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Abstract. Very recently, the concept of Traceable Identity-based Encryp-
tion (IBE) scheme (or Accountable Authority Identity based Encryption
scheme) was introduced in Crypto 2007. This concept enables some mech-
anisms to reduce the trust of a private key generator (PKG) in an IBE sys-
tem. The aim of this paper is threefold. First, we discuss some subtleties
in the first traceable IBE scheme in the Crypto 2007 paper. Second, we
present an extension to this work by having the PKG’s master secret key
retrieved automatically if more than one user secret key are released. This
way, the user can produce a concrete proof of misbehaviour of the PKG in
the court. In contrast to previous approach, our idea gives strong incen-
tive for the PKG to strengthen the security of the system since if someone
can successfully release a user’s secret key, it means that his security is also
compromised. We present a formal model to capture our idea. Third, we
present an efficient construction based on Gentry’s IBE that satisfies our
model and prove its security. Our construction is proven secure in the ran-
dom oracle model. Nevertheless, we should emphasize that the aim of this
paper is to introduce the new model to strengthen the IBE system.

Keywords: Identity-based Encryption, Traceability, Retrievability,
PKG, Trust.

1 Introduction

The idea of identity-based encryption (IBE) was put forward by Shamir in his
seminal paper in [1]. The main concept was proposed in 1984, whilst the first
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practical and fully functional IBE scheme was only proposed in [2] that takes
advantage of the properties of suitable bilinear maps (the Weil or Tate pair-
ing) over supersingular elliptic curves. Since then, many new schemes have been
proposed in the literature (including the recent one by Gentry [3]). The main
essence of IBE is to remove the necessity of public key certification, that is re-
quired in the conventional public key cryptography setting. The public key of
each participant is obtained from his/her public identity, such as email address,
IP address combined with a user name, social security number, etc. that can
uniquely identify the participant. Furthermore, the sender can send his cipher-
text to a recipient without requiring the receiver to have his public key setup
first. Indeed, the secret key can be retrieved later after the receiver receives the
ciphertext sent by the sender. Unfortunately, this model requires the existence
of a trusted authority called the Private Key Generator (PKG), whose task is
to generate user’s private key from their identity information, after a successful
identification.

In an IBE system, the PKG is completely trusted, and therefore the PKG has
the liberty to engage in any malicious activity without any risk of being sent
to court. To mitigate this trust problem, a distributed PKG was proposed [2].
Very recently, Goyal [4] presented a new idea to reduce the trust of the PKG.
His idea is to produce an exponential (or super-polynomial) number of possible
decryption keys corresponding to every identity. The PKG does not know which
secret key that has been chosen by the user. Therefore, when the PKG releases
one of the possible user’s secret keys, then the user can later show two different
secret keys as his proof of the PKG misbehaviour. Goyal formalized this notion
as a traceable identity-based encryption scheme [4] (This notion was renamed to
Accountable Authority Identity-based Encryption (A-IBE) in [5]).

Nonetheless, we believe that traceable IBE is not very useful for achieving the
purpose of deterring the PKG from distributing private keys for any identity. The
reason is that in practice, it is difficult for a user to win a court if the user sues
the PKG. This is because the PKG can always put a disclaimer well in advance
for mitigating the liability of the PKG. Another reason is that the damage is
externality with respect to the PKG, rather than the PKG itself. Therefore,
there is no strong incentive for the PKG to secure its own system. We therefore
motivate ourselves with an additional mechanism which can help discourage the
PKG from distributing private keys for any identity while encouraging the PKG
to strengthen the security of its own system.

Our Contributions

We take one step forward than Goyal’s idea in reducing the trust on the PKG.
Our idea is to have the PKG’s master secret key retrieved automatically if more
than one user secret key are released. This way, the user can produce a concrete
proof of misbehaviour of the PKG in the court. In contrast to Goyal’s approach,
our idea also gives some benefit to the PKG to strengthen their security system as
if someone can successfully release a user’s secret key, it means that his security
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is also compromised. Therefore, it is also the PKG’s interest to ensure its security
of the system (c.f. Goyal’s approach [4]).

In this paper, firstly we point out some subtleties in Goyal’s work [4, 5]. More
specifically, there are some subtleties in instantiating the ZK-POK sub-protocol
in the first traceable IBE scheme provided in [4, 5] and we propose a suggestion on
how to efficiently instantiate it. Furthermore, we observe that several definitions
used in Goyal’s work are not formally defined. Hence, the model provided in
Goyal’s work is incomplete. We present a formal model to capture our idea
mentioned above with the aim of reducing the trust on the PKG. We deal with
this part in two stages. Firstly, we formally define the parts that are lacking
from Goyal’s work. Then, we add an algorithm called Retrieve that is used to
output the master secret key given two different user’s secret keys. We call this
notion as a Traceable and Retrievable Identity-based Encryption scheme. Second,
we present an efficient construction based on Gentry’s IBE [3] that satisfies our
model.

Paper Organization

The rest of this paper is organized as follows. In Sec. 3, we present some security
remarks on Goyal’s work [4,5]. In Sec. 4, we present the formal model of Trace-
able and Retrievable IBE. We present a concrete construction based on Gentry’s
IBE in Sec. 5. Finally, we conclude the paper in Sec. 6.

2 Preliminaries

Notations
Let e be a bilinear map such that ¢ : G; x Gy — G3.

— G1 and Gs are cyclic multiplicative groups of prime order p.

— each element of Gy, G2 and G3 has unique binary representation.
— g, h are generators of G; and G4 respectively.

— (Bilinear) Vx € Gy, y € G2 and a, b € Z,, e(z%,y°) = e(z,y).

— (Non-degenerate) e(g,h) # 1.

G1 and G2 can be the same or different groups. We say that two groups (G,
G2) are a bilinear group pair if the group action in Gi, G2 and the bilinear
mapping e are all efficiently computable.

Complezity Assumptions
The security of our concrete construction is based on a complexity assumption
called “truncated decision ¢-ABDHE assumption” proposed in [3] which is de-
fined as follows:
Let e : G x G — Gp be a bilinear map, where G and G are cyclic groups of
large prime order p. Given a vector of ¢ + 3 elements:
)<1+2

(g g.g% 0" g@") e G

and an element Z € Gr as input, output 0 if Z = e(g(a)qﬂ,g’) and output 1
otherwise.
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An algorithm B has advantage € in solving the truncated decision ¢-ABDHE
if:

)q+2

a a)f a)it!
2 9,9% - g e(g" g)) =0
a)it? « a)?
T g g% g™ Z) = 0] > e

| Pr(B(g, o'
- PI‘[B(g/, g

where the probability is over the random choice of generators g,¢’ in G, the
random choice of « in Z,,, the random choice of Z in Gr, and the random bits
consumed by B.

The computational version of the assumption is defined in the natural way,
where the term Z is asked as the output.

Definition 1. We say that the truncated decision (t,¢,q)-ABDHE assumption
holds in G if no t-time algorithm has advantage at least € in solving the truncated
decision q-ABDHE problem in G.

3 On Goyal’s Scheme [4]

In this section we analyze some subtleties in Goyal’s paper [4]. These subtleties
are mainly about the instantiation of ZK-POK sub-protocol and the FindKey
game. We also make some comments on Goyal’s definition of Traceable IBE.
First of all, we review Goyal’s first traceable IBE scheme below.

3.1 Review of Goyal’s First Traceable IBE Scheme

Goyal’s first scheme [4] is built on top of Gentry’s IBE scheme [3]. The basic cryp-
tosystem (Setup, Encryption and Decryption) are taken from Gentry’s scheme
[3]. The only difference between Goyal’s scheme and Gentry’s scheme relies on
the Key Generation Protocol, which is an interactive protocol between a user
U and the PKG. For completeness, we review the Setup and Key Generation
Protocol as follows.

Let G be a bilinear group of large prime order p and let g be a generator of G.
Additionally, let e : G x G — Gp denote a bilinear map. A security parameter,
k, will determine the size of the groups.

Setup. The PKG picks random generators g, k1, ho, hs € G and a random o € Z,,.
It sets g1 = ¢“ and then selects a hash function H from a family of universal
one-way hash function. The published public parameters PK and the master
key M K are given by

PK:{gaglahlahQahSaH}a MK =«
Key Generation Protocol. This protocol will allow a user U to securely obtain

a decryption key dip from PKG. As in [3], PKG aborts if ID = «. The key
generation protocol is as follows.
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1. The user U selects a random r € Z, and sends R = h{ to the PKG.

2. U gives to PKG a zero-knowledge proof of knowledge of the discrete log of
R with respect to hy.

3. The PKG now selects three random numbers 7/, 7p 2, 7p,3 € Zp. It then
computes hjp , = (Rg="")/(@=1D) and hip,i = (hig~"1p:#)Y/(@=1D) 1y ¢ 12 3}
and sends

{7, hip.1> 7,25 D 2, 7103, D 3 }

to the user U.
4. U computes rip1 = r'/r and hip1 = (h{D’l)l/T. It sets the decryption key
dip = {(rp,i, p,s) =i € {1,2,3}}.

5. U now runs a key sanity check on d\p as follows. It computes ga_'D

=g1/9"
”

and checks if e(hip 4, g 'P) = e(h;g~ ™, g) for i € {1,2,3}. U aborts if the
check fails for any 7.

At the end of this protocol, U will have a well-formed decryption key dip for the
identity ID.

3.2 Comments on the Instantiation of ZK-POK

In the above scheme, a user runs a Key Generation Protocol, which is a zero
knowledge proof of knowledge (ZK-POK), with the PKG to jointly generate
his/her secret key, without letting the PKG know which key was actually gener-
ated. In this protocol, the user first randomly selects R and then proves to the
PKG that he/she knows the discrete log of R with respect to base hy. We believe
that the Key Generation Protocol is correct. However, there are some subtleties
in instantiating the ZK-POK sub-protocol. Goyal suggested to employ Schnorr’s
3-round identification scheme [6] as the underlying ZK-POK, which is an honest-
verifier zero-knowledge proof of knowledge. The revised and extended version
[5] does not discuss much about the instantiation either. Proof systems proposed
in [7] may not fit the Key Generation Protocol, as they merely concentrate on
honest verifiers as well. It turns out that efficient instantiations of ZK-POK is
not a very trivial task as one may originally think. Below are the subtleties in
the instantiations.

In the proof of Theorem 2 in [4], after receiving the challenge R from its
challenger, the adversary B, who wishes to solve the discrete log problem, runs
the simulator to prove the knowledge of the discrete log of R with respect to
base hq (by rewinding A who tries to win the FindKey game). Note that in the
proof, B and A play the roles of the simulator and the verifier, respectively. The
simulator S for Schnorr’s protocol does not need to rewind the (honest) verifier
in order to provide a transcript indistinguishable from that of a real interaction.
It even does not need to interact with the verifier during the simulation at all,
since the verifier is assumed to be honest, and S can select a random challenge
on behalf of the verifier. But in the case here, B has to interact with A in order
to provide an indistinguishable simulation, thus it has to rewind A to gain some
advantage for the simulation. However, there is only one possible way for B to
rewind A. That is, after receving the challenge ¢ from A, B rewinds A back to
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the initial state at the beginning of the zero-knowledge proof, and sends A a
new first-round message a, which is computed based on the challenge ¢ obtained
from A. Now, if A sends back the same ¢, then the simulation can be completed
successfully. However, there is no guarantee on that A would do so, since A’s
status is changed. In a consequence, B cannot use S to provide a zero-knowledge
proof desired by A without the knowledge of log;, R. Hence, A may not win the
FindKey game with probability ¢ again.

An oversimplified way to fix the problem is to let verifier V' commit itself to its
challenge first before prover P sends its first message. P sends its final response
only if V reveals the commitment correctly. It is easy to see that the resulting
protocol is zero-knowledge against arbitrary verifier, however, it does not seem
to be a proof of knowledge.

A better instantiation of the ZK-POK is to use the efficient 6-round ZK-POK
of [8] (which can further be compressed into 4 rounds). The verifier V' commits
to its challenge and proves to P that he knows the challenge. After that P proves
to V that he knows either the challenge or the discrete log. Readers can refer to
[8] for details.

We emphasize here again that the above comments do not imply that Goyal’s
scheme is problematic. Instead, they are regarding to efficient instantiations of
the ZK-POK sub-protocol.

3.3 Comments on the Definition of [4]

We also notice that the definition for Traceable IBE given by Goyal in [4] is
incomplete and imprecise. Comparing with conventional IBE definition [2], a
Traceable IBE scheme described in [4] additionally requires the user to do a
“sanity check” on the “well-formedness” of an extracted user secret key from the
PKG. However, the meaning of “sanity check” of a user secret key in association
with that of “well-formedness” have never been formalized.

Since the PKG is no longer trusted fully in the setting of this research work,
the user secret key generated by the PKG using Extract Protocol may be mal-
formed. In this scenario, it is possible that this malformed key can still decrypt
a portion of all possible ciphertexts for the user but not all. Now if the malicious
PKG publishes another user secret key which can decrypt all the ciphertexts for
the user, the user will not be able to win a court if the user provides these two
keys as evidence to a court of law, claiming that the PKG is cheating. This is
because the PKG can show that one of the keys presented by the user is not a
valid key since it cannot decrypt all possible ciphertexts.

Therefore, we believe that the notion of “sanity check” has to be formalized.
In addition, in the subsequent security model, we also need to formalize the
intuition that a user should be provided with a method to make sure that the
user secret key extracted from the PKG via Extract Protocol can always be able
to decrypt ciphertexts for the user.

Also due to the lack of “sanity check” definition in [4], the security model of
[4] is also incomplete. The attack scenario described above is not captured in
any of the models specified in [4].
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4 Traceable and Retrievable IBE

4.1 TR-IBE Model

A Traceable and Retrievable Identity-Based Encryption (TR-IBE) scheme con-
sists of six probabilistic polynomial-time (PPT) algorithms and one two-party
interactive protocol.

Setup. On input 1¥ where k € N is a security parameter, it outputs a master
public/secret key pair (mpk, msk).

Extract Protocol. The Private Key Generator, PKG, on input (mpk, msk, D)
carries out the protocol with a user on input (mpk, ID). At the end of the proto-
col, the user outputs a user secret key uskp or a symbol L indicating the failure
of the protocol run. Formally, the PKG and the user in the protocol are consid-
ered as PPT Turing machines. Without loss of generality, we let ID € {0,1}*.
In practice, the user with identity ID may send the identity to the PKG in the
first message flow of the protocol.

SanityCheck. On input (mpk, ID, uskp), it outputs 1 or 0.

Enc. On input (mpk,|D, m), where m is a message from a message space M
defined by mpk, it outputs a ciphertext C.

Dec. On input (mpk, uskpp, C), it outputs m € M or a symbol L if the decryp-
tion fails.

Trace!. On input (mpk, ID, uskyp), it outputs L if SanityCheck(mpk, ID, uskip) #
1. Otherwise it outputs a user key family number fn;p from a user key family
number space denoted by Fip. This space is defined by (mpk, ID).

Retrieve. On input (mpk, ID, uskp, 1:9%“3), it outputs the master secret key msk
or a symbol L indicating the failure of retrieval.

For correctness, we require that for all k € N, for any (mpk, msk) « Setup(1¥),
any identity ID € {0,1}*, any uskip # L output by the user with identity ID at
the end of a run of Extract Protocol with the PKG, any m € M(mpk), we have

1. 1 « SanityCheck(mpk, ID, uskip);
2. m « Dec(mpk, uskip, Enc(mpk, D, m)); and
3. Trace(mpk, ID,uskip) € Fip.

4.2 Security Model for TR-IBE

In [4], three games have been given for formalizing the following three security
notions.

1. Confidentiality of Ciphertexts: a conventional indistinguishability based
game capturing chosen ciphertext and identity attacks, namely IND-ID-CCA
similar to that in [2] is given.

! Trace is needed for some technical reason. It is used for formalizing the user key family
number and will mainly be used in the Retrievability Game described on page 103.
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2. Secrecy of User Secret Key Against Malicious PKG: the PKG, after carrying
out a successful run of Extract Protocol with a user, should not be able to
find out the user key family number of the user secret key obtained by the
user.

3. Security Against Framing by Malicious Users: a user should not be able to
come up with two user secret keys such that the corresponding user key
family numbers are different, after at most one execution of Extract Protocol
with the PKG.

As explained in Sec. 3.3, an additional security notion related to “sanity check”
of user secret key should be introduced. We also introduce the security notion
“Retrievability” which is specific to the retrievability property of TR-IBE. It
can be seen that the security against framing by malicious user in TR-IBE is
implied by the requirement of confidentiality of ciphertexts and the retrievability
property. If the adversary is able to come up with two user secret keys, he can
compute the master secret key of PKG due to the retrievability property and is
able to break the confidentiality of ciphertexts of all users. In the following, we
formalize all these security notions. The corresponding games are Confidentiality
(IND-ID-CCA) Game, FindKey Game, SanityCheck Game and Retrievability Game.

Confidentiality (IND-ID-CCA) Game. On input a security parameter 1%, k € N,
the following game is carried out by a simulator S against an adversary A.

1. S generates (mpk, msk) < Setup(1¥) and invokes A on mpk. S maintains a
list L. Initially, L is set to empty.

2. A (which acts as a user) may execute Extract Protocol with S (which acts as
the PKG) on any identity ID or query a decryption oracle ODec on (ID, C).
For each run of Extract Protocol, if ID € L, S rejects the protocol run imme-
diately?. Otherwise, the protocol is carried out. At the end of a successful
run, S sets L := LU{ID}. For an ODec query, S generates a user secret key
by simulating Extract Protocol and uses it to decrypt the querying ciphertext.

3. A submits two equal length messages mg, m; € M(mpk) and an identity
ID* to S. If ID* € L, S aborts. Otherwise, S flips a random coin b & {0,1}
and sends C* « Enc(mpk, ID*,m;) to A. S sets L := L U {ID}.

4. A can continue executing Extract Protocol and querying ODec. At the end
of the game, A outputs its guess b’ of b.

A wins if ¥’ = b and (ID*,C*) has never been queried to ODec. The advantage
of A in this game is defined as Pr[.A wins] — }.

In the following, we give the formal definition of “Secrecy of User Secret Key
Against Malicious PKG”. In Sec. 4.3, we will see that it is stronger than the one

given in [4].
FindKey Game. On input a security parameter 1%, k € N, the following game

is carried out by a simulator S against an adversary A.

2 This restriction is natural as if A were allowed to run Extract Protocol on an ID for
multiple times, due to the retrievability property of TR-IBE, msk may be compro-
mised.



102 M.H. Au et al.

1. S maintains two lists Ly, and Ls, both of them are initialized to null. S
invokes A on 1* and gets mpk from A.

2. A (acts as the malicious PKG) may execute Extract Protocol with S (which
acts as a user) on any identity ID chosen by A. If ID € P(Ly) U Ly, S
rejects the protocol run immediately, where P(Lq) is the collection of the
first elements of all the pairs in L;. At the end of a successful run, suppose
the user secret key generated is uskip. If SanityCheck(mpk, ID, uskip) =1, S
sets L1 = L1 U (|D,usk|D).

3. Since A (which acts as the malicious PKG) may collude with some users in
this multi-user setting (see Sec. 4.3 for more details), A is allowed to access
an oracle called OCorrupt. On input ID, if (ID,uskp) € Ly for some user
secret key uskip, the oracle returns uskip, and sets Ly := Ly \ {(ID, uskip)}
and Ly := Ly U {ID}. Otherwise, L is returned.

4. é\t/ the end of the game, A outputs an identity ID* and a user secret key
usk”y .

A wins if

1. 1 « SanityCheck(mpk, ID*, uskip-);
2. (ID*,uskip~) € L1; and?
3. Trace(mpk,|D*, uskip~) = Trace(mpk, ID*, uskip-).

The advantage of A in this game is defined as Pr[.A wins].

We now formalize the notion related to “sanity check”. As discussed in Sec. 3.3,
a user should be provided with a method to make sure that the user secret key
extracted from the PKG via Extract Protocol can always be able to decrypt ci-
phertexts for the user. We consider the following game. Informally, it requires
that for any two user secret keys of an identity that passed the “sanity check”,
both of them will always produce the identical result in decryption.

SanityCheck Game. On input a security parameter 1%, & € N, a simulator S
invokes an adversary A on 1*. A returns a master public key mpk, an identity
ID*, two user secret keys uskp~ and uskp+ and a ciphertext C. A wins if

1 « SanityCheck(mpk, ID*, uskip-);

1 «— SanityCheck(mpk, ID*, uskip- );

L # Dec(mpk, uskip-, C);

1# Dec(mpk,@,,y,c); and

Dec(mpk, uskip-, C) # Dec(mpk, 1297@.0*,0).

AR R e

The advantage of A in this game is defined as Pr[A wins|. By combining the
notion captured in this game and the correctness requirement defined at the
beginning of Sec. 4, it is easy to see that the intuition of “sanity check” is
captured.

3 Note that we do not need the restriction that ID* ¢ Lo as ID* cannot co-exist in
bOth L1 and LQ.
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The last security notion, also the only one specific to “Retrievability” property,
requires that for any two user secret keys corresponding to the same identity
but with different user key family numbers, they allow the public to retrieve the
master secret key. The following game considers a malicious PKG which tries
to come up with two user secret keys such that its master secret key is not
retrievable.

Retrievability Game. On input a security parameter 1¥, k € N, a simulator S
invokes an adversary A on 1¥. A returns a master public key mpk, an identity
ID*, and two user secret keys uskjp~ and uskp~. A wins if

1. 1 « SanityCheck(mpk, ID", uskip+);
2. 1 « SanityCheck(mpk, ID*, uskip~); -
3. Trace(mpk, D", uskip~) # Trace(mpk, ID*, uskp-); and

4. | « Retrieve(mpk, ID*, uskip~, uskip~).
The advantage of A in this game is defined as Pr[A wins].

Theorem 1. A TR-IBE scheme is said to be secure if for all polynomial time
adversaries, the advantage in each of the Confidentiality game, FindKey game,
SanityCheck game and Retrievability game is negligible in the security parameter

k.

4.3 Further Comments on the Security Model of [4]

The FindKey Game defined in [4] is weaker than our model defined above. In
particular, the game in [4] requires the adversary to fix the challenging identity
ID* at the beginning of the game and no further change is allowed. Also, the ad-
versary is not allowed to interact with other identities. In our definition instead,
we allow the adversary to “try out” and also corrupt a couple of identities in the
manner of adaptive chosen identity attack before choosing a challenging identity
at the end of the game.

5 A Concrete Scheme

5.1 Construction

High Level Description. Our scheme is based on Gentry’s IBE scheme [3].
We extend the scheme by adding a Verifiable Encrypton (VE) scheme [9]. The
PKG has two sets of public key pair. One is for the IBE and the other for the
VE. At the beginning, the PKG verifibly encrypts, using its VE public key, the
(IBE) master secret key. The encrypted master secret key is published. In the
key extraction process, one addition component is given to the user as the secret
key. This component allows the revocation of the encrypted master secret key.
That is, if the PKG generates two secret keys (they may be different) for the
same user, by using these two secret keys, the master secret key can be decrypted
and revoked.
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Technical Details.

Setup: On input 1%, where k € N is a security parameter, let G and Gr be
groups of order p such that p is a k-bit prime, and let ¢ : G x G — Gy be the
bilinear map. We use a multiplicative notation for the operation in G and Gr. Let
H;:{0,1}* - Z,, H : {0,1}* — Z,, H, : {0,1}* — Z,, be secure cryptographic
hash functions. The PKG selects four random generators g, hi, ho, hs € G and
randomly chooses o, 3,2 €g Z,. It sets g1 = g%, ¢’ = ¢° and X = e(g,9)*.
Define the message space M = Gr.

Then the PKG runs the non-interactive verifiable encryption algorithm from
[9]. The idea is to verifiably encrypt the master secret key a and ( under the
public key X. This can be done as follows. Let N := poly(k) for some polynomial
poly(), be a security parameter*. Let Hg : {0,1}* — {0,1}" be a secure hash
function.

1. The PKG randomly selects u;, u; € g Z;, and computes (T; = g7, T} = g%),
for j=1to N.
2. For j =1 to N the PKG computes the following.

! / / li
— Compute Zj o = u;, Zj1 =u; —a, Zj o =uj, Ziq =u; — .

— Randomly select vj0,vj1,} 0,051 €r Zp, compute Epj; = X" @
vy / _ oy, / / _ vl : 5
Zj,iaEl,j,i =g and EO,j,i = XY.i® Zj,i7 1ji =97 for i € {O, 1} .

3. PKG computes L = HE( T1H EO,I,OH E1’1’0| E0’1’1| E1’1’1H H TNH
Eonoll E1,noll Eonall Einvi) and L' = He( 7| Egqoll 11l Eo1all
ELyall - TNIEG noll E1 v oll Eonall B4 x1)- Let by, b be the j-th bit
of L and L’ respectively.

4. Output 7 = { (Tj, Tj{, Eo’j’o, El,j,Oa EO,j,la El,j,la Eé,j,O’ Lj,o’ E(/),j,l’ Ei
Zj’bj’ Uj.bjs Zg/‘,b;’ U;‘,b; ) é'vzl'

5. Verification. Anyone can check if 7 is a valid encryption of a and § under the
public key X by computing L and L’ from 7 and checking if the following
equations hold:

g

? Vi b,
EO,j,bj = X" @ Zj b;
T v,
El,j,bj =g 7,04
? by Z;
£ Y5 b
Ty =grg™
? v,
/ - 7, /
Eo g =X 7T @ Zyy,
’
2 v,
/ = 3:b%
Erjy =977
/ T o Ziy
T! =gqgig 7

J
where j =1 to N and bj, b} are the j-th bit of L and L’ respectively.

The public parameters mpk and master secret key msk are given by
mpk = (gaglag/a hla h23 hSa Xa Ha Hla Hta Ma T) msk = (Oé, /63 g:z:)

4 N controls the cheating probability of the verifiable encryption.
5 We assume that some appropriate padding has been added for the @ operation.
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Extract Protocol: On input the master public key /secret key pair (mpk, msk) and
an identity ID € {0, 1}* of a user U, the PKG carries out an interactive protocol
with U, as follows. Compute ID = H;(ID). If ID = «, it aborts. Otherwise, the
protocol proceeds as follow:

1. The user U selects a random 7 €g Z, and sends R = hj to the PKG.
2. U gives to the PKG the following zero-knowledge proof of knowledge:

PK{r:R=h}
3. The PKG randomly selects 7/, rip 2, rip,3 € Z, and computes

Hy(R.r')

h]II]DJ _ (Rg—w)1/(a—]l]1)>) to = gachl B+ID

hip.a = (hzg—?“m,z)l/(@—m) hip3 = (hsg—rm,s)l/(@—m)

and sends (77, hlp, tip, 7p,2, Pip 2, 70,3, hip,3) to U.
4. The PKG computes 7yp, the non-interactive proof statement of the following
zero-knowledge proof of knowledge:

b :PK{(wvayﬂ) c X =e(g,9)" Agi=g" Ng =g"A
Hy(R.r)

1 —r’
/]I]DJ = Ro-mgo-m A tp = g*h, B+ID }

and sends to U.
5. After checking mp, U computes

/ 7 \1/r
rma =1"/r hipa = (hip)"
The secret key uskip is (v, 7m,1, hip,1, mp,2, M 2, 70,3, Mip,3, tip, Tp) Where

Ht,(hf,'r”r'HD,l)
hip = (hig~ ™) (@=ID) and typ = g®h, 77

SanityCheck: On input (mpk, uskip) and an identity ID € {0,1}*, compute IID =
H;(ID) and check whether e(hmp i, g1/9™>) = e(hig="®,g) for i = 1,2,3. Also
check whether myp is a valid proof statement. If all of them are correct, output
1. Otherwise, output 0.

Enc: To encrypt a message m € Gr using identity 1D € {0,1}*, compute ID =
Hi(ID), generate a random s € Z, and output the ciphertext C' where:

C = (C1,C5,C5,04,Cs)
= (gig™™, elg.9)" . m-elg.hn) ™, elg,ho)"e(g.ha)" 7 )

where v = H(C1,C5,C3) and 7¢ is a non-interactive proof statement of the
following zero-knowledge proof of knowledge

o = PK{(s) Oy = (9197HD)S A Cy =e(g,9)° }
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Dec: To decrypt a ciphertext C' = (Cy,Ca,Cs,Cy, Cs) using secret key uskip,
compute v = H(Cy,Ca,C3) and test whether

Cy = e(C1, hip ohip 37) - o277
If it is not equal or m¢ is not a valid proof statement , output L. Else output

m=C3-e(C,hp,1) - Co™*

Trace: On input (mpk, ID, uskip), define family space Fip = Z,. Parse uskip = (r,
Tm,1, h][]])’l, TID,2, h,]]]D)’Q, TID,3, h]]]D)’g, t]UD); 71']1]1))) and output the dECI‘yptiOIl key family
number f,; = rm. 1.

Retrieve: On input (mpk,ID) and two sets of secret key (usk|D,asvk|D) for the
same identity ID,

1. Compute D = H[(|D) and parse usk“g = (7“ 7“]1]1)) 1 hm 15 T 25 h]UD) 25 T 35
hip 3, tm, mm) and uskip = (7, Fip.1, b1, 71,2, .2, 71,3, A 3, tp, T1p)
2. Compute K := H;(h},rrmp,1) and K = Hy(h},7rm1). If K = K, output L.
Otherwise, compute
tm ™\ &1k
( K ) =g" 1)
D
and check whether X — e(g, g*). If not, output L.
3. For any j € {1,..., N}, one can get (Tj,Zjvbj,E07j71_b.7.,E17j71_b].) in 7 (the
verifiable encryption in Setup). For simplicity, we omit the subscript j. That
is, one can get (T := g%, Zp, Eo,1-v, E1.1-p := g"*~?), such that b € {0,1}
where
Zy = u — ba (2)

Compute e(E1,1-p,9") D Eo1-p to get

Zip=u—(1-0b)x (3)
From equation (2) and (3), compute «. Check whether ¢; < g®. If not,
use another j € {1,..., N} to compute «. If all j’s have been used and no
equality is attained, output L. Otherwise, compute [ in the similar way and
output (o, 3, ¢g*) as msk.

5.2 Security Analysis

Theorem 2. The advantage of an adversary in the IND-ID-CCA game is negligi-
ble for the proposed scheme under the decisional truncated g-ABDHE assumption
in the random oracle model.
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Proof: (sketch) The proof in our setting very much falls along the lines of the
proof of IND-ID-CCA security of Goyal’s scheme [4]. Here we just give a sketch
highlighting the differences.

The differences between [4] and our scheme (in terms of IND-ID-CCA) are
the formation of public parameter and the generation of a decryption key. In
our scheme, mpk = (g, 91,9, h1, ho, hs, X, H, H;, Hy, , M, T) where (g, g1, h1, ha,
hs, M) are generated in the same way as in [4]. The remaining parameters
are generated as follows. The simulator S randomly generates z, 3 €r Z, and
sets ¢ = g%, X = e(g,g)*. S also moderates the hash functions H, Hy, H; as
random oracles. By controlling the random oracles, S can easily simulate the
transcript 7.

In the Extraction Oracle, we use the same technique as in [4] to extract r
from the user and set 7’ = rrp ;. S can generate tip easily, as it knows z, 3.

S can also simulate the transcript zyp by controlling the random oracle. 0O

Theorem 3. The advantage of an adversary in the FindKey game is negligible
for the proposed scheme if the discrete log problem in G is hard.

Proof: The proof follows along the lines of the proof for the FindKey game in [4],
except that we are in the adaptive chosen identity attack model.

Let A denote a PPT algorithm that has a non-negligible advantage € in win-
ning the FindKey game, we construct another PPT algorithm B that breaks the
discrete log assumption in G with a non-negligible probability. B proceeds as
follows.

B runs the algorithm A and gets the public parameters mpk = (g, g1, ¢’, h1, ha,

hs, X,H,H;, H, M, T). B pass hy to its challenger and gets a challenge R € G.

B’s goal is to find r = log,,, R.

Assume adversary A makes at most ¢y extract queries, after getting a chal-

lenge R from the challenger, B selects 4 ¥id {1,2,3,....,qr}. For each 1 < j < ¢, if
Jj =1, Bsets Rj = R, otherwise, B randomly selects r; € Z, and sets R; = Ry
B answers A’s queries as follows:

- Extract queries. When A performs an extract query on an identity 1D;, B
rejects the query if ID; has already been created. Otherwise, B performs the
extract protocol as follows: if j # i, B runs the extract protocol as usual;
if j =i, B gives R to A together with a zero-knowledge proof. The zero-
knowledge proof is generated by rewinding A. Note that here we require
A to commit to the challenge before the zero-knowledge proof is carried
out so that when rewinding A the same challenge will be used by A. In
this way, B is able to simulate a proof by running the simulator of the
zero knowledge proof system without the knowledge of r. After receiving
(', P, > tip, > TID; .25 Mp, 25 1D, 3, P, 3) and mp, from A, B verifies mp, and
runs a key sanity check by testing if e(hp, ¢, 91/9™?) = e(hyg~ "™, g) for
t=2,3. Fort =1, B tests if e(h]’mi,gl/gm") = e(Rig™" ,g). If any of these
tests fails, B aborts with failure, otherwise, ID; is added to L1, notice that
B cannot derive the final user secret key uskip, in this case.
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- Corruption queries. When A performs a corruption query on identity ID, if
ID € L:
(a) ID = ID;, B aborts with failure
(b) ID # ID;, B returns usky to A
otherwise, B rejects the query.

Finally, if B does not abort the game, with probability ¢, A will output a
decryption key (passing the key sanity check) usk,’D” which has the same family
number with uskip, in L. If n = 4, then B can calculate r = '/ f] . where fT’Lm
is the key family number of uskjy . It is obvious that n = i implies that uskip, is
in L; and B does not abort in the game. Since i is randomly chosen, B’s success

probability in solving the discrete log problem in G is at least qi . g

Theorem 4. The advantage of an adversary in the SanityCheck game is negli-
gible for the proposed scheme.

Proof: (sketch) Let the output of A be mpk, ID*, C' = (Cl,Cg,C'd,C4,C5)
uskip= = {7“ TID,1; TID,2; T1D,3, Pip,1, hip,2, hip 3, i, mm ; and uskip- = {7, T 1,

D2, 703, Pip1, Pim2, hips, t, Fip}. A wins implies that condition (1) - (5)
defined in section 4.2 are all fulfilled.
Condition (1) implies

e(h,i, 91/9") = e(hig™"™", g)
= e(hm,, g* ) = e(hig™™, g)
= e((hm,)* ", 9) = e(hig™"™1, g)
= (hﬂﬂ),i)a —ID —_ (hig—?“m,i)
= hip; = (hig ") e fori=1,2,3 (4)
Similarly, condition (2) implies
%H]D),i = (hig~ ™) ol fori=1,2,3 (5)

Condition (3) and (4) imply that Cs verifies (that is, C5 is a valid SPK). That
is, in the random oracle model, the simulator can extract s such that

Cr=(¢*"") and  Cp=e(g,9)° (6)
Condition (5) implies that
Cs-e(Cy,hp,1) - C2"™ " # Cs - e(Cl,Em,l) . CQFIHM (7)

We have
LHS =Cs5-e(Cy,hp 1) - Co"™*

=Cs- e((ga ) (hag™ ™ 1) e HD) -e(g,9)*"™* from equation (4) and (6)
=Cs-e(g*,hig™ ™) - e(g,g)*"™"

=Cj- 6(9 ) . ( ,g)s'(frm,l) . e(g’g)s'rﬂlﬂ),l

= Cs-e(g, )’
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Similarly we have

RHS = 03 . 6(01,71]1[@71) . CQFIHM
= 03 . e(g, h1)s =LHS (8)

However, equation (8) contradicts to equation (7). Thus A wins the game only
with negligible probability. O

Theorem 5. The advantage of an adversary in the Retrievability game is negli-
gible for the proposed scheme.

Proof: (sketch) Let the output of A be mpk, ID*, C = (C},Cs,C3,Cy,C5),
uskips = {TLT]IDJ,J"]ID,% 7,3, hp,1, M2, hip,3, ti, mp} and uskipx = {7, Tm 1,
TD,2, 1,3, hip,1, hip,2, hip3, t, T} such that rip 1 # rm,1. A wins implies
that condition (1) - (4) defined in section 4.2 are all fulfilled.
Condition (1) and (2) implies that the PK on mp and 7pp are sound. That
1
is, (t%”ﬁf) 7% — 4%, Condition (3) implies that rm1 # 7m,, that is, K :=

D

Hi(g",rmar) # K = Ht(gF7 7m,17). Condition (4) implies that either

1. K+K;or
2. X # e(g,9”) where ¢ is computed from equation (1); or
3. g1 # g% where a is computed from equation (2) and (3)

Case (1) happens with negligible probability, due to the collision resistance
property of the hash function H;. Case (2) happens with negligible probability,
due to the soundness of SanityCheck which has been proven above. Case (3)
also happens with negligible probability, due to the security of the verifiable
encryption scheme [9].

Combining all cases, the adversary only has negligible advantage to win the
game. O

6 Conclusion

In this paper, we firstly identified a security issue of Goyal’s work in [4,5]. We
then proposed a way to fix it. Then, we took one step further than Goyal’s work
by proposing a Traceable and Retrievable IBE. In our notion, the PKG’s mas-
ter secret key is retrieved automatically if more than one user secret key are
released. We presented a formal model to capture this idea, and proposed a con-
crete scheme based on Gentry’s IBE [3]. We believe that the model we proposed
in this paper may be more appealing in practice as our model encourages the
PKG to strengthen their security system. If someone can successfully release an
additional user secret key, it means that his security is also compromised.

Acknowledgements

We would like to thank the anonymous reviewers of ACNS 2008 for their sug-
gestions and invaluable comments to improve this paper.



110 M.H. Au et al.

References

1. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer, Heidelberg
(1985)

2. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg
(2001)

3. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445-464. Springer, Heidel-
berg (2006)

4. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430-448. Springer, Heidelberg (2007)

5. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. Cryptol-
ogy ePrint Archive, Report 2007/368 (2007); revised and extended version of [4],
http://eprint.iacr.org/2007/368

6. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 235-251. Springer, Heidelberg (1990)

7. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical Report 260, Institute for Theoretical Computer Science, ETH
Zurich (1997)

8. Cramer, R., Damgard, 1., MacKenzie, P.: Efficient zero-knowledge proofs of knowl-
edge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000.
LNCS, vol. 1751, pp. 354-373. Springer, Heidelberg (2000)

9. Camenisch, J., Damgard, I.: Verifiable encryption, group encryption, and their appli-
cations to separable group signatures and signature sharing schemes. In: Okamoto,
T. (ed.) ASTACRYPT 2000. LNCS, vol. 1976, pp. 331-345. Springer, Heidelberg
(2000)



	Traceable and Retrievable Identity-Based Encryption
	Introduction
	Preliminaries
	On Goyal’s Scheme
	Review of Goyal’s First Traceable IBE Scheme
	Comments on the Instantiation of ZK-POK
	Comments on the Definition of [4]

	Traceable and Retrievable IBE
	TR-IBE Model
	Security Model for TR-IBE
	Further Comments on the Security Model of [4]

	A Concrete Scheme
	Construction
	Security Analysis

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




