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Abstract

For counting points of jacobians of genus 2 curves over a large prime field, the best known
approach is essentially an extension of Schoof’s genus 1 algorithm. We propose various practical
improvements to this method and illustrate them with a large scale computation: we counted
hundreds of curves, until one was found that is suitable for cryptographic use, with a state-of-
the-art security level of approximately 2128 and desirable speed properties. This curve and its
quadratic twist have a Jacobian group whose order is 16 times a prime.
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1. Introduction, previous work

For a given level of security, genus 2 curves can now provide cryptosystems that are
competitive with their elliptic analogues in terms of speed (see for instance Cohen and
Frey (2005) for a general introduction to elliptic and hyperelliptic curve cryptography).
However, in contrast to the elliptic case, it remains difficult to construct secure genus 2
cryptosystems. To wit, we have the following requirements:
• the base field should be large enough: a field cardinality of 280 is believed to provide

barely adequate security, and 2128 is considered safe;
• the curve (and possibly its twist) should have a Jacobian of prime, or almost prime

group order (a few small factors may be acceptable).
We will call a curve that satisfies these constraints a (twist-) secure curve. Two ap-
proaches coexist to obtain such curves: point-counting, and construction using the com-
plex multiplication method (see for instance Streng’s thesis (Streng, 2010)). In this paper,
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motivated by efficiency considerations (described in detail in the last section), we choose
the former.

When the base field has a small characteristic, very efficient algorithms have been
designed and implemented, based on a p-adic lifting of the curve, after the work of Satoh
(2000) and Kedlaya (2001), or deformation techniques following Lauder (2004) – we refer
to the survey articles (Chambert-Loir, 2008; Gaudry, 2006) as well as Cohen and Frey
(2005, Ch. 17) for further details and references. Unfortunately, the complexity of the p-
adic algorithms is exponential in log(p) (it has been lowered to

√
p in the work of Harvey

(2007)), so we cannot apply them for a large prime field.
In that case, the approach is essentially an extension of Schoof’s genus 1 algorithm,

that appeared first in work of Pila (1990) (for the very general case of an abelian variety),
followed by Huang and Ierardi (1998) and Adleman and Huang (2001); all these algo-
rithms have a runtime polynomial in log(p). The special case of genus 2 is discussed by
Gaudry and Harley (2000), the authors (Gaudry and Schost, 2004a), and Pitcher (2009).

We mention a third approach to produce good curves, due to Sutherland (2009), that
is not really point counting: using generic group algorithms, it is possible to produce in
subexponential time a curve with a Jacobian of known group order. Unfortunately, it
seems that there is no way to turn it into a polynomial time algorithm. Furthermore,
Sutherland’s technique cannot output a twist-secure curve.

Schoof’s algorithm. To find the cardinality of the Jacobian of a curve C, the key idea of
Schoof’s algorithm is to compute the characteristic polynomial χ ∈ Z[T ] of the Frobe-
nius endomorphism modulo several small prime numbers `, and to reconstruct χ by the
Chinese Remainder Theorem, using Weil’s bounds on its coefficients.

For a given `, the `-torsion subgroup of the Jacobian of C is a finite group isomorphic to
(Z/`Z)4, and the action of the Frobenius endomorphism on it is Z/`Z-linear. Computing
explicitly this subgroup and the action of the Frobenius on it therefore provides us with
the characteristic polynomial χ modulo `. The most difficult part of Schoof’s algorithm
in genus 2 is the explicit computation of the torsion subgroup.

It is also possible to combine information modulo prime powers `k, for very small `,
say up to 7. This is obtained by constructing elements of the `k-torsion subgroup, on
which we can test the action of the Frobenius. Again, the costly part is to construct these
torsion elements.

If we run out of feasible primes, or powers of small primes, and we do not have enough
modular information to reconstruct χ unambiguously, we deduce χ using a matching
algorithm such as the ones of Matsuo et al. (2002) or Gaudry and Schost (2004b) (this
will be the case for our experiments).

Under a few non-degeneracy assumptions, the state-of-the-art approach to compute
the `-torsion takes O(`6) operations in Fp (ignoring logarithmic factors); taking all re-
quired `’s into account results in O(log(p)7) operations in Fp. Remark that from a purely
theoretical point of view, using prime powers only changes the constant factor in the
big-O; however it makes an important difference in practice.

In the case of genus 1, the improvements by Elkies and Atkin provide a way to deal
with only part of the `-torsion. This method makes heavy use of modular equations and
explicit isogenies. Despite several works attempting to extend these tools (Gaudry and
Schost, 2005; Bröker and Lauter, 2009; Faugère et al., 2009; Lubicz and Robert, 2010),
in genus 2 there is still no known algorithm for computing part of the `-torsion faster
than the whole torsion. Therefore, in this work we do not follow this direction.
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Our contribution. Our purpose in this article is to give a detailed presentation of the
algorithm sketched above and of our implementation, dedicated to genus 2 curves over
the prime field Fp.

We present several improvements upon previous work (Gaudry and Harley, 2000;
Gaudry and Schost, 2004a), that mainly concern the construction of torsion elements,
either `-torsion, or `k-torsion when ` is tiny. Our contributions do not allow us to reduce
the exponent 7 of the complexity of the algorithm; however, we put a significant effort
into saving all possible constant factors. This is necessary to reach cryptographic size.

For a base field of size about 128 bits, a natural choice is to work in Fp, with p =
2127 − 1. Over this base field, our implementation allows us to compute the cardinality
of a curve in about 1000 CPU hours; as far as we can tell, this is the first time that one
achieves genus 2 point-counting over such a field: previous landmarks for prime fields were
p ≈ 261 (Gaudry and Harley, 2000) and p ≈ 282 (Gaudry and Schost, 2004a). A large-
scale deployment of our implementation, coupled with early abort strategies, enabled us
to find the first twist-secure curve, that also possesses desirable speed properties; the
computation took more than 1,000,000 CPU hours.

To our knowledge, no other published work gives a precise description of this kind of
implementation; our goal for this paper is to fill this gap, and provide all necessary details.
There is a moderate price to pay: some claims below (such as the shape of some Gröbner
bases, the nature of the parasite factors in our equations, etc) are stated without proof,
but are backed up by the fact that they held in our experiments. This can arguably be a
sufficient justification from the practical point of view; in theory, in most cases, genericity
arguments could be used to prove that our claims hold for a generic curve.

Notation. In all that follows, C is a genus 2 curve with Weierstraß equation Y 2 = f(X),
where f is monic, of degree 5, over a prime field Fp, with p > 5. Its Jacobian variety
is denoted by J = Jac(C); it is the degree zero divisor class group of C. The point at
infinity on C is written ∞.

A non-zero element D of J can be uniquely written D = 〈U(X), V (X)〉, with U
monic, and with either deg(U) = 2 and deg(V ) ≤ 1, or deg(U) = 1 and deg(V ) ≤ 0.
• In the former case (which is the generic case), we say that D has weight 2. Then, D

can be written as P1 + P2 − [2]∞, where P1 = (x1, y1) and P2 = (x2, y2) are the two
points on C such that U(xi) = 0 and V (xi) = yi, for i = 1, 2. The case P1 = P2 can be
dealt with by properly handling multiplicities.

• In the latter case, where deg(U) = 1, we say that D has weight 1; it is of the form
D = P −∞, where P = (x, y) is the point on C such that U(x) = 0 and V (x) = y.
In both cases, the conditions given above amount to (V 2− f) = 0 mod U . This repre-

sentation is called the Mumford representation, with the two polynomials in it respectively
called the U -polynomial and V -polynomial of D; the field of definition of D is the field
generated by the coefficients of U and V .

An algorithm due to Cantor allows one to compute the group law with this repre-
sentation of elements of J . We refer to Cohen and Frey (2005) for background on this
explicit way of computing with Jacobians.

The pth power Frobenius automorphism π : Fp → Fp is extended to the Jacobian,
and is still denoted by π. In the ring of endomorphisms of J , it admits a characteristic
polynomial of the form

χ(T ) = T 4 − s1T 3 + s2T
2 − ps1T + p2 ∈ Z[T ], (1)
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where s1 and s2 are integers that satisfy

|s1| ≤ 4
√
p and |s2| ≤ 6p.

Since |J (Fp)| = χ(1), we will focus on computing χ, that is, s1 and s2. Note that the

bound on s2 can be refined to 2|s1|
√
p−2p ≤ s2 ≤ s21

4 +2p, which yields a small practical
speed-up (Lenstra, Jr. et al., 2002).

Organization of the paper. We give in Section 2 a review of algorithms for univariate
and bivariate polynomials: they are the key ingredients for what follows. The core of
this paper is in Sections 3 and 4, which explain in detail how to compute `-torsion and
`k-torsion divisors, and how to deduce χ mod ` from this data. Finally, Section 5 presents
the computation that led to the discovery of a twist-secure curve in cryptographic size.
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chical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and
Compute / Calcul Canada, by means of a Dedicated Resources award. We also acknowl-
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2. Algebraic algorithms

In this section, we present some (mostly classical) results about polynomial arithmetic:
in the first subsection, we review known material for problems such as multiplication,
composition, etc; in the second subsection, we discuss in more detail the operations used
to handle base field extensions.

Especially in the second subsection, some of our algorithmic choices are dictated by
practical considerations: we present the solutions that were found to be the most efficient
using the library NTL (Shoup, 1995, 1996–2010), which forms the basis of our implemen-
tation. For the same reason, costs are given in terms of operations in Fp: this analysis
reflects rather closely the behavior of NTL for the problem sizes we consider.

Note that another point of view is possible, using the Kronecker-Schönhage substi-
tution to reduce multiplication in Fp[X] to integer multiplication, foregoing polynomial
arithmetic. Using this idea would allow one to save a factor log log(p) in the overall bit
complexity of the point counting algorithm, as pointed out by Pitcher (2009). However,
our approach allowed us to rely on the large number of (well optimized) preexisting
functions present in NTL.

2.1. Basic algorithms

Multiplication. We let M be such that polynomials of degree less than n in Fp[X] can be
multiplied in M(n) operations in Fp; we also add the super-linearity constraints of Ga-
then and Gerhard (1999, Ch. 8). Using Fast Fourier Transform, one can take M(n) in
O(n log(n)), provided Fp contains a primitive nth root of unity, and O(n log(n) log log(n))
in general.

Then, for P of degree n in Fp[X], multiplication in Fp[X]/〈P 〉 takes time O(M(n));
inversion, if possible, takes time O(M(n) log(n)). The finite field Fpn will be described as
Fpn = Fp[X]/〈P 〉, where P ∈ Fp[X] is an irreducible polynomial of degree n. This way,
additions in Fpn take time O(n), multiplications O(M(n)) and inversions O(M(n) log(n)).
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Modular composition. Take P squarefree of degree n in Fp[X], not necessarily irreducible,
and write A = Fp[X]/〈P 〉. On input Z ∈ A and F ∈ Fp[X] of degree e, modular compo-
sition is the problem of computing F (Z) ∈ A.

In what follows, we will let C(e, n) be such that this operation can be done in C(e, n)
operations in Fp, and write C(n) = C(n, n). Using the algorithm of Brent and Kung
(1978), one can take C(e, n) = O(M(n)e1/2 +ne(ω−1)/2), where ω is such that matrices of
size n can be multiplied in O(nω) operations; this algorithm has a memory requirement
of O(ne1/2) elements of Fp, which can become a bottleneck.

The function C(n) can (in theory) be taken subquadratic, using fast matrix multiplica-
tion; however, the NTL implementation we use has ω = 3, whence a quadratic behavior.
In view of this estimate, we will make the assumption that M(n) log(n) is O(C(n)). Note
that the algorithm of Kedlaya and Umans (2008) has a bit complexity quasi-linear in
max(n, e). In theory, using this algorithm would reduce to 1 + o(1) the exponent of all
algorithms involving factorization and root-finding that appear in Section 4; this would
however not affect the overall running time, which is asymptotically dominated by that
of the large ` case. From the practical point of view, we did not use the Kedlaya-Umans
algorithm in our experiments, since we do not know of a competitive implementation of
it.

Modular composition (and a “dual” problem, called power projection) are used in
many further algorithms, as illustrated in the two results below. Both are standard, and
are easily deduced from Shoup (1994) and Rouillier (1999).
• The minimal polynomial of an element Z ∈ A (that is, the minimal polynomial of the

multiplication-by-Z map) can be computed in time O(C(n)), provided p > n (by first
computing the characteristic polynomial of Z and taking its squarefree part).

• Even though A may not be a field, we call Z ∈ A a primitive element if its powers
form an Fp-basis of A, that is, if its minimal polynomial has maximal degree n. In this
case, given Z ′ ∈ A, one can compute S ∈ Fp[X] such that Z ′ = S(Z) using O(C(n))
operations in Fp.

Extensions to bivariate computations. Similar results hold for bivariate computations:
for P as above, and Q in Fp[X,Y ], of degree less than n in X and monic of degree m
in Y , multiplication in B = Fp[X,Y ]/〈P,Q〉 can be done in time O(M(nm)), see Gathen
and Shoup (1992).

The notion of modular composition carries over: given F of degree e in Fp[X] and Z in
B, it consists in computing F (Z) ∈ B. We will make the assumption that the function C is
such that this can be done in time C(e,mn); this is indeed the case when using a bivariate
version of the Brent and Kung algorithm, with C(e,mn) = O(M(nm)e1/2 +mne(ω−1)/2),
see C. Pascal and Schost (2006). In this case, the memory requirement is O(mne1/2)
elements of Fp.

The notions of minimal polynomial and primitive element are defined as before. When
the ideal 〈P,Q〉 is radical, and p > nm, using techniques that extend the univariate ones,
it is then possible to compute the minimal polynomial of an element Z ∈ B, and, if Z is
a primitive element, to express any Z ′ ∈ B as a polynomial in Z, in time O(C(mn)).

However, one should note that using NTL, bivariate operations are slower than uni-
variate ones by a rather large constant factor (e.g., with p = 2127 − 1, bivariate modular
multiplication is 5 to 6 times as slow as univariate modular multiplication for similar
input size). This remark will dictate some of the choices made in the next subsection.
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Miscellaneous operations. Evaluation and interpolation of polynomials in degree n can

be done in O(M(n) log(n)) operations, using subproduct tree techniques (Gathen and

Gerhard, 1999). If one can choose the evaluation points, it is possible to do better: using

points in geometric progression, one can reduce both costs to 2M(n) +O(n), see Bostan

and Schost (2005). Besides, the memory usage is then linear in n (assuming polynomial

multiplication is done in linear space); this can be achieved as well using subproduct tree

techniques, but not in a straightforward manner (Gathen and Shoup, 1992).

The next operation is less well-known. The sum-root polynomial of two polynomials

F and G is the polynomial whose roots are the sums of one root of F and one root of G:

SR(F,G) =
∏

F (x1)=0

∏
G(x2)=0

(X − (x1 + x2)).

In the case where F = G, we can isolate the contribution coming from x1 = x2 and

define the reduced sum-root polynomial sr(F ) by the relation:

SR(F, F ) = F (X/2) sr(F )2.

One can compute SR(F,G) in time O(M(nm)), with deg(F ) = n and deg(G) = m,

provided p > nm, see Bostan et al. (2006).

Finally, we discuss how to shift the variable in a polynomial. If H is in Fp[X] of degree

n and a is in Fp, then the coefficients of H(X + a) can be deduced from the coefficients

of H in time M(n) +O(n), assuming p > n, using the algorithm of Aho et al. (1975).

Solving bivariate systems. Let now A and B be two polynomials in Fp[X,Y ], and let

dA = deg(A, Y ) and dB = deg(B, Y ); we assume that dA ≥ dB (if not, exchange the roles

of these polynomials). To such a system, we associate the resultant and the subresultant of

degree 1 of A and B with respect to Y , written R = res(A,B, Y ) and S = sres(A,B, Y ).

Following Reischert (1997, Def. 3.1), for i ∈ Z, let ai (resp. bi) be the coefficient of Y i in

A (resp. B), with ai = 0 for i < 0 or i > dA, and similarly for bi. Then, R and S are the

determinants of the matrices MR and MS given by

MR =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

adA bdB

adA−1
. . . bdB−1

. . .

...
. . . adA

...
. . . bdB

... adA−1
... bdB−1

...
...

...
...

a2−dB a2 b2−dA b2

Y dB−1A · · · Y 0A Y dA−1B · · · Y 0B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and

MS =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

adA bdB

adA−1
. . . bdB−1

. . .

...
. . . adA

...
. . . bdB

... adA−1
... bdB−1

...
...

...
...

a4−dB a2 b4−dA b2

Y dB−2A · · · Y 0A Y dA−2B · · · Y 0B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Elementary row combinations show that R is in Fp[X], and S in Fp[X,Y ], of the form
S = S0(X) + S1(X)Y .

The polynomials R and S will be our basic tools to solve the system A = B = 0.
Since they are in the ideal 〈A,B〉, any solution of A = B = 0 is a solution of R = S = 0.
Conversely, the specialization property of (sub)resultants implies that any solution (x, y)
of R = S = 0, with in addition S1(x) 6= 0, is a solution of A = B = 0. When we deal
with bivariate systems, we will be interested only in such solutions. Roughly speaking,

these are the points (x, y) ∈ Fp
2

where x does not cancel both leading coefficients of A
and B in Y , and such that there is no other solution of the form (x, y′). For a “random”
system, we obtain all solutions this way.

To compute R and S, we will use evaluation and interpolation techniques: for suffi-
ciently many values xi, we compute the resultant and the subresultant of degree 1 of
A(xi, Y ) and B(xi, Y ), provided that xi does not cancel the leading coefficient of A or
B in Y . If both A and B have total degree n, R and S have degrees at most n2. The
required (sub)resultants of A(xi, Y ) and B(xi, Y ) can be computed in O(n2M(n) log(n))
operations, by an extension of the half-GCD algorithm, see Reischert (1997). Using points
in a geometric progression, the evaluations can be done in O(nM(n2)) operations, and
the interpolation in O(M(n2)) operations.

2.2. Managing field extensions

The algorithms for computing `k-torsion divisors will require us to extend the current
base field, say Fpn , by adjoining to it a root γ of a polynomial A ∈ Fpn [Y ]. This problem is
especially important in the case of 2k-torsion, and to a lesser extent, 3k, 5k and 7k-torsion
(these algorithms have several other potential bottlenecks). In most cases, d = deg(A, Y )
is small; as a consequence, improvements for the case of large d are not discussed here.

Starting from Fpn given as Fp[X]/〈P 〉, we will have to find a univariate polynomial
defining Fpm = Fpn(γ) over Fp, and to be able to apply the embedding Fpn → Fpm . We
present here a solution which requires us to factor only univariate polynomials over Fp
(this is interesting for us, as we have mentioned that NTL does better at arithmetic in
Fp[Y ] than in Fpn [Y ]). Our algorithm runs in expected time O(C(n) log(n)+M(n) log(p)),
for fixed d.

These ideas are not new, as they already appear in the algorithm of Trager (1976)
(except for small refinements in a special case, which we discuss below). The only differ-
ence is in the cost analysis: Trager’s presentation relied on resultant techniques; following
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Gathen and Shoup (1992), Shoup (1994) and Kaltofen and Shoup (1997), we use mod-
ular composition, which yields a faster algorithm (this idea appears also in Couveignes
and Lercier (2009), where it is used in conjunction with Kedlaya and Umans’ modular
composition algorithm). Proofs not given below can be found in Trager (1976).

Overview of the algorithm. As input, we are given an irreducible polynomial P ∈ Fp[X]
of degree n, as well as a monic squarefree polynomial A ∈ A[Y ], where we write A =
Fp[X]/〈P 〉 ' Fpn . We want to find an extension Fpn → Fpm , such that Fpm contains a
root of A. We write d = deg(A, Y ), and we assume p > nd.

Let I ⊂ Fp[X,Y ] be the ideal 〈P,A〉 and let B = Fp[X,Y ]/I; remark that B has
dimension nd over Fp. Take Z of the form Z = Y + rX, for some r ∈ Fp and compute its
minimal polynomial Q ∈ Fp[X]. We want Z to be a primitive element. This will be the
case for most choices of r: this condition is equivalent to Q having degree nd, and there
are at most n2d2 choices of r for which this fails.

By the results recalled in Subsection 2.1, the cost of computing Q is O(C(nd)), which
is O(C(n)) when d is fixed. If deg(Q) = nd, we can compute S and T in Fp[X] such that
X = T (Z) mod Q and Y = S(Z) mod Q for the same cost; if not, we start over with
another choice of Z.

Assuming that deg(Q) = nd, if Q is not irreducible, we furthermore replace Q,S, T by
Q1, S1, T1, where Q1 is an irreducible factor of Q, S1 = S mod Q1 and T1 = T mod Q1.
In this case, to compute the factorization of Q, we use the fact that all its irreducible
factors have degrees that are multiples of n. For instance, if d = 2, then either Q is
irreducible, or it has two factors of degree n. In this case, factorization takes expected
time O(C(n) log(n) + M(n) log(p)) using Shoup (1994, Th. 26) and Gathen and Shoup
(1992, Th. 5.4). More generally, for fixed d, a similar result holds, by trying all possible
degrees for the factors of Q.

After possibly replacing Q by Q1, and letting m = deg(Q), so that m ≤ nd, we deduce
that

ϕ : A = Fp[X]/〈P 〉 → A′ = Fp[X]/〈Q〉

X 7→ T

is a well-defined injection Fpn → Fpm ; besides, extending ϕ to a map A[Y ]→ A′[Y ], we
see that S is the root of ϕ(A) we were looking for.

Once Q and T are known, applying ϕ to an element B ∈ A amounts to computing
B(T ) mod Q, and can thus be done in time C(n,m), which is O(C(n)) for fixed d.

A special case. When A(X,Y ) has the form Y d − α(X), and when we can take Z = Y ,
all computations can be done using univariate algorithms only.

Lemma 1. Suppose that A(X,Y ) = Y d−α(X), for some α ∈ Fp[X]−{0}. Let ρ ∈ Fp[Y ]
be the minimal polynomial of α modulo P and let Q ∈ Fp[Y ] be the minimal polynomial
of Y modulo I. Then Q = ρ(Y d).

Proof. It is enough to prove that the monic polynomials Q and Q? = ρ(Y d) have the
same roots and are both squarefree. The roots of Q are the values yi, for all (xi, yi) root
of I in Fp, that is, for all (xi, yi) with P (xi) = 0 and ydi = α(xi); equivalently, these are
the dth roots of the values α(xi). The roots of ρ are the values α(xi), where xi are the
roots of P , so the roots of Q? are dth roots of the values α(xi).
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This proves the first claim; to establish the second one, note that Q is squarefree since
I is a radical ideal (since α 6= 0, the Jacobian matrix of (P,A) is invertible modulo I,
and the Jacobian criterion implies radicality); ρ is irreducible with non-zero roots (again,
since α 6= 0), so Q? = ρ(Y d) has no repeated root. 2

Using the results of Subsection 2.1, computing ρ takes O(C(n)) operations in Fp.
Knowing ρ, we deduce Q for free, and we can thus decide whether Y is a primitive
element: this is the case if and only if deg(ρ) = n. If not, we fall back on the general
strategy. If Y is a primitive element, we can compute in time O(C(n)) a polynomial
t ∈ Fp[X] such that X = t(α) mod P ; then, we take T = t(Xd) and S = X.

Compared to the general strategy, we save a factor of d in the degree of the extension
we work with; in practice, the fact that we only use univariate arithmetic induces as well
significant savings.

3. Computing χ modulo `

In this section, we describe the computation of χ mod `, for ` an odd prime. This
is done exactly as in Schoof’s algorithm in genus 1: we compute a description of the
`-torsion subgroup J [`], and use it to deduce χ mod ` by means (mostly) of operations
on univariate polynomials. A serious difficulty comes from the size of the objects we
consider: J [`] has cardinality `4, so cases such as ` = 31 are at the limit of what can be
done as of now.

After describing the general strategy (Subsection 3.1), we describe the successive steps
of the algorithm: resultant computations (Subsection 3.2), removal of parasite solutions
(Subsection 3.3), and deduction of χ mod ` (Subsection 3.4); we conclude with experi-
mental results.

3.1. General strategy

Representing the `-torsion. In this section, we will explain how to compute polynomials
R,S,W,Z such that all elements in J [`]−{0} can be described as 〈X2+u1X+u0, v1X+
v0〉, where u0, u1, v0, v1 are the zeros of a triangular system of the form

I`

∣∣∣∣∣∣∣∣∣∣∣∣

V0 − V1 Z(U1)

V 2
1 − W (U1)

U0 − S(U1)

R(U1),

(2)

with R,S,W,Z in Fp[U1], R squarefree of degree (`4 − 1)/2, and S,W,Z of degrees less
than (`4 − 1)/2.

Note that the polynomials R,S,W,Z may not always exist; in what follows, we will
assume that they do (this is expected to be the case in general). Let us make a few
comments on this assumption. It requires first of all that all `-torsion divisors have weight
2. Besides, if D is an `-torsion divisor, then −D is also an `-torsion divisor; in Mumford
representation, they share the same U -polynomials and have opposite V -polynomials.

9



Thus, our assumption also requires that all pairs of non-opposite `-torsion divisors have
distinct U1-coordinates and that none of them should have V1 = 0.

For a given curve, there exist infinitely many ` for which J [`] contains weight 1
divisors, contradicting the first requirement. On the other hand, we certainly expect this
assumption to hold most of the time in practice, for the small values of ` we consider
(this is indeed the case in our experiments).

A system encoding the `-torsion. We follow the same strategy as in Gaudry and Harley
(2000) and Gaudry and Schost (2004a, 2005), and write an `-torsion divisor D as a sum
D = P1+P2−[2]∞, with P1 and P2 on C; then,D is `-torsion if [`](P1−∞) = −[`](P2−∞).
Cantor (1994) proved that there exist polynomials d0, d1, d2, e0, e1, e2 in Fp[X] such
that for every point P = (x, y) in C, we have

[`](P −∞) =

〈
X2 +

d1(x)

d2(x)
X +

d0(x)

d2(x)
,

y

e2(x)
(e1(x)X + e0(x))

〉
,

provided d2(x)e2(x) 6= 0 (of course, these polynomials depend on `, but we rather not
add an extra index). For ` odd and greater than 2, these polynomials have respective
degrees 2`2 − 1, 2`2 − 2, 2`2 − 3, 3`2 − 2, 3`2 − 3 and 3`2 − 2 (if ` is even, then these
polynomials all have a degree reduced by 5); these degrees can be deduced from the paper
of Cantor (1994). For a fixed curve, and a given degree `, the polynomials di and ei can
be computed in a number of field operations that is quasi-quadratic in `, using recursion
formulae by Cantor (or simply using the group law, keeping x and y as indeterminates).
This adds a negligible contribution to the whole running time.

Let X1, Y1, X2, Y2 be indeterminates that represent the coordinates of P1 and P2.
Taking coordinates in the equality [`](P1 −∞) = −[`](P2 −∞), we obtain the system

E

∣∣∣∣∣∣∣∣∣∣∣∣

E1(X1, X2) = (d1(X1)d2(X2)− d1(X2)d2(X1))/(X1 −X2) = 0,

E2(X1, X2) = (d0(X1)d2(X2)− d0(X2)d2(X1))/(X1 −X2) = 0,

F1(X1, X2, Y1, Y2) = Y1e1(X1)e2(X2) + Y2e1(X2)e2(X1) = 0,

F2(X1, X2, Y1, Y2) = Y1e0(X1)e2(X2) + Y2e0(X2)e2(X1) = 0,

together with d2(X1)d2(X2)e2(X1)e2(X2)(X1−X2) 6= 0. Combining the third and fourth
equations of E, we get

e0(X1)e1(X2)− e0(X2)e1(X1) = 0.

Since we are looking for solutions such that X1 6= X2, we are led to introduce the following
new equation, which will be useful later on:

E3(X1, X2) = (e0(X1)e1(X2)− e0(X2)e1(X1))/(X1 −X2).

Finally, we add the equations Y 2
i − f(Xi), to ensure that the points Pi are on C.

One could want to fall back on generalist algorithms to solve the previous equations.
However, we will not do so: these systems are extremely difficult to solve (in our cases,
they could have millions of solutions), so it is necessary to develop ad-hoc solutions and
to exploit any possible savings. In particular, this leads us to base our algorithms on a
few experimental observations, offered without a proof.

As an illustration of this principle, we will actually forget about some of the inequa-
tions, by simply assuming that no solution of E cancels d2(X1)d2(X2)e2(X1)e2(X2).

10



3.2. Computing an ideal contained in I`

The equations in E are symmetric under the permutation of (X1, Y1) and (X2, Y2).
In Gaudry and Schost (2004a), we presented a way to take advantage of these symmetries
and obtain an equivalent system in the symmetric coordinates X1X2 and −X1 − X2

(which are the coefficients of the U -polynomial of the divisor D = P1 + P2 − [2]∞).
We recall this approach and develop it further, starting with a discussion on rewriting
techniques for some symmetric polynomials.

Handling symmetries. Let H be in Fp[X] and let X1 and X2 be the indeterminates intro-
duced before. Then the divided differences of H are the bivariate symmetric polynomials

AH =
(
H(X1)−H(X2)

)
/(X1 −X2)

BH =
(
X1H(X2)−X2H(X1)

)
/(X1 −X2).

Rewriting them in terms of the elementary symmetric polynomials, we let AH and BH

be the unique polynomials in Fp[U0, U1] such that we have

AH(X1X2,−X1 −X2) = AH and BH(X1X2,−X1 −X2) = BH .

The following identity in Fp[U0, U1][X] can then be checked by verifying that it is true
at the roots X1 and X2 of the polynomial X2 + U1X + U0:

H = AHX + BH mod (X2 + U1X + U0). (3)

Given H and u1 ∈ Fp, we will need below to compute AH(U0, u1) and BH(U0, u1). This
problem amounts to reducing H modulo X2 + u1X + U0 in Fp[U0][X].

Our solution relies on polynomial shift. The main idea is to rewrite the polynomial
X2 +u1X+U0 as (X + u1/2)

2− (u21/4−U0). Let K = H(X−u1/2) in Fp[X]. We group
the coefficients of K according to the parity of their indices, forming the polynomials
Kodd and Keven such that K = Keven(X2) +XKodd(X2). Since H = K(X + u1/2), this
gives

H = Keven

((
X +

u1
2

)2)
+
(
X +

u1
2

)
Kodd

((
X +

u1
2

)2)
.

Taking H modulo X2 + u1X + U0, we have

H = Keven

(
u21
4
− U0

)
+
(
X +

u1
2

)
Kodd

(
u21
4
− U0

)
mod (X2 + u1X + U0). (4)

Thus, computing AH(U0, u1) and BH(U0, u1) can be done by computing K by a polyno-
mial shift, decomposing it into Keven and Kodd, applying another two polynomial shifts
to get Keven

(
u21/4− U0

)
and Kodd

(
u21/4− U0

)
, and concluding by means of (4). In view

of what we recalled in Subsection 2.1 on polynomial shift, and assuming that p > d, with
d = deg(H), we can compute AH(U0, u1) and BH(U0, u1) in O(M(d)) operations.

Application. The previous equations E1, E2, E3 can be rewritten in symmetric form using
the previous construction: defining the polynomials

E1 = Ad1 Bd2 − Ad2 Bd1 ,

E2 = Ad0 Bd2 − Ad2 Bd0 ,

E3 = Ae0 Be1 − Ae1 Be0

11



in Fp[U0, U1], we have Ei = Ei(X1X2,−X1 −X2) for i = 1, 2, 3. Thus, for any `-torsion
divisor 〈X2 + u1X + u0, v1X + v0〉, (u0, u1) is a solution of E1 = E2 = E3 = 0. In this
subsection, we will describe how to solve the equations E1 = E2 = 0. We will discuss how
to discard extraneous solutions in the next subsection.

We solve the system E1 = E2 = 0 by computing (factors of) the resultant r̃(U1) =
res(E1,E2, U0) and the subresultant s̃0(U1) + s̃1(U1)U0 = sres(E1,E2, U0).

This is done using the algorithm of Subsection 2.1, by means of evaluation / interpola-
tion at a geometric progression. Thus, given u1 ∈ Fp, we have to compute the polynomials
E1(U0, u1) and E2(U0, u1); this boils down to computing the polynomials Adi(U0, u1) and
Bdi(U0, u1), for i = 0, 1, 2. In view of the result in the previous paragraph, for each value
u1, this can be done using O(M(`2)) operations in Fp; this is less than the subsequent
O(M(`2) log(`)) incurred by the resultant computation.

Taking all required O(`4) values of u1 into account, the total cost is O(`4M(`2) log(`))
operations in Fp. This is not optimal, since the output of this step has size O(`4), but
finding a better algorithm for this kind of resultant computation is a well-known open
problem.

Parasites. Due to the very special form of the polynomials E1 and E2, there are pre-
dictable factors in r̃, s̃0 and s̃1, which generically do not correspond to solutions of the
system E1 = E2 = E3 = 0; in Gaudry and Schost (2004a), we called them parasites.
We start by giving their precise form for r̃, s̃0 and s̃1, then explain how to exploit this
information to save a constant factor in the running time.

Recall the definition of the polynomials SR and sr given in Subsection 2.1. Given the
form of the polynomials E1 and E2, we expect ρ = sr(d2) to occur as a factor of their
resultant. Based on Cantor’s recurrence formulae used to construct d2, one can show that
d2 has the form d2 = f3δ2, where δ is a polynomial and f is the polynomial defining the
curve C. We can then deduce the following formula for ρ, which follows easily from the
definition of the polynomials SR and sr:

ρ = f(X/2)3 δ(X/2) SR(f, δ)6 sr(δ)4 sr(f)9.

The parasite factor for the subresultant coefficients s̃0 and s̃1 is more difficult to predict;
experimentally, we observe that the following factor is always present in both of them:

σ = sr(f)4 sr(δ) SR(f, δ)2.

We use this definition in the implementation; if one is interested in a proven complexity
result, one can always ignore these parasites, since taking them into account just changes
the complexity by a constant factor.

We will be interested in computing R̃ = r̃/ρ, S̃0 = s̃0/σ and S̃1 = s̃1/σ. The previous
formulae show that ρ has degree 2`4 − 7`2 + 6, and σ has degree (`4 + `2 − 10)/2. After
parasite removal, we observe that the degree of R̃ is about 2`4, and the degrees of S̃0

and S̃1 are about 7`4/2.
Being able to predict the parasites ρ and σ allows us to reduce the number of required

evaluation points: for any given value u1 ∈ Fp, we compute r̃(u1), s̃0(u1) and s̃1(u1)
by the subresultant algorithm, and separately ρ(u1) and σ(u1) using the algorithm in
Subsection 2.1, for an extra cost of O(M(`2)); this gives us R̃(u1), S̃0(u1) and S̃1(u1). In
view of the degrees of R̃, S̃0 and S̃1, we deduce that we need to do this for about 7`4/2
values of u1. Without parasite prediction, we would need about 4`4 values, thus saving
12.5% (since we are only saving a constant factor, the cost remains O(`4M(`2) log(`)),
with or without parasite prediction).
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3.3. Refining to get I`

Given R̃, S̃0 and S̃1, we now show how to deduce I` itself. We have to refine the set
of solutions described by these polynomials, by discarding many extraneous solutions: R̃
has a degree that is about 4 times as large as the degree of the polynomial R we are
looking for.

The direct approach would be to use the equations E1 = E3 = 0, apply again the
resultant strategy, obtain another univariate polynomial that lies in I`, and take its
GCD with R̃; we would then expect to obtain R. However, this second resultant will be
at least as costly as the first one. Instead, we propose here two ways to refine the ideal,
that both have a smaller time complexity, thus saving asymptotically a factor of 2 in the
running time.

Using modular composition. We start by computing S̃ = −S̃0/S̃1 mod R̃. We will then
reintroduce the equation E3 ∈ Fp[U0, U1] by computing R′ = E3(S̃, U1) mod R̃, and

replace R̃ by gcd(R̃, R′).
The main question is to compute R′ efficiently. In view of the definition of E3, we see

that R′ is given by Ae0 Be1 − Ae1 Be0 , evaluated at U0 = S̃(U1), and reduced modulo
R̃. In other words, we have to compute Aei(S̃, U1) mod R̃ and Bei(S̃, U1) mod R̃, for
i = 0, 1. Define the algebra

B̃ = Fp[U1, X]/〈R̃,X2 + U1X + S̃〉.

Equation (3) shows that Aei(S̃, U1) mod R̃ and Bei(S̃, U1) mod R̃ are respectively the
coefficients of degree 1 and 0 in X of the remainder of ei(X) in B̃. Computing this residue
is a similar question to the reduction we saw in the previous subsection, and we could use
a similar solution. However, this time, U1 is kept as a variable; as a result, this approach
would cost too much.

Instead, we use a bivariate modular composition, resulting in a cost O(C(`2, `4)), which
is O(`M(`4) + `ω+3); the memory requirement is O(`5) elements of Fp.

Once we know R′, we take its GCD with R̃; this takes a negligible O(M(`4) log(`))
operations in Fp. Experimentally, we observe that gcd(R̃, R′) has degree (`4−1)/2; this is

thus the polynomial R we are looking for. Reducing S̃ modulo R, we get the polynomial
S of I`, so it only remains to compute the polynomials W and Z. To this effect, we define
the algebra (similar to B̃)

B = Fp[U1, X]/〈R,X2 + U1X + S〉.

From the equation F1 = 0 of E, we deduce that any solution (x1, x2, y1, y2) of E satisfies

y1y2 = −y22
e1(x2)e2(x1)

e1(x1)e2(x2)
.

Since y22 = f(x2), this can be rewritten as

y1y2 = −f(x2)
e1(x2)e2(x1)

e1(x1)e2(x2)
.

The V1-coordinate of the weight-2 divisor P1 + P2 − [2]∞ in Mumford representation is
given by y1−y2

x1−x2
; thus, its square equals

f(x1) + f(x2)− 2y1y2
x21 + x22 − 2x1x2

,
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which can be expressed in terms of x1, x2 only using the former expression for y1y2.
To obtain the polynomial W (U1), we evaluate the resulting expression at x1 = X and
X2 = −U1 − X in B. The main cost comes from the computation of e1(X), e2(X),
e1(−U1 −X) and e2(−U1 −X) in B, which we do using modular composition as before,
for a similar cost.

In the same spirit, we compute the last polynomial Z of I`, as the value of V0/V1,
which we express in B as

V0
V1

=
x1f(x2)− x2f(x1)

y1y2 − f(x2)
.

To summarize, the overall cost to get I` using this technique is dominated by the
modular compositions. Using the bivariate version of Brent and Kung’s algorithm, this
amounts to a number of operations of the form O(C(`2, `4)), which is O(`M(`4) + `ω+3).
The memory requirement is O(`5) elements of Fp.

Using the group law. The algorithm based on modular composition is faster than the
first step of computing R̃ and S̃. However, the memory requirement is O(`) times larger,
and can become the main limitation.

An alternative method is to build a “candidate” `-torsion divisor D̃`, with coefficients
in an algebra that extends the algebra B̃ defined above. This divisor D̃` is then multiplied
by `. Since the ideal used to construct it is smaller than I`, this does not give the zero
divisor in the “Jacobian” over B̃. Taking the GCD of R̃ and the denominators that occur
in the result, we observe experimentally that we obtain the exact polynomial R in I`.

Let us give a few more details on the techniques we use to construct D̃`. We start
again with the algebra

B̃ = Fp[U1, X]/〈R̃,X2 + U1X + S̃〉.

Then, the abscissae X1 and X2 of the two points P1 and P2 defining D̃` are expressed
in B̃ as X and −U1 − X. Their ordinates are defined in a degree-2 extension of B̃, but
using a strategy explained with more details in the next subsection, we will be able to
perform Jacobian arithmetic with P1 and P2 at almost the same cost as if they were
indeed defined over B̃.

Computing [`](P1 −∞) and [`](P2 −∞), we deduce the squares of the V1-coordinates
of these divisors; they should be equal if D̃` = P1 + P2 − [2]∞ was indeed an `-torsion
element. In fact, their difference δ is a multiple of a factor of R̃; we observe experimentally
that the GCD of δ and R̃ is the polynomial R in I`. In the same spirit, all other elements
of I` can be recovered with a constant number of additional operations in B̃.

The overall cost to refine the ideal and get I` is O(M(`4) log(`)) operations in Fp, with
a memory requirement of O(`4) elements of Fp. Indeed, one addition or multiplication

in B̃ uses O(M(`4)) operations in Fp, and the multiplication of P1 and P2 by ` requires
O(log(`)) such operations; the subsequent GCD computations take time O(M(`4) log(`))
as well.

3.4. Finding χ mod `

Given I`, we describe next how to recover χ mod `. In Gaudry and Schost (2004a), we
factored the polynomial R defining I`; following Pitcher (2009), we avoid factorization,
as it may actually become a bottleneck.
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Let D be the residue class ring

D = Fp[U1, U0, V1, V0]/〈R(U1), U0 − S(U1), V 2
1 −W (U1), V0 − V1Z(U1)〉.

Although D is in general not a field, but a product of fields, we may still define a “divisor”
with coordinates in D; in particular, we will write

D` = 〈X2 + U1X + U0, V1X + V0〉 = 〈X2 + U1X + S(U1), V1(X + Z(U1))〉.

Applying a power of the Frobenius π to such a divisor is straightforward. We will also
want to add these divisors, using the standard addition formulae. Since the group law in
the Jacobian involves inversions, the possibility exists of a division by a zero-divisor. If
this is the case, we obtain a factorization of R, and we dynamically switch to working
modulo all factors of R separately; this does not hurt the complexity, or the practical
runtime. Thus, one operation in the Jacobian with coordinates in D takes O(M(`4) log(`))
operations in Fp, and one application of π takes O(M(`4) log(p)) operations in Fp.

The algorithm. Since for all divisors D in J [`] we have

π4(D)− [s1 mod `]π3(D) + [s2 mod `]π2(D)− [ps1 mod `]π(D) + [p2 mod `]D = 0,

we deduce the equality over D

π4(D`)− [s1 mod `]π3(D`) + [s2 mod `]π2(D`)− [ps1 mod `]π(D`) + [p2 mod `]D` = 0.

To find all possible values of (s1, s2) in (Z/`Z)2 that satisfy this relation, we proceed as
usual. We first compute the images πi(D`) for i = 1, 2, 3, 4, and split the characteristic
polynomial equality in a left hand side that involves s1, and a right hand side that
involves s2:

π4(D`)+[p2 mod `]D`− [s1 mod `](π3(D`)− [p mod `]π(D`)) = −[s2 mod `]π2(D`). (5)

All possible left-hand-sides can be computed with O(`) additions in the Jacobian. Then,
usingO(`) additional operations in the Jacobian, all the right-hand sides can be computed
and checked against the stored left-hand sides. The set of (s1, s2) modulo ` for which (5)
holds can therefore be computed using O(`) operations in D, plus O(1) applications of the
Frobenius to elements of D. The total is thus O(`M(`4) log(`) + M(`4) log(p)) operations
in Fp.

In general, only one pair (s1, s2) should remain, but in some cases there are several
candidates. This can be dealt with, as we explain now.

To each such pair, one can associate a polynomial of degree 4 that annihilates the
matrix of the Frobenius endomorphism acting on J [`]. Therefore, each pair corresponds
to a multiple of the minimal polynomial µ` of this endomorphism. Taking the GCD of
all the polynomials constructed this way gives a multiple M` of µ`.

We will show that for all possible cases, we can deduce the right choice for (s1, s2) from
M`. Remark first that M` is the GCD of all polynomials that annihilate the Frobenius
endomorphism and whose roots in F` come in pairs (α, p/α). Then, the conclusion follows
from considering the following cases.
• If µ` has degree 1, it has the form µ` = T − α, with α2 = p. Then M` = (T − α)2 and

one deduces that χ = M2
` .

• If µ` has degree 2 and a double root, then µ` = (T − α)2, with α2 = p. Again,
M` = (T − α)2 and χ = M2

` .

15



• If µ` has degree 2 and two distinct roots, there are two sub-cases: if the product of the

two roots of µ` is different from p, then M` has degree 4, i.e. there is only one solution

(s1, s2). Else, M` is equal to µ`, and again χ = M2
` .

• The last case is when µ` has degree 3. Then either M` has degree 3 as well (so µ` = M`),

and we complete it to χ using the fact that the constant term must be p2, or M` has

degree 4 and there is nothing to do.

To summarize, if deg(M`) = 2, we have χ = M2
` ; if deg(M`) = 3, we have χ = (T +

p2/c)M`, where c is the constant term of M`; if deg(M`) = 4, we have χ = M`. As a

consequence, in all cases, we can uniquely deduce the characteristic polynomial χ modulo

`.

Practical improvements. As a first obvious remark, in the former algorithm, one should

not store all left-hand sides, but only their images by a hash function.

Secondly, we discuss how to avoid working over D. The natural way to construct and

work with D` is indeed to take coefficients in D. However, it is possible to modify the

group law in order not to have to work in D, but only in A = Fp[U1]/〈R〉: even though

the modified group law is slightly more expensive, this is a useful improvement, since

arithmetic operations in D are three times as expensive as arithmetic operations in A.

Remark that we can write D` as

D` =
〈
X2 + U1X + S,

√
W (X + Z)

〉
,

where S, W and Z are in A. Since all the divisors we need to manipulate are generated

by Galois conjugates of D`, all of them can be represented by a 4-tuple of coordinates

(F0, F1, G0, G1) in A, such that the corresponding Mumford representation is〈
X2 + F1X + F0,

√
W (G1X +G0)

〉
.

When doubling or adding divisors represented by such a 4-tuple, one can express the

result with a similar 4-tuple, through small modifications of the group law. Deriving

the modified group law is easy from the formulae given for instance in Lange (2005): it

suffices to replace V0, V1 by
√
WG0,

√
WG1 in the formulae and keep track of what they

become. The Frobenius action can also be made to preserve this representation.

Thus, even though we are working in D = A[
√
W ], only 4 coordinates in A are required

to give the Mumford representation of elements that would in principle be defined over D.

The cost is the same as that of classical Jacobian arithmetic over the algebra A of degree

(`4 − 1)/2, plus an additional half-a-dozen multiplications in A per Jacobian operation,

in order to take into account the modified group law.

3.5. Summary and experimental results

We conclude this section by a summary of the former algorithm, followed by experi-

mental results.

Input: an odd prime `

Output: (s1, s2) mod `

(1) compute d0, d1, d2, e0, e1, e2 ∈ Fp[X]
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(2) compute R̃ = r̃/ρ, S̃0 = s̃0/σ and S̃1 = s̃1/σ by evaluation / interpolation, with

r̃(U1) = res(E1,E2, U0), s̃0(U1) + s̃1(U1)U0 = sres(E1,E2, U0)

and

ρ = f(X/2)3 δ(X/2) SR(f, δ)6 sr(δ)4 sr(f)9, σ = sr(f)4 sr(δ) SR(f, δ)2.

(3) compute R,S,W,Z by modular composition or using the group law (Subsection 3.3)
(4) find all possible pairs (s1, s2) ∈ (Z/`Z)2 that satisfy (5)
(5) deduce the characteristic polynomial χ mod ` (Subsection 3.4) and the actual value

of (s1, s2) mod `
Finally, we give running times for prime values of ` from 5 to 31. The latest cases

become quite challenging, from the memory and running time points of view: we compute
resultants, and take GCDs, in degrees more than a million.

In Table 1, we give detailed timings (in seconds) for the values of ` we are interested in;
timings are measured on one core of a Xeon L5640 at 2.27 GHz. We used our NTL-based
implementation, running on a typical genus 2 curve defined over Fp, where p = 2127 − 1.
We give the time for resultants (first, for 1000 specialized resultants, then for all the
ones we need), for refining to get I` (comparing the two strategies of Subsection 3.3),
computing the Frobenius πi(D`), and finally finding the values of (s1, s2) mod `. To
summarize, dealing with ` = 31 requires about 10 CPU days.

The cost of computing all resultants is of course the dominant one, but this step
is easily parallelizable and requires almost no memory. The refining step, which is not
parallelized, can become the bottleneck, especially in terms of memory.

The approach using the group law is asymptotically the best, both from the time and
space point of view. However, the constant hidden by the big-O is very high: for the
current sizes, the group law method has no interest in terms of running time. However,
the algorithm using modular composition uses more memory: as soon as ` ≥ 29, the
computation does not fit anymore in 8 GB of RAM; by contrast, the group law method
allows us to deal with ` = 31 in this amount of RAM.

For our large-scale computation described in Section 5, we re-implemented the group
law approach in C, using the Mpfq library (Gaudry and Thomé, 2007), in order to take
full advantage of the particular form of the prime. This also saves some memory.

4. Lifting torsion elements of index `k

In this section, we explain how to compute torsion divisors of index `k, for ` in
{2, 3, 5, 7}, and use them in the point-counting algorithm. In all that follows, ` will be a
prime different from p (as is clear from the restricted list of values of ` we consider).

The general process is as follows: for a given value of `, we start by computing a divisor
P1 in J [`]. Explicitly, using the algorithm of the previous section, we can compute all
`-torsion divisors; then, after factoring the polynomial R of the triangular system I`,
we take for P1 an element of J [`] of smallest degree over Fp (some other considerations
actually come into play; they are discussed below). Knowing P1, we determine a sequence
of torsion divisors Pk, with Pk = [`]Pk+1 (so Pk is in J [`k]). At each step, knowing Pk
allows us to deduce some information about (s1, s2). We continue as far as feasible.

In Subsections 4.1 and 4.2, we will give more details on this process: roughly speaking,
we will prove that one may expect Pk to be defined in degree ek ≈ `k and that knowing
Pk gives us (s1, s2) modulo `k−κ, for some integer κ.
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` resultant refine to get I` Frobenius get (s1, s2)

1000 resultants all resultants ModComp group law

5 2.11 3.80 2.27 8.61 6.96 1.41

7 4.89 37.3 13.6 68.7 30.1 6.79

11 17.6 867 119 471 154 49.8

13 29.3 2850 297 1250 318 216

17 57.9 16700 1480 3670 1250 982

19 74.1 33400 2120 6080 1490 1180

23 131 127000 8890 20000 5100 5620

29 210 517000 27000 68600 11800 17100

31 229 737000 34300 84700 12300 19100

Table 1. Details for `-torsion. Timings are given in seconds on a single core of a Xeon L5640
processor at 2.27 GHz.

Computationally, the essential difficulty is the construction of the sequence Pk: going
from Pk to Pk+1 involves a “division by `” in the Jacobian, which requires solving a system
of polynomial equations. This will be the main part of this section: Subsections 4.3–4.5
describe our solutions for ` = 2, ` = 3, and ` = 5 or 7, which all take quite different
forms.

4.1. Overview

For all values of `, our approach is the same: starting from P1 ∈ J [`], we construct
P2, P3, . . . such that Pk = [`]Pk+1 holds for all k ≥ 1. Let ek be the degree of the field of
definition of Pk over Fp. Lemma 6 (proved in the next subsection) shows that ek+1 ≤ `ek.
Since the points of J [`] live in an extension of Fp of degree bounded by `4, we deduce
that ek ≤ `k+3.

We will always assume that every Pk has weight 2. Letting F ∈ Fp[T ] be an irreducible
polynomial of degree ek, so that Fpek = Fp[T ]/〈F 〉, the divisor Pk = 〈X2+u1X+u0, v1X+
v0〉 will thus be described by means of polynomials of the form

C`k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v0 = Z(T )

v1 = W (T )

u0 = S(T )

u1 = R(T )

F (T ) = 0,

(6)

with R,S,W,Z in Fp[T ]. Remark that one Jacobian operation with any divisor defined
over Fpek takes O(M(ek) log(ek)) operations in Fp.

Knowing C`k , we look for (s1, s2) that satisfy the relation

π4(Pk)− [s1]π3(Pk) + [s2]π2(Pk)− [ps1]π(Pk) + [p2]Pk = 0. (7)
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Since Pk is in J [`k], the best we can hope for is to obtain (s1, s2) mod `k. We do not
quite obtain this: when J is absolutely simple, Lemma 4 below will prove that the former
relation uniquely determines (s1, s2) mod `k−κ, for some integer κ.

To find (s1, s2) mod `k−κ, we proceed as in Subsection 3.4, and rewrite (7) as

π4(Pk) + [p2]Pk − [s1](π3(Pk) + [p]π(Pk)) = −[s2]π2(Pk).

Assuming that we know (s1, s2) mod `k−κ−1 from previous steps, we have ` choices to
test for s1 and s2; all possible choices differ by multiples of `k−κ−1. Thus, we need to
precompute [`k−κ−1](π3(Pk)+[p]π(Pk)) and [`k−κ−1]π2(Pk): this requires O(1) Frobenius
computations, and O(k) operations in the Jacobian, for a total of O(kM(ek) log(ek) +
M(ek) log(p)) operations in Fp (we assume that ` is fixed in these cost estimates). Finding
(s1, s2) mod `k−κ takes another O(`) = O(1) Jacobian operations, which is negligible.

To initiate the next step, we need to compute C`k+1 ; this amounts to solving polyno-
mial equations for the coordinates of Pk+1. We do not explain this in detail here: this is
the object of the last subsections, with different solutions for the values of ` we consider.
In all cases, the cost is an expected O(C(ek) log(ek) + M(ek) log(p)) operations in Fp.
This is the dominant step; the constants hidden in the big-O grow (quickly) with `, and
a lot of care is put in finding the most efficient solution.

4.2. A few useful lemmas

In this subsection, we prove some results that were claimed before, on the information
we can deduce from Pk about (s1, s2), and on the field of definition of Pk.

Since Pk is in J [`k], one would expect that it determines (s1, s2) modulo `k. There
are two obstructions to this: first, Pk and its conjugates might not generate the whole
J [`k]; second, testing the possible annihilating polynomials for Pk gives information only
on the minimal polynomial of π, not on its characteristic polynomial. We will show that
under some mild conditions, these two obstructions introduce only a constant shift, as
announced in the preamble: for k large enough, Pk completely determines (s1, s2) modulo
`k−κ, for some constant κ that depends on the sequence Pk.

We remark that this phenomena does not exist for elliptic curves: assume that Pk is
a point in E[`k] \ E[`k−1], where E is an elliptic curve defined over Fp. If there are two
candidate integers s and s′ such that π2(P )− [s]π(P )+ [p]P = 0, and such that the same
equality holds for s′, then subtracting the two equations, one gets [s − s′]π(P ) = 0, so
that [s− s′]P = 0 and therefore s and s′ are congruent modulo `k. It is also interesting
to note that these obstructions also vanish in genus 2 in the case where ` does not divide
the discriminant of the characteristic polynomial of π (see Remark 5 below), which is
the typical case for large `. Since in this section we are concerned with small values of `,
they often divide the discriminant and we cannot ignore the obstructions.

In what follows, we let T`(J ) be the Tate module of degree `. We consider a fixed
Z`-basis (E1, E2, E3, E4) of T`(J ), and we denote by τ the matrix of the Frobenius
endomorphism π in this basis. The determinant of τ is equal to p2 and is therefore
invertible in Z`, so that the matrix τ is invertible as well.

The first step is to prove that for a good choice of the sequence Pk, there exists k0 ≥ 1
such that for k ≥ k0, Pk and all its conjugates generate J [`k−k0+1]: up to the loss of
precision induced by k0, this will imply that a characteristic polynomial equality for Pk
will induce a similar equality for all of J [`k−k0+1].
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Unfortunately, this claim is not true in general: for instance, if the Jacobian splits as
a product of two isomorphic elliptic curves, then the action of the Frobenius on T`(J ) is
block-diagonal, with identical invariants on both blocks. In this case, there is no element
whose conjugates can generate the whole ambient space. Thus, in all that follows, we will
suppose that J is absolutely simple.

Lemma 2. There exists an integer k0 ≥ 1 and P in J [`k0 ] such that J [`] is contained
in the subgroup generated by P and its conjugates.

Proof. Let V`(J) be T`(J)⊗Z`
Q`, which is a Q`-vector space of dimension 4. Since J is

absolutely simple, the characteristic polynomial of π is irreducible over Q, and therefore
has no multiple factor over Q`. This implies that the characteristic and the minimal
polynomials of π are equal, and therefore there exists a basis of V`(J) such that the
matrix of π in this basis is a companion matrix. Any element P̂ of this basis is such that
its conjugates generate the whole space V`(J).

Without loss of generality one can assume furthermore that P̂ has coefficients in Z`,
and therefore belongs to T`(J ). Since τ also has entries in Z`, the coordinate vectors of the
family (P̂, τ P̂, τ2P̂, τ3P̂) in the basis (E1, E2, E3, E4) give a matrix A with coefficients in
Z`; its non-zero determinant is therefore in Z` as well. Let k0 be such that the valuation
of this determinant is k0 − 1.

We consider the point P obtained by projecting P̂ modulo `k0 ; hence, P is in J [`k0 ].
We will show that J [`] can be generated by P and its conjugates.

Let (B1, B2, B3, B4) ∈ J [`k0 ]4 be obtained by reducing (E1, E2, E3, E4) modulo `k0 .
Since these divisors form a basis of J [`k0 ], any Q in J [`] can be written as a combination
of (B1, B2, B3, B4). Besides, since Q is `-torsion, all its coordinates are divisible by `k0−1,
so we have Q =

∑
[qi`

k0−1]Bi, where qi are defined modulo `. Consider the inverse
matrix of A over Q`; since the valuation of the determinant of A is k0− 1, its inverse has
entries that become integers after multiplication by `k0−1. Let further q be the vector of
entries (qi`

k0−1). Then, the vector v = A−1q has entries in Z` and answers the question:
projecting the equation Av = q modulo `k0 gives a combination of conjugates of P that
equals Q. 2

The main property of P is that, together with its conjugates, it generates J [`]. The
following lemma proves that dividing by ` propagates this property to higher level torsion
subgroups.

Lemma 3. Let k ≥ 1 and let P ∈ J be such that J [`k] is contained in the subgroup
generated by P and its conjugates. Then for any Q ∈ J such that P = [`]Q, J [`k+1] is
contained in the subgroup generated by Q and its conjugates.

Proof. Let Q′ be in J [`k+1]. Since [`]Q′ is in J [`k], it can be expressed as a linear
combination of the conjugates of P , so we have [`]Q′ =

∑
i[λi]π

i(P ), where λi are
integers. Replacing P by [`]Q, we get [`]Q′ = [`]

∑
i[λi]π

i(Q). Hence, Q′ −
∑
i[λi]π

i(Q)
is in J [`], so Q′ is in the group generated by the conjugates of Q, up to an `-torsion
element. Finally, since J [`] is generated by the conjugates of P , it is also generated by
conjugates of Q. 2
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From now on, we will assume that the sequence (Pk) constructed by successive division
by ` in the Jacobian is such that for some k0, the divisor Pk0 and its conjugates generate
J [`]. Lemma 2 ensures that such a divisor Pk0 exists, and by Lemma 3, for all k ≥ k0,
Pk and its conjugates generate J [`k−k0+1].

Assuming we have found a suitable sequence (Pk), we prove that given Pk, one can
find (s1, s2), not exactly modulo `k, but at least modulo `k−κ, for some fixed κ.

Lemma 4. There exists an integer κ ≥ 0 such that for any k > κ, the equality

π4(Pk)− [s1]π3(Pk) + [s2]π2(Pk)− [ps1]π(Pk) + [p2]Pk = 0

uniquely determines (s1, s2) modulo `k−κ.

Proof. Since J is absolutely simple, the characteristic polynomial of τ is irreducible
over Q, and therefore it is squarefree over Q`. Hence the minimal polynomial of τ is
equal to its characteristic polynomial and is of degree 4. Since τ does not satisfy a monic
quadratic equation over Q`, there exists k1, such that for all k > k1, τ does not satisfy
a monic quadratic equation modulo `k.

We can then prove the lemma, taking κ = k0 + k1 − 1. Suppose indeed that for any
k > k1, there exists (s1, s2) and (s′1, s

′
2) in Z2

` such that we have simultaneously

π4(Pk)− [s1]π3(Pk) + [s2]π2(Pk)− [ps1]π(Pk) + [p2]Pk = 0

and
π4(Pk)− [s′1]π3(Pk) + [s′2]π2(Pk)− [ps′1]π(Pk) + [p2]Pk = 0.

These characteristic polynomial equalities hold as well for all conjugates of Pk; since Pk
and its conjugates generate J [`k−k0+1], this implies that we have

τ4 − s1τ3 + s2τ
2 − ps1τ + p2 = 0 mod `k−k0+1

and
τ4 − s′1τ3 + s′2τ

2 − ps′1τ + p2 = 0 mod `k−k0+1.

For simplicity, let k′ = k − k0 + 1. By subtraction, defining a = s1 − s′1 and b = s2 − s′2,
we find

aτ3 − bτ2 + paτ = 0 mod `k
′
;

since τ is invertible modulo `k
′
, this implies aτ2 − bτ + pa = 0 mod `k

′
. Let m be the

`-adic valuation of a and, let α = a/`m, so that `mατ2 + bτ + p`mα = 0 mod `k
′
.

If m ≥ k′, we deduce that bτ = 0 mod `k
′
; since τ is invertible, we get a = b =

0 mod `k
′
, which is (stronger than) what we wanted to prove. Else, using again the

invertibility of τ , we deduce that b = 0 mod `m; letting β = b/`m, we get ατ2+βτ+pα =
0 mod `k

′−m. Since α is invertible, the definition of k1 implies that k′ − m ≤ k1, or
m ≥ k′ − k1. This can be rewritten as m ≥ k − (k0 + k1 − 1). 2

Generically, we expect that κ is small, and since ` is small as well, finding a suitable
start for the sequence (Pk) can be done with some brute force approach. In our exper-
iments, we computed all the `-torsion, and `2-torsion when feasible (for ` ≤ 3), and we
picked P1 (and P2, when feasible) of smallest degree among the choices for which the loss
of precision was minimal. We always found a sequence with κ ≤ 3.

Following a suggestion by one referee, let us also mention that if κ > 0, it could be
possible to lift say two sequences (Pk) and (P ′k), and combine the information from both
sequences. We have not attempted this yet.
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Remark 5. In the case where the characteristic polynomial of π has no repeated factor
modulo `, there exists a sequence Pk such that the two obstructions disappear and for
all k, the point Pk completely determines (s1, s2) modulo `k. For the first obstruction,
we can follow the beginning of the proof of Lemma 2, replacing V`(J ) by the F`-vector
space J [`]. Since π has no repeated factor modulo `, there exists a basis of J [`] such
that the matrix of π with respect to this basis is a companion matrix, and any vector of
the basis is a valid P1 yielding k0 = 1. For the second obstruction, the proof of Lemma 4
is simplified by the fact that the minimal polynomial of τ modulo ` is of degree 4, and
therefore one can take k1 = 0, and finally κ = 0.

We finish this subsection with a study of the field of definition of Pk.

Lemma 6. Let d be a positive integer such that the points of J [`] are defined over Fpd ,
and let P ∈ J be defined over Fpd as well. Then any Q ∈ J such that P = [`]Q is defined
over Fp`d .

Proof. From the equalities πd(P ) = P and P = [`]Q, we deduce that [`](πd(Q)−Q) = 0,
so πd(Q)−Q is in J [`]. Let us denote it by T , and observe that πd(T ) = T . By successive
applications of πd, it follows that π(i+1)d(Q) − πi(Q) = T for all i ≥ 0. Summing these
equalities for i = 0, . . . , `− 1 shows that π`d(Q) = Q. 2

Recall that ek is the degree of the field of definition of Pk over Fp. Since for k ≥ k0,
Pk and its conjugates generate J [`k−k0+1], and in particular J [`], we deduce that for
k ≥ k0, the points of J [`] are defined over Fpek . The former lemma then implies that
either ek+1 = ek or ek+1 = `ek.

Finally, we prove that for k large enough, we are in the case ek+1 = `ek. The following
claim is similar to Lercier (1997, Cor. 4) and Feo (2010, Prop. 5), which hold in the
elliptic case, when ` = p. It proves that the degree dk of the field of definition of the
points of J [`k] satisfies dk+1 = `dk for k large enough. Since, for k ≥ k0, Pk and its
conjugates generate J [`k−k0+1], we deduce the inequality dk−k0+1 ≤ ek, which implies
that ek+1 = `ek for k large enough.

Lemma 7. For k ≥ 1, let dk be the smallest integer such that the points of J [`k] are
defined over Fpdk . Then for k large enough, we have dk+1 = `dk.

Proof. We prove that for all k ≥ 1, either dk+1 = `dk or d1 = d2 = · · · = dk+1; this is
sufficient to establish our claim.

Let τk be the matrix obtained from τ by projecting each entry in Z/`kZ; then, the
matrix τk is invertible. Since π generates the Galois group of Fp over Fp, the extension
degree dk is the order of τk in the group of invertible matrices over Z/`kZ.

The matrix τdkk is the identity matrix in Z/`kZ, so we will write τdk = I + αk`
k,

where I is the identity matrix and αk is a matrix with coefficients in Z`. Remark that
dk+1 = dk if and only if αk = 0 mod `.

Taking `th power, we deduce that τ `dk = (I+αk`
k)`, and thus τ `dk = I+αk`

k+1 mod
`k+2. A first consequence is that τ `dk = I mod `k+1; since dk divides dk+1, we get that
dk+1 can be equal to either dk or `dk. Besides, if dk+1 = `dk, we obtain that αk+1 =
αk mod `; in particular, since αk 6= 0 mod `, we deduce that αk+1 6= 0 mod `, and thus
that dk+2 = `dk+1. 2
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4.3. Lifting the 2k-torsion

In this subsection, we take ` = 2 and we explain how to compute the sequence (Pk)
of 2k-torsion divisors. Given Pk, Pk+1 is obtained by solving the equation Pk = [2]Pk+1.
We will actually forget that Pk is a 2k-torsion divisor: given any divisor P , we will be
interested in finding a divisor Q such that P = [2]Q.

There is one aspect in which the case ` = 2 differs from the rest of our treatment: in-
stead of working with Mumford coordinates in J , we will work in the associated Kummer
surface K ⊂ P3, which is the quotient of J by the hyperelliptic involution. The Kummer
surface is not a group, but doubling in K still makes sense; in general, K is endowed with
what is usually called a pseudo-group law, that still allows for scalar multiplication. We
refer to Gaudry (2007) for details, and for the formulae we will use below.

Taking as input the coordinates of the image of P in K, we compute the coordinates
of the image of Q in K. The upside is that the simple doubling formulae for K allow for
an efficient algorithm for division by 2 in K, that uses only square root computations:
almost all the work boils down to using the algorithm of Subsection 2.2. The counterpart
is that the images of the divisors (Pk) in K need to be lifted back in J to find (s1, s2);
this is however a mild problem, for which we refer again to Gaudry (2007).

Overview. The doubling formulae in the Kummer surface rely essentially on squarings.
Given a point (x : y : z : t) in K ⊂ P3, its double (x̃ : ỹ : z̃ : t̃) = [2](x : y : z : t) is given
by the following operations: we compute

x′ = x2 + y2 + z2 + t2

y′ = x2 + y2 − z2 − t2

z′ = x2 − y2 + z2 − t2

t′ = x2 − y2 − z2 + t2

(8)

then

x′′ = x′2

y′′ = y′0y
′2

z′′ = z′0z
′2

t′′ = t′0t
′2

(9)

and finally

x̃ = (x′′ + y′′ + z′′ + t′′)

ỹ = y0(x′′ + y′′ − z′′ − t′′)

z̃ = z0(x′′ − y′′ + z′′ − t′′)

t̃ = t0(x′′ − y′′ − z′′ + t′′);

(10)

in these equations, y0, z0, t0, y′0, z′0, t′0 are constants that depends only on K and can be
easily computed from the equation of C.

Our question is then the following: given (x̃ : ỹ : z̃ : t̃), we want to invert this map,
that is, to find (x : y : z : t) such that [2](x : y : z : t) = (x̃ : ỹ : z̃ : t̃). Assuming
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that (x̃ : ỹ : z̃ : t̃) and all points of J [2] are defined over Fpe , Lemma 6 implies that
(x : y : z : t) is defined over Fpe′ , with either e′ = e or e′ = 2e.

Since the transformation from (x′
2

: y′
2

: z′
2

: t′
2
) to (x̃ : ỹ : z̃ : t̃) is linear and easily

invertible, we can assume that we know (α : β : γ : δ) = (x′
2

: y′
2

: z′
2

: t′
2
).

First, we recover (x′ : y′ : z′ : t′). The point (x : y : z : t) satisfies the defining equation
of K, which takes the form

(x4+y4+z4+t4)−F (x2t2+y2z2)−G(x2z2+y2t2)−H(x2y2+t2z2)+2Exyzt = 0, (11)

for some constants E,F,G,H that can be computed from the equation of C. One can
then check that (x′ : y′ : z′ : t′) satisfies a similar equation, of the form

(E − F −G−H + 2)(E + F +G+H − 2)x′4

+(E + F +G−H + 2)(E − F −G+H − 2)y′4

+(E + F −G+H + 2)(E − F +G−H − 2)z′4

+(E − F +G+H + 2)(E + F −G−H − 2)t′4

−2(−(F +G)2 +H(H − 4) + E2 + 4)x′2y′2

−2(−(G+H)2 + F (F − 4) + E2 + 4)x′2t′2

−2(−(F +H)2 +G(G− 4) + E2 + 4)x′2z′2

−2(−(F −G)2 +H(H + 4) + E2 + 4)z′2t′2

−2(−(G−H)2 + F (F + 4) + E2 + 4)y′2z′2

−2(−(F −H)2 +G(G+ 4) + E2 + 4)y′2t′2

+8E2x′y′z′t′ = 0. (12)

We set t′ = 1, and compute x′ =
√
α/δ and y′ =

√
β/δ. Then, can we solve (12) for z′,

since this equation has become linear in z′: apart from 8E2x′y′z′t′, all other terms are
known, as they only involve the square of z′.

Knowing (x′ : y′ : z′ : t′), we recover (x : y : z : t) in the same manner: we set t = 1,
and compute x and y by square root extractions. Then, we recover z by solving (11),
which has become linear.

To summarize, a halving in K requires to take four square roots, and to do a few
multiplications or divisions; by what was said above, we can actually predict that at
most one of the square roots will require to extend the base field. Each square root is
computed using the algorithm of Subsection 2.2; in the case where no root exists in the
base field, we build a degree-2 extension, and correspondingly update the representation
of the quantities we are using. In total, when (x̃ : ỹ : z̃ : t̃) is defined over Fpe , the cost
of halving is an expected O(C(e) log(e) + M(e) log(p)) operations in Fp.

Summary. We briefly review the steps of the former algorithm.

Input: polynomials F,R, S,W,Z in Fp[T ] that form the description of a divisor P as
in (6); we write Fpe = Fp[T ]/〈F 〉

Output: Polynomials F ′, R′, S′,W ′, Z ′ that form the description of a divisor Q such that
[2]Q = P .
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(1) let (x̃ : ỹ : z̃ : t̃) be the coordinates of the image of P on K
(2) compute (α : β : γ : δ) = (x′

2
: y′

2
: z′

2
: t′

2
) by solving (9) and (10)

(3) using the algorithms of Subsection 2.2, compute an extension Fpe → Fpẽ that
contains a square root x′ of α/δ and a square root y′ of β/δ; set t′ = 1 and use (12)
to find z′

(4) compute (α′ : β′ : γ′ : δ′) = (x2 : y2 : z2 : t2) by solving (8)
(5) using the algorithms of Subsection 2.2, compute an extension Fpẽ → Fpe′ =

Fp[T ]/〈F ′〉 that contains a square root x of α′/δ′ and a square root y of β′/δ′;
set t = 1 and use (11) to find z

(6) compute the preimage Q = 〈X2 + u1X + u0, v1X + v0〉 of (x : y : z : t) on J , let
R′, S′,W ′, Z ′ be in Fp[T ] such that u1 = R′ mod F ′ and deg(R′) < deg(F ′), etc,
and return F ′, R′, S′,W ′, Z ′

Experimental results. Table 2 gives timings (in seconds) obtained for lifting 2k-torsion
for one curve defined over Fp, with p = 2127 − 1. We see that it takes about 5 CPU days
(on the same machine as in Subsection 3.5) to reach torsion of order 217 = 131072; this
is typical of the general behavior.

The rows in the table give the time necessary to compute all required square roots,
then the necessary Frobenius computations and search for (s1, s2), as explained in Sub-
section 4.1. Obviously, the bottleneck is the computation of square roots; doubling the
degree of the base field over Fp induces (roughly) a four-fold increase in running time,
consistent with the cost estimate (the dominant cost is C(e) log(e), and C(e) is quadratic
in e in the NTL implementation).

torsion 26 27 28 29 210 211 212 213 214 215 216 217

deg ek 25 26 27 28 29 210 211 212 213 214 215 216

sqrt 0.3 0.9 2.6 8 27 93 322 1227 5396 20743 78089 350671

Frob 0.6 1.3 2.6 5 11 23 51 109 262 581 1188 3878

(s1, s2) 0.3 0.8 2.3 5 13 33 78 194 544 1540 6439 31791

Table 2. Timings in seconds for 2k-torsion

4.4. Lifting the 3k-torsion

We next describe the computation of 3k-torsion divisors. As for 2k-torsion, the issue
we discuss here is how to perform division by 3 in the Jacobian.

On input P ∈ J defined over Fpe , our goal is to find Q ∈ J such that P = [3]Q; in
view of Lemma 6, assuming that all points of J [3] are defined over Fpe as well, we know
that Q will be defined over Fpe′ , with either e′ = e or e′ = 3e. We will suppose that both
P and Q have weight 2, writing

P = 〈X2 +u1,PX+u0,P , v1,PX+v0,P 〉 and Q = 〈X2 +u1,QX+u0,Q, v1,QX+v0,Q〉.

Then, finding Q amounts to solving a system of polynomial equations in u0,Q, u1,Q, v0,Q,
v1,Q. Many solutions are available to achieve this goal; the one that did the best for our
specific family of equations uses homotopy techniques, and is derived from Gaudry and
Harley (2000).
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Compared to our solution for 2k-torsion, division by 3 requires much more work. In the

former case, all the time was spent computing square roots, and it was straightforward

to know which square roots to compute. Here, we end up doing root-finding in degree 3,

but prior to this, a significant amount of time is spent handling multivariate equations.

Initial set of equations. Let U0,P , U1,P , V0,P , V1,P , U0,Q, U1,Q, V0,Q, V1,Q be indetermi-

nates, that represent the Mumford coordinates of P and Q. The equations expressing

that

P ∈ J , Q ∈ J , P = [3]Q

yield polynomial equations in U0,P , U1,P , V0,P , V1,P , U0,Q, U1,Q, V0,Q, V1,Q. However, the
expressions derived from P = [3]Q are quite heavy; to obtain simpler ones, we replace the
constraint P = [3]Q by the equivalent one P −Q = [2]Q. Then, clearing denominators,
we obtain

H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1,Q(U0,Q, U1,Q, V0,Q, V1,Q) = 0 H1(U0,Q, U1,Q, V0,Q, V1,Q, U0,P , U1,P , V0,P , V1,P ) = 0,

h2,Q(U0,Q, U1,Q, V0,Q, V1,Q) = 0 H2(U0,Q, U1,Q, V0,Q, V1,Q, U0,P , U1,P , V0,P , V1,P ) = 0,

h1,P (U0,P , U1,P , V0,P , V1,P ) = 0 H3(U0,Q, U1,Q, V0,Q, V1,Q, U0,P , U1,P , V0,P , V1,P ) = 0,

h2,P (U0,P , U1,P , V0,P , V1,P ) = 0 H4(U0,Q, U1,Q, V0,Q, V1,Q, U0,P , U1,P , V0,P , V1,P ) = 0,

Λ(U0,Q, U1,Q, V0,Q, V1,Q, U0,P , U1,P , V0,P , V1,P ) 6= 0

where the polynomials (h1,P , h2,P ) and (h1,Q, h2,Q) express that P and Q belong to the

Jacobian, (H1, H2, H3, H4) express P −Q = [2]Q, by equating abscissa and ordinates of

both sides, and Λ is the product of all denominators appearing in the addition formulae.

In all rigor, one should also consider the degenerate cases where Λ = 0; however, this

was never needed in our experiments.

To highlight the structure of the solution set, we use the action of the 3-torsion,

following an idea introduced by Gaudry and Schost (2004a) for 2k-torsion. As an abstract

group, J [3] is isomorphic to (Z/3Z)4. Consider subgroups

G0 = {0} ⊂ G1 ' (Z/3Z) ⊂ G2 ' (Z/3Z)2 ⊂ G3 ' (Z/3Z)3 ⊂ J [3] ' (Z/3Z)4.

In what follows, we let q be such that all points of J [3] are defined over Fq. Then, to G

in J [3], we associate the rational function UG0,Q ∈ Fq(U0,Q, U1,Q, V0,Q, V1,Q) that denotes

the U0-coordinate of Q+G.

Then, to each subgroup Gi, we associate Σi =
∑
G∈Gi

UG0,Q, so that Σ0 = U0,Q: these

are orbit-sums under the actions of G0, G1, G2, G3. We introduce new variables S3, S2, S1,

and add to H the polynomials obtained by taking the numerators of the rational functions

Si−Σi(U0,Q, U1,Q, V0,Q, V1,Q), for i = 1, 2, 3, and multiply Λ by the denominators of these

rational functions. Remark that now, H is defined with coefficients in Fq.

A triangular Gröbner basis. The system H is of dimension 2, so it is natural to consider

the system H over the base field Fq(U0,P , U1,P ); to take into account the inequation

Λ 6= 0, we add 1−NΛ to H, where N is a new variable. Then, we observe experimentally

that the system H is zero-dimensional over Fq(U0,P , U1,P ), and that its Gröbner basis for

the lexicographic order N > V1,Q > V0,Q > U1,Q > U0,Q > S1 > S2 > S3 > V1,P > V0,P
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has the following triangular form:

T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N−R(V0,P , S3, S2, S1, U0,Q),

V1,Q − L1(V0,P , S3, S2, S1, U0,Q),

V0,Q − L0(V0,P , S3, S2, S1, U0,Q),

U1,Q −M1(V0,P , S3, S2, S1, U0,Q),

T0(V0,P , S3, S2, S1,U0,Q)

T1(V0,P , S3, S2,S1)

T2(V0,P , S3,S2)

T3(V0,P ,S3),

V1,P −N1(V0,P ),

N0(V0,P ),

(13)

where the leading variables are written in bold; note that all coefficients are in Fq(U0,P ,
U1,P ). The polynomial N0 is biquadratic in its main variable V0,P and the polynomials
T0, . . . , T3 have degree 3 in their main variables; thus, H has 324 solutions. The geometric
interpretation of this number of solutions is that for each pair (U0,P , U1,P ), there are 4
distinct ways to complete it to a valid Mumford representation with (V0,P , V1,P ), as seen
in the fact that N0 has degree 4 in its main variable V0,P . Then, each of these points has
81 preimages by division by 3. The benefit of introducing S1, S2, S3 appears here: they
allow us to decompose a degree-81 extension into 4 extensions of degree 3.

For (u0,P , u1,P ) in Fpe (where e is such that q divides pe), we write Hu0,P ,u1,P
to

denote the system H where (U0,P , U1,P ) have been specialized at (u0,P , u1,P ). Similarly,
we denote by Tu0,P ,u1,P

the specialization of T at (U0,P , U1,P ) = (u0,P , u1,P ), assuming
no denominator vanishes.

We can now state the division-by-3 problem, and our solution, more precisely: given
(u0,P , u1,P , v0,P , v1,P ) in Fpe (with the same constraint on e as above), we want to find
an extension Fpe′ that contains the coordinates of one solution of Hu0,P ,u1,P

. This will be
done by computing Tu0,P ,u1,P

; once this is done, since we know V0,P and V1,P , it remains
to find roots of T3, T2, T1, T0, in this order (each root-finding may involve extending the
base field, and updating the representation of some elements of Fpe).

In terms of complexity, since the system H is fixed, computing Tu0,P ,u1,P
takes a

constant number of operations in the field of definition of u0,P , u1,P ; with our previous
notation, this is O(M(e) log(e)) operations in Fp – however, reducing the constant hidden
in the big-O is crucial, and this is where we will direct our attention below. Using the
results of Subsection 2.2, finding the extension of Fpe that contains the solutions of
Tu0,P ,u1,P

then takes an expected O(C(e) log(e) + M(e) log(p)) operations in Fp (we will
not discuss this part anymore here).

Homotopy techniques. There exist many ways to compute Tu0,P ,u1,P
: solving the system

directly (using Gröbner bases, resultants, . . . ), computing once and for all the triangular
set T over the rational function field Fq(U0,P , U1,P ), etc. As remarked before, since H is
fixed, the cost of all these solutions is the same as far as we stick to the big-O notation
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(the differences are in the hidden constant). The solution we present here is the one that

did best in practice.

We start by constructing Fq such that the points of J [3] are defined over Fq. Then, we

find a starting point (u0,P ′ , u1,P ′), such that all 324 solutions of the system Hu0,P ′ ,u1,P ′

are known, and are in Fq. This is done by constructing Q′ and Q′′ such that P ′ = [3]Q′

and P ′′ = [3]Q′′ have the same U -polynomials and are non-opposite, and by letting J [3]

act on Q′, −Q′, Q′′ and −Q′′, giving us generically the requested 324 solutions. In this

setting u0,P ′ and u1,P ′ are the coefficients of the common U -polynomial of P ′ and P ′′.

To obtain Q′ and Q′′, we start from a random divisor D of weight 1, and let E = [3]D;

next, we find divisors D′ and D′′ defined over Fp such that F ′ = E + [3]D′ and F ′′ =

E + [3]D′′ have weight 1 (this is simply done by writing down and solving the equations

for the Mumford coordinates for such D′ and D′′; if there is no solution in Fq, we choose

another D). Then, we take Q′ = −D′ +D′′ and Q′′ = [2]D +D′ +D′′; one checks that

[3]Q′ = −F ′ + F ′′ and [3]Q′′ = F ′ + F ′′, as needed.

In what follows, we assume that e is such that all of P, P ′, P ′′, Q′, Q′′ and all points of

J [3] are defined over Fpe . Starting from Hu0,P ′ ,u1,P ′ , we will use a homotopy continuation

to solve Hu0,P ,u1,P
. Let t be a new variable and let

τ0 = tu0,P + (1− t)u0,P ′ , τ1 = tu1,P + (1− t)u1,P ′ .

We will consider the system Hτ0,τ1 and the associated triangular set Tτ0,τ1 ; both of them

have coefficients in the rational function field Fpe(t). Specializing t at 0, we obtain the

system Hu0,P ′ ,u1,P ′ , whose solutions are known; specializing t at 1, we get the system

Hu0,P ,u1,P
that we want to solve.

We compute Tτ0,τ1 using Newton iteration. Let H′ be the square subsystem

H′ = (h1,P , h2,P , H1, H2, H3, H4)

extracted from H, and let us assume that the Jacobian determinant of H′ vanishes

nowhere on the known solutions of Hu0,P ′ ,u1,P ′ – experimentally, we observe that this is

the case for a generic choice of Q′ and Q′′. Using Newton iteration, we lift all the roots

of H′u0,P ′ ,u1,P ′ to 324 roots of H′τ0,τ1 with coordinates in Fpe [[t]]. Note that these roots

are actually the roots of the whole system Hτ0,τ1 , by the uniqueness property of Newton

iteration.

From these roots, one can recover Tτ0,τ1 using interpolation techniques: we know the

values of the indeterminates V0,P , V1,P , U0,Q, . . . , V1,Q, which is enough to recover those

of S1, S2, S3 (since they are rational functions of the former). Then, Tτ0,τ1 defines the

vanishing ideal of these points, and is obtained using interpolation formulae as in Dahan

and Schost (2004).

Since we know the power series expansions of the roots of Tτ0,τ1 , the interpolation is

conducted with power series coefficients. As a result, we do not obtain Tτ0,τ1 directly,

but Tτ0,τ1 with all coefficients expanded in Fpe [[t]]. We recover the rational functions

in Fpe(t) by means of rational function reconstruction, and eventually set t = 1 to get

Tu0,P ,u1,P
.
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Improving the lifting. We mention here improvements over a naive lifting algorithm,
in decreasing order of importance. The most important saving comes from using the
action of the 3-torsion: once a solution (P,Q) is known, then the 162 pairs (P,Q + G)
and (−P,−Q + G), for G in J [3], are solutions as well. Thus, we need only to lift two
solutions, to recover all 324 of them by conjugations.

Secondly, we use the fact that the equations in H′ can be evaluated using a small
number of operations to speed up the lifting. Indeed, almost all the time in Newton iter-
ation is spent evaluating the system and its Jacobian matrix on the current approximate
solution. In expanded form, the polynomials in H′ total more than 80,000 monomials; in-
stead, we use a straight-line program derived from the group law formulae, that performs
only 60 multiplications (about 180 for the Jacobian matrix).

Next, the interpolation formulae we use are not the straightforward ones, as we do not
interpolate Tτ0,τ1 itself. For the first polynomials N0 and N1, nothing changes. However,
starting from T3, we slightly modify our objective: instead of interpolating T3, we work
with (∂N0/∂V0,P )T3; similar modifications apply to the other polynomials. The net effect
of this transformation is to reduce the degree in t of the coefficients, and thus the required
precision for our power series roots, from several thousands to 81 (this was determined
experimentally); this is a general phenomenon, detailed in Dahan and Schost (2004).

A last improvement comes from exploiting the structure of the system H′, that involves
the 6 variables V0,P , V1,P , U0,Q, U1,Q, V0,Q, V1,Q. Since it admits the square subsystem
(h1,P , h2,P ) which depends only on V0,P and V1,P , we can lift these two coordinates first,
then deal with the 4 remaining unknowns U0,Q, . . . , V1,Q using the equations H1, . . . ,H4

(so we split our 6× 6 problem into a 2× 2 one and a 4× 4 one).

Summary. We briefly review the steps of the former algorithm.

Input:
• polynomials F,R, S,W,Z in Fp[T ] that form the description of a divisor P as in (6);

we write Fpe = Fp[T ]/〈F 〉 and P = 〈X2 + u1,PX + u0,P , v1,PX + v0,P 〉, with u1,P =
R mod F , etc

• the coordinates of all elements of J [3] (we assume that all these coordinates belong to
Fpe)

Output: Polynomials F ′, R′, S′,W ′, Z ′ that form the description of a divisor Q such that
[3]Q = P .

(1) find P ′, Q′P ′′, Q′′ in J (Fpe) such that P ′ = [3]Q′ and P ′′ = [3]Q′′ have the same
U -polynomials; let u0,P ′ , etc, be their Mumford coordinates

(2) let τ0 = tu0,P + (1− t)u0,P ′ and τ1 = tu1,P + (1− t)u1,P ′

(3) using Newton iteration, compute vectors

W ′ = (ν′0, ν
′
1, µ
′
0, µ
′
1, η
′
0, η
′
1), W ′′ = (ν′′0 , ν

′′
1 , µ

′′
0 , µ
′′
1 , η
′′
0 , η
′′
1 )

in Fpe [t]6 such that H′τ0,τ1(W ′) = 0 mod t81, H′τ0,τ1(W ′′) = 0 mod t81 and such
that

W ′ mod t = (v0,P ′ , v1,P ′ , u0,Q′ , u1,Q′ , v0,Q′ , v1,Q′)

and

W ′′ mod t = (v0,P ′′ , v1,P ′′ , u0,Q′′ , u1,Q′′ , v0,Q′′ , v1,Q′′).
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(4) let π′, π′′, ρ′, ρ′′ be the “divisors” with Mumford representations

π′ = 〈X2 + τ1X + τ0, ν
′
1X + ν′0〉, ρ′ = 〈X2 + µ′1X + µ′0, η

′
1X + η′0〉

and

π′′ = 〈X2 + τ1X + τ0, ν
′′
1X + ν′′0 〉, ρ′′ = 〈X2 + µ′′1X + µ′′0 , η

′′
1X + η′′0 〉,

and let (ρ′i)1≤i≤162 and (ρ′′i )1≤i≤162 be the divisors obtained by adding all elements
in J [3] to ρ′,−ρ′, and ρ′′,−ρ′′; all computations are done modulo t81

(5) interpolate Tτ0,τ1 from its roots, which are the coefficients of the divisors computed
above; all computations are done modulo t81

(6) do rational reconstruction on all coefficients of Tτ0,τ1 , and compute Tu0,P ,u1,P
by

letting t = 1
(7) using the algorithms of Subsection 2.2, compute an extension Fpe → Fpe′ =

Fp[T ]/〈F ′〉 that contains a root (v0,P , v1,P , σ3, σ2, σ1, u0,Q, u1,Q, v0,Q, v1,Q) of the
system Tu0,P ,u1,P

, and return the polynomials F ′, R′, S′,W ′, Z ′, with u1,Q = R′

modF ′ and deg(R′) < deg(F ′), etc

Experimental results. Table 3 gives timings (in seconds) obtained for lifting 3k-torsion
for one curve defined over Fp, with p = 2127− 1. The timings comply rather closely with
theoretical predictions. Indeed, from torsion index 3k to 3k+1, the degree ek is multiplied
by 3; the time for root-finding is (roughly) multiplied by 9 or 10 (revealing a quadratic
running time), whereas the time spent in the other operations grows essentially linearly.
To summarize, this table represents about 1 CPU day; timings from 1 to 2 CPU days to
reach torsion index 729 or 2187 are typical (depending on the degree in which we find
the initial torsion divisor P1).

index 3k 32 33 34 35 36

degree ek 10 · 3 10 · 32 10 · 33 10 · 34 10 · 35

lifting 18 84 308 1356 4325

action of J [3] 37 220 678 3325 11733

interpolation 66 334 1065 4629 14977

root-finding 4 34 339 2683 31898

Frobenius 0.6 2.3 9 21 95

finding (s1, s2) 0.2 1.2 9 31 160

Table 3. Timings in seconds for 3k-torsion

4.5. Lifting the 5k and 7k-torsion

We conclude this section with the description of the computation of 5k- and 7k-torsion
divisors: as before, our actual question is how to perform division by 5 or 7 in the
Jacobian. For conciseness, we give details here for division by 5, and mention in the end
the modifications for division by 7.

On input P ∈ J defined over Fpe , our goal is thus to find Q ∈ J such that P = [5]Q;
in view of Lemma 6, if we assume that all points of J [5] are defined over Fpe as well, we
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know that Q will be defined over Fpe′ , with either e′ = e or e′ = 5e. As before, we will
suppose that Q has weight 2; then, finding it amounts to solving a system of polynomial
equations in its Mumford coordinates.

We used a more direct approach than in the other cases, based on resultant computa-
tions. The strategy used to lift 3k-torsion would be applicable here as well, but becomes
inferior (and of course, the explicit formulae using square roots are specific to 2k-torsion).

Input and output. The equation P = [5]Q is rewritten as P−[2]Q = [3]Q, so as to balance
the degrees of both sides. Letting (U0, U1, V0, V1) be indeterminates that represent the
coordinates of Q, and taking coordinates in the former relation, we obtain the system
(with coefficients in Fpe)

K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1(U0, U1, V0, V1) = 0 K1(U0, U1, V0, V1) = 0,

h2(U0, U1, V0, V1) = 0 K2(U0, U1, V0, V1) = 0,

K3(U0, U1, V0, V1) = 0,

K4(U0, U1, V0, V1) = 0,

Λ(U0, U1, V0, V1) 6= 0,

(14)

where Λ is the product of denominators that arise when applying the group law opera-
tions. The equations (h1, h2) encode the fact that Q is in J ; they are obtained as the
coefficients of ((V1X + V0)2 − f(X)) mod (X2 + U1X + U0). Given these equations, we
will show here how to compute a representation of the solutions of the form∣∣∣∣∣∣∣∣∣∣∣∣

V1 = D(U1)

V0 = C(U1)

U0 = B(U1)

A(U1) = 0,

(15)

where all polynomials have coefficients in Fpe .
The existence of such a representation is not guaranteed. For any divisor P , there

exist 54 = 625 divisors Q such that P = [5]Q; however, some of them may have weight
1, or cancel the polynomial Λ, and thus may not be solutions of K. Even if there are 625
solutions, they may not admit a description of the given shape.

We do not take such degenerate cases into account, and consider only the generic case
where K has 625 solutions, and admits a description as claimed (then, A has degree 625);
if we are not in this favorable situation, we abort the computation.

The core of this subsection explains how to compute the polynomials A,B,C,D. Once
this is done, it remains to find a root of A in an extension of Fpe : as said above, we know
that we will find such a root in Fpe′ , with either e′ = e or e′ = 5e; then, it suffices to
rewrite B,C,D as polynomials over Fpe′ and evaluate them at the said root. All this
is done using the algorithm of Subsection 2.2, and will not be explained anymore here.
We simply point out that it would be possible to use the action of J [5] to replace the
root-finding in degree 625 by 4 root-findings in degree 5, as we did for 3-torsion; however,
root-finding was not a bottleneck, so we did not implement this idea.
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In terms of complexity, the cost is theoretically dominated by the root-finding. Indeed,
computing (A,B,C,D) takes a constant number of operations in Fpe , for a total of
O(M(e) log(e)) operations in Fp; as mentioned in Subsection 2.2, root-finding in fixed
degree over Fpe takes an expected O(C(e) log(e)+M(e) log(p)) operations in Fp. However,
we will see that theory and practice did not always agree in our experiments.

Solving the system. Our strategy to compute A,B,C,D is to first eliminate (V0, V1) from
K, so as to be left with a bivariate system in (U0, U1); we solve the latter using bivariate
resultant techniques.

We eliminate (V0, V1) by solving the equations h1 = h2 = 0, obtaining

V1 − E3V
3
0 − E1V0, V 4

0 + F2V
2
0 + F0 = 0, (16)

where E1, E3 and F0, F2 are simple rational functions of (U0, U1). Since the equations
h1, h2 are quite simple, this is done by computing a Gröbner basis of (h1, h2) for the
lexicographic order V1 > V0 in Fpe(U0, U1)[V0, V1] (the coefficients E1, E3, F0, F2 can
actually be precomputed and stored).

Let ϕ1, ϕ2, ϕ3 be obtained by reducing K1,K2,K3 modulo the polynomials in (16),
so that all ϕi are in Fpe(U0, U1)[V0] and have degree at most 3 in V0. For i = 1, 2, 3, we
define further

γi = res(ϕi, V
4
0 + F2V

2
0 + F0, V0)

which is thus in Fpe(U0, U1); we then let Gi ∈ Fpe [U0, U1] be obtained by a cleaning
process from γi: we clear denominators and remove predictable parasites (this process is
described in more detail later on). Then, we compute the polynomials A,B,C,D of (15)
as follows:
• The polynomial A(U1) is given by

A1,2 = res(G1, G2, U0), A1,3 = res(G1, G3, U0), A = gcd(A1,2, A1,3).

• The polynomial B(U1) is computed by

B1U0 +B0 = sres(G1, G2, U0), B = −B0/B1 mod A.

• To compute C(U1), we let ψ1 = ϕ1(B,U1, V0) mod A; this polynomial belongs to
Fpe [U1, V0] and has degree 3 in V0. We compute its GCD with V 4

0 + F2(B,U1)V 2
0 +

F0(B,U1) modulo A, using two steps of the Euclidean GCD algorithm. This GCD has
the form C1(U1)V0 + C0(U1), and we get C = −C0/C1 mod A.

• Finally, D is given by D = E3(B,U1)C3 + E1(B,U1)C mod A.
Provided all steps are well-defined, and provided the parasite factors we remove indeed
describe parasite solutions, the specialization properties of resultants imply that the
solutions described by the polynomials A,B,C,D are indeed solutions of the sub-system
h1 = h2 = K1 = K2 = K3 = 0. Experimentally, we observed that we obtain in this way
all solutions of the whole system K.

Implementation details. We start by explaining how we compute G1, G2, G3. First, we
define some predictable parasite factors p1, p2, p3, p4 in Fpe [U0, U1, V0, V1]: p1 and p2 are
given by

p1 = V 3
1 + V1U

3
1 − f4V1U2

1 − 4V1U1U0 + f3V1U1 + 2f4V1U0 − f2V1
+3V0U

2
1 − 2f4V0U1 − 2V0U0 + f3V0;

p2 = V 2
1 U0 − V1V0U1 + V 2

0 ,
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where the fi are the coefficients of the polynomial f defining C. Two additional parasites
p3, p4 are obtained as denominators arising when computing [3]Q and P − [2]Q; they are
too large to be printed here. These parasites were obtained by computing and factoring
resultants (over small base fields, to make computations easy) and either reading them
off (in the case of p1, p2) or matching them with denominators appearing in the group
law.

Let P1, P2, P3, P4 be obtained by reducing these equations modulo the polynomials
in (16). For i = 1, 2, 3, 4, we define

πi = res(Pi, V
4
0 + F2V

2
0 + F0, V0)

and we set

g1 =
(4U0 − U2

1 )36γ1
π16
1 π

6
2

, g2 =
(4U0 − U2

1 )36γ2
π16
1 π

6
2

, g3 =
(4U0 − U2

1 )49γ3
π43
1 π

14
2 π3π

3
4

. (17)

The exponents 36, 16, . . . have been found experimentally to rid γ1, γ2, γ3 of predictable
parasite factors, and clear denominators, so that g1, g2, g3 are in Fpe [U0, U1]. These are
almost the polynomials we want: G1, G2, G3 are obtained by cleaning some further para-
site factors (that we were not able to express as simply as π1, π2, π3, π4), by keeping only
the degree-1 part in the squarefree decomposition of g1, g2, g3.

We compute G1, G2, G3 using evaluation and interpolation techniques, by computing
their values for sufficiently many values (u0, u1) of (U0, U1) and interpolating them; as
before, we use interpolation at a geometric progression. For any given value (u0, u1), the
polynomials ϕ1, ϕ2, ϕ3 are computed using a straight-line program that computes the
coordinates of [3]Q and P − [2]Q, and equates them; all operations in this straight-line
program are done modulo the polynomials in (16) (where (U0, U1) are specialized at
(u0, u1)). The parasites are then cleaned (before interpolation); the squarefree decompo-
sitions are computed after interpolating u1, and before interpolating u0.

Once G1, G2, G3 are known, A1,2, A1,3 and B0, B1 are computed using the evaluation
and interpolation techniques described in Subsection 2.1.

This concludes our explanations for division by 5. In the case of division by 7, we
were not able to predict such simple parasite factors; as a result, we have to interpolate
polynomials of larger degrees, before taking squarefree parts. Table 4 gives information
on the degrees of the polynomials we compute using this approach: remark in particular
that the degrees of A1,2 and A1,3 are much larger than that of their GCD A.

index deg((G1, G2, G3), U0) deg((G1, G2, G3), U1) deg(A1,2) deg(A1,3) deg(A)

5 (100, 100, 168) (98, 100, 164) 10000 16800 625

7 (196, 196, 296) (194, 196, 292) 38416 58016 2401

Table 4. Degrees appearing in the process of division by 5 or 7

Summary. We briefly review the steps of the division-by-5 algorithm described above
(the case of division by 7 is similar, as we explained). Hereafter, U0, U1, V0, V1 are inde-
terminates that represent the coordinates of the unknown divisor Q.

Input: Polynomials F,R, S,W,Z in Fp[T ] that form the description of a divisor P as
in (6); we write Fpe = Fp[T ]/〈F 〉
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Output: Polynomials F ′, R′, S′,W ′, Z ′ that form the description of a divisor Q such that
[5]Q = P .

(1) compute the equations h1, h2,K1,K2,K3 as in (14); they have coefficients in Fpe
(2) compute the Gröbner basis Γ = (V1−E3V

3
0 −E1V0, V

4
0 +F2V

2
0 +F0) of (h1, h2) in

Fpe(U0, U1)[V0, V1], for the lexicographic order V1 > V0.
(3) for i = 1, 2, 3, compute the remainder ϕi ∈ Fpe(U0, U1)[V0] of Ki modulo Γ and

γi = res(ϕi, V
4
0 + F2V

2
0 + F0, V0)

(4) for i = 1, 2, 3, 4, compute the parasite pi, the remainder Pi of pi modulo Γ, and
πi = res(Pi, V

4
0 + F2V

2
0 + F0, V0)

(5) for i = 1, 2, 3, compute gi using (17) and compute Gi by keeping only the degree-1
part of the squarefree decomposition of gi

(6) compute A1,2 = res(G1, G2, U0), A1,3 = res(G1, G3, U0) and A = gcd(A1,2, A1,3)
(7) compute B1U0 +B0 = sres(G1, G2, U0) and B = −B0/B1 mod A
(8) compute ψ1 = ϕ1(B,U1, V0) mod A, C0 + C1V0 = gcd(ψ1, V

4
0 + F2(B,U1)V 2

0 +
F0(B,U1)) over Fpe [U1]/〈A〉 and C = −C0/C1 mod A

(9) compute D = E3(B,U1)C3 + E1(B,U1)C mod A
(10) using the algorithms of Subsection 2.2, compute an extension Fpe → Fpe′ =

Fp[T ]/〈F ′〉 that contains a root u1 of A and let u0 = B(u1), v0 = C(u1), v1 = D(u1)
(11) Let R′, S′,W ′, Z ′ in Fp[T ] be such that u1 = R′ mod F ′ and deg(R′) < deg(F ′),

etc, and return F ′, R′, S′,W ′, Z ′

Experimental results. In Tables 5 and 6, we give timings (in seconds) for division by
5 and by 7, for curves defined over Fp, with p = 2127 − 1, as before. In the degrees we
managed to reach, root-finding is not yet the bottleneck (although it becomes increasingly
important). Lifting 7k-torsion is much harder than lifting 5k-torsion: the degree of the
initial field extension is usually higher, and we have many more resultants to compute;
practically, it usually did not make sense to try to reach index 73 = 343.

index 5k 52 53 54

degree ek 3 · 5 3 · 52 3 · 53

G1, G2, G3 445 2993 35908

A1,2, A1,3 1732 17957 311993

A,B,C,D 34 249 1578

root-finding 53 2065 87746

Frobenius 0.1 1.7 8.1

finding (s1, s2) 0.1 0.5 9

Table 5. Timings in seconds for 5k-torsion

5. Computation of a cryptographically secure curve

We conclude this paper by the description of large-scale computations that were con-
ducted in order to discover a curve of genus 2, with desirable security and efficiency
properties. Our purpose was to find a twist-secure curve (we define this precisely below).
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index 7k 72

degree ek 8 · 7

G1, G2, G3 7115

A1,2, A1,3 113890

A,B,C,D 662

root-finding 10630

Frobenius 1.2

finding (s1, s2) 0.3

Table 6. Timings in seconds for 7k-torsion

A crude simulation (assuming that the coefficients s1 and s2 have a uniform distribution
in the admissible domain) showed that using an early abort strategy, one may hope to
find such a curve after completing the point-counting for about 2000 curves, for an es-
timated running time of about 2,000,000 CPU hours. As it turns out, we found such a
curve, in about half the time.

Security and efficiency constraints. Our first motivation for designing and implementing
point counting algorithms is public key cryptography: we want to find a curve of genus
2 over a prime field that is suitable for building a public key cryptosystem. For security
reasons, the order of the Jacobian of the curve must be prime or be a small multiple of a
prime, and this prime must be large enough, so that the best known approach for solving
the discrete logarithm problem in this group takes an unrealistic time.

With current technology, a security level of 2128 is considered as appropriate for many
applications, meaning that the best known attack takes about that number of elemen-
tary operations (this last notion is vague: it can be an operation in the group, or one
application of a hash function, or one application of the AES block cipher). To get a good
compromise between fitting the security level and efficiency considerations, we decided
to search for a curve of genus 2 with the following properties:
• Base field. The base field is the prime field Fp, with p = 2127 − 1. The Jacobian group

has about 2254 elements, and if the curve is well chosen, the best known attack will
require about 2127 operations on average. The prime p is a Mersenne prime, so that
reduction modulo p can be made extremely fast compared to a generic prime of the
same size.

• Rationality conditions. The fastest known group arithmetic for scalar multiplication in
Jacobian of genus 2 curves works not with the Jacobian itself but with the Kummer
surface (Gaudry, 2007). Some information is lost compared to the Jacobian, but in
many cryptographic applications, this is enough.

To get optimal efficiency, coordinates on the Kummer surface based on Theta func-
tions have to be used, and they might require to work in an extension of the base field
(which would imply an undesired additional cost). Therefore, not every curve will be
suitable for us, but only those that satisfy some rationality conditions.

In our search we will start from parameters of the Kummer surface, called Theta
constants; to match the notation of Gaudry (2007), we will call them a2, b2, c2, d2

(so they are actually squared Theta constants). Choosing them in Fp enforces some
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rationality conditions; a few additional conditions subsist (three quantities should be
squares, to obtain a rational map to the Jacobian of a genus 2 curve), slightly restricting
our search space. We refer to Section 7.3 of Gaudry (2007) for details.

• Small coefficients. The pseudo-group law on the Kummer surface involves some con-
stants that depend only on the curve, and not on the points to be added.

In Subsection 4.3, we recalled the doubling formula, that involves the constants y0,
z0, t0 and y′0, z′0, t′0. These quantities also occur in the pseudo-group law; they are
related to the Theta constants a, b, c, d of the Kummer surface by y0 = a/b, z0 = a/c,
t0 = a/d (still with the notation of Gaudry (2007)).

As it turns out, the fastest pseudo-group law formulas use the squares of these quan-
tities (hence our choice of using a2, b2, c2, d2 as parameters). Having these constants
small is enough to guarantee that all important quantities are small (say a few dozens).
When this is the case, the implementation of the pseudo-group law on the Kummer
surface can take advantage of this (e.g. replacing multiplications by large constants by
a few additions), so our cryptosystem becomes faster. The potential gain is substantial
and was first noticed by Bernstein (2006b).

• Twist-security. The Kummer surface is the same for the curve and its quadratic twist.
This fact has implications in cryptography, because in some cases the computing device
might believe it is working with the curve whereas the twist is involved. Having both
the curve and its quadratic twist cryptographically secure will therefore save the com-
putations that check that the device is not being fooled by an attacker (see Bernstein
(2006a) for similar considerations for elliptic curve cryptosystems).

In practice, this means that the Jacobians of the curve and of its quadratic twist
should have a group order which is prime or a small multiple of a prime. The rationality
conditions that we impose on the curves imply that the group orders are divisible by
16. Therefore we seek a curve for which both group orders can be written 16 times a
prime; such curves will be called twist-secure.
We acknowledge the fact that the security level of our curves is not really 2128 but

rather 2125, since we lost one bit in the base field and 2 more bits due to the rationality
conditions in the Kummer surface. We consider that this is not a real problem, since the
unit in this security level estimate is anyway rather vague.

Description of available computing resources. Our computations were performed on clus-
ters belonging to the SHARCNET grid computing facility. We got dedicated resources
on two clusters with different features:
• Whale: 768 nodes each equipped with two dual-core Opteron 275 processors at 2.2 GHz,

with 4 GB of central memory and a Gigabit ethernet network. This is a throughput
cluster; hours on this cluster are relatively easy to obtain.

• Bull: 96 nodes each equipped with 4 mono-core Opteron 850 processors at 2.4 GHz,
with 32 GB of central memory. The nodes are connected with a high end interconnect
Quadrics Elan4. Due to the large amount of memory per node and the fast network,
hours on this cluster are much harder to get.

Organization of the computation. It is difficult to predict the size of the coefficients that
occur in the pseudo-group law in the Kummer surface from the hyperelliptic equation of
the curve. Therefore, we start from the parameters a2, b2, c2, d2 of the Kummer surface,
and we denote by Ca2,b2,c2,d2 the corresponding curve.
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We start by enumerating all possible 4-tuples (a2, b2, c2, d2) below a certain bound.

There are numerous symmetries, and we keep only one 4-tuple per isomorphism class.

We also eliminate the few 4-tuples that yield a Jacobian that is split, because this implies

that the group order cannot contain a large prime.

We did not complete the point-counting for all these tuples: we used early abort

techniques, to discard as early as possible non twist-secure curves. Thus, a first filter was

quickly applied, in order to remove from the list the parameters corresponding to curves

for which the group order of the Jacobian of the curve or of the twist is not 16 modulo

32, or is zero modulo 3, 5 or 7. Compared to a complete point counting, this is very fast,

and was done before sending the curves to the clusters.

For the remaining curves, in order to take full advantage of the computing resources,

we split a full point-counting job into various tasks, isolating the tasks that require more

than the 4GB of memory of a node of the Whale cluster. Tasks are separated in 3 classes:

• Tiny memory. For ` prime, the main part of the computation is the computation of

(sub)resultants of polynomials of the form (E1(U0, u1),E2(U0, u1)), for various values

of u1, as described in Subsection 3.2. Each computation is very light (these polynomials

have degree about `2, which is a few thousands), but we need about `4 of them. The

computation was done in a distributed fashion, split across several nodes into tasks of

approximately six hours; results were written to disk.

The other light-weight task is the final birthday paradox search, since we store only

a few keys in a hash table.

• Medium memory (up to 4 GB). These are the final computations modulo `, for ` ≤ 23

(interpolation of resultants, parasite removal, finding (s1, s2)), and the computations

modulo prime powers.

• High memory. These are the final computations modulo `, for ` = 29 and ` = 31: due

to the large degrees of the polynomials we handle, memory can become a bottleneck.

Specific optimizations were needed to fit these computations into the RAM of the Bull

machines.

We added dependencies between tasks. Some of them are due to the feasibility of the

computation (for a given `, the computation of all required resultants and subresultants

must come before the rest of the computation); some other dependencies help us save

computations: it is important not to start the computation for a prime ` before the

computation for the previous small primes is finished. Indeed, one may discover that

one of the two group orders is 0 modulo one of the previous primes, so that the rest of

the computation is useless. In the same spirit, it is suboptimal to start the computations

modulo powers of 2, 3, 5, 7, before having completed computations modulo all the primes.

We remark however that we ran many lifting computations before being sure that they

were really necessary, in order to tune our software, and make the best use of the clusters.

We wrote Python and shell scripts that handle these tasks, based on dependencies and

resource availability, and ensure that on a Whale node, at most one medium memory

task will run, and no high memory task. Medium tasks are given a high priority: most

of the time, a 4-core node of Whale gets one of these tasks and three tiny memory tasks,

so its memory is well utilized. High memory tasks are sent to Bull, and the results are

centralized on Whale; the amount of communication between the clusters is very low

compared to the computation time.
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Statistics. We started with all possible squares of Theta constants between -40 and 40.
• Eliminating those that correspond to a degenerate Kummer surface, those that do not

satisfy the rationality conditions, those for which the Jacobian is (2, 2)-decomposable,
and keeping only one choice per isomorphism class, there are 82639 remaining candi-
dates.

• Among them, there are 35525 for which the group orders are not 0 modulo 3.
• Among them, there are 21201 for which the group orders are not 0 modulo 5.
• Among them, there are 5038 for which the group orders are 16 modulo 32.
• Among them, there are 3608 for which the group orders are not 0 modulo 7. These

survivors were sent to the SHARCNET cluster.
During the modulo ` computations, for ` = 11, 13, 17, 19, 23, 29, 31, 1214 candidates

were found to have group order zero modulo `, and thus aborted. In total, 586 curves
were fully counted: among them, 48 gave a Jacobian or the Jacobian of the twist with a
suitable group order, and only one curve was twist-secure. The remaining curves were not
fully counted: we stopped our computation soon after having found the winning curve.

It takes on the order of 1000 CPU hours to complete the point-counting for a single
curve. Working with the `-torsion for ` = 11, 13, 17, 19, 23, 29, 31 gives us (s1, s2) modulo
955049953 ' 230; this is of course not enough to reconstruct (s1, s2) uniquely. Tables 7
to 10 show what further information can be deduced from torsion lifting over these curves.
We represent this information in base 2, to give a uniform overview (we use degree bounds
to stop the lifting; the number of curves appearing in these tables are not all the same
for all `’s, due to early abort phenomena).

In most of the cases we finished the computation using the two-dimensional birthday
paradox algorithm of Gaudry and Schost (2004a), running at about 285,000 iterations
per second per core. In about 10% of the cases, we detected that the information we had
modulo small prime powers was good enough to start the birthday paradox computation
after ` = 29. In a few cases, we missed it and we were able to obtain s1 exactly; then
s2 was computed very quickly using a low-memory one-dimensional birthday paradox
algorithm: we spent more time than necessary in the modular computations for these
curves.

Finally, we mention that the various genericity assumptions we made throughout the
paper (typically, that the divisors we were looking for had weight 2, etc) were satisfied
in all the experiments we did. This is maybe not surprising, since we expect that these
assumptions are satisfied in codimension 1 in the space of all curves, and since our base
field has such a large cardinality.

precision on (s1, s2) number of curves

(210, 212) 1

(211, 213) 3

(212, 214) 3

(213, 215) 49

(214, 216) 445

(215, 217) 182

Table 7. Available information from 2k-torsion
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precision on (s1, s2) number of curves

33 ' 24.8 1

34 ' 26.3 3

35 ' 27.9 5

36 ' 29.5 644

37 ' 211 618

Table 8. Available information from 3k-torsion

precision on (s1, s2) number of curves

5 ' 22.3 346

52 ' 24.6 160

53 ' 27 93

54 ' 29.3 51

55 ' 211.6 8

Table 9. Available information from 5k-torsion

precision on (s1, s2) number of curves

7 ' 22.8 437

72 ' 25.6 174

73 ' 28.4 5

Table 10. Available information from 7k-torsion

A twist-secure curve. The curve C11,−22,−19,−3 with squared Theta constants a2 = 11,
b2 = −22, c2 = −19, d2 = −3 defined over Fp, with p = 2127 − 1, is twist-secure: it has
a Jacobian group order that is 16 times a prime, and the same is true for its quadratic
twist. The characteristic polynomial of the Frobenius endomorphism is T 4−s1T 3+s2T

2−
s1pT + p2, with

s1 = −7393453752833430168 and s2 = −58693655204203573205502023766223379410.

One gets the group orders:

24 × 1809251394333065553571917326471206521441306174399683558571672623546356726339

and

24 × 1809251394333065553414675955050290598923508843635941313077767297801179626051.
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A possible hyperelliptic equation is

y2 = x5 + 64408548613810695909971240431892164827x4

+76637216448498510246042731975843417626x3

+154735094972565041023366918099598639851x2

+9855732443590990513334918966847277222x

+81689052950067229064357938692912969725.
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tants. Journal of Symbolic Computation. 41, 1–29.
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Cohen, H., Frey, G. (Eds.), 2005. Handbook of elliptic and hyperelliptic curve cryptog-
raphy. Chapman & Hall / CRC.

Couveignes, J.-M., Lercier, R., 2009. Fast construction of irreducible polynomials over
finite fields. Eprint arXiv:0905.1642v2Submitted for publication.
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