
Quantum Cryptanalysis ofHash and Claw-Free Functions(Invited Paper)Gilles Brassard1?, Peter H�yer2??, and Alain Tapp1? ? ?1 Universit�e de Montr�eal, D�epartement IROC.P. 6128, succursale centre-ville, Montr�eal (Qu�ebec), Canada H3C 3J7fbrassard,tappag@iro.umontreal.ca2 Odense University, Department of Mathematics and Computer ScienceCampusvej 55, DK{5230 Odense M, Denmarku2pi@imada.ou.dkAbstract. We give a quantum algorithm that �nds collisions in arbi-trary r-to-one functions after only O(3pN=r) expected evaluations of thefunction, where N is the cardinality of the domain. Assuming the func-tion is given by a black box, this is more e�cient than the best possibleclassical algorithm, even allowing probabilism. We also give a similaralgorithm for �nding claws in pairs of functions. Further, we exhibit aspace-time tradeo� for our technique. Our approach uses Grover's quan-tum searching algorithm in a novel way.1 IntroductionA collision for function F : X ! Y consists of two distinct elements x0; x1 2 Xsuch that F (x0) = F (x1). The collision problem is to �nd a collision in F underthe promise that there is one.This problem is of particular interest for cryptology because some functionsknown as hash functions are used in various cryptographic protocols. The se-curity of these protocols depends crucially on the presumed di�culty of �ndingcollisions in such functions. A related question is to �nd so-called claws in pairsof functions; our quantum algorithm extends to this task. In particular, this hasconsequences for the security of classical signature and bit commitment schemes.A function F is said to be r-to-one if every element in its image has exactlyr distinct preimages. We assume throughout this note that function F is givenas a black box, so that it is not possible to obtain knowledge about it by anyother means than evaluating it on points in its domain. When F is two-to-one,? Supported in part by Canada's nserc, Qu�ebec's fcar, and the Canada Council.?? Supported in part by the esprit Long Term Research Programme of the EU underproject number 20244 (alcom-it). Research carried out while this author was at theUniversit�e de Montr�eal.? ? ? Supported in part by postgraduate fellowships from nserc and fcar

the most e�cient classical algorithm possible for the collision problem requiresan expected �(pN) evaluations of F , where N = jXj denotes the cardinality ofthe domain. This classical algorithm, which uses a principle reminiscent of thebirthday paradox, is reviewed in the next section.Recently, at a talk held at AT&T, Eric Rains [8] asked if it is possible to dobetter on a quantum computer. In this note, we give a positive answer to thisquestion by providing a quantum algorithm that �nds a collision in an arbitrarytwo-to-one function F after only �(3pN) expected evaluations.Earlier, Simon [9] addressed the xor-mask problem de�ned as follows. Con-sider a positive integer n. We are given a function F : f0; 1gn! f0; 1gn andpromised that either F is one-to-one or it is two-to-one and there exists ans 2 f0; 1gn such that F (x0) = F (x1) if and only if x0 � x1 = s, for all distinctx0; x1 2 f0; 1gn, where � denotes the bitwise exclusive-or. Simon's problem is todecide which of these two conditions holds, and to �nd s in the latter case. Notethat �nding s is equivalent to �nding a collision in the case that F is two-to-one.Simon gave a quantum algorithm to solve his problem in expected time polyno-mial in n and in the time required to compute F . The running time required forthis task on a quantum computer was recently improved to being polynomial inthe worst case (rather than in the expected case), thanks to a more sophisticatedalgorithm [3]. Simon's algorithm is interesting from a theoretical point of viewbecause any classical algorithm that uses only sub-exponentially (in n) manyevaluations of F cannot hope to distinguish between the two types of functionssigni�cantly better than simply by tossing a coin, assuming equal a priori prob-abilities [9, 3]. Unfortunately, the xor-mask constraint when F is two-to-one isso restrictive that Simon's algorithm has not yet found a practical application.More recently, Grover [6, 7] discovered a quantum algorithm for a di�erentsearching problem.We are given a function F : X ! f0; 1gwith the promise thatthere exists a unique x0 2 X so that F (x0) = 1, and we are asked to �nd x0.Provided the domain of the function is of cardinality a power of two (N = 2n),Grover gave a quantum algorithm that �nds the unknown x0 with probabilityat least 1=2 after only �(pN) evaluations of F .A natural generalization of this searching problem occurs when F : X ! Yis an arbitrary function. Given some y0 2 Y , we are asked to �nd an x 2 Xsuch that F (x) = y0, provided such an x exists. If t = jfx 2 X jF (x) = y0gjdenotes the number of di�erent solutions, Grover's algorithm can be general-ized [1] to �nd a solution whenever it exists (t � 1) after an expected numberof �(pN=t) evaluations of F . Although the algorithm does not need to knowthe value of t ahead of time, it is more e�cient (in terms of the hidden constantin the O notation) when t is known, which will be the case for most algorithmsgiven here. From now on, we refer to this generalization of Grover's algorithmas Grover(F; y0). Note that the number of evaluations of F is not polynomiallybounded in logN when t� N ; nevertheless Grover's algorithm is considerablymore e�cient than classical brute-force searching.In the next section, we give our new quantum algorithm for solving the col-lision problem for two-to-one functions. We then discuss a straightforward gen-

eralization to r-to-one functions and even to arbitrary functions whose image issu�ciently smaller than their domain. A natural space-time tradeo� emerges forour technique. Finally, we give applications to �nding claws in pairs of functions.2 Algorithms for the Collision ProblemWe �rst state two simple algorithms for the collision problem, one classical andone quantum. Both of these algorithms use an expected number of �(pN)evaluations of the given function, but the quantum algorithm is more spacee�cient. We derive our improved algorithm from these two simple solutions.The �rst solution is a well-known classical probabilistic algorithm, here statedin slightly di�erent terms than traditionally. The algorithm consists of threesteps. First, it selects a random subset K � X of cardinality k = cpN for anappropriate constant c. Then, it computes the pair (x; F (x)) for each x 2 K andsorts these pairs according to the second entry. Finally, it outputs a collisionin K if there is one, and otherwise reports that none has been found. Based onthe birthday paradox, it is not di�cult to show that if F is two-to-one then thisalgorithmreturns a collision with probability at least 1=2 provided c is su�cientlylarge (c � 1:18 will do). If we take a pair (x; F (x)) as unit of space then thealgorithm can be implemented in space �(pN), and �(pN) evaluations of Fsu�ce to succeed with probability 1=2. If we care about running time ratherthan simply the number of evaluations of F , it may be preferable to resort touniversal hashing [4] rather than sorting to �nd a collision inK. This would avoidspending �(pN logN) time sorting the table, making possible a �(pN) overallexpected running time if we assume that each evaluation of F takes constanttime. We stick to the sorting paradigm for simplicity and because it is not clearif the bene�ts of universal hashing carry over to quantum parallelism situationssuch as ours. We come back to this issue in Section 3.The simple quantum algorithm for two-to-one functions also consists of threesteps. First, it picks an arbitrary element x0 2 X . Then, the algorithm com-putes x1 = Grover(H; 1) where H : X ! f0; 1g denotes the function de�ned byH(x) = 1 if and only if F (x) = F (x0) but x 6= x0. Finally, it outputs the collisionfx0; x1g. There is exactly one x 2 X that satis�es H(x) = 1, so t = 1, and thusthe expected number of evaluations of F is also �(pN), still to succeed withprobability 1=2, but constant space su�ces.Our new algorithm, denoted Collision and given below, can be thought ofas a logical union of the two algorithms above. The main idea is to select asubset K of X and then use Grover to �nd a collision fx0; x1g with x0 2 Kand x1 2 X nK. The expected number of evaluations of F and the space usedby the algorithm are determined by the parameter k = jKj, the cardinality of K.Collision(F; k)1. Pick an arbitrary subset K � X of cardinality k. Construct a table L ofsize k where each item in L holds a distinct pair (x; F (x)) with x 2 K.2. Sort L according to the second entry in each item of L.

3. Check if L contains a collision, that is, check if there exist distinct elements(x0; F (x0)); (x1; F (x1)) 2 L for which F (x0) = F (x1). If so, proceed tostep 6.4. Compute x1 =Grover(H; 1) where H : X ! f0; 1g denotes the function de-�ned by H(x) = 1 if and only if there exists x0 2 K so that (x0; F (x)) 2 Lbut x 6= x0.5. Find (x0; F (x1)) 2 L.6. Output the collision fx0; x1g.Theorem 1. Given a two-to-one function F : X ! Y with N = jXj and an in-teger 1 � k � N , algorithm Collision(F; k) returns a collision after an expectednumber of �(k +pN=k) evaluations of F and uses space �(k). In particular,when k = 3pN then Collision(F; k) evaluates F an expected number of �(3pN)times and uses space �(3pN).Proof. The correctness of the algorithm follows easily from the de�nition of Hand the construction of Grover(H; 1).We now count the number of evaluations of F . In the �rst step, the algorithmuses k such evaluations. Let p be the probability that a collision is found atstep 3. If it is not found, set t = jfx 2 X jH(x) = 1gj. By the previous section,subroutine Grover in step 4 uses an expected number of �(pN=t) evaluationsof the function H to �nd one of the t solutions. Note that each evaluation ofH requires a single evaluation of F , and t = k because F is two-to-one. Finally,our algorithm evaluates F once in step 5, giving a total expected number ofk + (1 � p)(�(pN=k) + 1) evaluations of F . Provided N is su�ciently large,p is negligible when k � 3pN whereas pN=k < k otherwise. In either case, theexpected number of evaluations of F is �(k +pN=k) as claimed. The secondpart of the theorem is immediate. utIn a nutshell, the improvement of our algorithm over the simple quantumalgorithm is achieved by trading time for space. Suppose the cardinality of set Kis large. Then the expected number of evaluations of H used by subroutineGrover(H; 1) is small, but on the other hand more space is needed to storetable L. Analogously, the space requirements are less but also Grover(H; 1)runs slower if K is small.Suppose now that we apply algorithm Collision, not necessarily on atwo-to-one function, but on an arbitrary r-to-one function where r � 2. Thenwe have the following theorem, whose proof is essentially the same as that ofTheorem 1.Theorem 2. Given an r-to-one function F : X ! Y with r � 2 and an integer1 � k � N = jXj, algorithm Collision(F; k) returns a collision after an expectednumber of �(k +pN=rk) evaluations of F and uses space �(k). In particular,when k = 3pN=r then Collision(F; k) uses an expected number of �(3pN=r)evaluations of F and space �(3pN=r). ut

Note that Collision(F; k) can also be applied on an arbitrary functionF : X ! Y for which jXj � rjY j for some r > 1, even if F is not r-to-one. How-ever, the algorithmmust be modi�ed in two ways for the general case. First of all,the subset K � X of cardinality k must be picked at random, rather than arbi-trarily, at step 1. Furthermore, because the number of solutions forGrover(H; 1)is no longer known in advance to be exactly t = (r � 1)k, the fully generalizedversion of Grover's algorithm given in [1] must be used at step 4.By varying k in Theorem 2, the following space-time tradeo� emerges.Corollary 3. There exists a quantum algorithm that can �nd a collision in anarbitrary r-to-one function F : X ! Y , for any r � 2, using space S and anexpected number of �(T) evaluations of F for every 1 � S � T subject toST 2 � jF (X)jwhere F (X) denotes the image of F . utConsider now two functions F : X ! Z and G : Y ! Z that have the samecodomain. By de�nition, a claw is a pair x 2 X, y 2 Y such that F (x) = G(y).Many cryptographic protocols are based on the assumption that there are e�-ciently-computable functions F and G for which claws cannot be found e�cientlyeven though they exist in large number.The simplest case arises when both F and G are bijections, which is theusual situation when such functions are used to create classical unconditionally-concealing bit commitment schemes [2] and strong digital signature schemes [5].If N = jXj = jY j = jZj, algorithm Collision is easily modi�ed as follows.Claw(F;G; k)1. Pick an arbitrary subset K � X of cardinality k. Construct a table L ofsize k where each item in L holds a distinct pair (x; F (x)) with x 2 K.2. Sort L according to the second entry in each item of L.3. Compute y0 = Grover(H; 1) where H : Y ! f0; 1g denotes the function de-�ned by H(y) = 1 if and only if a pair (x;G(y)) appears in L for somearbitrary x 2 K .4. Find (x0; G(y0)) 2 L.5. Output the claw (x0; y0).Theorem 4. Given two one-to-one functions F : X ! Z and G : Y ! Z withN = jXj = jY j = jZj and an integer 1� k � N , algorithmClaw(F;G; k) returnsa claw after k evaluations of F and an expected number of �(pN=k) evaluationsof G, and uses space �(k). In particular, when k = 3pN then Claw(F;G; k)evaluates F and G an expected number of �(3pN) times and uses space �(3pN).Proof. Similar to the proof of Theorem 1. ut

The case in which both F and G are r-to-one for some r � 2 and N =jXj = jY j = rjZj is handled similarly. However, it becomes necessary in step 1 ofalgorithmClaw to select the elements of K so that no two of them are mappedto the same point by F . This will ensure that the call onGrover(H; 1) at step 3has exactly kr solutions to choose from. The simplest way to choose K is topick random elements in X until jF (K)j = k. As long as k � jZj=2, this requirestrying less than 2k random elements of X, except with vanishing probability.The proof of the following theorem is again essentially as before.Theorem 5. Given two r-to-one functions F : X ! Z and G : Y ! Z withN = jXj = jY j = rjZj and an integer 1 � k � N=2r, modi�ed algorithmClaw(F;G; k) returns a claw after an expected number of �(k) evaluationsof F and �(pN=rk) evaluations of G, and uses space �(k). In particular,when k = 3pN=r then Claw(F;G; k) evaluates F and G an expected numberof �(3pN=r) times and uses space �(3pN=r). ut3 DiscussionWhen we say that our quantum algorithms require �(k) space to hold table L,this corresponds unfortunately to the amount of quantum memory, a ratherscarce resource with current technology. Note however that this table is builtclassically in the initial steps of algorithmsCollision and Claw, and it containsclassical information. Even though it has to be accessible in quantum super-position of addresses, it may be that the classical nature of the information itcontains would make it easier to implement than a memory that can be used tostore and retrieve quantum information. At the very least, as Eric Rains pointedout to us, it may require a simpler error-correction process than a general quan-tum memory would.We considered only the number of evaluations of F in the analysis of algo-rithm Collision. The time spent sorting L and doing binary search in L shouldalso be taken into account if we wanted to analyse the running time of our algo-rithm. If we assume that it takes time T to compute the function (rather thanassuming that it is given as a black box), then it is straightforward to show thatthe algorithm considered in Theorem 2 runs in expected timeO�(k +pN=rk)(T + logk)� :Thus, the time spent sorting is negligible only if it takes
(log k) time to com-pute F . Similar considerations apply to algorithm Claw. It is tempting to tryusing universal hashing [4] to bypass the need for sorting, as in the simple classi-cal algorithm, but it is not clear that this approach saves time here because ouruse of quantum parallelism when we apply Grover's algorithm will take a timethat is given by the maximum time taken for all requests to the table, which isunlikely to be constant even though the expected average time is constant.

References1. Michel Boyer, Gilles Brassard, Peter H�yer and Alain Tapp, \Tight bounds on quan-tum searching", Proceedings of Fourth Workshop on Physics and Computation |PhysComp '96, November 1996, pp. 36 { 43. Final version to appear in FortschritteDer Physik.2. Gilles Brassard, David Chaum and Claude Cr�epeau, \Minimum disclosure proofs ofknowledge", Journal of Computer and System Sciences,Vol. 37, no. 2, October 1988,pp. 156 { 189.3. Gilles Brassard and Peter H�yer, \An exact quantum polynomial-time algorithm forSimon's problem", Proceedings of Fifth Israeli Symposium on Theory of Computingand Systems | ISTCS '97, June 1997, IEEE Computer Society Press, pp. 12 { 23.4. J. Larry Carter and Mark N.Wegman, \Universal classes of hash functions", Journalof Computer and System Sciences, Vol. 18, no. 2, 1979, pp. 143 { 154.5. Sha� Goldwasser, Silvio Micali and Ronald L. Rivest, \A digital signature schemesecure against adaptive chosen-message attacks", SIAM Journal on Computing,Vol. 17, 1988, pp. 281 { 308.6. Lov K. Grover, \A fast quantum mechanical algorithm for database search", Pro-ceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996,pp. 212 { 219.7. Lov K. Grover, \Quantum mechanics helps in searching for a needle in a haystack",Physical Review Letters, Vol. 79, no. 2, 14 July 1997, pp. 325{328.8. Eric Rains, talk given at AT&T, Murray Hill, New Jersey, 12 March 1997.9. Daniel R. Simon, \On the power of quantum computation", SIAM Journal on Com-puting, Vol. 26, no. 5, October 1997, pp. 1474 { 1483.

