below; see Theorem 2), we find lower 
bounds for the number of times 9/£ is ;::: 2. Specifically for a fixed elliptic 
curve E/Q and any e > 0, we prove the (conditional) result that for sufficiently 
large real numbers x, there are at least X 1/ 2- e square-free integers D with 
IDI :::; x such that 9/£(D) is ;::: 2 (and is even). 

(2) Cubic and quartic twists. One can also take an elliptic curve over ij with 
j-invariant 0, and twist it by all cubic characters; or one can take an elliptic 
curve with j-invariant 1728 and twist by quartic characters. In [ZK] data is 
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accumulated for the family of elliptic curves with j-invariant 0, twisted by 
all cubic characters. Specifically the family X 3 + y3 = T is studied, where 
T varies through cube-free natural numbers. The data in [ZK] suggests that 
about 23.3% of the curves (obtained by specializing T in the above equation) 
that have even rank, have rank ~ 2. More specifically, the L-function of the 
specialized curves for square-free positive integers T ~ 70,000 is examined. It 
is found that among those instances where the sign of the functional equation 
of the L-function is +, 23.3% of these L-functions vanish at the central point 
s = 1 , and these 23.3% are surprisingly evenly distributed. 

What can be said about the variation of analytic rank for a family of ellip-
tic curves obtained from a given modular elliptic curve by twisting by quadratic 
characters? If the elliptic curve E is a modular elliptic curve, i.e., if it is 
parametrized by a cuspidal newform f of weight 2 on ro(C) for some pos-
itive integer C, then a consequence of the classical conjecture of Birch and 
Swinnerton-Dyer is that .9RE (D) is the order of vanishing at s = 1 of the L-
function attached to f 0 XD' where XD is the quadratic Dirichlet character 
attached to the field Q(.Ji5). Let us refer to this order of vanishing as the 
analytic rank of ED and denote it .9Rf (D). Of course, conjecturally, we have 
.9Rf (D) = .9RE (D). But for the analytic rank we obtain the following uncondi-
tional result: 

Theorem 1. Let E be a modular elliptic curve over Q. For fixed e > 0, X 1/ 2- e 
is a lower bound for 

U {square-free D; ID I ~ x; analytic rank ( ED) is ~ 2 and even} 
for sufficiently large real numbers x. 
Questions and remarks. (1) Can one hope for a purely analytic proof of the 
above theorem? 

(2) We hardly expect that the statement of Theorem 1 is best possible. Al-
though the technique we use to prove Theorem 1 does not seem to give any 
exponent larger than ! - e , it is conceivable that the statement holds with the 
exponent ! - e replaced by something on the order of l - e . 

For a numerical example, one can cite [ZK] in which the (modular) ellip-
tic curve y2 = X 3 - X , i.e., the curve connected to the congruence number 
problem, is examined, along with its quadratic twists ED' for D a square-free 
integer, D == 1 mod 16, and D < 500,000. The data accumulated in [ZK] 
would be consistent with a larger exponent (a straight regression based on the 
table published in [ZK] suggests, for example, that for this E the statement of 
Theorem 1 might remain true if the exponent ! - e is replaced by some number 
on the order of 0.88 ... , but more numerical work would be necessary to come 
up with a firm figure). 

(3) It is convenient to have a succinct vocabulary to discuss the exponents 
arising in Theorem 1. So for s(x) any real-valued function, let us say that i) 
is an exponent for the function s if for any e > 0 there is a real number xe 
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such that x tl- e < s(x) for x 2:: xe' In these terms, then, Theorem 1 guarantees 
that ! is an exponent for the function 2f(x) = HD square-free, IDI :::; x, 
g;f(D) 2:: 2, and g;f(D) is even}. 

(4) We think that it may be of interest to pursue analogues of the above result 
in broader contexts. Specifically, 

(a) Higher orders of vanishing. Are there positive exponents measuring the 
quantity of twists of E with prescribed analytic or arithmetic ranks other than 
ranks 0, 1, and 2?1 

(b) Broader classes of modular forms f. Let C and k be positive inte-
gers with k even. Let f be a cuspidal newform on fo(C) , i.e., with trivial 
nebentypus character, with weight k, and with Fourier expansion at 00 given 
by L anqn where q = e2niz . The summation is taken over all n 2:: 1, the 
coefficients ai are in C, and f is assumed normalized, so that a1 = 1. If X 
is a Dirichlet character, let L(f, X , s) denote the entire function which is the 
analytic continuation of the Dirichlet series L anx(n)n -s. What can be said 
about the behavior of the function 

D 1--+ g;f(D) := order of vanishing at s = k/2 of L(f, Xn ' s), 

where Xn is the quadratic Dirichlet character attached to the field Q( /75) ? 
Let 2f(x) denote the cardinality of the set of D's that are square-free, of 

absolute value :::; x , and such that the order of vanishing at the central point, 
g;f(D) , of the L-function L(f, Xn' s) is an even number 2:: 2. 

Is it the case that if f is a cuspidal newform of weight 2 whose field of Fourier 
coefficients is of degree :::; 3 over IQ, then the exponent for 2f is > O? If f 
is a cuspidal newform of weight 4 with Fourier coefficients in Z, is its exponent 
positive? Do all the other cuspidal newforms of even weight have exponent O? 
Questions like these that concern g;f and 2f are closely related to lacunarity 
questions for modular forms of half-integral weight: by the work of Shimura 
[Sh] and Waldspurger [W], one knows that, for fixed cuspidal newform f, the 
values L(f, Xn' k/2) (suitably normalized) for varying D can be obtained 
as the squares of certain Fourier coefficients C f(D) of a modular form J of 
weight (k + 1)/2. For a detailed discussion of the modular form related to 
the congruence number problem (studied numerically in [ZK]) consult [T] and 
[Ko]. 

Remarks on the parity of g;f(D). If f is a cuspidal newform of conductor C 
and of even weight, the parity of g;f(D) is given by a simple rule in general 
(cf. [MTT]) which for square-free integers D relatively prime to 2C can be 
stated as follows. If D =f. 1 is such an integer, then g;f(D) and g;f( 1) have 
the same parity if and only if Xn( -C) = 1, where Xn is the quadratic Dirichlet 
character attached to the field Q( /75) . 

I J.-F. Mestre, for example, has some ideas that may lead to results concerning an exponent for 
the number of square-free D with IDI::; x such that ED has odd analytic rank r ~ 3. 
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4 F. GOUVEA AND B. MAZUR 

Therefore, combining the conjectures of Taniyama-Weil and Birch-Swinner-
ton-Dyer we have that (conjecturally) for E any elliptic curve over Q the parity 
of g;E(D) , for D a square-free integer relatively prime to twice the conduc-
tor of E, depends only upon congruence conditions on D. For the purpose 
of understanding the mechanism of our paper, let us isolate the (conjectural) 
statement about parity, which is the only implication of the Taniyama-Weil 
and Birch-Swinnerton-Dyer conjectures that is of relevance to our proof: 

Parity Conjecture. Let E be an elliptic curve over Q, and let D be a square-free 
integer relatively prime to twice the conductor C of E. Then g;E(I) == g;E(D) 
mod 2 (i.e., the ranks of E and of ED have the same parity) if and only if 
XD( -C) = 1, where XD is the quadratic Dirichlet character belonging to the 
field Q( Vi5) . 

We prove the following result: 

Theorem 2. Let E be an elliptic curve over Q. If the Parity Conjecture holds, 
then for fixed e > 0, X 1/2- e is a lower bound for the function 

~(x):= Hsquare-free D; IDI:5 x; rank(ED ) is ~ 2 and even} 

for sufficiently large real numbers x. In other words, ! is an exponent for ~. 

Our proofs of Theorems 1 and 2 make use of the arithmetic of elliptic curves 
and a technique of Hooley's, using Gallagher's version of the largesieve2• We 
adapted Hooley's techniques (which were fashioned to treat polynomials in one 
variable), to make them applicable to homogeneous polynomials in two vari-
ables all of whose irreducible factors over Q have degree :5 3. After sub-
mitting our paper for publication in this journal we learned from Hooley that 
George Greaves (see the preprint [Gr]) had been developing a method (also 
an elaboration of Hooley's original technique), which directly treats homoge-
neous two-variable polynomials with irreducible factors of degree :5 6. More-
over, Greaves's proof, which depends upon the fact that binary forms are more 
evenly distributed in residue classes modulo p2 than are their counterparts in 
one variable, is shorter than ours, and yields a better error term than ours when 
the irreducible factors have degree :5 3 .3 It, therefore, might have made sense 

2Some weaker versions of these theorems are significantly easier to prove. For example, if one 
restricts attention to elliptic curves E that possess a rational point of order 2, then one need not deal 
with irreducible factors of degree 3 in Proposition 4, which is the hard case. In this restricted case 
one obtains a slightly improved error term. Also, if one wishes merely to prove that the exponent 
is ~ i ' then one can make do with Hooley's original one-variable sieve dealing only with integral 
points (u, I) in §2 below. 

3 Advances in this area are proceeding rapidly: Mr. Keith Ramsay, a graduate student at Harvard 
has informed us that, building upon Greaves's idea, he has succeeded in improving Greaves's error 
term to O(x2/(logx)I/2) in the case of irreducible binary forms of the sixth degree. Also, one of us 
has generalized the results of this paper to obtain positive exponent theorems over general number 
fields (see the preprint [Gou)). Also, see forthcoming work of Jaap Top and Cameron Stewart that 
applies Greaves's result for sextic binary forms to obtain further positive exponent theorems for 
g;E(D) independent of the parity conjecture (but with exponents < !) . 
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THE SQUARE.FREE SIEVE 5 

to revise our paper, deleting our treatment of the square-free sieve and referring 
to Greaves for that proof. But since Greaves's paper [Gr] depends, at a number 
of points, on the exposition in our paper, on various Lemmas in our paper, on 
our notation, etc., the question of exactly which deletions we can logically make 
is something of a game of pick-up-sticks. To keep the exposition smooth and 
self-contained we have retained, intact, our original proof.4 

We are very pleased to have been able to use the occasion of writing this paper 
as grounds for initiating a number of conversations that were interesting and 
helpful to us; we warmly thank A. Brumer, P. Diaconis, N. Elkies, M. Hakosalo, 
M.-F. Mestre, A. Odlyzko, J.-P. Serre, and D. Zagier. Diane Meuser generously 
worked out a calculation in Igusa's theory for us. We are most grateful for that, 
and hope that we have done justice to her careful exposition in our transcription 
of it (Lemma 2 of §5). We are thankful to Christopher Hooley for his detailed 
letter to us, which informed us of Greaves's work. 

2. THE SQUARE-FREE COUNTING METHOD 

We begin by a description of our proof of Theorem 2. 
Let y2 = X3 + AX + B be a Weierstrass equation for an elliptic curve 

E of conductor C, and form the homogeneous quartic equation F(U, V) = 
V . f( U, V), where 

f(U, V):= U 3 + AUV2 + BV3 • 

Now for any pair of integers (u, v), if F(u, v) is a square-free integer put 
D = F(u, v). Of course, (X, Y) = (ujv, 1/v2) is a rational point on ED' It 
is an easy consequence of a result of Shafarevitch that there are only a finite 
number of pairs (u, v) for which the rational point (u/v, 1/v2) is a torsion 
point on ED' Explicitly, 
Proposition 1. If E is an elliptic curve over Q, then there are only a finite 
number of square-free integers D such that the twisted elliptic curve ED has a 
torsion point of order > 2 . 
Proof. To say that a twist ED has the property that its Mordell-Weil group 
contains an element of order p is equivalent to saying that there is a point 
(X, Y.fi5) on E of order p, with X, Y E Q. In particular, the cyclic sub-
group in E generated by this point is rational over Q, and division by this 
group yields a rational isogeny of E of degree p. A sufficient condition, there-
fore, for the prime number p not to occur as the order of any element in any 
or the Mordell-Weil groups ED(Q) is that E not admit an isogeny of degree 
p rational over Q. Now any given elliptic curve over Q admits Q-rational 
p-isogenies for only a finite number of primes p. Because by Shafarevitch's 
theorem [ill], there are only a finite number of isomorphism classes of elliptic 
curves over a given number field that are isogenous (over that number field) 

4Despite the fact that our result has a worse error term than Greaves's, our strategy of obtaining 
it via fibering might be of iridependent interest. 
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4Despite the fact that our result has a worse error term than Greaves's, our strategy of obtaining 
it via fibering might be of iridependent interest. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



6 F. GOUVEA AND B. MAZUR 

to a given elliptic curve. In particular, if there is an infinity of Q-rational p-
isogenies with domain E , then the corresponding range elliptic curves represent 
only a finite number of distinct isormorphism classes over Q. Consequently, 
one easily deduces the existence of a Q-rational endomorphism (with nontriv-
ial cyclic kemel)of one of the range elliptic curves. But this is a contradiction 
in that any Q-rational endomorphism of any elliptic curve over Q is given by 
multiplication by an integer. 

We have reduced our task to showing that for each odd prime number p (and 
also for the integer 4) there are only a finite number of square-free integers D 
such that ED(Q) contains an element of order p (or of order 4). But this is 
quite immediate: If p is a prime number, call Pp the natural representation 
of Gal(Q/Q) on the p-division points of E so that up to conjugation we may 
view P p as a homomorphism 

Pp: Gal(Q/Q) ~ GL2(Fp )' 

If p is an odd prime, then Pp ® XD can contain the identity representation for 
at most two square-free values of D. A similar statement takes care of the case 
of 4-torsion, concluding the proof of our Proposition. 

Remark. The Q-rational isogenies of prime degree (for elliptic curves over Q) 
have, in fact, been classified [M] and therefore, much finer information than 
the qualitative assertion in Proposition 1 is available, if needed. For example, it 
follows from [M] that there is an integer B (and a small integer, at that!) such 
that for any elliptic curve E over Q, there are at most B distinct square-free 
integers D such that the torsion subgroup of ED(Q) contains elements of order 
> 2. Are there analogous uniform upper bounds valid for elliptic curves and 
their quadratic twists over number fields other than Q? For information about 
isogenies of elliptic curves over general number fields see [Se]. 

By the Parity Conjecture, if (u, v) is such that D is relatively prime to 2C, 
and if u and v are in the appropriate congruence classes modulo 4C, then 
the parity of the rank of ED is even. Let Z be a real number, and let g;(Z) 
refer to the set of all pairs (u, v) with 0 < u, v < Z, such that 

(a) the pair (u, v) lies in the appropriate congruence classes modulo 4C, 
referred to above; 

(b) the point (X, Y) = (u/v, 1/v2) is not a torsion point on ED where 
D=F(u,v); 

(c) the value D = F(u, v) is a square-free integer. 
We assume that the Parity Conjecture holds. Then, if (u, v) E g;(Z) , 

.9fE (D) is even and since it is > 0, it is ;::: 2. It then follows that there is a 
positive constant A. depending only upon f( U, V) such that if we set Z = 
A.. Xl/4 , the mapping (u, v) 1-+ D = F(u, v) sends g;(A' X i / 4) to .9"E(X), A 
technique of Hooley's (or rather, an adaptation of his technique to our situation) 
enables one to show (as follows immediately from Proposition 6 of § 10) that 
there is a positive constant c such that the cardinality of g;(A'X i / 4) is greater 
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than c· X I / 2 • To prove Theorem 2, then, it suffices to show that the fibers of 
the mapping 

~(A. • Xl/4) _ ~(x) 

(u, v) 1-+ D = v ·f(u, v) 

have cardinality bounded above by o(x6) for any 0> O. 
For a given D, consider the (u, v) solving the equation D = v . f( u, v) . 

Clearly, if v is specified then there can be at most three distinct u's verifying 
this equation. Moreover, v is a divisor of D. Thus the cardinality of any fiber 
is bounded above by 3 ·d(D) where d(D) is the number of positive divisors of 
d. Since D :5 x, the well-known inequality d(x) = o(x6 ) [HW, 18.1, Theorem 
315] allows us to conclude the proof of Theorem 2. D 

As for Theorem J, let f be a cuspidal newform of weight 2 with Fourier 
coefficients in Z, and let E be the (modular) elliptic curve it parametrizes. 
For a real number x, consider the set Image(~(A.. X I /4)) C ~(x) that 
we have just constructed. We know two things: (1) If D is in the image of 
~(A.. XI/4) _ ~(x), then the sign of the functional equation satisfied by the 
entire function L(f, XD' s) is +, and (2) (by the argument we have just given) 
the rank of ED is ~ 1 (since we have a point of infinite order in ED(Q)). 
But, by the recent work of Kolyvagin [Kl, K2], supplemented by either the 
main result in [BFH] or [MM], if L(f, XD' 1) were nonzero, the rank of ED 
would be O. Consequently, 9lf (D) is even and > O. Hence the cardinality 
of Image(~(A. . X I / 4)) is :5 Sf(x) and the same estimate coming from the 
square-free sieve establishes Theorem 1. D 

3. THE SQUARE-FREE SIEVE 

A classical theorem due to Gegenbauer, proved in 1885 (cf. [HW, 18.6]), as-
serts that the number of square-free positive integers :5 x is (6/ n?). x + O(../X) . 
The more general problem of estimating the number of [-power-free values 
f(n) of a polynomial f of one variable of degree d has a large literature, at 
least when [ ~ d - 1 (see the discussion of it in [H, Chapter 4]). The case 
where [ = d - 1 is significantly harder than the case [ ~ d. Hooley (loc. cit.) 
treats I = d - 1 by a method combining what he calls the "simple asymptotic 
sieve" and Gallagher's form of the "large sieve." We are particularly interested 
in [ = 2, d = 3, i.e., we wish to estimate the number of square-free values 
of cubic polynomials. We shall refer to Hooley's method in this case as the 
"square-free sieve" method. Hooley proves that if f(u) is a cubic polynomial 
with coefficients in Z, the number of positive integers n not exceeding x such 
that f(n) is square-free is A· x + O{x .log-I/2(x)} where A is anonnega-
tive constant given explicitly as an infinite product, and which does not vanish 
provided that f(x) is not divisible by the square of a nonunit in Z[x]. Hoo-
ley, in fact, treats explicitly only the case where f is irreducible, for if it is 
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reducible, the argument is much easier, and gives a better error term, namely 
O{x .log-l(xn. 

For our application to elliptic curves, however, we need to estimate square-
free values of polynomials of two variables. Specifically, we deal with a ho-
mogeneous cubic form in two variables, f(u, v) and we estimate the number 
of pairs of integers (a, b) both between 0 and x such that b· f(a, b) is 
square-free. Homogeneity of the form f is strongly used. The format of our 
treatment is to follow Hooley's proof very closely. We even reduce our most 
delicate error estimate, via a fibering argument, to a one-variable situation han-
dled by Hooley. We show that the constants obtained from Hooley's argument 
that are independent of the fiber. We then return to our two-variable situation 
and derive the two-variable error estimate that we need. Our argument, with 
no change, treats the case of square-free homogeneous forms in two variables 
with no square factors, and such that all irreducible factors have degree ~ 3. 
We formulate our results in that setting. 

4. THE MAIN TERMS AND THE ERROR TERMS 

Now let F(u, v) be a nontrivial homogeneous polynomial of degree d with 
coefficients in IE. After an appropriate linear change of variables (u ~ o:u+ pv ; 
V ~ I'U + OV for 0:, P, ),,0 E IE, 0:0 - PI' = 1) we may (and do) suppose that 
the coefficients of ud and of vd are nonzero. Call these coefficients 1 and m, 
respectively. Write F(u, v) = I· O(u-Ojv) where the OJ are algebraic numbers 
(i = 1, ... , d = degree(F)). Let ~ = ~(F) denote the absolute value of the 
quantity m/2d- 1 O(Oj - 0), the product being taken over all pairs of distinct 
indices i, j = 1 , ... , d . Thus ~ (essentially the discriminant of the form F) 
is a nonnegative integer, nonzero if and only if F has no square factors. We 
suppose that F has no square factors. 

Suppose, further, that all of the irreducible factors of F are of degree ~ 3 . 
We fix a modulus M ~ 1 and two integers ao and bo' both relatively prime 
to M. We want to study how often F(a, b) is square-free, when we restrict a 
and b to be congruent to ao and bo modulo M, respectively. 

Define N (x) as the number of pairs of integers (a, b) satisfying 0 ~ a, b ~ 
x, a == ao (mod M), b == bo (mod M) such that F(a, b) is square-free. 
We define the principal term: 

N' (x) = the number of pairs of integers (a, b) with 0 ~ a, b ~ 
x, a == ao (mod M), and b == bo (mod M) such that F(a, b) 
is not divisible by the square of any prime less than or equal to 
~ = (1/3) log x , 

and the error terms E j for i = 0, ... , t. Put: 

Eo(x) = the number of pairs of integers (a, b) with 0 ~ a, b ~ 
x such that a and b are both divisible by some prime greater 
than ~. 
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Write F(u, v) = I1.t;(u, v) where .t;(u, v) are irreducible homogeneous 
forms with coefficients in Z, i = 1 , ... , t and set 

Ej(x) = the number of pairs of integers (a, b) with 0::; a, b ::; 
x such that .t;(a, b) is divisible by the square of some prime 
greater than e for i = 1 , ... , t . 

Put E(x) = L~=o Ej(x) . 
Proposition 2. For x sufficiently large, we have: 

N' (x) - E(x) ::; N(x) ::; N' (x). 
Proof. The inequality asserted in Proposition 2 is valid for all x such that 
e > .1. = .1.(F). This comes directly from the observation that if x is such that 
e >.1. and (a, b) is a pair of integers contributing to N'(x) - N(x) , i.e., if 
o ::; a, b ::; x, a == ao (mod M), b == bo (mod M) and there is a prime number 
p > e such that p2 divides F (a, b) , then since p cannot divide .1., either p 
divides both a and b or p2 divides .t;(a, b) for some i = 1, ... , t. 0 

Comments. We will write Proposition 2 in the form 
N(x) = N' (x) + O(E(x)) 

to emphasize that N' (x) supplies us with the dominant term, and E(x) with 
the error term (this is why we do not bother with congruence conditions in the 
definition of the Ej ). Heuristically we view e as giving us a notion of small 
prime relative to x and, in effect, we show that the square-free condition is well 
approximated by the condition that the number not be divisible by the square 
of any small prime. The choice of e = (1/3) log x is not crucial but we will 
make use of the fact that if I is square-free and all prime factors of I are less 
than or equal to e, then 

I ::; II p ::; e2f, ::; X 2/ 3 • 

p<f, 

(One can take e to be any fixed monotonically increasing function of x, which 
is ~ 10gl/2(X) , such that e2f, ::; x T for some real number r < 1.) 

5. COUNTING POINTS MODULO m 
In this section we suppose given a homogeneous form F (u, v) of degree d, 

with coefficients in Z, with no square factors. We do not assume that all its 
irreducible factors are of degree::; 3. We also suppose given congruence data 
(ao' bo) mod M. 

Attached to this data we shall define a multiplicative function 

P = P{F;(ao,bo) mod M} 

taking values in nonnegative integers as follows: 
Put p(l) = 1, and for an integer m ~ 2 define p(m) to be the 
number of solutions, noncongruent modulo m, of the equation 
F (a, b) == 0 mod m , in integers (a, b) , satisfying the auxiliary 
conditions a == ao (mod M) and b == bo (mod M). 
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Note that if gcd(m, M) = 1, the auxiliary congruence conditions do not affect 
the value of p(m); if gcd(m, M) = () , the congruence conditions eliminate 
all but m2 / ()2 congruence classes. It is convenient, in this case to make the 
following further definition: 
Definition. If gcd( m, M) = () , we define r( m) = ()2 p( m) . 
Lemma 1. (1) The functions p and r are multiplicative, i.e., if gcd(m, n) = 1, 
then p(mn) = p(m)p(n) and r(mn) = r(m)r(n). 

(2) Let PI (p) denote the number of solutions mod p of F (x, 1) == 0 mod p . 
Let p be a prime number that does not divide Ll. Then, for v ~ 1 , 

(v/d) 
( v) < 2[v-v/dl + ()."", (v+(d-2)A) p p - P PI P ~ (jJ P , 

A=O 
where (jJ is Euler's phi-function, and [c] (resp., (c)) denotes the largest integer 
:::;. c (resp., < c). If p does not divide M· Ll, then the inequality above is an 
equality. 
Proof. Assertion (1) follows from the Chinese Remainder Theorem. As for 
assertion (2), let us show the equality when p does not divide M· Ll, the full 
statement then following from the fact that the p attached to F and congruence 
conditions mod M is :::; the p attached to the same F and no congruence 
conditions. 
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In a recent letter to us, Diane Meuser provided us with the proof the following 
lemma, which, as she explained, comes fairly directly from Igusa's techniques 
(specifically, [ I, Chapter III, §3.5]). 
Lemma 2 (Meuser, Igusa). The generating function 
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is a rational function with at worst simple poles at T = p-I , and at T = 
, . P -2+2/d where, runs through all dth roots of unity. The power series above 
converges in the open disk about T = 0 of radius 1/p2-2/d. 
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Proof. First note that the statement of our lemma follows immediately from 
Lemma 1 if p does not divide Mil, for R(T) is then 

00 00 00 

L/[v-v/d1TV + PI (p)(P -1) L L pV-I+(d-2)),Tv , 
v=o ),=0 v=dA.+I 

which can be directly calculated to be the rational function 

P(T)/(l - pT)(l _ /d-2~), 

where 
d-I 

P(T) = 1 + (1 + PI (P)(P - l))T + L/1- 2(1 _ p3)T1 _ /d+I~. 
1=2 

We now treat the general case. Let J!e be the complement of the zero-locus 
of F(u, v) in A? = Zp x Zp, viewed as p-adic manifold. Let I I denote 
normalized absolute value (i.e., Ipl = lip) and consider Igusa's zeta function 
given by the singular integral 

Z(t) = It(' IF(u, v)ls 'Idu dvl, 

where t = p-s . Then the connection between Z(t) and R(T) is easily calcu-
lated to be 

(/T - 1). R(T) = /T. Z(/T) - 1 
(see [I, §3.5, p. 97]). It follows from a quite general result (see loco cit. §3.1) 
that Z (t) is a rational function of t, and hence so is R( T). Since Z (1) = 1 , 
it follows further that the poles of R(T), with multiplicity, are precisely the 
poles of Z (p2 T) , taken as a function of T. 

The lemma will then follow if we show that 

Z(t) = P(t) , 
(p _ t)(p2 _ td) 

where P(t) is a polynomial. Consider the quadratic transformation with center 
2 (O,O)EA, 

where A2 x][»1 is coordinatized by {(u, v); (WI: w2 )}, 1/ is the locus 

u'W2 -V'WI =O, 

and h is the restriction of the projection homomorphism. We may write our 
singular integral as 
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Now 'Y can be covered by two affine neighborhoods ~ , ~ corresponding 
to WI f. 0 and to w2 f. 0 respectively. On ~ we may take u l = U, VI = 
W2/W I as coordinates, and identify ~ with Zp x Zp via (u I ' VI)' We now 
consider the integral 

and note that if we express the above integral over ~ as a sum of integrals 
over a disjoint union of small open sets covering ~ , the contribution to the 
poles of Z, (t) come from open sets about the zeros of F(u, v) = u~ ·F(l, VI)' 

i.e., about the points (u l = 0, VI) where VI E Zp is a zero of F(l, VI)' Fix 
such a point (0, V I)' Since F (1 , V I) has no mUltiple roots we may find a 
small neighborhood ./f/ of 0 E Zp such that (a F / av 1)( 1 , V I) is nonzero and 
constant for VI E ./f/. Letting z := F(l , VI)V I E ./f/ , we may view z : ./f/ ~ 
& C Zp as a new coordinate for ./f/, where & is the image of ./f/ under z 
in Zp' Taking our open subset of ~ to be Zp x ./f/, parametrized by the 
variables (u I ' z) , the contribution to the integral ZI (t) coming from this open 
set is easily computed to be 

which splits into a product of two simple integrals that contribute to denom-
inators (1 - p-2td) and (1 - p-I t), respectively. An identical argument for 
the contribution to the integral coming from ~ concludes the proof of our 
lemma. 0 

Lemma 3. (1) If pV ranges through all prime powers, then p(pV) = O(pv(2-2/d)) 
and r(pV) = O(pv(2-2/d)) ; 

(2) If m ranges through square-free integers, we have: p(m2) = O(m2 ·dk(m)) 
for k = d + 1, where dk(m) denotes the number of ways in which m can be 
written as a product of k factors. 

Proof. (1) The inequality in (2) of Lemma 1 gives us what we wish for the set 
of all pV where p is any prime number not dividing d and II any integer 
2: 1. This leaves us the finite set of primes dividing d with which to contend. 
If we show that p(pV) = O(p(v(2-2/d)) for all II 2: 1 and for each such prime 
number separately, then part (1) of our lemma will be proved. But this estimate 
is precisely what comes from the conclusion of Lemma 2, i.e., the convergence 
of the power series R(T) in the open disk of radius 1/p2-2/d about T = O. 

(2) This follows directly by applying the inequality (2) of Lemma 1 to obtain 
an upper bound for p(p2) for all prime numbers p not dividing d, noting that 
PI(p)~d. 0 
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6. AVERAGING ESTIMATES OF RATIONAL POINTS MOD m 
If w is any real (or complex) number, and n a positive integer; let O'w(n) 

denote the sum of the wth powers of the positive divisors of n. Then O'w(n) 
is a multiplicative function. 

Proposition 3. Let w be a negative real number. Suppose that F (u, v) is an 
irreducible homogeneous form of degree dover Z, and that (ao' bo) mod M 
are congruence conditions. Let 

Then 

L O'w(m)· p(m)jm = O(x) , 
I::;m::;x 

where the summation is taken over all positive integers m ~ x . 
Proof. We begin with a short discussion of prime-power functions h which, by 
definition, are real-valued functions on the set of all prime powers pV H h(PV) 
(p ranges through all prime numbers and v > 0). A prime-power function h 
extends (multiplicatively) to a unique multiplicative function, which we denote 
h. By the Dirichlet series associated to h, we mean 

H(s) = L h(m). m-s • 
m~1 

Say that a prime-power function h is negligible if there are positive constants 
c > 1, 0' < 1 , and A > 0 such that 

for all real s ;:::: 0' and all prime numbers p. 

The following useful sufficient criterion for negligibility is easily proved: 

Lemma 4. Let h be a prime-power function such that there is a positive number 
t5 , a positive integer 11, and a real number b < 1 - 1 j 11 for which 

(a) there is a positive number A such that for all j < 11, and all prime 
. . 1 J numbers p, we have Ih(pJ)1 ~ ApJ- - ; 

(b) for all prime-powers pV we have h(PV) = O(pV'b). 

Then h is negligible. 
Proof. Straightforward. 0 
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Lemma S. A finite linear combination of negligible prime-power functions is neg-
ligible. If h is a negligible prime-power function, then the abscissa of absolute 
convergence of its associated Dirichlet series is < 1 . 
Proof. Straightforward. 0 

Lemma 6. Let h be a nonnegative real-valued prime-power function with the 
property that if h is its associated multiplicative function then Em<x h(m) = 
O(x). -

Let e be any negligible prime-power function, and let I{I = h + e. Let I{! 
denote the multiplicative junction associated to I{I. 

Then Em9 1{!(m) = O(x). 

Proof. Say that a positive integer d is a clean divisor of m if it is a divisor of 
m which is relatively prime to m/d. We have that I{!(m) = E h(d) . e(m/d) , 
where d ranges through all clean divisors of m. So 

L I{!(m) = L L {h(m/d) . e(d)} 
m~x m~x d clean divisor 

= L e(d). { L h(n)}. 
d~x n~x/d 

(n,d)=1 

Since h is nonnegative, we have 

I L I{!(m) I :5 L le(d)I' { L h(n)} 
m~x d~x n~x/d 

:5 O{ X· L le(d)l/d}. 
d~x 

But by Lemma 5, E le(d)l/d converges, giving Lemma 6. 0 

The key point to the proof of our Proposition (as in, e.g., [E, pp. 14, 15]) 
is to compare the prime-power function t(pV) := O'w(PV) • p(PV)/pv with the 
prime-power function tK(PV) whose associated Dirichlet series is the Dedekind 
zeta function of the field K of degree dover Q that is obtained by adjoining 
a root of the polynomial F(u, 1). Specifically, we prove the key lemma below. 

Lemma 7. The prime-power junction t - tK is negligible. 

The proof of our proposition follows directly: Using the fact that the Dede-
kind zeta-function of K has 0' = 1 as abscissa of absolute convergence, and has 
a meromorphic continuation to the entire complex plane with its only pole for 
Re(s) > 0 a simple pole at s = 1, the (nonnegative) multiplicative function tK 
satisfies the hypothesis on h in Lemma 6. Therefore t satisfies the conclusion 
of Lemma 6. 
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Proof of Lemma 7. Consider the following list of prime-power functions: 
o:(pv) = t(pv) = fJw(pv) . p(pv)/pv if p divides M.~, 

= 0 if p does not divide M·~. 

P(pv) = fJw(pv) . /[v-v/d1-v if p does not divide M .~, 

= 0 if p divides M . ~. 
(v/d) 

y(pv) = fJw(pv) . PI (p). L rp(pv+(d-2)A) . p -v if p does not divide M .~, 
A=O 

= 0 if p divides M . ~. 

15 

Since 0: + P + y - t K = t - t K ' to prove the key lemma we prove that 0:, p, 
and y- t K are each negligible. We use our criterion for negligibility (Lemma 4). 
Note that (under the hypothesis that w is less than 0) fJw(pV) is universally 
bounded from above (by 1/(1 - 2w)) and therefore, that factor does not affect 
our calculations to determine whether the criteria of Lemma 4 are met. 

As for 0:, since o:(pv) = 0 unless p lies in a certain finite set, we see that the 
criteria of Lemma 4 are met if for any positive real number c5 and any positive 
integer Ii- criterion (a) of Lemma 4 is satisfied. Take Ii- = d. Then, taking 
b = 1 - 2/ d , (b) of Lemma 4 is also satisfied, as is seen using assertion (1) of 
Lemma 3. 

As for p, take c5 = 1, Ii- = d , and b = 1 - 2/ d . 
Now for y, let YI denote the prime-power function defined by the rule: 

YI(P) = PI(P) for all prime numbers p not dividing M·~, and YI(pV) = 0 
if /J ~ 2, or if p divides M· ~. Let Y' = Y - YI . Another straightforward 
calculation shows that Y' satisfies our criteria for negligibility (conditions (a) 
and (b) of Lemma 3) where we may take c5 = 1, Ii- = d, and b = 1 - 2/d. It 
remains then, to show that t' = t K - YI is negligible. But for p not dividing 
M·~, PI (p) , i.e., the number of solutions of F (u, 1) == 0 mod p , is the number 
of primes of the field K of norm p, i.e., is equal to tK(P). Thus, for p not 
dividing M·~, t'(pV) = 0 if /J = 1 and = tK(PV) if /J ~ 2. Standard 
calculations (compare [E, pp. 14, 15]) give that t' is negligible. 0 

Corollary. Em~x fJ_ I/2(m). p(m)/m = O(x). 

7. THE DENSITY ESTIMATE 

We suppose, as in §4, that F(u, v) is a homogeneous form with coefficients 
in Z, possesses no square factors, and is such that all of its irreducible factors 
are of degree ::; 3 . 

Lemma 8. Let 
A = (I/M2) IT(1- r(p2)/p4). 

p 

Then as x -t 00 , 
, 2 2 

N (x) = Ax + O(x /log x) . 
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Corollary. Em~x fJ_ I/2(m). p(m)/m = O(x). 

7. THE DENSITY ESTIMATE 

We suppose, as in §4, that F(u, v) is a homogeneous form with coefficients 
in Z, possesses no square factors, and is such that all of its irreducible factors 
are of degree ::; 3 . 

Lemma 8. Let 
A = (I/M2) IT(1- r(p2)/p4). 

p 

Then as x -t 00 , 
, 2 2 

N (x) = Ax + O(x /log x) . 
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Proof. For any positive integer n, put Nn (ao' bo mod M; x) = the number of 
pairs of integers (a, b) with 0 :5 a, b :5 x, such that F(a, b) is divisible by 
n, and such that (a, b) satisfies the auxiliary conditions a == ao (mod M) and 
b == bo (mod M). If M = I, i.e., if we have set no auxiliary conditions, we 
abbreviate the notation Nn (ao' bo mod M; x) to Nn (x) . 

Now let I range over I and the square-free numbers all of whose prime 
divisors are less than or equal to e. For each I, let 0 (I) = gcd( P , M). Then 
we have 

2 2 2 4 2 2 N I2(ao,bo modM;x)=p(l ){o(l) x /1 M +O(x/I H. 
(For each fixed congruence class modulo 12 of solutions of F(u, v) == 0 mod P 
satisfying the congruence condition, count the number of representatives in the 
square 0:5 a, b :5 x .) Then by the inclusion-exclusion principle, 

N(x) = (I/M2) LJ.l(l)p(l2)(X20(l)2 /14 + O(x/p)) 
I 

= (x2/M2) LJ.l(l)p(l2)o(l)2/14 + o(x L P(l2)/12) 
I 175.xl/3 

= (x2/M2) LJ.l(l)r(l2)/14 + o(x L p(l2)/p) 
I 175.xl/3 

= (x2/M2) IT (1 - r(i)//) + o( X· L dk(l)) 
p<~ 175.xl/3 

[by Lemma 3 (2), where k = degree F + 1] 

= (x2/M2) IT(1 - r(i)//) + O(x2 !eloge) + O(x· XI / 3 10l-1 x) 

= (x2/M2) IT (1 - r(p2)/p4) + O(x2 /log x) , 

as desired. 0 

It remains to estimate the various error terms; Eo(x) and Ej(x) for an index 
i such that 1; is of degree one are easy: 

Lemma 9. We have Ej(x) = O(x2/logx) if i = 0, or if i ~ 1 and 1; is of 
degree one. 
Proof. If i = 0, we just count elements in congruence classes: 

Eo(x) :5 L(X2/p2 + O(x/p)) 
p>~ 

= O(x2/e loge) = O(x2/ logx). 

Now let i ~ 1 be an index such that 1;(u, v) = AU + J.lV, for A, J.l E 
z. We suppose that x is sufficiently large so that e > L1, and therefore no 
prime number p > e divides both A and J.l. For any such p we estimate the 
number of (a, b) with 0:5 a, b :5 x such that Aa + J.lb == 0 mod p2 as being 
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X2/p2 +O(x/p) and exactly the same calculation as for Eo(x) obtains the same 
bound. 0 

8. THE PRINCIPAL ERROR ESTIMATE 

We now consider the estimates for Ej(x) when 1; is of degree :5 3, the 
main part of the proof being when it is of degree 3. 

Proposition 4. If 1; is of degree :5 2, then 

Ej(x) = O{x2 . log -I (x)}, 

while if 1; is of degree 3, then 

Ej(x) = O{x2 . log -1/2(X)}.5 
Proof. The case of degree one having been taken care of in Lemma 4, let f = 1; 
be an irreducible factor of degree 2 or 3. Note that we may now ignore the 
congruence restrictions completely. We begin by setting '1 = c· x if the degree 
of f is 2 (where c is a positive constant chosen sufficiently large to insure that 
Np2(X) vanishes for prime numbers p > '1 and large values of x) and setting 
'1 = x 10gl/2 x if the degree of f is 3. We have 

E 1(x):5 L Np2(X) + LNp2(X). 
~<p<~ p>~ 

Lemma 10. L:~<pq Np2(X) = O(x2 jIogx) in case the degree of f equals 2 and 
L:~<pq Np2(X) = O(x2/ 10gl/2 x) in case degree f = 3. 

Proof. By Lemma 1, we have p(p2) = O(p2); then 

L Np2(X) = L p(/)(x2// + O(x//)) 
~<p<~ ~<p<~ 

= O(X2 L 1//) + o( X· L P(/)//) 
~<pq ~<pq 

= O(x2/c;10gc;) + O(xn('1)) 
= O(x2 jIogx) + O(X'1/ log '1) . 

This gives the desired estimates. 0 

It remains to estimate P(x) = L:p>~ Np2(X). 
When f is of degree 2 we have that for large enough x, Np2(X) = 0, if 

p > '1 in view of our choice of '1. This gives the estimate for f of degree 
2. From now on, we suppose that f is of degree 3. We estimate P(x) by a 
fibering argument, reducing our question to a similar estimate for one-variable 
polynomials dealt with in [H, Chapter 4, §3]. 

5This error term has been improved; see the note at the end of this section. 
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18 F. GOUVEA AND B. MAZUR 

For each b ~ x, let fb(u) denote the cubic polynomial f(u, b). Let 
i(b, m) denote the number of integers a in the range 0 ~ a ~ x such that 
fb(a) = m· p2 where p is a prime number> 1'/. Thus, our i(b, m) is simply 
Hooley's i(m) for the polynomial fb. Now Hooley produces an estimate for 
i(m) (cf. [H, §3, Formula (132)]) which, when expressed for the polynomial 
fb, gives 

i(b, m) = Ob{(x/m)I/20"_1/2(m)Pb(m)} , 
where 0"_1/2(m) is the sum of the reciprocals of the square roots of positive 
divisors of m, Pb(m) is the number of (incongruent) roots of the congruence 
fb (a) == 0 mod m, and the subscript b on 0 indicates that, a priori, the im-
plicit constant depends upon the polynomial, i.e., depends upon b. The key 
observation for us is that this constant may be taken to be independent of b. 
Explicitly, 

Lemma 11. There is a constant C such that 
i(b, m) ~ C· {(x/m)I/2 • 0"_1/2(m) . Pb(m)} 

for all integers m, b 2:: O. 
Proof. Let m and b be positive integers, and let q be a prime number which 
does not divide m. Set Sb(m, q) = the number of (incongruent) solutions 
(u, w) of the congruence fb(u) == m· w 2 mod q, where w is not congruent 
to 0 mod q. 

Sublemma. There is a constant CI such that for all b, m, and q as above, we 
have: 

Proof. We use the fact that fb(u) is a cubic polynomial in u, such that the 
coefficient of the u3 -term is a nonzero integer independent of b, and we recall 
that m is a unit mod q. Since the left-hand side of the inequality to be proved 
is bounded by q2 - q for any q, it suffices to prove the sublemma under the 
added restriction that q does not divide 6 times the coefficient of the u3 -term. 
Then if fb (u) == 0 mod q has no multiple roots, then the well-known inequality 
for rational points on elliptic curves over finite fields allows us to bound the 
left-hand side appropriately. If fb(u) == 0 mod q has multiple roots we can 
compute directly that Sb(m, q) = q - 1. 0 

We now follow [H, §3] in the special case where r = 3, and f = fb to obtain 
the estimate (132) of loco cit. noting that the explicit polynomial fb enters in 
only two (closely related) places, namely in the setting of a lower bound (called 
A4 in [H]) such that for all prime numbers q > A4 = A4(fb) we have that 
Sb(m, q) > ql/2 and in the determination of the constant CI of our sublemma. 
But, by the sublemma, CI is independent of b, and consequently so is A4 • 

This concludes the proof of Lemma 11. 0 
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Now let c' be a constant such that I.t;(a, b)1 < c' 0 x 3 , for all 0 < a, b < x 
and for large x 0 Let K = C' 0 xl log x . 

We return to our study of P(x) , which is immediately seen to be equal to 

Reversing the order of summation, we have 

But as b ranges through all integers between 0 and x, it can go through any 
given congruence class mod m at most x I m times, giving 

P(x)~ L (xlm) 0 { L Y(b,m)}, 
O~m~K 09~m-l 

and by Lemma 11, 

P(x) ~ L (xlm) 0 { Co (xlm)I/2 0 0"_1/2(m) 0 L Pb(m)} 
O~m~K O~b~m-l 

3/2 '"' -1/2 ~ CoX 0 L- (m ) 0 0"_1/2(m) 0 {p(m)lm} 
O~m~K 

which by partial summation and the Corollary of §5, is 

O{ 3/2 1/2} O{ 2 1 -1/2()} 0 X oK = X oog X. 

Putting all these estimates together gives: 

Theorem 3. Let F (u, v) be a homogeneous polynomial with coefficients in Z 
without square factors such that all of its irreducible factors are of degree ~ 3. Let 
M be an integer, and let ao and bo be integers relatively prime to M. Finally, 
let N(x) denote the number of pairs ofintegers (a, b) satisfying 0 ~ a, b ~ x, 
a == ao (mod M), and b == bo (mod M) for which F(a, b) is square-free. 
Then, as x -+ 00, we have 

2 2 1/2 N(x) = Ax + O(x Ilog x). 

Here the constant A is given by 

A = (11M2) II(1- r(/)lp4) , 
p 

where p(p2) denotes the number of noncongruent solutions of F(u, v) _ 0 
mod p2 and r(p2) is defined to be (gcd(p2, M))2 p(p2). 
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Note. As discussed in the introduction, the reader is referred to Greaves's pre-
print [Gr] for improvements of the above theorem, giving what are currently the 
strongest results known concerning square-free values of binary forms. Specifi-
cally Greaves's method can handle binary forms whose irreducible factors over 
Z have degree ~ 6, and In the case where the irreducible factors have degree 
~ 3, he has a better error term than ours, namely O(x2 j logx). 

9. NONVANISHING CRITERIA FOR THE CONSTANT A 

For our applications we must have a criterion for when the constant A in 
Theorem 3 does not vanish. Set Ap = (1 - r(p2)jp4) . 

Proposition 5. (1) The constant A is zero if and only if Ap = 0 for some prime 
number p. 

(2) Ap vanishes if p2 divides all the coefficients of F(u, v). 
(3) Suppose, now, that p2 does not divide all the coefficients of f(u, v), and 

that p divides M. Then a necessary and sufficient condition for Ap to vanish 
is that either (i) or (ii) below hold. 

(i) p2 divides M and we have restricted to a congruence class, which is a 
solution of F(u, v) == 0 mod p2. 

(ii) p divides M, M t 0 mod p2, and we have restricted to a congruence 
class (ao' bo), which represents a singular point of the scheme F(u, v) == 0 
modp. 

(4) Suppose, now, that p2 does not divide all the coefficients of F (u, v), and 
that p does not divide M. Then Ap is nonzero if p > degree(F). 

(5) Suppose that feu, v) is a homogeneous form of degree 3 and set F(u, v) = 
v . f( u, v). Suppose further that p does not divide all the coefficients of F (u, v) 
and that p does not divide M. Then Ap is nonzero. 

Proof. (1) Since r(p2) = O(p2) , the infinite product A is zero if and only if 
one of the factors (1 - r(p2)jp4) vanishes, i.e., if and only if there is a prime 
number p such that r(p2) = p4 . 

(2) Evident. 
(3) If M is divisible by p2, clearly (i) holds if and only if p(p2) = 1 , i.e., if 

and only if r(p2) = p4 . If M is divisible by p and not by p2, then (ii) holds 
if and only if 

which happens if and only if (ao + p. A, bo + p. J.l) is a solution of F(u, v) == 
o mod p2 for any A, J.l, i.e., p(p2) = p2 or, equivalently, r(p2) = / . 

(4) If M is not divisible by p, r(p2) = p(p2) = p4 if and only if all pairs of 
integers (a, b) are solutions of F(u, v) == 0 mod p2 . In particular, all pairs 
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(a, b) yield solutions of F(u, v) == 0 mod p. But then if F(u, v) is not 
identically zero mod p , a simple consideration of degrees tells us that this can 
only happen (i.e., p(p2) = p4) if p ~ degree(F) . 

(5) Just write out F(u, v) = (A· u3 + Bu2 . V + C· u· v2 + D· v 3 ). v. Using 
the hypotheses on the prime number p, a direct calculation gives congruence 
conditions on the coefficients A, B, C, D guaranteeing that F(u, v) is iden-
tically zero mod p. Note, by the way, that the only primes not covered already 
by (4) above are p = 2 and 3. 0 

10. ApPLICATION TO ELLIPTIC CURVES 

Let M be a positive integer. Any elliptic curve over Q can be given a model 
of the form y2 = X 3 + A . X + B where A, B are in IE, and are divisible by 
M , as can immediately be seen by starting with a model as above without the 
divisibility condition, making the substitution (X, Y) 1--+ (X/M2 , Y/M3) , and 
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M = 12·C and give E a model as above. Now set f(u, v) = u3 +A.u.v2 +B·v 3 
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Q( v'D). Quadratic reciprocity guarantees that this value is in fact determined 
by D mod 4C , and hence mod M. Given any C (~11 is all we need) there 
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neither of the cases (i) or (ii) of (3). But this is immediate since we have chosen 
our pair (ao' bo) so that F(ao' bo) is a unit modulo M, and hence not a zero 
of F (u, v) == 0 mod p. 0 

Remark. The above proposition is what is needed for Theorem 1 in § 1. To get 
Theorem 2, we use the same proposition, only applied to the appropriate data; 
namely, E is the elliptic curve given in the statement of Theorem 2, C is its 
(arithmetic) conductor, and (ao' bo) is a pair of congruence classes mod M, 
relatively prime to M, with sign taken to be + if the rank of E is even and 
- if it is odd. 
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