Dual System Encryption:
Realizing Fully Secure IBE and HIBE under Simple Assumptions

Brent Waters *
University of Texas at Austin

Abstract

We present a new methodology for proving security of encryption systems using what we call
Dual System Encryption. Our techniques result in fully secure Identity-Based Encryption (IBE)
and Hierarchical Identity-Based Encryption (HIBE) systems under the simple and established
decisional Bilinear Diffie-Hellman and decisional Linear assumptions. Our IBE system has
ciphertexts, private keys, and public parameters each consisting of a constant number of group
elements. These results are the first HIBE system and the first IBE system with short parameters
under simple assumptions.

In a Dual System Encryption system both ciphertexts and private keys can take on one of
two indistinguishable forms. A private key or ciphertext will be normal if they are generated
respectively from the system’s key generation or encryption algorithm. These keys and cipher-
texts will behave as one expects in an IBE system. In addition, we define semi-functional keys
and ciphertexts. A semi-functional private key will be able to decrypt all normally generated
ciphertexts; however, decryption will fail if one attempts to decrypt a semi-functional ciphertext
with a semi-functional private key. Analogously, semi-functional ciphertexts will be decryptable
only by normal private keys.

Dual System Encryption opens up a new way to prove security of IBE and related encryption
systems. We define a sequence of games where we change first the challenge ciphertext and then
the private keys one by one to be semi-functional. We finally end up in a game where the
challenge ciphertext and all private keys are semi-functional at which point proving security is
straightforward.

*Supported by NSF CNS-0716199, Air Force Office of Scientific Research (AFOSR) under the MURI award for
“Collaborative policies and assured information sharing” (Project PRESIDIO) and the U.S. Department of Homeland
Security under Grant Award Number 2006-CS-001-000001.

1 Introduction

The concept of Identity-Based Encryption (IBE) was first proposed by Shamir in 1984. In an IBE
system a user can encrypt to another party simply by knowing their identity as well as a set of
global parameters — eliminating the need to distribute a separate public key for each user in the
system.

Although the concept received much interest, it wasn’t until several years later that Boneh and
Franklin [7] introduced the first Identity-Based Encryption scheme using groups with efficiently
computable bilinear maps. The original Boneh and Franklin result used the random oracle heuristic
to prove security under the Bilinear Diffie-Hellman assumption and a significant open question was
whether the random oracle model could be removed.

Following the breakthrough result of Boneh and Franklin, there has been significant progress
in realizing IBE in the standard model. First, Canetti, Halevi, and Katz [14] proved security
without the random oracle heuristic, but under a weaker “Selective-ID” model where the attacker
must declare the identity Z* that he will attack before even seeing the system’s public parameters.
Boneh and Boyen [3] then provided an efficient selectively secure scheme. Subsequently, Boneh
and Boyen [5] and Waters [29] gave fully secure solutions in the standard model. The Waters
scheme provided an efficient and provably fully secure system in the standard model under the de-
cisional Bilinear Diffie-Hellman assumption; however, one drawback was that the public parameters
consisted of O(\) group elements for security parameter \.

Partitioning Reductions One very important common thread in all of the above systems is that
they use what we call a partitioning strategy to prove security. In these systems, one proves security
to an underlying complexity assumption by creating a reduction algorithm B that partitions the
identity space into two parts — 1) identities for which it can create private keys; and 2) identities
that it can use in the challenge ciphertext phase. This partitioning is embedded either in the public
parameters at setup time in the standard model systems [14, 3, 5, 29] or programed into the random
oracle [7]. In the selective model, systems the identity space can be “tightly” partitioned so that
all the keys except Z* fall into the key creating partition, while reductions in fully secure systems
will partition the space according to the number of private key queries g(A) that an attacker makes
and the reduction “hopes” that the queries and challenge ciphertext identity fall favorably in the
partition.

While the partitioning techniques have proved useful, they have two fundamental limitations.
First, the most efficient fully secure and standard model IBE system due to Waters has large pub-
lic parameters that might be impractical for some applications. The second and more compelling
concern is that partitioning techniques appear to be inadequate for proving security of encryp-
tion systems that offer more functionality such as Hierarchical IBE [23, 21| and Attribute-Based
Encryption [25] even if we apply the random oracle model. For instance, all known Hierarchical
Identity-Based Encryption (HIBE) systems (in this vein) have an exponential degradation of secu-
rity with the depth, n, of the hierarchy — rendering the security reductions meaningless for large
n. The fundamental problem is that more advanced systems such as HIBE have more structure
on the identity space that make (any known) partitioning strategies unusable. For example, in an
HIBE system a partitioning reduction algorithm is constrained such that if it can create a private
key for a particular identity vector then it must be able to for all of its descendants.

Moving beyond the partitioning paradigm To overcome these obstacles, Gentry [18] pro-
posed an IBE system with short public parameters that has a security reduction which moves
beyond the partitioning paradigm. In his reduction the simulator is able to create a key for all
identities and also use any identity as the challenge identity Z*. At first glance, there is an appar-
ent paradox in this strategy since it seems that the reduction algorithm could simply answer the
challenge ciphertext itself by creating a private key for Z*. To deal with this obstacle, Gentry’s
reduction algorithm can only generate one private key for each identity. For an attacker that makes
at most ¢ queries, the algorithm embeds a degree g polynomial F(-) and can create a private key
with a tag component F'(Z) for identity Z. The challenge ciphertext for Z* is structured such that
it decrypts to the challenge message for the single key for Z* that the reduction could generate even
though the message might be information theoretically hidden to an attacker with no knowledge
of F(Z*).

Although the Gentry IBE achieved security in the standard model, it did so at the cost of
using a significantly more complicated assumption called the decisional ¢-ABHDE assumption.
In this assumption a generator g raised to several powers of an exponent a are given out (e.g.,
g,9%, 9“2, el g“q). In addition to the added complexity, the actual assumption used in the proof is
dependent on the number of private key queries the adversary makes. This seems to be inherently
tied to the need to embed the degree ¢ polynomial f into a constant number group elements.

Interestingly, Gentry and Halevi [19] recently showed how to extend these concepts to get a
fully secure HIBE system, although this system actually used an even more involved assumption.
In addition, the “jump” from Gentry’s IBE to the HIBE system added a significant amount of
complexity to the system and proof of security.

Our Contribution We present a new methodology for proving security of encryption systems
using what we call Dual System Encryption. Our techniques result in fully secure IBE and HIBE
systems under the simple and established decisional Bilinear Diffie-Hellman and decisional Linear
assumptions. Our IBE system has ciphertexts, private keys, and public parameters each consisting
of a constant number of group elements. Our results give the first HIBE system and the first IBE
system with short parameters under simple assumptions.

Our conceptual approach departs significantly from both the partitioning paradigm and Gen-
try’s approach. In a Dual System Encryption system, both ciphertexts and private keys can take
on one of two indistinguishable forms. A private key or ciphertext will be normal if they are
generated respectively from the system’s key generation or encryption algorithm. These keys and
ciphertexts will behave as one expects in an IBE system. In addition, we define semi-functional
keys and ciphertexts. A semi-functional private key will be able to decrypt all normally generated
ciphertexts; however, decryption will fail if one attempts to decrypt a semi-functional ciphertext
with a semi-functional private key. Analogously, semi-functional ciphertexts will be decryptable
only by normal private keys.

Dual System Encryption opens up a new way to prove security of IBE and related encryption
systems. Intuitively, to prove security we define a sequence of games arguing that an attacker
cannot distinguish one game from the next. The first game will be the real security game in
which the challenge ciphertext and all private keys are distributed normally. Next, we switch our
normal challenge ciphertext with a semi- functional one. We argue that no adversary can detect this
(under our complexity assumption) since all private keys given can decrypt the challenge ciphertext
regardless of whether it is normal or semi-functional. In the next series of games, we change the

private keys one game at a time from normal to semi-functional, again arguing indistinguishability.
In both the above proof arguments, our reduction algorithm B will be able to provide private keys
for any identity and use any identity as a challenge identity — eliminating the need to worry about
an abort condition. Finally, we end up in a game where the challenge ciphertext and all private keys
are semi-functional. At this point proving security is straightforward since the reduction algorithm
does not need to present any normal keys to the attacker and all semi-functional keys are useless
for decrypting a semi-functional ciphertext.

The reader may have noticed one issue in our indistinguishability argument over private keys.
If the reduction algorithm B wants to know whether a secret key SK7 for 7 was semi-functional,
couldn’t it simply create a semi-functional ciphertext for Z and test this itself (without using
the attacker)? To deal with this issue our reduction algorithm embeds a degree one polynomial
F(Z) = A-I+ B (over Zy). In each hybrid game the attacker can only create a semi-functional
ciphertext for ciphertext identity Z. with a “tag” value of tag, = F(Z.) and can only create a
private key of unknown type for identity Z, with tag value of tag, = F(Zy). Our system use
the “two equation revocation” technique of Sahai and Waters [26] to enforce that the decryption
algorithm will only work if the key tag and ciphertext tag are not equal. If the reduction algorithm
attempted to test the key in question, decryption would fail unconditionally; and thus independently
of whether it was a semi-functional key. .

In reflection, one reason our dual system achieves security from a simple assumption is that by
changing the keys in small hybrid steps one by one we only need to worry about the relationship
between the challenge ciphertext and one private key at a time. Our function F' only needs to be
able to embed a degree one polynomial; in contrast the Gentry reduction “takes on” all private
keys at the same time and needs a complex assumption to embed a degree ¢ polynomial.

HIBE and Other Encryption Systems Building on our IBE system, we also provide a fully
secure HIBE system. One remarkable feature is that the added complexity of the solution is
rather small. Furthermore, our system combines the structure of the Boneh-Boyen [3] selective-
ID HIBE. This hints that we can leverage our methodology to adapt ideas from other selectively
secure encryption systems (or those with complex assumptions) into fully secure ones under simple
assumptions and also that prior selectively secure systems may have “lead us down the right path”.

We believe that our Dual System methodology in the future will become a catalyst for prov-
ing adaptive security under simple assumptions for several other encryption systems including:
Anonymous IBE and searchable encryption [6, 1, 13, 12, 27|, Broadcast Encryption [17, 10], and
Attribute-Based Encryption [25]. To add credence to this belief we give an adaptively secure broad-
cast system in Appendix D proven under the same simple assumptions. Our broadcast system has
ciphertext overhead of a constant number of group elements and is the first such system with a
proof under a simple assumption.

Other Related Work We note that there are remarkable IBE systems of Cocks [16] and Boneh,
Gentry, and Hamburg [9] based on the quadratic residuosity assumption and Gentry, Peikert, and
Vaikuntanathan [20] based on lattice assumptions. These systems are all proven secure under the
random oracle heuristic.

LOur core system has a negligible correctness error; however, we outline how to build a perfectly correct system
in Section 4.

Katz and Wang [24] gave an IBE system with a tight security reduction in the random oracle
model using a two-key approach. One might view this as falling outside the partition approach,
although their techniques do not appear to give a path to full security for HIBE and related
problems.

Bellare and Ristenpart [2] introduced an interesting method recently to eliminate the artificial
abort from the Waters IBE system; there method also falls into the partitioning category.

2 Background

We present a few facts related to groups with efficiently computable bilinear maps and then define
the decisional Billinear-Diffie-Hellman and decisional Linear Assumptions. For space considera-
tions, the definitions of security for Identity-Based Encryption and Hierarchical Identity-Based
Encryption are included in Appendix A.

2.1 Bilinear Maps

Let G and G be two multiplicative cyclic groups of prime order p. Let g be a generator of G and
e be a bilinear map, e: G x G — Gp. The bilinear map e has the following properties:

1. Bilinearity: for all u,v € G and a,b € Z,, we have e(u®, v?) = e(u, v)®.
2. Non-degeneracy: e(g,g) # 1.

We say that G is a bilinear group if the group operation in G and the bilinear map e : GXG — Gr
are both efficiently computable. Notice that the map e is symmetric since e(g%, ¢°) = e(g,9)* =

e(g®, g%).
2.2 Decisional Bilinear Diffie-Hellman Assumption

We define the decisional Bilinear Diffie-Hellman problem as follows. Choose a group G of prime
order p, where the size of p is a function of the security parameters. Next, choose a random
generator g and random exponents ci, c2, c3 € Zy,. If an adversary is given

v=9,9",9% 9%,

it must remain hard to distinguish e(g, g)*“?® € Gp from a random element in Gp.
An algorithm B that outputs z € {0, 1} has advantage € in solving decisional BDH problem in
G if

Pr [B(gj’,T = e(g,g)616263) = O] — Pr [B(gj’, T= R) = 0] >€.

Definition 1. We say that the decisional BDH assumption holds if no polytime algorithm has a
non-negligible advantage in solving the decisional BDH problem.

2.3 Decisional Linear Assumption

We define the decisional Linear problem as follows. Choose a group G of prime order p, where
the size of p is a function of the security paramters. Next, choose random generators g, f,v and
random exponents c1, ca € Zjy. If an adversary is given

g:g7f7y79617f627

it must remain hard to distinguish v17¢2 € G from a random element in G.
An algorithm B that outputs z € {0, 1} has advantage € in solving decisional Linear problem in
G if

Pr([B(7,T =v""?) =0] —Pr [B(7,T =R) =0] | > €.

Definition 2. We say that the decisional Linear assumption holds if no polytime algorithm has a
non-negligible advantage in solving the decisional Linear problem.

3 Identity-Based Encryption

We now present our core Identity-Based Encryption construction along with our proof of its security
under the the decisional Linear and decisional BDH assumptions.

We first give the four algorithms of our IBE system. Next, we describe two additional algorithms
for the creation of semi-functional ciphertexts and private keys respectively. The purpose of these
algorithms is to define the structure of semi-functional ciphertexts and keys for our proof of security.
We emphasize that these algorithms are not used in the actual system; indeed it is crucial for our
security argument that no attacker could create ciphertexts or keys of this form.

Finally, we give the proof of our system against an attacker that makes at most ¢ private
key queries?. We organize our proof as a sequence of games. In the sequence, we will gradually
change the actual security game; first by introducing a semi-functional challenge ciphertext and
then introduce semi-functional private keys one by one. We show that under the decisional Linear
Assumption no adversary can distinguish between each successive game. Finally, we end up in a
game where the challenge ciphertext and the all the private keys given out are semi-functional. At
this point we can prove security under decisional-BDH.

Note to the reader: The techniques applied for this system were originally devised using com-
posite order groups. Using composite order groups allows us to obtain a simpler exposition at the
expense of using a somewhat more complex assumption. In Appendix E we provide a sketch of
how to achieve security using composite order subgroups.

3.1 Construction

Setup()\) The authority first chooses a group G of prime order p. Next, it chooses generators
g,v,v1,v2,w,u,h € G and exponents ay, ag, b, € Zy,. Let 11 = vuf*, 79 = vvy*. It publishes the
public parameters PK as the group description G along with:

b a a b-a b-a b b a-ay-b
g, 9 17 g 279 17 g 27 T1,72,7T1,7T9, W, U, hue(g7g) o

2The maximum number of queries an attacker makes is, of course, a polynomial function q(-) of the security
parameter; however, for notational simplicity we simply will speak of it making ¢ private key queries.

The master secret key MSK consists of g, g%, g%, v,v1,vy as well as the public parameters.
The identity space for the described scheme will be Z,,, although we note in practice one can apply
a collision resistant function to identities of arbitrary lengths.

Encrypt(PK,Z,M) The encryption algorithm chooses random si,sg,t, and tag, € Z,. Let
s = 51 + so. It then blinds M € Gt as Cy = M - (e(g, g)***)%2 and creates:

1= ()", Co= ("), C5=(g™)", Ca= ("), Cs = (4")=, Cs = '73?, Or = ()" () 2w,
Ey = (Wtw'®eh)t, By = gt
The ciphertext is CT = Cy,...,Cr, E1, Ea, tag,.

KeyGen(MSK,Z) The authority chooses random 71,72, 21, 22, tagy, € Z,. Let r =r; 4+ ro.
Then it creates:

Dl — goz.al,ur. D2 _ g—avIgzl. D3 — (gb)—z1. D4 — ,U;gZQ7 D5 — <gb)—z2, D6 _ gr2.b’ D7 — g7"17

K = (uTw'kp),
The secret key is SK = Dy, ..., D7, K, tag,.
Decrypt(CT, K7) The decryption algorithm will be able to decrypt a ciphertext encrypted for
7 with private key SK7 if the ciphertext tag, is not equal to the private key tag;,. Since both tags

are chosen randomly, decryption will succeed with all but a negligible 1/p probability.
We break the decryption algorithm into a set of calculations. First, it computes:

Al = e(Cl7D1) .6(027D2) ‘6(03,D3) ‘6(04’D4) ’6(05,D5)
= e(g,9)™ %2 - (v, g)P T e vy, g) 11T e (vg, g) 720527,

Recall that » = r1 + ro. Next, it computes

A2 = G(CG,DG)-G(C7,D7)

6(1)7g)b(s1+52)re(v17g)albslre(vz?g)agbsy"

—r1t

' 6(9, w)

Taking, Az = A1/As = e(g,9)* ™2 . e(g,w)™"* leaves us with one more cancellation to get the
message blinding factor. If tag, # tag; then the decryption algorithm can compute

As = (e(Er, Do) fe(By,)55 = (g, w0,
Finally, we can recover the message by computing
Co/(As/Ay) = M.

Altogether, decryption requires nine applications of the pairing algorithm.

3.2 Semi-Functional Algorithms

We now describe the semi-functional ciphertext and key generation algorithms. We will define
them as algorithms that are executed with knowledge of the secret exponents; however, in a real
system they will not be used. Their main purpose is to define the structures that will be used in
our proof. We define both semi-functional ciphertexts and keys in terms of a transformation on a
normal ciphertext or key.

Semi-Functional Ciphertexts The algorithm first runs the encryption algorithm to generate
a normal ciphertext CT for identity Z and message M with C1,...,C%, E}, E}. Then it chooses a
random z € Z,. It sets C1 = C1,Cy = Cy,Cs = C4, By = Ef, E> = Ej, leaving these elements and
the tag,. unchanged. It then sets

Cy=Ch-g"™", C5=C4- g™, Cg=Ch-v5", Cr=Ch o3

The semi-functional ciphertext is C1, ..., Cr, E1, Ea, tag,.

Semi-Functional Secret Keys The algorithm first runs the encryption algorithm to generate a
normal private key SK7 for identity Z with D, ..., D%, K. Then it chooses a random 7 € Z,. It sets
D3 = D, Ds = Di,Dg = Di, D7 = D}, K = K’, leaving these elements and the tag;, unchanged.
It then sets

Dr :Dllg_ala2,ya D2:Dl2'ga2’ya 1)421351'9(11’y

The semi-functional secret key is SK = Dy, ..., D7, K, tag,,

Intuition We make a few remarks about the nature of the semi-functional keys and the structure
of the system. First, we note that if one attempted to decrypt a semi-functional ciphertext with a
normal key, then the decryption would succeed. This follows from the fact that

e(gbagx’ D4)6(ga2$7 DS)/(G(US2$7 _D6)€(1)‘212b$7 D7)) =1

when Dy, D5, Dg, D7 come from a normally generated ciphertext. One can view this as the extra
“random” space occupied by the semi-functional part of the ciphertext as being orthogonal to the
space defined by a normal key. For similar reasons, the semi-functional components of a private key
will not impede decryption when applied on a normal ciphertext. However, when a semi-functional
key is used to decrypt a semi-functional ciphertext decryption will fail (or end up giving a random
message) because an extra e(g, g)~*%* will be multiplied by the intended message.

We note that in order to generate semi-functional ciphertexts and private keys (according to
the defined procedures) one respectively needs vSQb and ¢g%t% — neither of which is available from
the public parameters.

3.3 Proof of Security

We organize our proof as a sequence of games. The first game defined will be the real identity-
based encryption game and the last one will be one in which the adversary has no advantage
unconditionally. We will show that each game is indistinguishable from the next (under a complexity
assumption). As stated before, the crux of our strategy is to move to a security game where both
the challenge ciphertext and private keys are semi-functional. At this point any keys the challenger
gives out are not useful in decrypting the ciphertext. We first define the games as:

GameRea: The actual IBE security game defined in Appendix A.

Game;: The real security game with the following two exceptions: 1) The challenge ciphertext
will be a semi-functional ciphertext on the challenge identity Z*. 2) The first i private key
queries will return semi-functional private keys. The rest of the keys will be normal.

For an adversary that makes at most g queries we will be interested in Gamey, ..., Game,.
We note that in Game the challenge ciphertext is semi-functional, but all keys are normal
and in Game, all private keys are semi-functional.

Gamerijna: The real security game with the following exceptions: 1) The challenge ciphertext is
a semi-functional encryption on a random group element of Gp. 2) All of the private key
queries result in semi-functional keys.

We now prove a set of Lemmas that argue about the distinguishablity of these games. For each
proof we need to build a reduction simulator that both answers private key queries and creates a
challenge ciphertext. We let Gamege, Adv 4 denote an algorithm A’s advantage in the real game.

Lemma 1. Suppose that there exists an algorithm A where Gamepge, Adv 4 — GamegAdv 4 = e.
Then we can build an algorithm B that has advantage € in the decision Linear game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, v, g°*, f°2,T) of the decision Linear
problem. We now describe how it executes the Setup, Key Phase, and Challenge phases of the IBE
game with A.

Setup The algorithm chooses random exponents b, v, Yy, Yo, , Yv, € Zp and random group elements
u,w,h € G. It then sets g = g,g™ = f,¢g** = v; intuitively a1, as are the exponents that the
reduction cannot know itself.

Finally, it sets the variables as:

b b-a b ba b
g, 9" =19 =v"v=g" v =g" v =g".

Using this it can calculate 71, 72,70, 7% and e(g,g)*® = e(g, £)*? in order to publish the public
parameters PK. We also note that using « it can compute the master secret key for itself.

Key Generation Phases 1,2 Since B has the actual master secret key MSK it simply runs the
key generation to generate the keys in both phases. Note that the MSK it has only allows for the
creation of normal keys.

Challenge ciphertext B receives two messages My, My and challenge identity Z*. It then flips
a coin . We describe the creation of the challenge ciphertext in two steps. First, it creates
a normal ciphertext using the real algorithm by calling Encrypt(PK,Z*, M3), which outputs a
ciphertext CT = Cy,...,C%, E, EY, tag,. Let s/, s5,t' be the random exponents used in creating
the ciphertext.

Then we modify components of our ciphertext as follows. It sets

CO = C(,)'(e(gq?f)'e(ga fC2))b.aa Cl = C{'(gq)ba 02 = Cé'(fCQ)_ba 03 = Ci/’)'(f62)> C’4 = Cz,l(T)ba

C5 — Cé'T, CG — Cé'(gm)yu ,(fcz)*yvl ‘Tyz;Q, 07 —_ Cé'((gm)yu '(fCQ)*yvl TYv2)b, B, = Ei? By = Eé

The returned ciphertext is CT = Cy,...,C7, Eq, E3, tag,.

If T is a tuple, then this assignment implicitly sets s; = —co + s],82 = sh, + ¢1 + ¢2, and
s=s1+s2=c1+s+s, UT= vertez it will have the same distribution as a standard ciphertext;
otherwise, it will be distributed identically to a semi-functional ciphertext. B receives a bit 3’ and
outputs 0 iff g = 3.

Lemma 2. Suppose that there exists an algorithm A that makes at most q queries and Gamey_; Adv ,—
Gamey Adv 4 = € for some k where 1 < k < q. Then we can build an algorithm B that has advan-
tage € in the decision Linear game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, v, g, f°2,T) of the decision Linear
problem. We now describe how it executes the Setup, Key Phase, and Challenge phases of the IBE
game with A.

Setup Algorithm B first chooses random exponents «, a1, as, Y, , Yvy s Yuws Yu, Yn- 1t then defines
9=09.9"=F,g"" = [*, g7 = [, 0 =N, pp =gt vy = VMg (g, g) P = e(f, 9) .
Now it can create
o= ol = g¥ Ty = o2 = g¥e92 P — gt = U@ g — 02 = fYvaz,
Finally, B chooses random A, B € Z,. It then sets
w=fg", w=f"Ag", h=fTgm

This will define all the public parameters of the system. Note that by virtue of knowing «, the
algorithm B will know the regular master secret key.

We highlight the importance of the function F(Z) = A-Z + B. One important feature is that
for tag, = F(Z) we have (ufw'ch) = ftagc—ATI=Bgl-yutynttageyo — gT-yutynttagevo In this case
B will know the discrete log base g of the function. We also note that A, B are initially information
theoretically hidden from the adversary. Since it is a pairwise independent function, if the adversary
is given F(Z) for some identity, the, all values in Z, are equally likely for F'(Z’) for some Z # Z'.

Key Gen Phases 1,2 We break the Key Generation into three cases. Key Generation is done
the same regardless of whether we are in phase 1 or 2.

Consider the i-th query made by A.
Case 1: 1 > k
When ¢ is greater than k our algorithm B will generate a normal key for the requested identity Z.
Since it has the master secret key MSK it can run that algorithm.
Case 2: i < k
When i is less than k our algorithm B will generate a semi-functional key for the requested identity
Z. It first creates a normal key using MSK. Then it makes it semi-functional using the procedure
from above in Subsection 3.2. It can run this procedure since it knows g®1%2.

Case 3: i =k

The algorithm first runs the key generation algorithm to generate a normal private key SKz for

identity Z with D1, ..., D}, K using tag,* = F(Z). Let r},r}, 2], 25 be the random exponents used.
It then sets

Dy = DT, Dy = Dy T (g, Dy = D+ (%), Dy = Dy T (g)",

Ds = Dy- (f)2, Dg =Dy~ [, Dy = Dy (g), K = K- (g°)Fvtuntiosvn,

The semi-functional secret key is SK = Dy,..., Dy, K, tag,. We emphasize that the fact that
tag, = F(Z) allowed us to created the component K. In addition, we note that we implicitly set
21 = 2] — Yu,c2 and zg = 2 — Yy, 2 in order to be able to create Dy and Dy.

If T is a Linear tuple of the form T = v°17¢2 then the k-th query results in a normal key under
randomness 7, = 7”1 + ¢ and 9 = r’2 + ¢3. Otherwise, if T' is a random group element, then we
can write T' = vt g7 for random 7 € Z,. This forms a semi-functional key where v is the added
randomness to make it semi-functional.

Challenge Ciphertext Algorithm B is given a challenge identity Z* and messages My, M. Then
it flips a coin J.

In this phase B needs to be able to generate a semi-functional challenge ciphertext. One problem
is that B does not have the group element vg so it cannot directly create such a ciphertext. However,
in the case where tag,* = F(Z*) it will have a different method of doing so.

B first runs the normal encryption algorithm to generate a normal ciphertext CT for identity
Z* and message M™; during this run it uses tag,* = F(Z*). It then gets a standard ciphertext
C1,...,CL Eq, E) under random exponents s, s5,t'

To make it semi-functional it chooses a random = € Z,,. It first sets C; = C1,Cy = C5, C5 = Cf
leaving these elements and the tag,.* unchanged. It then sets

C4 — C:l . fa2-337 CS — Cé . gaz-;}j’ 06 — Cé . vgzz7 07 — Cé . fyv2.x-agyfa1-x-yw-a2,
E, = Ei . (Vz'yu+yh+tagc'yw)alazw Ey = Eé . p1a2-T

The semi-functional ciphertext is C1,...,C7, B, Ea, tag,.

Intuitively, the algorithm implicitly sets g* = g*' 4+1%192%. This allows for the cancellation of the
term vglam by w~t in constructing C7. Normally, this would be problematic for the generation of
E; however since tag.” = F(Z*) B is able to create this term.

If T is a tuple, then we are in Gamey,_1, otherwise we are in Gamey,. We highlight that the
adversary cannot detect any special relationship between tag,* and tag,* since F(Z) = A-Z+ B
is a pairwise independent function and A, B are hidden from its view.

B receives a bit 4’ and outputs 0 if 3 = 3.

Lemma 3. Suppose that there exists an algorithm A that makes at most q queries and Gameq Adv ,—
Gamepj, Adv 4 = €. Then we can build an algorithm B that has advantage € in the decision BDH
game.

Proof. We give the proof of security in Appendix B.

10

Theorem 1. If the decisional Linear and decisional BDH assumptions hold then no poly-time
algorithm can break our IBE system.

Proof. Any attacker’s advantage in Gamerp;,a Adv 4 in the final game must be 0 since it completely
hides the bit 5. By the sequence of games we established and Lemmas 1,2,3 an attacker’s advantage
in the real game Gamepge, Adv 4 must be negligibly close to 0.

4 Discussion

In this section we discuss a few potential future variations and implications of our IBE system.

Achieving Perfect Correctness Although having a negligible correctness error seems accept-
able in practice, we would like to point out that we can close this gap by simply giving any user two
private keys for an identity Z each time they make a key request. The authority will simply run
the original key generation algorithm twice with the restriction that the two key tags, tag 4, tagy g
are not equal. When attempting to decrypt a ciphertext at least one of the keys will work. The
proof of security will work over each key piece — that is, each key request in the modified system
will generate two distinct key requests (for the same identity) in the proof. We could also use a
complementary two ciphertext approach and one private key approach.

Another potential solution is to run an efficient selectively secure IBE scheme [3] “in parallel”.
When a user encrypts a message M to Z with tag, in our original system, he will also encrypt M
to the “identity” tag, in the second selective system. A user with a key with tag;, will get a private
key for “identity” tag; in the second system. On decryption with 1 —1/p probability the decryption
algorithm will use the first ciphertext. However, if the tags align it can use the second ciphertext.

Signature Scheme Naor 3 observed that any (fully secure) IBE system gives rise to a signature
scheme secure under the same assumptions. The signature system from our IBE scheme has the
favorable properties that the public parameters and signatures are a constant number of group
elements, it is provable in the standard model, and it is stateless. While some previous signature
schemes derived from IBE systems (e.g. BLS [11] or Waters [29] signatures) depended on the
computational variants of the assumptions, our proof technique seems to require the decisional
Linear Assumption. One interesting approach would be to see if one could create shorter signatures
than those generated in the generic conversion by using the IBE systems private keys.

Chosen Ciphertext Security We note that using the transformation of Canetti, Halevi, and
Katz [15] we can achieve chosen ciphertext security from the HIBE scheme of Section 5.

Security under the SXDH Assumption One factor in the size and complexity of our IBE
system is that it relies upon the Decisional Linear Assumption to hide the form of both keys
and ciphertexts. One potential alternative is to use asymmetric bilinear groups, where we have
e : G1 X Go — Gp. Using these group we might assume DDH is hard both within G; and within
Go; this has also been called the XDH assumption. Using this assumption we might hope to shave
off three group elements from both ciphertexts and private keys.

3The observation was documented by Boneh and Franklin [7].

11

Alternative to Incompleteness An critical part to arguing security is that an attacker could
not distinguish normal keys from semi-functional ones. Our approach was to use a hybrid argument
where for the key in question its tag, = F(Z). If the simulator attempted to create the key in
question for Z* and test it on the challenge ciphertext this would not work since tag, = tag,.
Intuitively, the simulator could not test whether the key was semi-functional since decryption
would fail regardless of whether the key was semi-functional or not. One might consider taking the
opposite approach where decryption would always succeed if tag, = tag; even if both the key and
ciphertext are semi-functional. We note this approach would also require a slightly different proof
strategy for proving Lemma 3.

5 Hierarchical Identity-Based Encryption

In this section we present our Hierarchical Identity-Based Encryption system. Our construction
will build on top of our IBE scheme of Section 3. The reader will notice that the added complexity
of moving from our IBE to HIBE system is remarkably simple. The same core concepts of our
construction and proof methodology apply. One might view the HIBE system as “combining” the
structure of the Boneh-Boyen [3] HIBE system with our techniques to get full security.

One challenging aspect in the proof of security is that a private key of depth d will have
associated tags: tagy,...,tagg,. If we run our delegation algorithm to create a new key of depth
d + 1, the new key will inherit the previous key’s tag values and there is no method for “re-
randomizing” them. Most prior security definitions of HIBE [23, 21| define a game where all keys
come from an authority and don’t model any distinctions on how a key was created (i.e. trace
paths of delegation). The prior definitions are only valid if keys from the delegation algorithm
are distributed identically to a fresh call to the key generation algorithm *; however, due to the
“tag lineage” described this is clearly not the case. To argue security we use a “complete” model
of HIBE security introduced by Shi and Waters [28] that we define in appendix A. Due to space
considerations our proof of security is in Appendix C.

5.1 Construction

In our system we will consider a hierarchical identity as an identity vector I=Ty: - : 14 for some

depth d, where d < n for some maximum depth n. We assume that the identities are encoded such

that for two identities Z,Z’ if Z; = Z} then Z; = 77 for all j <1i. We can enforce this by encoding all

previous levels. For example, an identity of level one “com” and level two “yahoo” can be encoded
. [

as “com”:“com.yahoo”, where ‘.” is a special symbol. In practice, one will use a collision resistant
hash function to hash identities of arbitrary length to 7Z,.

Setup(\,n) The setup algorithm takes as input a security parameter and the maximum depth n.
The authority first chooses a group G of prime order p. Next, it chooses generators g, v, vy, va, w,
Ul,...,Up, h1,...,hy € G and exponents a1, a2,b,a € Zp. Let 71 = vof', 70 = vvy?. It publishes
the public parameters PK as the group description G along with:

b a a b-a b-a b b a-ar-b
g) g 17 g 2)9 17 g 27 T177—2)7—17T27U7 Ulu UZa w) u17"')un7 hl)"'uhnae(g)g) ! .

4This is actually the case for most prior systems, so the proofs of security do hold up.

12

The master secret key MSK consists of g, g%, g*“! as well as the public parameters. The identity
space for the described scheme will be Z,.

Encrypt(PK,f =17y :---:Zy,M) The encryption algorithm will encrypt to an identity vector
of depth d < n. It chooses random s1, s2,t € Z,, and tag.,,...,tag.; € Zy,. Let s = s1 + s9. It then
blinds M € Gr as Co = M - (e(g, g)**?)*? and creates:

Cr = (g4, Gy = ("), Gy = ("), Ca = ("), Cs = (g%, Co = 7732, Cr = (1)** (1) 2w,

E, = (U%lwtagclhl)t, LBy = (Zg tanghd)t, E — gt‘
The ciphertext is CT = Cy,...,Cv7, Ey,, ..., Eyg, E,tagcl, . tagg .
KeyGen(MSK,f =7y :---:Z;) Theauthority chooses random fi1,. .., tq, 2, 21, 22, tagsy, - - . , tagy €

Zy,. First let r = Zlgigd w; and then let r = ry + r9. Then it creates:
Dy =g*"w", Dy=g *vig", D3=(¢")""", Di=15g™, Ds=(¢")">, De=g™?" Dr=g"
(K11 = (u'w™sihy) Ky =g, (Kgy = (ugtw'™8kahg)ld, Kqy = gh)
The secret key is SK = D1,..., D7, (K11, K172),...,(Kq1, Kg2)tagsy, ..., tag,.

Delegate(PK, SKf:II:---:Id?IdH) The algorithm will take a secret key SK = Dy, ..., D7, (K] 1, K1 5)

(KL KDL S), taggy, . . ., tagy,, for 7 and extend it to depth d + 1 by creating a key for 7 : Zy1.

The a’lgorifhm will “re-randomize” the existing key in the process of appending on a new key
component; however, the existing tagy, values will remain. It chooses random py, ..., pgy1,72, 21, 22,4884, 1 €
ZLyp. First let r1 = Zl<i<d+1 w; and then let r = ry + 7. Then it creates:

Dy=Dj-v", Dy=Dj-vig", Dsy=Dj (¢")"", Diy= D vsg™
D5 — D/ (5)72’27 -D6 — D/ . 7‘2'b’ D7 — D'/7 'gT1

/ I, ta Wt Zat1, ta,
Ki1 = K p-(uy"wkthy) Ky = Kgq-(u (Brahg)td, Kgp1n = (ugl] wkdi by g)ldtt,

Kip=Kis-g",. ..., Kqp=Kjy-g", Kgy1p= g+t
The secret key is SK = Dy, ..., D7, (K11, K1.2), - (Kay1,1, Kay1,2), tagey, - - -, tageg, ;-
Decrypt(CT K7) The decryption algorithm will be able to decrypt a mphertext encrypted for
7' of depth d' with private key SKz of depth d if 1) Vi < d : I’ = 7, for all i < d and 2)
Vi < d: tag, # tagy;. We break the decryption algorithm into a set of calculations: First, it

computes:

Ay = e(C1, D1) - e(C2, D2) - e(Cs, D3) - €(Cy, Dy) - e(Cs, D5)
Ay = e(Cg,Dg) - €(Cr, D7) Ag = A1/Ay = e(g,g)* "% - e(g,w)™ .
If Vi < d we have tag.; # tag;, then the decryption algorithm can compute
Ay = (B(El,KLQ)/e(EN’, KLl))l/(taggl—tagm) . (G(Ed, Kd,g)/e(EN’, Kd71))1/(tagcd_tagkd) _ e(g,w)t21§d Wi

Finally, we can recover the message by computing Cy/(As/A4) = M.

13

6 A Signature Scheme

In this section we describe the signature scheme that falls out of our IBE system. > Our signature
scheme has the desirable combination of properties that both signatures and public keys consist of
a constant number of group elements and that it is provably secure under simple assumptions. We
begin by describing the construction and then enter into a discussion.

6.1 Construction

Setup(\) The setup algorithm first chooses a group G of prime order p. Next, it chooses gener-
ators g,v,v1, v2, w,u, h € G and exponents a1, az,b,a € Z,. Let 7 = vv]*, 7o = vvy?. It publishes
the verification key parameters VK as the group description G along with:

b-as a-a-b

b b- b b
g, gala ga27g ala g ; T1,72,T1, T, W, U, h’e(g7g)

The signing key SK consists of g, g%, g%, v, v1, v2 as well as the public parameters. The message
space for the described scheme will be Z,,. Again, we note that in practice one can apply a collision
resistant function to messages of arbitrary lengths.

Sign(SK, M) The signature algorithm is virtually identical to the private key generation algo-
rithm of Section 3. The signature algorithm chooses random 71, 2, 21, 22, tagy, € Zp. Let r = r1+ro.
Then it creates:

: - by— by— b
op=g""". oy =g "wigT. o3=(9")". oa=wg” o5=(9)F, os=4g"" or=g"
ox = (uMw'erkp)m,

The signature is o = (071,...,07,0K, tagy).

Verify(VK, o, M) The verification algorithm has two main steps. First, it creates a ciphertext
using the IBE encryption algorithm in key encapsulation mode. Then it attempts to decrypt (or
decapsulate) the ciphertext it created with the signature given and test to see if it produces the same
key that was encapsulated. We point out that this verification algorithm follows Naor’s method
much more closely than other signature schemes derived from IBE systems.

The verification algorithm first chooses random s, s2,t, and tag, € Z,. Let s = s1 + s2. It
creates

Cl _ (gb)s1+sz’ 02 — (gb-m)sl7 03 — (gm)sl7 04 — (gb-az)sz7 CB — (gaz)sz7 06 — Tf17_§27 07 — (Tf)sl (Tg)szwft’

Ey = (uMw'?eh)t, Ey = gt

The verification algorithm then stores these variables as a temporary ciphertext and moves on
to the next phase. We break the next phase into a set of calculations. First, it computes:

A1 = e(Ch,01)e(C2,02) - e(Cs,03) - e(Cy,04) - €(Cs, 05)

5Naor observed that any IBE system can be converted into a signature scheme with the IBE private keys playing
the role of signatures. The observation of Naor appeared in the work of Boneh and Franklin [8].

14

Next, it computes
Ay = e(Cs,06) - e(Cr,07)
Then let A3 = A;/As. Then, if tag, # tag;, then the verification algorithm computes
A= (e(Ela0'7)/6(E27K))l/(tagc—tagk)

Finally, we can test if
(e(g,9)*")% I Ag/As.

If the last equation holds then the verification output is “accept”; otherwise, it outputs “reject”.

6.2 Discussion

The proof security of the signature system will fall directly the security of the IBE system, since the
verification algorithm follows Naor’s method of encrypting a random message and then decrypting
with the signature. Since the message space is exponentially large the verification algorithm only
needs to execute one instance of the encrypt then decrypt routine.

We make a few observations about this signature scheme. First, it is interesting to consider how
a proof for this signature system would be structured if we made one directly. We can think of the
system as potentially producing two types of signatures. “Type A” signatures will be those given
in the algorithm above, which correspond to normal private keys. There is also a second “Type
B” signatures. These are formed by first taking taking a Type A signature o’ = o,...,0% and a
random ~ and computing

o1 =019 M"Y gy =049, o4=0y-g".

The other signature components are simply set as o3 = 0%, 05 = 05,06 = 04,07 = 04, 0K = 0.

The proof roughly works as follows. In the first game the challenger will only output Type A
signatures. We consider two cases at this stage. In the first case, if the attacker outputs a Type B
forgery with non-neglgible probability, then reduction algorithm will use this to break an underlying
assumption. For this particular system, the reduction would extract the triplet g=*127 g7 ¢
from the Type B signature, which can be used to solve an instance of the decisional linear prob-
lem. Consider the decision linear instance: given g, g™, g%, g%, ¢**'¥ decide between ¢?2(+%) and a
random group element in G. The triplet above (for non-zero «) can be used to solve this problem.

In other case, the attacker only produces Type A forgeries. In this case, the reduction algorithm
will change each signature given out from Type A to Type B. The change will occur one step at a
time. By the linear assumption we will argue that the attack will continue to only produce Type
A signatures for its forgery. The key to this argument is the signature component o and the tag
tagy. In this proof, the reduction algorithm will embed two values A, B € Z, such that it can
tell whether a signature is Type A or B if and only if tag, # A - M + B. In this manner, the
reduction can embed the “challenge signature”. At step ¢ in the hybrid argument it won’t know if
the signature is of type A or B. However, it can observe the type of forgery the attacker gives. The
attacker cannot switch to making Type B forgeries; otherwise, this will indicate whether signature
1 is type A or B. Finally, we arrive at a step where the challenger outputs all Type B signatures
and the attacker outputs a Type A forgery. We end using this to solve some other cryptographic

15

System Public Key Size | Signature Size Assumption Standard Model

BLS [11] o(1) O(1) Computational DH NO
Boneh-Boyen [4] o0(1) O(1) g-Strong DH YES
Waters [29] o) O(1) Computational DH YES
This work 0(1) O(1) Decision Linear YES

Table 1: Comparison of signature systems in terms of public key size, signature size, and assumption
used. Public key size is given in terms of group elements and A\ denotes the security parameter.

assumption. In the case of this signature scheme, a reduction algorithm can extract g given only
e(g,9)® — breaking the computational Diffie-Hellman problem.

This methodology for producing signature schemes can apply outside the context of IBE. In
general, one can encrypt either a secret A or secret B and give a non-interactive zero knowledge
proof that one of the two secrets is encrypted. Note that the real scheme could start with either
giving Type A or Type B signatures then moving the hybrid proof in the corresponding direction.

Comparisons to Other Signature Schemes It is interesting to compare our signature scheme
with other ones that have sprung out of the IBE literature. For instance, BLS [11] signatures are
private keys in the Boneh-Franklin scheme, Boneh and Boyen [4] signatures are private keys in
Gentry’s [18] IBE, and Waters [29] gave an IBE and signature scheme together.

A comparison of the main differentiating features is summarized in Table 6.2. Our work achieves
security under the decision linear assumption, which is arguably a simpler assumption than the g-
Strong Diffie-Hellman of Boneh and Boyen. However, it should be noted that these assumptions are
not strictly comparable. In addition, we have a shorter public key than the Waters [29] signature
scheme, where the number of group elements in the public key is linear in the security parameter.

Given these combination of these properties, it might be interesting to explore the application
of our signature scheme in the context of other bilinear map protocols such as aggregate signatures,
range proofs, e-cash, etc. Perhaps the biggest drawback is that while signature sizes are a constant
number of group elements and verification takes a constant number of pairings, these constants
are somewhat larger than in other systems. In addition, the proof of security is considerably more
complex. When applying this signature in the context of a larger security protocol, it will likely be
desirable to reduce security directly to it.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous ibe, and extensions. In CRYPTO,
pages 205222, 2005.

[2] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof
and improved concrete security for waters’ ibe scheme. In FEUROCRYPT, pages 407-424, 2009.

[3] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223-238, 2004.

16

Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223-238, 2004.

Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443-459, 2004.

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In FUROCRYPT, pages 506522, 2004.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO, pages 213-229, 2001.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. STAM
J. Comput., 32(3):586-615, 2003.

Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption
without pairings. In FOCS, pages 647-657, 2007.

Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In CRYPTO, pages 258275, 2005.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
ASIACRYPT, pages 514-532, 2001.

Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535-554, 2007.

Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In CRYPTO, pages 290-307, 2006.

Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In FUROCRYPT, pages 255-271, 2003.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In FUROCRYPT, pages 207-222, 2004.

Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int.
Conf., pages 360-363, 2001.

Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, pages 480491, 1993.

Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT,
pages 445-464, 2006.

Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially many
levels. In T'CC, 2009.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197-206, 2008.

Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASTACRYPT, pages
548-566, 2002.

17

[22] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems. In
FEurocrypt, 2009.

[23] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In EURO-
CRYPT, pages 466—481, 2002.

[24] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In ACM Conference on Computer and Communications Security, pages
155-164, 2003.

[25] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In FUROCRYPT, pages
457-473, 2005.

[26] Amit Sahai and Brent Waters. Revocation systems with very small private keys. Cryptology
ePrint Archive, Report 2008/309, 2008.

[27] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and
Privacy, pages 350-364, 2007.

[28] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In
ICALP (2), pages 560-578, 2008.

[29] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114-127, 2005.

A Definitions

We define the system requirements and security definitions for Identity-Based Encryption and
Hierarchical IBE. We emphasize that our definitions are in the full model — i.e. are note selective-
ID. In addition, we use a complete model of HIBE where that reflects where the private keys that
an adversary requests come from.

A.1 Identity-Based Encryption

An identity-based based encryption scheme consists of four algorithms: Setup, Encrypt, KeyGen,
and Decrypt.

Setup. The setup algorithm takes no input other than the implicit security parameter. It outputs
the public parameters PK and a master secret key MSK.

Encrypt(PK, M,Z). The encryption algorithm takes as input the public parameters PK, a mes-
sage M, and an identity Z. The algorithm outputs a ciphertext CT.

Key Generation(MSK,7Z). The key generation algorithm takes as input the master secret key
MSK and an identity Z. It outputs a private key SK.

18

Decrypt(PK, CT,SK). The decryption algorithm takes as input the public parameters PK, a
ciphertext CT, and a secret key. If the ciphertext was an encryption to Z and the secret key was
the output of a key generation for the same identity then the algorithm will output the encrypted
message M.

Security Definition for IBE

Setup. The challenger runs the Setup algorithm and gives the public parameters PK to the
adversary.

Phase 1. The adversary makes repeated private key queries for any identity Z of its choice.

Challenge. The adversary submits two equal length messages My and M; and a challenge
identity Z* with the restriction that Z* is not equal to any identity requested in the previous
phase. The challenger then flips a random coin 3, and encrypts Mg under Z*. The resulting
ciphertext CT* is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that an identity requested 7 # Z*.

Guess. The adversary outputs a guess 3 of 3.

The advantage of an adversary A in this game is defined as Pr[3’ = (] — % We note that
the model can easily be extended to handle chosen-ciphertext attacks by allowing for decryption

queries in Phase 1 and Phase 2.

Definition 1. An identity-based encryption scheme is secure if all polynomial time adversaries
have at most a negligible advantage in the above game.

A.2 Hierarchical Identity-Based Encryption

A Hierarchical based encryption scheme consists of five algorithms: Setup, Encrypt, KeyGen,

Decrypt, and Delegate.

Setup. The setup algorithm takes no input other than the implicit security parameter. It outputs
the public parameters PK and a master secret key MSK.

Encrypt(PK, M, 7). The encryption algorithm takes as input the public parameters PK, a mes-
sage M, and an identity Z. The algorithm outputs a ciphertext CT.

Key Generation(MSK,f). The key generation algorithm takes as input the master secret key
MSK and an identity vector Z. It outputs a private key SKz.

Decrypt(PK,CT,SK). The decryption algorithm takes as input the public parameters PK, a
ciphertext CT, and a secret key. If the ciphertext was an encryption to Z and the secret key is for
7', where 7 is a prefix of Z identity then the algorithm will output the encrypted message M.

19

Delegate(PK,SKz,7) The delegate algorithm takes in a HIBE secret key for an identity vector
7 of depth d and an identity Z. It returns a secret key for the d + 1 depth identity 7:1.

Security Definition for HIBE We now give the security definition for HIBE. Our definition is
a complete one in that when an attacker requests a key the model keeps track of which other key it
was derived from. Prior models made no distinction about how keys were generated (e.g., whether
they came straight from the authority or from a delegation operation of another key).

Setup. The challenger runs the Setup algorithm and gives the public parameters PK to the
adversary.

The challenger will also intialize a set S = (), which will be the set of private keys it has
created, but not given out.

Phase 1. The adversary makes repeated queries of one of three types:

Create The attacker gives the challenger an identity-vector Z. The challenger creates a key
for that vector, but does not give it to the adversary. It instead adds the key to the set
S and gives the attacker a reference to it.

Delegate The attacker specifies a key SKz in the set S for an identity 7 , then it gives the
challenger an identity Z’. The challenger runs the Delegate(PK, SKf,I’) algorithm to
get a new secret key SKz -, and adds this to the set S.

Reveal The attacker specifies an element of the set .S for a secret key SK. The challenger
removes the item from the set S and gives the attacker the secret key. We note at this
point there is no need for the challenger to allow more delegate queries on the key since
the attacker can run them itself.

Challenge. The adversary submits two equal length messages My and M7 and a challenge identity
vector Z* with the restriction that each identity vector 7 given out in the key phase must not
be a prefix of 7* . The challenger then flips a random coin 3, and encrypts Mg under 7*.
The resulting ciphertext CT* is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that any revealed identity vector 7 is not a
prefix of Z*.

Guess. The adversary outputs a guess 3’ of f3.

The advantage of an adversary A in this game is defined as Pr[3’ =] — % We note that
the model can easily be extended to handle chosen-ciphertext attacks by allowing for decryption

queries in Phase 1 and Phase 2.

Definition 2. An hierarchical identity-based encryption scheme is secure if all polynomial time
adversaries have at most a negligible advantage in the above game.

20

B Proof of Lemma 3

Lemma 3 Suppose that there exists an algorithm A that makes at most q queries and Gameq Adv ,—
Gamepj,q Adv 4 = €. Then we can build an algorithm B that has advantage € in the decision BDH
game.

Proof. We begin by noting that in both of these two games the challenge ciphertexts and all the
private keys are semi-functional. Therefore, B only needs to be able to generate semi-functional
private keys.

B begins by taking in a BDH instance g, g“*, g%, 9%, T.

Setup The algorithm begins by choosing random exponents a1, b, Yu, Yu, > Yvo» Yw> Yhs Yu € Zp. It
then sets
9=9, ¢" 9" 9" = g%, ¢"", ¢" = (¢)",

ajab — 6(al-b‘

v=g", v =g%"1, vy =g"2, w=g", u=g", h=g", eyg,9) 9°,9%)
These parameters allow us to compute 7 = vv‘fl,T{’ ; and 1o = v(g©?)Yv2, 7‘5’ and publish the public
key PK. Note that the master secret key g is not available to B.

We point out that this setup lets @ = ¢1 - ¢o and ag = co.

Key Generation Phase 1,2 All key generations result in semi-functional keys. When a request
for 7 is made, the key generation algorithm chooses random ry, 72, 21, 22,7/, tag,, € Z, and defines
r =11 + ro. It aims to implicitly set the variable v = ¢; + /.

It creates the key as:

Dl — (QCQ),,y/.alvr’ D2 _ (gcg),yf.v{gzlj D3 — (gb)le7 D4 — (gcl)algal.»}/vggm7
D5 _ (gb)fz2’ DG — grg-b’ D7 — gr;l’ K = (qutagkh)rl‘
Challenge Ciphertext B receives a challenge identity Z* and two message Moy, M; from the
attacker. B will now create a challenge ciphertext that is a semi-functional ciphertext of either Mg
or a random message, depending on T'. It first chooses a random bit (.

B chooses random s1,t and tag, € Zp. It will implicitly let sy = c3. The message My € Gr is
blinded as Cy = Mg - T%® Tt then chooses random 2’ € Z,, and will implicitly set z = —c3 + 2’

/

Cl — gsl-b 4 (963)67 C2 — gb-al-sl’ CS — ga1-817 C4 _ (gc2)m’.b7 05 _ (gCQ)x ,

06 — Tfl (903)yv (962)%2.1’7 07 _ (7’{’) 1(903)yv-b(gcg)yu2-gc/-bwﬂe7 El _ (uzwtagch)t7 Ez — gt.

If T is a tuple, then we are in Game,, otherwise we are in Gameg;,,). B receives a bit 3’ and
outputs 0 iff 8 = 3.

C Hierarhical IBE Proof

We now provide our proof of security. We first define the semi-functional algorithms. Then we
provide our HIBE security proof.

21

C.1 Semi-Functional Algorithms

We now describe the semi-functional ciphertext and key generation algorithms for HIBE. Again, we
will define them as algorithms that are executed with knowledge of the secret exponents; however,
in a real system they will not be used. Their main purpose is to define the structures that will be
used in our proof. We define both semi-functional ciphertexts and keys in terms of a transformation
on a normal ciphertext or key.

Semi-Functional Ciphertexts The algorithm first runs the encryption algorithm to generate a
normal ciphertext CT for hierarchical identity Z of depth d and message M with C1,...,C7, EY , ...
, By, B’ with tag,,,...tag.;. Then it chooses a random = € Zj. It sets C1 = (7, C2 = Cy, C3 = Cs,
E1=E,....Eq=E!,, E = F', leaving these elements and the tag, unchanged. It then sets

C4 _ 04/1 . gbazx, 05 _ Cé X gazx’ 06 — Cé X ,U;2x7 07 _ Cé X U¢212bz.

The semi-functional ciphertext is C1,...,C7, E1, ..., Eq,tag.,...tag. .

Semi-Functional Secret Keys The algorithm first runs the encryption algorithm to generate a

normal private key SKz for hierarchical identity 7 of depth d with Dy, ..., Dy (K1, K o), (KG 1, Ky)
and tagy,,...,tag,,. Then it chooses a random v € Z,. It sets D3 = Dj, D5 = DL, Dg = Dy, D7 =

Dz, Ki1 = Kj; and K; o = K[, for all 4, leaving these elements and the tag values unchanged. It

then sets

Dy =Dig~"*", Dy =Dj-¢"", Dy=Dj-g".
The semi-functional secret key is SKz = D1, ..., D7, (K11, K12),. .., (Ka1, Kq2),tagg,, - - -, tagey.

C.2 Proof of Security

We now present the proof of security for our HIBE system. The proof will follow the same guiding
principles as the IBE proof of Section 3. The most challenging aspect will occur in arguing that an
attacker cannot distinguish a semi-functional key from a normal one.

It is useful to consider how we can prove security (against key distinguishing) under the first
definitions of HIBE security [23, 21] where all the queries the adversary makes come from the
authority’s key generation algorithm. In this case we setup the parameters in an analogous manner
to the previous proof by choosing (A1, By), ..., (An, By) to define n the functions F;(Z) = A;Z+ B
forl1 <i<n.

The two primary issues are how to form the k-th key and challenge ciphertext when arguing
that no attacker can distinguish Gamej_; from Game;. When giving out the k-th key, a depth
d key f, we would choose tagy,...,tagy,;_; at random and choose tag,,; = Fy(Z;). To create the
challenge ciphertext for an identity Z7* = Iy :---: I of depth d* we will derive tag,., = F;(Z7) for
each level i. All tags will appear correctly distributed. First, for ¢ # d the attacker will only see
at most one evaluation of F;(-) from the challenge ciphertext. For Fy- the attacker will see at most
two evaluations; furthermore, if d* > d then tagy, = Fy(Zq) # Fy(Z};) = tagy,. Otherwise, the 7is
a key that is allowed to decrypt 7* and could not have been legally requested.

As we argued in Section 5, the definitions that don’t track delegation cannot adequately model
security for our system and we must use the definitions in Appendix A. Arguing security with this
complete definition poses some challenges. We would like to argue using a sequence of games of

22

the keys revealed to the attacker for an attacker that makes at most gr reveal queries. Ideally, if
the k-th query revealed for 7 was of depth d we could set its value tag,, = Fy(Z4) according to
our strategy above. However, this presents problems. If prior to revealing that key the adversary
asked to reveal some descendant of it, then the descendant will have the same tagy,; value as the
k-th revealed key; therefore, it “locks” in the tag value before we are even know it will be the key
we are distinguishing on!

We deal with this in the following way. Suppose we are given an attacking algorithm .4 that
makes at most gr reveal queries and ¢4 create and derive queries. We will make the hybrid argument
over the revealed queries from 1 to gr. However, at hybrid k£ we will a guess that the jth key that
was created or derived will be the kth one revealed. If the guess is wrong the reduction algorithm
B will need to abort; however, it will be correct 1/g4 of the time

Again, we organize our proof as a sequence of games. The first game defined will be the
real identity-based encryption game and the last one will be one in which the adversary has no
advantage unconditionally. We will show that each game is indistinguishable from the next (under
a complexity assumption).

GameRea: The actual IBE security game defined in Appendix A.

Game;: The real security game with the following two exceptions: 1) The challenge ciphertext
will be a semi-functional ciphertext on the challenge identity 7*. 2) The first ¢ private key
queries will return semi-functional private keys. The rest of the keys will be normal. In the
security game the keys will be changed from normal to semi-functional right before they are
revealed. Therefore, if the j-th key revealed for j > 4 is a descendant of one of the first i keys
revealed; it will be a normal key.

For an adversary that makes at most qr reveal queries we will be interested in Gamey, ... ,
Game,,,. We note that in Game the challenge ciphertext is semi-functional, but all keys
are normal and in Game,, all private keys are semi-functional.

Gamerijna: The real security game with the following exceptions: 1) The challenge ciphertext is
a semi-functional encryption of a random group element of Gp. 2) All of the private key
queries result in semi-functional keys.

We now prove a set of Lemmas that argue about the distinguishablity of these games. For each
proof we need to build a reduction simulator that both answers private key queries and creates a
challenge ciphertext. We let Gamege, Adv 4 denote an algorithm A’s advantage in the real game.

Lemma 4. Suppose that there exists an algorithm A where Gamepgq, Adv 4 — GamegAdv 4 = €.
Then we can build an algorithm B that has advantage € in the decision Linear game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, v, g°*, f2,T) of the decision-Linear
problem. We now describe how it executes the Setup, Key Phase; and Challenge phases of the HIBE
game with A.

Setup(A,n) The algorithm chooses random exponents b, v, Yy, Y, Yo, € Zp and random group

elements uy,...,Un, w,h1,...,h, € G. It then sets g = g,¢* = f, ¢ = v; intuitively a1, as are
the exponents that the reduction cannot know itself.

23

Finally, it sets the variables as:
9 g =10 g =00 = g = g e = g

Using this it can calculate 71, 72,70, 7% and e(g,9)*® = e(g, £)*? in order to publish the public
parameters PK. We also note that using « it can compute the master secret key for itself.

Key Generation Phase 1,2 Since B has the actual master secret key MSK it simply runs the
key generation to generate the keys in both phases. Note that the MSK it has only allows for the
creation of normal keys.

Challenge ciphertext B receives two messages My, M1 and challenge identity I* of depth d.
It then flips a coin 8. We describe the creation of the challenge ciphertext in two steps. First,
it creates a normal ciphertext using the real algorithm by calling Encrypt(PK,f*,Mg), which
outputs a ciphertext CT = Cy,...,C%, EY,..., El, E’Qtagcl, ..., tag.;. Let s}, s5,t' be the random
exponents used in creating the ciphertext.

Then we modify components of our ciphertext as follows. It sets

Co = Ch-(e(g™, f)elg, f2)"*, C1=Cl-(¢), Co=Ch(f2)°, Cy=Ch(f®?), Cy=Ch(T),

Cs = 4T, Co=Ch- ()% - (f*) 0 - T¥a, Cp = Ch- (g™ - (f) 7 - T%2)",

E\=FE, .. . ,E;=FE, E=F.

The returned ciphertext is CT = Cy,...,C7, E1, ..., Ey, E, tag.,,...,tag.y

If T is a tuple, then this assignment implicitly sets s; = —co + 8,82 = sh 4+ ¢1 + ¢2 and
S=81+89=c1+ s’l + 3’2. If T = v 7¢2 it will have the same distribution as a standard ciphertext;
otherwise, it will be distributed identically to a semi-functional ciphertext. B receives a bit 3’ and
outputs 0 iff 3 = 3.

Lemma 5. Suppose that there exists an algorithm A that makes at most qr reveal queries and
Gamey_; Adv 4— Gamey Advy = € for some k where 1 < k < q. Then we can build an algorithm
B that has advantage € in the decision Linear game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, v, g, f2,T) of the decision-Linear
problem. We now describe how it executes the Setup, Key Phase; and Challenge phases of the HIBE
game with A.

Setup Algorithm B first chooses random exponents o, a1, a2, Yu, s Yvgs Yws Yurs - - - s Yuns Yhys - - - > Yhy, -
It then defines

g=0,0"=f,g"" = fU, g2 = f92 0 = T2y = p2.gYn gy = MgV e(g, g)* P = e(f, g) M.
Now it can create

mn= vvi” =gV = UU?Q = Y2, 7.{7 _ ,Uvill = fyna 7.5 — valm = fY202,

24

Finally, B chooses random (A1, B1),...,(Ay, By) € Z,. 1t then sets
w=fg?, w=fTNg = gt hy = TPy = g

This will define all the public parameters of the system. Note that by virtue of knowing «, the
algorithm B will know the regular master secret key.

We again highlight the importance of the function F;(Z;) = A;-Z+ B;. For tag,, = F;(Z) we have
(u] w; ™ hy;) = fagei=AiTi=Bi gl vutunt008e v = gTyutunHogei Vo In this case B will know the
discrete log base g of the function. We also note that A;, B; are initially information theoretically
hidden from the adversary. Since it is a pairwise independent function, if the adversary is given
F;(Z;) for some identity, the, all values in Z, are equally likely for F;(Z]) for some Z; # Z for all
1<i<n.

Key Gen Phases 1,2 We break the Key Generation into three cases. Key Generation is done
the same regardless of whether we are in phase 1 or 2. In this game of security we need to explain
both how key delegate and create queries are handled and how key reveal queries are handled.

The algorithm B begins by choosing a value x uniformly at random between 1 and Q4. B
is guessing that the k-th query revealed will be the k key either created directly or created by
delegation. We now describe how the B handles create, delegate, and reveal requests.

We first describe how it handles create and delegate queries. The algorithm initially creates a
counter j for the number of combined create and delegate queries. Initially, j is set to 0. When
either a delegate or create request is made j is first incremented by 1. B handles this in one of two
way.

Case 1: j #«k
If this is a create query for an identity Z of depth, d, then the algorithm chooses random tags
tagy,...,tag,, and associates them and Z to the j-th member of the set S of created keys.

Suppose this is a delegate query to delegate from a previous key of identity 7 of depth d —1 to
7 : 14 of depth d. The algorithm chooses one new tag tagy,, the other d tags tagy,,...,tagy; ;

are copied from the element that we are delegating from. These tags and 7: Z4+1 are associated
with the j-th element of S.

Case 2: j =«

If this is a create query for an identity 7 of depth d then the algorithm chooses random tags
tagyq,...,tagy,_,. Then it sets tag,, = Fi(Zq). It associates the tags and 7 to the j-th member
of the set S of created keys.

Suppose this is a delegate query to delegate from a previous key of identity 7 of depth d — 1
to T : T4 of depth d. The algorithm sets one new tag tag,, = Fy(Zy) and the other d tags
tagyy,...,tagy,_; are copied from the element that we are delegating from. These tags and 7: Zq
are associated with the j-th element of S.

Now we show how to execute a reveal query of an existing element of S. At this point any
element of S has assoicated with it an identity and tag values, but no actual key. Since private
keys are completely re-randomized, other than the tag values at each delegate invocation we can
construct these keys during the actual reveal phase. Consider the i-th reveal query made by A.
Case 1: i > k
Suppose the attacker ask for the j-th key to be revealed. When i is greater than k our algorithm
B will generate a normal key for the requested identity Z. Since it has the master secret key MSK
it can run that algorithm, using the tag values from the j-th element added to S.

25

Case 2: i <k

Suppose the attacker ask for the j-th key to be revealed. When i is less than k£ our algorithm B
will generate a semi-functional key for the requested identity Z. It first creates a normal key using
MSK and the tag values from the j-th element added to S. Then it makes it semi-functional using
the procedure from above in Subsection 3.2. It can run this procedure since it knows g#1%2.

Case 3: i =k

Suppose the attacker ask for the j-th key to be revealed. If j # x then the B aborts the simulation
and guesses whether 7' is a tuple randomly.

The algorithm first runs the key generation algorithm to generate a normal private key SK~ for
identity Z of depth d with Diy,...,Dy (Kj 1, K1), (K, Kj,) using the tag, values already
assigned. Recall that tag,, = F(Zy). Let r, 15, 21, 25 be the random exponents used.

It then sets

D1 — Dll -T_al'a2, Dz — D/Q-Taz(gcl)y”l, D3 — Dé . (fcg)yvl, D4 _ Di-Tal(gcl)yUZ,
D5 = Dé ’ (fcz)yv2> D6 = D,6 : f627 D7 = Dl? ' (gq)a
(Kip =K, Kig=Kjs),,...,(Ka11 =Ky 11, Ka—12 =K 1)
(Kg1 = Kc,l,l . (gcl)Id‘yud+yhd+tagkd‘yw’Kd72 _ K&,z - (g).)

The semi-functional secret key is SK = D1,..., D7, (K11, K12),...,(Kq1,Kq2),tagsq, ..., kq. We
emphasize that the fact that tag, = F(Z) allowed us to created the component K, ;. In addition,
we note that we implicitly set 21 = 2] — y,, c2 and 23 = 25 — y,,¢2 in order to be able to create Dy
and D4.

If T is a linear tuple of the form T = 172 then the k-th query results in a normal key under
randomness 7, = 7”1 + ¢ and o = r’2 + ¢3. Otherwise, if T' is a random group element, then we
can write 7' = vt g7 for random 7 € Z,. This forms a semi-functional key where v is the added
randomness to make it semi-functional. The reduction willl not abort 1/¢4 amount of the time and
the abort condition will be independent of the adversary’s success.

Challenge Ciphertext Algorithm B is given a challenge identity I* of depth d* and messages
My, M7. Then it flips a coin .

In this phase B needs to be able to generate a semi-functional challenge ciphertext. One problem
is that B does not have the group element vg so it cannot directly create such a ciphertext. However,
in the case where tag.; = Fj(Z}) for all i where 1 < i < d* it will have a different method of doing
S0.

B first runs the normal encryption algorithm to generate a normal ciphertext CT for identity
7Z* and message M*. During this run it uses tag.; = F;(Z;) for all i less than or equal to d*. It
then gets a standard ciphertext C1,...,C%, Ef,..., E}. under random exponents s}, s,

To make it semi-functional it chooses a random = € Z,,. It first sets C; = C1,Cy = C5, C3 = (4
leaving these elements and the tag,.* unchanged. It then sets

04 — Czi . fag-:E, 05 — Cgl') . gaQ-x7 06 — Cé . ngx’ 07 — Cé . fyv2-xagyfa1a2-x-yw’
By = B} - (VP vatum g yeymaze g R (e Yugs TUnge Ttagear Yuarasz

_ _
E=FE . ymoee

26

The semi-functional ciphertext is C1,...,Cr7, E1, ..., Eg«, E, tag.y, ..., tag. -

Intuitively, the algorithm implicitly sets ¢* = g% + %1927 This allows for the cancellation of the
term vgl‘”bx by w~! in constructing C7. Normally, this would be problematic for the generation of
Ey,..., Eg-; however since tag,’ = F;(Z;) for all i the algorithm B is able to create these terms.

If T is a tuple, then we are in Gamey_1, otherwise we are in Gamey. We highlight that even
if the challenge ciphertext depth d* is greater than or equal to k-th keys depth d, the adversary
cannot detect any special relationship between tag.; and tagy) since Fy(Z) = Ag-Z + By is a
pairwise independent function and A, B are hidden from its view.

B receives a bit 4’ and outputs 0 if 3 = 3.

Lemma 6. Suppose that there exists an algorithm A that makes at most q queries and Gameq Adv ,—
Gamepj, Adv 4 = €. Then we can build an algorithm B that has advantage € in the decision BDH
game.

Proof. We begin by noting that in both of these two games the challenge ciphertexts and all the
private keys are semi-functional. Therefore, B only needs to be able to generate semi-functional
private keys.

B begins by taking in a BDH instance g, g°!, g2, g, T.

Setup The algorithm begins by choosing random exponents a1, b, Yu, Yv, > Yvos Yws Yhys - -+ s Yhos Yuy s - - -
s Yu,, € Zp. It then sets
9=29. 9" g", g% = g%, "™, ¢" = (¢°)",
v = gyvv U1 = gyvla Vg = gyv27 w = gywa
(ul = gy“1> sy Up = gyun)a (h’l = gyhl PR hn = yhn)v e(ga g)a104b = e(gqag@)al‘b'

These parameters allow us to compute 7 = vvfl,T{’ ; and o = v(g°2)Ye2, Tg and publish the public
key PK. Note that the master secret key g is not available to B.
We point out that this setup lets o = ¢1 - ¢o and as = co.

Key Generation Phase 1,2 All key generations result in semi-functional keys. When a request
for T of depth d is made, the key generation algorithm chooses random 1, 72, 21, 22,7/, tagy,, . . ., tagy, €
Zy, and defines r = 71 4 72. In addition, it chooses random 1, ..., ugq € Z, with the constraint that
they sum to r1. It aims to implicitly sets the variable v = ¢; +«'.

It creates the key as:

Dl — (gCQ)_ry/,alv’r” D2 _ (902)7/.’01{9217 D3 _ (gb)_Z17 D4 — <gcl)alga1.7’vggz’2’
Ds=(¢g")"", Dg=g"" Dr=g",

(Kl,l — (uflwtagklhl)“17 Kl,? = gﬂl)’ ey (Kd,l = (ugdwtagkdhd)'udv Kd,? = g#d’)

27

Challenge Ciphertext B receives a challenge identity I* of depth d and two message My, M
from the attacker. B will now create a challenge ciphertext that is a semi-functional ciphertext of
either Mg or a random message, depending on 7. It first chooses a random bit (.

B chooses random s1,t and tag.;,...,tag.; € Z,. It will implicitly let sy = c3. The message
Mg € Gr is blinded as Cp = Mg - T a1b Tt then chooses random z’/ € Zy, and will implicitly set
r=—c3+ .

/

Cr=g""+4(g%), Co=g"™™, Cy=g"™, Ci=(9?)"" Cs5= (37",
06 = 7—1'51 (gc:s)yu (gCQ)QUQ-z/’ 07 _ (T{))Sl (gc3)yv-b(gcz)yvz,ml.bw_t’
El = (Uflwtag“ hl)t7 o 7Ed — (ugdwtagcdhd)t7 E _ gt.

If T is a tuple, then we are in Game,, otherwise we are in Gamerg;,,). B receives a bit 3’ and
outputs 0 iff 3 = 3.

Theorem 2. If the decisional Linear and decisional BDH assumptions hold, then no poly-time
algorithm can break our HIBE system.

Proof. Any attacker’s advantage in Gamerp;,a Adv 4 in the final game must be 0 since it completely
hides the bit 5. By the sequence of games we established and Lemmas 4,5,6 an attacker’s advantage
in the real game Gamege, Adv 4 must be negligibly close to 0.

D Broadcast Encryption

We now show how to use our techniques to give a secure broadcast encryption scheme with cipher-
text overhead of a constant number of group elements. Our system is the only one under static (i.e.
non ¢-based) assumptions to achieve this. We point out that only recently Gentry and Waters [22]
gave a short ciphertext broadcast encryption system that was even adaptively secure. One feature
of our methodology is that it is relatively simple to leverage our techniques to get adaptive security.
Our broadcast encryption system is actually perfectly correct and does not use tags.

We refer the reader to [22] for the adaptive security definition of broadcast encryption.

D.1 Construction

Setup(A,n) The setup algorithm takes as input a security paramter and n, the number of users
in the system. The authority first chooses a group G of prime order p. Next, it chooses generators
g,v,01,02, W, U, ...,u, €G and exponents ai, az,b,a € Zy. Let 7 = vv]*, 75 = vvy®. It publishes
the public parameters PK as the group description G along with:

b-as a-a1-b

b a a b-a b b
g, 9 17 g 279 17 g y T1,72,T1,T9, W, ulv"'auﬂne(g:g)

The master secret key MSK consists of g, g%, g%, v,v1,vy as well as the public parameters.
The identity space for the described scheme will be Z,,, although we note in practice one can apply
a collision resistant function to identities of arbitrary lengths.

28

Encrypt(PK, S € {1,2,...,n}, M) Theencryption algorithm takes as input the public paraemters,
a set S of indicies to encrypt to, and a message M. The encryption algorithm chooses random
s1,52,t € Zp. Let s = 81 + sg. It then blinds M € Gr as Cy = M - (e(g, g)**?)%2 and creates:

Cr=(g")""2, Co=(¢")™, C3=(9")", Cu=(g"")", C5 = (9")*, Cs = 7' 13%, O = (17)*(13)

By = ([Jw) B2=4"
€S
The ciphertext is CT = Cy,...,Cy, E1, Eo.
KeyGen(MSK, k € [1,n]) The KeyGeneration algorithm takes as input the master secret key
and an index k € [1,n] and outputs the k-th user’s private key. The authority chooses random

r1,72,21,22 € Zp. Let r =11 +ro.
Then it creates:

Dy = goc~a1v7” Dy = g_OC,UIgZ17 D3 = (gb>_21a Dy = Uggzza D5 = (gb)_227 D6 = gr2.b7 D7 = gT‘1
K= (’LLkUJ)Tl, vwék KZ = U:l.
The secret key is SKy = D1, ..., D7, K, Viy, K;.
Decrypt(CT, S,SK;) The decryption algorithm will take as input a ciphertext CT and a set S
of users that the ciphertext is encrypted to as well as its key SK;. The algorithm will be able to

decrypt with user k’s secret key a ciphertext if k € S.
We break the decryption algorithm into a set of calculations. First, it computes:

Al = 6(017 ‘Dl) : 6(027 -DQ) ° 6(03, Dg) . 6(047 D4) . 6(057 D5)
= e(g,9)™ %2 - (v, g)PT e vy, g) 10T e (vg, g) 22052,

Recall that » = r1 + ro. Next, it computes

A2 = 6(067D6)'€(C77D7)
= e(v,9)" e vy, g)1P e (g, 9)"2P2T - (g, w) .

Taking, Az = A1/As = e(g,9)* ™2 . e(g,w)™* leaves us with one more cancellation to get the
message blinding factor.

Ay = (e(Es, KHKz‘)/e(EL D7) = e(g,w)"™".
€S
ik
Finally, we can recover the message by computing

Co/(A3/Ay) = M.

Altogether, decryption requires nine applications of the pairing algorithm.

D.2 Semi-Functional Algorithms

We now describe the semi-functional ciphertext and key generation algorithms.

29

Sgw—t

)

Semi-Functional Ciphertexts The algorithm first runs the encryption algorithm to generate a
normal ciphertext CT for set S and message M with C1,...,C%, E}, E}. Then it chooses a random
x € Ly. It sets C1 = C1,Cy = C,Cy = C4, By = E1, E5 = E), leaving these elements unchanged.
It then sets

! b ! ! asx ! azbx
Cr=Cl-gh® Oy =CL g% Cg=Ch 002, Cr=Cl v22be,

The semi-functional ciphertext is C1,...,Cy, Fq, Eo,.

Semi-Functional Secret Keys The algorithm first runs the encryption algorithm to generate
a normal private key SKj, for user k € [1,n] with D},..., D5, K;Vi # k. Then it chooses a random
¥ € Zyp. 1t sets D3 = D§, D5 = Di, D¢ = D, D7 = Dy K; = KVi # k leaving these elements
unchanged. It then sets

Dy =Dig """, Dy=D;-g*", Dy=Dj g".

The semi-functional secret key is SK = D1, ..., D7, K, Viz K.

D.3 Proof of Security

We organize our proof as a sequence of games. The first game defined will be the real identity-
based encryption game and the last one will be one in which the adversary has no advantage
unconditionally. We will show that each game is indistinguishable from the next (under a complexity
assumption). As stated before the crux of our strategy is to move to a security game where both
the challenge ciphertext and private keys are semi-functional. At this point any keys the challenger
gives out are not useful in decrypting the ciphertext. We first define the games as:

GamenRrea: The actual broadcast encryption security game.

Game;: Let K be the set of private keys the adversary requests during the protocol. This game is
the real security game with the following two exceptions: 1) The challenge ciphertext will be
a semi-functional ciphertext on the challenge set S*. 2) For any index j < i j € K the game
will return a semi-functional private key SK;. The rest of the keys in K will be normal.

For an system of n users we will be interested in Gamey,...,Game,. We note that in
Game the challenge ciphertext is semi-functional, but all keys are normal and in Game,,
all private keys are semi-functional.

Gamerina: The real security game with the following exceptions: 1) The challenge ciphertext is
a semi-functional encryption of a random group element of Gp. 2) All of the private key
queries result in semi-functional keys.

We now prove a set of Lemmas that argue about the distinguishablity of these games. For each
proof we need to build a reduction simulator that both answers private key queries and creates a
challenge ciphertext. We let Gamege, Adv 4 denote an algorithm A’s advantage in the real game.

Lemma 7. Suppose that there exists an algorithm A where Gamepgq, Adv 4 — GamegAdv 4 = €.
Then we can build an algorithm B that has advantage € in the decision Linear game.

30

Proof. Our algorithm B begins by taking in an instance (G, g, f, v, g°*, f2,T') of the decision-Linear
problem. We now describe how it executes the Setup, Key Phase and Challenge phases of the IBE
game with A.

Setup The algorithm chooses random exponents b, o, Yy, Yo, , Yv, € Zp and random group elements
UL, ..., Un, w € G. It then sets g = g, g™ = f, g*? = v; intuitively a1, ao are the exponents that the
reduction cannot know itself.

Finally, it sets the variables as:

b b- b b- b : v
g, 9" =f, 9" =1"v=g" v = g¥1, vy = g¥2.

Using this it can calculate 71, 72,70, 70 and e(g, g)*™® = e(g, £)*? in order to publish the public
parameters PK. We also note that using « it can compute the master secret key for itself.

Key Generation Phase 1,2 Since B has the actual master secret key MSK it simply runs the
key generation to generate the keys in both phases. Note that the MSK it has only allows for the
creation of normal keys.

Challenge ciphertext B receives two messages My, M7 and challenge set S*. It then flips a coin

B. We describe the creation of the challenge ciphertext in two steps. First, it creates a normal

ciphertext using the real algorithm by calling Encrypt(PK, S*, Mg), which outputs a ciphertext

CT =Cy,...,CL Ef, E). Let s, s),t be the random exponents used in creating the ciphertext.
Then we modify components of our ciphertext as follows. It sets

Co = Ch-(elg™, f)elg, f2)"*, C1=Cl-(¢), Co=Ch(f2)°, Cy=Ch(f®2), Cy=Co(T),

Cs = Cé-T, Cg = Cé_(gcl)yv_(fCQ)_yvl Y2 Oy = C’;'((gCI)yU.(f‘C2)_yv1,Tyv2)b, By = Eia By = Eé

The returned ciphertext is CT = Cy,...,C7, Eq, Es.
If T is a tuple, then this assignment implicitly sets s1 = —ca2 + s},82 = s, + ¢1 + ¢2, and
s=81+s2=c1+ si + 3’2. If T = v ¢ it will have the same distribution as a standard ciphertext;

otherwise, it will be distributed identically to a semi-functional ciphertext. B receives a bit 3’ and
outputs 0 iff 3 = 3.

Lemma 8. Suppose that there exists an algorithm A that makes at most q queries and Game,_; Adv 4 —
Gamey Adv 4 = € for some k where 1 < k < q. Then we can build an algorithm B that has advan-
tage € in the decision Linear game.

Proof. We observe that the only way of distinguishing between these two games is if A actually
requests the k-th key. Otherwise, its views in the two games are equivalent and it will have
absolutely 0 advantage in distinguishing. Using this observation we prove that even when A requests
the k-th private key, his advantage in distinguishing these games is negligible.

Our algorithm B begins by taking in an instance (G, g, f,v, g, f2,T) of the decision-Linear
problem. We now describe how it executes the Setup, Key Phase, and Challenge phases of the
Broadcast Encryption game with A.

31

Setup Algorithm B first chooses random exponents «, a1, a2, Yu,, Yvgs Yws Yuss - - - s Yu,- 1t then
defines

_ b __ ba; __ rai b-as __ pao __ ., —aj-as __ a2 _.a ararb __ aay
9=9,9 =f,g" =f", g =f? v=v , vp = v*2gP vy = v g2 e(g, g) =e(f,9)"".
Now it can create

T = ”Uv‘l” =g¥Y oy = vv‘lm = g¥»292 T{) — ”Uv‘l” = fynar 7_5 _ vv‘f? = fYv292,

Finally, it sets
w=fg", up= [T, Vg up = g¥n.

This will define all the public parameters of the system. Note that by virtue of knowing «, the
algorithm B will know the regular master secret key.

Key Gen Phases 1,2 We now describe how the system responds to a private key request.
Consider a request for the i-th user’s key made by .A.
Case 1: ¢ > k
When 1 is less than k& our algorithm B will generate a normal key for the requested user i. Since it
has the master secret key MSK it can run that algorithm.
Case 2: i <k
When i is greater than k our algorithm B will generate a semi-functional key for the requested user
i. It first creates a normal key using MSK. Then it makes it semi-functional using the procedure
from above in Subsection 3.2. It can run this procedure since it knows g®1?2.
Case 3: i =k
The algorithm first runs the encryption algorithm to generate a normal private key SKj, for user i
with Di,..., D%, K,V K;. Let r},75, 2], 25 be the random exponents used.

It then sets

D1 — Di 'Tfa1-a2’ D2 :D/2 .TGQ(gcl)yﬁ, D3 — Dé . (fCQ)yvl, D4 :Dé'Tm(gcl)va,

D5 =Dy - (f?)"2, D¢ =Dg- f?, D7y =D%-(¢7), K=K'-(g%)""", Vi Kj = Kj(g°)".

The semi-functional secret key is SK = D1,..., D7, K,V,2, K; In addition, we note that we im-
plicitly set z; = z’l — Yy, €2 and zg = 2, — yy,c2 in order to be able to create Dy and Dy.

If T is a Linear tuple of the form 7" = 172 then the k-th query results in a normal key under
randomness 7, = 7"’1 + ¢ and o = 7"’2 + ¢3. Otherwise, if T' is a random group element, then we
can write T' = vt g7 for random ~ € Z,. This forms a semi-functional key where 7 is the added
randomness to make it semi-functional.

Challenge Ciphertext Algorithm B is given a challenge set S* and messages My, M. Then it
flips a coin 3.

In this phase B needs to be able to generate a semi-functional challenge ciphertext. The fact
that k£ will not be in this set enables the algorithm to create a semi-functional ciphertext.

B first runs the normal encryption algorithm to generate a normal ciphertext CT for set S*
and message M*. It then gets a standard ciphertext C1,...,C%, Ef, E5 under random exponents
sy, sh,t!

32

To make it semi-functional it chooses a random z € Z,,. It first sets C; = C1,Cy = C5, C3 = Cf
leaving these elements unchanged. It then sets

Ci=C [o27, C5=Ch g™, Cy=Ch v, Cp=Ch framozy s

E, = Ei H (Vz'yuiyh)amﬂ Ey = Eé . pa1az
1€S*
The semi-functional ciphertext is C4,...,C7, F1, Fs.
Intuitively, the algorithm implicitly sets ¢ = ¢*' + v*1%2%_ This allows for the cancellation of
the term v3'*" by w* in constructing Cy.

If T is a tuple, then we are in Gamey,_1, otherwise we are in Gamey,. B receives a bit 3 and
outputs 0 if 3 = /.

Lemma 9. Suppose that there exists an algorithm A that makes at most q queries and Gameq Adv ,—
Gamepy,q Adv 4 = €. Then we can build an algorithm B that has advantage € in the decision BDH
game.

Proof. We begin by noting that in both of these two games both the challenge ciphertexts and all
the private keys are semi-functional. Therefore, B only needs to be able to generate semi-functional
private keys.

B begins by taking in a BDH instance g, g°!, g2, g, T.

Setup The algorithm begins by choosing random exponents a1, b, Yu, Yvi» Yvos Yws Yurs - - - s Yuns €
Zyp. It then sets

az

=g, ¢° g™, g™ = g%, ¢", g2 = (¢°2)°,

b b
v=g", v =g, va=g"2, w=g", u=g"1,...,u, = g%n, e(g,9)"" = e(g, g?)"".

These parameters allow us to compute 71 = vv]! ,7'17 and T = v(g®)Yv2, Té’ and publish the public
key PK. Note that the master secret key g is not available to B.
We point out that this setup lets o = ¢1 - ¢co and as = co.

Key Generation Phases 1,2 All key generations result in semi-functional keys. When a request
for key 7 is made, the key generation algorithm chooses random 71,79, 21, 22,7 € Z, and defines
r =11 + ro. It aims to implicitly sets the variable v = ¢; + /.

It creates the key as:

Dy = (g)77 ", Dy = (g2) i g, D3 = (¢°)7, Dy = (¢°)" g™ vhg*

D5 = (gb)_ZQa DG = g’f‘2'b’ D7 = g7"1’ K = (Uz : w)rl, Vj7ﬁl KJ = u;l.

33

Challenge Ciphertext B receives a challenge set S* and two message My, M7 from the attacker.
B will now create a challenge ciphertext that is a semi-functional ciphertext of either Mg or a random
message, depending on 7. It first chooses a random bit 3.

B chooses random s1,t € Zj,. It will implicitly let so = c3. The message Mg € Gr is blinded as
Co=Mg-T @16 Tt then chooses random 2’ € Z,, and will implicitly set © = —c3 + x'.

Cl — gsl.b + (963)177 02 — gb-a1-517 C3 — ga1-517 C4 — (gCQ)II'b, C5 — (gCQ)x/7

CG = Ti%’l(gc?))yv (902>yu2m/’ 07 _ (T{)> 1(903)yu~b(gcz)yv2-x/.bw_t, El _ (H ui)t, E2 — gt.
€S
If T is a tuple, then we are in Game,, otherwise we are in Gamegiya. B receives a bit 4 and
outputs 0 iff g = 3.

Theorem 3. If the decisional Linear and decisional BDH assumptions holds, then no poly-time
algorithm can break our Broadcast Encryption system.

Proof. Any attacker’s advantage in Gamerj,, Adv 4 in the final game must be 0 since it completely
hides the bit 5. By the sequence of games we established and Lemmas 7,8,9 an attacker’s advantage
in the real game Gamepe, Adv 4 must be negligibly close to 0.

E IBE with Short Parameters from Subgroups

Setup The authority picks four primes p1, p2, p3,ps and let’s N = pipopsps. It then generates
the group as G(N) — G.

Next it chooses a random exponent o € Zj,, random group elements: g, ,up,, hp,, Wp,, € G1,
and X, € G3. The public key is published as:

o
Gprs Upys hpyy Wy, Xpg, e(gpugm)

KeyGen(Z) The authority chooses a random exponent r € Zy, a random key tag, tag € Zy,
and a random group element R,, € G4. It produces the private key as:

Dy = 931 (ngzl hpl)TRm Dy = 9;1 Dp = (umhpl)r(w;?gy

Encrypt-KEM(Z) The encryptor first generates random Ry, R, € Gg (generated from X,
and s € Zy along with a random ciphertext “tag” value tag’ in Zy. The ciphertext is generated
as:

_ s A s, tag’-s p/
Co = 9p, Rp3 C = (um hp1) Wp, Rps

The key extracted is:

s

K = e(gm) gp1)a.

34

Decrypt(CT, K7) The decryption algorithm will work in the case when the private key tag
tag # tag’ (mod p)1, where tag and tag’ are the private key and ciphertext tags respectively.
The decryption algorithm first computes:

N—L
Ty = (e(C1, D4)"8e(Cy, D)~ "8) tas—tag’ = e(gpl,ug1 hp,)"

Next, it computes
Ty = 6(007 DO) = e(gm?gpl)a.se(gpl?u;ﬁhm)rs

The KEM key can now be recovered by computing Ty /T .

E.1 Security Proof Sketch

We will show the security of the scheme based on a sequence of games. Intuitively, the proof will
proceed as follows. The first game, Gamey is defined to be security game played on the real system.
The next game Game; has ciphertexts with the following distribution when create for challenge
identity Z*:

Z*
Co = gfansz Gy = (um hp1)sw;1R;3R1/02

Notice they are identical to the ciphertexts given before with the exception that both Cy, Cy have a
random element of the G,, subgroup multiplied in. This will not effect decryption since all private
keys (at this stage) do not have a component in the py subgroup. We will argue that if a subgroup
decision variant holds then no adversary can distinguish between Gamey and Game;. This is the
relatively easy part of the reduction.

Next we define Game; for ¢ = 1,...,@), where () is maximum number of private key queries
made by the adversary. In these sequence of games we will slowly change the structure of the private
keys given to the adversary. In particular, we will add a random element of the order ps subgroup
to the private key component Dy. In game Game; the challenge ciphertexts are generated the
same way as in Game;. The private keys for the jth query where j > ¢ are generated as before;
however, for j < ¢ the query of an idenity 7 generates a key as follows.

Do = 91?1 (u; p1)er4Y}72 Dy = 917;1 Dp = (uplhpl)r(w;?g)r
Notice that these keys have the same distribution as the other keys except that a random element
Y,, of G2 is multiplied into Dy.

We want to argue that no adversary can distinguish between Game; and Game; ;. Intuitively,
any private key of this new form will decrypt well-formed ciphertexts correctly. However, we might
worry about how the key in question interacts with the challenge ciphertext. In particular, if
the simulator can hand out a private key for any identity and also create a malformed challenge
ciphertext for any identity Z*, what would stop the simulator from learning the structure of the ith
key by simply building the key for Z* itself. We resolve this paradox by building the reduction in
the following manner. During setup the simulator will implicitly embed a degree one polynomial
f(z) = ax +b (mod N). In the reduction the simulator will create keys for j > i or j < i as fits
either Game; or Game; 1. However, for the challenge ciphertext it will need to form it such that
the challenge ciphertext tag tag’ follows tag’ = f(Z*). Moreover, when the i-th query is for Z the
private key has tag = f(Z). The simulator will not be able to attempt to decrypt the challenge
ciphertext with the key in question since for Z* the tags would be the same.

35

Indistinguishability of Games 0 and 1 We begin by defining the extended subgroup assump-
tion as follows.

An algorithm B that outputs z € {0, 1} has advantage € in solving extended subgroup decision
problem in a composite group G if

Pr [B(gp, € Gpy» Xpy € Gpy, Xpy, € Gpyy T =Y, €Gy, =0] —
Pr [B(gp, € G, Xps € Gy, Xpy, € Gpyy T =YYy, € Gipypy) = 0] | > €

The problem basically states that if we are given generators in the pi, ps3, p4, but not ps subgroup
then we cannot distinguish a random element in the G,, subgroup from the G, p, subgroup. If
we note that the ps X p2 subgroup is simply embedded in a larger group one can see this is actually
equivalent to the standard decision subgroup assumption.

In the reduction the public key is created by choosing random «, a, b, c € Zy and setting

_ sa _ a _ ,a «a
9p1> Upy _gplv hpl _gplﬂ Wp, _gp17 Xps’ e(gpugpl)

For each new private key for an Z we choose fresh random ¢,r. Then create random R, = X; .
and generate the key as:

Dy = 931 (Ugl hm)TRm Dy = 9;1 Dp = (“plhpl)r(w;?g)r

The challenge ciphertext is created by choosing random s,z € Zy and constructing:
Co = g5, Xp, T C1 = (u} hy,) ws T?

Finally, the derived key is e(gp,, gp,)**.
If T is random in the group G then we are in Game0; otherwise we are in game Game;.

Indistinguishability of Game; and Game;;; We now need to define a new Assumptionl.
We begin by defining the extended subgroup assumption as follows.
An algorithm B that outputs z € {0,1} has advantage € in solving our new Assumptionl in a
composite group G if

Pr [B(gprPI € Gy, Xpy € Gpy, Xpys € Gp479;)1 € GplaRmRmagzsnXm’ T= UfalYpJ -

Pr [B(gpl’wpl € Gp,, Xp; € Gps, Xpys € Gp4vg;1 € Gm?RPszwg;lXpw T= u;:nYmY}&) = 0] > €
In the reduction the public key is created by choosing random «, a, b, c,d € Zy and setting

a4 . C _ b d _ a s «
Ip1y Upy = Wp,Gp,s hp, = Wp,9p,» Wpy = Wp, Xpss e(gpugm) = e(gp17gp1Xp2)

At this point we define f(Z) = —(aZ + b). The tag for the challenge ciphertext is set as
tag’ = f(Z*). The challenge ciphertext is created for Z* by choosing random 21,22 € Zyn and
constructing:

Co = (95, Xp) X}, Cr1= <9;1Xp2)cz*+dX;§

p3

36

The derived key is e(g,, Xp,, gp,)*- Notice that the choice of the tag canceled out the w, terms.
Also note that C; and Cy have indepedently distributed components of Gy, , G, (this is do do the
fact that ¢, d are random mod N and not just mod py).

Next, we generate keys for q j-th query where j > 4. The simulator chooses a random tag.
For each new private key for an Z we choose fresh random ¢,r. Then create random Z = X; , and
generates the key as:

Do = gy, (tp,hp)"Z Da =gy, Dp = (uphp,) (wyi)

Now, we generate keys for q j-th query where j < i. These are the keys that have already been
“transformed” (and are known to be). The simulator chooses a random tag. These keys must have
a random blinding component in both the G, and G,, subgroups in Dy. For each new private key
for an Z we choose fresh random ¢,r. Then create random Z = (R, Rp,)" and generates the key
as:

Do = g5, (uglhpl)rz Da =g, Dp = (uphy) (w?)

Finally, we come to generating the “challenge key” for the i-th query. The form of this key will
depend upon the output from the assumption. The tag for a call to Z is set as tag = —f(Z). The
key is created as follows.

t)cI—i—dTaI—i-b D

Do = g5, (9, Jrre

A=g,, Dp=I(g)

Notice, that we again use the tag for a cancellation.
If T is from the first distribution then we are in Game;; otherwise, we are in game Game;;.

Finishing it Off We sketch the final part of the proof. Essentially, we need that given g Rp,
and g, Xp, it is hard to distinguish e(gy,, gp,)*° from a random group element of Gy. This seems
pretty straightforward.

37

