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Abstract. In this paper, we describe a quantum algorithm for comput-
ing an isogeny between any two supersingular elliptic curves defined over
a given finite field. The complexity of our method is in Õ(p1/4) where p
is the characteristic of the base field. Our method is an asymptotic im-
provement over the previous fastest known method which had complexity
Õ(p1/2) (on both classical and quantum computers). We also discuss the
cryptographic relevance of our algorithm.
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1 Introduction

The computation of an isogeny between two elliptic curves in an important prob-
lem in public key cryptography. It occurs in particular in Schoof’s algorithm for
calculating the number of points of an elliptic curve [23], and in the analysis of
the security of cryptosystems relying on the hardness of the discrete logarithm
in the group of points of an elliptic curve [16, 17]. In addition, cryptosystems
relying on the hardness of computing an isogeny between elliptic curves have
been proposed in the context of quantum-safe cryptography [7, 22, 26, 5, 15]. For
the time being, they perform significantly worse than other quantum-safe cryp-
tosystems such as those based on the hardness of lattice problems. However,
the schemes are worth studying since they provide an alternative to the few
quantum-resistant cryptosystems available today.

In the context of classical computing, the problem of finding an isogeny
between two elliptic curves defined over a finite field Fq of characteristic p has
exponential complexity in p. For ordinary curves, the complexity is Õ(q1/4) (here
Õ denotes the complexity with the logarithmic factors omitted) using the algo-
rithm of Galbraith and Stolbunov [12]. In the supersingular case, the method
of Delfs and Galbraith [9] is the fastest known technique, having complexity
Õ(p1/2).

With quantum computers, the algorithm of Childs, Jao and Soukharev [6] al-
lows the computation of an isogeny between two ordinary elliptic curves defined



over a finite field Fq and having the same endomorphism ring in subexponen-
tial time Lq(1/2,

√
3/2). This result is valid under the Generalized Riemann

Hypothesis, and relies on computations in the class group of the common en-
domorphism ring of the curves. The fact that this class group in an abelian
group is crucial since it allows one to reduce this task to a hidden abelian shift
problem. In the supersingular case, the class group of the endomorphism ring
is no longer abelian, thus preventing a direct adaptation of this method. The
fastest known method for finding an isogeny between two isogenous supersingu-
lar elliptic curve is a (quantum) search amongst all isogenous curves, running
in Õ(p1/2). The algorithm of Childs, Jao and Soukharev [6] leads directly to
attacks against cryptosystems relying on the difficulty of finding an isogeny be-
tween ordinary curves [7, 22, 26], but those relying on the hardness of computing
isogenies between supersingular curves [5, 15] remain unaffected to this date.

Contribution. Our main contribution is the description of a quantum algorithm
for computing an isogeny between two given supersingular curves defined over a
finite field of characteristic p that runs in time Õ(p1/4). Moreover, our algorithm
runs in subexponential time Lp(1/2,

√
3/2) when both curves are defined over

Fp. Our method is a direct adaptation of the algorithm of Delfs and Galbraith [9]
within the context of quantum computing, using the techniques of Childs, Jao,
and Soukharev [6] to achieve subexponential time in the Fp case. We address
the cryptographic relevance of our method in Section 6.

2 Mathematical background

An elliptic curve over a finite field Fq of characteristic p 6= 2, 3 is an algebraic
variety given by an equation of the form

E : y2 = x3 + ax+ b,

where ∆ := 4a3 + 27b2 6= 0. A more general form gives an affine model in the
case p = 2, 3 but it is not useful in the scope of this paper since we derive an
asymptotic result. The set of points of an elliptic curve can be equipped with an
additive group law. Details about the arithmetic of elliptic curves can be found
in many references, such as [25, Chap. 3].

Let E1, E2 be two elliptic curves defined over Fq. An isogeny φ : E1 → E2 is a
non-constant rational map defined over Fq which is also a group homomorphism
from E1 to E2. Two curves are isogenous over Fq if and only if they have the same
number of points over Fq (see [28]). Two curves over Fq are said to be isomorphic
over Fq if there is an Fq-isomorphism between their group of points. Two such
curves have the same j-invariant given by j := 1728 4a3

4a3+27b2 . In this paper, we
treat isogenies as mapping between (representatives of) Fq-isomorphism classes
of elliptic curves. In other words, given two j-invariants j1, j2 ∈ Fq, we wish to
construct an isogeny between (any) two elliptic curves E1, E2 over Fq having j-
invariant j1 (respectively j2). Such an isogeny exists if and only if Φ`(j1, j2) = 0
for some `, where Φ`(X,Y ) is the `-th modular polynomial.



Let E be an elliptic curve defined over Fq. An isogeny between E and itself
defined over Fqn for some n > 0 is called an endomorphism of E. The set of
endomorphisms of E is a ring that we denote by End(E). For each integer m,
the multiplication by m map on E is an endomorphism. Therefore, we always
have Z ⊆ End(E). Moreover, to each isogeny φ : E1 → E2 corresponds an isogeny
φ̂ : E2 → E1 called its dual isogeny. It satisfies φ◦φ̂ = [m] where m = deg(φ). For
elliptic curves over a finite field, we know that Z ( End(E). In this particular
case, End(E) is either an order in an imaginary quadratic field (and has Z-rank
2) or an order in a quaternion algebra ramified at p and ∞ (and has Z-rank
4). In the former case, E is said to be ordinary while in the latter it is called
supersingular.

An order O in a field K such that [K : Q] = n is a subring of K which is a
Z-module of rank n. The notion of ideal of O can be generalized to fractional
ideals, which are sets of the form a = 1

dI where I is an ideal of O and d ∈ Z>0.
The invertible fractional ideals form a multiplicative group I, having a subgroup
consisting of the invertible principal ideals P. The ideal class group Cl(O) is by
definition Cl(O) := I/P. In Cl(O), we identity two fractional ideals a, b if there
is α ∈ K such that b = (α)a. The ideal class group is finite and its cardinality
is called the class number hO of O. For a quadratic order O, the class number
satisfies hO ≤ |∆| log |∆|, where ∆ is the discriminant of O.

The endomorphism ring of an elliptic curve plays a crucial role in most algo-
rithms for computing isogenies between curves. The class group of End(E) acts
transitively on isomorphism classes of elliptic curves (that is, on j-invariants
of curves) having the same endomorphism ring. More precisely, the class of an
ideal a ⊆ O acts on the isomorphism class of curve E with End(E) ' O via
an isogeny of degree N (a) (the algebraic norm of a). Likewise, each isogeny
ϕ : E → E′ where End(E) = End(E′) ' O corresponds (up to isomorphism) to
the class of an ideal in O. From an ideal a and the `-torsion (where ` = N (a)),
one can recover the kernel of ϕ, and then using Vélu’s formulae [29], one can
derive the corresponding isogeny.

Given ` > 0 prime, the `-isogeny graph between (isomorphism classes of)
elliptic curves defined over Fq is a graph whose vertices are the j-invariants of
curves defined over Fq having an edge between j1 and j2 if and only if there
exists an `-isogeny φ between some two curves E1, E2 defined over Fq having j-
invariant j1 (respectively j2). Note that while the curves E1 and E2 are required
to be defined over Fq, the isogeny φ is not. When ` - q, the `-isogeny graph
is connected. In this case, finding an isogeny between E1 and E2 amounts to
finding a path between the j-invariant j1 of E1 and the j-invariant j2 of E2 in
the `-isogeny graph. Most algorithms for finding an isogeny between two curves
perform a random walk in the `-isogeny graph for some small `. Our method is
based on this strategy.



3 High level description of the algorithm

Our algorithm to find an isogeny between supersingular curves E,E′ defined
over Fq of characteristic p is based on the approach of Galbraith and Delfs [9],
which exploits the fact that it is easier to find an isogeny between supersingular
curves when they are defined over Fp. The first step consists of finding an isogeny
between E and E1 (respectively between E′ and E2) where E1, E2 are defined
over Fp. On a quantum computer, we achieve a quadratic speedup for this first
step using Grover’s algorithm [13]. We then present a novel subexponential time
quantum algorithm to find an isogeny between E1 and E2.

All isomorphism classes of supersingular curves over Fq admit a representa-
tive defined over Fp2 . As pointed out in [9], it is a well-known result that the
number of supersingular j-invariants (that is, of isomorphism classes of super-
singular curves defined over Fp2) is

#Sp2 =
⌊ p

12

⌋
+


0 if p ≡ 1 mod 12,
1 if p ≡ 5, 7 mod 12,
2 if p ≡ 11 mod 12,

where Sp2 is the set of supersingular j-invariants in Fp2 . A certain proportion of
these j-invariants in fact lie in Fp; we denote this set by Sp. The number of such
j-invariants satisfies

#Sp =


h(−4p)

2 if p ≡ 1 mod 4,
h(−p) if p ≡ 7 mod 8,
2h(−p) if p ≡ 3 mod 8,

where h(d) is the class number of the maximal order of Q(
√
d) (See [8, Thm.

14.18]). As h(d) ∈ Õ(
√
d), we have #Sp ∈ Õ(

√
p) (while #Sp2 ∈ O(p)). The

method used in [9] to find an isogeny path to a curve defined over Fp has com-
plexity Õ(

√
p) (mostly governed by the proportion of such curves), while the

complexity of finding an isogeny between curves defined over Fp is Õ(p1/4).
Following this approach, we obtain a quantum algorithm for computing an

isogeny between two given supersingular curves defined over a finite field of
characteristic p that has (quantum) complexity in Õ(p1/4). As illustrated in
Figure 3, the search for a curve defined over Fp, which is detailed in Section 4,
has complexity Õ(p1/4). Then, the computation of an isogeny between curves
defined over Fp, which we describe in Section 5, has subexponential complexity.

Theorem 1 (Main result). Algorithm 1 is correct and runs under the Gen-
eralized Riemann Hypothesis in quantum complexity

– Õ(p1/4) in the general case.
– Lq(1/2,

√
3/2) when both curves are defined over Fp,

where Lp(a, b) := eb log(p)a log log(p)1−a .
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E1 defined over Fp E2 defined over Fp

Direct computation in Õ(p1/2)

In Õ(p1/4) In Õ(p1/4)

subexponential complexity

Fig. 1. Õ(p1/4) method for supersingular curves

Algorithm 1 Isogeny computation between supersingular curves defined over a
finite field
Input: Supersingular curves E,E′ defined over Fq of characteristic p.
Output: An isogeny between E and E′

1: Find φ : E → E1 where E1 is defined over Fp by using Algorithm 2
2: Find ψ : E′ → E2 where E2 is defined over Fp by using Algorithm 2
3: Find α : E1 → E2 by using Algorithm 3
4: return bψ ◦ α ◦ φ

Proof. Steps 1 and 2 run in complexity Õ(p1/4) as shown in Section 4 while Step 3
runs in subexponential complexity as shown in Section 5. Moreover, Steps 1 and 2
can be skipped if both curves are defined over Fp.

4 The quantum search for a curve defined over Fp

Given a supersingular elliptic curve E defined over Fp2 , we describe in this
section how to find an isogeny path to a curve E′ defined over Fp. Our method
has complexity Õ(p1/4) and is based on a quantum search amongst a set of short
isogeny paths initiating from E.

With classical algorithms, searching an unsorted database of N elements
cannot be done in time faster than O(N). With a quantum computer, Grover’s
algorithm [13] allows us to find an element x in the database such that C(x) = 1
(assuming all other elements y satisfy C(y) = 0) in complexity O(

√
N) with

success probability greater than 1/2. A rigorous analysis of the run time appears
in Boyer et al. [2], which also contains a generalization to a multiple target search.
The elements of the database are states that are encoded on n bits where N = 2n,
and condition C(x) is assumed to be evaluated in unit time on these states.



The `-isogeny graph for a prime ` - p is a Ramanujan graph [10, Sec. 2]. This
property allows us to evaluate the probability that an `-isogeny path reaches
a certain subset of the vertices. The following proposition applies this to the
problem of finding a path leading to the subset Sp of the set Sp2 of all the
vertices of the graph.

Proposition 1. Under the Generalized Riemann Hypothesis, there is a proba-
bility at least π

2γ
1

p1/2
that a random 3-isogeny path of length

λ ≥
log
(

2√
6eγ

p3/4
)

log
(

2√
3

)
passes through a supersingular j-invariant defined over Fp, where γ is the Euler
constant.

Proof. This is a direct application of [10, Prop. 2.1] which states that for c ≥ 2
√
`

and k = `+1, a random `-isogeny walk (for ` - p) of length at least
log((2|G|/|S|1/2)

log(k/c)

starting from a given curve will hit a subset S of the vertices G with probability
at least |S|

2|G| . We apply this to G = Sp2 and S = Sp, knowing that |G| ≥ p/12,
and that under the Generalized Riemann Hypothesis [14], the class number of
the maximal order of Q(

√
−d) satisfies

h(d) ≥ (1 + o(1)) · π

12eγ

√
d

log log(d)
.

A direct substitution of these values allows us to obtain the desired result.

When p is large enough, the probability that all of log(2) e
γ

π p
1/2 random 3-

isogeny-paths of length λ defined in Proposition 1 initiating from a given curve
do not hit any supersingular j-invariant defined over Fp is

(
1− π

eγ
· 1
p1/2

)log(2) e
γ

π p
1/2

= e
log(2) e

γ

π p
1/2·log

„
1− π

eγ ·
1

p1/2

«

∼ e
log(2) e

γ

π p
1/2·

„
− π
eγ ·

1
p1/2

«
=

1
2
.

Therefore, a set of N := log(2) e
γ

π p
1/2 random 3-isogeny-paths of length λ con-

tains at least one that passes through Sp with probability at least 1/2. A quantum
search with Grover’s algorithm yields our target isogeny path (which exists with
probability 1/2) in complexity O(

√
N) = O(p1/4). Let us formalize this search.

At each node corresponding to the j-invariant j0, the polynomial Φ3(j0, X) has
four roots, one corresponding to the father of the node, and j1, j2, j3 corre-
sponding to its children. Therefore, each path can be encoded in {0, 1, 2}λ. As
λ ∈ O(log(p)), the number of bits needed to encode such a path is also in
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C(x) = 1 if x passes
through a curve de-
fined over Fp

l-isogeny path x

Fig. 2. Quantum walk to a curve defined over Fp

O(log(p)). Note that the actual computation of a 3-isogeny between representa-
tives of the isomorphism classes of two given j-invariants is classical and used in
Section 5. It can be done in polynomial time. At the beginning of the algorithm,
we compute a random injection

f : [1, · · · , N ]→ {3-isogeny paths of length λ starting from E}.

For our search, we use the function C defined on x ∈ [1, · · · , N ] by

Cf (x) :=

{
1 if f(x) passes through Sp,

0 otherwise.

Proposition 2. Algorithm 2 has success probability 1/4 and expected run time
in Õ(p1/4).

Proof. The complexity derives from the analysis of Grover’s algorithm. The only
difference is that the evaluation of Cf is done in polynomial time, thus inducing
terms in log(p) in the complexity.

Remark 1. We can find an isogeny between two given supersingular curves E,E′

directly by using a quantum search method. It suffices to apply the above method
to the trivial subset S = {j(E′)} of size 1. The corresponding complexity is in
Õ(p1/2).



Algorithm 2 Quantum walk to a curve defined over Fp
Input: Supersingular curve E defined over Fq of characteristic p.
Output: E′ defined over Fp and φ : E → E′

1: λ :=

‰
log

“
2√
6eγ

p3/4
”

log
“

2√
3

”
ı

.

2: Choose f : [1, · · · , N ]→ {3-isogeny paths of length λ starting from E} randomly.
3: Use Grover’s algorithm to find x ∈ [1, · · · , N ] such that Cf (x) = 1.
4: Compute the isogeny path φ1, · · · , φλ corresponding to x.
5: return φ1 ◦ · · · ◦ φλ, φ1 ◦ · · · ◦ φλ(E).

5 Computing an isogeny between curves defined over Fp

We now present a quantum algorithm for computing an isogeny between su-
persingular curves defined over Fp in subexponential time Lp(1/2,

√
3/2). Our

approach relies on the correspondence between these curves and elliptic curves
with complex multiplication by a quadratic order described by Delfs and Gal-
braith [9], and on the quantum subexponential algorithm for ordinary curves of
Childs, Jao and Soukharev [6].

General strategy. The endomorphism ring End(E) of a supersingular curve is an
order in a quaternion algebra, but as shown in [9, Th. 2.1], the ring EndFp(E)
of endomorphisms defined over Fp is isomorphic to an order O in the quadratic
number field K := Q(

√
−p). More specifically, it is equal to either Z[

√
−p] or the

maximal order OK . There is a transitive action of Cl(O) on the Fp-isomorphism
classes of supersingular elliptic curves defined over Fp. As in the ordinary case,
the class of an ideal a acts via an isogeny of degree N (a). Therefore, for each
supersingular curve E defined over Fp with endomorphism ring isomorphic to
O, we have an injective function

fE : Cl(O) −→ Fp − isomorphism classes of curves over Fp
[b] 7−→ action of [b] on the class of E .

Given two supersingular curves E1 and E2 defined over Fp, the problem of finding
the ideal class [a] such that fE2(x) = fE1([a] · x) for all x is an instance of
the hidden abelian shift problem. We solve it to find the ideal class [a] such
that the class of E2 is the image of the action of [a] on the class of E1. Then
we find the corresponding isogeny φ : E1 → E′2 where E′2 lies in the same Fp-
isomorphism class as E2. Finally, we use the method described in [11, Appendix
A.2] to calculate the Fp-isomorphism between E′2 and E2. The composition of
both maps is an isogeny between E1 and E2. The procedure is summarized in
Algorithm 3.

The action of Cl(O). Let K be the quadratic number field Q(
√
−p) having

maximal order OK . By [9, Prop. 2.5], there is a one-to-one correspondence{
Supersingular elliptic curves
defined over Fp

}
↔
{

Elliptic curves E over C with
End(E) ∈ {Z[

√
−p],OK}

}
.



Algorithm 3 Computation of an isogeny between supersingular curves over Fp
Input: Supersingular curves E1, E2 defined over Fp.
Output: An isogeny φ : E1 → E2.
1: Compute an isogeny φ1 : E1 → E′1 with End(E′1) = OK .
2: Compute an isogeny φ2 : E2 → E′2 with End(E′2) = OK .
3: Solve the hidden abelian shift problem to find [a] ∈ Cl(OK) such that the action

of [a] on the isomorphism class of E′1 is the class of E′2.
4: Deduce an isogeny φ3 : E′1 → E′′2 where E′′2 is Fp-isomorphic to E′2.
5: Find the Fp isomorphism α : E′′2 → E′2.

6: return cφ2 ◦ α ◦ φ3 ◦ φ1.

In one direction, this correspondence is given by the Deuring lift, while in the
other direction, it is given by the reduction at a place P above p. Moreover, we
have a bijective map

Classes of curves with End(E) = O −→ Classes of curves with End(E)Fp = O
Isomorphism class of E 7−→ Fp-isomorphism class of Ē

where Ē is the reduction of E modulo P. Therefore, the Fp-isomorphism classes
of curves over Fp with Fp-endomorphism ringO are in one-to-one correspondence
with isomorphism classes of complex curves with endomorphism ring O. The
class group of O acts on these complex curves, therefore inducing by modular
reduction an action on the curves over Fp. Indeed, the class [a] of an ideal
a ⊆ O acts on the class of a complex curve E via an isogeny φ : E → E′

with deg(φ) = N (a). By [9, Prop.2.6], this gives us by reduction an isogeny
φ : Ē → Ē′. From the correspondence between isomorphism classes over C and
Fp-isomorphism classes over Fp, we get a group action of O on Fp-isomorphism
classes of supersingular curves defined over Fp.

Computing the action of Cl(O). Our method to solve the hidden abelian shift
problem is based on the algorithm described by Childs, Jao and Soukharev [6]
which relies on a (classical) subexponential algorithm to compute the action
of [a] ∈ Cl(O) on isomorphism classes of ordinary curves. In this paragraph, we
show how to compute (classically) the action of Cl(O) on Fp-isomorphism classes
of supersingular curves E : Y 2 = X3 + aX + b = 0 with EndFp(E) ' O. In a
nutshell, it is similar to the approach of Childs, Jao and Soukharev [6], except
that the role of End(E) is replaced by EndFp(E).

The first step consists of finding split prime ideals p1, · · · , pk having norm
N (pi) ≤ Lp(1/2,

√
3/2) such that [a] = [p1]e1 · · · [pk]ek . This way, the action of

[a] can be calculated as the composition of the action of the [pi] for i ≤ k. The
subexponential classical strategy for performing this decomposition is standard
in class group computation and discrete logarithm resolution. In this paper, we
use the particular version described in [6, Alg. 1].

Once [a] has been successfully rewritten, evaluating its action reduces to
evaluating that of [p] where p is a split prime ideal with N (p) = `. Let us denote
by Ē a representative of the Fp-isomorphism class on which we want to evaluate



the action of [p] and by E its Deuring lift (which we do not actually compute).
Amongst the ` + 1 complex roots of Φ`(j(E), X) (where ` - p, ` 6= 2), only two
reduce to j-invariants defined over Fp. One of them corresponds to the action of
[p] on the isomorphism class of E while the other one is the result of the action
of [p] (where p is the complex conjugate of p). The other roots correspond to
ascending or descending isogenies.

Let j be one of the roots mentioned above. As described in Bröker, Charles
and Lauter [4, Section 3], there are two methods for computing the equation of a
curve E′ in the isomorphism class identified by j. One method is to use the Atkin-
Elkies formulas given by Schoof in [23, Sec. 7] to compute E′ : Y 2 = X3+a′X+b′

where

a′ = − 1
48

j′
2

j(j − 1728)
, b′ = − 1

864
j′

3

j2(j − 1728)
, j′ = −18

`

b

a

Φ`,X(j(E), j)
Φ`,Y (j(E), j)

j(E),

with Φ`,X(X,Y ) = ∂Φ`
∂X (X,Y ) and Φ`,Y (X,Y ) = ∂Φ`

∂Y (X,Y ). Reduction modulo
P of the above formulas yield an equation of a supersingular curve defined over
Fp in the Fp-isomorphism class corresponding to the class of complex curves
having j-invariant j. This method can fail in the event that one of the terms
appearing in a denominator (namely, j, j − 1728, or Φ`,Y (j(E), j)) equals zero.
The second method is to use division polynomials to construct E[`] explicitly over
a field extension. One then checks each of the possible ` + 1 cyclic `-subgroups
of E[`] until the correct kernel is found.

In the case of ordinary elliptic curves, the j-invariants j = 0 and j = 1728
that induce failure in the first method can often be avoided (for example, if
they do not belong to the isogeny class in question), and the term Φ`,Y (j(E), j)
never vanishes as long as ` < 4 · |disc(End(E))|. In the supersingular case,
we found experimentally that the Φ`,Y (j(E), j) term does often vanish even
when ` < 4 · | disc(End(E))|, necessitating the second approach, which works
unconditionally.

To determine if j was the j-invariant of the isomorphism class resulting from
the action of the class of p or its conjugate, we first compute the kernel C ⊂ Ē[`]
of the isogeny between Ē and Ē′ by the approach described by Schoof [23,
Sec. 8] and used by Bröker Charles and Lauter [4]. The ideal p is of the form
p = `O + (c+ d

√
−p)O, and it induces an action on the points P of Ē given by

p·P = [`]P+[c]P+[d]πp(P ) where πp is the p-th power Frobenius endomorphism.
If p · P = 0 for all P ∈ C, our choice was correct; otherwise, we redo the
computation with the other root of Φ`(j(E), X).

Proposition 3. The running time of Algorithm 4 is Lp
(

1
2 ,
√

3
2

)
Proof. The proof of complexity follows from the considerations of [6, Sec. 4.1].

Solving the abelian shift problem. As we have an action of Cl(O) on the Fp-
isomorphism classes of supersingular curves defined over Fp that we can compute
in subexponential time, we can readily apply the same method as in [6, Sec. 5] to



Algorithm 4 Action of [a] ∈ Cl(O)
Input: A supersingular curve E defined over Fp, a quadratic order O ' EndFp(E) and

an ideal a ⊆ O.
Output: A supersingular curve E′ defined over Fp in the Fp-isomorphism class result-

ing from the action of [a] on the class of E.
1: Find (pi)i≤k with pi - (2) · (#E(Fp)) and N (pi) ≤ Lp(1/2,

√
3/2) such that [a] =Q

i[pi]
2: for i ≤ k do
3: Compute Φi(X,Y ) where l = N (pi).
4: Find the two roots j1, j2 of Φl(j(E), X) defined over Fp.
5: Compute E′ of j-invariant j1 using the method of [23, Sec. 7].
6: Compute the kernel C of the isogeny E → E′ using the method of [23, Sec. 8].
7: If there exists P ∈ C such that [c]P + [d]πp(P ) 6= 0, where c and d are integers

such that p = (`, c+ dπp), go back to Step 5 and use j2 instead of j1.
8: E ← E′.
9: end for

10: return E′.

solve the hidden abelian shift problem. Childs, Jao and Soukharev considered two
quantum algorithms. The first one is Kuperberg’s approach based on a Clebsch-
Gordan sieve on coset states [19]. The other one relies on Regev’s algorithm [21].
In this way we obtain the following result.

Proposition 4 (Theorem 5.4 of [6]). On a quantum computer, the hidden
abelian shift of Step 3 in Algorithm 3 can be solved in time Lp(1/2,

√
3/2) under

the Generalized Riemann Hypothesis.

Climbing the volcano. Steps 1 and 2 of Algorithm 3 ensure that the curves
between which we are trying to compute an isogeny have the same endomorphism
ring. As mentioned in [9], a supersingular elliptic curve defined over Fp has Fp-
endomorphism ring satisfying EndFp(E) ' O for O ∈ {Z[

√
−p,OK}. This means

that the isogeny volcano has at most two levels, namely the crater and the ground
level. In Steps 1 and 2 of Algorithm 3 we climb to the crater. This step can be
done by computing a single 2-isogeny. As shown in [9, Sec. 2], if Φ2(j(E), X) has
three roots, then EndFp(E) = OK and we do nothing. Otherwise, Φ2(j(E), X)
has one root, which is the j-invariant of an isogenous curve E′ on the crater (that
is, with EndFp = OK). In this case, we know that EndFp(E) = Z[

√
−p] 6= OK

and we compute φ : E → E′.

6 Cryptographic relevance

The main motivation for our result is its impact on existing cryptosystems re-
lying on the hardness of finding an isogeny between two given curves. Those
that use ordinary elliptic curves [7, 22, 26] are not affected by our method. The
subexponential algorithm of Childs, Jao and Soukharev [6] already provides a
quantum subexponential attack against these.



De Feo-Jao-Plût cryptographic schemes. In [10] (which is an extended version
of [15]), De Feo, Jao and Plût presented a key exchange protocol, an encryption
protocol and a zero knowledge proof of identity all relying on the difficulty of
computing an isogeny between supersingular curves. More specifically, given a
secret point S of a curve E over Fp2 , and a public point R, they exploit the
commutative diagram

E E/〈S〉

E/〈R〉 E〈S,R〉

The unified treatment of these three cryptographic schemes around the above
commutative diagram yields situations where the degree of the secret isogenies
is known and in O(

√
p). Therefore, there is a classical attack in O(p1/4) and a

quantum attack relying on a claw algorithm [24] with complexity O(p1/6). Given
these results, our p1/4 quantum algorithm does not yield the fastest attack.
Moreover, it is not even clear that finding an arbitrary isogeny between two
given curves yields an attack at all since the cryptosystems described in [10]
rely on the difficulty of finding an isogeny of given degree, while our method
returns an isogeny of arbitrary degree. Note that a recent contribution of Jao and
Soukharev [18] uses similar methods to describe a quantum-resistant undeniable
signature scheme.

Even though our work does not directly yield a faster attack against the
existing schemes of [10], it does introduce the possibility that choosing a base
curve E defined over Fp may be insecure. The base curve E is a public parameter,
chosen once and for all at the time the system is initialized, and never changed
during the life of the system. If this base curve is defined over Fp, then Step 1 of
Algorithm 1 becomes trivial. While this situation is not fatal, it does seem to be
cause for some concern, provided that the arbitrary degree obstacle mentioned
above can be overcome; at the very least, it decreases by half the amount of
work the attacker must perform. De Feo et al. [10, Section 4.1] propose two
methods for choosing the base curve. One of these methods uses random walks,
and would not normally produce base curves defined over Fp. The other method
uses Bröker’s algorithm [3] to produce a supersingular curve which is then used
directly as the base curve. This method does sometimes produce curves defined
over Fp, and in light of our results, we recommend avoiding this method out of
an abundance of caution.

Generalizations of De Feo-Jao-Plût. It is possible to conceive of potential gener-
alizations of the cryptosystems presented in [10] to a situation where the degree
of the isogenies is unknown, in which case our algorithm would yield the fastest
(quantum) attack. For example, let us sketch how this could be done for the
zero knowledge proof of identity. Assume Peggy knows a secret kernel C1 and



ψ : E → E/C1. At each round, Peggy draws a kernel C2 coprime with C1 and
publishes E,E/C1, E/C2, E〈C1,C2〉. Then Vic flips a coin b.

– If b = 0, she asks to know E → E/C2 and E/C1 → E/〈C1, C2〉.
– If b = 1, she asks to know E/C2/C1 → E/〈C1, C2〉.

The kernels can be drawn from coprime power-products of ideals of small norm in
End(E), thus ensuring that the diagram commutes. A proof similar to that of [10,
Th. 6.3] shows that it is zero knowledge. This protocol relies on the difficulty of
finding an isogeny between two given curves, and the fastest quantum attack is
our p1/4 algorithm. Of course, this generalization is difficult to make practical,
and many optimizations were made in [10] that justify using isogenies of known
degrees. Our suggestion is merely an illustration of the fact that adaptations to
the case of secret isogenies of unknown degree could be used.

The Charles-Goren-Lauter hash function. In [5], Charles, Gore and Lauter de-
scribed a cryptographic hash function using supersingular elliptic curves. More
specifically, its preimage resistance relies on the difficulty of finding an isogeny
between two given (supersingular) elliptic curves over Fp2 . In this context, our
algorithm directly yields the fastest known quantum attack in Õ(p1/4).

7 Example

For the purposes of validating our algorithm, we implemented Algorithm 4 in
the MAGMA Computational Algebra System [1, 20] (Algorithm 4 being the only
algorithm in this work which can be implemented on a classical computer). We
present an example calculation here.

Let p = 101, ` = 83, and a = (`, 27+πp) (corresponding to the quadratic form
83x2−54xy+10y2). Let E be the curve y2 = x3+77x+42 over Fp. This example
was chosen to be small enough to allow direct calculation of the answer, in
order to check the correctness of our work. Using the division polynomial-based
method of [4, Section 3.2], we find that the 83-isogenous curve corresponding
to a is E′ : y2 = x3 + 40x + 65, having j-invariant j(E′) = 66. In order to
redo the calculation according to the method specified in Algorithm 4, we used
Sutherland’s smoothrelation program [27] to find the relation

p83 = p̄25
5 p̄16

7 p̄3
11.

We then calculated the chain of isogenies corresponding to the right side of the
equation. This calculation results in the curve E′′ : y2 = x3 + 44x + 24 which
has the same j-invariant as E′.

8 Conclusion

We described the fastest known quantum method for computing isogenies be-
tween supersingular curves, both for the general case and when the curves are



defined over Fp. In the general case, the quantum complexity of our attack is
Õ(p1/4). Some cryptographic applications of our work include a faster quantum
preimage attack against the Charles-Goren-Lauter hash function, and a recom-
mendation to avoid using base curves defined over Fp in De Feo-Jao-Plût type
schemes.
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