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PLANE QUARTICS WITH JACOBIANS ISOMORPHIC
TO A HYPERELLIPTIC JACOBIAN
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(Communicated by Ron Donagi)

Abstract. We show how for every integer n one can explicitly construct n
distinct plane quartics and one hyperelliptic curve over C all of whose Jaco-
bians are isomorphic to one another as abelian varieties without polarization.
When we say that the curves can be constructed “explicitly”, we mean that
the coefficients of the defining equations of the curves are simple rational ex-
pressions in algebraic numbers in R whose minimal polynomials over Q can
be given exactly and whose decimal approximations can be given to as many
places as is necessary to distinguish them from their conjugates. We also prove
a simply-stated theorem that allows one to decide whether or not two plane
quartics over C, each with a pair of commuting involutions, are isomorphic to
one another.

1. Introduction

Torelli’s theorem states that a curve is determined by its polarized Jacobian va-
riety, but a century ago Humbert showed that distinct curves can have isomorphic
unpolarized Jacobian varieties; thus it is natural to wonder exactly how much in-
formation about a curve is contained in its unpolarized Jacobian. In this paper we
will prove that in general one cannot determine whether or not a curve over the
complex numbers is hyperelliptic simply by looking at its unpolarized Jacobian. In
fact, we will prove somewhat more: We will show how for every positive integer n
one can explicitly construct n distinct plane quartics and one hyperelliptic curve of
genus 3 such that all n + 1 of these curves share the same unpolarized Jacobian.
Our construction is apparently the first method of producing explicit exact equa-
tions for curves of genus 3 over C with isomorphic Jacobians. In order to state our
theorem precisely, we must set some notation.

For every complex number α with α2 6∈ {0, 1}, we let H(α) denote the normal-
ization of the curve defined by

V 2 = (U2 + 1)4 − 16α2U2(U2 − 1)2.

The discriminant of the right-hand side of this equation is the nonzero number
260α12(α2 − 1)4, so H(α) is hyperelliptic of genus 3. For every pair of complex
numbers (α, β) with α2 6∈ {0, 1} and β2 6∈ {1, α2}, we let C(α, β) denote the plane
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quartic curve defined by the homogeneous equation

X4 + Y 4 + Z4 +
(
−2 + 4

1− β2

1− α2

)
X2Y 2 +

(
2β
α

)
X2Z2 +

(
2β
α

)
Y 2Z2 = 0.

A computation shows that C(α, β) is nonsingular. Finally, for every positive real x
we let µ(x) denote the unique µ ∈ R such that 0 ≤ µ < 1 and such that the elliptic
curve Y 2 = (X − 1)(X −µ)(X + 1) is complex-analytically isomorphic to the torus
C/(Z+ ixZ). One can check that µ(x) = µ(y) if and only if either x = y or xy = 1,
and that µ(x) = 0 if and only if x = 1.

Theorem 1. Let m be a positive even squarefree integer, and for every odd positive
divisor d of m let αd = µ(

√
m/d). For every odd divisor d > 1 of m the Jacobian of

the plane quartic C(α1, αd) is isomorphic to the Jacobian of the hyperelliptic curve
H(α1) as an abelian variety without polarization. Furthermore, if d and d′ are
distinct odd divisors of m that are greater than 1, then C(α1, αd) and C(α1, αd′)
are not isomorphic to one another.

Note that the real numbers αd are distinct and lie strictly between 0 and 1,
so the curves C(α1, αd) and H(α1) are defined. Moreover, the αd can be specified
without reference to transcendental functions, because if x2 is a rational number the
number µ(x) is algebraic and its minimal polynomial over Q can be calculated. For
example, the values of µ(x) that we must calculate in order to apply the theorem
with m = 30 are

µ(
√

30)=−464325−328320
√

2+268072
√

3−207648
√

5+189560
√

6−146832
√

10+119888
√

15+84772
√

30,

µ(
√

30/3)=−464325+328320
√

2−268072
√

3+207648
√

5+189560
√

6−146832
√

10+119888
√

15−84772
√

30,

µ(
√

30/5)=−464325+328320
√

2−268072
√

3−207648
√

5+189560
√

6+146832
√

10−119888
√

15+84772
√

30,

−µ(
√

30/15)=−464325−328320
√

2+268072
√

3+207648
√

5+189560
√

6+146832
√

10−119888
√

15−84772
√

30.

Using these values, we find three distinct explicitly-given plane quartics whose
Jacobians are all isomorphic to that of an explicitly-given hyperelliptic curve.

For our proof of Theorem 1 we will require a simple method of determining
whether two plane quartics, each with a pair of commuting involutions, are isomor-
phic to one another. We will provide such a method in Section 2. In Section 3 we
will review a construction from [9] that allows us to write down explicit equations
for genus-3 curves whose Jacobians are isogenous to a product of three given el-
liptic curves. We will then use this construction to prove Theorem 1 in Sections 4
and 5. Finally, in Section 6 we will indicate how one may compute the minimal
polynomials of the algebraic numbers µ(

√
m/d) that appear in the statement of

Theorem 1.
There are a number of other papers that discuss the relationship between a

curve and its unpolarized Jacobian. The fact that a curve is not determined by
its unpolarized Jacobian was first observed by Humbert [10], who exhibited the
period matrices for pairs of genus-2 curves over C with isomorphic Jacobians. The
Jacobians of Humbert’s curves are reducible, and Hayashida and Nishi [6, 5] showed
that in fact there exist arbitrarily large sets of genus-2 curves over C all sharing the
same reducible Jacobian. A method for producing explicit equations for the curves
in such sets was given in [8]. There also exist simple abelian varieties over C of
dimension 2, 3, and 4 that can be obtained in more than one way as the Jacobian
of a curve (see Lange [14] for dimensions 2 and 3, and Ciliberto and van der Geer
[3] for dimension 4). No explicit examples of the equations for curves giving rise
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to such Jacobians are known; however, it should be possible to use the methods of
van Wamelen [17, 18] to produce examples of genus 2. Over finite fields, explicit
examples of distinct curves of genus 2 and 3 sharing the same reducible Jacobian
can be obtained by using results of Ibukiyama, Katsura, and Oort [11] and Brock [1]
or by reducing the examples in [8], and a method for producing explicit examples
of distinct curves of genus 2 and 3 sharing the same irreducible Jacobian is given
in [7]. The genus-3 example worked out in [7] consists of a hyperelliptic curve and
a plane quartic over F3 with isomorphic Jacobians.

In a forthcoming paper we will explicitly construct a non-constant one-parameter
family C(t) of plane quartics and a non-constant one-parameter family H(t) of
hyperelliptic curves such that the Jacobians of C(t) and H(t) are isomorphic for all
values of t for which the curves are nonsingular.

2. Detecting isomorphisms between plane quartics

with commuting involutions

Fix a set of homogeneous coordinatesX , Y , Z for P2, and for every triple (a, b, c)
of complex numbers let Q(a, b, c) denote plane quartic defined by

X4 + Y 4 + Z4 + aX2Y 2 + bX2Z2 + cY 2Z2 = 0.

The curve Q(a, b, c) is nonsingular if and only if a2 + b2 + c2 − abc − 4 is nonzero
and none of a2, b2, and c2 is equal to 4. Our goal in this section is to give a simple
criterion for deciding whether two nonsingular curves Q(a, b, c) and Q(a′, b′, c′) are
isomorphic to one another.

The embedding of Q(a, b, c) into P2 given by its defining equation is a canon-
ical embedding, so every isomorphism ϕ from Q(a, b, c) to Q(a′, b′, c′) can be ex-
tended to give an automorphism ϕP2 of the ambient P2 that takes Q(a, b, c) to
Q(a′, b′, c′). Using our fixed set of homogeneous coordinates, we can identify Aut P2

with PGL(3,C), so ϕP2 can be represented by a 3× 3 matrix, unique up to scalar
multiples. We say that an isomorphism ϕ : Q(a, b, c) → Q(a′, b′, c′) is strict if ϕP2

has a representative that is the product of a permutation matrix and a diagonal
matrix. It is easy to see that Q(a′, b′, c′) is strictly isomorphic to Q(a, b, c) if and
only if the triple (a′, b′, c′) can be obtained from (a, b, c) by permuting the order of
the elements and changing the signs of an even number of elements.

Proposition 2. An isomorphism class of nonsingular quartics of the form
Q(a′, b′, c′) is equal to one of the following:

1. the strict isomorphism class of the curve Q(a, b, c) for some a, b, and c such
that a2, b2, and c2 are pairwise unequal ;

2. the union of the strict isomorphism classes of the curves Q(a, b, b) and
Q(−2 + 16/(a+ 2), 2b/d, 2b/d) for some a and b with b 6= 0, where d2 = a+ 2;
or

3. the union of the strict isomorphism classes of the curves Q(a, 0, 0) and
Q(−2 + 16/(a+ 2), 0, 0, ) and Q(−2 + 16/(−a+ 2), 0, 0, ), for some a.

A special case of this proposition may be found in Kuribayashi and Sekita [13],
but we have been unable to find a proof of the general case in the literature. Brock
uses the result of the proposition, without proof, in Chapter 3 of [1].

Our proof of the proposition depends on the following lemma. By a V4-subgroup
of a group G, we mean a subgroup of G isomorphic to the Klein 4-group V4.
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Lemma 3. Let C be a nonhyperelliptic curve of genus 3. The number of strict
isomorphism classes of curves Q(a, b, c) that are isomorphic to C is equal to the
number of conjugacy classes of V4-subgroups of AutC.

Proof. For every nonsingular curve Q(a, b, c) let A(a, b, c) be the subgroup of
AutQ(a, b, c) consisting of the automorphisms [X : Y : Z] 7→ [±X : ±Y : ±Z], so
that A(a, b, c) is isomorphic to V4. If ϕ : C → Q(a, b, c) is an isomorphism, then
ϕ∗A(a, b, c) is a V4-subgroup of AutC. If ψ is another isomorphism from C to the
same curve Q(a, b, c), then ψ∗A(a, b, c) and ϕ∗A(a, b, c) are conjugate subgroups of
AutC. Furthermore, if ψ : C → Q(a′, b′, c′) is the composition of ϕ with a strict
isomorphism from Q(a, b, c) to Q(a′, b′, c′), then ϕ∗A(a, b, c) = ψ∗A(a′, b′, c′). Thus
we get a map Θ from the set of strict isomorphism classes of curves Q(a, b, c) such
that C ∼= Q(a, b, c) to the set of conjugacy classes of V4-subgroups of AutC. We
will prove that Θ is a bijection.

The canonical embedding Φ: C → P2 allows us to identify AutC with a sub-
group of Aut P2. Suppose A is a V4-subgroup of AutC. Since there is a unique
embedding of V4 into Aut P2 up to conjugacy, we may choose coordinates X ,
Y , Z for P2 so that the image of A in Aut P2 consists of the automorphisms
[X :Y :Z] 7→ [±X :±Y :±Z]. It is easy to see that with this choice of coordinates
for P2, the image of C under the canonical embedding is a plane quartic defined by
a homogeneous quadratic polynomial in X2, Y 2, and Z2. By rescaling coordinates,
we find that Φ(C) is defined by a quartic of the form Q(a, b, c) for some a, b, and
c. By construction, the isomorphism ϕ : C → Q(a, b, c) obtained in this way pulls
back A(a, b, c) to our original group A. Thus Θ is surjective.

On the other hand, suppose ϕ : C → Q(a, b, c) and ψ : C → Q(a′, b′, c′) are
isomorphisms such that ϕ∗A(a, b, c) is conjugate to ψ∗A(a′, b′, c′), say by an ele-
ment α ∈ AutC. By replacing ψ with the composition ψα, we may assume that
ϕ∗A(a, b, c) is equal to ψ∗A(a′, b′, c′). Let χ : Q(a, b, c)→ Q(a′, b′, c′) be the isomor-
phism ψϕ−1. Then the fact that χ∗A(a′, b′, c′) = A(a, b, c) shows that the element
χP2 of PGL(3,C) can be represented by the product of a permutation matrix and
a diagonal matrix. Thus Q(a′, b′, c′) is strictly isomorphic to Q(a, b, c), so Θ is
injective.

Proof of Proposition 2. There are exactly seven groups containing V4 that occur
as automorphism groups of nonhyperelliptic curves of genus 3 over C (see [12], or
Theorem 5.5 of [16], or Theorem 3.5 of [1]). These groups are V4 itself, the dihedral
group D8 of order 8, the symmetric group S4, a group G16 that is isomorphic to the
central product of the quaternion group Q8 with the cyclic group C4 (that is, the
quotient of the product Q8×C4 by the image of a central diagonal embedding of C2),
a group G48 that is isomorphic to the semidirect product of G16 with C3 (where the
C3 acts in the obvious way on the quaternion group), a groupG96 that is isomorphic
to the semidirect product of the trace-0 part of (Z/4Z)× (Z/4Z)× (Z/4Z) with S3

(where S3 acts by permuting the factors), and the simple group GL(3,F2) of order
168.

For each of these groups G we can calculate the number N of conjugacy classes
of V4-subgroups of G. We leave these straightforward calculations to the reader; the
results are presented in the first two columns of Table 1. For every automorphism
group G, Vermeulen ([16], Table 5.6, pp. 63–64) lists a standard way of writing
the curves with that automorphism group. For all groups in Table 1 except for
D8 and GL(3,F2) we list Vermeulen’s standard form in column 3. For D8 we list

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



JACOBIANS OF PLANE QUARTICS 1651

G N Standard form Associated form(s)

V4 1 Q(a, b, c) none

D8 2 Q(a, b, b) Q(−2 + 16/(a+ 2), 2b/d, 2b/d)
(where d2 = a+ 2)

S4 2 Q(a, a, a) Q(−2 + 16/(a+ 2), 2a/d, 2a/d)
(where d2 = a+ 2)

G16 3 Q(a, 0, 0) Q(−2 + 16/(a+ 2), 0, 0)
Q(−2 + 16/(−a+ 2), 0, 0)

G48 1 Q(2
√
−3, 0, 0) none

G96 2 Q(0, 0, 0) Q(6, 0, 0)

GL(3,F2) 2 Q(z, z, z) Q(z, z, z)

Table 1. Forms of curves with automorphism groups containing
commuting involutions. For every possible automorphism group
G that contains a V4-subgroup we list the number N of conjugacy
classes of such subgroups. Every curve C with G ⊆ AutC can be
put in the standard form Q(·, ·, ·) listed in the third column. If
Q(a, b, c) has automorphism group G, then the N − 1 other strict
isomorphism classes of curves Q(a′, b′, c′) isomorphic to Q(a, b, c)
are listed in column 4. The number z in the last row is z =
3(−1 +

√
−7)/2, and z is its complex conjugate.

a standard form easily obtained from Vermeulen’s, and for GL(3,F2) we list the
form that was apparently first obtained by Ciani [2]. Now, if a curve Q(a, b, c)
has automorphism group equal to G, then Lemma 3 says there there will be ex-
actly N strict isomorphism classes of curves Q(a′, b′, c′) isomorphic to Q(a, b, c).
One of these classes will be represented by Q(a, b, c) itself. In column 4 we list
representatives of the other N − 1 strict isomorphism classes of curves Q(a′, b′, c′)
isomorphic to Q(a, b, c), all of which are obtained by applying Lemma 4 (below)
to elements of the strict isomorphism class of Q(a, b, c). The reader may verify
that the strict isomorphism classes of these N curves are distinct from one another
whenever Q(a, b, c) has automorphism group exactly G.

Proposition 2 follows immediately upon inspection of Table 1.

Lemma 4. Suppose Q(a, b, b) is a nonsingular curve. Let d ∈ C satisfy d2 = a+2.
Then Q(−2 + 16/(a+ 2), 2b/d, 2b/d) is isomorphic to Q(a, b, b).

Proof. Let e ∈ C satisfy e2 = d. Then the element of Aut P2 ∼= PGL(3,C) repre-
sented by the matrix e/2 e/2 0

e/2 −e/2 0
0 0 1


gives an isomorphism from Q(a, b, b) to Q(−2 + 16/(a+ 2), 2b/d, 2b/d).
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3. Constructing curves of genus three with split Jacobians

For our proof that the curves in Theorem 1 have isomorphic Jacobians we will
require some results from Section 4.1 of [9] that describe how one can explicitly
construct a curve of genus 3 whose Jacobian is (2, 2, 2)-isogenous to the product
of three given elliptic curves. We will review these results in this section for the
convenience of the reader. Care is taken in [9] to keep track of polarizations and
fields of definition, but our arguments in this paper will not involve such subtleties;
therefore, for the sake of brevity and simplicity, we will present weakened versions
of the relevant results of [9].

Suppose k is an algebraically closed field of characteristic not 2. For i = 1, 2, 3,
let Ei be an elliptic curve over k given by an equation y2 = x(x2 +Aix+Bi), let Qi
be the 2-torsion point (0, 0) of Ei, and let Pi be a nonzero 2-torsion point of Ei other
than Qi. Let A be the abelian variety E1×E2×E3 and let G be the subgroup of A
generated by (Q1, 0, Q3), (0, Q2, Q3), and (P1, P2, P3). The following propositions
show how to construct a genus-3 curve over k whose Jacobian is isomorphic to A/G.

To state the propositions we must define some numbers. For each i, we let xPi
denote the x-coordinate of the point Pi, we let di = −(Ai + 2xPi), and we let
∆i = d2

i = A2
i − 4Bi. Let R be the product d1d2d3, and let T be the number

T = R

(
A2

1

∆1
+
A2

2

∆2
+
A2

3

∆3
− 1
)
− 2A1A2A3,

called the twisting factor in [9].

Proposition 5. If T = 0, then A/G is isomorphic to the Jacobian of the hyperel-
liptic curve defined by the homogeneous equations

W 2Z2 = aX4 + bY 4 + cZ4,

0 = dX2 + eY 2 + fZ2,

where a, b, and c are given by

a =
(
RB1

2

)(
−B1

∆1
+
B2

∆2
+
B3

∆3

)
,

b =
(
RB2

2

)(
B1

∆1
− B2

∆2
+
B3

∆3

)
,

c =
(
RB3

2

)(
B1

∆1
+
B2

∆2
− B3

∆3

)
,

where d, e, and f are determined up to sign by the relations

B2B3d
2 = 1,

B1B3e
2 = 1,

B1B2f
2 = 1,

and where the signs of d, e, and f are chosen so that we have A1 = −aef and
A2 = −bdf and A3 = −cde.

Proof. This is a weakening of Proposition 14 of [9].

When the twisting factor is nonzero, we find a plane quartic with the desired
Jacobian.
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Proposition 6. If T 6= 0, then A/G is isomorphic to the Jacobian of the plane
quartic defined by

B1X
4 + B2Y

4 +B3Z
4 + dX2Y 2 + eX2Z2 + fY 2Z2 = 0,

where

d =
1
2

(
−A1A2 +

A3R

∆3

)
,

e =
1
2

(
−A1A3 +

A2R

∆2

)
,

f =
1
2

(
−A2A3 +

A1R

∆1

)
.

Proof. This is a weakening of Proposition 15 of [9].

With these propositions in hand, we proceed to the proof of Theorem 1.

4. Proof that the curves in Theorem 1

have isomorphic Jacobians

We will present three lemmas that together will prove that C(α1, αd) and H(α1)
have isomorphic Jacobians, for all odd divisors d > 1 of m. The proofs of the first
two lemmas rely on the results of [9] that we presented in the preceding section.

For every odd positive divisor d of m let Fd be the elliptic curve given by Y 2 =
X(X2 + 2αdX + α2

d − 1). Also, let β = 2α2
1 − 1 and let F ′ be the elliptic curve

Y 2 = X(X2 +2βX+β2−1). Let Sd, Td, and Ud be the 2-torsion points on Fd with
x-coordinates −1 − αd, 0, and 1 − αd, respectively, and let S′, T ′, and U ′ be the
2-torsion points on F ′ with x-coordinates −1 − β, 0, and 1 − β, respectively. For
every d, let Gd be the subgroup of Fd×Fd×F ′ generated by (Td, 0, T ′), (0, Td, T ′),
and (Sd, Sd, S′).

Lemma 7. The Jacobian of H(α1) is isomorphic to (F1 × F1 × F ′)/G1.

Proof. We will find a curve whose Jacobian is isomorphic to (F1 × F1 × F ′)/G1 by
applying the construction presented in the preceding section. That construction
requires that we specify three elliptic curves E1, E2, E3 and 2-torsion points Pi
and Qi on each Ei. We take (E1, P1, Q1) to be (F1, S1, T1), we take (E2, P2, Q2)
to be (F1, S1, T1), and we take (E3, P3, Q3) to be (F ′, S′, T ′). Note that then the
group G of Section 3 is equal to our group G1.

In the notation of Section 3 we have

A1 = 2α1, B1 = α2
1 − 1, ∆1 = 4, and d1 = 2,

A2 = 2α1, B2 = α2
1 − 1, ∆2 = 4, and d2 = 2,

A3 = 2β, B3 = β2 − 1, ∆3 = 4, and d3 = 2,

we have R = 8, and the twisting factor T is 0. Applying Proposition 5, we find
that (F1 × F1 × F ′)/G1 is isomorphic to the Jacobian of the curve defined by

W 2 = aX4 + bY 4 + c,

0 = dX2 + eY 2 + f,
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where

a = 4α2
1(α2

1 − 1)2, d = 1/(2α1(α2
1 − 1)),

b = 4α2
1(α2

1 − 1)2, e = 1/(2α1(α2
1 − 1)),

c = −8α2
1(α2

1 − 1)2(2α2
1 − 1), f = −1/(α2

1 − 1).

But the map from H(α1) to the curve above given by

X =
2
√

2α1U

U2 + 1
, Y =

√
2α1(U2 − 1)
U2 + 1

, W =
(2
√

2)α1(α2
1 − 1)V

(U2 + 1)2
,

is an isomorphism, so the lemma is proven.

Lemma 8. If d is a divisor of m with d > 1, then the Jacobian of C(α1, αd) is
isomorphic to (Fd × Fd × F ′)/Gd.

Proof. We again use the construction of Section 3. This time we take (E1, P1, Q1)
to be (Fd, Sd, Td), we take (E2, P2, Q2) to be (Fd, Sd, Td), and we take (E3, P3, Q3)
to be (F ′, S′, T ′). Now the group G of Section 3 is equal to our group Gd. In the
notation of Section 3 we have

A1 = 2αd, B1 = α2
d − 1, ∆1 = 4, and d1 = 2,

A2 = 2αd, B2 = α2
d − 1, ∆2 = 4, and d2 = 2,

A3 = 2β, B3 = β2 − 1, ∆3 = 4, and d3 = 2,

we have R = 8, and the twisting factor T is 8(β−1)(β−2α2
d+ 1). We see that T is

nonzero, because β = 2α2
1 − 1 < 1 and because α1 6= ±αd. We can therefore apply

Proposition 6 to find that (Fd × Fd × F ′)/Gd is isomorphic to the Jacobian of the
nonsingular plane quartic

B1X
4 +B2Y

4 +B3Z
4 + dX2Y 2 + eX2Z2 + fY 2Z2 = 0

where

d = 2(1− α2
d)− 4(1− α2

1) and e = f = 4αd(1− α2
1).

If we multiply the equation for the quartic by −1, replace X with X/(1− α2
d)

1/4,
replace Y with Y/(1− α2

d)
1/4, and replace Z with Z/(1− β2)1/4, we find that this

plane quartic is isomorphic to the curve given by

X4 + Y 4 + Z4 + d′X2Y 2 + e′X2Z2 + e′Y 2Z2 = 0,

where

d′ = −2 + 4
1− α2

1

1− α2
d

and e′ = −2
αd
α1

√
1− α2

1

1− α2
d

.

Finally, by applying Lemma 4 we find that this last curve is isomorphic to C(α1, αd).

Lemma 9. For every odd positive divisor d of m we have

(F1 × F1 × F ′)/G1
∼= (Fd × Fd × F ′)/Gd

as abelian varieties without polarization.
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Proof. By shifting X-coordinates by α1, we see that F1 is isomorphic to the curve
Y 2 = (X − 1)(X − α1)(X + 1). Since α1 = µ(

√
m), the definition of µ shows that

F1 is complex-analytically isomorphic to the torus C/Λ1, where Λ1 = Z + i
√
mZ.

This isomorphism is given by sending a point P on F1 to the image in Z/Λ1 of the
integral from ∞ to P of k dX/Y for some constant k that is either real or pure
imaginary. Since 1/Y is pure imaginary for real values of X less than −1−α1 and
real for real values of X between −1−α1 and 0, we see that S1 corresponds to either
1/2 + Λ1 or i

√
m/2 + Λ1 and that T1 corresponds to (1 + i

√
m)/2 + Λ1. Similarly, if

we let Λd be the lattice dZ + i
√
mZ, there is a complex-analytic isomorphism from

Fd to C/Λd that takes Sd to either d/2 + Λd or i
√
m/2 + Λd and that takes Td to

(d+ i
√
m)/2 + Λd.

Let u and v be integers such that ud+ v(m/d) = 1 and such that v is a multiple
of 4. One can easily check that the matrix(

ud 2i
√
m

iv
√
m/2 d

)
gives an automorphism of C × C that takes Λ1 × Λ1 to Λd × Λd. Thus, this
matrix gives an isomorphism from (C/Λ1) × (C/Λ1) to (C/Λd) × (C/Λd), which
we may interpret as an isomorphism ϕ : F1 × F1 → Fd × Fd. Furthermore, using
the matrix interpretation of ϕ, it is easy to check that ϕ((T1, 0)) = (Td, 0), that
ϕ((0, T1)) = (0, Td), and that ϕ((S1, S1)) is either (Sd, Sd) or (Ud, Ud). But then
ϕ× 1F ′ is an isomorphism from F1 ×F1 ×F ′ to Fd ×Fd ×F ′ that takes G1 to Gd,
and we are done.

5. Proof that the plane quartics in Theorem 1 are distinct

To prove that distinct values of d give us distinct curves C(α1, αd), we will need
the following lemma.

Lemma 10. For every odd divisor d > 1 of m we have α1 > αd.

Proof. The j-invariant of the elliptic curve Y 2 = (X − 1)(X − µ)(X + 1) is

26(µ2 + 3)3/(µ2 − 1)2,

and this is an increasing function of µ for µ ∈ [0, 1). Likewise, the function from
R>0 to R that takes x to the j-invariant of the lattice Z + ixZ is increasing for
x ∈ [1,∞). Thus, the function µ : R>0 → R defined in the introduction is increasing
for x ∈ [1,∞). Suppose d > 1 is an odd divisor of m, so that 1 < d < m. If
d ≤

√
m, then 1 ≤

√
m/d <

√
m and we have µ(

√
m/d) < µ(

√
m). If d >

√
m,

then 1 < d/
√
m <

√
m, and by using the fact that µ(x) = µ(1/x) we find that

µ(
√
m/d) = µ(d/

√
m) < µ(

√
m).

Suppose d and d′ are divisors of m, each greater than 1, such that C(α1, αd)
and C(α1, αd′) are isomorphic to one another. Each of these curves is of the form
Q(a, b, b) with b nonzero, so we can apply Proposition 2 to find that we must have
either

1− α2
d

1− α2
1

=
1− α2

d′

1− α2
1

or
(

1− α2
d

1− α2
1

)(
1− α2

d′

1− α2
1

)
= 1.

The second equality is impossible because Lemma 10 shows that the two factors on
the left-hand side are both greater than 1. Thus the first equality holds, and since
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the α’s are positive we find that αd = αd′ and hence d = d′. Thus distinct values
of d give distinct curves, and we have proven Theorem 1.

6. Explicitly calculating the equations for the curves

Let m be a positive even squarefree integer, let K be the field Q(
√
−m), let

O = Z[
√
−m] be the ring of integers of K, and for every odd positive divisor d of

m let Ad be the ideal (d,
√
−m) of O. The ideals Ad represent distinct 2-torsion

elements of the class group of K, and every 2-torsion element is represented by an
Ad. By choosing one of the two embeddings K ↪→ C we can think of the Ad as
lattices in C. It is well known that the j-invariants of the lattices Ad are conjugate
algebraic integers, and by using Algorithm 7.6.1 (p. 408) of [4] we can compute the
minimal polynomial f ∈ Z[x] of these integers. In fact, since the Ad represent the
2-torsion elements of the class group, we see from statement 5.4.3 (p. 124) of [15]
that the j-invariants j(Ad) are precisely the real roots of f .

Now, the j-invariant of the elliptic curve Y 2 = (X − 1)(X − µ)(X + 1) is

26(µ2 + 3)3/(µ2 − 1)2,

so the numbers αd = µ(
√
m/d) of Theorem 1 are zeros of the rational function

f
(
26(x2 + 3)3/(x2 − 1)2

)
. Suppose we write this rational function as g(x)/h(x),

where g and h are coprime elements of Z[x] and h is monic. Then g(αd) = 0 for
each positive odd divisor d of m, and in fact the αd are precisely the real roots of
g that lie between 0 and 1. Thus we can specify the αd precisely, by specifying g
and by specifying each αd to enough decimal places to distinguish it from the other
αd’s.

Suppose for example that m = 6. One calculates (using PARI/GP, for example)
that

g = 212(x4 − 36x2 + 36)(x4 + 276x3 + 342x2 − 396x− 207)

× (x4 − 276x3 + 342x2 + 396x− 207).

The roots of g between 0 and 1 are roots of the last two factors, and we find that

µ(
√

6) = −69− 48
√

2 + 40
√

3 + 28
√

6 ≈ 0.9854941,

−µ(
√

6/3) = −69 + 48
√

2 + 40
√

3− 28
√

6 ≈ −0.4214295

(where we list −µ(
√

6/3) instead of µ(
√

6/3) to emphasize the fact that the two
given values are conjugate algebraic integers).

Likewise, if we take m = 30 we find the values of µ(
√

30/d) given in the intro-
duction.
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