
Cryptographic sponge functions

Guido Bђџѡќћі1
Joan Dюђњђћ1

Michaël PђђѡђџѠ2

Gilles Vюћ AѠѠѐѕђ1

http://sponge.noekeon.org/

Version 0.1
January 14, 2011

1STMicroelectronics
2NXP Semiconductors

http://sponge.noekeon.org/

Cryptographic sponge functions

2 / 93

Contents

1 Introduction 7
1.1 Roots . 7
1.2 The sponge construction . 8
1.3 Sponge as a reference of security claims . 8
1.4 Sponge as a design tool . 9
1.5 Sponge as a versatile cryptographic primitive 9
1.6 Structure of this document . 10

2 Definitions 11
2.1 Conventions and notation . 11

2.1.1 Bitstrings . 11
2.1.2 Padding rules . 11
2.1.3 Random oracles, transformations and permutations 12

2.2 The sponge construction . 12
2.3 The duplex construction . 13
2.4 Auxiliary functions . 15

2.4.1 The absorbing function and path . 15
2.4.2 The squeezing function . 16

2.5 Primary aĴacks on a sponge function . 16

3 Sponge applications 19
3.1 Basic techniques . 19

3.1.1 Domain separation . 19
3.1.2 Keying . 20
3.1.3 State precomputation . 20

3.2 Modes of use of sponge functions . 20
3.3 Parallel and tree hashing . 21

3.3.1 Specifications . 22
3.3.2 Soundness . 23

4 Duplex applications 25
4.1 Authenticated encryption . 25

4.1.1 Modeling authenticated encryption . 25
4.1.2 Security requirements . 26
4.1.3 An ideal system . 26
4.1.4 The authenticated encryption mode SѝќћєђWџюѝ 27
4.1.5 Security . 27
4.1.6 Advantages and limitations . 29
4.1.7 An application: key wrapping . 30

3 / 93

Cryptographic sponge functions CONTENTS

4.2 Reseedable pseudo random bit sequence generation 30
4.2.1 Modeling an ideal PRG . 31
4.2.2 SѝќћєђPRG: a PRG mode . 32
4.2.3 Advantages and limitations . 33

4.3 The mode OѣђџѤџіѡђ . 34

5 Generic aĴacks 37
5.1 Introduction . 37
5.2 Graphical representation of a sponge function 37
5.3 The model of the adversary . 38

5.3.1 The cost function . 38
5.4 Generating inner collisions . 38

5.4.1 With f a random transformation . 39
5.4.2 With f a random permutation . 39

5.5 Finding a path to an inner state . 40
5.5.1 With f a random transformation . 40
5.5.2 With f a random permutation . 41

5.6 Detecting cycles in the output . 42
5.6.1 With f a random transformation . 43
5.6.2 With f a random permutation . 43

5.7 State recovery . 43
5.7.1 With f a random transformation . 43
5.7.2 With f a random permutation . 44
5.7.3 With f a random transformation, revisited 46

5.8 Output binding . 46
5.9 Summary of success probabilities . 47
5.10 Sponge functions used as a hash function . 48

5.10.1 Output collisions . 48
5.10.2 Second pre-image . 48
5.10.3 Pre-image . 49
5.10.4 Length extension . 50
5.10.5 Correlation immunity . 50

5.11 Keyed modes . 50
5.11.1 Predicting the output of a stream cipher 51
5.11.2 MAC function . 51

6 Security proofs 53
6.1 Inner collisions as only source of non-uniformity 53

6.1.1 The need for sponge-compliant padding 53
6.1.2 The proof . 54

6.2 Distinguishing a random sponge from a random oracle 55
6.2.1 The adversary’s seĴing . 55
6.2.2 The cost of queries . 55
6.2.3 RO distinguishing advantage . 56

6.3 Differentiating a random sponge from a random oracle 57
6.3.1 The indifferentiability framework . 57
6.3.2 The adversary’s seĴing . 58
6.3.3 The simulators we use in our proofs . 59
6.3.4 When being used with a random transformation 61
6.3.5 When being used with a random permutation 64

4 / 93

CONTENTS Cryptographic sponge functions

6.4 Equivalence of the sponge and duplex constructions 65
6.5 Optimum security of multi-rate sponge functions 67
6.6 Implications of the bound on theRO differentiating advantage 68

6.6.1 Immunity to generic aĴacks . 69
6.6.2 Randomized hashing . 69
6.6.3 Security of keyed sponge functions . 69

7 Random sponges as a security reference 71
7.1 A random sponge as a reference model . 72

7.1.1 Expressing a security claim . 72
7.1.2 Choosing the parameters . 73

7.2 The flat sponge claim . 73

8 Sponge functions with an iterated permutation 75
8.1 The philosophy . 75

8.1.1 The hermetic sponge strategy . 75
8.1.2 The impossibility of implementing a random oracle 75
8.1.3 The choice between a permutation and a transformation 76
8.1.4 The choice of an iterated permutation 76

8.2 Some structural distinguishers . 77
8.2.1 Differential cryptanalysis . 77
8.2.2 Linear cryptanalysis . 78
8.2.3 Algebraic expressions . 79
8.2.4 The constrained-input constrained-output (CICO) problem 80
8.2.5 Multi-block CICO problems . 81
8.2.6 Cycle structure . 82

8.3 The usability of structural distinguishers . 82
8.4 Conducting primary aĴacks using structural distinguishers 83

8.4.1 Inner collisions . 83
8.4.2 Path to an inner state . 84
8.4.3 Detecting a cycle . 84
8.4.4 State recovery . 85

8.5 Classical hash function criteria . 85
8.5.1 Collision resistance . 85
8.5.2 Preimage resistance . 85
8.5.3 Second preimage resistance . 86
8.5.4 Length extension . 86
8.5.5 Output subset properties . 86

8.6 Keyed modes . 86

5 / 93

Cryptographic sponge functions CONTENTS

6 / 93

Chapter 1

Introduction

In the context of cryptography, sponge functions provide a particular way to generalize
hash functions to more general functions whose output length is arbitrary. A sponge func-
tion instantiates the sponge construction, which is a simple iterated construction building a
variable-length input variable-length output function based on a fixed length permutation
(or transformation). With this interface, a sponge function can also be used as a stream ci-
pher, hence covering a wide range of functionality with hash functions and stream ciphers
as particular points.

From a theoretical point of view, sponge functions model in a very simple way the finite
memory any concrete construction has access to. A random sponge function is as strong as
a random oracle, except for the effects induced by the finite memory. This model can thus
be used as an alternative to the random oracle model for expressing security claims.

From a more practical point of view, the sponge construction and its sister construction,
called the duplex construction, can be used to implement a large spectrum of the symmetric
cryptography functionality. This includes hashing, reseedable pseudo random bit sequence
generation, key derivation, encryption, message authentication code (MAC) computation
and authenticated encryption. This provides users with a lot of functionality from a single
fixed permutation, hencemaking the implementation easier. The designers of cryptographic
primitives may also find it advantageous to develop a strong permutation without worrying
about other components such as the key schedule of a block cipher.

1.1 Roots

The idea of developing sponge functions came during the design of RюёіќGюѡҼћ [10]. This
cryptographic hash function has a variable-length input and a variable-length output. When
we proposed RюёіќGюѡҼћ, we faced the problem that we had to express a claim of crypto-
graphic security. For a hash function with fixed output length n, one usually implicitly or
explicitly claims its security to be as good as a random oracle whose output is truncated to
n bits. This implies the resistance to the traditional hash function aĴacks, such as 2n/2 for
collision and 2n for (second) pre-image aĴacks.

For cryptographic primitives with variable-length output, such as RюёіќGюѡҼћ, express-
ing the required resistance with respect to the output length makes liĴle sense as this would
imply that it should be possible to increase the security level indefinitely by just taking longer
outputs. Rather than claiming resistance levels against the traditional hash function aĴacks,
we decided to express the security claim as what an ideal function could achieve. In the
paper [10] we proposed for that purpose something we called an ideal mangling function.
However, aĞer publication we noticed that this was not ideal and we decided to dig more

7 / 93

Cryptographic sponge functions 1. Introduction

deeply into this subject. Our goal was to specify a function that behaves like a random ora-
cle, with the sole exception that it would have inner collisions. This search led to so-called
random sponge functions. The results of this initial search was presented at the Dagstuhl
seminar on Symmetric Cryptography in January 2007, and soon aĞer the final definition of
sponge functions was given at the Ecrypt Hash Workshop in Barcelona [11].

1.2 The sponge construction

The sponge construction is a simple iterated construction for building a function F with
variable-length input and arbitrary output length based on a fixed-length transformation
or permutation f operating on a fixed number b of bits. Here b is called the width.

The sponge construction operates on a state of b = r + c bits. The value r is called the
bitrate and the value c the capacity.

First, all the bits of the state are initialized to zero. The input message is padded and cut
into blocks of r bits. The sponge construction then proceeds in two phases: the absorbing
phase followed by the squeezing phase.

• In the absorbing phase, the r-bit input message blocks are XORed into the first r bits of
the state, interleaved with applications of the function f . When all message blocks are
processed, the sponge construction switches to the squeezing phase.

• In the squeezing phase, the first r bits of the state are returned as output blocks, inter-
leaved with applications of the function f . The number of output blocks is chosen at
will by the user.

The last c bits of the state are never directly affected by the input blocks and are never
output during the squeezing phase.

1.3 Sponge as a reference of security claims

One could exhaustively list all the properties that a hash function should resist to and as-
sign them resistance levels. Alternatively, claiming the security of a concrete function with
regard to amodelmeans comparing the success probability of an aĴack on the concrete func-
tion against that on the model. This allows compact security claims, which address all the
possible properties at once, including future requirements not foreseen in an exhaustive list.

In fixed digest-length hash functions, the required resistance against aĴacks is expressed
relative to the digest length. Until recently one has always found it reasonable to expect a
hash function to be as strong as a random oracle with respect to the classical aĴacks. How-
ever, this changed aĞer the publication of the generic aĴacks listed in Section 6.6.1.

An iterated function uses a finite memory to store its state and processes the input, block
per block. At any point in time, the state of the iterated function summarizes the input blocks
received so far. Because it contains a finite number of bits, collisions can happen in this state.
Random oracles, on the other hand, do not have collisions in their “state” as such a concept
does not exist. This is the main reason for which random oracles cannot be used directly to
express security claims of functions with variable-length output: they would simply never
exhibit any effects of the finite memory any concrete iterated function has.

Random sponges functions, on the other hand, provide an alternative to the random
oracle model for expressing security claims. A random sponge is an instance of the sponge
construction with f chosen randomly from the set of transformations (or of permutations)
over b bits. We have shown that a random sponge function is as strong as a random oracle,

8 / 93

1. Introduction Cryptographic sponge functions

except for the effects induced by the finitememory. A randomsponge can serve as a reference
model for expressing compact security claims for iterated hash functions and stream ciphers.

When using a random sponge as a security model, one considers the success of a par-
ticular aĴack. Such a success probability depends not only on the nature of the aĴack con-
sidered but also on the chosen parameters of the random sponge, i.e., its capacity, bitrate
and whether it calls a random permutation or a random transformation. The flat sponge
claim is a simplification in the sense that we consider only the worst-case success probabil-
ity, determined by the RO differentiability bound, which depends solely on the capacity of
the random sponge. Hence, it flaĴens the claimed success probabilities of all aĴacks using a
single parameter: the claimed capacity cclaim.

1.4 Sponge as a design tool

As said, our initial goal was to define a reference for security properties of hash function
designs. Despite our original intention we realized that the sponge construction could also
lead to practical hash function designs. An important aspect is that the design can be based
on a permutation, as opposed to a compression function or a block cipher. Designing a
suitable permutation is easier thandesigning a suitable compression function or block cipher.
This is rather good news in itself: all the symmetric cryptographic primitives can be based
on a fixed-length permutation. A permutation has a single input and therefore treats all the
input bits on an equal footing. This is a welcome simplification compared to modes making
use of a block cipher or a tweakable block cipher.

Generic aĴacks are aĴacks that do not exploit the properties of the concrete primitive but
only the properties of the construction. The indifferentiability framework provides us with
a way to upper bound the success probability of generic aĴacks, and we used it to show that
sponge functions are actually resistant to such aĴacks below a complexity of 2c/2. In fact,
these results show that any aĴack against a sponge function implies that the permutation it
uses can be distinguished from a typical randomly-chosen permutation. This naturally leads
to the following design strategy, which we called the hermetic sponge strategy: adopting the
sponge construction and building an underlying permutation f that should not have any
structural distinguishers.

In this approach, one designs a permutation f on b = r + c bits and uses it in the sponge
construction to build the sponge function F. In addition, one makes a flat sponge claim on
F with a claimed capacity equal to the capacity used in the sponge construction, namely
cclaim = c. In other words, the claim states that the best aĴacks on F must be generic aĴacks.
Hence, cclaim = c means that any aĴack on F with expected complexity below 2c/2 implies a
structural distinguisher on f , and the design of the permutation must therefore avoid such
distinguishers.

In the hermetic sponge strategy, the capacity determines the claimed level of security,
and one can trade claimed security for speed by increasing the capacity c and decreasing the
bitrate r accordingly, or vice-versa.

1.5 Sponge as a versatile cryptographic primitive

With its arbitrarily long input and output sizes, the sponge construction allows building
various primitives such as a hash function, a stream cipher or a MAC. In some applications
the input is short (e.g., a key and a nonce) while the output is long (e.g., a key stream). In

9 / 93

Cryptographic sponge functions 1. Introduction

other applications, the opposite occurs, where the input is long (e.g., a message to hash) and
the output is short (e.g., a digest or a MAC).

Another set of usage modes takes advantage of the duplex construction, a construction
that is closely related to the sponge construction and whose security can be shown to be
equivalent. The duplex construction allows the alternation of input and output blocks at
the same rate as the sponge construction, like a full-duplex communication. This allows
one to implement an efficient reseedable pseudo random bit sequence generation and an
authenticated encryption scheme requiring only one call to f per input block.

1.6 Structure of this document

The structure of this document is as follows. First, Chapter 2 provides the definitions of the
two central constructions in this document and some auxiliary functions. Then, Chapter 3
explains modes of use of the sponge construction while Chapter 4 presents modes built on
top of the duplex construction. We investigate generic algorithms in Chapter 5 and give
formal security proofs in Chapter 6. This is followed by Chapter 7, which presents the use of
random sponges as a security reference. Finally, Chapter 8 presents a practical strategy for
the design of sponge functions with an iterated permutation.

10 / 93

Chapter 2

Definitions

In this chapter we list our conventions and provide the definitions of the two central con-
structions in this document and some auxiliary functions that are useful in the description
and analysis of these constructions

2.1 Conventions and notation

We denote the absolute value of a real number x is denoted by |x|.
We oĞen use the approximation log(1+ ϵ) ≈ ϵ if when ϵ≪ 1. We call this the log(1+ ϵ)

approximation.
We denote the cardinality of a set S by |S|.

2.1.1 Bitstrings

We denote the length in bits of a bitstring M by |M|. A bitstring M can be considered as a
sequence of blocks of some fixed length x, where the last block may be shorter. The number
of blocks of M is denoted by |M|x. The blocks of M are denoted by Mi and the index ranges
from 0 to |M|x − 1. We denote the empty string by empty string. It has length 0 and no bits.
It can be seen either as a string with no blocks or with a single zero-length block. Unless
explicitly stated otherwise, we will assume that it has 0 blocks.

We denote truncation of a bitstring M to its ℓ first bits by ⌊M⌋ℓ. A bitstring consisting of
n zeroes is denoted by 0n and the concatenation of two strings M and N is denoted as M||N.

We denote the set of all bitstrings including the empty string by Z∗2 and excluding the
empty string by Z+

2 . The set of infinite-length bitstrings is denoted by Z∞
2 .

2.1.2 Padding rules

For the padding rule we use the following notation: the padding of a message M to a se-
quence of x-bit blocks is denoted by M||pad[x](|M|). This notation highlights that we only
consider padding rules that append a bitstring that is fully determined by the bitlength of
M and the block length x. We may omit [x], (|M|) or both if their value is clear from the
context. For injective padding rules, we use the term unpadding the retrieval from M from
P = M||pad[x](|M|). Note that for any injective padding rule there exist strings P for which
this is not possible.
Definition 1. A padding rule is sponge-compliant if it never results in the empty string and if it
satisfies following criterion:

∀n ≥ 0, ∀M, M′ ∈ Z∗2 : M ̸= M′ ⇒ M||pad[r](|M|) ̸= M′||pad[r](|M′|)||0nr (2.1)

11 / 93

Cryptographic sponge functions 2. Definitions

We define now the simplest padding rule that is sponge-compliant.

Definition 2. Simple padding, denoted by pad10∗, appends a single bit 1 followed by the minimum
number of bits 0 such that the length of the result is a multiple of the block length.

Simple padding appends at least 1 bit and at most the number of bits in a block. The sim-
plest padding rule that allows securely using the same f with different rates (see Section 6.5)
is the following.

Definition 3. Multi-rate padding, denoted by pad10∗1, appends a single bit 1 followed by the
minimum number of bits 0 followed by a single bit 1 such that the length of the result is a multiple of
the block length.

Clearly, this padding rule is sponge-compliant as well as it is injective and cannot result
in an empty string or a string with all-zero last block. Multi-rate padding appends at least 2
bits and at most the number of bits in a block plus one.

2.1.3 Random oracles, transformations and permutations

We denote a random oracle byRO and use the definition of [6].

Definition 4. A random oracleRO takes as input binary strings of any length and returns for each
input a random infinite string, i.e., it is a map from Z∗2 to Z∞

2 , chosen by selecting each bit ofRO(M)
uniformly and independently, for every M.

We denote a call toRO where the output is truncated to its ℓ first bits by Z = RO(M, ℓ).
We also need the concept of a random (fixed-width) transformation.

Definition 5. A random transformation with given width b is a transformation drawn randomly
and uniformly from the set of all 2b2b

b-bit transformations.

Finally, we define a random (fixed-width) permutation.

Definition 6. A random permutation with given width b is a permutation drawn randomly and
uniformly from the set of all 2b! b-bit permutations.

2.2 The sponge construction

The sponge construction [11] builds a function Ѡѝќћєђ[f , pad, r] with domain Z∗2 and co-
domainZ∞

2 using afixed-length transformation or permutation f , a sponge-compliant padding
rule “pad” and a parameter bitrate r.

A finite-length output can be obtained by truncating it to its ℓ first bits. We call an instance
of the sponge construction a sponge function.

The transformation or permutation f operates on a fixed number of bits, thewidth b . The
sponge construction has a state of b bits. First, all the bits of the state are initialized to zero.
The input message is padded and cut into r-bits blocks. Then it proceeds in two phases: the
absorbing phase followed by the squeezing phase. In these phases the first r bits of the state and
the remaining b − r bits of the state s are treated differently. We denote the former by the
outer part s and the laĴer by the inner part or inner state ŝ. The length of the inner state is
b− r and is called the capacity c . The two phases are:

Absorbing phase The r-bit input message blocks are XORed into the outer part of the state,
interleavedwith applications of the function f . When allmessage blocks are processed,
the sponge construction switches to the squeezing phase.

12 / 93

2. Definitions Cryptographic sponge functions

Squeezing phase The outer part of the state is iteratively returned as output blocks, inter-
leaved with applications of the function f . The number of iterations is determined by
the requested number of bits ℓ.

Finally the output is truncated to its first ℓ bits. The c-bit inner state is never directly affected
by the input blocks and never output during the squeezing phase. The capacity c actually
determines the aĴainable security level of the construction, as proven in Chapters 5 and 6.
We use the term random sponge to denote a sponge function with f a random transformation
or permutation.

The term generic aĴack is oĞen used. For sponge functions we define it as follows:

Definition 7. An aĴack on a sponge function is a generic aĴack if it does not exploit specific prop-
erties of f .

The sponge construction is illustrated in Figure 2.1, and Algorithm 1 provides a formal
definition.

In our original paper on sponge function [11] we treated a more general case with the
outer part and message blocks being elements of an arbitrary group and the inner part ele-
ments of an arbitrary set. Because of its practical relevance, we abandon this generic repre-
sentation to the more specific case where the state is a binary string of a given length b and
the message blocks are r-bit strings.

Figure 2.1: The sponge construction Z = Ѡѝќћєђ[f , pad, r](M, ℓ)

2.3 The duplex construction

Like the sponge construction, the duplex construction ёѢѝљђѥ[f , pad, r] uses a fixed-length
transformation or permutation f , a padding rule pad and a parameter bitrate r to build a
cryptographic scheme [14]. Unlike a sponge function that is stateless in between calls, the
duplex construction results in an object that accepts calls that take an input string and return
an output string that depends on all inputs received so far. We call an instance of the duplex
construction a duplex object, which we denote D in our descriptions. We prefix the calls made
to a specific duplex object D by its name D and a dot.

13 / 93

Cryptographic sponge functions 2. Definitions

Algorithm 1 The sponge construction Ѡѝќћєђ[f , pad, r]
Require: r < b

Interface: Z = sponge(M, ℓ) with M ∈ Z∗2 , integer ℓ > 0 and Z ∈ Zℓ
2

P = M||pad[r](|M|)
s = 0b

for i = 0 to |P|r − 1 do
s = s⊕ (Pi||0b−r)
s = f (s)

end for
Z = ⌊s⌋r
while |Z|rr < ℓ do

s = f (s)
Z = Z||⌊s⌋r

end while
return ⌊Z⌋ℓ

Figure 2.2: The duplex construction

A duplex object D has a state of b bits. Upon initialization all the bits of the state are set
to zero. From then on one can send to it D.duplexing(σ, ℓ) calls, with σ an input string and
ℓ the requested number of bits.

The maximum number of bits ℓ one can request is r and the input string σ shall be short
enough such that aĞer padding it results in a single r-bit block. We call the maximum length
of σ the maximum duplex rate and denote it by ρmax(pad, r). Formally:

ρmax(pad, r) = min{x : x + |pad[r](x)| > r} − 1 . (2.2)

Clearly the maximum duplex rate is smaller than the bitrate and its value is maximized by
taking a padding rule which adds as few bits as possible.

Upon receipt of a D.duplexing(σ, ℓ) call, the duplex object pads the input string σ and
XORs it into the outer part of the state. Then it applies f to the state and returns the first ℓ bits
of the outer part of the state at the output. We denote a call with σ the empty string by the
term blank call, and a call with ℓ = 0, i.e., without output amute call. The duplex construction
is illustrated in Figure 2.2, and Algorithm 2 provides a formal definition.

In Section 6.4 we prove that the output of a duplexing call is the output of a sponge
function and that as such the duplex construction is as secure as the sponge construction

14 / 93

2. Definitions Cryptographic sponge functions

Algorithm 2 The duplex construction ёѢѝљђѥ[f , pad, r]
Require: r < b
Require: ρmax(pad, r) > 0

Interface: D.initialize()
s = 0b

Interface: Z = D.duplexing(σ, ℓ) with ℓ ≤ r, σ ∈ ∪ρmax(pad,r)
n=0 Zn

2 , and Z ∈ Zℓ
2

P = σ||pad[r](|σ|)
s = s⊕ (P||0b−r)
s = f (s)
return ⌊s⌋ℓ

with the same parameters.

2.4 Auxiliary functions

In this sectionwedefine two auxiliary functions that simplify the expression of and reasoning
about aĴacks on the sponge construction.

2.4.1 The absorbing function and path

The first auxiliary function is the absorbing function юяѠќџя[f , r]. It takes as input a string
P with |P| multiple of r and returns the value of the state obtained aĞer absorbing P. The
absorbing function is defined in Algorithm 3.

In our original paper on sponge function [11] we called this the S f function.

Algorithm 3 The absorbing function юяѠќџя[f , r]
Require: r < b

Interface: s = absorb(P) with P ∈ Z∗2r and s ∈ Zb
2

s = 0b

for i = 0 to |P|r − 1 do
s = s⊕ (Pi||0b−r)
s = f (s)

end for
return s

Definition 8. We call P a path to the state s if s = absorb(P).

Clearly absorb(empty string) = 0b. In general, the j-th block of the output of a sponge
function corresponding to an input M is equal to:

Zj = absorb(P||0rj), j ≥ 0, (2.3)

with P = M||pad[r](|M|).
Alternatively, the absorbing function can be used to express the states that the sponge

traverses both as it absorbs an input M and as it is being squeezed. The traversed states are
absorb(P′) for any P′ prefix of P||0∞, with P = M||pad[r](|M|), including the empty string.

15 / 93

Cryptographic sponge functions 2. Definitions

2.4.2 The squeezing function

An auxiliary function that is in someway the dual of the absorbing function is the squeezing
function ѠўѢђђѧђ[f , r]. For a given state s, squeeze(s, ℓ) denotes the output truncated to ℓ
bits of the sponge function with s the state at the beginning of the squeezing phase. The
squeezing function is defined in Algorithm 4.

Algorithm 4 The squeezing function ѠўѢђђѧђ[f , r]
Require: r < b

Interface: Z = squeeze(s, ℓ) with s ∈ Zb
2, integer ℓ > 0 and Z ∈ Zℓ

2
Z = ⌊s⌋r
while |Z|rr < ℓ do

s = f (s)
Z = Z||⌊s⌋r

end while
return ⌊Z⌋ℓ

2.5 Primary aĴacks on a sponge function

In this section we present a number of aĴacks that apply to sponge functions due to their
final state and hence do not apply to a random oracle. These aĴacks impose upper limits to
the security that a sponge function can offer and are as such fundamental. For that reasonwe
call them primary aĴacks. In Chapter 5 we will provide generic algorithms for these aĴacks.
Note that in [11] and [15] the primary aĴacks were called critical operations.

The sponge construction can be defined as the subsequent application of a padding rule,
an absorbing function and a squeezing function. For Z = Ѡѝќћєђ[f , pad, r](M, ℓ), we have:

P = M||pad[r](|M|)
s = юяѠќџя[f , r](P)
Z = ѠўѢђђѧђ[f , r](s, ℓ).

(2.4)

It is in general hard to find a path P to a given state s and hard to find the state s for a
given output Z. So, the two auxiliary functions of the sponge construction are hard to invert.
Moreover, it is generically hard to find two different paths to the same state. The laĴer are
called state collisions and can be fully defined in terms of the absorbing function.

Definition 9. A state collision is a pair of different paths P ̸= Q to the same state: absorb(P) =
absorb(Q).

Depending on where the state collision occurs, it models different effects of the finite
internal state. State collisions obtained during the absorbing part may lead to identical out-
puts: absorb(P) = absorb(Q) implies that the squeezing part will give the same output
values absorb(P||0rj) = absorb(Q||0rj) for all j. State collisions can also model cycles in
the output sequence: if for some P and d we have absorb(P) = absorb(P||0dr), the output
sequence displays periodicity.

Definition 10. An inner collision is a pair of different paths P ̸= Q to the same inner state:
âbsorb(P) = âbsorb(Q).

16 / 93

2. Definitions Cryptographic sponge functions

Clearly, a state collision on P ̸= Q implies an inner collision on P ̸= Q. The converse is
not true. However, it is very easy to produce a state collision from an inner collision. Given
P ̸= Q such that âbsorb(P) = âbsorb(Q), one can produce a state collision on P||A ̸= Q||B
for any A, B ∈ Zr

2 that satisfy absorb(P)⊕ A = absorb(Q)⊕ B.
In general it is hard to find a state s such that squeeze(s, |Z|) = Z for long strings Z.

Depending on the origin of Z and the goal of the adversary, we distinguish between two
cases: output binding and state recovery.

In output binding the string Z is not necessarily the result of the squeezing of a state and
so there may be no solution.

Definition 11. Given an arbitrary stringZ, output binding is finding a state s such that squeeze(s, |Z|) =
Z.

The expected number of states that squeeze to a given string Z is 2b−|Z|. If |Z| > b, the
probability that such a state exists is ≈ 2b−|Z|.

In state recovery the string Z has been obtained by the squeezing of a state s. There may
be other state values s′ ̸= s that upon squeezing result in the provided string but the state s
is considered as the only solution.

Definition 12. State recovery is finding a state s, given a string Z with Z = squeeze(s, |Z|).

If |Z| > b, it is likely that there is only a single solution and that output binding results in
recovery of the unique state that it was squeezed from. If |Z| ≤ b there are typically several
states that squeeze to Z and output binding does not necessarily result in state recovery.

17 / 93

Cryptographic sponge functions 2. Definitions

18 / 93

Chapter 3

Sponge applications

In this chapter we explain modes of use of the sponge construction giving rise to a wide
range of cryptographic functions.

The modes presented in this chapter do not only apply to sponge functions, but to any
function that has a security claimwith a random sponge as security reference or a flat sponge
claim. So whenever the text says “sponge function”, it means “functions claimed to behave
like a random oracle”. We will use the symbol F to denote such a function. Some of the
presented modes do not require F to support variable-length outputs and some of them do
not require the support for long inputs.

3.1 Basic techniques

A sponge function only takes a single input M, that is a string of arbitrary length. Unlike
some other constructions, a sponge function does not have a so called initial value (IV) that
can be used as an additional input. The sponge function treats the input M as a white page
and amode of usemay apply structure to this input. The differentmodes of sponge functions
simply consist of ways to map different types of inputs such as keys, diversifiers, messages
to the sponge input M and truncation of the output to the desired length. In this section we
present a number of basic techniques that can be used to construct modes.

3.1.1 Domain separation

Thanks to the randomness and arbitrary-length input of random oracles, a single random
oracle can be used to implement multiple random oracles using the mechanism of domain
separation . It suffices to partition the domain in multiple cosets. One example of domain
separation is partitioning the strings between those that start with 0 and those that start with
1. Given a single random oracle RO, this allows defining two independent random oracles
RO0(M) , RO(0||M) andRO1(M) , RO(1||M). This is a very powerful tool in building
different types of functions using a random oracle. The mechanism of domain separation
can likewise be applied to sponge functions.

In the remainder of this sectionwe present a simple scheme that allows anyone to delimit
his/her part of the domain and impose his/her own format within that domain. The idea
is to apply domain separation by fixing the first part of the input to a namespace name.
The owner of the namespace can then define the format of any input data, appended to the
namespace name. We propose the namespace name to be a uniform resource identifier (URI)
[32], similarly to what is done for XML [60]. The namespace name is encoded in UTF-8 [31]

19 / 93

Cryptographic sponge functions 3. Sponge applications

as a sequence of bytes, followed by the byte 08:

FNS[ns](data) , F(UTF8(ns)||08|| encodens(data)),

where encodens is a function defined by the owner of the namespace ns. This realizes domain
separation: two inputs, formaĴed using different namespaced conventions, will thus always
be different.

Using a specific namespace also implies how the output of the sponge function is used.
The namespace owner can decide what is the output length, if not arbitrarily long, or in
which way the desired output length is encoded.

3.1.2 Keying

One can turn a sponge function into a keyed function by including in the input a secret key
K. In its most simple form, M consists of the concatenation of a key K and an input M′, so
either M = K||M′ or M = M′||K. Traditionally, such a function is called a pseudo-random
function (PRF) FK(M′). If the sponge function behaves like a randomoracle, the PRF behaves
as a random function to anyone not knowing the key K but having access to the sponge
function. The key can be put before or aĞer the message. PuĴing it before allows state
precomputation (see Section 3.1.3) and results in beĴer resistance against generic aĴacks.
We refer to Section 5.11 for a more discussion on this.

3.1.3 State precomputation

A sponge function processes its input M in blocks of r bits. One may apply some form of
padding in the formaĴing of the input to pre-compute state values. For example, if in a
keyed sponge the key K is padded to a complete input block, one can compute the state
value obtained aĞer absorbing the key and store this. When evaluating the keyed sponge
for this particular key K, one can start directly from the stored state value, saving a call to f .
In this respect it is best to place the input parameters that change least oĞen at the beginning.
This is a technique that can be applied in modes where some input fields keep their value
for many calls, such as the key or a namespace name.

3.2 Modes of use of sponge functions

In Table 3.1, we present a number of modes of use of a sponge function.
The first six modes in Table 3.1 do not require the support of a variable-length output

and can hence be implemented with hash functions, in as far as they are claimed to behave
as random oracles.

A sponge function can be used as an n-bit hash function by simple truncation of its out-
put. If the hash function is to be used in the context of randomized hashing, a random value
(i.e., the salt) can be prepended to the message. Domain separation using the same prepend-
ing idea applies if one needs to simulate independent hash function instances.

A slow n-bit one-way function can be built by appending the inputwith N zero bits taking
for N a large number. Slow one-way functions are useful as so-called password-based key
derivation functions, where the relative high computation time protects against password
guessing. The function can be made arbitrarily slow by increasing N. Note that if f is a
permutation increasing N does not result in entropy loss.

20 / 93

3. Sponge applications Cryptographic sponge functions

Functionality Expression Input Output
n-bit hash function h = H(M) M ⌊Z⌋n
n-bit randomized hash function h = HR(M) R||M ⌊Z⌋n
n-bit hash function instance differentiation h = HD(M) D||M ⌊Z⌋n
Slow n-bit one-way function h = Hslow(M) M||0N ⌊Z⌋n
n-bit MAC function T = MAC(K, [IV,]M) K||IV||M ⌊Z⌋n
Random-access stream cipher (n-bit block) zi = F(K, IV, i) K||IV||i ⌊Z⌋n
Stream cipher Z = F(K, IV) K||IV as is
Deterministic random bit generator (DRBG) z = DRBG(seed) seed as is
Mask generating and key derivation function mask = F(seed, ℓ) seed ⌊Z⌋ℓ

Table 3.1: Examples of usage scenario’s for a random oracle

A message authentication code (MAC) takes as input a key, an initial value (IV) and a
message. It is basically just a PRF where the message is extended with an IV. The random-
access stream cipher mode works similarly to the SюљѠю20 family of stream ciphers [9]: it
takes as input a key, a nonce and a block index and produces a block of key stream.

A sponge function can also be used as a stream cipher. One can input the key and some
initial value and then get key stream in the squeezing phase. Similarly, a simple pseudo-
random bit generator can be constructed by absorbing the seed data and and then producing
the desired number of bits. For having amask generating function (also called key derivation
function) one simple uses as input the seed and one truncates the output to the requested
number of bits.

Our presentation of modes covers most common applications of sponge functions but is
not meant to be exhaustive and other modes can be readily built. For example, if a random-
ized MAC function is required, it suffices to take as input the concatenation of a key K, a
random salt R and the input M′.

3.3 Parallel and tree hashing

Tree hashing (see, e.g., [47, 58]) can be used to speed up the computation of a hash function
by taking advantage of parallelism in modern architectures. It can be defined in terms of
a sponge function as compression function F. In this section, we propose a tree hashing
scheme.

In a nutshell, the construction works as follows. Consider a rooted tree, with internal
nodes and leaves. We call the root of the tree its final node. The input message is cut into
blocks, which are spread onto the leaves. To each leaf node one then applies F and truncates
its output to C bits to form its chaining value. An internal node gathers the chaining values of
its (ordered) sons, concatenates them and applies F again to result in its chaining value. This
process is repeated recursively until the final node is reached. The output of the tree hash
function is obtained by applying F to the final node resulting in an indefinite length output.
The calls to F, for different nodes, process independent data and so can be parallelized.

Since the input message is arbitrarily long and a priori unknown, we have to define how
the tree can grow or how a tree with a fixed number of nodes can accept a growing number
of input blocks.

Note that rather than a plain sponge function, the compression function F may also take
a key and/or and salt. If these parameters are at the beginning of the input M, onemay apply

21 / 93

Cryptographic sponge functions 3. Sponge applications

precomputation of the state once and for all nodes.

3.3.1 Specifications

Our tree hashing mode supports two options:

final node growing (FNG) The degree of the final node grows as a function of the input
message length, and the number of leaves increases proportionally.

leaf interleaving (LI) The tree size and the number of leaves are determined by tree mode
parameters and independent of the message length, but the message input blocks are
interleaved onto the leaves.

The three hashing scheme takes two inputs: a message M that is a binary string and a set
of tree parameters, collectively denoted A:

• the tree growing mode G ∈ {LI, FNG};

• the height H of the tree, with H > 0;

• the degree D of the nodes;

• the leaf block size B.

• the chaining value size C.

When G = LI, the tree is a balanced rooted tree of height H: All internal nodes have
degree D. When G = FNG, the degree of the final node depends on the input message
length and all other internal nodes have degree D.

The tree has H + 1 levels of nodes indexed by k. At level 0 we have leaf nodes containing
message bits. The nodes at the other levels k > 1 contain the concatenation of chaining
values, where each chaining value is obtained by applying F to a node at level k − 1 and
truncate its output to C bits. At level H there is only a single node, called the final node. The
output of the hashing mode is obtained by applying F to this node.

The mode can now be fully defined by specifying how the nodes are formed. All nodes
end with two node-type frame bits. The first of these bits indicates whether it is a leaf node
(1) or not (0) and the second bit indicates whether it is a final node (1) or not (0). We explain
now how the remaining parts of the nodes are formed.

We denote the number of B-bit blocks in the message by |M|B and index the message
blocks from 0 to |M|B − 1. Note that message block |M|B − 1 may have less than B bits. We
denote the number of leaf nodes by L. At each level we index the nodes starting from 0. The
node with index i at level k with 0 < k < H contains the sequence of the D chaining values
corresponding with the nodes at level k− 1 with indices iD to i(D + 1)− 1 respectively.

If G = LI, we have L = DH and at level k there are DH−k nodes. The leaf with index
i contains the sequence of message blocks Mi, Mi+L, Mi+2L, The final node has the se-
quence of chaining values of the D nodes of level H − 1, followed by the coding of the tree
parameters H, D, B, C each coded as two bytes, followed by a byte that codes G = LI.

If G = FNG, we have L = RDH−1 with R =
⌈
|M|B
DH−1

⌉
and at level k there are DH−(k+1)

nodes. the leaf with index i has message block i if i < |M|B or no message block otherwise.
The final node has the sequence of chaining values of the R nodes of level H − 1, followed
by the coding of the tree parameters H, D, B, C each coded as two bytes, followed by a byte
that codes G = FNG.

22 / 93

3. Sponge applications Cryptographic sponge functions

If the optimal number of independent processes is known, one can simply use the LI
mode (G = LI) with H = 1 and D equal to or greater than this number of independent
processes. Tree hashing in this case comes down to a simple parallel hashing, where the
B-bit blocks of the input message are equally spread onto D different sponge functions. The
D results are then combined at the final node to make the final output string.

In addition to the LI and FNG growingmodes, one can make the tree grow by increasing
its height H until the number of leaves L is large enough for |M|. SeĴing G = LI in this case
does not really interleave the input blocks, but fixes the tree. Knowing whether a node is
going to be the final node (if H is large enough) or not becomes significant only at the end
of the absorbing phase of a node. Once H is large enough, the implementation can then fix
it and mark the candidate final node as final.

3.3.2 Soundness

In [13], we define a set of four conditions for a tree hashingmode to be sound. Here soundness
is defined in the scope of the indifferentiability framework [45]. For a sound tree hashing
mode, itsRO differentiating advantage is upper bounded by q2/2C+1 with q the number of
queries to the underlying hash function and C the length of the chaining values.

Our mode satisfies the four following conditions, hence is sound. For the terminology,
please refer to [13].

• The mode is tree-decodable. The final node allows to determine the value of all tree
parameters, whose knowledge is sufficient to decode all nodes.

• The mode is message-complete, as each message bit is assigned to a leaf node. The
length of the message can be determined from the length of the leaf nodes.

• The mode is parameter-complete as it codes the value of all tree parameters in the final
node.

• The mode enforces domain separation between final and inner nodes.

From the soundness of the construction, theRO differentiating advantage of this scheme
is N221−C with C the length of the chaining values and N the number of calls to the underly-
ing function F. If F has a claimed security level indicated by a capacity c, the optimum choice
is to take the value ofC equal to this capacity c, resulting in a total claimedRO differentiating
advantage of N22−c.

23 / 93

Cryptographic sponge functions 3. Sponge applications

24 / 93

Chapter 4

Duplex applications

In this chapter we present modes built on top of the duplex construction. We present an
efficient authenticated encryptionmode, a reseedable pseudo randombit sequence generator
(PRG) and a hash function construction called overwrite mode.

4.1 Authenticated encryption

Authenticated encryption (AE) has been extensively studied in the last ten years. Block ci-
phermodes clearly are a popularway to provide simultaneously both integrity and confiden-
tiality. Many block cipher modes have been proposed, e.g., [5, 33, 37, 55, 51, 7, 41, 44, 56, 52]
and most of these come with a security proof against generic aĴacks. Interestingly, there
have also been aĴempts at designing dedicated hybrid primitives offering efficient simulta-
neous stream encryption and MAC computation [29, 61]. However, these primitives were
shown to be weak [48, 53, 64]. The mode we present in this section shares with these hybrid
primitives that it offers efficient simultaneous stream encryption and MAC computation.
It shares with the block cipher modes that it has provable security against generic aĴacks.
However, it is the first such construction that requires a permutation rather than a block ci-
pher. An important efficiency parameter of an AE mode is the number of calls to the block
cipher or to the permutation per block. While encryption or authentication alone require
one call per block, some AE modes only require one call per block for both functions. The
duplex construction naturally provides a good basis for building such an AE mode.

Authenticated encryption can also be used to transport secret keys in a confidential way
and to ensure their integrity. This task, called key wrapping, is very important in key man-
agement and can be implemented with our construction if each key is associated to a unique
identifier.

4.1.1 Modeling authenticated encryption

We consider authenticated encryption as a process that takes as input a key K, a data header
A and a data body B and that returns a cryptogram C and a tag T. We denote this operation
by the term wrapping and the operation of taking a data header A, a cryptogram C and a tag
T and returning the data body B if the tag T is correct by the term unwrapping.

The cryptogram is the data body enciphered under the key K and the tag is a MAC com-
puted under the key K over both header A and body B.

We assume the wrapping and unwrapping operations as such to be deterministic. Hence
two inputs (A, B) and (A′, B′) that are equal will under the same key K give rise to the same

25 / 93

Cryptographic sponge functions 4. Duplex applications

output (C, T). If this determinism is a problem, it can be tackled by expanding A with a
nonce.

4.1.2 Security requirements

For a key K chosen secretly and uniformly over |K| bits, an authenticated encryption scheme
that satisfies the following security requirements would be very useful:

Key recovery infeasibility The success probability of finding the key in an aĴackwith effort
equivalent to trying N key values is not above N2−|K|.

Tag forgery infeasibility In the absence of key recovery, the success probability of tag forgery
for any chosen (A, B) is 2−|T|, even for an adversary that is given the corresponding
cryptogram C and is given the outputs (Ci, Ti) corresponding to any set of adaptively
chosen inputs (Ai, Bi) with the only restriction that (Ai, Bi) ̸= (A, B).

Plaintext recovery infeasibility The most efficient method to gain information about B (ex-
cluding its length), given an output (C, T) corresponding to input (A, B)with chosen A
but unknown B, is key recovery, even for an adversary that is given the outputs (Ci, Ti)
corresponding to adaptively chosen inputs (Ai, Bi) with Ai ̸= A.

Plaintext recovery infeasibility as defined above relies on the fact that there are no collisions
in (K, A), namely, for a given K there are no two inputs with equal data header A and differ-
ent data body B. Hence, it is up to the application to ensure that for a given key K, the data
header A behaves as a nonce. Note that tag forgery does not rely on this.

4.1.3 An ideal system

We can define a reference system that satisfies these requirements using a pair of random
oracles (RO1,RO2), with encryption and tag computation implemented as follows:

Encryption This is done by XORing B with a key stream. This key stream is the output of
a random oracle RO1 to a string sk computed from (K, A) with an injective encoding
function: sk = sk(K, A). If (K, A) is a nonce, key streams for different data inputs are
the result of calls toRO1 with different input strings sk and hence one key stream gives
no information on another.

Tag computation The tag is the output of a randomoracleRO2 to a string ht computed from
(K, A, B) with an injective encoding function: ht = ht(K, A, B). Tags computed over
different messages will be the result of calls toRO2 with a different input string.

Key stream sequences give no information on tags and vice versa as they are obtained by
calls to different random oracles. Additionally, as the key is only used as input to random
oracles, the key recovery infeasibility requirement is satisfied. The two random oraclesRO1
andRO2 can be implemented from a single random oracleRO using domain separation.

The simplestway to build an actual system that behaves as the reference systemdescribed
above would be to replace the random oracle RO by a sponge function. However, such a
solution requires two sponge function executions: one for the generation of the key stream
and one for the generation of the tag. We aim for a solution that requires only a single call
to f per input block. To achieve this, we define a mode on top of the duplex construction.

26 / 93

4. Duplex applications Cryptographic sponge functions

4.1.4 The authenticated encryption mode SѝќћєђWџюѝ

We propose an authenticated encryption mode SѝќћєђWџюѝ that realizes a generalization
of the authenticated encryption process defined in Section 4.1.1. Similarly to the duplex
construction, we call an instance of the authenticated encryptionmode a SѝќћєђWџюѝ object.

Upon initialization of a SѝќћєђWџюѝ object, it loads the key K. From then on one can
send requests to it for wrapping and/or unwrapping data. The key stream blocks used for
encryption and the tags depend on the key K and the data sent in all previous requests. The
process defined in Section 4.1.1 can be implemented with the SѝќћєђWџюѝ mode using only
a single wrap or unwrap request.

A SѝќћєђWџюѝ object W internally uses a duplex object D. Upon initialization of a
SѝќћєђWџюѝ object, it initializes D and forwards the (padded) key blocks K to D using mute
D.duplexing() calls.

When receiving a W.wrap(A, B, ℓ) request, it forwards the blocks of the (padded) header
A and the (padded) body B to D. It generates the cryptogram C block by block Ci = Bi ⊕ Zi
with Zi the response of D to the previous D.duplexing() call. The ℓ-bit tag T is the re-
sponse of D to the last body block (possibly extended with the response to additional blank
D.duplexing() calls in case ℓ is large). Finally it returns the cryptogram C and the tag T.

When receiving a W.unwrap(A, C, T) request, it forwards the blocks of the (padded)
header A to D. It decrypts the data body B block by block Bi = Ci ⊕ Zi with Zi the re-
sponse of D to the previous D.duplexing() call. The response of D to the last body block
(possibly extended) is compared with the tag T received as input. If the tag is valid, it re-
turns the data body B; otherwise, it returns an error. Note that in implementations one may
impose additional constraints, such as SѝќћєђWџюѝ objects dedicated to either wrapping or
unwrapping. Additionally, the SѝќћєђWџюѝ object may impose a minimum length for the
tag received before unwrapping.

Before being forwarded to D, every key, header, data or cryptogram block is extended
with a so-called frame bit. Note that if A, B or C are the empty string, they are treated as
having a single block consisting of the empty string. The rate ρ of the SѝќћєђWџюѝ mode
determines the size of the blocks and hence the maximum number of bits processed per call
to f . Its upper bound is ρmax(pad, r)− 1 due to the inclusion of one frame bit per block. A
formal definition of SѝќћєђWџюѝ is given in Algorithm 5.

4.1.5 Security

Theorem 1. The authenticated encryption mode SѝќћєђWџюѝ[f , pad, r, ρ] defined in Algorithm 5
satisfies the security requirements of key recovery, tag forgery and plaintext recovery described in
Section 4.1.2 if Ѡѝќћєђ[f , pad, r] is secure.

Proof. This modes follows the ideal construction of Section 4.1.3, with two differences: first,
the random oracle is replaced by a sponge function (via the duplexing-sponge lemma) and
second, we allow the key stream to depend onprevious blocks. For the former, the security of
the SѝќћєђWџюѝmode thus depends on the security of the underlying sponge function. The
introduction of the dependency on previous blocks does not reduce the security of the ideal
construction but is required to match the interface of the duplex construction. Hence, the
security of the SѝќћєђWџюѝ mode reduces to the ability to have injective encoding functions
sk and ht.

The frame bit used in Algorithm 5 serves two purposes:

Domain separation The duplex (or equivalently, sponge) inputs to generate key stream
blocks and those to generate tag blocks are in separate domains. Every duplex re-

27 / 93

Cryptographic sponge functions 4. Duplex applications

Algorithm 5 The authenticated encryption mode SѝќћєђWџюѝ[f , pad, r, ρ].
Require: ρ ≤ ρmax(pad, r)− 1
Require: D = ёѢѝљђѥ[f , pad, r]
This algorithm treats A, B orC instances equal to the empty string as a single (empty) block

Interface: W.initialize(K) with K ∈ Z+
2

D.initialize()
for i = 0 to |K|ρ − 2 do

D.duplexing(Ki||1, 0)
end for
D.duplexing(K|K|ρ−1||0, 0)

Interface: (C, T) = W.wrap(A, B, ℓ) with A, BZ∗2 , integer ℓ > 0, C ∈ Z
|B|
2 and T ∈ Zℓ

2
for i = 0 to |A|ρ − 2 do

D.duplexing(Ai||0, 0)
end for
Z = D.duplexing(A|A|ρ−1||1, |B0|)
C = B0 ⊕ Z
for i = 0 to |B|ρ − 2 do

Z = D.duplexing(Bi||1, |Bi+1|)
C = C||(Bi+1 ⊕ Z)

end for
Z = D.duplexing(B|B|ρ−1||0, ρ)

while |Z| < ℓ do
Z = Z||D.duplexing(0, ρ)

end while
T = ⌊Z⌋ℓ
return (C, T)

Interface: B = W.unwrap(A, C, T) with A, C ∈ Z∗2 , T ∈ Z+
2 , B ∈ Z

|C|
2 ∪ {error}

for i = 0 to |A|ρ − 2 do
D.duplexing(Ai||0, 0)

end for
Z = D.duplexing(A|A|ρ−1||1, |C0|)
B0 = C0 ⊕ Z
for i = 0 to |C|ρ − 2 do

Z = D.duplexing(Bi||1, |Ci+1|)
Bi+1 = Ci+1 ⊕ Z

end for
Z = D.duplexing(B|C|ρ−1||0, ρ)

while |Z| < ℓ do
Z = Z||D.duplexing(0, ρ)

end while
if T = ⌊Z⌋ℓ then
return B0||B1|| . . . Bw

else
return Error

end if

28 / 93

4. Duplex applications Cryptographic sponge functions

sponse that is used to encipher the next block has as input a string ending with a frame
bit 1, whereas every duplex response that is used to form a tag has as input a string
ending with a frame bit 0.

Decodability The key, header and body blocks can be recovered from the duplex input se-
quence. This implies that two different sequences K, A(0), B(0), A(1), B(1), . . . and K′,
A′(0), B′(0), A′(1), B′(1), . . . cannot lead to two equal duplex input sequences. This fol-
lows from the sequences of blocks representing K, A and B that can be delimited using
frame bits. Namely, the last key block can be identified by a frame bit 0. Then, for each
W.wrap(A, B, ℓ) call, the last block of A is identified by a frame bit 1, and the last block
of B by a frame bit 0. Finally, the duplexing inputs containing only the frame bit 0 can
only be used for producing the tag T, as the {Ai}i<v blocks of the next W.wrap(A, B, ℓ)
call cannot be empty.

The theorem follows from the following properties:

• For different inputs, tag blocks are the responses of sponge calls with distinct input
strings.

• If the (first of a sequence) header A(0) is a nonce, all key stream blocks are the responses
of sponge calls with distinct input strings.

• Tag blocks and key stream blocks are the responses of sponge calls for input strings in
separate domains.

• The usage of the key is limited to serving as a prefix to all input strings to sponge calls.
⊓⊔

4.1.6 Advantages and limitations

The authenticated encryption mode SѝќћєђWџюѝ has the following unique combination of
advantages:

• Whilemost other authenticated encryptionmodes require a block cipher, SѝќћєђWџюѝ
only requires a fixed-length permutation.

• It supports the alternation of strings that require authenticated encryption and strings
that only require authentication.

• It can provide intermediate tags aĞer each W.wrap(A, B, ℓ) request.

• It has a strong security bound against generic aĴacks with a very simple proof, that
relies on the bound of the RO differentiating advantage of the sponge construction
(or the security of keyed sponge functions specifically) and on the sponge-duplexing
lemma.

• It is single-pass.

• It requires only a single call to the permutation f per ρ-bit block.

• It is flexible as the bitrate can be freely chosen as long as the capacity is larger than
some lower bound.

• The encryption is not expanding.

29 / 93

Cryptographic sponge functions 4. Duplex applications

As compared to some block cipher based authenticated encryption modes, it has some
limitations. First, the mode as such is serial and cannot be parallelized at algorithmic level.
Some block cipher based modes do actually allow parallelization, for instance, the offset
codebook (OCB) mode [54]. Yet, SѝќћєђWџюѝ can support parallel streams in a fashion sim-
ilar to tree hashing, but with some overhead.

Second, if a system does not impose the nonce requirement on A, an aĴacker may send
two requests (A, B) and (A, B′) with B ̸= B′. In this case, the first differing blocks of B and
B′, say Bi and B′i , will be enciphered with the same key stream, making their bitwise XOR
available to the aĴacker. Some block cipher based modes are misuse resistant, i.e., they are
designed in such a way that in case the nonce requirement is not fulfilled, the only informa-
tion an aĴacker can find out is whether B and B′ are equal or not [56]. Yet, many applications
already provide a nonce, such as a packet number or a key ID, and can put it in A.

4.1.7 An application: key wrapping

Key wrapping is the process of ensuring the secrecy and integrity of cryptographic keys in
transport or storage, e.g., [49, 27]. A payload key is wrapped with a key-encrypting key (KEK).
We can use the SѝќћєђWџюѝ mode with K equal to the KEK and let the data body be the
payload key value. In a sound key management system every key has a unique identifier.
It is sufficient to include the identifier of the payload key in the header A and two different
payload keys will never be enciphered with the same key stream. When wrapping a private
key, the corresponding public key or a digest computed from it can serve as identifier.

4.2 Reseedable pseudo random bit sequence generation

In various cryptographic applications and protocols, random numbers are used to gener-
ate keys or unpredictable challenges. While randomness can be extracted from a physical
source, it is oĞen necessary to provide many more bits than the entropy of the physical
source. A pseudo-random bit sequence generator (PRG) provides a way to do so. It is ini-
tialized with a seed, generated in a secret or truly randomway, and it then expands the seed
into a sequence of bits.

For cryptographic purposes, it is required that the generated bits cannot be predicted,
even if subsets of the sequence are revealed. In this context, a PRG is similar to a stream
cipher.

Finally, some applications require a pseudo-random bit sequence generator to support
forward security: The compromise of the current state does not enable the aĴacker to deter-
mine the previously generated pseudo-random bits [8, 23].

The state of the PRG must have sufficient entropy, from the point of view of the ad-
versary, so that the prediction of the output bits cannot rely on simply guessing the state.
Hence, the seeding material must provide sufficient entropy. Physical sources of random-
ness usually provide seeding material with relatively low entropy rate due to imbalance of
or correlations between bits. To increase entropy, one may use the seeding material from
several randomness sources. However, this entropy must be transferred to the finite state
of the PRG. Hence, we need a way to gather and combine seeding material coming from
several sources into the state of the PRG. Loading different seeds into the PRG shall result
in different output sequences. The laĴer implies that different seeds result in different state
values. In this respect, a PRG is similar to a cryptographic hash function that should be
collision-resistant.

30 / 93

4. Duplex applications Cryptographic sponge functions

Figure 4.1: Response of an ideal PRG to fetch requests

It is convenient for a pseudo-randombit sequence generator to be reseedable, i.e., to allow
the insertion of additional seeding material aĞer pseudo-random bits have been generated.
Instead of throwing away the current state of the PRG, reseeding combines the current state
of the generatorwith the new seedingmaterial. Fromauser’s point of view, a reseedable PRG
can be seen as a black boxwith an interface to request pseudo-randombits and an interface to
provide fresh seeds. In the sequel we will use PRG to indicate a reseedable pseudo-random
bit sequence generator.

4.2.1 Modeling an ideal PRG

We define a PRG as a stateful entity that supports two types of requests, in any order:

• feed request, feed(σ), injects a seed consisting of a non-empty string σ ∈ Z+
2 into the

state of the PRG;

• fetch request, fetch(ℓ), instructs the PRG to return ℓ bits.

The seeding material is the concatenation of the σ’s received in all feed requests.
Informally, the requirements for a PRG can be stated as follows. First, its output (i.e.,

responses to fetch requests) must depend on all seeding material fed (i.e., payload of feed
requests). Second, for an adversary not knowing the seeding material and that has observed
part of the output, it must be infeasible to infer anything on the remaining part of the output.

To have more formal security requirements, one oĞen defines a reference system that
behaves ideally. For sponge functions, hash functions and stream ciphers the appropriate
reference system is the random oracle [6]. For a reseedable PRGwe cannot just use a random
oracle as it has a different interface. However, we define an ideal PRG as a particular mode
of use of a random oracle.

The mode we define is the following. It keeps as state the sequence of all feed and fetch
requests received, the history h. Upon receipt of a feed request feed(σ), it updates the history
by incorporating it. Upon receipt of a fetch request fetch(ℓ), it queries the random oracle
with a string that encodes the history and returns the bits x to x + ℓ − 1 of its response to
the requester, with x the number of bits requested in the fetch requests since the last feed
request. Hence, concatenating the responses of a run of fetch requests is just the response of
the random oracle to a single query. This is illustrated in Figure 4.1. We call this mode the
history-keepingmode with encoding function e(h). The definition of a history-keeping mode
hence reduces to the definition of this encoding function.

As the output of the PRG must depend on the whole seeding material received, the en-
coding function e(h) must be injective in the seeding material. In other words, for any two
sequences of requests with different seeding materials, the two images through e(h) must
be different. We call this property seed-completeness. With a seed-complete encoding func-
tion, the response of the mode to a fetch request corresponds with non-overlapping parts of

31 / 93

Cryptographic sponge functions 4. Duplex applications

the response of the random oracle to different input strings. It follows that the PRG returns
independent and a priori uniformly distributed bits.

We thus propose the following definition of an ideal PRG.

Definition 13. An ideal PRG is a history-keeping mode calling a random oracle with an encoding
function e(h) that is seed-complete.

OĞen one sees the security requirement called forward security, also called forward se-
crecy. This requires that the compromise of the current state does not enable the aĴacker
to determine the previously generated pseudo-random bits [8, 23]. Note that our ideal PRG
does not satisfy this requirement.

4.2.2 SѝќћєђPRG: a PRG mode

The simplest way to build an actual system that behaves as the reference system described
above would be to replace the random oracleRO by a sponge function. At first sight, this is
not practical as it needs to store all past queries and hence requires ever growing amounts
of memory. However, making use of a duplex function allows removing these obstacles.

Indeed, a duplex object can readily be used as a reseedable PRG. Seeding material can be
fed via the σ inputs in D.duplexing() call and the responses can be used as pseudo-random
bits. If pseudo-random bits are required and there is no seed available, one can simply send
blank D.duplexing() calls. The only limitation of this is that the user must split his seeding
material in strings of at most ρmax bits and that at most r bits can be requested in a single call.

In [16] a reseedable PRG was defined based on the sponge construction that implements
the required functionality. In this section we present a PRG built on top of the duplex con-
struction, called SѝќћєђPRG. This mode is similar to the one proposed in [16] in that it min-
imizes the number of calls to f .

The SѝќћєђPRG mode works as follows. Internally it makes use of a duplex object D
and it has two buffers: an input buffer Bin and an output buffer Bout. During feed requests
it accumulates seeding material in Bin and, if it has received more than ρ bits, it forwards
them to D in a D.duplexing() call. Any surplus seed is kept in the input buffer. Upon a fetch
request, if the input buffer is not empty, it empties it by forwarding any remaining seed to
D and returns the requested number of bits, performing more duplexing calls if necessary,
each requesting ρ bits. The surplus of produced bits are kept in Bout, which will be returned
first upon the next fetch request. Note that at any moment, one of Bin and Bout is empty.

If f is a permutation, the operation of a SѝќћєђPRG object is invertible and revealing
the state allows the aĴacker to backtrack the generation back to the most recent unknown
seed fed into it. Still, forward security can be explicitly enforced by means of a P.forget()
request. The effect of a P.forget() request is the reseĴing to zero of the first ρ bits of the state
and a subsequent application of f . This is done ⌊c/ρ⌋ times. Guessing the state before this
operation given the state aĞerwards requires guessing at least c bits and hence is infeasible
for reasonable values of c.

The SѝќћєђPRG mode is defined in Algorithm 6. Note that the buffers do not require
separate storage but can be implemented merely as pointers to the state: The input buffer
requires a pointer to the state indicating from where on new bits must be XORed into the
state, while the output buffer pointer points in the state where the next output bit must be
taken. The storage is thus limited to the b-bit state and two integers.

It is clear that every bit returned by P.fetch() is part of the output of the sponge presented
with a string that contains all seeding material presented so far. The SѝќћєђPRGmode does
not allow reconstructing the individual blocks σi but does allow reconstructing their con-
catenation.

32 / 93

4. Duplex applications Cryptographic sponge functions

Algorithm 6 Pseudo random bit sequence generator mode SѝќћєђPRG[f , pad, r, ρ]

Require: ρ ≤ ρmax(pad, r)
Require: D = ёѢѝљђѥ[f , pad, r]

Interface: P.initialize()
D.initialize()
Bin = empty string
Bout = empty string

Interface: P.feed(σ) with σ ∈ Z+
2

M = Bin||σ
for i = 0 to |M|ρ − 2 do

D.duplexing(Mi, 0)
end for
Bin = M|M|ρ−1
Bout = empty string

Interface: Z = P.fetch(ℓ) with integer ℓ ≥ 0 and Z ∈ Zℓ
2

while |Bout| < ℓ do
Bout = Bout||D.duplexing(Bin, ρ)
Bin = empty string

end while
Z = ⌊Bout⌋ℓ
Bout = last (|Bout| − ℓ) bits of Bout
return Z

Interface: P.forget()
Z = D.duplexing(Bin, ρ)
Bin = empty string
for i = 1 to ⌊c/ρ⌋ do

Z = D.duplexing(Z, ρ)
end for
Bout = empty string

4.2.3 Advantages and limitations

Themain idea is to integrate in the same construction the combination of the various sources
of seedingmaterial and the generation of pseudo-random output bits. The only requirement
for seeding material is to be available as bit sequences, which can be presented as such with-
out any additional preprocessing. So both seeding and random generation can work in a
continuous fashion, making the implementation simple and avoiding extra iterations when
providing additional seeding material.

In the context of an embedded security device, the efficiency and the simplicity of the
implementation is important. If f is a permutation, we can keep the state size small thanks
to two reasons. First, the use of a permutation preserves the entropy of the state. Second, we
have strong upper bounds on the success probability of generic aĴacks against keyed sponge
instances (see Section 5.11).

Making sure that the seeding material provides enough entropy is out of scope of this
document. This aspect has been studied in the literature, e.g., [28, 59] and is fairly orthogonal

33 / 93

Cryptographic sponge functions 4. Duplex applications

to the problem of combining various sources and generating pseudo-random bits.
In our construction, forward security must be explicitly activated. We don’t see this as

a big disadvantage for the following two reasons. First, regular reseeding with sufficient
entropy already prevents the aĴacker from going backwards. Second, an embedded security
device such as a smartcard in which such a PRG would be used is designed to protect the
secrecy of keys and therefore reading out the state is expected to be difficult.

4.3 The mode OѣђџѤџіѡђ

In [35] sponge-like constructions were proposed and cryptanalyzed. In some of these con-
structions, absorbing is done by overwriting part of the state by the message block rather
than XORing it in. A concrete function that follows such a construction is the hash function
Grindahl [43].

These overwrite functions have the advantage over sponge functions that between calls
to f , only c bits must be kept instead of b. This may not be useful when hashing a message
in a continuous fashion, as b bits must be processed by f anyway. However, when hashing
a partial message, then puĴing it aside to continue later on, having to store only c bits may
be useful on some platforms.

It turns out that an overwrite function can be built using the duplex construction. If the
first ρ bits of the state are known to be Z, overwriting themwith a message block Pi is equiv-
alent to XORing in Z ⊕ Pi. This idea is also used in the forget call of the SѝќћєђPRG mode
and is formally implemented in Algorithm 7. In practice, of course, the implementation can
just overwrite the first ρ bits of the state by a message block. As a maĴer of fact, Algorithm 7
can be rewriĴen to call f directly, similar to the sponge construction. We leave this as an
exercise for the reader.

We define the mode OѣђџѤџіѡђ on top of the duplex construction. An OѣђџѤџіѡђ func-
tion internally uses a duplex object D. It pads the message M and splits it in ρ-bit blocks.
Then it makes a sequence of D.duplexing() calls, each time taking as input a message block
XORed with the response of the previous D.duplexing() call and with a frame bit appended
to it. This frame bit is equal to 1 for the last block and 0 for all other blocks. If the requested
number of output bits ℓ is larger than ρ, additional D.duplexing() calls are done where each
time the response of the previous D.duplexing() call is fed back to D.

Theorem 2. The construction OѣђџѤџіѡђ[f , pad, r, ρ] is as secure as Ѡѝќћєђ[f , pad, r].

Proof. The constructionOѣђџѤџіѡђ[f , pad, r, ρ] is defined in terms of calls to ёѢѝљђѥ[f , pad, r].
From the sponge-duplexing lemma, the output of such a call is the output to Ѡѝќћєђ[f , pad, r]
for a specific input. Hence, the theoremcomesdown to showing that the input M toOѣђџѤџіѡђ
can be recovered from the inputs to the duplexing calls.

The coding using the frame bits in Algorithm 7 allows, for any input sequence of D,
finding the last block (Pw⊕Z) and the length of the original input M. To recover themessage
M from the input sequence, one can start with the first block. Since Z = 0ρ in the first block,
the first block in the D.duplexing() call allows recovering the first block of M. Then, this
block allows determining the output Z that was XORed into the next block, and so on. ⊓⊔

We have thus proven that the security of OѣђџѤџіѡђ is equivalent to that of the sponge
construction with the same parameter, but at a cost of 2 bits of bitrate (or equivalently, of
capacity): one for the padding rule (assuming pad10∗ is used) and one for the frame bit.

34 / 93

4. Duplex applications Cryptographic sponge functions

Algorithm 7 The construction OѣђџѤџіѡђ[f , pad, r, ρ]

Require: ρ ≤ ρmax(pad, r)− 1
Require: D = ёѢѝљђѥ[f , pad, r]

Interface: Z = OѣђџѤџіѡђ(M, ℓ) with M ∈ Z∗2 , integer ℓ > 0 and Z ∈ Zℓ
2

P = M||pad[ρ](|M|)
Let P = P0||P1|| . . . ||Pw with |Pi| = ρ for i ≤ w
D.initialize()
Z = 0ρ

for i = 0 to w− 1 do
Z = D.duplexing((Pi ⊕ Z)||0, ρ)

end for
Z = D.duplexing((Pw ⊕ Z)||1, ρ)
Bout = Z
while |Bout| < ℓ do

Z = D.duplexing(Z||1, ρ)
Bout = Bout||Z

end while
return ⌊Bout⌋ℓ

35 / 93

Cryptographic sponge functions 4. Duplex applications

36 / 93

Chapter 5

Generic aĴacks

5.1 Introduction

In this chapterwe investigate generic algorithms for the primary aĴacks on sponge functions.
The vulnerability of the sponge construction with respect to these aĴacks is due to its finite
state and hence they do not apply to a random oracle. The success probabilities of primary
aĴacks impose upper limits to the resistance the sponge construction can offer. We also
discuss the implications of these algorithms on the security of sponge functions in the context
of hashing.

5.2 Graphical representation of a sponge function

One can associate to a sponge function a graph with 2b = 2r+c nodes and 2b edges: the
sponge graph. The nodes are the state values and for every couple (s, t)with t = f (s) there is
a directed edge from s to t. From each node starts exactly one edge. If f is a permutation, in
each node arrives exactly one edge. The nodes can be partitioned by the value of the inner
state and we call the subset of all nodes with the same inner state value a supernode. Edges
between nodes are therefore also edges between supernodes. There are 2c supernodes, one
for each inner state value. The 2r nodes within a supernode are identified by the outer part
s of their state.

One can absorb an input string P by following edges starting from supernode 0, the root.
First we draw an edge from P0||0c. This edge arrives in node with outer part absorb(P0)

of supernode âbsorb(P0). Then we draw an edge from the node within that supernode
with outer part absorb(P0)⊕ P1 and the node where it arrives is absorb(P0||P1). For Pi, we
draw an edge from the node with outer part absorb(P0||P1 . . . ||Pi−1)⊕ Pi within supernode
âbsorb(P0||P1 . . . ||Pi−1). It follows that the graphic representation of a path to an inner state
is a sequence of directed edges from the root to the corresponding supernode. Given the
graphic representation, one can reconstruct the value of P. The i-th block of the path P is
determined by the edges arriving at and starting from the i-th supernode on the path: it is
the outer part of the node where the outgoing edge starts XOR the outer part of the node
where the incoming edge arrives. The first symbol of the path P0 corresponds with the root
where there is no incoming edge and it is just equal to the outer part of the node where the
first edge starts.

37 / 93

Cryptographic sponge functions 5. Generic aĴacks

5.3 The model of the adversary

We adopt the following model. In the beginning, the adversary has no information about f .
The only way she can gain information on f is to make calls to f (and f−1 in the case it is a
permutation).

This corresponds to the real-world situation where an adversary has a specification of
f and where the most efficient way to compute f (x) (or f−1(x)) for a given x is executing
a program that computes f (or f−1(x)). One may remark that one could precompute and
store a large table (x, f (x)) couples, but in our model the calls to f for the precomputation
is are included in the complexity.

In the following, we represent the information the adversary has learned in the experi-
ment in a graph that represents the part of the sponge graph known to her. We call this the
adversary graph.

In the beginning, the adversary graph has no edges. Without loss of generality, we as-
sume the adversary makes no queries corresponding with known edges. Hence, a call to f
corresponds to adding to the adversary graph an edge starting from a given node and a call
to f−1 with adding an edge arriving in a given node.

In the adversary graph, we say that a supernode t̂ is reachable from a supernode ŝ if
there is a sequence of directed edges from ŝ to t̂ (in the right direction) or if t = s. We call
the supernodes that are reachable from the root, rooted supernodes and denote their set byR,
with R = |R|. We also call all nodes in a rooted supernode rooted.

5.3.1 The cost function

We obtain expressions for the optimal probability of success Pr(success) as function of N,
where N is the number of calls the adversary can make to f in the case it is a transformation
and the total number of calls she can make to f and f−1 in the case it is a permutation. This
probability is equal to the number of transformations (or permutations) f forwhich the aĴack
has succeeded, divided by the total number of transformations (or permutations) of given
dimensions. So a success probability of 1 % means that for 99 % of the possible choices of f
the aĴack does not work.

The expressions for Pr(success) for the different primary aĴacks turn out to be of the
form 1− ev(N) with v(N) a polynomial in N of degree one or two. To simplify notation, we
define the cost function cp(N) of an aĴack by cp(success) = − log(1− Pr(success)). This
gives:

Pr(success) = 1− e−cp(success) .

For values of N such that cp(success)≪ 1 we can use the log(1+ ϵ) approximation yielding:

Pr(success) ≈ cp(success) .

5.4 Generating inner collisions

The adversary has an inner collision if she finds two paths from the root to some supernode.
We consider the i-th call of the adversary and express the probability that it leads to an inner
collision on the condition that no inner collisions were discovered yet. As can be seen in
Figure 5.1, this implies that the new edge must connect a rooted supernode to a supernode
from which a rooted supernode can be reached. We call a supernode from which a rooted
supernode can be reached in the adversary graph anR-reaching supernode and their set by
V with V = |V|. Clearly, R ⊆ V . Initially, V = R = {0} and R = V = 1. Right before
adding the i-th edge, the graph contains i− 1 edges and R ≤ V ≤ i.

38 / 93

5. Generic aĴacks Cryptographic sponge functions

5.4.1 With f a random transformation

The adversary can only add edges starting from chosen nodes. If the new edge starts from
a rooted node, the probability of success is V/2c. Moreover it adds one to R and hence also
to V. If the new edge starts from a non-rooted node, the probability of success is 0. It leaves
R invariant and may add one to V if it arrives in a node in V . It follows that the success
probability of future edges is optimized by always adding edges starting from rooted nodes.
The exact shape of the rooted tree is not important. So applying this strategy, right before
adding the i-th edge, we have R = V = i yielding:

Pr(no IC) =
N

∏
i=1

(1− i
2c).

If N ≪ 2c, we can use the log(1 + ϵ) approximation, yielding:

Pr(IC) ≈ 1− e−∑N
i=1

i
2c = 1− e−

N(N+1)
2c+1 .

The cost function is therefore:
cp(IC) ≈

N(N + 1)
2c+1 .

5.4.2 With f a random permutation

If f is a permutation, the adversary can add edges starting from chosen nodes and addition-
ally edges arriving in chosen nodes. Moreover, an edge starting from a chosen node can only
arrive in a node that has no incoming edge yet; an edge arriving in a chosen node can only
start from an edge that has no outgoing edge yet.

If an edge is added starting from a chosen node that is rooted, the probability of success
is the number of nodes in V with no incoming edge divided by the total number of nodes
with no incoming edge:

(2r − 1)V + 1
2r+c − i

.

If an edge is added arriving in a chosen node in V , the probability of success is similarly

(2r − 1)R + 1
2r+c − i

.

The higher the values of R and V, the beĴer the probabilities of success in subsequent
queries, so one couldmake other kinds of queries to augment R or V faster. An edge starting
from a chosen node that is not rooted cannot lead to an inner collision. It leaves R invariant
and may add one to V. But an edge arriving in a chosen node in V adds one to V with
certainty, so this always leads to beĴer success probabilities. Similarly, an edge arriving in a
chosen node that is not in V cannot lead to an inner collision but it may adds one to R. An
edge starting from a chosen node that is rooted adds one to R with certainty, so this always
always leads to beĴer success probabilities.

At any time, R ≤ V ≤ i. Globally, the optimal strategy is one in which the probability of
success of the i-th call is

(2r − 1)i + 1
2r+c − i

.

When adding an edge arriving in a chosen node in V that does not lead to an inner collision,
R is not affected and hence it leads to R < i, while in the optimal strategy R = i. It follows

39 / 93

Cryptographic sponge functions 5. Generic aĴacks

0
R

VnR

(a)

Figure 5.1: Adding an edge (a) resulting in an inner collision. Edge (a) must start in R and
arrive in V .

that in the optimal strategy only a single edge arriving in a chosen node in V may be added
and all other edges are just edges added to rooted nodes. We obtain:

Pr(no IC) =
N

∏
i=1

(
1− (2r − 1)i + 1

2r+c − i

)
=

N

∏
i=1

1− i
2c − 1

2r+c

1− i
2r+c

.

Using the log(1 + ϵ) approximation this gives:

cp(IC) ≈
N

∑
i=1
− i− 1

2r+c +
i

2c =
N(N + 1)

2c+1 − N(N − 1)
2r+c+1 .

5.5 Finding a path to an inner state

Given a target inner state t̂, the adversary must find a path p such that âbsorb(p) = t̂. We
consider the i-th call of the adversary and express the probability that it leads to a path on
the condition that no path was found yet. As it can be seen in Figure 5.2 this implies that
the new edge must connect a rooted supernode to a supernode fromwhich t̂ can be reached.
We call a supernode (and its nodes) from which the target can be reached a target-reaching
supernode (and nodes) and their set by V with V = |V|. Initially, V = {t̂}, R = {0} and
R = V = 1. Right before the i-th call, the graph contains i− 1 edges and R ≤ i, V ≤ i and
R + V ≤ i + 1.

5.5.1 With f a random transformation

The adversary can only add edges starting from chosen nodes. If an edge is added starting
from a chosen node that is rooted, the probability of success is V/2c. Otherwise, the proba-
bility of success is 0, it leaves R invariant and adds one to V with probability V/2c. It follows
that to optimize the probability of success it is best to systematically add edges starting from
chosen nodes that are rooted. So applying this strategy, right before the i-th call, we have
R = i and V = 1 yielding:

Pr(no path) =
N

∏
i=1

(1− 1
2c) .

40 / 93

5. Generic aĴacks Cryptographic sponge functions

Using the log(1 + ϵ) approximation for 2c ≫ 1, this yields:

cp(path) ≈
N
2c .

We will now discuss a variant of the aĴack: finding a second path to an inner state if
there is already a path of length ℓ. This is relevant when generating 2nd pre-images when
being used as a hash function. We consider the probability to find a 2nd path aĞer adding
N edges, also counting the ℓ edges corresponding with the absorbing of message p. AĞer
adding these ℓ edges,R and V each contain the set of ℓ supernodes on the path from the root
to t. For N > ℓ this gives

Pr(no 2nd path) =
N

∏
i=ℓ

(1− ℓ

2c) ,

and subsequently, if ℓ≪ 2c

cp(2nd path) ≈ ℓ(N − ℓ)

2c .

5.5.2 With f a random permutation

The adversary can add edges starting from chosen nodes and edges arriving in chosen nodes.
An edge starting from a chosen node can only arrive in a node that has no incoming edge
yet, an edge arriving in a chosen node can only start from an edge that has no outgoing edge
yet.

If the edge starts from a chosen node that is rooted and if the supernodes of V with the
edges form a tree, the probability of success is the number of nodes in V with no incoming
edges divided by the total number of nodes with no incoming edges, i.e.,

(2r − 1)V + 1
2r+c − i

.

This adds 1 to R if there is no inner collision and leaves V invariant.
If an edge is added arriving in a chosen target-reaching node, the probability of success

is similarly
(2r − 1)R + 1

2r+c − i
,

in the assumption that there are no inner collisions. This adds 1 to V if the new edge does
no start from a target-reaching node and leaves R invariant. We will assume that there are
no inner collisions and that the supernodes of V form a tree and later check whether this
assumption is justified.

The higher the values of R and V, the beĴer the probabilities of success of subsequent
queries. It follows that adding an edge arriving in target-reaching nodes augments the prob-
ability of success when later adding edges starting from rooted nodes and vice versa.

An edge starting from a chosen node that is not rooted cannot lead to a path to t̂. It
leaves R invariant and may add one to V with small probability. With the eye on increasing
the success probability of future calls, adding an edge starting from a rooted node is always
beĴer. Similarly, an edge arriving in a chosen node that is not in V cannot lead to a path to
t̂. It adds one to R with small probability and adding an edge arriving in a target-reaching
node is always beĴer.

We introduce a variable δi that is 1 if the i-th edge added starts from a chosen node that is
rooted and−1 otherwise and denote the values of R and V right before adding the i-th edge

41 / 93

Cryptographic sponge functions 5. Generic aĴacks

by Ri and Vi. Then the probability that the i-th edge added does not result in a path becomes

1−
(2r − 1)

(
1+δi

2 Vi +
1−δi

2 Ri

)
+ 1

2r+c − i
=

1− i+1
2r+c − 2r−1

2r+c+1 (Vi + Ri − δi(Ri −Vi))

1− i
2r+c

Using the log(1 + ϵ) approximation we obtain:

cp(path) ≈
N

∑
i=1

(
1

2r+c +
2r − 1
2r+c+1 (Vi + Ri − δi(Ri −Vi))

)
We have Vi + Ri ≤ i + 1, where equality applies if there are no inner collisions in R and if
the supernodes of V form a tree. We assume Vi + Ri = i + 1 and later verify whether this
assumption was justified. Moreover, we have Ri −Vi = ∑i−1

j=1 δi. This gives:

cp(path) ≈
N

2r+c +
2r − 1
2r+c+2

(
N2 + 3N + 1−

N

∑
i=1

i−1

∑
j=1

2δiδj

)

We can now work out the last term using:

N

∑
i=1

i−1

∑
j=1

2δiδj =
N

∑
i=1

N

∑
j=1

δiδj −
N

∑
i=1

δiδi = (RN+1 −VN+1)
2 − N

Filling this in gives:

cp(path) ≈
N(N + 4)− (RN+1 −VN+1)

2

2c+2 − N2 − (RN+1 −VN+1)
2

2r+c+2

This is maximized if RN+1 = VN+1 for N even and if |RN+1 −VN+1| = 1 for N odd, i.e., ifR
and V have the same number of nodes just before the path is found. As it is not known in
advance when the path will be found, the best strategy is to add edges starting from chosen
nodes inR and edges arriving in chosen nodes inR in an alternating fashion, guaranteeing
(RN −VN)

2 ≤ 1. For even N this gives:

cp(path) ≈
N(N + 4)

2c+2 − N2

2r+c+2 .

the probability of success becomes significant when N is of the order of 2
√

2c and hence
when R and V are of the order

√
2c. This implies that for these values of N there may be

inner collisions but their small number compared to R make that their presence does not
affect the success probability significantly.

5.6 Detecting cycles in the output

The goal is to detect cycles in outputs corresponding to valid input strings. The adversary
can take an input string P and absorb it, resulting in a node absorb(P). From this node,
the output blocks absorb(P||0jr) are generated by following a chain of nodes connected by
edges, i.e., absorb(P||0jr) = f (absorb(P||0(j−1)r)), where we define a chain as a sequence of
nodes connected by directed edges. The first node in the chain is the node u = absorb(P′)⊕
(P|P|r−1||0r) with P′ equal to P with its last block P|P|r−1 removed.

The adversary finds a cycle by extending at the end by adding edges until the new edge
arrives in a node in the chain. The shortest valid input strings consist of a single non-zero
block. Before adding the i-th edge, the chain contains i nodes.

42 / 93

5. Generic aĴacks Cryptographic sponge functions

0

T

(a)

R

V

Figure 5.2: Adding an edge (a) resulting in a path. Edge (a) must start inR and arrive in V .

5.6.1 With f a random transformation

The probability that the new edge arrives in one of the nodes of the chain is i/2r+c. Using
the log(1 + ϵ) approximation, this results in:

cp(output cycle) ≈
N(N + 1)

2r+c+1 .

5.6.2 With f a random permutation

At any moment, there is only a single node in the chain that has no incoming edge, the node
u. The probability that the new edge arrives in a node in the chain is hence 1/(2r+c). This
results in:

cp(output cycle) ≈
N

2r+c .

5.7 State recovery

State recovery consists of finding a state s given a string Z = squeeze(s, |Z|).

5.7.1 With f a random transformation

The adversary can make guesses a for ŝ and use queries to f to verify their correctness. The
probability of success aĞer n guesses n2−c. She can verify the correctness of a guess in the
following way. She sends a query f (a||Z0) and check whether the outer part of the result b
equals Z1. If so, it can query f (b) and verify whether the outer part of the result c equals Z2

43 / 93

Cryptographic sponge functions 5. Generic aĴacks

and so on. The expected number of queries for a wrong guess is:

1 + 2−r + 2−2r + . . . ≈ 1
1− 2−r

So the expected success probability aĞer N queries is

N
1− 2−r

2c .

5.7.2 With f a random permutation

In this section wewill assume that |Z| is a multiple of the bitrate. Wewill denote the solution
s by s0, f (s0) by s1 and f (si) by si+1.

When f is a permutation, the adversary can choose to first determine ŝi for some index i
and then compute ŝ0 from si by repeatedly applying f−1. This has an impact on the success
probability.

5.7.2.1 Passive adversary

We first define the forward and backward block partitions of a string Z with |Z| = mr and
the corresponding forward multiplicity and backward multiplicity. The forward block partition
Bf(Z) is a partition of the block indices i of Z with 0 ≤ i < |Z|r − 1, grouped by equal values
Zi. We denote the subsets of Bf(Z) by B(j) and their corresponding Zi values by Z(j). So we
have ∀i ∈ B(j) : Zi = Z(j) and ∀i ̸∈ B(j) : Zi ̸= Z(j). Note that in the forward block partition,
the index of the last block is excluded. The forward multiplicity of a string Z, denoted by
mf(Z, r), is equal to the cardinality of the largest subset of Bf(Z). In other words, it is the
number of occurrences of the block value Zi that occurs most oĞen in Z.

Note that if r is large, for a random string with |Z|r < 2r/2 the forward multiplicity is
typically 1, i.e., all blocks Zi of Z are different. If r = 1, the blocks are bits and the forward
multiplicity is at least equal to (|Z| − 1)/2.

The backward block partition Bb(Z) and backward multiplicity mb(Z, r) of a string Z are
defined in a similar way, with the only difference that the first block of Z is excluded, instead
of the last one. So it is a partition of the indices i with 0 < i ≤ |Z|r − 1.

Finally, we define the multiplicity of a string as the maximum of both multiplicities:

m(Z, r) = max{mf(Z, r), mb(Z, r)}

We prove a bound for the case that there exists only a single solution, i.e., one value s0
such that squeeze(s0, |Z|) = Z. This is likely if |Z| > b and the probability that more than
one solution exists decreases exponentially with |Z| − b.

Theorem 3 ([16]). Given Z = squeeze(s, |Z|), the success probability of finding s aĞer N queries
is upper bound by m(Z, r)N

2c , if there is only a single such value s.

Proof. Let F1(Z) be the set of permutations f such that there is only one solution to the state
recovery problem with instance Z. For a given value s, within F1(Z), the inner part of f (s)
(or f−1(s)) can be symmetrically chosen among the 2c possible values as the problem in-
stance does not express any constraints on the inner parts. In other words, if ŝ0 is such that
f (Z0||ŝ0) = Z1, then for any ŝ′0 ̸= ŝ0 there exists another permutation f ′ ∈ F1(Z) such that
f ′(Z0||ŝ′0) = Z1 too. Such symmetries exist also for multiple inner values, independently
of each other, as long as the corresponding outer values are different. E.g., if Z1 ̸= Z2 and

44 / 93

5. Generic aĴacks Cryptographic sponge functions

(ŝ1, ŝ2) is such that the outer parts of f (si) are Zi for i = 1, 2, then for any (ŝ′1, ŝ′2) ̸= (ŝ1, ŝ2)

there exists another permutation f ′ ∈ F1(Z) where (ŝ′1, ŝ′2) verifies the same equality.
Let us first consider the case |Z|r = 2. Clearly, m(Z, r) = 1.
Let F1(Z, a0, a1) be the subset of F1(Z)where the value a0 is the solution for ŝ0 and f (Z0||a0) =

(Z1||a1). The sets F1(Z, a0, a1) partition the set F1(Z) into 22c subsets of equal size identified
by a0 and a1, or in other words, a0 and a1 cut the set in an orthogonal way.

The goal of the adversary is to determine in which subset F1(Z, a0, a1) the permutation f
is. To do so, she can make two types of queries:

• Forward queries: she queries f (Z0||a) for a guess a and checks whether the outer part
of the response is Z1

• Backward queries: she queries f−1(Z1||a) for a guess a and checks whether the outer
part of the response is Z0.

As the subsets F1(Z, a0, a1) cut F1(Z) orthogonally in a0 and a1, forward queries help deter-
mine whether a0 is the solution but without reducing the set of possible values for a1, and
vice-versa for backward queries. So, aĞer Nf forward queries and Nb backward queries, the
success probability is

1−
(
1− Nf2−c) (1− Nb2−c) ≤ N2−c,

where the probability is taken over all permutations f drawn uniformly from F1(Z).
Let us now consider the general case where |Z|r ≥ 2. The reasoning can be generalized

in a straightforward way if all the Zi are different, or more exactly, if m(Z)r = 1. Otherwise,
some adaptations have to be made to take into account the values Zi appearing multiple
times. Given the set of indices i, k . . . in a subset B(j), there may or may not be constraints on
the possible values that the corresponding inner values ŝi can take. For instance, if Zi−1 ̸=
Zk−1 or if Zi+1 ̸= Zik+1, then necessarily ŝi ̸= ŝk. In another example, Z can be periodic,
allowing the si values to be equal.

The adversary can make a guess for the inner value ŝi for all i ∈ B(j) in a single query
in the following way. She makes for a guess a a forward query to check whether f (Z(j))||a)
gives as outer value Zi+1 for any i ∈ T(j). The same reasoning can be applied for backward
queries. The adversary now makes a backward query to check whether f−1(Z(j))||a) gives
as outer value Zi−1 for any i ∈ B(j). So, a forward (resp. backward) query can count as up
to mf(Z, r) (resp. mb(Z, r)) chances to hit the correct outer value. If f (Z(j))||a) gives as outer
value Zi+1 for some i ∈ T(j), the adversary can check whether this is the correct value by
making an additional query f (f (Z(j))||a)) and checking whether it gives as outer value Zi+2
and so on. In our upper bound we will ignore these additional queries. If r is large, there
is typically just an additional query per 2r/mf(Z, r) guesses and the bound remains tight. If
r = 1, they however represent an important factor, resulting in a looser bound.

Let F1(Z, a0, a1, . . . , a|Z|r−1) be the subset of F1(Z) for which (a0, a1, . . . , a|Z|r−1) is the so-
lution for (ŝ0, ŝ1, . . . , ŝ|Z|r−1. In general, the elements {a0, a1, . . . , a|Z|r−1} do not cut F1(Z) in
an orthogonal way. Consider now as elements the |B| vectors A(j) with each such vector
containing the |B(j)| elements ai with i ∈ T(j). The vectors A(j) cut F1(Z) in an orthogonal
way, as they constraint f on different outer values.

So, aĞer n guesses, the probability that one of themgives the solution is atmostm(Z, r)2−cn,
where the probability is taken over all permutations f drawn uniformly from F1(Z). The
bound in the theorem follows from the fact that the average number of queries to be made
for each wrong guess is not below 1/(1− 2−r). ⊓⊔

45 / 93

Cryptographic sponge functions 5. Generic aĴacks

5.7.2.2 Active adversary

In some modes of use such as those based on the duplex construction, an adversary may be
able to absorb input blocks of choice. This case is covered in the next theorem. We assume
that the adversary can choose the blocks Pi that are injected at each iteration, i.e., the mode
computes f (si ⊕ (Pi||0c)) = si+1 and the adversary observes Zi+1 = si+1. Now an instance
of the problem is also determined by the injected blocks P = (P0, P1, . . . , Pm) (the value of
the last block Pm is actually irrelevant, it is just there to simplify notation).

Theorem 4 ([16]). Given an instance of the active state recovery problem Z, P and knowing that
there is one and only one solution ŝ0, the success probability aĞer N queries is at most

max{mf(Z⊕ P, r), mb(Z, r)}N
2c .

Proof. The reasoning is the same as in Theorem 3, except that the queries are slightly differ-
ent:

• In a forward query, the adversary checks for a guess a whether f ((Zi ⊕ Pi)||a) = Zi+1.

• In a backward query, she checks for a guess a whether f−1(Zi+1||a) = Zi ⊕ Pi

Clearly, the forward multiplicity of Z ⊕ P must be considered rather than that of Z as one
forward query can be used to check inner values at up to mf(Z⊕ P, r) indices at once. Note
that the adversary can maximize the forward multiplicity to |Z|r − 1 by choosing the blocks
Pi such that Zi ⊕ Pi always has the same value, resulting in a success probability aĞer N
queries of N2−c(|Z|r − 1). ⊓⊔

5.7.3 With f a random transformation, revisited

In some aĴacks it may be sufficient for the adversary to recover the value of the state s|Z|r of
the sponge function aĞer it has generated Z rather than before it. In that case, the adversary
can, as in the case of f a randompermutation, guess the value of any intermediate state si and
compute s|Z|r from that one by applying f . Clearly, then she can apply the same techniques
as in the case of f a random permutation leading to similar success probabilities. The only
difference is that only the forward multiplicity can be exploited.

5.8 Output binding

The goal is to find for a given string Z a state s that satisfies squeeze(s, |Z|) = Z. We only
consider strings Z that consist of more than r bits. The success probability over the transfor-
mations (or permutations) f and over ŝ ∈ Zc

2, that the following condition is verified:

f i(Z0||ŝ) = Zi, ∀i ∈ {1 . . . m}, (5.1)

depends not only on the length of Z, but also on its structure.
The adversary can make random guesses a until she finds one such that f (Z0||a) = Z1.

From there, she can evaluate f 2(Z0||a) and check if it is equal to Z2. If so, she continues,
possibly until she reaches the last block of the sequence. If not, she starts again from a new
guess a. At each step, in the absence of a cycle and neglecting biases, the adversary has a
probability of 2r−1 to get the correct next block. Once an incorrect block is encountered, the

46 / 93

5. Generic aĴacks Cryptographic sponge functions

f Inner path output state output
collision finding cycle recovery binding

transformation N(N+1)
2c+1

N
2c

N(N+1)
2r+c+1

N
2c

1−2−r

2|Z|−r N

permutation N(N+1)
2c+1 − N(N−1)

2r+c+1
N(N+4)

2c+2 − N2

2r+c+2
N

2r+c
|Z|r−1

2c N 1−2−r

2|Z|−r N

Table 5.1: Cost functions for the primary aĴacks.

adversary starts with the next guess a. Clearly, the average number of calls to f to eliminate
a guess is very close to 1

1−2−r .
If |Z| < b the probability for a guess to be successful is:

Pr(success with guess) = 2r−|Z| .

Taking into account the number of calls to f for a guess, we obtain the following cost function,
both for f a random transformation or permutation:

cp(output binding) ≈
2r − 1

2|Z|
N .

When |Z| > b the expected number for N is larger than the number of inner state values.
It implies that the adversary has to try a large fraction of the values ŝ ∈ Zc

2. By construction,
she cannot look for more than 2c values of â and there is not necessarily a solution. An inner
state value ŝ that leads to the given output sequence only exists for a fraction of the possible
transformations (or permutations). The probability that such an inner state value exists for
|Z| > b is 2r+c

2|Z|
.

5.9 Summary of success probabilities

Table 5.1 lists the resulting cost functions for the primary aĴacks and for f a random trans-
formation and a random permutation for large values of 2c. This is justified as small values
of 2c lead to weak sponge functions. Note that for state recovery the probability of success
is displayed rather than its cost function.

When we consider values of N that are much larger than 1, we can neglect the linear
terms in those cost functions that are quadratic. This results in Table 5.2. Note that here also
for state recovery the probability of success is displayed rather than its cost function.

The work factor W, the expected number of calls N for the aĴack to succeed, is given by:

W =
∞

∑
N=1

(Pr(N)− Pr(N − 1))N .

If we approximate Pr(N) by a continuous function and fill in the cost function, this becomes

W =
∫ ∞

0
N

dP
dN

dN =
∫ ∞

0
N

dcp(N)

dN
e−cp(N)dN .

Filling in the simplified cost functions listed in Table 5.2 leads to integrals that can be readily
solved. For the linear cost functions, i.e., cp(N) = 2−x N, we obtainW = 2x. For the quadratic
cost functions, i.e., cp(N) = 2−x N2, we obtain W =

√
π2x/2 ≈ 21+x/2.

47 / 93

Cryptographic sponge functions 5. Generic aĴacks

f rate Inner path output state output
rate collision finding cycle recovery binding

transformation r ≫ 1 2−(c+1)N2 2−cN 2−(c+r+1)N2 2−cN 2−(|Z|−r)N

transformation r = 1 2−(c+1)N2 2−cN 2−(c+2)N2 2−cN 2−|Z|N

permutation r ≫ 1 2−(c+1)N2 2−(c+2)N2 2−(c+r)N (|Z|r − 1)2−cN 2−(|Z|−r)N

permutation r = 1 2−(c+2)N2 2−(c+3)N2 2−(c+1)N (|Z| − b)2−cN 2−|Z|N

Table 5.2: Simplified cost functions for the primary aĴacks.

Clearly, the most important parameter is the capacity c. The impact of the rate r on the
success probabilities is rather limited, with the exception of the detection of output cycles.
The differences in resistance between the case of a permutation f and a transformation f are
mainly in path finding and in the length of output cycles. If f is a random transformation,
finding a path has expected workload 2c, while for f a random permutation this is only
about 22+c/2. On the other hand, a sponge function is expected to end up in a cycle aĞer
about 2(c+r+3)/2 blocks if f is a random transformation while this is 2c+r−1 if f is a random
permutation.

5.10 Sponge functions used as a hash function

Wewill now consider a number of classical hash function aĴacks and show how the primary
aĴacks limit the resistance of a sponge function against these aĴacks. For simplicity, we
consider the case of a high rate r. We each time compare with the behaviour of a random
oracle where its output is truncated to n bits. It is important to distinguish between n, the
digest length in bits, and c, the capacity.

5.10.1 Output collisions

If we have an inner collision P, Q, we can have a state collisionwith P||A, Q||B, for any A and
B that verify absorb(P)⊕ A = absorb(Q)⊕ B. Then, any pair of inputs P||A||M, Q||B||M
leads to an output collision, independent of the digest length n.

In a random sponge, the expected workload to generate an inner collision is of the order
2(c+3)/2. In a random oracle truncated to n bits, the expected workload to generate an output
collision is of the order 2(n+3)/2. So, a random sponge truncated to n bits with n < c offers a
similar level of resistance against output collisions than a random oracle truncated to n bits.
If n > c, the best strategy to generate an output collision is to use an inner collision; if n < c,
going via an inner collision does not lead to a smaller expected workload.

As formulticollisions [36], an 2s-foldmulticollision in a randomsponge can be realized by
the chaining of s inner collisions and hence has expected workload s2(c+3)/2. For a truncated
random oracle this complexity is of the order 2n(2s−1)/2s . So taking c > 2n, a random sponge
is not weaker than a random oracle in this respect.

5.10.2 Second pre-image

Assume we are looking for a second pre-image for a message M and let P be this message
aĞer padding. In a sponge function, we have a second pre-image if we can find a second

48 / 93

5. Generic aĴacks Cryptographic sponge functions

path to the inner state t = âbsorb(P′)with P′ the prefix of P where only the last block P|P|r−1

is removed. Given this path A, we have absorb(Q||X) = absorb(P) with X = absorb(Q)⊕
absorb(P′) ⊕ P|P|r−1. We have computed the cost function for this problem in Section 5.5
for f a random transformation and we found an expected workload of the order 2c/|P|r if
|P|r < 2c/2. Note that its expected workload must be at least that of generating an inner
collision as a second pre-image implies an inner collision.

In a truncated random oracle the expectedworkload is of the order 2n and is independent
of |P|r. Hence if we impose a limit to the number of blocks max |P|r, a sponge function with
f a random transformation offers a similar level of resistance against 2nd pre-images as a
truncated random oracle if n < c− log2(max |P|r).

It is now interesting to take a look at the 2nd pre-image aĴack presented in [38] and the
herding aĴack presented in [40] that both apply to iterated hash functions. If we apply these
aĴacks to a sponge function with a random transformation f with c = n we obtain expected
aĴack complexities lower than those obtained in [38] and [40]. The finite state of the iter-
ated hash function makes that generating pre-images becomes easier as the first pre-image
becomes longer. Including length-coding in the message padding somewhat improves the
resistance, but not as expected. However, having an inner state that is twice as large as the
digest, i.e., c > 2n is a more fundamental solution to these problems.

If f is a random permutation the expected workload is between 2(c+4)/2 if |P|r ≪ 2c/2

and a minimum of 2(c+3)/2 due to the fact that a 2nd pre-image implies an inner collision. So
for small values of |P|r, the workload is close to that of finding a path to an inner state. For
values of |P|r near 2c/2, the workload comes close to that of generating an inner collision, but
stays higher.

An interesting observation related to secondpre-imageswasmade byGligoroski, Ødegård
and Jensen in [34]. If an adversary can construct a non-empty path P to the inner state 0c (the
inner value of the root state), then she can construct an infinite number of second pre-images
for any message M. We now explain how, for simplicity making abstraction of the padding.

Assume we have a path P to the inner state value of the root, i.e., âbsorb(P) = 0c. We
construct P′ as follows:

P′ = P⊕ (absorb(P)||0|P|−r) . (5.2)

It is easy to verify that absorb(P||P′) = absorb(P) and so âbsorb(P||P′) = 0c. This can
be generalized to absorb(P||P′∗) = absorb(P) and so âbsorb(P||P′∗) = 0c. So a single
non-empty path P to 0c allows constructing an infinite class of paths to 0c. If we now take
an arbitrary message M of at least one block, then any string P||P′∗||M′ with M′ = M ⊕
(absorb(P)||0|M|−r) is a path to absorb(M).

This remarkable property is a consequence of the fact that the adversary can use an inner
collision that it can chain with itself: both P and empty string are paths to the inner state 0c.
At first sight this may seem like a worrying observation. However, exploiting this requires
finding first a path to a given inner state and this has expectedworkload 2(c+4)/2, higher than
that of generating inner collisions.

In general, a truncated random sponge offers a similar level of resistance against second
pre-images as a truncated random oracle if c > 2n as a 2nd pre-image implies an inner
collision and the expected workload of generating an inner collision is 2(c+3)/2.

5.10.3 Pre-image

In a sponge, a pre-image can be obtained by binding an output string to a state and subse-
quently finding a path to that state.

49 / 93

Cryptographic sponge functions 5. Generic aĴacks

If f is a random permutation we bind the digest to a state s. Then we compute t = f−1(s)
and subsequently we find a path P to t̂. This gives a path to s given by the found path to t,
namely P||(absorb(P)⊕ t). The expected workload for finding a pre-image for a truncated
sponge function with a random permutation f in this way is hence 2n−r + 2c/2 if n < b. If
n > b it may be that the output has no pre-image. If it has one, the expected workload is
2c−1 + 2c/2. The expected workload to find a pre-image in a truncated random oracle is 2n.
It follows that a truncated sponge function with a random permutation f offers a similar
resistance against pre-images as a truncated random oracle if n < c/2.

If f is a random transformation, aĞer having bound the output to a state s, we cannot
compute a state t = f−1(s). Therefore we need to bind the output to a state t directly. Instead
of guessing the inner part of the state corresponding with the first output block Z0, we need
to guess a state t such that f (t) = T0. This multiplies the number of trials by 2r and the
expected workload now becomes 2n for n < b and 2b for n > b. The expected workload for
finding a pre-image is hence 2n + 2c−1 for n < b and 2b + 2c−1 for n > b. A truncated sponge
function with f a random transformation offers a similar resistance against pre-images as a
truncated random oracle if n < c.

5.10.4 Length extension

Length extension is the property that given a digest h(P) of an input P, but not the input
itself, one can compute the digest of an input P||P′ with known P′. In a sponge function, it
is possible to do this if one can recover the state absorb(P) with P a padded message from
the output. One can then compute absorb(P||P′) and generate the output by squeezing this.
The length extension only works if the state value bound to the output is equal to absorb(P)
and not some other state value that gives rise to the same output. If the output is longer
than b it is very likely that there is only a single corresponding state value. Otherwise the
expected number of solutions is 2b−n and length extension is only successful if the correct
solution is taken. For length extension it makes no sense to compare the security level with
that of a random oracle, as a random oracle does not exhibit the length extension weakness
at all.

5.10.5 Correlation immunity

Correlation immunity is the absence of large correlation between input and output of a hash
function. Clearly, such measurable correlation would enable to distinguish the sponge func-
tion from a random oracle. As we will show in Section 6.2 that a random sponge can only be
distinguished on the basis of the presence or absence of inner collisions, large correlations
will not appear in a random sponge as long as N < 2c/2. A similar reasoning applies for
large differential propagation probabilities between input and output.

5.11 Keyed modes

In describing aĴacks on a keyed sponge function, the adversary can make two types of
queries. The first type are calls to f , and if f is a permutation also f−1. We denote the total
number of such calls by N, representing what is usually called the time (or computational)
complexity of the aĴack. The second type are queries to the keyed sponge function. The
sum of the total number of input blocks (and key offset blocks) and output blocks of queries
to the keyed sponge function is denoted by M. M represents what is usually called the data

50 / 93

5. Generic aĴacks Cryptographic sponge functions

complexity of the aĴack: the amount of data computed with the key. There are several sce-
narios for keyed modes. Here we present two of them to illustrate how the primary aĴacks
can be used.

If keys have a fixed length |K|, then exhaustive key search based on an output bits of
at least |K| bits requires guessing about 2|K|−1 key values. This is possible for any keyed
function, even if it based on a random oracle. AĴacks with an expected workload above
2|K|−1 are therefore not a threat.

5.11.1 Predicting the output of a stream cipher

Themain security feature of a stream cipher is that an adversary who does not know the key
K, but whomay have observed part of an key stream, cannot predict key streams for that key
it has not observed. Consider a stream cipher that takes as a key K and an initial value IV
and where the key stream is obtained by applying a sponge function to their concatenation:
Z = F(K||IV).

A way to use primary aĴacks for predicting the output of a stream cipher based on a
keyed sponge is state recovery. Once the adversary has recovered the state from a first part
of Z for a given IV, she can squeeze that state for regenerating the remaining part of Z for
that IV using that state. Note that for generating the trailing part of the output sequence Z,
it is sufficient to recover the state at the end of the known part of Z (see Section 5.7.3). In the
case of a large bitrate, the expected workload of this is 2c calls to f , so as long as |K| < c this
poses no threat.

If f is a permutation, recovery of the state at some point in squeezing phase allows the
adversary to compute the state of the keyed sponge that it has right aĞer absorbing the key
K and IV by applying f−1 repeatedly. If K and IV are in different r-bit blocks, she can even
compute the state right aĞer absorbing K, allowing her to reconstruct the output sequence Z
for any IV. If the key K is in a single r-bit block, the value of this state allows the adversary
to compute the key value. This is also the case if K and IV are together in a single r-bit block.

Due to their short input, the primary aĴacks generation of inner collisions and path find-
ing are typically not useful when aĴacking stream ciphers. However, if a cycle is detected
in part of an output sequence Z, the adversary can predict the full sequence Z.

5.11.2 MAC function

The main security feature of a MAC function is that an adversary who does not know the
key K, but who may have observed tags for a number of messages, cannot predict tags for
any other message with success probability above 2−n if n is the tag length. Consider aMAC
function that takes as a key K and an message M and where the tag is obtained by applying
a sponge function to their concatenation and truncating its output to n bits: t = ⌊F(K||M)⌋n.
We limit ourselves to the case that n is smaller than the capacity.

As in the case of stream ciphers, the adversary can aĴempt state recovery using tags.
In total she needs at least b bits of output to fully determine the state. With the given con-
struction, if the adversary can choose the messages, the description of the active adversary
of Section 5.7.2.2 applies. If she can get the tags of m + 1 chosen messages, she can construct
a string Z and a string P that consist of m n-bit blocks for which Zi⊕ Pi have the same chosen
value. If n is larger than the bitrate r, using this for state recovery has expected workload
about 2c/(m− 1) queries to f . If n is smaller than the bitrate, this becomes 2b−n/(m− 1).

If f is a random transformation, the state recovered is the state of the sponge function
aĞer absorbing some message M. The adversary can now reconstruct tags of all messages
with this message as prefix.

51 / 93

Cryptographic sponge functions 5. Generic aĴacks

If f is a random permutation and the key K and the message blocks Mi are absorbed in
separate r-bit blocks, the adversary can recover the state of the sponge just aĞer absorbing
the key. She can use this state value to reconstruct the tag of any message of choice. If the
key fits in a single r-bit block, the adversary can even recover the key. Note however that
for forging tags, the knowledge of the state of the sponge function aĞer absorbing the key is
sufficient.

In any case, the success probability is 2c/(m − 1). For all key lengths such that |K| <
c − log2(m) with m the maximum number of messages that can be MACed with the same
key, these aĴacks pose no threat.

The adversary can aĴempt to generate inner collisions in the keyed sponge function. The
expected data complexity of this is 2c/2 blocks. Once an inner collision is observed, MAC
forgery is easy. If two messages M and M′ have the same tag value, any message M′||A has
the same tag value as M||A. This aĴack poses no threat as long as m ≪ 2c/2

Note that one can also define a MAC function by taking as input the message followed
by the key: t = ⌊F(M||K)⌋n. In this case, an adversary has the advantage that she can try
to generate inner collisions offline, i.e., without having to query the keyed sponge function.
Additionally, she can try to construct a path to a state that occurs in the absorbing of a target
message, leading to a second message with the same MAC.

52 / 93

Chapter 6

Security proofs

In this chapter we prove the security of the sponge and duplex constructions against generic
aĴacks. First we prove that the only feature that sets a random sponge apart from a random
oracle is the existence of inner collisions. Then we prove an upper bound for the success
probability of distinguishing a random sponge from a random oracle. This bound covers an
adversary that has access to f and f−1 and allows replacing a random oracle by a random
sponge in any application. This inevitably comes with a loss of security, that can however be
made negligible by taking a sufficiently large capacity. In the subsequent sections we prove
that the security of the duplex construction is equivalent to that of the sponge construction.
This is followed by a proof that the security of a set of sponge functions making use of the
same transformation or permutation f and padding rule is equivalent to that of the sponge
function in that set with the smallest capacity. Finally, we discuss the implications of the
proven bounds.

When we speak about probabilities in this chapter, these are taken over the space of all
b-bit transformations or b-bit permutations.

6.1 Inner collisions as only source of non-uniformity

In this section we prove a fundamental property of the sponge construction: the existence
of inner collisions is the only property that sets a random sponge apart from a random ora-
cle. More particularly, if f is a random transformation or permutation, then the bits of the
responses of the sponge construction to a sequence of queries for which there are no inner
collisions, are uniformly and independently distributed.

6.1.1 The need for sponge-compliant padding

We now show how the fundamental property above implies that the padding rule must be
sponge-compliant, as defined in Definition 1 in Section 2.1.2.

First, assume a padding rule that maps the empty string to itself. When presented the
empty string as output, the sponge returns as first block of its output zero as according to
Equation (2.3) it is equal to absorb(empty string) = 0r, and this for any choice of f . This is
clearly not uniformly and independently distributed.

Second, assume we can find a pair of message M and M′ and integers l and l′ such that

M||pad[r](|M|)||0lr = M′||pad[r](|M′|)||0l′r , (6.1)

and let Z = sponge(M) and Z′ = sponge(M′). Then according to Equation (2.3), we have
Zl = Z′l′ , for any choice of f . This is clearly not uniformly and independently distributed.

53 / 93

Cryptographic sponge functions 6. Security proofs

By truncating trailing zeroes at both sides, Equation (6.1) can be simplified to

M||pad[r](|M|) = M′||pad[r](|M′|)||0nr ,

with n = l′ − l. This readily translates in the condition expressed in Equation (2.1). In fact,
sponge-compliance imposes that the mapping from (M, i), with i the index of the output
block to the path to Zi with Z = sponge(M) is injective.

6.1.2 The proof

We denote a sequence of queries to a system X by Q and denote the sequence of responses
to Q by X (Q). In this case, Q is a sequence of couples (M(i), ℓi), with M(i) ∈ Z∗2 and ℓi a
positive integer, and X (Q) is a sequence of couples (M(i), Z(i)) with Z(i) the ℓi-bit response
of the random sponge to query i.

For a given sequence of queries Q, the random sponge traverses some states when it
absorbs the input strings and when it is then being squeezed. There may be states that are
equally traversed for different queries, e.g., if P(i) and P(j)||0(ℓi−1)r have a common prefix.
We denote the set of paths to states traversed during the distinguishing experiment by P .
We have:

P =
{

X is a prefix of P(i)||0(ℓi−1)r for some 1 ≤ i ≤ q
}

,

with q denoting the number of queries. In the context of a given sequence of queries, absence
of inner collisions means that

∀X ̸= X′ ∈ P : âbsorb(X) ̸= âbsorb(X′).

We can now prove the following theorem.

Theorem 5. Let f be a random transformation or random permutation and pad a sponge-compliant
padding rule. The bits of the outputs returned by Ѡѝќћєђ[f , pad, r] to a sequence of queries are uni-
formly and independently distributed if no inner collisions occur during the queries.

Proof. Consider the j-th output block Z(i)
j of the i-th query: Z(i)

j = absorb(X) with X =

P(i)||0jr. Let P x be the set of paths to the states traversed in the queries 1 to i− 1 and in the
current query for the previous output blocks. We denote the set of states and inner states
corresponding to P x by S x and Ŝ x respectively.

The requirement that no inner collision takes place during the generation of the output
block absorb(X) restricts the value of the inner state âbsorb(X) to be different from all values
in Ŝ x.

If f is a random transformation, the value of absorb(X)must be in Zr
2× (Zc

2 \ Ŝ x) due to
this requirement. By construction these values are equiprobable. If f is a random permuta-
tion, the invertibility of f imposes that absorb(X)must be different from all states traversed
already (except (0r, 0c)), so here absorb(X) is chosen from is (Zr

2 × (Zc
2 \ Ŝ x)) \ S x. Using

S x ⊂ Zr
2 × Ŝ x this can be simplified to Zr

2 × (Zc
2 \ Ŝ x). Hence in both cases all possible

values in Zr
2 are equiprobable for absorb(X) and independent of the states previously tra-

versed. As all possible values for the output blocks are equiprobable, so are the individual
bits. ⊓⊔

54 / 93

6. Security proofs Cryptographic sponge functions

Figure 6.1: The distinguishing seĴing

6.2 Distinguishing a random sponge from a random oracle

In this section we prove the security of the sponge construction in a black-box seĴing. More
particularly, we prove an upper bound on the success probability of distinguishing a random
sponge from a random oracle for an adversary that does not have direct access to the random
transformation or permutation f .

6.2.1 The adversary’s seĴing

We consider an adversary that shall distinguish between two systems, as illustrated in Fig-
ure 6.1. The system at the leĞ is the combination of the random transformation or permuta-
tion F and the sponge construction S . The adversary may not make queries to F directly,
but may send queries to S , that in turn calls F to construct its responses. This is denoted by
S [F]. We denote the interface to S [F] by H. The interface H takes as input a binary string
M ∈ Z∗2 and an integer ℓ and returns a binary string Z ∈ Zℓ

2, the sponge output truncated
to ℓ bits.

The system at the right consists of a random oracle RO providing the same interface as
S [F], the interfaceH. When presented with an input (M, ℓ), this returnsRO(M) truncated
to ℓ bits.

We consider an adversary who is presented with a system X that is either S [F] or RO.
The a priori probability of X being eitherRO or S [F] is 1

2 . The adversary may send queries
to the interface H of X , even adaptively, by sequentially asking the first ℓi bits of output
for a set of messages M(1) . . . M(q). AĞer sending all queries, she has to guess whether X is
RO or S [F] using the responses to the queries. We consider computationally unbounded
adversaries that can optimally exploit the information present in the responses to queries
and we try to upper bound the RO distinguishing advantage as a function of the total cost
(or budget) of the queries.

6.2.2 The cost of queries

In our bounds we use ameasure for the complexity of queries which is natural when applied
to the sponge construction. We call this measure the cost and denote it by N. The cost N of a
query toX is the total number of calls toF it would yield ifX = S [F]. The cost of a query is

55 / 93

Cryptographic sponge functions 6. Security proofs

fully determined the length of its input M and the requested output length ℓ. For example,
if simple padding is used, a query contributes ⌊ |M|+1

r ⌋+ ⌈ ℓr ⌉ to the cost.

6.2.3 RO distinguishing advantage

The adversary is formalized as an algorithm A that returns 1 if she decides X = S [F] and 0
otherwise. The success probability of the adversary is given by

1
2

Pr(A[S [F]] = 1) +
1
2

Pr(A[RO] = 0) =
1
2
+

1
2
(Pr(A[S [F]] = 1)− Pr(A[RO] = 1)) .

The succes probability is clearly determined by the rightmost expression. We denote this by
the term distinguishing advantage:

Adv(A) = |Pr(A[S [F]] = 1)− Pr(A[RO] = 1)| .

Without loss of generality, we take the absolute value to stick to the usual convention. The
advantage of the adversary depends on the queries Q she sends and her guessing rule. For
a given sequence of queries Q, let R(Q)RS be the set response sequences for which the ad-
versary A guesses that X is S [F]. Then for Q, the probability that the adversary will return
1 if she addressing S [F] is

Pr(A[S [F]] = 1) = ∑
x∈R(Q)RS

Pr(S [F](Q) = x) .

And the probability that it will return 1 if it is addressingRO is

Pr(A[RO] = 1) = ∑
x∈R(Q)RS

Pr(RO(Q) = x) .

It follows that the advantage as a function of Q is

Adv(A, Q) = ∑
x∈R(Q)RS

|Pr(S [F](Q) = x)− Pr(RO(Q) = x)| .

This advantage is maximized by taking as guessing rule:

R(Q)RS = {x : Pr(S [F](Q) = x) ≥ Pr(RO(Q) = x)} ,

yielding the following expression:

Adv(A, Q) =
1
2 ∑

x
|Pr(S [F](Q) = x)− Pr(RO(Q) = x)| . (6.2)

We will now prove upper bounds for Adv(A) as a function of N, the cost of the queries.
As we will show in Section 6.6.1, this upper bounds the success probabilities of generic at-
tacks.

Theorem 6. The RO distinguishing advantage of the sponge construction when calling a random
transformation f is upper bounded by:

1− e−
N(N+1)

2c+1

Theorem 7. The RO distinguishing advantage of the sponge construction when calling a random
permutation f is upper bounded by:

1− e−
N(N+1)

2c+1 + N(N−1)
2r+c+1

56 / 93

6. Security proofs Cryptographic sponge functions

Proof. Let Pr(IC|Q) denote the probability that a sequence of queries, when sent to S [F]
results in an inner collision.

As proven in Theorem 5, the bits of the responses of a random sponge to a sequence of
queries are uniformly and independently distributed if no inner collision occurred during
the queries. So for a sequence of responses x to Q that do not result in an inner collision, we
have Pr(S [F](Q) = x|no IC) = Pr(RO(Q) = x). It follows that

Pr(S [F](Q) = x) = Pr(S [F](Q) = x|IC)Pr(IC|Q) + Pr(RO(Q) = x)(1− Pr((IC|Q)).

Filling this in in Equation (6.2) yields:

Adv(A, Q) =
1
2

Pr(IC|Q)∑
x
|Pr(S [F](Q) = x|IC)− Pr(RO(Q) = x)| .

As ∑x |Pr(S [F](Q) = x|IC)− Pr(RO(Q) = x)| ≤ 2, we can upper bound the advantage by

Adv(A, Q) ≤ Pr(IC|Q)) .

The right hand side of this equation is simply the success probability for generating an inner
collisions in a sequence of queries Q. Filling in the success probabilities for generating inner
collisions derived in Section 5.4 results in the two theorems. ⊓⊔

6.3 Differentiating a random sponge from a random oracle

Theorems 6 and 7 give a strong upper bound for the success probability of distinguishing the
sponge construction calling a random transformation or permutation respectively. Unfortu-
nately, this is with respect to an adversary that has no query access to f . This implies that
the adversary does not have a specification of f and cannot access it directly. In any sponge
function that is concrete and meant to be widely used, f must be publically specified. So f ,
and in case of a permutation also f−1, can be queried by anyone having access to the spec-
ification or an implementation. So the distinguisher’s seĴing of Section 6.2.1 and Figure 6.1
is of liĴle use for the relevant use cases.

6.3.1 The indifferentiability framework

A solution to this problem is provided by the indifferentiability framework that was introduced
by Maurer et al. in [45] as an extension of the classical notion of indistinguishability. It was
applied to iterated hash functions by Coron et al. in [19]. We provide here an intuitive
introduction and refer to the original papers for a more in-depth treatment and motivation.

What is actually required is a bound on the distinguishing advantage in a seĴing similar
to that of Figure 6.1, where the adversary to the system at the leĞ has additional query access
to F (and in the case of a permutation also to F−1). At first sight such a system cannot be
hard to distinguish from the randomoracleRO at the right, merely due to the presence of the
additional interface. An obvious solution to this problem would be to extend the system at
the rightwith another component that has the same interface asF . For the systems to be hard
to distinguish, this component should simulate the behaviour of a random transformation
(or permutation) of the same width as F . For this reason it is called a simulator. There is
an additional constraint. When making queries to the system at the leĞ, the adversary can
verify whether the responses to the queries are sponge-consistent. For each query to S [F], it
can emulate the sponge construction S itself and make queries to F directly. This should
give the same results. For the right system to be hard to distinguish from the leĞ system, it

57 / 93

Cryptographic sponge functions 6. Security proofs

Figure 6.2: The differentiability seĴing

shall also behave sponge-consistent. For that reason, the simulator may have query access
to the random oracle RO for satisfying sponge-consistency. So the simulator shall be an
efficient algorithm with query access to RO and with the ability to generate random bits
and store past queries it received.

The idea is now to construct a simulatorP forwhich one canprove anupper boundon the
advantage of distinguishing the leĞ system from the right. Different simulators may result
in different advantages and the goal of the designer is to bound this advantage as tightly as
possible. We denote the advantage by the term RO differentiating advantage of the sponge
construction when calling a random transformation (or permutation). As we will explain in
Section 6.6, the upper bound on the RO differentiating advantage implies an upper bound
for the success probability of any generic aĴack on the sponge construction equal to the
succes probability for a random oracle plus the bound on theRO differentiating advantage.
This is in fact the central idea of the indifferentiability framework.

In this remainder of this section we will prove upper bounds on the RO-differentiating
advantage of the sponge constructionwith f is a random tranformation andwith f a random
permutation.

6.3.2 The adversary’s seĴing

The adversary shall distinguish between two systems that each have two components, as
illustrated in Figure 6.2. The system at the leĞ is the combination of the random transforma-
tion (or permutation) F and the sponge construction S [F]. The adversary can make queries
to both components separately, where the laĴer in turn calls the former to construct its re-
sponses. This is denoted by S [F]. The sponge construction S [F] provides the interface H
as specified in Section 6.2.1. If F is a random transformation it has a single interface I1

which takes as input an element s of Zr+c
2 and returns t = F (s), an element of the same set.

If F is a random permutation, it has an additional interface I−1 that given input s returns
t = F−1(s). Note that the sponge construction only uses the interface I1.

The system at the right consists of a random oracle RO providing the interface H and a
simulator P . To construct its responses, the simulator can query RO, denoted by P [RO].
Note that the simulator does not see the adversary’s queries to the random oracle. We define
two simulators, one for the case of a random transformation and another one for the case
of a random permutation. The transformation simulator provides a single interface I1. The

58 / 93

6. Security proofs Cryptographic sponge functions

permutation simulator provides both interfaces I1 and I−1.
Let X be either (S [F],F) or (RO,P [RO]). The sequence of queries Q to X consist of a

sequence of queries to the interfaceH, denoted Q0 and a sequence of queries to the interface
I1 (and I−1), denoted Q1. Q0 is a sequence of couples (M, ℓ), with M ∈ Z∗2 and ℓ a positive
integer. Q1 is a sequence of couples (s, b) with s ∈ Zr+c

2 and b either 1 or −1, indicating
whether the interface I1 or I−1 is addressed. In the case that F is a transformation, b is
restricted to 1.

The cost of queries toH is as defined in Section 6.2.2. The cost of a query to I1 or I1 is 1.

6.3.3 The simulators we use in our proofs

We define simulators for the case that F is a random transformation and for the case of a
random permutation. In both cases, the simulator should behave as a deterministic function
and give responses to queries Q1 that in combination with the responses to queries Q0 to the
random oracle shall minimize the probability that the system (RO,P [RO]) can be distin-
guished from a system (S [F],F). In this section we informally explain how our simulators
work.

A simulator keeps track of the queries it received and the responses it returned in a sim-
ulator graph, similar to the adversary graphs discussed in Section 5.3. Initially the simulator
graph has no edges and for each new query to I1(s) (or I−1(s)) it generates a response t and
adds the edge (s, t) (or (t, s)). Note that using the responses of the simulator to its queries,
the adversary can fully reconstruct the simulator graph.

In order tomotivate the design of the simulators, we nowdiscuss properties of this graph
that it has at anymoment during or aĞer the queries, using an example depicted in Figure 6.3.

For a subset of the nodes in the simulator graph, the adversary knows a path. FromDefi-
nition 8, it is clear that these are the nodes that have an incoming edge and are in a supernode
that can be reached from supernode 0c by following the directed edges from supernode to
supernode. For this purpose, we define the set of rooted supernodes R as the subset of Zc

2
containing 0c and all the supernodes accessible from it through the supernode graph. By
extension, we say that a node s = (s, ŝ) is rooted if ŝ ∈ R. So the adversary knows paths
to all rooted nodes that have an incoming edge from another rooted node, plus the empty
path of the (0r, 0c) node. For each of these rooted nodes she can query the interface H of
the system hoping to reveal an inconsistency, which is evidence that it is not (S ′[F],F).
We call sponge-consistent the responses to a sequence of queries Q that do not result in such
inconsistency.

Our simulators are built to guarantee sponge-consistent responses up to 2c queries Q1.
We will now explain how they realize this. Whenever a simulator receives a query to I1(s)
with s rooted, it will result in an image t with known path. Therefore, the simulator con-
structs the outer part of t to be sponge-consistent by querying RO using the path to t (ex-
cept for the all-zero path). When the simulator receives a query to I1(s)with s not rooted, no
path to the image t is known and it chooses t randomly from all the nodes (with no incoming
edge, if F is a random permutation).

Moreover, the simulators are designed so that a call to I1(s) results only in the path
of a single node becoming known, that of t = I(s) if s is rooted. To achieve that, when
selecting t̂ for a rooted node s, they exclude the supernodes with outgoing edges (cases a
and c in Figure 6.3). And finally, they avoid the occurrence of nodes with multiple paths.
For that, when selecting t̂ for a rooted node s, they exclude the rooted supernodes (case b in
Figure 6.3) and those with outgoing edges (case c in Figure 6.3). The permutation simulator
avoids paths of nodes becoming known as a result of a call to I−1(s) altogether by excluding
rooted supernodes when selecting t̂.

59 / 93

Cryptographic sponge functions 6. Security proofs

Figure 6.3: Example of simulator graph. The rooted supernodes are in bold. Paths are indi-
cated in italic next to the nodes having a path.

60 / 93

6. Security proofs Cryptographic sponge functions

Let O be the set of supernodes with an outgoing edge. When the simulator receives a
query to I1(s)with s a rooted node and all supernodes are rooted or have an outgoing edge,
i.e., if R ∪O = Zc

2, it can no longer ensure sponge-consistency and we call the simulator
saturated. As every query to the simulator adds at most one edge and that hence R ∪O can
be extended by at most 1 per query, this cannot happen before 2c queries.

6.3.4 When being used with a random transformation

The simulator for the case that F is a random transformation is given in Algorithm 8. We
prove upper bounds for the RO differentiating advantage by means of a series of lemmas
and a final theorem.

Algorithm 8 The transformation simulator P [RO]
1: Interface I1, taking node s as input
2: if node s has no outgoing edge then
3: if node s is rooted AND R ∪O ̸= Zc

2 (no saturation) then
4: Construct path to t: find path to s, append s and call the result P
5: Write P as P = P′0rj where P′ does not end with 0r

6: if P′ can be unpadded into M then
7: Assign to t the value of block Zj with Z = RO(M)
8: else
9: Choose t randomly and uniformly
10: end if
11: Choose t̂ randomly and uniformly from Zc

2 \ (R ∪O)
12: Let t = t||t̂
13: else
14: Choose t randomly and uniformly from all nodes
15: end if
16: Add an edge from s to t
17: end if
18: return the node t at the end of the outgoing edge from s

Lemma 1. To every node in the simulator graph there is at most one path, unless the simulator is
saturated.

Proof. First, we show that the rooted supernodes in the supernode graph form a tree. When
no edges exist, this is indeed the case. The only way to create a new rooted node is by calling
I1(s) with s rooted. Assuming the simulator is not saturated, this happens only in first part
of Algorithm 8 (lines 4–12), if s is rooted and has no outgoing edge. The new edge only adds
a single supernode to R as the simulator selects it from the supernodes with no outgoing
edges. Moreover, the new edge cannot arrive in a rooted supernode (because the simulator
selects t̂ from Zc

2 \ R) or in a supernode from which a rooted supernode can be reached
(because the simulator select t̂ from the supernodes with no outgoing edges).

Then, for two connected supernodes (ŝ, t̂), there exists only one edge in the simulator
graph of the form (s||ŝ, t||t̂). This is because the simulator chooses a distinct inner part for
each new rooted node (unless it is saturated).

Finally, each r-bit block of the path is uniquely determined by the transitions on the outer
part of the nodes. ⊓⊔

61 / 93

Cryptographic sponge functions 6. Security proofs

For a given sequence of queries Q and their responses X (Q), we define the sponge con-
sistency as the property that the responses to Q0 are equal to those that one would obtain
by applying the sponge construction from the responses to Q1 (when the queries Q1 suf-
fice to perform this calculation), i.e., that X (Q0) = S ′[X (Q1)](Q0). By construction, the
queries, and their responses, made to the system (S ′[F],F) are sponge-consistent. For the
sponge-consistency of the queries, and their responses, made to (RO,P [RO]), we refer to
the following lemma.

Lemma 2. Given queries to the simulator P [RO] described in Algorithm 8 and to RO, it returns
sponge-consistent responses, unless the simulator is saturated.

Proof. The adversary can check for sponge-consistency by querying H for every node s in
the simulator graph to which it knows the path P. The all-zero path does not correspond
to a block that can be output by the sponge construction, so without loss of generality we
assume that P ̸= 0rj.

Given the path P to the node s, its outer part must be equal to Zj with Z = RO(M),
where M||pad(|M|) = P′ and P′ is a valid sponge input given by P = P′0rj. As Lemma 1
says, there is only a single path to any rooted node in the simulator graph, and thus the
simulator guarantees this equality for the response t to every query to I1(s) with s a rooted
node, as long as it is not saturated.

We also need to show that no path is assigned to a node unless its outer part is chosen by
the lines 6–9 of Algorithm 8. Indeed, the supernode t̂ (at line 11) is the only supernode that
becomes rooted due to the query. This is because the simulator excludes supernodes with
outgoing edges in the selection of t̂ (as long as the simulator is not saturated).

It follows that the simulator guarantees sponge-consistency for all queries Q up to satu-
ration. ⊓⊔

Lemma 3. Any sequence of queries Q0 up to cost 2c can be converted to a sequence of queries Q1

where Q1 gives at least the same amount of information to the adversary and has no higher cost than
Q0.

Proof. A query in Q0 consists of an input M and a length ℓ. Let P = M||pad(|M|)0r⌈ ℓr ⌉. We
can now convert this query into |P|r queries to I1. Let s0 = 0r||0c and si+1 = I1((si ⊕ Pi)||ŝi)
for 0 ≤ i < |P|r be the responses to the new queries. As Lemma 2 says that all queries
up to cost 2c are sponge-consistent, the output to the original (M, ℓ) query consists of the
concatenation of the outer parts of s|P|r to s|P|r+⌈ ℓr ⌉−1 truncated to ℓ bits. By the definition of
the cost of queries, the original query in Q0 has cost |P|r + ⌈ ℓr ⌉ − 1 and it results in |P|r +
⌈ ℓr ⌉ − 1 queries in Q1, each one with cost 1.

This process can be repeated for all queries in Q0 resulting in a sequence of queries Q1

with the same cost. If there are queries in Q0 with inputs having common prefixes, these can
give rise to the same queries in Q1 resulting in a reduction in cost. ⊓⊔

Lemma 4. The advantage of an adversary in distinguishing between F and P [RO] with the re-
sponses to a sequence of N < 2c queries Q1 is upper bounded by:

fT(N) = 1−
N

∏
i=1

(
1− i

2c

)
.

Proof. The response sequence x to a sequence of N different queries is a sequence of N values
in Zr+c

2 . We can provide an upper bound of the advantage by computing the probability

62 / 93

6. Security proofs Cryptographic sponge functions

distributions of the outcomes of the queries to F on the one hand and to P [RO] on the
other. We have

Adv(A) ≤ 1
2 ∑

x
|Pr(x|F)− Pr(x|P [RO])|, (6.3)

where the righthand side of this equation is known as the variational distance.
Since F is a transformation over Zr+c

2 chosen randomly and uniformly, the responses to
the different queries are independent and uniformally distributed over Zr+c

2 . It follows that
all (2r+c)N possible outcomes are all equiprobable.

By inspecting Algorithm 8, the simulator always returns uniform values for the outer
part of the image. For the inner part, the simulator chooses it non-uniformly only if the pre-
image s is rooted. To obtain the greatest possible variational distance, the optimum strategy
consists in creating N rooted nodes. As a response to the first query, it may return all values
but 0r. At each subsequent query, one value of Zc

2 is added to R, and thus for each query,
the simulator returns a inner part value different from 0r and all previous ones. Note that by
restricting N < 2c the simulator will not be saturated. Using this strategy gives us an upper
bound on the variational distance. So for the simulator, there are (2r)N(2c− 1)(N) (where a(n)
denotes a!/(a− n)!) possible responses with different inner parts, each with equal probabil-
ity ((2r)N(2c − 1)(N))

−1, and the (2r)N((2c)N − (2c − 1)(N)) others have probability 0. This
gives:

Adv(A) ≤ 1−
(2c − 1)(N)

(2c)N = 1−
N

∏
i=1

(
1− i

2c

)
. (6.4)

⊓⊔

We have now all ingredients to prove the following theorem.
Theorem 8. The RO differentiating advantage of the sponge construction calling a random trans-
formation is upper bound by:

1−
N

∏
i=1

(
1− i

2c

)
,

with N the cost of the queries.
Proof. As discussed in Lemma 3 we can construct from a set of query sequences Q0, Q1 an
equivalent sequence of queries Q1′ ◦Q1 with no higher cost and giving at least the same in-
formation. So, without loss of generality, we only need to consider adversaries using queries
Q

1
= Q1′ ◦Q1 and their response X (Q

1
) and no queries Q0.

For any fixed query Q1, we look at the problem of distinguishing the random variable
F (Q1

) from the random variable P [RO](Q1
). For a sequence of queries Q1 with cost N,

Lemma 4 upper bounds the advantage of such an adversary to the expression in the theorem.
The simulator is efficient and has running time tS = O(N2): for each query to the simu-

lator with s rooted, it must find the path to s and send a query to the random oracle of cost
equal to the length of the path to s. The length of the path to s is upper bounded by N, the
total number of rooted supernodes in the simulator graph. ⊓⊔

If N is significantly smaller than 2c, we can use the log(1 + ϵ) approximation to simplify
the expression for the upper bound:

1− e−
N(N+1)

2c+1 <
N(N + 1)

2c+1 . (6.5)

Note that this is equal to the probability of success of generating an inner collision in a se-
quence of queries of total cost N, as derived in Section 5.4.1. It follows that this bound is as
tight as possible.

63 / 93

Cryptographic sponge functions 6. Security proofs

6.3.5 When being used with a random permutation

The simulator for the case that F is a random permutation is given in Algorithm 9. We
now can prove upper bounds for theRO differentiating advantage using a series of similar
lemmas.

Algorithm 9 The permutation simulator P [RO]
Interface I1, taking node s as input
if node s has no outgoing edge then
if node s is rooted AND R ∪O ̸= Zc

2 (no saturation) then
Construct path to t: find path to s, append s and call the result P
Write P as P = P′0rj where P′ does not end with 0r

if P′ can be unpadded into M then
Assign to t the value Zj with Z = RO(M)

else
Choose t randomly and uniformly

end if
Choose t̂ randomly and uniformly from Zc

2 \ (R∪O) and such that t||t̂ has no incom-
ing edge yet
Let t = t||t̂

else
Choose t randomly and uniformly from all nodes that have no incoming edge yet

end if
Add an edge from s to t

end if
return the node t at the end of the outgoing edge from s

Interface I−1, taking node s as input
if node s has no incoming edge then
Choose t randomly and uniformly
Choose t̂ randomly and uniformly from Zc

2 \ R and such that (t, t̂) has no outgoing edge
yet
Let t = t||t̂
Add an edge from t to s

end if
return the node t at the beginning of the incoming edge into s

The proofs of Lemma 1 and Lemma 2 are valid for the permutation simulator with re-
spect to all calls to I1 but do naturally not consider calls to I−1. The proofs can simply be
extended to the permutation simulator case by noting that the I−1 interface of the simulator
excludes rooted nodes in the selection of the response, implying that a call to I−1 cannot
lead to new rooted nodes and hence also not to new paths. The proof of Lemma 3 is valid
for the permutation simulator as it is. Finally, the output produced by the interfaces I1 and
I−1 are consistent, i.e., if I1(s) = t then I−1(t) = s and vice-versa.

Instead of Lemma 4 we now have the following lemma.
Lemma 5. The advantage of an adversary in distinguishing F and P [RO] with the responses to a
sequence of N < 2c queries Q1 is upper bounded by:

1−
N−1

∏
i=0

(
1− i+1

2c

1− i
2r+c

)
.

64 / 93

6. Security proofs Cryptographic sponge functions

Proof. The proof is similar to that of Lemma 4. Since F is a permutation over Zr+c
2 chosen

randomly and uniformly, the only limitation is that for the i-th query, the image (or pre-
image) shall not be equal to any of the found images (or pre-image), resulting in (2r+c)− i
possibilities. This leads to (2r+c)(N) possible outcomes each with probability ((2r+c)(N))

−1

and (2r+c)N − (2r+c)(N) outcomes with probability 0.
From inspecting Algorithm 9 if follows that the adversary obtains the greatest possible

variational distance when he creates N rooted nodes. This leads to the same distribution as
for the transformation simulator. The possible outcomes of the permutation simulator are a
subset of the possible outcomes for F . This gives:

Adv(A) ≤ 1−
(2r)N(2c − 1)(N)

(2r+c)(N)
= 1−

N−1

∏
i=0

(
1− i+1

2c

1− i
2r+c

)
. (6.6)

⊓⊔

These lemmas and proofs result in the following theorem, where the proof is similar to
that of Theorem 8.

Theorem 9. TheRO differentiating advantage of the sponge construction calling a random permu-
tation is upper bound by:

1−
N−1

∏
i=0

(
1− i+1

2c

1− i
2r+c

)
. (6.7)

with N the cost of the queries.

If N is significantly smaller than 2c, we can use the log(1 + ϵ) approximation to simplify
the expression for the upper bound:

1− e−
N(N+1)

2c+1 −
N(N−1)
2r+c+1 <

N(N + 1)
2c+1 − N(N − 1)

2r+c+1 . (6.8)

Note that this is equal to the probability of success of generating an inner collision in a se-
quence of queries of total cost N, as derived in Section 5.4.2. It follows that this bound is as
tight as possible.

Remarkably, using a random permutation results in a beĴer bound than using a random
transformation. By assigning distinct inner part values of rooted nodes, the simulators tend
to generate an output distribution which is closer to that of a permutation than to that of a
transformation.

6.4 Equivalence of the sponge and duplex constructions

In this section we prove a fundamental property of the duplex construction: the output of
a call to a duplex object can be obtained by evaluating a sponge function with the same
parameters to the input constructed from all previous inputs to the duplex object. The corol-
lary of this is that the duplex construction inherits the security properties from the sponge
construction.

The following lemma links the security of the duplex construction ёѢѝљђѥ[f , pad, r] to
that of the sponge construction Ѡѝќћєђ[f , pad, r]. Generating the output of a D.duplexing()
call using a sponge function is illustrated in Figure 6.4.

65 / 93

Cryptographic sponge functions 6. Security proofs

Figure 6.4: Generating the output of a duplexing call with a sponge

Lemma 6. [Duplexing-sponge lemma] If we denote the input to the i-th call to a duplex object by
(σi, ℓi) and the corresponding output by Zi we have:

Zi = D.duplexing(σi, ℓi) = sponge(σ0||pad0||σ1||pad1|| . . . ||σi, ℓi),

with padi a shortcut notation for pad[r](|σi|).

Proof. The proof is by induction on the number of input strings σi.
First consider the case i = 0. We must prove D.duplexing(σ0, ℓ0) = sponge(σ0, ℓ0). The

state of the duplex object before the call has value 0b, the same as the initial state of the sponge
function. Both in the case of the sponge function and the duplex object the input string is
padded with the padding rule pad resulting in a single r-bit block P. Then, in both cases P
is XORed to the first r bits of the state and f is applied to the state. At this point the sponge
function and the duplex object have the same state and both return the first ℓ0 ≤ r bits of
the state as output string. Since the sponge function does not do any additional iterations of
f on the state, the state of the duplex object aĞer the call D.duplexing(σ0, ℓ0) is equal to the
state of the sponge construction aĞer absorbing a single block σ0||pad0.

Now assume that aĞer the call D.duplexing(σi−1, ℓi−1) the duplex object has the same
state as the sponge function aĞer absorbing σ0||pad0||σ1||pad1|| . . . ||σi−1||padi−1. During
the call D.duplexing(σi, ℓi), the block σi||padi is XORed into the first r bits of the state and
subsequently f is applied to the state. It follows that the state of the duplex object D af-
ter the call D.duplexing(σi, ℓi) is equal to the state of the sponge function aĞer absorbing
σ0||pad0||σ1||pad1|| . . . σi||padi. As the output just consists of the first ℓi bits of the state, this
proves Lemma 6. ⊓⊔

The duplexing-sponge lemma states that the output of a duplexing call is the output of a
sponge functionwith an input σ0||pad0||σ1||pad1|| . . . ||σi||padi and from this input the exact
sequence σ0, σ1, . . . , σi can be recovered. As such, the duplex construction is as secure as the
sponge construction with the same parameters. In particular, it inherits its upper bound on
the RO differentiating advantage, where the input to the random oracle is the sequence of
inputs to the duplexing calls since the initialization [12].

66 / 93

6. Security proofs Cryptographic sponge functions

6.5 Optimum security of multi-rate sponge functions

The upper bound on the RO differentiating advantage of Section 6.3 covers the case of a
single sponge function instance with a random transformation or permutation f with given
width, padding rule and bitrate value. In this section we prove a bound on the RO differ-
entiating advantage of any set of sponge functions sharing the same random f and padding
rule, but with different bitrate (and so also capacity) values.

Clearly the achievable upper bound is at most that of the sponge function in the set with
the smallest capacity, as an adversay can always just try to differentiate the weakest member
of the set from a random oracle. In this section we will prove that this upper bound can be
achieved, on the condition that the padding rule satisfies an additional requirement.

When considering the joint security of multiple sponge instances calling the same func-
tion f , simple padding is no sufficient. Wewill provide a proof for the simplest padding rule
for which this is possible: the multi-rate padding (as defined in Section 2.1.2.

Theorem 10. Given a random permutation (or transformation) f , differentiating the array of sponge
functions Ѡѝќћєђ[f , pad10∗1, r] with 0 < r ≤ rmax from an array of independent random oracles
(ROr) has the same advantage as differentiating Ѡѝќћєђ[f , pad10∗, rmax] from a random oracle.

Proof. We can implement the array of sponge functions Ѡѝќћєђ[f , pad10∗1, r] using a sin-
gle sponge function spongemax = Ѡѝќћєђ[f , pad10∗, rmax], a bitrate-dependent input pre-
processing function I[r, rmax] and a bitrate-dependent output post-processing functionO[r, rmax].
So we have:

Ѡѝќћєђ[f , pad10∗1, r] = O[r, rmax] ◦ Ѡѝќћєђ[f , pad10∗, rmax] ◦ I[r, rmax],

The input pre-processing function M′ = I[r, rmax](M) consists of the following steps:

1. Construct Q by padding M with multi-rate padding: Q = M||pad10∗1[r](|M|)

2. Construct Q′ by spliĴing Q in r-bit blocks, extending each block with 0rmax−r and con-
catenating the blocks again.

3. Construct M′ by unpadding Q′ according to the padding rule pad10∗.

Note that the third step removes the trailing rmax − r bits with value 0 and the bit with
value 1 just before that. It follows that the length of M′ modulo rmax is r − 1, hence this
pre-processing implements domain separation between the different r values for a given
value of rmax. Moreover, it is straightforward to extract M from I[r, rmax](M) and hence the
pre-processing function is injective:

∀(M1, r1) ̸= (M2, r2)⇒ I[r1, rmax](M1) ̸= I[r2, rmax](M2). (6.9)

The output post-processing function Z = O[r, rmax](Z′) consists of spliĴing Z′ in rmax-bit
blocks Z′i , truncating each block to its first r bits Zi = ⌊Z′i⌋r and concatenating the blocks
again: Z = Z0||Z1|| . . .

Wewill now show that spongemax loadedwith M′ = I[r, rmax](M) and Ѡѝќћєђ[f , pad10∗1, r]
loaded with M have the same state at the end of the absorbing phase. For this we will
consider the sponge representation of Equation (2.4). Let P = M||pad10∗1[r](|M|r). The
state of Ѡѝќћєђ[f , pad10∗1, r] aĞer absorbing P is given by s = юяѠќџя[f , r](P). In this ab-
sorbing function, the r-bit blocks of P are XORed to the state, alternated with calls to f .
Let P′ = M′||pad10∗[rmax](|M′|rmax). The state of spongemax aĞer absorbing P′ is given by
s′ = юяѠќџя[f , rmax](P′). In this absorbing function, the rmax-bit blocks of P are XORed to
the state, alternated with calls to f . It follows that s = s′ if the following three conditions are
satisfied:

67 / 93

Cryptographic sponge functions 6. Security proofs

• P and P′ have the same number of blocks,

• for each block the first r bits of P′i are equal to those of Pi, and

• the last rmax − r bits of P′i are zero.

Clearly, Q at the output of the first step of I[r, rmax] is equal to P. Moreover, Q′ at the output
of its second step is equal to P′ as the unpadding in the third step of I[r, rmax] and the padding
in spongemax compensate each other. As each rmax blocks Q′i consists of the Qi followed by
0rmax−r, the three conditions are satisfied.

If we now consider the output of spongemax and Ѡѝќћєђ[f , pad10∗1, r], for each iteration
in the squeezing phase the former returns the first rmax bits of the statewhile the laĴer returns
the first r bits of the state. Applying the output processing function O[r, rmax] to the output
of spongemax results in equality.

Assumenowan aĴack that candifferentiate the set of sponge functions Ѡѝќћєђ[f , pad10∗1, r]
from a set of random oracles with an advantage ϵ. Then this can be converted into an at-
tack on spongemax with the same advantage. Namely, the response Z(i) to a query M(i) to
Ѡѝќћєђ[f , pad1, r] can be obtained from spongemax by querying it with I[r, rmax](M(i)) and
applying O[r, rmax] to its response Z(i). ⊓⊔

Note that for the proof to work it is crucial that the inner part (i.e., the c bits unaffected
by the input or hidden from the output) of the sponge function instance with the smallest
capacity is inside the inner parts of all other sponge function instances. This is realized in
the sponge construction as the inner part of the state is systematically its last c bits.

So if several sponge construction instances are considered together, only the smallest ca-
pacity counts. When considering a sponge construction instance, one may wonder whether
themere existence of a sponge function instancewith a smaller capacity has an impact on the
security of that sponge instance. This is naturally not the case, as an adversary has access to
f and can simulate any construction imaginable on top of f . What maĴers is that the value
N used in the expression for the workload shall include all calls to f and f−1 of which results
are used.

6.6 Implications of the bound on theRO differentiating advantage

It was suggested byMaurer et al. in [45], and later also formally proven byAndreeva et al. in
[2], that the success probability of any aĴack on a construction (calling a random component)
is upper bounded by the sumof the success probability of the same aĴack on a randomoracle
plus the RO-differentiating advantage of the construction. Intuitively it is easy to see why.
By contradiction, a generic aĴack on the construction with a larger success probability than
that sum would constitute a method for differentiating that construction from a random
oracle with an advantage above the upper bound.

Consider for example a random sponge with capacity c used for hashing by truncating
its output to n bits. Consider the success probability of generating pre-images. The suc-
cess probability of generating pre-images for a random oracle truncated to n bits is upper
bounded by q2−n with q the number of messsages tried. The RO differentiating advantage
of the sponge construction is upper bounded by N22−(c+1) with N the number of calls to f (or
f−1). It follows that the success probability of a generic aĴack for generating pre-images in a
sponge function is upper bounded by q2−n + N22−(c+1). If we assume that messages consist
of a fixed number of blocks and trying a message has a fixed cost 2a with a a small number,
we have q = N2a. The success probability now becomes N2−n+a + N22−(c+1). If c > 2n, the

68 / 93

6. Security proofs Cryptographic sponge functions

second term never becomes larger than the first and the success probability is close to that
for a random oracle. It follows that a random sponge based hash function offers a similar
level to pre-image aĴacks as a random oracle if its capacity is at least twice its output length.
Making the same exercise for the resistance against collisions results in the condition c > n.

These and other easy to characterize resistance levels make random sponges a good ref-
erence for expressing security claims. This is explained in more depth in Chapter 7.

6.6.1 Immunity to generic aĴacks

In the differentiating seĴing, f is assumed to be a random permutation or transformation. In
any actual sponge functions, f will be a fixed and publically specified function. In practice,
the queries to f and f−1 in the aĴack models correspond with computations of f and f−1

and N represents a computational cost. This is true if f does not have specific properties that
may be exploited in aĴacks. Per definition, the bound on the RO differentiating advantage
implies strict upper bounds for the success probability, and hence a provable lower bound for
the expected workload of any generic aĴack, i.e., that does not exploit particular properties
of f .

In the last few years a number of generic aĴacks against iterated hash functions have
been published that demonstrated unexpected weaknesses:

• multicollisions [36],

• second pre-images on n-bit hash functions for much less than 2n work [38],

• herding hash functions and the Nostradamus aĴack [40].

Clearly these aĴacks are covered by the bound on theRO differentiating advantage and for
the sponge construction the workload of these aĴacks cannot be below

√
π2c/2. As a maĴer

of fact, all these aĴacks imply the generation of inner collisions and hence they pose no threat
if generating inner collisions is difficult.

6.6.2 Randomized hashing

Interesting in this context is the application of randomized hashing [50]. Here a signing
device randomizes the message prior to hashing with a random value that is unpredictable
by the adversary. This increases the expectedworkload of generating a signature that is valid
for two different messages from generating two colliding messages to that of generating a
second pre-image for a message already signed. Now, if we keep inmind that for the sponge
construction there are no generic aĴacks with expected workload of order below 2c/2, we
can conclude the following. A lower bound for the expected complexity for generating a
collision is min(2n/2, 2c/2) and for generating a second pre-image min(2n, 2c/2). Hence, if
c > 2n, randomization increases the strength against signature forgery due to generic aĴacks
against the hash function from 2n/2 to 2n. If the capacity is between n and 2n, the increase is
from 2n/2 to 2c/2. If c < n, randomized hashing does not significantly increase the security
level.

6.6.3 Security of keyed sponge functions

As discussed in Chapter 3 and Chapter 4 the sponge and duplex constructions can be used
in keyed modes. In this section we explain the resistance of these modes against generic
aĴacks.

69 / 93

Cryptographic sponge functions 6. Security proofs

With a random oracle, one can construct a pseudo-random function (PRF) FK(M) by
prepending the message M with a key K, i.e., FK(M) = RO(K||M). In such a case, the
function behaves as a random function to anyone not knowing the key K but having access
to the same random oracle. Note that the same reasoning is valid if K is appended to the
message.

More specifically, let us consider the following distinguishing experiment where an ad-
versary must distinguish between two systems. At the leĞ we have a system consisting of
FK(M) = RO1(K||M) and the random oracle instanceRO1 used by the PRF. The adversary
has query access to both of them. At the right we have a system consisting of a random or-
acle instance RO2 and also RO1 and the adversary has also query access to both of them.
The adversary is presented with a system X that is one of these two systems with and must
decide whether it is (FK,RO1) or (RO2,RO1).

The only statistical difference between the two systems comes from the identity between
FK(M) andRO1(K||M), whereasRO2(M) andRO1(K||M) give independent results. There-
fore, being able to detect such statistical difference means that the key K has been recovered.
For a key K containing independent and uniform random bits, the distinguishing advantage
expressed in terms of the number of queries q is upper bound by q2−|K|.

As a consequence of the bound on theRO differentiating advantage, the same construc-
tion can be used with a sponge function. Now consider an adversary that must distinguish
between the following two systems. A system at the leĞ consisting of a keyed sponge con-
struction calling a function f and that function f , either a random transformation or a ran-
dom permutation. The system at the right consists of a random oracle and the function f .
In both subsystems, the adversary can query both subsystems. Thanks to the bound on the
RO-differentiating advantage, the distinguishing advantage of the adversary, and hence
the success probability of any aĴack on the keyed sponge construction, is upper bound by
q2−|K| + N22−(c+1).

By assuming that queries are limited in length, we can bound q in terms of N by q = N2a

with a a small integer, resulting a bound N2−(|K|−a) + N22−(c+1). As long as N < 2c+1+a−|K|

the second term can be neglected. In the worst case, the key is found aĞer N = 2|K| queries.
Filling this in yields 2|K| < 2c+1+a−|K|, resulting in the following upper bound for the key
length, and so the aĴainable generic security level:

|K| < c + 1 + a
2

.

70 / 93

Chapter 7

Random sponges as a security
reference

When designing a cryptographic primitive, it is important to know which security criteria
the result must satisfy, and when publishing it, its specifications should come with security
criteria it claims to satisfy. Consider the case of cryptographic hash functions as an example.
The traditional security criteria for a cryptographic hash function are collision resistance,
pre-image resistance and 2ndpre-image resistance [46]. OĞen, designers claim lower bounds
for the complexity of the three corresponding aĴacks. In many cases, however, no explicit
claims are made and the hash function is supposed to offer a security level implied by the
length of its digest. The problem with these criteria is that they do not express what we
have come to expect of a cryptographic hash function. Some applications require that a
hash function is correlation-free [1] or resists length-extension [62]. More recently, a series
of aĴacks [36, 38, 19, 40] has shown that certain hash function constructions do not offer as
much security as expected, leading to the introduction of yet other criteria, such as chosen
target forced prefix preimage resistance. As was already predicted in [1], there is no reason to
assume that no new criteria will appear, so the design of a hash function seems like amoving
target.

Remarkably, a random oracle [6] is a theoretical construction that satisfies all known se-
curity criteria for hash functions and it seems hard to imagine that new security criteria will
be introduced that a random oracle does not satisfy. Hence, we could replace all security
criteria by a single one: a good hash function behaves as a random oracle. But what does this
mean?

Informally speaking, a randomoraclemaps a variable-length inputmessage to an infinite
output string. It is completely random, i.e., the produced bits are uniformly and indepen-
dently distributed. The only constraint is that identical input messages produce identical
outputs. The output of a hash function has a fixed length, say n bits. So, a hash function
should behave as a random oracle whose output is truncated to n bits. In general, it is easy
to compute the resistance of a random oracle (truncated to n bits) to certain aĴacks. For in-
stance, the expected number of calls to the oracle to generate a collision is of the order of
2n/2. To find a (second) pre-image, this number is 2n. The hash function is then considered
broken if someone finds an aĴack on the hash function with a complexity smaller than for a
random oracle.

Most practical hash functions are iterated. They operate on a chaining value, which is
iteratively modified by a compression function taking a message block as an argument. This
is a very convenient property, as the whole message can be hashed on the fly. For instance,
a network application can hash the stream of data as it comes, without the need to store it

71 / 93

Cryptographic sponge functions 7. Random sponges as a security reference

into memory.
Iterated hash functions have state collisions, that is, collisions in the chaining value. The

existence of state collisions yields properties that do not exist for random oracles. For in-
stance, assume that M1 and M2 are two messages that form a state collision in an iterated
hash function. Then, for any suffix N, the messages M1||N and M2||N will produce identi-
cal hash values. A random oracle does not have this property: even if M1 and M2 produce
the same hash value (of finite length n), M1||N and M2||N produce hash values that are in-
dependent of the hash value obtained from M1 and M2. Note that the state collisions are
not a problem per se, but rather the fact that they lead to the described externally visible
behaviour.

In the light of state collisions, the claimed reference model cannot be a random oracle for
iterated hash functions. In otherwords, it is an unreachable goal for an iterated hash function
to be as strong as a randomoracle. There are twoways to address this problem. First, one can
abandon iterated hash functions and use non-streamable hash functions such as the zipper
hash construction [42]. This may indeed solve the problem but may be unsuitable for many
applications of hash functions since the entire message must be available in memory.

A second approach is to stick to iterated hash function constructions and learn to live
with state collisions. This is the approach followed in all practical hash function proposals,
including in our research.

Note that for stream ciphers and MAC functions a keyed random oracle would also be
the ideal reference model. And for the same reason, the existence of state collisions, it would
present an unaĴainable goal. In a MAC function the finite state also implies the existence of
state collisions resulting in the samephenomenon as observed for hash functions. In a stream
cipher the state collisions result in cycles in the key stream sequence, while the output of a
random oracle is not cyclic.

7.1 A random sponge as a reference model

We have proven in Theorem 5 that a random sponge only differs from a random oracle by
the mere existence of inner collisions. Moreover, we have proven a tight upper bound to
the RO differentiating advantage of random sponges. This allows to provide tight upper
bounds for the success probability for generic aĴacks. Therefore, we think random sponges
are excellent candidates for serving as a security reference model for hash functions, stream
ciphers, MAC functions and sponge functions.

7.1.1 Expressing a security claim

One can use random sponge can be used as a reference model for the security claim of a
cryptographic primitive. To do so, the following parameters of the reference sponge should
be chosen:

• the capacity c;

• the rate r;

• whether f is a random transformation or a random permutation;

• an optional limitation on the input length (e.g., an upper bound on the number of input
bits);

• an optional limitation on the output length (e.g., a range of output lengths).

72 / 93

7. Random sponges as a security reference Cryptographic sponge functions

Then, the security claim is that the designed cryptographic primitive should not exhibit ex-
ternally visible weaknesses that the reference model does not have. By an externally visible
weakness, we mean that the weakness has to be expressed in terms of input and output
strings only. A property is not an aĴack if it needs to refer to the inside of the construc-
tion. In this context, efficient primary aĴacks do not qualify as aĴacks by themselves but can
inevitably be used to construct externally visible aĴacks.

7.1.2 Choosing the parameters

When a designer decides to express the security properties of his design with respect to a
random sponge, he must decide whether he takes for f a random permutation or a random
transformation and decide values for its capacity and rate. For a given capacity and rate,
choosing a random transformation almost systematically offers a higher or equal security
level than choosing a random permutation. The exception is the length of output cycles.
One may conclude that for hash functions, taking for f a random transformation is a beĴer
model, leading to a more demanding security claim.

However, whenwe look at the practice of hash function design, almost all hash functions
are designed to be all-purpose. This is especially the case for standard hash functions. The
same hash function should be usable in wide range of applications and it should satisfy all
security criteria simultaneously. If one expresses the security claim of such a hash function
with respect to a random sponge, be it with f a random permutation or a random transfor-
mation, the value of the capacity used in the claim shall be high enough to offer a sufficient
resistance against collisions. In a random sponge this is limited by the resistance against
inner collisions, for which the expected complexity is of the order 2c/2, both for f a random
transformation or a random permutation. Both for f a random transformation or a random
permutation, this imposes the same lower bound on c: c should be chosen sufficiently large
so that generating inner collisions will not become even remotely feasible in the timeframe
that the hash function will be used. So the weaker resistance against 2nd preimages due to f
being a random permutation rather than a random transformation will not be within reach
as long as generating inner collisions is out of reach.

Nowadays, a capacity of c = 256 seems to offer already a comfortable security margin.
By further taking c = 512, one can say that when truncated to n = 256 bits, the random
sponge offers a resistance level similar to a random oracle with respect to the known aĴacks
that are also applicable to random oracles. The value of the rate of the reference sponge is
not so important. In our opinion it would be best to choose r equal to the length of the input
blocks.

7.2 The flat sponge claim

If we consider our bound on theRO differentiating advantage for the sponge construction,
we see that it is mainly determined by the capacity c and that r only has a small impact.
To further simplify the choice of parameters for the reference model, we propose to formu-
late an even simpler claim making abstraction of whether f is a random transformation or
permutation.

For this purpose we define the flat sponge claim.

Definition 14. Given a capacity cclaim, the success probablity of any aĴack should be not higher than
the sum of that for a random oracle and 1− exp

(
N22−(cclaim+1)

)
, with the workload of the aĴack

having the computational equivalent of N calls to f (or its inverse).

73 / 93

Cryptographic sponge functions 7. Random sponges as a security reference

Of course, one is free to amend this by imposing additional limitations, e.g. on the input
and/or output lengths and the total cost.

74 / 93

Chapter 8

Sponge functions with an iterated
permutation

In this chapter we present a practical strategy for the design of sponge functions that are effi-
cient and secure. Instead of a collision-resistant compression function (Merkle-Damgård) or
a random-looking compression function or ideal block cipher (as in [19]), our design strategy
takes the design of a random-looking permutation. As a good block cipher should behave
as a set of (independent and) random-looking permutations, hash function design can now
benefit from insights gained in block cipher design. However, as opposed to a block cipher,
a permutation has no key schedule and has not the concerns that come with it such as its
computational overhead and possible related-key weaknesses. This makes in our opinion
the sponge construction a very interesting alternative to the constructions based on a com-
pression function. We build f as an iterated permutation.

In this chapter, we also discuss a number of properties of an iterated permutation that
are particularly relevant when being used in a sponge construction.

8.1 The philosophy

8.1.1 The hermetic sponge strategy

In our design approach, we make a flat sponge claim with the same capacity as used in the
sponge construction. This implies that for the claim to stand, the transformation or permu-
tation f must be constructed such that it does not allow mounting aĴacks that have a higher
success probability than generic aĴacks for the same workload. We call the design philoso-
phy of adopting a sponge construction using a permutation that should not have exploitable
properties the hermetic sponge strategy.

Thanks to the bound on theRO differentiating advantage an aĴack on Ѡѝќћєђ[f , pad, r]
with expected success probability higher than that of a generic aĴack implies a distinguisher
for f . However, a distinguisher for f does not necessarily imply an exploitable weakness in
Ѡѝќћєђ[f , pad, r].

8.1.2 The impossibility of implementing a random oracle

Informally, a distinguisher for a particular f is the demonstration of any property that sets
it significantly apart from a randomly chosen function (permutation or transformation). Re-
markably, it is impossible to construct such a function that is efficient and has a reasonably

75 / 93

Cryptographic sponge functions 8. Sponge functions with an iterated permutation

sized description or code. It is not hard to see why: any practical b-bit permutation (or trans-
formation) has a compact description and implementation not shared by a randomly chosen
permutation (or transformation) with its log2 2b! ≈ (b− 1)2b (or b2b) bits of entropy.

This is beĴer known as the random oracle implementation impossibility. A formal proof
for it was first given in [18] and later an alternative proof appeared in [45]. In their proofs,
the authors construct a signature scheme that is secure when calling a random oracle but is
insecure when calling a function F taking the place of the random oracle, where the function
F has a limited (polynomial) running time and can be expressed as a Turing program of lim-
ited size. This argument is valid for any cryptographic function, and so includes any concrete
sponge function. Now, looking more closely at the signature schemes used in [18] and [45],
it turns out that they are especially designed to fail in the case of a concrete function. We find
it hard to see how this property in a protocol designed to be robust may lead to its collapse of
security. The proofs certainly have their importance in the more philosophical approach to
cryptography, but we don’t believe they prevent the design of cryptographic primitives that
provide excellent security in well-engineered examples. Therefore, we propose addressing
the random oracle implementation impossibility by just making an exception in the security
claim.

8.1.3 The choice between a permutation and a transformation

As can be read in Chapter 5, the expected workload of the best generic aĴack for finding a
second preimage of amessage M when using a transformation is of the order 2c/|M|r. When
using a permutation this is only of order 2c/2. In that respect, a transformation has preference
over a permutation. This argumentmakes sensewhen developing a hash function dedicated
to offering resistance against secondpreimage aĴacks. Indeed, using a transformation allows
going for a smaller value of c providing the same level of security against generic aĴacks.

When developing a general-purpose sponge function however, the choice of c is gov-
erned by the security level against the most powerful aĴack the function must resist. These
are aĴacks that exploit inner collisions in the sponge function. The resistance against such
aĴacks that a sponge function can offer is the same for a transformation or a permutation
and of the order 2c/2.

8.1.4 The choice of an iterated permutation

Clearly, using a random transformation instead of a random permutation does not offer less
resistance against the primary aĴacks, with the exception of detecting cycles (see Section 5.6)
and the laĴer is only relevant if very long outputs are generated. Hence, why choose for a
permutation rather than a transformation?

We believe a suitable permutation can be constructed as a fixed-key block cipher: as a
sequence of simple and similar rounds.

The alternative would be to build a suitable transformation. In [25] an upper bound on
theRO-differentiating advantagewas proven for a compression function consisting of a ran-
dom permutation f with part of its input fixed and truncated output. However, this would
result in an overall higherRO-differentiating advantage for the same width of f . A variant
of this method would be to employ a block cipher, fix its plaintext input and let the input of
the transformation correspond with the key input of the block cipher. However, this would
involve the definition of a key schedule and in our opinion results in less computational and
memory usage efficiency and a more difficult analysis.

We propose to design iterated permutations for use in sponge functions in the same way
as modern block ciphers: iterate a simple nonlinear round function enough times until the

76 / 93

8. Sponge functions with an iterated permutation Cryptographic sponge functions

resulting permutation has no properties that can be exploited in aĴacks. The remainder of
this chapter deals with such properties and aĴacks. First, as an iterated permutation can
be seen a block cipher with a fixed and known key, it should be impossible to construct for
the full-round versions distinguishers like the known-key distinguishers for reduced-round
versions ofDES andAES given in [39]. This includes differentialswith high differential prob-
ability (DP), high input-output correlations, distinguishers based on integral cryptanalysis
or deviations in algebraic expressions of the output in terms of the input. We call this kind
of distinguishers structural, to set them apart from trivial distinguishers that are of no use
in aĴacks such as checking that f (a) = b for some known input-output couple (a, b) or the
observation that f has a compact description.

In the remainder of this chapter wewill discuss some important structural distinguishers
for iterated permutations, identify the properties that are relevant in the primary aĴacks and
finally those for providing resistance to the classical hash function aĴacks.

8.2 Some structural distinguishers

In this section we discuss structural ways to distinguish an iterated permutation from a ran-
dom permutation: differentials with high differential probability (DP), high input-output
correlation, non-random properties in the algebraic expressions of the input in terms of the
output (or vice versa) and the difficulty of solving a particular problem: the constrained-
input constrained-output problem.

8.2.1 Differential cryptanalysis

A (XOR) differential over a function α consists of an input difference a′ and an output differ-
ence b′ and is denoted by a couple (a′, b′). A pair in a differential is a pair {a, a⊕ a′} such
that α(a⊕ a′)⊕ α(a) = b′. In general, one can define differentials and (ordered) pairs for any
Abelian group operation of the domain and codomain of α. A pair in a differential is then
defined as {a + a′, a} such that α(a + a′) = α(a)⊙ b′, where + corresponds to the group op-
eration of the domain of α and ⊙ of its codomain. In the following we will however assume
that both group operations are the bitwise XOR, or equivalently, addition in Zb

2.
The cardinality of a differential (a′, b′) is the number of pairs it contains and its differential

probability (DP) is the cardinality divided by the total number of pairs with given input
difference. We define the (restriction) weight of a differential wr(a′, b′) as minus the binary
logarithmof its DP, hencewe haveDP(a′, b′) = 2−wr(a′,b′). The set of values awith a amember
of a pair in a differential (a′, b′) can be expressed by a number of conditions on the bits of a.
Hence a differential imposes a number of conditions on the absolute value at its input. OĞen
these conditions can be expressed as wr(a′, b′) independent binary equations.

It is well known (see, e.g., [22]) that the cardinality of non-trivial (i.e., with a′ ̸= 0 ̸= b′)
differentials in a random permutation operating on Zn

2 with n not very small has a Poisson
distributionwith λ = 1/2 [22]. Hence the cardinality of non-trivial differentials of an iterated
permutation used in a sponge construction shall obey this distribution.

Let us now have a look at how differentials over iterated mappings are structured. A
differential trail Q over an iterated mapping f of nr rounds Ri consists of a sequence of nr + 1
differences (q0, q1, . . . , qnr). Now let fi = Ri−1 ◦ Ri−2 ◦ . . . R0, i.e., fi consists of the first i
rounds of α. A pair in a trail is a couple {a, a⊕ a′0} such that for all i with 0 < i ≤ nr:

fi(a⊕ q0)⊕ fi(a) = qi .

77 / 93

Cryptographic sponge functions 8. Sponge functions with an iterated permutation

Note that a trail can be considered as a sequence of nr round differentials (qi−1, qi) over each
Ri. The cardinality of a trail is the number of pairs it contains and its DP is the cardinality
divided by the total number of pairs with given input difference. We define the (restriction)
weight of a differential trail wr(Q) as the sum of the weights of its round differentials.

The cardinality of a differential (a′, b′) over f is the sum of the cardinalities of all trails Q
within that differential, i.e., with q0 = a′ and qnr = b′. From this, the condition on the values
of the cardinality of differentials of f implies that there shall be no trails with high cardinality
and there shall not be differentials containing many trails with non-zero cardinality.

Let us take a look at the cardinality of trails. First of all, note that DP(Q) = 2−wr(Q) is
not necessarily true, although it usually is a good approximation when wr(Q) < b− 4. The
cardinality of the trail is then given by 2b−1×DP(Q). Now, when wr(Q) > b− 1, we cannot
have DP(Q) = 2−wr(Q) as the number of pairs is an integer. A trail with wr(Q) > b− 1 has
typically no pairs, maybe one pair and very maybe a few pairs. If all trails over an iterated
permutation have weight significantly above b, most trails with non-zero cardinality will
only have a single pair. In other words, trails containing more than a single pair will be rare.
In those circumstances, finding a trail with non-zero cardinality is practically equivalent to
finding a pair in it. This makes such trails of very small value in cryptanalysis.

If there are no trails with low weight, it remains to be verified that there are no system-
atic clustering of non-zero cardinality trails in differentials. A similar phenomenon is that
of truncated differentials. These are differentials where the input and output differences are
not fully determined. A first type of truncated differentials are especially a concern in ci-
phers where the round function treats the state bits in sets, e.g., bytes. In that case, a typical
truncated differential only specifies which bytes in the input and/or output differences are
passive (equal to zero) and which ones are active (different from zero). The central point of
these truncated differentials is that they also consist of truncated trails and that it may be
possible to construct truncated trails with high cardinality. Similar to ordinary differential
trails, truncated trails also impose conditions on the bits of the intermediate computation
values of a, and the number of such conditions can again be quantified by defining a weight
function.

A second type of truncated differentials are those where part of the output is truncated.
Instead of considering the output difference over the complete output of f , one considers it
over a subset of (say, n of) its output bits (e.g., the inner part f̂). For a random b-bit to n-
bit function, the cardinality of non-trivial differentials has a normal distribution with mean
2b−n−1 and variance 2b−n−1 [22]. Again, this implies that there shall be no trails of the trun-
cated function f with low weight and there shall be no clustering of trails.

Given a trail for f , one can construct a corresponding trail for the truncated version of f .
This requires exploiting the properties of the round function of f . In general, the trail for the
truncated version will have a weight that is equal to or lower than the original trail. How
much lower depends on the round function of f . Typically, the trail in f determines the full
differences up to the last few rounds. In the last few rounds the difference values in some bit
positions may become unconstrained resulting in a decrease of the number of conditions.

8.2.2 Linear cryptanalysis

A (XOR) correlation over a function α, defined by a linear mask v at the input and a linear
mask u at the output is denoted by a couple (v, u). It has a correlation value denoted by
C(v, u) equal to the correlation between the Boolean functions vTa = ∑ viai and uTb = ∑ uibi
with b = α(a) and the summations taken over GF(2). This correlation is a real number in the

78 / 93

8. Sponge functions with an iterated permutation Cryptographic sponge functions

interval [−1, 1]. We define the (correlation) weight of a correlation by:

wc(v, u) = − log2(C
2(v, u)) .

In general, one can define correlations for any Abelian group operation of the domain and
codomain of α, whereC(v, u) is a complex number in the closed unit disk [4]. In the following
we will however assume that both group operations are the bitwise XOR, or equivalently,
addition in Zb

2. We only give an introduction here, for more background, we refer to [21].
Correlations in a permutation operating on Zb

2 are integer multiples of 22−b. The distri-
bution of non-trivial correlations (i.e., with u ̸= 0 ̸= v) in a random permutation operating
on Zb

2 with b not very small has as envelope a normal distribution with mean 0 and vari-
ance 2−b [22]. Hence non-trivial correlations of an iterated permutation used in a sponge
construction shall obey this distribution.

Let us now have a look at how correlations over iterated mappings can be decomposed
into linear trails. A linear trail Q over an iterated mapping f of nr rounds Ri consists of a
sequence of nr + 1 masks (q0, q1, . . . , qnr). A linear trail can be considered as a sequence of nr
round correlations (qi, qi+1) over each Ri and its correlation contribution C(Q) consists of the
product of the correlations of its round correlations: C(Q) = ∏i C(qi, qi+1). It follows that
C(Q) is a real number in the interval [−1, 1]. We define the correlation weight of a linear trail
by

wc(Q) = − log2(C
2(Q)) = ∑

i
wc(qi, qi+1) .

A correlationC(v, u) over f is now given by the sum of the correlation contributions of all
linear trails Q within that correlation, i.e., with q0 = v and qnr = u. From this, the condition
on the values of the correlations of f implies that there shall be no trails with high correlation
contribution (so low weight) and there shall not be correlations containing many trails with
high correlation contributions.

8.2.3 Algebraic expressions

In this section we discuss distinguishers exploiting particular properties of algebraic expres-
sions of iterated mappings, more particularly those of the algebraic normal form (ANF) con-
sidered over GF(2). In a mapping operating on b bits, one may define a grouping of bits in
d-bit blocks for any d dividing b and consider the ANF over GF(2d). The derivations are very
similar, the only difference is that the coefficients are in GF(2d) rather than GF(2) and that
the maximum degree of individual variables is 2d − 1 rather than 1.

Let g : GF(2)b → GF(2) be a mapping from b input bits to one output bit. The ANF is
the polynomial

g(x0, . . . , xb−1) = ∑
e∈GF(2)b

G(e)xe, with xe =
b−1

∏
i=0

xei
i and G(e) ∈ GF(2).

Given the truth table of g(x), one can compute the ANF of g with complexity of O(b2b)
as in Algorithm 10.

When g is a (uniformly-chosen) random function, eachmonomial xe is presentwith prob-
ability one half, or equivalently, G(e) behaves as a uniform random variable over {0, 1} [30].
A transformation f : GF(2)b → GF(2)b can be seen as a tuple of b binary functions f = (fi).
For a (uniformly-chosen) random transformation, each Fi(e) behaves as a uniform and inde-
pendent random variable over {0, 1}.

79 / 93

Cryptographic sponge functions 8. Sponge functions with an iterated permutation

Algorithm 10 Computation of the ANF of g(x)

Input g(x) for all x ∈ GF(2)b

Output G(e) for all e ∈ GF(2)b

Define G[t] = G(e), for t ∈N, when t = ∑i ei2i

Start with G(e)← g(e) for all e ∈ GF(2)b

for i = 0 to b− 1 do
for j = 0 to 2b−i−1 − 1 do
for k = 0 to 2i − 1 do

G[2i+1 j + 2i + k]← G[2i+1 j + 2i + k] + G[2i+1 j + k]
end for

end for
end for

If f is a random permutation over b bits, each Fi(e) is not necessarily an independent
uniform variable. For instance, the monomial of maximal degree x0x1 . . . xb−1 cannot appear
since the bits of a permutation are balanced when x is varied over the whole range GF(2)b.

If b is small, the ANF of the permutation f can be computed explicitly by varying the
b bits of input and applying Algorithm 10. A statistical test on the ANF of the output bit
functions can be performed and if an abnormal deviation is found, the permutation f can be
distinguished from a random permutation. Examples of statistical tests on the ANF can be
found in [30].

If b is large, only a fraction of the input bits can be varied, the others being set to some
fixed value. All the output bits can be statistically tested, though. This can be seen as a
sampling from the actual, full b-bit, ANF. For instance, let f̃ be obtained by varying only the
first n < b inputs of f and fixing the others to zero:

f̃ (x0, . . . , xn−1) = f (x0, . . . , xn−1, 0, . . . , 0).

Then, it is easy to see that any monomial xe in the ANF of f̃ also appears in the ANF of f ,
and vice-versa, whenever i ≥ n⇒ ei = 0.

A powerful type of aĴack that exploits algebraic expressions with a low degree are cube
aĴacks, recently introduced in [24]. Cube aĴacks recover secret bits from polynomials that
take as input both secret and tweakable public variables. Later cube testers were introduced
in [3], that detect nonrandom behaviour rather than perform key extraction and can aĴack
cryptographic schemes described by polynomials of relatively high degree. Cube testers are
very well suited for building structural distinguishers.

8.2.4 The constrained-input constrained-output (CICO) problem

In this section we define and discuss a problem related to f whose difficulty is crucial if it is
used in a sponge construction: the constrained-input constrained-output (CICO) problem.
Let:

• X ⊆ Zb
2: a set of possible inputs.

• Y ⊆ Zb
2: a set of possible outputs.

Solving the CICO problem consists in finding a couple (x, y) with y = f (x), x ∈ X and
y ∈ Y .

The sets X and Y can be expressed by a number of equations in the bits of x and y re-
spectively. In the simplest variant, the value of a subset of the bits of x (or y) are fixed. A

80 / 93

8. Sponge functions with an iterated permutation Cryptographic sponge functions

similarly simple case is when they are determined by a set of linear conditions on the bits of
x (or y).

We define the weight of X as

w(X) = b− log2 |X |,

and w(Y) likewise. When the conditions y = f (x) , x ∈ X and y ∈ Y are considered as
independent, the expected number of solutions is 2b−(w(X)+w(Y)). Note that there may be no
solutions, and this is even likely if w(X) + w(Y) > b.

The expected workload of solving a CICO problem depends on b, w(X) and w(Y) but
also on the nature of the constraints and the nature of f . If we make abstraction of the dif-
ficulty of finding members of X or Y , generic aĴacks impose upper bounds to the expected
complexity of solving the CICO problem:

• If finding x values in X is easy,

– Trying values x ∈ X until one is found with f (x) ∈ Y is expected to take 2w(Y)

calls to f .

– Trying all values x ∈ X takes 2b−w(X) calls to f . If there is a solution, it will be
found.

• If finding y values in Y is easy,

– Trying values y ∈ Y until one is found with f−1(y) ∈ X is expected to take 2w(X)

calls to f−1.

– Trying all values y ∈ Y takes 2b−w(Y) calls to f−1. If there is a solution, it will be
found.

When w(X) or w(Y) is small or close to b, this problem may be generically easy, provided
there is a solution.

OĞen a CICO problem can be easily expressed as a set of algebraic equations in a set
of unknowns and one may apply algebraic techniques for solving these equations such as
Gröbner bases [20].

8.2.5 Multi-block CICO problems

The CICO problem can be extended from a single iteration of f to multiple iterations in a
natural way. We distinguish two cases: one for the absorbing phase and another one for the
squeezing phase.

An e-block absorbing CICO problem for a function f is defined by two sets X and Y and
consists of finding a solution (x0, x1, x2, . . . xe) such that

x0 ∈ X ,
xe ∈ Y ,

for 0 < i < e : x̂i = 0c ,
y1 = f (x0) ,

for 1 < i < e : yi = f (yi−1 ⊕ xi−1) ,
xe = f (ye−1 ⊕ xe−1) .

A priori, this problem is expected to have solutions if w(X) + w(Y) ≤ c + er.

81 / 93

Cryptographic sponge functions 8. Sponge functions with an iterated permutation

An e-block squeezing CICO problem for a function f is defined by e + 1 sets X0 to Xe and
consists of finding a solution x0 such that:

for 0 ≤ i ≤ e : xi ∈ Xi ,
for 0 < i ≤ e : xi = f (xi−1) .

A priori, this problem is expected to have solutions if ∑i w(Xi) < b. If it is known that there
is a solution, it is likely that this solution is unique if ∑i w(Xi) > b.

Note that if e = 1 both problems reduce to the simple CICO problem.

8.2.6 Cycle structure

Consider the infinite sequence a, f (a), f (f (a)), ... with f a permutation over a finite domain
and a an element of that set. This sequence is periodic and the set of different elements in
this sequence is called a cycle of f . In this way, a permutation partitions its domain into a
number of cycles.

Statistics of random permutations have been well studied, see [63] for an introduction
and references. The cycle partition of a permutation used in a sponge construction shall
again respect the distributions. For example, in a random permutation over Zb

2:

• The expected number of cycles is b ln 2.

• The expected number of fixed points (cycles of length 1) is 1.

• The number of cycles of length at most m is about ln m.

• The expected length of the longest cycle is about G × 2b, where G is the Golomb-
Dickman constant (G ≈ 0.624).

8.3 The usability of structural distinguishers

A structural distinguisher or a non-generic aĴack for a sponge function implies a structural
distinguisher for the underlying function f . However, a structural distinguisher for f does
not necessarily imply a structural distinguisher for a sponge function calling f . There are
two aspects.

First, there is the aspect of applicability. For example, a structural distinguisher that
imposes values to bits in the inner part of the input to f are hard to exploit, as an adversary
cannot directly access these bits. Applicability must be studied on a case-by-case basis for
each structural distinguisher.

The second aspect is the distinguishing advantage, which can bring qualitative argu-
ments to the (non-)usability of structural distinguishers. Informally speaking, this is the
advantage of an adversary trying to distinguish f from a random permutation using the
particular distinguisher. A structural distinguisher with a distinguishing advantage that is
small compared to the RO-differentiating advantage will not increase the success proba-
bility of any aĴack noticeably. As a maĴer of fact, there are structural distinguishers with a
distinguishing advantage that is zero up to some number N of queries to f . If N > 2b/2, such
a structural distinguisher cannot possibly jeopardize the security of a sponge function mak-
ing use of f , whatever its capacity. Actually, the maximum capacity value is b− 1 and for
this capacity value the security of the sponge function collapses anyway above 2b/2 queries
due to the existence of inner collisions.

82 / 93

8. Sponge functions with an iterated permutation Cryptographic sponge functions

8.4 Conducting primary aĴacks using structural distinguishers

8.4.1 Inner collisions

Assume we want to generate an inner collision with two single-block inputs. This requires
finding states a and a∗ such that

f̂ (a)⊕ f̂ (a∗) = 0c with â = â∗ = 0c .

This can be rephrased as finding a pair {a, a∗} with â = â∗ = 0c in the differential (a ⊕
a∗, 0c) of f̂ . Requiring â = â∗ = 0c is needed to obtain valid paths from the root state to
iteration of f where the differential occurs. In general, it is required to know a path to the
inner state â = â∗ = âbsorb(P); the case â = â∗ = 0c is just a special case of that as 0c =

âbsorb(empty string).

8.4.1.1 Exploiting a differential trail

Assume f is an iterated function and we have a trail Q in f̂ with initial difference a′ and
final difference b′ such that â′ = b̂′ = 0c. This implies that for a pair (a, a∗) in this trail, the
intermediate values of a satisfy wr(Q) conditions. If wr(Q) is smaller than b, the expected
number of pairs of such a trail is 2b−wr(Q).

Let us now assume that given a trail and the value of â, it is easy to find pairs {a, a⊕ a′}
in it with given â. We consider two cases:

• wr(Q) < r: it is likely that the trail contains pairs with â = 0c and an inner collision
can be found readily. The paths consist of the first r bits of the members of the found
pair, a ̸= a∗.

• wr(Q) ≥ r: the probability that the trail contains a pair with â = 0c is 2r−wr(Q).

If several trails are available, one can extend this aĴack by trying it for different trails until
a pair in one of them is found with â = 0c. If the weight of trails over f is lower bounded
by wmin, the expected workload of this method is higher than 2wmin−r. With this method,
differential trails do not lead to a aĴacks faster than generic aĴacks if wmin > c/2 + r =
b− c/2.

One can extend this aĴack by allowing more than a single block in the input. In a first
variant, an initial block in the input is used to vary the inner part of the state and are equal for
both members of the pair that will be found. Given a trail in the second block, the problem is
now to find an initial block that, once absorbed, leads to an inner state at the input of the trail,
for which the trail in the second block contains a pair. In other words, that leads to an inner
state that satisfies a number of equations due to the trail in the second block. The equations
in the second block define a set Y for the output of the first block with w(Y) ≈ wr(Q)− r:
the conditions imposed by the trail in the second block on the inner part of the state at its
input. Moreover, the fact that the inner part of the input to f in the first iteration is fixed to
zero defines a set X with w(X) = c. Hence, even if a pair can be found that is in the trail, a
CICO problem must be solved with w(X) = c and w(Y) ≈ wr(Q)− r for determining the
first block of the inputs.

Note that if there are no trails with weight below b, the expected number of pairs per trail
is smaller than 1 and trails containing more than a single pair will be rare. In this case, even
if a trail with non-zero cardinality can be found, the generation of an inner collision implies
solving a CICO problem for the first block with w(X) = w(Y) = c.

83 / 93

Cryptographic sponge functions 8. Sponge functions with an iterated permutation

One can input pairs that consist of multiple input blocks where there is a difference in
more than a single input block. Here, chained trails may be exploited in subsequent itera-
tions of f . However, even assuming that the transfer of equations through f due to a trail
and conditions at the output is easy, one ends up in the same situation with a number of
conditions on the bits of the inner part of the state at the beginning of the first input differen-
tial. And again, if there are no trails with weight below b, the generation of an inner collision
implies solving a CICO problem with w(X) = w(Y) = c.

If c > b/2, typically a CICO problem with w(X) = w(Y) = c will have no solution.
In that case one must consider multiple blocks and the problem to solve becomes a multi-
block absorbing CICO problem. The required number of rounds e for there to be a solution
is ⌈c/r⌉.

8.4.1.2 Exploiting a differential

In the search for inner collisions, all pairs (a, a⊕ a′) with â = 0c in a differential (a′, 0c) with
â′ = 0c over f̂ are useful, and not only the pairs of a single trail. So it seems like a good
idea to consider differentials instead of trails. However, where for a given trail it may be
easy to determine the pairs it contains, this is not true in general for a differential. Still, an
f̂ -differential may give an advantage with respect to a trail if it contains more than a single
trail with low weight. On the other hand, the conditions to be pairs in a set of trails tend to
becomemore complicated as the number of trails grows. This makes algebraic manipulation
more and more difficult as the number of trails to consider grows.

If there are no trails over f̂ withweight below b, the set of pairs in a differential is expected
to be a set that has no simple algebraic characterization and we expect the most efficient way
to determine pairs in a differential is to try different outputs of f with the required difference
and computing the corresponding inputs.

8.4.1.3 Truncated trails and differentials

As for ordinary differential trails, the conditions imposed by a truncated trail can be trans-
ferred to the input and for finding a collision a CICO problem needs to be solved. Here the
factor w(Y) is determined by the weight of the truncated trail. Similarly, truncated trails
can be combined to truncated differentials and here the same difficulties can be expected as
when combining ordinary trails

8.4.2 Path to an inner state

If c ≥ b/2, this is simply a CICO problem with w(X) = w(Y) = c and solving it results in a
single-block path to an inner state. If c < b/2, an e-block path to the inner state can be found
by solving a multi-block absorbing CICO problem with e = ⌈r/c⌉.

8.4.3 Detecting a cycle

This is strongly linked to the cycle structure of f . If f is assumed to behave as a random
permutation, the overwhelmingmajority of stateswill generate very long cycles. Short cycles
typically do exist, but due to the sheer number of states, the probability that these will be
observed is extremely low.

84 / 93

8. Sponge functions with an iterated permutation Cryptographic sponge functions

8.4.4 State recovery

If the capacity is smaller than the bitrate, it is highly probable that a sequence of two output
blocks fully determines the inner state. In that case, finding the inner state is a CICOproblem
with w(X) = w(Y) = r.

If the capacity is larger than the bitrate, one needsmore than twooutput blocks to uniquely
determine the inner state. Finding the state consists in solving amulti-block squeezing CICO
problem with w(Xi) = r. The required number of rounds e to uniquely determine the state
is ⌈b/r⌉.

8.5 Classical hash function criteria

In this section we discuss the properties of an iterated permutation that are relevant in the
classical hash function criteria.

8.5.1 Collision resistance

We assume that the sponge function output is truncated to its first n bits and we try to gen-
erate two outputs that are the same for two different inputs. We can distinguish two ways
to achieve this: with or without an inner collision. While the effort for generating an inner
collision is independent of the length of the output to consider, this is not the case in gen-
eral for generating output collisions. If n is smaller than the capacity, the generic aĴack to
generate an output collision directly has a smaller workload than generating an inner colli-
sion. Otherwise, generating an inner collision and using this to construct a state collision is
expected to be more efficient.

We refer to Section 8.4.1 for a treatment on inner collisions. With some small adaptations,
that explanation also applies to the case of directly generating output collisions. The only
difference is that for the last iteration of the trail, instead of considering differentials (a′, 0c)

over f̂ , one needs to consider differentials (a′, 0n) over ⌊ f ⌋n. When exploiting a trail, and in
the absence of high-probability trails, this reduces to solving a CICO problem with w(X) =
w(Y) = c to find a suitable first block.

8.5.2 Preimage resistance

We distinguish three cases:

• n > b: in this case the output fully determines the state just prior to squeezing. Gen-
erating a preimage implies the recovery of this state and subsequently finding a path
to the recovered state. As explained in Sections 8.4.2 and 8.4.4, this comes down to
solving two CICO problems.

• r < n ≤ b: Here a sequence of input block can in theory be found by solving a problem
that can be seen as a combination of a multi-round squeezing CICO problem and a
multi-round absorbing CICO problem.

• n ≤ r: A single-block preimage can be found by solving a single-block CICO problem
with w(X) = c and w(Y) = n.

85 / 93

Cryptographic sponge functions 8. Sponge functions with an iterated permutation

8.5.3 Second preimage resistance

There are two possible strategies for producing a second preimage. In a first strategy, the
adversary can try to find a second path to one of the inner states traversed when absorbing
the first message. Finding a second preimage then reduces to finding a path to a given inner
state [11], which is discussed in Section 8.4.2. As a by-product, this strategy exhibits an inner
collision.

In a second strategy, the adversary can ignore the inner states traversed when absorbing
the first message and instead take into account only the given output. In this case, the first
preimage is of no use and the problem is equivalent to finding a (first) preimage as discussed
in the two last bullets of Section 8.5.2.

8.5.4 Length extension

Length extension consists in, given h(M) for an unknown input M, being able to predict the
value of h(M||X) for some string X. For a sponge function, length extension is successful
if one can find the inner state at the end of the squeezing of M. This comes down to state
recovery, discussed in Section 8.4.4. Note that the state is probably only uniquely determined
if n ≥ b. Otherwise, the expected number of solutions of output binding is 2b−n. In that case,
the probability of success of length extension is max(2n−b, 2−n).

In principle, if the permutation f has high input-output correlations (v, u) with v̂ = û =
0c, this could be exploited to improve the probability of guessing right when doing length
extension by a single block.

8.5.5 Output subset properties

One can define an m-bit hash function based on a sponge function by, instead of taking the m
first bits of its output, just specify m bit positions in the output and consider the correspond-
ing m bits as the output. Such a hash function shall not beweaker than a hash functionwhere
the m bits are just taken as the first m bits of the sponge output stream. If the m bits are from
the same output block, there is liĴle difference between the two functions. If the m bits are
taken from different output blocks, the CICO problems implied by aĴacking the function
tend to become more complicated and are expected to be harder to solve.

8.6 Keyed modes

Distinguishing the output of a keyed sponge function from a random oracle can be done
by finding the key, or by detecting properties in the output that would not be present for
a random oracle. Examples of such properties are the detection of large DP values or high
correlations over f . If the key is shorter than the bitrate, finding it given the output corre-
sponding to a single input is a CICO problem. If the key is longer, this becomes a multi-
round absorbing CICO problem. If more than a single input-output pair is available, this is
no longer the case. In general, an adversary can even request outputs corresponding with
adaptively chosen inputs.

When we use a keyed mode for MAC computation, the length of the key is typically
smaller than the bitrate and the output is limited to (less than) a single output block. For this
case, breaking theMAC function can be considered as solving the following generic problem
for f .

An adversary can query f for inputs P with P = K||X||0c and

86 / 93

8. Sponge functions with an iterated permutation Cryptographic sponge functions

• K: a secret key,

• X: a value of r− |K| bits chosen by the adversary,

and is given the first n bits of f (P), with n ≤ r. The goal of the adversary is predict the
output of ⌊ f (P)⌋n for non-queried values of X with a success probability higher than 2−n.

87 / 93

Cryptographic sponge functions 8. Sponge functions with an iterated permutation

88 / 93

Bibliography

[1] R. Anderson, The classification of hash functions, Proceedings of the IMA Conference in
Cryptography and Coding, 1993, 1993.

[2] E. Andreeva, B. Mennink, and B. Preneel, Security reductions of the second round SHA-3
candidates, Cryptology ePrint Archive, Report 2010/381, 2010, http://eprint.iacr.org/.

[3] J.-P. Aumasson, I. Dinur, W. Meier, and A. Shamir, Cube testers and key recovery aĴacks on
reduced-round MD6 and Trivium, in Dunkelman [26], pp. 1–22.

[4] T. Baignères, J. Stern, and S. Vaudenay, Linear cryptanalysis of non binary ciphers, Selected
Areas in Cryptography (C. M. Adams, A. Miri, and M. J. Wiener, eds.), Lecture Notes
in Computer Science, vol. 4876, Springer, 2007, pp. 184–211.

[5] M. Bellare and C. Namprempre, Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm, Asiacrypt (T. Okamoto, ed.), Lecture Notes
in Computer Science, vol. 1976, Springer, 2000, pp. 531–545.

[6] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient
protocols, ACM Conference on Computer and Communications Security 1993 (ACM,
ed.), 1993, pp. 62–73.

[7] M. Bellare, P. Rogaway, and D. Wagner, The EAX mode of operation, in Roy and Meier
[57], pp. 389–407.

[8] M. Bellare and B. Yee, Forward-security in private-key cryptography, Cryptology ePrint
Archive, Report 2001/035, 2001, http://eprint.iacr.org/.

[9] D. J. Bernstein, The Salsa20 family of stream ciphers, 2007, Document ID:
31364286077dcdff8e4509f9ff3139ad, http://cr.yp.to/papers.html#salsafamily.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, RюёіќGюѡҼћ, a belt-and-mill hash
function, Second Cryptographic Hash Workshop, Santa Barbara, August 2006, http://
radiogatun.noekeon.org/.

[11] , Sponge functions, Ecrypt Hash Workshop 2007, May 2007, also available as
public comment to NIST from http://www.csrc.nist.gov/pki/HashWorkshop/Public_
Comments/2007_May.html.

[12] ,On the indifferentiability of the sponge construction, Advances in Cryptology – Eu-
rocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol. 4965, Springer,
2008, http://sponge.noekeon.org/, pp. 181–197.

[13] , Sufficient conditions for sound tree and sequential hashing modes, Cryptology ePrint
Archive, Report 2009/210, 2009, http://eprint.iacr.org/.

89 / 93

http://eprint.iacr.org/
http://eprint.iacr.org/
http://cr.yp.to/papers.html#salsafamily
http://radiogatun.noekeon.org/
http://radiogatun.noekeon.org/
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://sponge.noekeon.org/
http://eprint.iacr.org/

Cryptographic sponge functions BIBLIOGRAPHY

[14] , Duplexing the sponge: single-pass authenticated encryption and other applications,
Second SHA-3 candidate conference, August 2010.

[15] , Kђѐѐюј sponge function family main document, NIST SHA-3 Submission (up-
dated), June 2010, http://keccak.noekeon.org/.

[16] , Sponge-based pseudo-random number generators, CHES (S. Mangard and F.-
X. Standaert, eds.), Lecture Notes in Computer Science, vol. 6225, Springer, 2010,
pp. 33–47.

[17] A. Biryukov (ed.), Fast soĞware encryption, 14th international workshop, FSE 2007, Luxem-
bourg, Luxembourg, march 26-28, 2007, revised selected papers, Lecture Notes in Computer
Science, vol. 4593, Springer, 2007.

[18] R. CaneĴi, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, Proceed-
ings of the 30th Annual ACM Symposium on the Theory of Computing, ACM Press,
1998, pp. 209–218.

[19] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, Merkle-Damgård revisited: How to con-
struct a hash function, Advances in Cryptology – Crypto 2005 (V. Shoup, ed.), LNCS, no.
3621, Springer-Verlag, 2005, pp. 430–448.

[20] D. A. Cox, J. B. LiĴle, and D. O’Shea, Ideals, varieties, and algorithms, third ed., Springer,
2007.

[21] J. Daemen, Cipher and hash function design strategies based on linear and differential crypt-
analysis, PhD thesis, K.U.Leuven, 1995.

[22] J. Daemen and V. Rĳmen, Probability distributions of correlation and differentials in block
ciphers, Journal of Mathematical Cryptology 1 (2007), no. 3, 221–242.

[23] A. Desai, A. Hevia, and Y. L. Yin, A practice-oriented treatment of pseudorandom number
generators, Advances inCryptology – Eurocrypt 2002 (L. R. Knudsen, ed.), LectureNotes
in Computer Science, vol. 2332, Springer, 2002, pp. 368–383.

[24] I. Dinur and A. Shamir, Cube aĴacks on tweakable black box polynomials, Cryptology ePrint
Archive, Report 2008/385, 2008, http://eprint.iacr.org/.

[25] Y. Dodis, L. Reyzin, R. Rivest, and E. Shen, Indifferentiability of permutation-based compres-
sion functions and tree-based modes of operation, with applications to MD6, in Dunkelman
[26], pp. 104–121.

[26] O. Dunkelman (ed.), Fast soĞware encryption, 16th international workshop, fse 2009, leuven,
belgium, february 22-25, 2009, revised selected papers, Lecture Notes in Computer Science,
vol. 5665, Springer, 2009.

[27] M. Dworkin, Request for review of key wrap algorithms, Cryptology ePrint Archive, Report
2004/340, 2004, http://eprint.iacr.org/.

[28] N. Ferguson and B. Schneier, Practical cryptography, John Wiley & Sons, 2003.

[29] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno, Helix: Fast
encryption and authentication in a single cryptographic primitive, Fast SoĞware Encryp-
tion (T. Johansson, ed.), Lecture Notes in Computer Science, vol. 2887, Springer, 2003,
pp. 330–346.

90 / 93

http://keccak.noekeon.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY Cryptographic sponge functions

[30] E. Filiol,Anew statistical testing for symmetric ciphers and hash functions, Proc. Information
and Communications Security 2002, volume 2513 of LNCS, Springer, 2002, pp. 342–353.

[31] IETF (Internet Engineering Task Force), RFC 3629: UTF-8, a transformation format of ISO
10646, 2003, http://www.ietf.org/rfc/rfc3629.txt.

[32] , RFC 3986: Uniform resource identifier (URI): Generic syntax, 2005, http://www.
ietf.org/rfc/rfc3986.txt.

[33] V. D. Gligor and P. Donescu, Fast encryption and authentication: XCBC encryption and
XECB authentication modes, Fast SoĞware Encryption 2001 (M. Matsui, ed.), Lecture
Notes in Computer Science, vol. 2355, Springer, 2001, pp. 92–108.

[34] D. Gligoroski, R. Ødegård, and R. Jensen, Observation: An explicit form for a class of sec-
ond preimages for any message M for the SHA-3 candidate Keccak, Available online, 2010,
hĴp://cio.nist.gov/esd/emaildir/lists/hash-forum/msg02057.html.

[35] M. Gorski, S. Lucks, and T. Peyrin, Slide aĴacks on a class of hash functions, Asi-
acrypt (J. Pieprzyk, ed.), Lecture Notes in Computer Science, vol. 5350, Springer, 2008,
pp. 143–160.

[36] A. Joux,Multicollisions in iterated hash functions. Application to cascaded constructions, Ad-
vances in Cryptology – Crypto 2004 (M. Franklin, ed.), LNCS, no. 3152, Springer-Verlag,
2004, pp. 306–316.

[37] C. S. Jutla, Encryption modes with almost free message integrity, Advances in Cryptology
– Eurocrypt 2001 (B. Pfitzmann, ed.), Lecture Notes in Computer Science, vol. 2045,
Springer, 2001, pp. 529–544.

[38] J. Kelsey andB. Schneier, Second preimages on n-bit hash functions formuch less than 2n work,
Advances in Cryptology – Eurocrypt 2005 (R. Cramer, ed.), LNCS, no. 3494, Springer-
Verlag, 2005, pp. 474–490.

[39] L. R. Knudsen and V. Rĳmen, Known-key distinguishers for some block ciphers, Advances
in Cryptology – Asiacrypt 2007, 2007, pp. 315–324.

[40] T. Kohno and J. Kelsey, Herding hash functions and the Nostradamus aĴack, Advances in
Cryptology – Eurocrypt 2006 (S. Vaudenay, ed.), LNCS, no. 4004, Springer-Verlag, 2006,
pp. 222–232.

[41] T. Kohno, J. Viega, and D. Whiting, CWC: A high-performance conventional authenticated
encryption mode, in Roy and Meier [57], pp. 408–426.

[42] M. Liskov, Constructing secure hash functions from weak compression functions: The case for
non-streamable hash functions.

[43] L.Knudsen, C. Rechberger, and S. Thomsen, The Grindahl hash functions, in Biryukov
[17], pp. 39–57.

[44] S. Lucks, Two-pass authenticated encryption faster than generic composition, Fast SoĞware
Encryption (H. Gilbert and H. Handschuh, eds.), Lecture Notes in Computer Science,
vol. 3557, Springer, 2005, pp. 284–298.

91 / 93

http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

Cryptographic sponge functions BIBLIOGRAPHY

[45] U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodology, Theory of Cryptography - TCC
2004 (M.Naor, ed.), LectureNotes in Computer Science, no. 2951, Springer-Verlag, 2004,
pp. 21–39.

[46] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of applied cryptography,
CRC Press, 1997.

[47] R. C. Merkle, Secrecy, authentication, and public key systems, PhD thesis, UMI Research
Press, 1982.

[48] F. Muller, Differential aĴacks against the Helix stream cipher, in Roy and Meier [57],
pp. 94–108.

[49] NIST, AES key wrap specification, November 2001.

[50] ,Announcing request for candidate algorithm nominations for a new cryptographic hash
algorithm (SHA-3) family, Federal Register Notices 72 (2007), no. 212, 62212–62220, http:
//csrc.nist.gov/groups/ST/hash/index.html.

[51] ,NIST special publication 800-38C, recommendation for block ciphermodes of operation:
The CCM mode for authentication and confidentiality, July 2007.

[52] , NIST special publication 800-38D, recommendation for block cipher modes of opera-
tion: Galois/counter mode (GCM) and GMAC, November 2007.

[53] S. Paul and B. Preneel, Solving systems of differential equations of addition, ACISP (C. Boyd
and J. M. González Nieto, eds.), Lecture Notes in Computer Science, vol. 3574, Springer,
2005, pp. 75–88.

[54] P. Rogaway, M. Bellare, and J. Black, OCB: A block-cipher mode of operation for efficient
authenticated encryption, ACM Trans. Inf. Syst. Secur. 6 (2003), no. 3, 365–403.

[55] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, OCB: A block-cipher mode of opera-
tion for efficient authenticated encryption, CCS ’01: Proceedings of the 8th ACM confer-
ence on Computer and Communications Security (New York, NY, USA), ACM, 2001,
pp. 196–205.

[56] P. Rogaway and T. Shrimpton, A provable-security treatment of the key-wrap problem, Euro-
crypt (S. Vaudenay, ed.), Lecture Notes in Computer Science, vol. 4004, Springer, 2006,
pp. 373–390.

[57] B. K. Roy and W. Meier (eds.), Fast soĞware encryption, 11th international workshop, FSE
2004, Delhi, India, February 5-7, 2004, revised papers, Lecture Notes in Computer Science,
vol. 3017, Springer, 2004.

[58] P. Sarkar and P. J. Schellenberg, A parallelizable design principle for cryptographic hash func-
tions, Cryptology ePrint Archive, Report 2002/031, 2002, http://eprint.iacr.org/.

[59] J. Viega, Practical random number generation in soĞware, ACSAC ’03: Proceedings of the
19thAnnualComputer SecurityApplicationsConference (Washington, DC,USA), IEEE
Computer Society, 2003, p. 129.

[60] W3C, Namespaces in XML 1.0 (second edition), 2006, http://www.w3.org/TR/2006/
REC-xml-names-20060816.

92 / 93

http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/groups/ST/hash/index.html
http://eprint.iacr.org/
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816

BIBLIOGRAPHY Cryptographic sponge functions

[61] D. Whiting, B. Schneier, S. Lucks, and F. Muller, Fast encryption and authentication in
a single cryptographic primitive, ECRYPT Stream Cipher Project Report 2005/027, 2005,
http://www.ecrypt.eu.org/stream/phelixp2.html.

[62] Wikipedia, Cryptographic hash function, 2008, http://en.wikipedia.org/wiki/
Cryptographic_hash_function.

[63] , Random permutation statistics, 2008, http://en.wikipedia.org/wiki/Random_
permutation_statistics.

[64] H. Wu and B. Preneel, Differential-linear aĴacks against the stream cipher Phelix, in
Biryukov [17], pp. 87–100.

93 / 93

http://www.ecrypt.eu.org/stream/phelixp2.html
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Random_permutation_statistics
http://en.wikipedia.org/wiki/Random_permutation_statistics

	Introduction
	Roots
	The sponge construction
	Sponge as a reference of security claims
	Sponge as a design tool
	Sponge as a versatile cryptographic primitive
	Structure of this document

	Definitions
	Conventions and notation
	Bitstrings
	Padding rules
	Random oracles, transformations and permutations

	The sponge construction
	The duplex construction
	Auxiliary functions
	The absorbing function and path
	The squeezing function

	Primary attacks on a sponge function

	Sponge applications
	Basic techniques
	Domain separation
	Keying
	State precomputation

	Modes of use of sponge functions
	Parallel and tree hashing
	Specifications
	Soundness

	Duplex applications
	Authenticated encryption
	Modeling authenticated encryption
	Security requirements
	An ideal system
	The authenticated encryption mode SpongeWrap
	Security
	Advantages and limitations
	An application: key wrapping

	Reseedable pseudo random bit sequence generation
	Modeling an ideal PRG
	SpongePRG: a PRG mode
	Advantages and limitations

	The mode Overwrite

	Generic attacks
	Introduction
	Graphical representation of a sponge function
	The model of the adversary
	The cost function

	Generating inner collisions
	With f a random transformation
	With f a random permutation

	Finding a path to an inner state
	With f a random transformation
	With f a random permutation

	Detecting cycles in the output
	With f a random transformation
	With f a random permutation

	State recovery
	With f a random transformation
	With f a random permutation
	With f a random transformation, revisited

	Output binding
	Summary of success probabilities
	Sponge functions used as a hash function
	Output collisions
	Second pre-image
	Pre-image
	Length extension
	Correlation immunity

	Keyed modes
	Predicting the output of a stream cipher
	MAC function

	Security proofs
	Inner collisions as only source of non-uniformity
	The need for sponge-compliant padding
	The proof

	Distinguishing a random sponge from a random oracle
	The adversary's setting
	The cost of queries
	RO distinguishing advantage

	Differentiating a random sponge from a random oracle
	The indifferentiability framework
	The adversary's setting
	The simulators we use in our proofs
	When being used with a random transformation
	When being used with a random permutation

	Equivalence of the sponge and duplex constructions
	Optimum security of multi-rate sponge functions
	Implications of the bound on the RO differentiating advantage
	Immunity to generic attacks
	Randomized hashing
	Security of keyed sponge functions

	Random sponges as a security reference
	A random sponge as a reference model
	Expressing a security claim
	Choosing the parameters

	The flat sponge claim

	Sponge functions with an iterated permutation
	The philosophy
	The hermetic sponge strategy
	The impossibility of implementing a random oracle
	The choice between a permutation and a transformation
	The choice of an iterated permutation

	Some structural distinguishers
	Differential cryptanalysis
	Linear cryptanalysis
	Algebraic expressions
	The constrained-input constrained-output (CICO) problem
	Multi-block CICO problems
	Cycle structure

	The usability of structural distinguishers
	Conducting primary attacks using structural distinguishers
	Inner collisions
	Path to an inner state
	Detecting a cycle
	State recovery

	Classical hash function criteria
	Collision resistance
	Preimage resistance
	Second preimage resistance
	Length extension
	Output subset properties

	Keyed modes

