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Abstract. This note describes a polynomial attack on the new multi-
linear map over the integers presented by Coron, Lepoint and Tibouchi
at Crypto 2015 (CLT15). This version is a fix of the first multilinear
map over the integers presented by the same authors at Crypto 2013
(CLT13) and broken by Cheon et al. at Eurocrypt 2015. The attack
essentially downgrades CLT15 to its original version CLT13, and leads
to a full break of the multilinear map for virtually all applications. A
more complete version of the paper will be made available in the coming
weeks. Nevertheless the main attack is given in full details.
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1 Introduction

Cryptographic multilinear maps are a powerful and versatile tool to build crypto-
graphic schemes, ranging from one-round multipartite Diffie-Hellman to witness
encryption and general program obfuscation. The notion of cryptographic mul-
tilinear map was first introduced by Boneh and Silverberg in 2003, as a natural
generalization of bilinear maps such as pairings on elliptic curves [BS03]. How-
ever it was not until 2013 that the first concrete instantiation over ideal lattices
was realized by Garg, Gentry and Halevi [GGH13a], quickly inspiring another
construction over the integers by Coron, Lepoint and Tibouchi [CLT13]. Along-
side these first instantiations, a breakthrough result by Garg, Gentry, Halevi,
Raykova, Sahai and Waters achieved (indistinguishability) obfuscation for all
circuits from multilinear maps [GGH+13b]. From that point multilinear maps
have garnered considerable interest in the cryptographic community, and a host
of other applications have followed.

However this wealth of applications rests on the relatively fragile basis of
only three actual constructions of multilinear maps to date: namely the original
construction over ideal lattices [GGH13a], the construction over the integers
[CLT13], and another recent construction over lattices [GGH15]. Moreover none
of these constructions relies on standard hardness assumptions. In fact the first
two constructions have since been broken for applications requiring low-level
encodings of zero, including the “direct” application to one-round multipartite



Diffie-Hellman [HJ15, CHL+15]. Thus building candidate multilinear maps and
assessing their security may be regarded as a work in progress, and research in
this area has been very active in recent years.

Following the attack by Cheon et al. on the [CLT13] multilinear map over
the integers, several attempts to repair the scheme were published on ePrint,
which hinged on hiding encodings of zero in some way; however these attempts
were quickly proven insecure [CGH+15]. At Crypto 2015, Coron, Lepoint and
Tibouchi set out to repair their scheme by following a different route [CLT15]:
they essentially retained the structure of encodings from [CLT13], but added a
new type of noise designed to thwart Cheon et al.’s approach. Their construction
was thus able to retain the attractive features of the original, namely conceptual
simplicity, relative efficiency, and wide range of presumed hard problems on
which applications could be built.

1.1 Our contribution

In this paper we propose a polynomial attack on the new multilinear map over
the integers presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15].
The attack operates by computing the secret parameter x0, and from there all
other secret parameters can be recovered via (a close variant of) Cheon et al.’s
attack [CHL+15]. In the optimized version of the scheme where an exact multiple
of x0 is provided in the public parameters, the attack recovers x0 instantly. In
the more general non-optimized version of the scheme, the practical complexity
of our polynomial attack is very close to the security parameters for the concrete
instances implemented in [CLT15], e.g. 281 for the 80-bit instance.

Moreover the attack applies to virtually all possible applications of the CLT15
multilinear map. Indeed, while it does require low-level encodings of zero, these
encodings are provided by the ladders given in the public parameters. In this
respect CLT15 is weaker than CLT13.

Our attacks have been verified on the reference implementation of CLT15.
An upcoming complete version of this paper will also include a probabilistic

variant of the attack, which avoids a costly determinant computation. Instead the
attack relies on finding and exploiting divisors of the secret parameter v0. While
it is conceptually less simple than our main attack, the probabilistic variant
offers a lower practical complexity.

1.2 Overview of the Attack

We begin by briefly recalling the CLT15 multilinear map (more precisely, graded
encoding scheme). The message space is Zg1 × · · · × Zgn for some small primes
g1, . . . , gn, and (m1, . . . ,mn) is encoded at some level k ≤ κ as:

CRT(pi)

(rigi +mi

zk

)
+ ax0

where:
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(pi) is a sequence of n large primes.
x0 =

∏
pi.

CRT(pi)(xi) is the unique integer in (−x0/2, x0/2] congruent to xi modulo pi.
z is a fixed secret integer modulo x0.
ri is a small noise.
a is another noise.

Encodings at the same level can be added together, and the resulting encoding
encodes the sum of the messages. Similarly encodings at levels i and j can be
multiplied to yield an encoding at level i + j of the coordinate-wise product of
the encoded messages. This behavior holds as long as the values rigi+mi do not
go over pi, i.e. reduction modulo pi does not interfere. In order to prevent the
size of encodings from increasing as a result of additions and multiplications, a
ladder of encodings of zero of increasing size is published at each level. Encodings
can then be reduced by subtracting elements of the ladder at the same level.

The power of the multilinear map comes from the zero-testing procedure,
which allows users to test whether an encoding at the maximal level κ encodes
zero. This is achieved by publishing a so-called zero-testing parameter denoted
pzt ∈ Z, together with a large prime N � x0. An encoding at the maximal level
κ may be written as:

e =
∑

(ri +mig
−1
i mod pi)ui + ax0

where ui
4=
(
giz
−κ(p∗i )−1 mod pi

)
p∗i with p∗i =

∏
j 6=i

pj .

That is, some constants independent of the encoding have been folded with the
CRT coefficients into ui. Now pzt is chosen such that vi

4= uipzt mod N and
v0
4= x0pzt mod N satisfy abs(vi) � N and abs(v0) � N . In this way, for any

encoding e of zero at level κ, since mi = 0, we have:

abs(epzt mod N) = abs
(∑

rivi + av0

)
� N

provided the noises ri and a are small enough. Thus, users can test whether e is
an encoding of zero at level κ by checking whether abs(epzt mod N)� N .

Integer Extraction. Our attack proceeds in two steps. As a first step, we define
the integer extraction procedure φ : Z→ Z. In short, φ computes

∑
i rivi + av0

over the integers for any level-κ encoding e (of size up to the largest ladder
element). Note that this value is viewed over the integers and not modulo N . If
e is “small”, then φ(e) = epzt mod N , i.e. φ matches the computation from the
zero-testing procedure.

If e is “large” on the other hand, then e would need to be reduced by the
ladder before zero-testing can be applied. However the crucial observation is that
φ is Z-linear as long as the values rigi + mi associated with each encoding do
not go over pi. Thus e can be ladder-reduced into e′, then φ(e′) = e′pzt mod N
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is known, and φ(e) can be recovered from φ(e′) by compensating the ladder
reduction using Z-linearity. In a nutshell, φ allows us to ignore ladder reductions
in equations appearing in the rest of the attack.

Recovering x0. In the optimized variant of the scheme implemented in [CLT15],
a small multiple qx0 of x0 is given in the public parameters. In that case qx0
may be regarded as an encoding of zero at level κ, and φ(qx0) = qv0. Since this
holds over the integers, we can compute q = gcd(qx0, qv0) and then x0 = qx0/q.

In the general case where no exact multiple of x0 is given in the public
parameters, pick n+ 1 encodings ai at some level t, and n+ 1 encodings of zero
bi at level κ− t. Note that ladder elements provide encodings of zero even if the
scheme itself does not. Then compute:

ωi,j
4= φ(aibj).

If we write ai mod v0 = CRT(pj)(ai,j/zt) and bi mod v0 = CRT(pj)(ri,jgj/zκ−t),
then we get:

ωi,j mod v0 =
∑
k

ai,krj,kvk mod v0.

Similar to Cheon et al.’s attack on the CLT13 multilinear map, this equality can
be viewed as a matrix product. Indeed, let Ω denote the (n+1)× (n+1) integer
matrix with entries ωi,j , let A denote the (n+ 1)×n integer matrix with entries
ai,j , let R denote the (n + 1) × n integer matrix with entries ri,j , and finally
let V denote the n × n diagonal matrix with diagonal entries vi. If we embed
everything into Z/v0Z, then we have:

Ω = A · V ·RT in Z/v0Z.

Since A and R are (n+ 1)× n matrices, this implies that Ω is not full-rank
when embedded into Z/v0Z. As a consequence v0 divides det(Ω). We can repeat
this process with different choices of the families (ai), (bi) to build another matrix
Ω′ with the same property. Finally we recover v0 as v0 = gcd(det(Ω),det(Ω′)),
and x0 = v0/pzt mod N .

Recovering other secret parameters. Once x0 is known, Cheon et al.’s
attack can be applied by taking all values modulo v0, and every remaining secret
parameter is recovered, fully breaking the scheme.

1.3 Impact of the Attack

Two variants of the CLT15 multilinear map should be considered. Either a small
multiple of x0 is provided in the public parameters. In that case x0 can be
recovered instantly, and the scheme becomes equivalent to CLT13 in terms of
security (cf. Section 5.1). In particular it falls victim to Cheon et al.’s attack when
low-level encodings of zero are present, but it may still be secure for applications
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that do not require such encodings, such as obfuscation. It is interesting to
note that Cheon et al.’s attack is very efficient since all computations can be
performed modulo a small prime as the outputs are small integers. However the
scheme is strictly less efficient than CLT13 by construction, so there is no point
in using CLT15 for those applications.

Otherwise, if no small multiple of x0 is given out in the public parameters,
then ladders of encodings of zero must be provided at levels below the maximal
level. Thus we have access to numerous encodings of zero below the maximal
level, even if the particular application of multilinear maps under consideration
does not require them. As a result our determinant-based attack is applicable (cf.
Section 5.4), and we still recover x0 in polynomial time, albeit less efficiently than
the previous case. Moreover once x0 is recovered, encodings of zero provided by
the ladder enable Cheon et al.’s attack, and every secret parameter is recovered.

In summary, the optimized version of CLT15 providing a small multiple of x0
is no more secure than CLT13, and less efficient. On the other hand in the general
non-optimized case, the scheme is broken for virtually all possible applications
due to encodings of zero provided by the ladder. Thus overall the CLT15 scheme
can be considered fully broken.

1.4 Organization of the Paper

For the sake of being self-contained, in Section 3, we present multilinear maps,
graded encoding schemes, as well as the CLT15 construction. In Section 4 we
recall Cheon et al.’s attack on CLT13 since it serves as a follow-up to our attack
once x0 is recovered, and shares similar ideas. Readers already familiar with the
CLT15 multilinear map can skip straight to Section 5 where we describe our
main attack.

2 Notation

The symbol 4= denotes an equality by definition. For n an integer, |n| is the size
of n in bits. To avoid confusion, we write abs(n) for the absolute value of n.

Modular arithmetic. The group of integers modulo n, Z/nZ, is denoted Zn.
The notation “mod p” should be understood as having the lowest priority. For
instance, in the expression (a/b) · c mod p, the division a/b should be computed
modulo p.

Moreover we always view a mod p as an integer in Z. The representative
closest to zero is always chosen, positive in case of tie. In other words −p/2 <
a mod p ≤ p/2.

Chinese Remainder Theorem. Given n prime numbers (pi), we define p∗i as
in [Hal15a]:

p∗i =
∏
j 6=i

pj .
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Moreover, for (x1, . . . , xn) ∈ Zn let:

CRT(pi)(xi)
4=
∑
i

(
xi(p∗i )−1 mod pi

)
p∗i mod

∏
i

pi.

That is, CRT(pi)(xi) is (a representative of) the unique integer modulo
∏
pi such

that CRT(pi)(xi) mod pi = xi mod pi, as per the Chinese Remainder Theorem.
It is useful to observe that for any (x1, . . . , xn) ∈ Zn:

CRT(pi)(xip
∗
i ) =

∑
i

xip
∗
i mod

∏
i

pi. (1)

3 Presentation of the CLT15 Multilinear Map

3.1 Multilinear Maps and Graded Encoding Schemes

In this section we give a brief introduction to multilinear maps to make our ar-
ticle self-contained. In particular we only consider symmetric multilinear maps.
We refer the interested reader to [GGH13a, Hal15b] for a more thorough pre-
sentation.

Cryptographic multilinear maps were introduced by Boneh and Silverberg
[BS03], as a natural generalization of bilinear maps stemming from pairings
on elliptic curves, which had found striking new applications in cryptography
[Jou00, BF01, ...]. A (symmetric) multilinear map is defined as follows.

Definition 1 (Multilinear Map [BS03]). Given two groups G,GT of the
same prime order, a map e : Gκ → GT is a κ-multilinear map iff it satisfies the
following two properties:

1. for all a1, . . . , aκ ∈ Z and x1, . . . , xκ ∈ G,

e(xa1
1 , . . . , xaκκ ) = e(x1, . . . , xκ)a1···aκ

2. if g is a generator of G, then e(g, . . . , g) is a generator of GT .

A natural special case are leveled multilinear maps:

Definition 2 (Leveled Multilinear Map [HSW13]). Given κ + 1 groups
G1, . . . ,Gκ,GT of the same prime order, and for each i ≤ κ, a generator gi ∈
Gi, a κ-leveled multilinear map is a set of bilinear maps {ei,j : Gi × Gj →
Gi+j |i, j, i+ j ≤ κ} such that for all i, j with i+ j ≤ κ, and all a, b ∈ Z:

ei,j(gai , gbj) = gabi,j .

Similar to public-key encryption [DH76] and identity-based cryptosystems
[Sha85], multilinear maps were originally introduced as a compelling target for
cryptographic research, without a concrete instantiation [BS03]. The first mul-
tilinear map was built ten years later in the breakthrough construction of Garg,
Gentry and Halevi [GGH13a]. More accurately, what the authors proposed was
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a graded encoding scheme, and to this day all known cryptographic multilinear
maps constructions are actually variants of graded encoding schemes [Hal15b].
For this reason, and because both constructions have similar expressive power,
the term “multilinear map” is used in the literature in place of “graded encoding
scheme”, and we will follow suit in the rest of this article.

Graded encoding schemes are a relaxed definition of leveled multilinear map,
where elements xai for xi ∈ Gi, a ∈ Z are no longer required to lie in a group.
Instead, they are regarded as “encodings” of a ring element a at level i, with no
assumption about the underlying structure. Formally, encodings are thus defined
as general binary strings in {0, 1}∗. In the following definition, S(α)

i should be
regarded as the set of encodings of a ring element α at level i.

Definition 3 (Graded Encoding System [GGH13a]). A κ-graded encod-
ing system consists of a ring R and a system of sets S = {S(α)

i ⊂ {0, 1}∗|α ∈
R, 0 ≤ i ≤ κ}, with the following properties:

1. For each fixed i, the sets S(α)
i are pairwise disjoint as α spans R.

2. There is an associative binary operation ‘+’ and a self-inverse unary oper-
ation ‘−’ on {0, 1}∗ such that for every α1, α2 ∈ R, every i ≤ κ, and every
u1 ∈ S(α1)

i , u2 ∈ S(α2)
i , it holds that:

u1 + u2 ∈ S(α1+α2)
i and − u1 ∈ S(−α1)

i

where α1 + α2 and −α1 are addition and negation in R.
3. There is an associative binary operation ‘×’ on {0, 1}∗ such that for every

α1, α2 ∈ R, every i1, i2 ∈ N such that i1 + i2 ≤ κ, and every u1 ∈ S(α1)
i1

, u2 ∈
S

(α2)
i2

, it holds that u1 × u2 ∈ S(α1·α2)
i1+i2 . Here α1 · α2 is the multiplication in

R, and i1 + i2 is the integer addition.

Observe that a leveled multilinear map is a graded encoding system where
R = Z and, with the notation from the definitions, S(α)

i contains the single ele-
ment gαi . Also note that the behavior of addition and multiplication of encodings
with respect to the levels i is the same as that of a graded ring, hence the graded
qualifier.

All known constructions of graded encoding schemes do not fully realize the
previous definition, insofar as they are “noisy”3. That is, all encodings have a
certain amount of noise; each operation, and especially multiplication, increases
this noise; and the correctness of the scheme breaks down if the noise goes
above a certain threshold. The situation in this regard is similar to somewhat
homomorphic encryption schemes.

3.2 Multilinear Map Procedures

The exact interface offered by a multilinear map, and called upon when it is
used as a primitive in a cryptographic scheme, varies depending on the scheme.
3 In fact the question of achieving the functionality of multilinear maps without noise
may be regarded as an important open problem [Zim15].
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However the core elements are the same. Below we reproduce the procedures
for manipulating encodings defined in [CLT15], which are a slight variation of
[GGH13a].

In a nutshell, the scheme relies on a trusted third party that generates the
instance (and is usually no longer needed afterwards). Users of the instance (that
is, everyone but the generating trusted third party) cannot encode nor decode
arbitrary encodings: they can only combine existing encodings using addition,
negation and multiplication, and subject to the limitation that the level of an
encoding cannot exceed κ. The power of the multilinear map comes from the
zero-testing (resp. extraction) procedure, which allows users to test whether an
encoding at level κ encodes zero (resp. roughly get a λ-bit “hash” of the value
encoded by a level-κ encoding).

Here users are also given access to random level-0 encodings, and have the
ability to re-randomize encodings, as well as promote any encoding to a higher-
level encoding of the same element. These last functionalities are tailored towards
the application of multilinear maps to one-round multi-party Diffie-Hellman. In
general different applications of multilinear map require different subsets of the
procedures below, and sometimes variants of them.

instGen(1λ, 1κ): the randomized instance procedure takes as input the security
parameter λ, the multilinearity level κ, and outputs the public parameters
(pp,pzt), where pp is a description of a κ-graded encoding system as above,
and pzt is a zero-test parameter (see below).

samp(pp): the randomized sampling procedure takes as input the public param-
eters pp and outputs a level-0 encoding u ∈ S(α)

0 for a nearly uniform α ∈ R.
enc(pp, i, u): the possibly randomized encoding procedure takes as input the

public parameters pp, a level i ≤ κ, and a level-0 encoding u ∈ Sα0 for some
α ∈ R, and outputs a level-i encoding u′ ∈ S(α)

i .
reRand(pp, i, u): the randomized rerandomization procedure takes as input the

public parameters pp, a level i ≤ κ, and a level-i encoding u ∈ Sαi for some
α ∈ R, and outputs another level-i encoding u′ ∈ S(α)

i of the same α, such
that for any u1, u2 ∈ S(α)

i , the output distributions of reRand(pp, i, u1) and
reRand(pp, i, u2) are nearly the same.

neg(pp, u): the negation procedure is deterministic and that takes as input the
public parameters pp, and a level-i encoding u ∈ S(α)

i for some α ∈ R, and
outputs a level-i encoding u′ ∈ S(−α)

i .
add(pp, u1, u2): the addition procedure is deterministic and takes as input the

public parameters pp, two level-i encodings u1 ∈ S(α1)
i , u2 ∈ S(α2)

i for some
α1, α2 ∈ R, and outputs a level-i encoding u′ ∈ S(α1+α2)

i .
mult(pp, u1, u2): the multiplication procedure is deterministic and takes as input

the public parameters pp, two encodings u1 ∈ S
(α1)
i , u2 ∈ S

(α2)
j of some

α1, α2 ∈ R at levels i and j such that i + j ≤ κ, and outputs a level-(i + j)
encoding u′ ∈ S(α1·α2)

i+j .

8



isZero(pp, u): the zero-testing procedure is deterministic and takes as input the
public parameters pp, and an encoding u ∈ S(α)

κ of some α ∈ R at the maxi-
mum level κ, and outputs 1 if α = 0, 0 otherwise, with negligible probability
of error (over the choice of u ∈ S(α)

κ ).
ext(pp,pzt, u): the extraction procedure is deterministic and takes as input the

public parameters pp, the zero-test parameter pzt, and an encoding u ∈ S(α)
κ

of some α ∈ R at the maximum level κ, and outputs a λ-bit string s such
that:
1. For α ∈ R and u1, u2 ∈ S(α)

κ , ext(pp,pzt, u1) = ext(pp,pzt, u2).
2. The distribution {ext(pp,pzt, v)|α← R, v ∈ S(α)

κ } is nearly uniform over
{0, 1}λ.

3.3 The CLT15 Multilinear Map over the Integers

Shortly after the multilinear map over ideal lattices by Garg, Gentry and Halevi
[GGH13a], another construction over the integers was proposed by Coron, Le-
point and Tibouchi [CLT13]. However a devastating attack was published by
Cheon, Han, Lee, Ryu and Stehlé at Eurocrypt 2015 (on ePrint in late 2014).
In the wake of this attack, a revised version of their multilinear map over the in-
tegers was presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15].
In the remainder of this article, we will refer to the original construction over the
integers as the CLT13 multilinear map, and to the new version from Crypto
2015 as the CLT15 multilinear map.

In this section we recall the CLT15 construction. Once again we omit aspects
of the construction that are not relevant to our attack, and refer the reader to
[CLT15] for more details. The message space is R = Zg1 × · · · × Zgn , for some
(relatively small) primes gi ∈ N. An encoding of a message (m1, . . . ,mn) ∈
Zg1 × · · · × Zgn at level k ≤ κ has the following form:

e = CRT(pi)

(rigi +mi

zk
mod pi

)
+ ax0 (2)

where:

– The pi’s are n large secret primes.
– The ri’s are random noise such that abs(rigi +mi)� pi.
– x0 =

∏
i≤n pi.

– z is a fixed secret integer modulo x0.
– a is random noise.

The scheme relies on the following parameters:
λ : the security parameter.
κ : the multilinearity level.
n : the number of primes pi.
η : the bit length of secret primes pi.

γ = nη : the bit length of x0.
ρ : the bit length of the gi’s and initial ri’s.
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Addition, negation and multiplication of encodings is exactly addition, nega-
tion and multiplication over the integers. Indeed, mi is recovered from e as
mi = (e mod pi) mod gi, and as long as rigi +mi does not go over pi, addition
and multiplication will go through both moduli. Thus we have defined encodings
and how to operate on them.

Regarding the sampling procedure from Section 3.2, for our purpose, it suf-
fices to know that it is realized by publishing a large number of level-0 encodings
of random elements. Users can then sample a new random element as a subset
sum of published elements. Likewise, the rerandomization procedure is achieved
by publishing a large number of encodings of zero at each level, and an element is
re-randomized by adding a random subset sum of encodings of zero at the same
level. The encoding procedure is realized by publishing a single level-1 encoding
y of 1 (by which we mean (1, . . . , 1) ∈ Zg1×· · ·×Zgn): any encoding can then be
promoted to an encoding of the same element at a higher level by multiplying
by y.

Zero-testing in CLT13. We now move on to the crucial zero-testing procedure.
This is where CLT13 and CLT15 differ. We begin by briefly recalling the CLT13
approach.

In CLT13, the product x0 of the pi’s is public. In particular, every encoding
can be reduced modulo x0, and every value below should be regarded as being
modulo x0. Let p∗i =

∏
j 6=i pj . Using (1), define:

pzt
4=
∑
i≤n

(hizκ
gi

mod pi
)
p∗i = CRT(pi)

(hizκ
gi

p∗i mod pi
)

mod x0.

where the hi’s are some relatively small numbers such that abs(hi) � pi. Now
take a level-κ encoding of zero:

e = CRT(pi)

(rigi
zκ

mod pi
)

mod x0.

Since multiplication acts coordinate-wise on the CRT components, using (1)
again, we have:

ω
4= epzt = CRT(pi)(hirip

∗
i ) =

∑
i

hirip
∗
i mod x0.

Since p∗i = x0/pi, as long as we set our parameters so that abs(hiri) � pi, we
have abs(ω)� x0.

Thus the zero-testing procedure is as follows: for a level-κ encoding e, com-
pute ω = epzt mod x0. Output 1, meaning we expect e to encode zero, iff the
ν most significant bits of ω are zero, for an appropriately chosen ν. In [CLT13],
multiple pzt’s can be defined in order to avoid false positives; we restrict our
attention to a single pzt.
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Zero-testing in CLT15. In CLT13, an encoding at some fixed level is entirely
defined by its vector of associated values ci = rigi +mi. Moreover, addition and
multiplication of encodings act coordinate-wise on these values, and the value of
the encoding itself is Zx0 -linear as a function of these values. Likewise, ω is Zx0-
linear as a function of the ri’s. This nice structure is an essential part of what
makes the devastating attack by Cheon et al. [CHL+15] possible. In CLT15, the
authors set out to break this structure by introducing a new noise component a.

For this purpose, the public parameters include a new prime numberN � x0,
with |N | = γ + 2η + 1. Meanwhile x0 is kept secret, and no longer part of the
public parameters. Encodings are thus no longer reduced modulo x0, and take
the general form given in (3), including a new noise value a. Equivalently, we
can write an encoding e of (mi) at level k as:

e =
∑
i

(
ri +mi(g−1

i mod pi)
)
ui + ax0 (3)

with ui
4=
(
giz
−k(p∗i )−1 mod pi

)
p∗i .

That is, we fold the giz−k multiplier of ri with the CRT coefficient into ui.
The zero-testing parameter pzt is now defined modulo N in such a way that:

v0
4= x0pzt mod N ∀i, vi

4= uipzt mod N (4)
satisfy: abs(v0)� N abs(vi)� N

To give an idea of the sizes involved, |v0| ≈ γ and |vi| ≈ γ + η for i > 0. We
refer the reader to [CLT15] for how to build such a pzt. The point is that if e is
an encoding of zero at level κ, then we have:

ω = epzt mod N =
∑

rivi + av0 mod N.

In order for this quantity to be smaller than N , the size of a must be some-
how controlled. Conversely as long as a is small enough and the noise satisfies
abs(ri) � pi then abs(ω) � N . We refer the reader to [CLT15] for an exact
choice of parameters.

Thus the size of a must be controlled. The term ax0 will be dominant in
(3) in terms of size, so decreasing a is the same as decreasing the size of the
encoding as a whole. The scheme requires a way to achieve this without altering
the encoded value (and without publishing x0).

For this purpose, inspired by [VDGHV10], a ladder (X(k)
i )i≤` of encodings of

zero of increasing size is published for each level k ≤ κ. The size of an encoding e
at level k can then be reduced without altering the encoded value by recursively
subtracting from e the largest ladder element smaller than e, until e is smaller
than X0. More precisely we can choose X0 small enough that the previous zero-
testing procedure goes through, and then choose X` twice the size of X0, so that
the product of any two encodings smaller than X0 can be reduced to an encoding
smaller than X0. After each addition and multiplication, the size of the resulting
encoding is reduced via the ladder.
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In the end, the zero-testing procedure is very similar to CLT13: given a
(ladder-reduced) level-κ encoding e, compute ω = epzt mod N . Then output 1,
meaning we expect e to encode zero, iff the ν high-order bits of ω are zero.

Extraction. The extraction procedure simply outputs the ν high-order bits of
ω, computed as above. For both CLT13 and CLT15, it can be checked that they
only depend on the mi’s (as opposed to the noises a and the ri’s).

4 Cheon et al.’s Attack on CLT13

In this section we provide a short description of Cheon et al.’s attack on CLT13
[CHL+15], as elements of this attack appear in our own. We actually present (a
close variant of) the slightly simpler version in [CGH+15].

Assume we have access to a level-0 encoding a of some random value, n level-1
encodings (bi) of zero, and a level-1 encoding y of 1. This is the case for one-round
multi-party Diffie-Hellman (see previous section). Let ai = a mod pi, i.e. ai is the
i-th value “rigi +mi” associated with a. For i ≤ n, define ri,j = biz/gj mod pj ,
i.e. ri,j is the j-th value “rj” associated with bi (recall that bi is an encoding of
zero, so mj = 0). Finally let yk = yz mod pk.

Now compute:

ei,j = a · bi · bj · yκ−2 mod x0 ωi,j = ei,jpzt mod x0

e′i,j = bi · bj · yκ−2 mod x0 ω′i,j = e′i,jpzt mod x0

Note that:

ωi,j =
∑
k

(
ak
ri,kgk
z

rj,kgk
z

yκ−2
k

zκ−2
hkz

κ

gk
mod pk

)
p∗k

=
∑
k

akri,krj,kck with ck = gky
κ−2
k hkp

∗
k. (5)

Crucially, in the second line, the modulo pk disappears and the equation holds
over the integers, because ei,j is a valid encoding of zero, so the correctness of
the scheme requires abs(ei,jzκ/gk mod pk)� pk.

Equation (5) may be seen as a matrix multiplication. Indeed, define Ω, resp.
Ω′, as the n× n matrix with entries ωi,j , resp. ω′i,j , and likewise R with entries
ri,j . Moreover let A, resp. C, be the diagonal matrix with diagonal entries ai,
resp. ci. Then (5) may be rewritten:

Ω = R ·A · C ·RT

Ω′ = R · C ·RT

Ω · (Ω′)−1 = R ·A ·R−1.

Here matrices are viewed over Q for inversion (they are invertible whp).
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Once Ω · (Ω′)−1 has been computed, the (diagonal) entries of A can be
recovered as its eigenvalues. In practice this can be achieved by computing the
characteristic polynomial, and all computations can be performed modulo some
prime p larger than the ai’s (which are size 2ρ).

Thus we recover the ai’s, and by definition ai = a mod pi, so pi can be
recovered as pi = gcd(a − ai, x0). From there it is trivial to recover all other
secret parameters of the scheme.

5 Main Attack

5.1 On the Impact of Recovering x0

If x0 is known, CLT15 essentially collapses to CLT13. In particular, all encod-
ings can be reduced modulo x0 so ladders are no longer needed. What is more,
all ωi,j ’s from Cheon et al.’s attack can be reduced modulo v0 = x0pzt mod N ,
which effectively removes the new noise a. As a direct consequence Cheon et al.’s
attack goes through and all secret parameters are recovered (cf. [CLT15, Sec-
tion 3.3]). Moreover ladder elements reduced by x0 provide low-level encodings
of zero even if the scheme itself does not.

Our attack recovers x0. As a first step, we introduce integer extraction.

5.2 Integer Extraction
Integer extraction essentially removes the extra noise induced by ladder reduc-
tions when performing computations on encodings. In addition, as we shall see
in Section 5.3, this step is enough to recover x0 when an exact multiple is known,
as is the case in the optimized variant proposed and implemented in [CLT15].

Integer Extraction of Level-κ Encodings of Zero. In the remainder we
say that an encoding at level k is small iff it is less than X(k)

0 in absolute value.
In particular, any ladder-reduced encoding is small.

Definition 4 (integer extraction of an encoding). Let e ∈ Z, and write:

e =
n∑
i=1

riui + ax0

with: ui =
(
giz
−k(p∗i )−1 mod pi

)
p∗i as in (3)

ri ∈ Z ∩ (−pi/2, pi/2].

Note that ri is uniquely defined as ri = eg−1
i zk mod pi, and a = (e−

∑
riui)/x0.

Hence the following map is well-defined over Z:

φ : e 7→
∑
i

rivi + av0

with: v0 = x0pzt mod N, and ∀i > 0, vi = uipzt mod N as in (4).

We call φ(e) the integer extraction of e.
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Remark. φ is defined over the integers, and not modulo N . Indeed the vi’s
are seen as integers: recall from Section 2 that throughout this paper x mod N
denotes an integer in Z ∩ (−N/2, N/2].

The point is that if e is a small encoding of zero at level κ, then φ(e) = epzt
mod N . In that case φ(e) matches the extraction in the sense of the ext procedure
of Section 3.2 (more precisely ext returns the high-order bits of φ(e)).

However we want to compute φ(e) even when e is larger. For this purpose, the
crucial point is that φ is actually Z-linear as long as for all encodings involved, the
associated ri’s do not go over pi/2, i.e. reduction modulo pi does not interfere.
More formally:

Lemma 1. Let e, a, r1, . . . , rn ∈ Z with −pi/2 < ri ≤ pi/2 such that e =∑
riui + ax0 as in Definition 4. Define e′ =

∑
r′iui + a′x0 in the same manner.

Let k ∈ Z.

1. If ∀i,−pi/2 < ri + r′i ≤ pi/2, then: φ(e+ e′) = φ(e) + φ(e′)
2. If ∀i,−pi/2 < kri ≤ pi/2, then: φ(ke) = kφ(e)

An important remark is that the conditions on the ri’s above are also required
for the correctness of the scheme to hold. In other words, as long as we perform
valid computations from the point of view of the multilinear map (i.e. there is
no reduction of the ri’s modulo pi, and correctness holds), then the Z-linearity
of φ also holds.

Using this observation, we can recursively compute the integer extraction of
every ladder element X(κ)

i . Indeed φ(X(κ)
0 ) = X

(κ)
0 pzt mod N . Then assume we

know φ(X(κ)
0 ), . . . , φ(X(κ)

i ) for some i < `. ReduceXi+1 by the previous elements
of the ladder. We get:

Yi+1
4= X

(κ)
i+1 − αiX

(κ)
i − · · · − α0X

(κ)
0

with: abs(Yi+1) < abs(X(κ)
0 )

whence: φ(X(κ)
i+1) = φ(Yi+1) +

∑
j≤i

αjφ(X(κ)
j )

Since abs(Yi+1) < abs(X0) we can compute φ(Yi+1) = Yi+1pzt mod N , and
deduce φ(X(κ)

i+1).
In exactly the same manner, we can compute φ(e) for any valid level-κ en-

coding of zero, by first reducing via the ladder and then compensating using
Z-linearity. Here, by valid we mean of size up to X`, and such that the corre-
sponding ri’s are within the limit imposed by the correctness of the multilinear
map.

In Appendix A, we show how to also compensate ladder reductions at in-
termediate levels for any computation on encodings, e.g. compute φ(abc) for a
three-way product abc. However this will not be needed for our attack, as the
previous technique will suffice.
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5.3 Recovering x0 when an Exact Multiple is Known
The authors of [CLT15] propose an optimized version of their scheme, where a
multiple qx0 of x0 is provided in the public parameters. The size of q is chosen
such that qx0 is about the same size as N . Ladders at levels below κ are no
longer necessary: every encoding can be reduced modulo qx0 without altering
encoded values or increasing any noise. The ladder at level κ is still needed as a
preliminary to zero-testing, however it does not need to go beyond qx0, which
makes it much smaller. In the end this optimization greatly reduces the size of
the public key and speeds up computations.

In this scenario, note that qx0 may be regarded as an encoding of 0 at level
κ (and indeed every level). Moreover by construction it is small enough to be
reduced by the ladder at level κ with a valid computation (i.e. with low enough
noise for every intermediate encoding involved that the scheme operates as de-
sired and zero-extraction is correct). As a direct consequence we have:

φ(qx0) = qv0

and so we can recover q as q = gcd(qx0, φ(qx0)), and get x0 = qx0/q. This attack
has been verified on the reference implementation, and recovers x0 instantly.

Remark. qv0 is larger than N by design, so that it cannot be computed
simply as qx0pzt mod N due to modular reductions (cf. [CLT15, Section 3.4]).
The point is that our computation of φ is over the integers and not modulo N .

5.4 Recovering x0 in the General Case
We now return to the non-optimized version of the scheme, where no exact
multiple of x0 is provided in the public parameters.

The second step of our attack recovers x0 using a matrix product similar to
Cheon et al.’s (cf. Section 4), except we start with families of n + 1 encodings
rather than n. That is, assume that for some t we have n+1 level-t small encod-
ings (ai) of any value, and n+1 level-(κ− t) small encodings (bi) of zero. This is
easily achievable for one-round multi-party Diffie-Hellman (cf. Section 3.2), e.g.
choose t = 1, then pick (n + 1) level-1 encodings (ai) of zero from the public
parameters, and let bi = a′iy

κ−2 for a′i another family of (n+1) level-1 encodings
of zero and y any level-1 encoding, where the product is ladder-reduced at each
level. In other applications of the multilinear map, observe that ladder elements
provide plenty of small encodings of zero, as each ladder element can be reduced
by the elements below it to form a small encoding of zero. Thus the necessary
conditions to perform both our attack to recover x0, and the follow-up attack
by Cheon et al. to recover other secret parameters once x0 is known, are very
lax. In this respect [CLT15] is weaker than [CLT13].

Let ai,j = aiz mod pj , i.e. ai,j is the j-th value “rjgj +mj” associated with
ai. Likewise for i ≤ n, let ri,j = biz

κ−1/gj mod pj , i.e. ri,j is the j-th value
“rj” associated with bi (recall that bi is an encoding of zero, so mj = 0). Now
compute:

ωi,j
4= φ(aibj).
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If we look at the ωi,j ’s modulo v0 (which is unknown for now), everything behaves
as in CLT13 since the new noise term av0 disappears, and the ladder reduction at
level κ is negated by the integer extraction procedure. Hence, similar to Section 4,
we have:

ωi,j mod v0 =
∑
k

ai,krj,kvk mod v0. (6)

Again, equation (6) may be seen as a matrix product. Indeed, define Ω as
the (n + 1) × (n + 1) integer matrix with entries ωi,j , let A be the (n + 1) × n
matrix with entries ai,j , let R be the (n + 1) × n matrix with entries ri,j , and
finally let V be the n×n diagonal matrix with diagonal entries vi. Then (6) may
be rewritten modulo v0:

Ω = A · V ·RT in Zv0 .

Since A and R are (n + 1) × n matrices, this implies that Ω is not full-
rank when embedded into Zv0 . As a consequence v0 divides det(Ω), where the
determinant is computed over the integers. Now we can build a new matrix
Ω′ in the same way using a different choice of bi’s, and recover v0 as v0 =
gcd(det(Ω),det(Ω′)). Finally we get x0 = v0/pzt mod N (note that N � x0 by
construction).

The attack has been verified on the reference implementation with reduced
parameters.

Remark. As pointed out above, Ω cannot be full-rank when embedded into
Zv0 . Our attack also requires that it is full-rank over Q (whp). This holds because
while Ω can be nicely decomposed as a product when viewed modulo v0, the
“remaining” part of Ω, that is Ω − (Ω mod v0) is the matrix of the terms av0
for each ωi,j , and the value a does have the nice structure of ωi,j mod v0. This
is by design, since the noise a was precisely added in CLT15 in order to defeat
the matrix product structure in Cheon et al.’s attack.

5.5 Attack Complexity

It is clear that the attack is polynomial, and asymptotically breaks the scheme.
In this section we provide a closer look at its practical complexity. When an
exact multiple of x0 is known, the attack is instant as mentioned in Section 5.3,
so we focus on the general case from Section 5.4. There are two steps worth
considering from a complexity point of view: computing Ω and computing its
determinant. Computing the final gcd is negligible in comparison using a sub-
quadratic algorithm [Möl08], which is practical for our parameter size.

Computing Ω. Computing Ω requires (n+ 1)2 integer extractions of a single
product. Each integer extraction requires 1 multiplication, and 2` additions (as
well as ` multiplications by small scalars). For comparison, using the multilinear
scheme for one user requires 1 multiplication and ` additions on integers of
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similar size. Thus overall computing Ω costs about n2 times as much as simply
using the multilinear scheme. For the 52-bit instance proposed in [CLT15] for
instance, this means that if it is practical to use the scheme about a million
times, then it is practical to compute Ω. Thus we will focus on the determinant
computation as the main bottleneck.

Computing the Determinant. Let n denote the size of a matrix Ω (it is
(n + 1) in our case but we will disregard this), and β the number of bits of its
largest entry. When computing the determinant of an integer matrix, one has to
carefully control the size of the integers appearing in intermediate computations.
It is generally possible to ensure that these integers do not grow past the size
of the determinant. Using Hadamard’s bound this size can be upper bounded
as log(det(Ω)) ≤ n(β + 1

2 logn), which can be approximated to nβ in our case,
since β is much larger than n.4

As a result, computing the determinant using “naive” methods requiresO(n3)
operations on integers of size up to nβ, which results in a complexity Õ(n4β)
using fast integer multiplication (but slow matrix multiplication). The asymp-
totic complexity is known to be strictly less than Õ(n3β) [KV04]; however we are
interested in the complexity of practical algorithms. Computing the determinant
can be reduced to solving the linear system associated with Ω with a random
target vector: indeed the determinant can then be recovered as the least common
denominator of the (rational) solution vector. In this context the fastest algo-
rithms use p-adic lifting [Dix82], and an up-to-date analysis using fast arithmetic
in [MS04] gives a complexity O(n3β log2 β log log β) (with logn = o(β)).5

For the concrete instantiations of one-round multipartite Diffie-Hellman im-
plemented in [CLT15], this yields the following complexities:

Security parameter: 52 62 72 80
Determinant complexity: 257 266 274 281

Thus, beside being polynomial, the attack is actually coming very close to the
security parameter as it increases to 80 bits.6

Acknowledgement. We would like to thank the authors of CLT13 and CLT15
Jean-Sébastien Coron, Tancrède Lepoint and Mehdi Tibouchi for fruitful discus-
sions and remarks.

4 This situation is fairly unusual, and in the literature the opposite is commonly
assumed; algorithms are often optimized for large n rather than large β.

5 This assumes a multitape Turing machine model, which is somewhat less powerful
than a real computer.

6 We may note in passing that in a random-access or log-RAM computing model
[Für14], which is more realistic than the multitape model, the estimated complexity
would already be slightly lower than the security parameter.
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A Integer Extraction of Products

Using Section 5.2, if a, b are two small encodings at levels s and κ−s respectively,
and b encodes zero, we know how to compute φ(ab), because the size of ab is at
most that of X`.

We now consider larger products. Let a1, . . . , am, be small encodings at level
s1, . . . , sm, with tj

4=
∑
i≤j si, tm = κ, and with am an encoding of zero. We

would like to compute φ(a1 · · · am). Note that a1 · · · am may be much larger than
X

(κ)
` in the absence of ladder reduction, so our previous technique is not enough.
Instead, a valid computation is to compute the product π 4= a1 · · · am pairwise

from the left, and reduce at each step. That is, let π1
4= a1, and recursively define

the ladder-reduced partial product πi+1
4= πiai+1 −

∑
j α

i+1
j X

(ti+1)
i < X

(ti+1)
0

for i < m. Thus πm < X
(κ)
0 encodes the same element as π, and φ(πm) =

πmpzt mod N . In order to compute φ(π), observe:

π =
((

(a1a2 −
∑

α
(2)
i X

(t2)
i ) . . .

)
am−1 −

∑
αm−1
i X

(tm−1)
i

)
am −

∑
α

(m)
i X

(κ)
i

+
∑

2≤k≤m

∑
i

α
(k)
i X

(tk)
i ak+1 · · · am

Hence:

φ(a1 · · · am) = φ(πm) +
∑

2≤k≤m

∑
i

α
(k)
i φ(X(tk)

i ak+1 · · · am)

In the above equation, φ(πm) is known since πm is small, so we are reducing
the computation of a product π of m elements to a sum of products of m − 1
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elements, of the form X
(tk)
i ak+1 · · · am. As mentioned earlier we already know

how to compute φ for products of 2 small elements, so by induction we are done.
To be more precise, the induction is carried out on the hypothesis: we know

how to compute φ for products of up tom small encodings (with the last being an
encoding of zero so that the overall product encodes zero). In order to apply the
induction hypothesis onX(tk)

i ak+1 · · · am, the termX
(tk)
i would need to be small,

which is not the case. However it can be reduced by previous ladder elements,
i.e. first compute X(tk)

0 ak+1 · · · am, then define Y1 = X
(tk)
1 − α0X

tk
0 < X

(tk)
0 ,

whence φ(X(tk)
1 ak+1 · · · am) = φ(Y1ak+1 · · · am) + α0φ(Xtk

0 ak+1 · · · am), and so
forth as in the previous section. Thus the induction goes through and we know
how to compute φ(π).

All in all, while the above formalism may obfuscate the process somewhat,
the idea is simple: φ is (Z-)linear as long as we are performing valid computations
from the point of view of the scheme. As a consequence every ladder reduction
involved during a computation can be compensated for at its last stage, when
the level-κ encoding is multiplied by the zero-testing parameter. The payback is
that we will be able to ignore ladder reductions in the rest of the attack.

A note on complexity. It may seem that computing φ(a1 · · · am) using the
previous approach has a huge complexity, but actually most of the computation
overlaps. In fact we only ever need to compute the φ(X(tk)

i ak+1 · · · am)’s for each
i, k. Memorizing intermediate results yields a complexity in `m, where ` is the
size of the longest ladder. The time required for each term is quite close to merely
using the multi-party Diffie-Hellman scheme.
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