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Abstract. Hash Proof Systems or Smooth Projective Hash Functions (SPHFs) are a form of implicit
arguments introduced by Cramer and Shoup at Eurocrypt’02. They have found many applications since
then, in particular for authenticated key exchange or honest-verifier zero-knowledge proofs. While they
are relatively well understood in group settings, they seem painful to construct directly in the lattice
setting.
Only one construction of an SPHF over lattices has been proposed, by Katz and Vaikuntanathan at
Asiacrypt’09. But this construction has an important drawback: it only works for an ad-hoc language
of ciphertexts. Concretely, the corresponding decryption procedure needs to be tweaked, now requiring
q many trapdoor inversion attempts, where q is the modulus of the underlying Learning With Error
(LWE) problem.
Using harmonic analysis, we explain the source of this limitation, and propose a way around it. We
show how to construct SPHFs for standard languages of LWE ciphertexts, and explicit our construction
over a tag-IND-CCA2 encryption scheme à la Micciancio-Peikert (Eurocrypt’12). We then improve our
construction and our analysis in the case where the tag is known in advance or fixed (in the latter case,
the scheme is only IND-CPA) with a super-polynomial modulus, to get a stronger type of SPHF, which
was never achieved before for any language over lattices.
Finally, we conclude with applications of these SPHFs: password-based authenticated key exchange,
honest-verifier zero-knowledge proofs, and a relaxed version of witness encryption.
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1 Introduction

Harmonic analysis is a powerful tool in geometry of numbers, especially in combination with
Gaussian measure, which has lead to important progress on transference theory [Ban93]. Those
tools also played a crucial role for the foundation of lattice-based cryptography, being at the heart of
proofs of worst-case hardness for lattice problems, such as the Short Integer Solution problem (SIS)
and the Learning with Errors (LWE) problem [MR04,Reg05,GPV08]. Later, security proofs relied
on a few convenient lemmas in a black-box manner, and for most applications this was sufficient:
lattice-based cryptography quickly caught up with pairing-based cryptography, for example with
the constructions of (Hierarchical) Identity Based Encryption’s [GPV08, CHKP10,MP12] and
beyond [Boy13,GVW13,GVW15].

There nevertheless remains one primitive for which lattice-based cryptography is still far behind:
Hash Proof Sytems or Smooth Projective Hash Functions (SPHFs) [CS02]. Beyond the original
Chosen-Ciphertext secure encryption scheme of Cramer and Shoup [CS98], SPHFs give rise to
generalized classes of Authenticated Key Exchange (Password-based, Language-based, . . . ) [GL06,
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ACP09,KV11,BBC+13a]. They also have been used in Oblivious Transfer [Kal05,ABB+13], One-
Time Relatively-Sound Non-Interactive Zero-Knowledge Arguments [JR12], and Zero-Knowledge
Arguments [BBC+13b].

An SPHF can be seen as an implicit (designated-verifier) zero-knowledge proof for a language.
The most useful languages for SPHFs are the languages of ciphertexts of a given plaintext M .

To our knowledge, there is only one construction of SPHF for a lattice-based encryption scheme,
given by Katz and Vaikuntanathan [KV09], and no subsequent work.5 However, their construction
has a main drawback: the language of their SPHF is not simply defined as the set of valid standard
LWE ciphertexts. Naturally, the set of valid ciphertexts of 0 should correspond to the set of
ciphertexts close to the lattice defined by the public key. Instead, their language includes all the
ciphertexts c such that at least one integer multiple is close to the public lattice. This makes
the decryption procedure very costly (about q trapdoor inversions), and forbids the use of super-
polynomial modulus q. This limitation is a serious obstacle to the construction of a stronger type
of SPHF, called KV-SPHF in reference to [KV11], for which the projection key (which can be seen
as the public key of the SPHF) does not depend on the ciphertext c.

This strongly contrasts with SPHFs in a group-based setting, which can handle classical ElGamal
or Cramer-Shoup encryption schemes —for example [CS02,GL06]— without any modification of
the decryption procedure. This is a technical hassle to carry when building on top of such an SPHF.

We therefore view as an important question to determine whether this caveat is inherent to
lattice-based SPHFs, or if it can be overcome. We shall find an answer by re-introducing some
harmonic analysis.

1.1 Contributions

Our main contribution consists in constructing SPHFs for standard lattice-based encryption schemes.
We provide general theorems to ease the proofs of correctness and security (a.k.a., smoothness or
universality) of SPHFs over standard lattice-based encryption schemes. We detail two particular
instantiations: one over an IND-CCA2 encryption scheme à la Micciancio-Peikert [MP12], and one
over a IND-CPA restriction of the same scheme. While the second instantiation is over a simpler
language, it is a stronger type of SPHF, namely it is a KV-SPHF. To our knowledge, this is the
first KV-SPHF over any lattice-based language.

As with many zero-knowledge-type primitives in the lattice setting [Lyu08,Lyu09] and as with
the SPHF of [KV09], there is a gap between the correctness property and the security property.
Concretely, smoothness holds for ciphertexts which do not decrypt to a given message, while
correctness holds only for honestly generated ciphertexts. However, contrary to [KV09], we use a
standard encryption scheme and do not need to tweak the decryption procedure nor the language.
We thus avoid the main caveat of the latter paper.

More precisely, using harmonic analysis we explain the reason for the caveat of the SPHF
of [KV09], namely the presence of many harmonics in the q-periodic function used to extract
entropy from the approximately shared secret (this extracting function being the usual deterministic
rounding function, corresponding to a square signal, in [KV09]). According to our Theorem 3.2,
we can guarantee statistical smoothness for invalid ciphertexts using one decryption attempt per
couple of conjugate harmonics (seen as complex functions) of the entropy extracting function.

Having identified the source of the caveat, it becomes clear how to repair it: the entropy
extracting function should be randomized, with a weight following a pure cosine. This decreases the
number of harmonics to three (the average and one pair of complex conjugates), and therefore the
number of required decryptions to one (Corollary 3.3 and Theorem 3.5).

This solution nevertheless does only provide approximate correctness, which is also problematic
for some applications. This can be solved using correctness amplification via codes, but at the price
of preventing the resulting SPHF to be a KV-SPHF.

5 Except for a retracted draft by Blazy et al. [BCDP13].
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In our second instantiation, we therefore proceed to construct an almost-square rounding
function, which offers statistical correctness6 and imperfect universality, (namely (1/3 + o(1))-
universality, as proved in Theorem 4.5). This instantiation requires a more subtle analysis, taking
account of destructive interferences. We then can amplify universality to get statistical smoothness
while keeping a statistical correctness. Contrary to the correctness amplification, this transformation
preserves the independence of the projection key from the ciphertext. In particular, if the ciphertexts
are from an IND-CPA scheme à la Micciancio-Peikert, then we get the first KV-SPHF over a
lattice-based language.

This KV-SPHF uses a super-polynomial modulus q. It seems hard to construct such a KV-SPHF
for a polynomial modulus, as a KV-SPHF for an IND-CPA encryption scheme directly yields a
one-round key exchange (where each party sends a ciphertext of 0 and a projection key, and where
the resulting session key is the xor of the two corresponding hash values) and we do not know of
any lattice-based one-round key exchange using a polynomial modulus.

Having built these new SPHFs, we can now proceed with several applications showing that
the gap between smoothness (or universality) and correctness is not an issue in most cases. We
start by proposing an efficient password-authenticated key exchange (PAKE) scheme in three
flows. We do so by plugging our first SPHF in the framework from [KV09]. Using in addition our
KV-SPHF and following the GL-PAKE construction from [ABP15b] which is an improvement of
the Gennaro-Lindell framework [KOY01,GL06], we get the first Gennaro-Lindell-based PAKE in
two flows over lattices.7

We also show how to construct honest-verifier zero-knowledge proofs for any NP language from
lattice-based SPHF. We conclude by showing a relaxed version of witness encryption for some
lattice-based languages. Witness encryption is a very recent primitive introduced in [GGSW13]
which enables a user to encrypt a message to a given word of some NP language. The message can
be decrypted using a witness for the word.

1.2 Open Question

We see as the main open question to extend our techniques to their full extent in the ring-setting.
More precisely, our SPHF only produces one bit, and is easily extended to the ring-setting still
asking for 1 bit. This requires costly repetitions for applications, and one would hope that a ring
setting variant could directly produce Θ(n) bits.

1.3 Road Map

We start by some preliminaries on lattices and SPHFs in Section 2. In particular, we define several
variants of lattice-based (approximate) SPHFs (in particular universal bit-PHFs) and formally show
various transformations which were only implicit in [KV09].

In Section 3, we then show step-by-step how to construct an SPHF for IND-CCA2 ciphertexts
à la Micciancio-Peikert and how to avoid the caveat of the construction of [KV09].

In Section 4, we construct a KV-SPHF for ciphertexts under a IND-CPA scheme à la Micciancio-
Peikert, when the modulus is super-polynomial.

In Section 5, we conclude by exhibiting several applications.
Figure 1 summarizes our results and the paper road map. All the notions in this figure are

formally defined in Section 2.

6 More precisely, the probability of error is poly(n, σ)/q, which is negl(n) for super-polynomial approximation
factors q/σ.

7 We should point out however, that it is also possible to construct a 2-round PAKE by combining [KV09] and [GK10]
(a generalization of [JG04]). But the resulting PAKE would not follow the framework of Gennaro and Lindell [GL06].
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Fig. 1: Summary of results

2 Preliminaries

2.1 Notations

The security parameter is denoted n. The notation negl(n) denotes any function f such that
f(n) = n−ω(1). For a probabilistic algorithm alg(inputs), we may explicit the randomness it uses
with the notation alg(inputs ; coins), otherwise the random coins are implicitly fresh.

Column vectors will be denoted by bold lower-case letters, e.g. x, and matrices will be denoted
by bold upper-case letters, e.g. A. If x is vector and A is a matrix, xt and At will denote their
transpose. We use [A|B] for the horizontal concatenation of matrices, and [A ; B] = [At|Bt]t for the
vertical concatenation. For x ∈ Rm, ‖x‖ will denote the canonical euclidean norm of x. We will use
B to denote the euclidean ball of radius 1, where, unless specifically stated otherwise, the ball is m-
dimensional. If x,y ∈ Rm, 〈x,y〉 will denote their canonical inner product, and d(x,y) = ‖x− y‖
their distance. If E ⊂ Rm is countable and discrete, we will denote d(x, E) = miny∈E d(x,y).
For a function f : E → C or f : E → R, f(E) will denote the sum

∑
x∈E f(x). For a, b ∈ R,

[a, b] = {x ∈ R | a ≤ x ≤ b} will denote the closed real interval with endpoints a and b, bac, dae,
and bae will respectively denote the largest integer smaller than a, the smallest integer greater
than a, and the closest integer to a (the largest one if there are two). The xor of two bit strings
a, b ∈ {0, 1}k is denoted by a⊕ b.

The modulus q ∈ Z will be taken as an odd prime, for simplicity.

2.2 Lattices and Gaussians

Lattices. An m-dimensional lattice Λ is a discrete subgroup of Rm. Equivalently, Λ is a lattice if
it can be written Λ = {Bs | s ∈ Zn} where n ≤ m, for some B ∈ Rm×n, where the columns of B
are linearly independent. In that case, B is called a basis of Λ. Then, we define the determinant of
Λ as det(Λ) =

√
det(BtB), which does not depend on the choice of the basis B.

We define the dual lattice of Λ as

Λ∗ = {x ∈ SpanR(Λ) | ∀y ∈ Λ, 〈x,y〉 ∈ Z} .

Recall the identity (Λ∗)∗ = Λ. Given A ∈ Zm×nq where m ≥ n, and modulus q ≥ 2, we define the
following q-ary lattices

Λ(A) = {As | s ∈ Znq }+ qZm , Λ⊥(A) = {h ∈ Zm | htA = 0t mod q} .

Note that up to a scaling factor, Λ(A) and Λ⊥(A) are dual of each other: Λ(A) = q · Λ⊥(A)∗. For
a syndrome p ∈ Znq , we define the coset of Λ⊥(A):

Λ⊥p (A) = {h ∈ Zm | htA = pt mod q} .
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When there is no confusion about which matrix A is used, we will simply denote them Λ, Λ⊥, and
Λ⊥p respectively.

Gaussians. If s > 0 and c ∈ Rm, we define the Gaussian weight function on Rm as

ρs,c : x 7→ exp(−π‖x− c‖2/s2).

Similarly, if Λ is an m-dimensional lattice, we define the discrete Gaussian distribution over Λ, of
parameter s and centered in c by:

∀x ∈ Λ, DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) .

When c = 0, we will simply write ρs and DΛ,s. We recall the tail-bound of Banaszczyk for discrete
Gaussians:

Lemma 2.1 ([Ban93, Lemma 1.5], as stated in [MR04, Lemma 2.10]). For any c > 1/
√

2π,
m-dimensional lattice Λ and any vector v ∈ Rm:

ρs(Λ \ sc
√
mB) ≤ Cmρs(Λ) , ρs((Λ+ v) \ sc

√
mB) ≤ 2Cmρs(Λ) .

where C = c
√

2πe · e−πc2
< 1.

An important quantity associated to a lattice is its smoothing parameter, introduced by Mic-
ciancio and Regev [MR04]:

Definition 2.2 (Smoothing parameter [MR04]). For ε > 0, the smoothing parameter of a
lattice Λ, denoted ηε(Λ), is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε.

The following lemma states that if the parameter of the discrete Gaussian is above the smoothing
parameter of the lattice, then the Gaussian weight of the cosets of Λ are essentially the same:

Lemma 2.3 ([Reg05, Claim 3.8]). For any lattice Λ ⊂ Rm, c ∈ Rm, and s ≥ ηε(Λ):

(1− ε)sm det(Λ∗) ≤ ρs(Λ+ c) ≤ (1 + ε)sm det(Λ∗) .

The smoothing parameter of the dual of a random q-ary lattice can be controlled using the
following:

Lemma 2.4 (Corollary of [MP12, Lemma 2.4]). Fix parameters n, q a prime, and m ≥
Θ(n log q). Let ε ≥ 2−O(n) and s > 2ηε(Zm). Fix 0 < δ ≤ 1. Then, for A uniformly random in
Zm×nq , we have s ≥ η2ε/δ(Λ⊥(A)) except with probability at most δ over the choice of A.

To instantiate the above, we recall the smoothing parameter of Zm.

Lemma 2.5 (Corollary of [MR04, Lemma 3.3]). For all integer m ≥ 1, ε ∈ (0, 1/2), the
smoothing parameter of Zm satisfies ηε(Zm) ≤ C

√
log(m/ε) for some universal constant C > 0.

Harmonic analysis. Let us recall the exponential basis of periodic functions and their vectorial
analogues:

ex : y 7→ exp(2iπxy) , ex : y 7→ exp(2iπ〈x,y〉) .

The Fourier transform of f : Rm → C is defined by:

f̂(ξ) =
∫
Rm

f(x)e−2iπ〈x,ξ〉dx .
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The Fourier transform of the Gaussian weight function ρs is ρ̂s = smρ1/s. Recall the time-shift-
phase-shift identity: if g(x) = f(x)ez(x) for some z ∈ Rm, then ĝ(ξ) = f̂(ξ − z). Similarly, if
g(x) = f(x+ t) for some t ∈ Rm, then ĝ(ξ) = f̂(ξ)et(ξ). For two functions f, g : Rm → C, we will
denote by f � g their convolution product:

f � g(x) =
∫
Rm

f(y)g(x− y)dy .

The Fourier transform turns convolutions into pointwise products, and conversely:

f̂ � g(ξ) = f̂(ξ) · ĝ(ξ) , f̂ · g(ξ) = f̂(ξ)� ĝ(ξ) .

Finally, let us recall the Poisson summation formula:

Lemma 2.6 (Poisson summation formula). For any lattice Λ and f : Rm → C, we have:

f(Λ) = det(Λ∗)f̂(Λ∗) .

Learning with Errors.

Definition 2.7 (Learning with Errors (LWE)). Let q ≥ 2, and χ be a distribution over Z. The
Learning with Errors problem LWEχ,q consists in, given polynomially many samples, distinguishing
the two following distributions:

– (a, 〈a, s〉+ e), where a is uniform in Znq , e← χ, and s ∈ Znq is a fixed secret chosen uniformly,
– (a, b), where a is uniform in Znq , and b is uniform in Zq.

In [Reg05], Regev showed that for χ = DZ,σ, for any σ ≥ 2
√
n, and q such that q/σ = poly(n),

LWEχ,q is at least as hard as solving worst-case SIVP for polynomial approximation factors.

Trapdoor for LWE. Throughout this paper, we will use the trapdoors introduced in [MP12] to
build our public matrix A. Define gA(s, e) = As+ e, let Gt = In ⊗ gt, where gt = [1, 2, . . . , 2k]
and k = dlog qe − 1, and let H ∈ Zn×nq be invertible.

Lemma 2.8 ([MP12, Theorems 5.1 and 5.4]). There exist two PPT algorithms TrapGen and
g−1

(·) with the following properties assuming q ≥ 2 and m ≥ Θ(m log q):

– TrapGen(1n, 1m, q) outputs (T ,A0), where the distribution of the matrix A0 is at negligible
statistical distance from uniform in Zm×nq , and such that TA0 = 0, where s1(T ) ≤ O(

√
m) and

where s1(T ) is the operator norm of T , which is defined as maxx 6=0 ‖Tx‖/‖x‖.8
– Let (T ,A0) ← TrapGen(1n, 1m, q). Let AH = A0 + [0 ; GH] for some invertible matrix H
called a tag. Then, we have TA = GH. Furthermore, if x ∈ Zmq can be written as AHs+ e

where ‖e‖ ≤ B′ := q/Θ(
√
m), then g−1

AH
(T ,x,H) outputs (s, e).

We will simply write g−1
A (T ,x) when H = In.

More precisely, to sample (T ,A0) with TrapGen, we sample a uniform Ā ∈ Zm̄×nq where m̄ =
m− nk = Θ(n log q), and some R← Dnk×m̄, where the distribution Dnk×m̄ assigns probability 1/2
to 0, and 1/4 to ±1. We output T = [−R | Ink] along with A0 = [Ā ; RĀ]. Then, given a tag H,
we have: T (A0 + [0 ; GH]) = GH.

8 The bound on s1(T ) holds except with probability at most 2−n in the original construction, but for convenience
we assume the algorithm restarts if it does not hold.
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Tag-IND-CCA2 LWE encryption à la Micciancio-Peikert. For our applications, we will
need a (labelled) encryption scheme that is IND-CCA2 (the definition is given in Appendix A.1).
This can be built generically and efficiently from a tag-IND-CCA2 encryption scheme, as recalled
in Appendix A.2. Below, we describe a simplified variant of the scheme of [MP12, Sec. 6.3].

For this scheme, we assume q to be an odd prime. We set an encoding function for messages
Encode(µ ∈ {0, 1}) = µ · (0, . . . 0, dq/2e)t. Note that 2 · Encode(µ) = (0, . . . , 0, µ) mod q.

Let R be a ring with a subset U ⊂ R× of invertible elements, of size 2n, and with the unit
differences property: if u1 6= u2 ∈ U , then u1 − u2 is invertible in R. Let h be an injective ring
homomorphism from R to Zn×nq (see [MP12, Section 6.1 and 6.3] for an explicit construction). Note
that if u1 6= u2 ∈ U , then h(u1 − u2) is invertible, and thus an appropriate tag H = h(u1 − u2) for
the trapdoor.

Let (T ,A0) ← TrapGen(1n, 1m, q). The public encryption key is ek = A0, and the secret
decryption key is dk = T .

– Encrypt(ek = A0, u ∈ U , µ ∈ {0, 1}) encrypts the message µ under the public key ek and for the
tag u, as follows: Let Au = A0 + [0 ; Gh(u)]. Pick s ∈ Znq , e← Dm

Z,t where t = σ
√
m ·ω(

√
logn).

Restart9 if ‖e‖ > B, where B := 2t
√
m. Output the ciphertext:

c = Aus+ e+ Encode(µ) mod q .

– Decrypt(dk = T , u ∈ U , c ∈ Zmq ) decrypts the ciphertext c for the tag u using the decryption
key dk as follows: Output{

µ if g−1
Au

(T , 2c, h(u)) = 2e+ (0, . . . , 0, µ) where e ∈ Zm and ‖e‖ ≤ B′ ,
⊥ otherwise.10

Since dq/2e is the inverse of 2 mod q, we have

µ′ := Decrypt(T , u, c) 6= ⊥ ⇐⇒ d(c− Encode(µ′), Λ(Au)) < B′ .

Suppose that m ≥ θ(n log q). Note that d(Encode(1), Λ(Au)) > B′ simultaneously for all u with
overwhelming probability over the randomness of TrapGen (using a union bound, as in [GPV08,
Lemma 5.3] for instance). Then, by Lemma 2.8, the scheme is correct as long as B ≤ B′, or
equivalently

σm3/2 · ω(
√

logn) ≤ q.

Theorem 2.9. Assume m ≥ Θ(n log q). The above scheme is tag-IND-CCA2 assuming the hardness
of the LWEχ,q problem for χ = DZ,σ.

The precise definition for tag-IND-CCA2 is detailed in Appendix A.1, and the proof is given
in Appendix A.3.

Remark 2.10. If a constant tag u is hardcoded in Encrypt and Decrypt, then the resulting encryption
scheme is just an IND-CPA scheme using trapdoors from [MP12].

Lemma 2.11. Assume m ≥ Θ(n log q). With A0 sampled as above, except with probability 2−n, it
holds that

∀u ∈ U , η2−n(Λ⊥(Au)) ≤ C
√
n

for some universal constant C.

Proof. Note that A0 is (about) uniform under the randomness of TrapGen, and so is Au for a
fixed u ∈ U . Apply Lemma 2.4 and Lemma 2.5 with ε = 8−n/2 and δ = 4−n to Au, ensuring
that η2−n(Λ⊥(Au)) ≤ C

√
n except with probability δ. Conclude by the union bound over the 2n

elements u ∈ U . ut
9 This happens only with exponentially small probability 2−Θ(n) by Lemma 2.1.

10 Note that the inversion algorithm g−1
(·) can succeed even if ‖e‖ > B′, depending on the randomness of the trapdoor.

It is crucial to reject decryption nevertheless when ‖e‖ > B′ to ensure CCA2 security. We also recall that
B′ := q/Θ(

√
m).
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2.3 Approximate Smooth Projective Hash Functions

We consider approximate smooth projective hash functions (approximate SPHFs) defined in [KV09].

Languages. We consider a family of languages (Llpar,ltrap)lpar,ltrap indexed by some parameter
lpar and some trapdoor ltrap, together with a family of NP languages (L̄lpar)lpar indexed by some
parameter lpar, with witness relation R̄lpar, such that:

L̄lpar = {x ∈ Xlpar | ∃w , R̄lpar(x ,w) = 1} ⊆ Llpar,ltrap ⊆ Xlpar ,

where (Xlpar)lpar is a family of sets. The trapdoor ltrap and the parameter lpar are generated by a
polynomial-time algorithm Setup.lpar which takes as input a unary representation of the security
parameter n. We suppose that membership in Xlpar and R̄lpar can be checked in polynomial time
given lpar and that membership in Llpar,ltrap can be checked in polynomial time given lpar and ltrap.
The parameters lpar and ltrap are often omitted when they are clear from context.

We are mostly interested in languages of ciphertexts.

Example 2.12 (Languages of Ciphertexts). Let (KeyGen,Encrypt,Decrypt) be a labeled encryption
scheme. We define the following languages (Setup.lpar = KeyGen and (ltrap, lpar) = (dk, ek)):

L̄ = {(label, C,M) | ∃ρ, C = Encrypt(ek, label,M ; ρ)} ,
L = {(label, C,M) | Decrypt(dk, label, C) = M} ,

where the witness relation R̄ is implicitly defined as:

R̄((label, C,M), ρ) = 1 ⇐⇒ C = Encrypt(ek, label,M ; ρ) .

Approximate SPHFs. Let us now define approximate SPHFs following [KV09].

Definition 2.13. Let (L̄lpar ⊆ Llpar,ltrap ⊆ Xlpar)lpar,ltrap be languages defined as above. An approxi-
mate smooth projective hash function (SPHF) for these languages is defined by four probabilistic
polynomial-time algorithms (HashKG,ProjKG,Hash,ProjHash):

– HashKG(lpar) generates a hashing key hk for the language parameters lpar;
– ProjKG(hk, lpar, x ) derives a projection key hp from the hashing key hk, the language parameters

lpar, and the word x ;
– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν (for some positive integer ν = Ω(n)) from the

hashing key hk, for the word x ∈ Xlpar and the language parameters lpar;
– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν from the projection key hp,
and the witness w , for the word x ∈ L̄lpar (i.e., R̄lpar(x ,w) = 1) and the language parameters
lpar;

which satisfy the following properties:

– Approximate correctness. For any positive integer n, if (ltrap, lpar)← Setup.lpar(1n), with
overwhelming probability over the randomness of Setup.lpar, for any x ∈ L̄lpar,ltrap (and as-
sociated witness w), the value H output by Hash(hk, lpar, x ) is approximately determined by
ProjKG(hk, lpar, x ) relative to the Hamming metric. More precisely, writing HW(a, b) the Ham-
ming distance between two strings a, b ∈ {0, 1}ν , the SPHF is ε-correct, if:

Pr
hk

[HW(Hash(hk, lpar, x ),ProjHash(hp, lpar, x ,w)) > ε · ν] = negl(n) ,

where the probability is taken over the choice of hk ← HashKG(lpar) and the random coins of
Hash and ProjHash.11

11 Contrary to previously known SPHFs, some of our SPHFs have randomized algorithms Hash and ProjHash.
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– Smoothness. For any positive integer n, if (ltrap, lpar) ← Setup.lpar(1n), with overwhelming
probability over the randomness of Setup.lpar, for all x ∈ X \Llpar the following distributions
have statistical distance negligible in n:

{(lpar, x , hp,H) | hk← HashKG(lpar), H← Hash(hk, lpar, x ), hp = ProjKG(hk, lpar, x )} ,

{(lpar, x , hp,H) | hk← HashKG(lpar), H← {0, 1}ν , hp = ProjKG(hk, lpar, x )} .

Finally, an approximate SPHF is called an SPHF if it is 0-correct. In that case, we also say that
the SPHF is statistically correct.

Approximate KV-SPHFs. For some applications, in particular the one-round PAKE from [KV11],
a stronger notion of SPHF is required, where the projection key hp does not depend on the word x and
the smoothness holds even if the word is chosen adaptively after seeing the projection key. Following
the terminology of [BBC+13b], we call such (approximate) SPHFs, (approximate) KV-SPHF.12 We
formally define approximate KV-SPHFs in Appendix B.1.

Approximate universal bit-PHFs and bit-KV-PHFs. Instead of directly building (approxi-
mate) (KV-)SPHF, we actually build what we call (approximate) universal bit-(KV-)PHF.

Definition 2.14. An approximate universal bit projective hash function (bit-PHF) is defined as in
Definition 2.13 except that the hash values are bits (ν = 1), and that approximate correctness and
smoothness are replaced by the following properties:

– Approximate correctness. The bit-PHF is ε-correct if for any positive integer n, if (ltrap,
lpar) ← Setup.lpar(1n), with overwhelming probability over the randomness of Setup.lpar, for
any x ∈ L̄lpar,ltrap:

Pr
hk

[Hash(hk, lpar, x ) = ProjHash(hp, lpar, x ,w)] ≥ 1− ε ,

where the probability is taken over the choice of hk ← HashKG(lpar) and the random coins of
Hash and ProjHash.

– Universality. The bit-PHF is ε-universal13 if, for any positive integer n, if (ltrap, lpar) ←
Setup.lpar(1n), with overwhelming probability over the randomness of Setup.lpar, for any word
x ∈ X \Llpar, any projection key hp:

∣∣∣∣2 · Pr
hk

[Hash(hk, lpar, x ) = 1 | hp = ProjKG(hk, lpar, x )]− 1
∣∣∣∣ ≤ ε ,

where the probability is taken over the choice of hk ← HashKG(lpar) and the random coins of
Hash. The bit-SPHF is said to be statistically universal if it is negl(n)-universal. Otherwise, the
bit-SPHF is said to be imperfectly universal.

An approximate bit-PHF is called a bit-PHF if it is negl(n)-correct. In that case, the bit-PHF is
said to be statistically correct. Furthermore, an (approximate) bit-PHF is called an (approximate)
bit-KV-PHF, if hp does not depend on the word x .

12 The letters KV in the name KV-SPHF correspond to the initials of the authors of [KV11]. SPHFs defined in [KV09]
are not KV-SPHF.

13 Our definition of universality is equivalent to the one of Cramer and Shoup in [CS02], up to the use of language
parameters.
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From Bit-PHFs to SPHFs. In Appendix B.2, we show how to generically convert an approximate
ε-correct negl(n)-universal bit-PHF into an approximate (ε+ ε′)-correct SPHF (for any positive
constant ε′) and then into an SPHF. This is used in our first construction in Section 3. These
transformations were implicit in [KV09]. We should point out that even if the original bit-PHF was
a bit-KV-PHF, the resulting (approximate) SPHF would still not be a KV-SPHF: its projection
key depends on the word x . If there was way to avoid this restriction, we actually would get the
first one-round key exchange based on LWE with polynomial modulus.

In Appendix B.2, we also show how to generically convert an ε-universal bit-KV-PHF into a
KV-SPHF, by amplifying the smoothness or universality property (assuming 1− ε ≥ 1/ poly(n)).
We should point out that the original bit-KV-SPHF is supposed to be statistically correct, contrary
to the previous construction where it could only be approximately correct.

We recall that the above transformations were summarized in Fig. 1 together with our results.

3 SPHF for IND-CCA2 LWE Ciphertexts

As we have shown in Section 2.3, there exists a generic transformation from approximate bit-SPHF
to a regular approximate SPHF or even classical SPHF. So, in this section, we are going to focus
on building such an approximate bit-SPHF. For the sake of simplicity, in this section we often call
such an approximate bit-PHF simply a bit-PHF.

3.1 Languages and Natural Bit-PHF

Languages. We want to construct an (approximate) bit-PHF for the language of ciphertexts
(Example 2.12) for our IND-CCA2 LWE encryption à la Micciancio-Peikert described in Section 2.2.
More generally our approach works with typical trapdoored LWE encryption schemes [GPV08,
CHKP10].

We first remark that it is sufficient to construct a bit-PHF for the tag-IND-CCA2 version, i.e.,
for the following languages:

L̄ = {(u, c, µ) | ∃s, e, c← Encrypt(A0, u, µ; s, e)} ⊆ {(u, c, µ) | d(c− Encode(µ), Λ(Au)) ≤ B} ,
L = {(u, c, µ) | Decrypt(T , u, c) = µ} = {(u, c, µ) | d(c− Encode(µ), Λ(Au)) ≤ B′} ,

where u ∈ U , c ∈ Zmq , µ ∈ {0, 1}, (ltrap, lpar) = (T ,A0)← TrapGen(1n, 1m, q) = Setup.lpar(1n), and
where Encrypt, Decrypt, B, and B′ are defined in Section 2.2. Indeed, the signature parts, used to
transform the tag-IND-CCA2 encryption scheme into a labeled IND-CCA2 encryption scheme (see
Appendix A.2), can be publicly checked by anyone, therefore one can generically adapt the bit-PHF
by overriding Hash to a fresh uniform random value when the signature is invalid.

We can now fix the tag u ∈ U for the rest of this section, and will simply denote A for Au and
Λ for Λ(Au). Also, note that (u, c, 1) ∈ L̄ (resp. L ) is equivalent to (u, c − Encode(1), 0) ∈ L̄
(resp L ). Therefore we can focus only on the languages of ciphertexts of 0 for a fixed tag u: we
restrict our languages to

L̄ = {c ∈ Zmq | ∃s, e, c← Encrypt(A0, 0, u; s, e)} ⊆ {c ∈ Zmq | d(c, Λ) ≤ B} ,
L = {c ∈ Zmq | Decrypt(T , c, u) = 0} = {c ∈ Zmq | d(c, Λ) ≤ B′} ,

for the rest of this section.

Natural Bit-PHF. A natural approach to define an approximate bit-PHF is the following:

– HashKG(A) outputs hk = h← Dm
Z,s;

– ProjKG(h,A) outputs hp = p = Ath;
– Hash(h,A, c) outputs H = R(〈h, c〉);
– ProjHash(p,A, c, (s, e)) outputs pH = R(〈p, s〉);

where R is a rounding function to be chosen later and s > 0 is a parameter to be chosen later too.
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3.2 Universality

Naive approach. For now let us just assume R : Zq → Z2 to be the usual rounding function
R(x) = b2x/qe mod 2, as in [KV09]. If the protocol was ran honestly, note that:

〈h, c〉 = ht(As+ e) = 〈p, s〉+ 〈h, e〉 ≈ 〈p, s〉 ,

which guarantees correctness whenever c ∈ L̄ . Indeed 〈h, c〉 is almost uniform for large enough
parameter s, therefore R(〈h, c〉) = R(〈p, s〉) will hold except with probability ≈ 2|〈h, e〉|/q.

For universality, we need to prove that Hash(h,A, c) = 〈h, c〉 is uniform given the knowledge of
A,p and c, when c 6∈ L . Unfortunately, this seems to require a stronger assumption than c 6∈ L ,
more precisely, that j · c 6∈ L for all j ∈ Zq: this is the key lemma in [KV09] (from [GPV08]).

Lemma 3.1 ([GPV08, Lemma 5.3], [KV09, Lemma 2]). Let s ≥ √q · ω(
√

logn). Then, for
most matrices A ∈ Zm×nq the following is true: if c ∈ Zmq is such that for all non-zero j ∈ Zq,
d(jc, Λ(A)) ≥ √q/4, then the smoothing parameter ηε(Λ⊥([A|c])) is below s for some negligible
function ε = negl(n).

In particular, for h← Dm
Z,s the distribution (htA,htc) is negligibly close to uniform over Zn+1

q .

The caveat is that it is necessary not only for c to be far from Λ, but also for all its non-zero
multiples modulo q: the language is extended to L ′ = {c | ∃j ∈ Zq, jc ∈ L }. Algorithmically, the
price to pay is that the decryption function must be changed, and that the usual LWE decryption
now must be attempted for each multiple jc of c to ensure universality for words outside L ′. This
makes the new decryption very inefficient since q is typically quite a large poly(n). This change of
language is also a technical hassle for constructing protocols above the bit-PHF (or the resulting
SPHF).

Note that the above lemma ensures uniformity of 〈h, c〉, while we only need the uniformity of
R(〈h, c〉). Naturally, one may wonder whether the condition that jc is far from Λ for all j 6= 0 is
truly necessary or whether it is an artifact of the proof. To answer this question, let us first explore
two case studies.

Two case studies. Let us take a look at the special case where q is even, and where c is a perfect
encryption of 1: c = As+ (0, . . . , 0, q/2)t (so that c 6∈ L with overwhelming probability over the
choice of the public key ek). We then observe that

〈h, c〉 = 〈p, s〉+ (hm mod 2) · q/2 ,

where hm is the last coordinate of h. In particular, the distribution of 〈h, c〉, when h← Dm
Z,s, is

concentrated on merely 2 values out of q and is therefore far from uniform.
Yet, assuming s is twice as large as the smoothing parameter of Z, we note that hm is uniform

modulo 2. In that case we observe that while 〈h, c〉 is not itself uniform, the rounding R(〈h, c〉) is
uniform when choosing the typical rounding function R : x ∈ Zq 7→ b2x/qe mod 2, regardless of the
value of 〈p, s〉. So it seems that the rounding function does not only help in turning approximate
correctness into exact correctness, but it can also improve universality of the scheme as well!

Unfortunately, we can not always expect statistical universality from this trick. Now assume that
q is divisible by 3, and set c = As+ (0, . . . , 0, q/3)t (again, c 6∈ L with overwhelming probability
over the choice of the public key ek). This time,

〈h, c〉 = 〈p, s〉+ (hm mod 3) · q/3

is uniformly distributed over three values, separated by q/3. In particular R(〈h, c〉) will take one
value with probability 1/3, and the other value with probability 2/3. Despite imperfect universality,
this still guarantees some entropy in Hash(h,A, c) knowing A, c, and p.

But what should happen in more general cases?
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Harmonic analysis. Let us fix p ∈ Znq and c ∈ Zmq . For the rest of the section, we restrict the
rounding function R to have binary values {0, 1}, yet this function may be probabilistic.

We want to study the conditional probability P = Pr[R(〈h, c〉) = 1 | htA = pt], where the
probability is taken over the randomness of R and the distribution of h (conditioned on htA = pt);
we want P to be not too far from 1/2 when c 6∈ L . For x ∈ Z, denote by r(x) the probability that
R(x mod q) = 1. Because r : Z → [0, 1] is q-periodic, it can be interpolated over the reals by a
function of the form:

r =
∑
j∈Zq

r̂j · ej/q ,

where the complex values r̂j ∈ C are the Fourier coefficients of r : Z→ [0, 1]. Note that as we are
only interested in the restriction of r on Z (which is q-periodic), we only need q harmonics to fully
describe r. Also note that r(x) ∈ [0, 1] for all x ∈ Zq, so that |r̂j | ≤ 1 for all j.

We rewrite:

P =
∑
h∈Λ⊥p

ρs(h)
ρs(Λ⊥p ) · r(〈h, c〉) = 1

ρs(Λ⊥p )
∑
j∈Zq

r̂j
∑
h∈Λ⊥

(ρs · ejc/q)(h+ h0) ,

where h0 is any vector of the coset Λ⊥p . We will now apply the Poisson Summation Formula
(Lemma 2.6): f(Λ⊥) = det((Λ⊥)∗)f̂((Λ⊥)∗) = det(1

qΛ)f̂(1
qΛ). Set f(h) = (ρs · ejc/q)(h+ h0). We

have:
f̂ = ρ̂s · ev · eh0 = smρ1/s,v · eh0 .

We proceed:

P = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Zq

r̂j · (ρ1/s,jc/q · eh0)
(1
q
Λ

)
= det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Zq

r̂j ·
∑
y∈Λ

(ρq/s,jc · eh0/q) (y) .

Assuming s ≥ ηε(Λ⊥) for some negligible ε ensures that det((Λ⊥)∗)sm
ρs(Λ⊥p ) = 1 +O(ε) by Lemma 2.3. We

shall split the sum into three parts:
– j = 0, y = 0, contributing exactly r̂0 (where r̂0 = 1

q

∑
x∈Zq r(x) ∈ [0, 1]),

– j = 0, y 6= 0, contributing at most |r̂0|ρq/s(Λ \ {0}) in absolute value,
– j 6= 0, y 6= 0, contributing at most |r̂j |ρq/s(Λ− jc) in absolute value for each j.

We can now bound P :∣∣∣∣ P

1−O(ε) − r̂0

∣∣∣∣ ≤ |r̂0|ρq/s(Λ \ {0}) +
∑

j∈Zq\{0}
|r̂j |ρq/s(Λ− jc) .

We now want to bound the right-hand side using Lemma 2.1, with c = 1 for simplicity. Fix
j ∈ Zq \ {0}, and let α = q

√
m/s. If α < d(jc, Λ), then (Λ− jc) \ αB = (Λ− jc). Also, note that

ρq/s(Λ) = ρ1/s(1
qΛ) = ρ1/s((Λ⊥)∗). So, as long as s ≥ ηε(Λ⊥) for some negligible ε (which we already

assumed earlier), it holds that ρq/s(Λ) ≤ 1 + ε by definition of ηε(Λ⊥). Under those conditions,
ρq/s(Λ− jc) = ρq/s((Λ− jc) \ αB) ≤ 2Cmρq/s(Λ) ≤ 2Cm(1 + ε) is negligible. Using Lemma 2.1, we
deduce the following:

Theorem 3.2. Fix A ∈ Zm×nq , c ∈ Zmq , and p ∈ Znq , where m is polynomial in n. Fix a probabilistic
rounding function R : Zq → {0, 1} such that for all x ∈ Zq,

Pr[R(x) = 1] = r(x) =
∑
j∈J

r̂jej/q(x) ,

where J ⊆ Zq and r̂j ∈ C. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Assume furthermore that

∀j ∈ J \ {0}, s · d(jc, Λ(A)) > q
√
m .

Denote P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is taken over the randomness
of R, and the distribution of h← Dm

Z,s, conditioned on htA = pt. Then :

|P (c)− r̂0| ≤ (2 +O(ε)) |J |Cm +O(ε) where C =
√

2πe · e−π < 1 .
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Setting up the rounding function. If one wishes to avoid having to attempt decryption of
many multiples of the ciphertext c, one should choose a probabilistic rounding function with a
small number of harmonics.

In particular, the typical deterministic rounding function R(x) = b2x/qe mod 2 —the so-called
square-signal— and has harmonic coefficients r̂j decreasing as Θ(1/j) in absolute value. With such
a rounding function, one would still need to attempt trapdoor inversion for q/2 many multiples of
c, as it was already the case in [KV09].

On the contrary, one may easily avoid costly harmonics by setting the rounding function so
that 2r(x) = 1 + cos(2πx/q), which has Fourier coefficients r̂0 = 1/2, r̂1 = r̂−1 = 1/4, and r̂j = 0
for any other j.14

In order to prove universality, assume c /∈ L , so that d(c, Λ) ≥ B′ by definition. Therefore,
whenever α = q

√
m/s < B′, we have (Λ− c) \ (αB) = (Λ− c).

Corollary 3.3. Let A ∈ Zm×nq with m = Θ(n log q), and fix p ∈ Znq . Let B′ = q/Θ(
√
m), and

L = {c ∈ Zmq | d(c, Λ(A)) ≤ B′}. Suppose that R satisfies:

Pr[R(x) = 1] = r(x) = 1
2 + 1

2 cos
(2πx

q

)
,

and let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also that: s > q
√
m

B′ .
Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is taken over the

randomness of R, and the distribution of h← Dm
Z,s, conditioned on htA = pt. Then, for all c 6∈ L :

|2P (c)− 1| ≤ 2 (6 +O(ε))Cm +O(ε) ≤ negl(n) ,

where C =
√

2πe · e−π < 1.

3.3 Approximate Correctness

Let us check that the scheme above achieves approximate correctness, that is, for all c ∈ L̄ ,
Hash(h,A, c) = ProjHash(p,A, c, (s, e)) with probability substantially greater than 1/2. Using our
rounding function R, this means that we want R(〈h, c〉) and R(〈p, s〉) to output the same bit with
some probability Q substantially greater than 1/2, where the two applications of R use independent
coins.

Recall that r(x) is the probability that the rounding function R outputs 1 on input x, and that
for c ∈ L̄ , we can write 〈h, c〉 = 〈p, s〉+ 〈h, e〉, where c = As+ e. We argue that as long as 〈h, e〉
is small with respect to q, then our scheme achieves approximate correctness:

Lemma 3.4. Fix A ∈ Zm×nq and c = As+ e ∈ L̄ , where m and q are polynomial in n, and where
‖e‖ ≤ B = 2t

√
m. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Assume that R satisfies:

Pr[R(x) = 1] = r(x) = 1
2 + 1

2 cos
(2πx

q

)
, (1)

Let Q be the probability that R(〈h, c〉; coins1) and R(〈Ath, s〉; coins2) output the same bit, over
the randomness of h← Dm

Z,s, and the randomness of the two independent coins coins1 and coins2
used by R. Suppose furthermore that:

tsm = o(q) .

Then:
Q = 3

4 + o(1) .

14 Of course, one could also obtain perfect universality by setting a constant rounding function r(x) = 1/2, and even
avoid the first harmonic, but there is no way to reach correctness even with amplification in that case.
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Proof. As s ≥ ηε(Λ⊥) for ε = negl(n), the distribution of htA, when h ← Dm
Z,s, is at negligible

statistical distance from uniform.
Therefore, Q is negligibly close to Pr[R(x; coins1) = R(x+ 〈h, e〉; coins2)] where the probability

is taken over uniform x ∈ Zq, h← Dm
Z,s, and the randomness of the two independent coins coins1

and coins2 used by R.
Then:

Q = 1
q

∑
x∈Zq

(r(x)r(x+ 〈h, e〉) + (1− r(x))(1− r(x+ 〈h, e〉))) + negl(n)

= 1
2 + 1

q

∑
x∈Zq

1
2 cos

(
2πx
q

)
cos

(
2πx+ 〈h, e〉

q

)
+ negl(n) .

As tsm = o(q), we have 〈h, e〉 = o(q) with overwhelming probability. As cos is a Lipschitz
continuous function, we can approximate the sum by an integral:

Q = 1
2 + 1

2

∫ 1

0
cos2(2πx)dx+ o(1) = 3

4 + o(1) .

This concludes the proof. ut

3.4 Wrap-up

Consider the bit-PHF described in Section 3.1 instantiating R with the cosine rounding function
(Eq. (1)), together with the encryption scheme of Section 2.2. Let us now show that all the parameters
can be instantiated to satisfy security and correctness of the encryption scheme, simultaneously
with statistical universality and approximate correctness of the bit-PHF.

IND-CCA2. To base the security of the scheme described in Section 2.2 on LWEχ,q for χ = DZ,σ
and σ = 2

√
n,15 we apply Theorem 2.9 with

m = Θ(n log q) , t =
√
mn · ω(

√
logn) .

Decryption Correctness. For the encryption scheme to be correct, we want B < B′, recalling that
B := 2t

√
m and B′ := q/Θ(

√
m).

Universality. In Corollary 3.3, we used the hypothesis s ≥ ηε(Λ⊥(Au)) for some negligible ε.
Assuming s ≥ Θ(

√
n), one can apply Lemma 2.11, to ensure the above hypothesis for ε = 2−n

simultaneously for all u ∈ U except with probability 2−n over the randomness of TrapGen.
Still in Corollary 3.3, we also needed s > q

√
m/B′, where B′ = q/Θ(

√
m). This holds for

s = Θ(m).

Approximate correctness. For Lemma 3.4, we assumed that tsm = o(q). Equivalently, it is sufficient
that sm3/2n1/2ω(

√
logn) = o(q).

Summary. Therefore, all the desired conditions can be satisfied with:

q = Θ̃(n3) , m = Θ̃(n) , s = Θ̃(n) , t = Θ̃(n) .

We have proved the following:
15 This is the smallest parameter σ for which LWEχ,q is known reduce to a worst-case problem. One may of course

choose to use a different width for the LWE error, and derive different appropriate parameters.
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Theorem 3.5. Set parameters q = Θ̃(n3),m = Θ̃(n), s = Θ̃(n), t = Θ̃(n). Define a probabilistic
rounding function R : Zq → {0, 1} such that:

Pr[R(x) = 1] = 1
2 + 1

2 cos
(2πx

q

)
.

Then,

– the encryption scheme of Section 2.2 is correct and tag-IND-CCA2 under the hardness of
LWEχ,q for χ = DZ,2

√
n;

– the bit-PHF described in Section 3.1 achieves statistical universality and (1/4−o(1))-correctness.

4 KV-SPHF for IND-CPA LWE Ciphertexts

4.1 Overview

In the previous section, we built a bit-PHF with negl(n)-universality but approximate correctness.
Even though the correctness can be amplified (as described in Appendix B.2), the transformation
inherently makes the new projection key depend on the word we want to hash, even if that was not
the case for the initial bit-PHF.

We now build a bit-PHF with statistical correctness and K-universality for some universal
constant K < 1 (but using a super-polynomial LWE modulus q). The main benefit of such a
construction is that amplifying universality can be done regardless of the word we want to hash,
that is, the projection key will not depend on the word. When the tag u of the ciphertext c is
known in advance or is constant (in which case, the encryption scheme is only IND-CPA instead of
IND-CCA2), we therefore get a bit-KV-PHF which can be transformed into a KV-SPHF. This is
the first KV-SPHF for any lattice-based language.

We use the same natural approach as described in Section 3.1. The only differences with
the construction in the previous section are the probabilistic rounding function we use, and the
parameters necessary to argue correctness and universality. Recall that in the last section, we used
a rounding function with only low order harmonics to get negl(n)-universality.

The starting point is the observation that, for the naive square rounding introduced in the
previous section, the correctness is statistical, but clearly not negl(n)-universal, depending on
which word c is hashed (as seen in the examples in Section 3.2, where j · c is close to Λ for some
j ∈ Zq \ {0}). However, the distribution of R(〈h, c〉) conditioned on htA might still have enough
entropy to give us K-universality, for some constant K < 1. In other words, we can hope that
|2 · Pr[R(〈h, c〉) = 1 | p]− 1| ≤ K for all c ∈ Zmq .

Let R] be a rounding function defined by: R](x) = 1 + b2x/qe mod 2, that is:

∀x ∈ [−q/2, q/2], R](x) =
{

1 if |x| ∈ [−q/4, q/4] ,
0 otherwise.

Using this rounding function gives good correctness: when s ≥ ηε(Λ⊥), 〈h, c〉 is statistically
close to uniform in [−q/2, q/2], and therefore R](〈h, c〉) is a uniform bit up to some statistical
distance O(ε+ 1/q) (due to the fact that q is odd). So for super-polynomial q, we get statistical
correctness using R] as rounding function, as long as 〈h, e〉 is sufficiently small with respect to q.

For universality, we express the probability distribution defined by R], seen as a q-periodic
function over R, as a Fourier series:

∀x ∈ [−q/2, q/2], r](x) := Pr[R](x) = 1] =
∑
j∈Z

r̂]j · ej/q(x) ,

where r̂]j are the Fourier coefficients of the q-periodic function r] : R→ R.
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However, one can show that |r̂]j | = Θ(1/j) (for odd integers j).. Therefore, it is not clear how to
show universality with a similar analysis as in Section 3.2: the total contribution of harmonics j
such that j · c is close to Λ could potentially be arbitrarily large!

To solve this issue, we consider a new rounding function R, which has the same probability
distribution as R] but on a negligible fraction of points (so that statistical correctness is preserved),
and such that its Fourier coefficients of high enough order have small enough amplitude.

Then, we use the observation that the set of integers j such that j · c is in Λ is an ideal of Z,
which is proper if c itself is not in Λ. More generally, the set of small integers j ∈ Z such that
j · c is close to Λ is contained in an ideal of Z; furthermore, if c is far from Λ, then this ideal is a
proper ideal of Z. This will allow us to discard all harmonics whose order is not in this ideal. As we
will show, the remaining harmonics necessarly have destructive interferences, which allows us to
establish K-universality for some constant K < 1.

The roadmap follows. First, in Section 4.2, we smooth the discontinuities of the probability
distribution of the square rounding function r] so that the Fourier coefficients of high order have
small magnitude, but such that we keep statistical correctness. Then to prove universality, in
Section 4.3, we show that for c far from Λ, the set of small j ∈ Z such that j · c is close to Λ is
contained in a proper ideal of Z. Finally, in Section 4.4 we show that the distribution of R(〈h, c〉)
conditioned on htA has some bounded min entropy.

4.2 Smoothing the Discontinuities: a New Rounding Function

In the following, unless specified otherwise, we will see Zq as embedded in {d−q/2e, . . . , bq/2c}, and
the canonical period we use for q-periodic functions will be [−q/2, q/2]. Recall that r] satisfies:

∀x ∈ [−q/2, q/2], r](x) =
{

1 if |x| ∈ [−q/4, q/4] ,
0 otherwise.

In particular, r] has two discontinuities on q/4 and on −q/4. To smooth those discontinuities, we
consider the convolution product of the square signal r] with a rectangular signal of appropriate
width T such that T/q = negl(n). More precisely, consider the q-periodic function r[ defined on
[−q/2, q/2] by:

∀x ∈ [−q/2, q/2], r[(x) =
{ 1

2T if |x| ≤ T ,

0 otherwise.

We define a new rounding function R such that for all x ∈ R (see Fig. 2):

Pr[R(x) = 1] := r(x) := (r] � r[)(x) :=
∫ q/2

−q/2
r](u) · r[(x− u) du ,

where, in this context, � corresponds to the convolution of q-periodic functions.
Intuitively, this corresponds to replace the discontinuities on r](±q/4) by a linear slope ranging

from ±q/4− T to ±q/4 + T (see Fig. 2). Therefore, over [−q/2, q/2], the functions r and r] only
differ on at most 4dT e integer points (the points on the slope). Recall that if s ≥ ηε(Λ⊥), then
〈h, c〉 is statistically close to uniform in {d−q/2e, . . . , bq/2c}. Therefore, if 〈h, e〉/q and T/q are
negligible, then:

Pr[R(〈h, c〉) 6= R(〈p, s〉)] ≤ negl(n) ,

and we get statistical correctness using such a rounding function.

Lemma 4.1 (Correctness). Suppose that s ≥ ηε(Λ⊥), tsm/q = negl(n), and T/q = negl(n).
Assume that R satisfies:

Pr[R(x) = 1] = (r] � r[)(x) .

Then the approximate bit-PHF defined in Section 3.1 achieves statistical correctness.
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(d) r(x) = (r] � r[)(x) (Section 4)

Fig. 2: Probability that the rounding functions R(x) of Sections 3 and 4 output 1

Also, r is q-periodic, and can therefore be expressed as a Fourier series:

∀x ∈ [−q/2, q/2], r(x) =
∑
j∈Z

r̂jej/q(x) ,

with Fourier coefficients r̂j . As r = r] � r[, we have r̂j = q · r̂]j · r̂[j for j ∈ Z, where r̂]j and r̂[j are
the Fourier coefficients of the q-periodic functions r] and r[ respectively. Thus, r̂0 = 1/2, and for
j ∈ Z \ {0}, the jth harmonic of r is:

r̂j = q

2π2Tj2 · sin(πj/2) · sin(2πTj/q) ≤ q

19Tj2 . (2)

4.3 Inclusion of Contributing Harmonics in a Proper Ideal
In the following, we focus on showing that even though we do not have negl(n)-universality using
this new rounding function, we still have some K-universality for some constant K < 1 (that we
can amplify).

We start by a simple useful lemma:
Lemma 4.2. Let N = kq/T for some k. Then

∑
j∈Z, |j|>N |r̂j | ≤ 1/k.

Proof. It follows from Eq. (2) and the fact that for all N > 2:
∑+∞
k=N

1
k2 ≤

∑+∞
k=N

(
1

k−1 −
1
k

)
= 1

N−1 .
ut

Suppose now that d(c, Λ) ≥ B′. Consider the set of j ∈ Z such that d(j · c, Λ) ≤ δ for some
appropriately chosen δ. Let P = P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], for our new rounding
function R. For any h0 ∈ Λ⊥p , we can show similarly to Section 3.2, that:

P = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Z

r̂j
∑
y∈Λ

(ρq/s,jc · eh0/q)(y) , (3)
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where det((Λ⊥)∗)sm
ρs(Λ⊥p ) = (1+O(ε)) as long as s ≥ ηε(Λ⊥). Note that

∑
|j|≥N |r̂j | can be made arbitrarily

small for appropriate N , by Lemma 4.2. Thus only the terms of the sum corresponding to |j| ≤ N
will have a substantial contribution to the sum above (recall that ρq/s(Λ − jc) ≤ 1 + ε for all
c, for appropriate parameters). Therefore we only consider those small j such that |j| < N for
some appropriately chosen N (with respect to q). Furthermore, for large enough δ, the terms
corresponding to indices j such that d(j · c, Λ) ≥ δ also have a negligible contribution to the sum
by Lemma 2.1. For appropriate parameters N and δ to be instantiated later, let:

J = {j ∈ Z | |j| < N ∧ d(j · c) ≤ δ} . (4)

As a subset of Z, J is contained in the ideal j0Z of Z, where j0 = gcd(J). Let us show that it is
a proper ideal of Z, i.e. j0 6= 1. To do so, we rely on the existence of small Bézout coefficients.

Lemma 4.3 (Corollary of [MH94, Theorem 9]). Let a0, . . . , ak ∈ Z, and let g = gcd(a0, . . . , ak).
Then there exists u0, . . . , uk ∈ Z such that the following conditions hold:

k∑
i=0

uiai = g ,
k∑
i=0
|ui| ≤

k

2 max |ai| .

We can now prove that J is a proper ideal of Z:

Lemma 4.4. Suppose that δN2 < B′. Then, for c ∈ Zmq such that d(c, Λ) > B′, the set J = {j <
N | d(j · c, Λ) ≤ δ} is contained in a proper ideal of Z.

Proof. Let j0 = gcd(J). By definition, J ⊆ j0Z. Suppose by contradiction that j0 = 1. By Lemma 4.3,
there exists a set of integers {uj , j ∈ J} such that

∑
j∈J uj · j = 1 and then

∑
j∈J uj · (j · c) = c.

But by definition of J , d(j · c, Λ) ≤ δ for all j ∈ J , and therefore:

d(c, Λ) ≤ δ ·
∑
j∈J
|uj | ≤

δ#J
2 max

j∈J
|j| ≤ δN2 < B′ ,

which is absurd as we assumed d(c, Λ) > B′. ut

4.4 Imperfect Universality from Destructive Interferences

We now want to quantify how biased R(〈h, c〉) conditioned on htA can be when c is far from Λ.
We start from Eq. (3):

P = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Z

r̂j
∑
y∈Λ

(ρq/s,jc · eh0/q)(y) ,

where det((Λ⊥)∗)sm
ρs(Λ⊥p ) = 1 +O(ε) as long as s ≥ ηε(Λ⊥).

We split the sum into three parts P = P1 + P2 + P3:

P1. |j| > N ∧ j 6∈ j0Z: those indices have a negligible contribution to the sum by Lemma 4.2.
P2. |j| ≤ N ∧ j 6∈ j0Z: those indices contribute negligibly since ρq/s(Λ − jc) is small as jc is far

from Λ (by definition of δ and J ⊂ j0Z).
P3. j ∈ j0Z: the contributing terms. Unlike the previous ones we won’t use absolute bounds for each

term, and must consider destructive interferences.

It remains to study

P3 =
∑
h∈Λ⊥p

ρs(h)
ρs(Λ⊥p )

∑
j∈j0Z

r̂jej/q(〈h, c〉) .



19

If we were to have j0 = 1 (i.e. j0Z = Z), we could compute the inner sum simply by inverse Fourier
transform, evaluating r at x = 〈h, c〉. Instead, we note that selecting only the harmonics in j0Z,
corresponds in the temporal domain to averaging the function r over all its temporal shifts by
multiples of q/j0. More formally, recall the identity:

j0−1∑
k=0

ej/j0(k) =
{
j0 if j ∈ j0Z
0 otherwise.

We may now rewrite:

∑
j∈j0Z

r̂jej/q(x) = 1
j0

∑
j∈Z

r̂jej/q(x)
j0−1∑
k=0

ej/j0(k) = 1
j0

j0−1∑
k=0

r(x+ k
q

j0
) ,

Note that 1
j0

∑j0−1
k=0 r](x+ k q

j0
) is not too far away from 1/2: if j0 is even, this is exactly 1/2,

and if j0 = 2k + 1, this is either k/j0 or (k + 1)/j0, which is at distance 1/(2j0) from 1/2. Overall,
the distance to 1/2 is therefore always less than 1/6 as j0 6= 1 by Lemma 4.4.

Furthermore, this conclusion also holds for 1
j0

∑j0−1
k=0 r(x+ k q

j0
), as we have, by construction:

∀x ∈ [−q/2, q/2], |r(x)− 1/2| ≤ |r](x)− 1/2| .

Therefore, P3 is also not too far from 1/2 as a convex combination of values not too far from 1/2,
so that we would have imperfect universality. More precisely:

|P3 − 1/2| ≤ 1/6 .

Putting everything together, we can quantify the distance from P to 1/2:
Theorem 4.5 (Universality). Let A ∈ Zm×nq with m = Θ(n log q), and fix p ∈ Znq . Let B′ =
q/Θ(

√
m), and L = {c ∈ Zmq | d(c, Λ(A)) ≤ B′}. Let R be as defined in Section 4.2 and let

s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also that parameters T , N , δ, and k satisfy δ > q
√
m
s ,

N = kq
T , and δN2 < B′.

Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is taken over the
randomness of R, and the distribution of h← Dm

Z,s, conditioned on htA = pt. Then, for all c 6∈ L :

|P (c)− 1/2| ≤ 1
6 + (1 +O(ε))

(1
k

+ 4NCm
)

,

where C =
√

2πe · e−π < 1.

Remark 4.6. Informally, this theorem states that the second case study of Section 3.2 is essentially
the worst case.

Proof. Writing P = P1 + P2 + P3 as above, we showed that |P3 − 1/2| ≤ 1/6. Moreover, as
s ≥ ηε(Λ⊥(A)), we have:

det((Λ⊥)∗)sm

ρs(Λ⊥p ) = 1 +O(ε) ,

and, for any j ∈ Z and c, we also have:

|
∑
y∈Λ

(ρq/s,jc · eh0/q)(y)| ≤ ρq/s(Λ− jc) ≤ 1 + ε .

Therefore, by Lemma 4.2, and as ε = negl(n), we have:

|P1| ≤ (1 +O(ε))(1 + ε)
∑
|j|>N

|r̂j | ≤
1 +O(ε)

k
.

Furthermore, as δ > q
√
m
s , and |r̂j | ≤ 1 for all j, Lemma 2.1 gives us that:

|P2| ≤ 4NCm(1 +O(ε)) ,

which concludes the proof. ut
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4.5 Wrap-up

Let us now show that all the parameters can be instantiated to get approximate smoothness and
correctness for the SPHF, using a rounding function R defined by Pr[R(x) = 1] = r] � r[(x).

IND-CPA. To apply Theorem 2.9 with Remark 2.10, we can use:

m = Θ(n log q), t =
√
mn · ω(

√
logn) .

Decryption Correctness. For the encryption scheme to be correct, we want B < B′, with B = 2t
√
m

and B′ = q/Θ(
√
m).

Correctness. For correctness of the bit-PHF, we need a super-polynomial modulus q, and require
T/q to be negligible. Furthermore, we need tsm/q to be negligible, so that 〈h, e〉 can only take
a negligible fraction of values in Zq. Also, we need s ≥ ηε(Λ⊥(Au)), which is satisfied with high
probability by Lemma 2.11 for ε = 2−n as long as s ≥ Θ(

√
n).

Bounding the amplitude of high frequencies. The parameter N which upper bounds the elements
of J must be taken so that

∑
|j|≥N |r̂j | is small. By Lemma 4.2, by taking N = kq/T , this sum is

≤ 1/k.

Threshold distance to Λ defining J . The parameter δ, which denotes how close j · c is close
to Λ for j ∈ J (Eq. (4)) has to be chosen so that N · ρq/s(Λ − v) must be small whenever
d(v, Λ) ≥ δ. As in the analysis for the cosine rounding function, setting δ = q

√
m/s implies that

ρq/s(Λ− v) ≤ 2Cm(1 +O(ε)) by Lemma 2.1.

Showing that j0 6= 1. We also required δN2 < B′ to conclude that J was included in a proper ideal
of Z. As we have δN2 = Θ

(
q3k
√
m

sT 2

)
, this holds as long as s ≥ Ω(mk

2q2

T 2 ).
Putting everything together, we get the following theorem:

Theorem 4.7. Suppose q = O(2n) to be superpolynomial in n, m = Θ(n log q). Set parameters:

– T such that T/q and q/T 2 are both negligible in n (using T = q2/3 for instance),
– k = Θ(n),
– s ≥ Θ(

√
n) such that s/q = negl(n) and s = Ω(mk

2q2

T 2 ), which exists by construction of T .

Define a probabilistic rounding function R : Zq → {0, 1} such that:

Pr[R(x) = 1] = r] � r[(x) .

Then the bit-PHF described in Section 3.1 achieves (1/3 + o(1))-universality and statistical correct-
ness.

Proof. The theorem follows from the discussion above and Theorem 4.5 using:

– N = kq/T such that NCm is negligible in n (which exists as long as q = O(2n)),
– δ = q

√
m
s .

ut

5 Applications

In this section, we present several applications of our new construction. It underlines the importance
of revisiting this primitive.
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5.1 Password-Authenticated Key Exchange

Gennaro and Lindell proposed in [GL06] a generic framework for building PAKE protocols based
on SPHF and IND-CCA2 encryption scheme. Later in [KV09], Katz and Vaikuntanathan refined it
to be compatible with approximate SPHF over a CCA2-secure encryption scheme.

We briefly recall it in Fig. 3. We assume a common reference string is established before any
executions of the protocol take place. The common reference string consists of a public key for
a CCA2-secure encryption scheme that has an associated ε-correct approximate SPHF (i.e., an
ε-correct approximate SPHF for the language defined in Example 2.12). No party in the system is
assumed to know the secret key associated with it.

Common reference string: A common reference string lpar = ek corresponding to a public key of the
IND-CCA2 public key encryption.
Common private input: A password π

Messages:
1. Party Pi chooses a key-pair (VK, SK) for a strongly unforgeable one-time signature scheme, sets labeli =

VK‖Pi‖Pj‖1 and labelj = VK‖Pi‖Pj‖2, computes Ci = Encrypt(lpar, labeli, π; wi) and sends (VK, Ci) to Pj ;
2. Party Pj receives (VK, Ci), sets labeli = VK‖Pi‖Pj‖1 and labelj = VK‖Pi‖Pj‖2, checks that Ci is of the

proper format, and does the following:
(a) Computes hkj ← HashKG(lpar) and hpj ← ProjKG(hkj , lpar, (labeli, Ci, π)),
(b) Generates an encryption Cj = Encrypt(lpar, labelj , π; wj).
Pj then sends (hpj , Cj) to Pi.

3. Party Pi receives (hpj , Cj), checks that Cj is of the proper format and does the following:
(a) Computes hki ← HashKG(lpar) and hpi ← ProjKG(hki, lpar, (labelj , Cj , π)),
(b) Picks ski ← {0, 1}`, sets c = ECC(ski),
(c) Computes ∆ = Hash(hki, lpar, (labelj , Cj , π))⊕ ProjHash(hpj , lpar, (labeli, Ci, π),wi)⊕ c,
(d) Computes a signature σ of (Ci, Cj , hpi, hpj ,∆) under SK.
Pi then sends (∆,σ) to Pj .

Session Key Definition:
– Pi possesses the session key ski.
– Pj checks the validity of the one time signature σ, and computes the session key skj =

ECC−1(ProjHash(hpi, lpar, (labelj , Cj , π),wj)⊕ Hash(hkj , lparj , (labeli, Ci, π))⊕∆).

Fig. 3: Generic PAKE from an approximate SPHF (HashKG,ProjKG,Hash,ProjHash) for an IND-
CCA2 encryption scheme (KeyGen,Encrypt,Decrypt)

Assuming that the SPHF is ε-correct, and that ECC is an error correcting code with a 2 − ε
correction rate, the resulting construction achieves correctness. If in addition the projection keys of
the SPHF do not depend on the message M = π (as it is the case with our construction), as shown
in [KV09], the security of the protocol is directly inherited from the smoothness of the SPHF and
the IND-CCA2 security of the encryption scheme. Indeed for a passive adversary the session key is
pseudo-random, and an active adversary can not efficiently construct a new ciphertext decrypting
to the client password, nor guessing the session key for something that does not decrypt to the said
password.

Using our new construction. We can instantiate the construction using the encryption scheme à la
Micciancio-Peikert in Section 2.2 together with an approximate SPHF generically derived (via the
transformation in Appendix B.2) from the approximate bit-SPHF constructed in Section 3. This
allow us to achieve a PAKE protocol in three flows, with a polynomial modulus.

Moving to a 2-round PAKE An interesting optimization in cryptography is to reduce the
number of rounds, so that each user only has to speak once. Is it possible to achieve a PAKE, where
each user sends simply one flow?
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In [ABP15b], the authors improved the Gennaro-Lindell framework to reduce its number of
rounds to two. Their construction (called GL-PAKE) requires an IND-CPA encryption with a
KV-SPHF on one hand, and an IND-PCA (Indistinguishable against Plaintext-Checkable Attacks)
encryption with a regular SPHF on the other hand. As for the 2-round PAKE above, the projection
key of the SPHF is supposed to be independent of the messageM = π. Every IND-CCA2 encryption
being also IND-PCA, we can meet the requirements. The scheme is described in Figure 4.

Due to the nature of the SPHF over lattices, we have different languages for correctness and
smoothness, however the proof can straightforwardly be adapted to handle this particularity.

Common reference string: A common reference string (lpar = ek, lpar′ = ek′), where ek is a public key
of the IND-CCA2 encryption scheme (KeyGen,Encrypt,Decrypt) and ek′ is a public key of the IND-CPA
encryption scheme (KeyGen′,Encrypt′,Decrypt′).
Common private input: A password π

Messages:
1. Party Pi does the following:

(a) Computes hkj ← HashKG′(lpar′) and hpj ← ProjKG′(hkj , lpar′),
(b) Sets label = Pi‖Pj‖hpi and generates Ci = Encrypt(lpar, label, π; wi).
Pi then sends (hpi, Ci) to Pj .

2. Party Pi receives (hpi, Ci), checks that Ci is of the proper format and does the following:
(a) Generates Cj = Encrypt′(lpar′,⊥, π; wj),
(b) Sets label = Pi‖Pj‖hpi and compute hki ← HashKG(lpar) and hpj ← ProjKG(hkj , lpar, (label, Ci, π)).
Pj then sends (hpj , Cj) to Pi.

Session Key Definition:
– Pi receives (hpj , Cj), checks that Cj is of the proper format, and computes the session key ski =

ProjHash(hpj , lpar, (label, Ci, π),wi)⊕ Hash′(hki, lpar′, (⊥, Cj , π)).
– Pi computes the session key skj = Hash(hki, lpar, (label, Ci, π))⊕ ProjHash′(hpj , lpar′, (⊥, Cj , π),wj).

Fig. 4: Two-Round PAKE from an IND-CCA2 encryption scheme (KeyGen,Encrypt,Decrypt) with
an SPHF (HashKG,ProjKG,Hash,ProjHash) (from Section 3) and an IND-CPA encryption scheme
(KeyGen′,Encrypt′,Decrypt′) with a KV-SPHF (HashKG′,ProjKG′,Hash′,ProjHash′) (from Section 4)

5.2 Honest-Verifier Zero-Knowledge

It has already been shown in [BP13], that SPHF could be used to produce Honest-Verifier Zero
Knowledge proofs. Our construction is compatible with such a technique for all NP languages of the
form L̈ = {ẍ | ∃ẅ , ¨̄R(ẍ , ẅ)} where ¨̄R is a polynomial-size circuit. The use of double dots on top of
the language and its words is used to distinguish it from the language of the underlying SPHFs.

Generic construction. At a very high level, the prover will simply do a CPA-secure encryption16

of each wire of the circuit, and then show the correct evaluation at each gate, using SPHFs.
For the sake of simplicity, we suppose that all gates of the circuit ¨̄R are NAND gates. We

define the following languages L̄ ⊆ L of ciphertexts C1, C2, C3 encrypting values (b1, b2, b3) so
that b3 = NAND(b1, b2):

L̄ =
{

(C1, C2, C3)
∣∣∣∣∣ ∃ρ1, ρ2, ρ3, b1, b2, b3, ∀i ∈ {1, 2, 3}, C = Encrypt(ek, bi)

and b3 = NAND(b1, b2)

}
,

L =
{

(C1, C2, C3)
∣∣∣∣∣ ∃b1, b2, b3, ∀i ∈ {1, 2, 3}, Decrypt(dk, Ci) = bi

and b3 = NAND(b1, b2)

}
,

16 We actually will use our CCA2-secure encryption scheme à la Micciancio-Peikert.
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where (ltrap, lpar) = (dk, ek) is a key pair for the CPA-secure encryption scheme. Labels are omitted
as they are not used. We suppose that we have an SPHF for the languages L̄ ⊆ L . This SPHF is
used to check that the prover encrypted wire values which corresponds to a valid evaluation of a
gate. Following the methodology from [BP13,BCPW15], our participants are going to interact as
described in Fig. 5.

Common reference string: Encryption key ek for a CPA-secure encryption scheme.
Wire commitments: For each wire i in the circuit ¨̄R evaluated on the word ẍ for the argument and a
witness ẅ , the prover is going to do a CPA-secure encryption of its value b in Ci ← Encrypt(ek, b), and
keeps the corresponding randomness (or witness) ρi = wi. He then sends the corresponding ciphertexts
C = {Ci}i.
Verifying the gates:
1. For each NAND gate j, linking the wires i1, i2 to i3, the verifier computes hkj , hpj ,Hj for the SPHF

described in the text and the word x = (Ci1 , Ci,2, Ci3 ). The verifier then sends hp = {hpj}j .
2. For each hpj , the prover using wi1 , wi2 and wi3 can now recover pHj , he then computes pH =

⊕
j

pHj
and sends it to the prover.

Validation:
– The verifier computes H =

⊕
j

Hj , and accepts if H = pH.

Fig. 5: Honest-verifier zero-knowledge argument from SPHFs

Completeness comes directly from the correctness of the underlying SPHFs, while soundness
comes from their smoothness. A simulator (for the honest-verifier zero-knowledge property) would
encrypt dummy values, computes pH using the various hkj which under the CPA security of the
encryption scheme used would be computationally indistinguishable from the real experiment,
ensuring that the previous construction is indeed honest-verifier zero-knowledge.

Instantiation. It remains to show how to constructs SPHFs for the above language L̄ ⊆ L from
our SPHF in Section 3, when the CPA-secure encryption scheme is our CCA2-secure encryption
scheme à la Micciancio-Peikert of Section 2.2.

We remark that a set of wire values (b1, b2, b3) corresponds to a valid evaluation of a NAND
gate (b3 = NAND(b1, b2)) if and only if (b1 = 0∧ b2 = 0∧ b3 = 1)∨ (b1 = 0∧ b2 = 1∧ b3 = 1)∨ (b1 =
1 ∧ b2 = 0 ∧ b3 = 1) ∨ (b1 = 1 ∧ b2 = 1 ∧ b3 = 0). Therefore, we can write:

L̄ = (L̄1,0 ∩ L̄2,0 ∩ L̄3,1) ∪ (L̄1,1 ∩ L̄2,0 ∩ L̄3,0) ∪ (L̄1,0 ∩ L̄2,1 ∩ L̄3,0) ∪ (L̄1,1 ∩ L̄2,1 ∩ L̄3,0),
L = (L1,0 ∩L2,0 ∩L3,1) ∪ (L1,1 ∩L2,0 ∩L3,0) ∪ (L1,0 ∩L2,1 ∩L3,0) ∪ (L1,1 ∩L2,1 ∩L3,0),

where:

L̄i,b = {(C1, C2, C3) | ∃ρ, Ci = Encrypt(ek, b; ρ)},
Li,b = {(C1, C2, C3) | Decrypt(dk, Ci) = b}.

We remark that our new SPHF in Section 3 can be easily used to deal with the languages L̄i,b and
Li,b.

It is therefore sufficient to show how to combine SPHFs for the languages L̄i,b ⊆ Li,b to get an
SPHF for the language L̄ ⊆ L . For that we use the techniques introduced in [ACP09] to handle
combinations of SPHFs (for conjunctions “∩” and disjunctions “∪”), and we adapt them to fit our
formalism.

Conjunctions and disjunctions of SPHFs. We assume to be given two smooth projective hash
functions SPHF1 and SPHF2, on the sets corresponding to the languages L̄lpar1 and L̄lpar2 : SPHFi
= {HashKGi,ProjKGi,Hashi,ProjHashi}.
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For a given x ∈ X , we naturally define hk1, hk2, hp1, hp2 as before.
A smooth projective hash system for the language L̄ = L̄lpar1 ∩ L̄lpar2 is then defined as follows,

if x ∈ L̄lpar1 ∩ L̄lpar2 and wi is a witness that x ∈ L̄lpari , for both i = 1, 2:

– HashKGL̄lpar
(lpar) = hk = (hk1, hk2);

– ProjKGL̄lpar
(hk, lpar, x ) = hp = (hp1, hp2);

– HashL̄lpar
(hk, lpar, x ) = Hash1(hk1, lpar1, x )⊕ Hash2(hk2, lpar2, x );

– ProjHashL̄lpar
(hp, lpar, x , (w1,w2)) =ProjHash1(hp1, lpar1, x ,w1)⊕ ProjHash2(hp2, lpar2, x ,w2).

The Smoothness is then guaranteed for words outside L = Llpar1,ltrap1 ∩Llpar2,ltrap2 .
Similarly, a smooth projective hash system for the language L̄ = L̄lpar1 ∪ L̄lpar2 is defined as

follows, if x ∈ L̄lpar1 ∪ L̄lpar2 and w is a witness that x belongs to one of the language.

– HashKGL̄lpar
(lpar) = hk = (hk1, hk2);

– ProjKGL̄lpar
(hk, lpar, x ) = hp = (hp1, hp2, hp∆)

where hp∆ = Hash1(hk1, lpar1, x )⊕ Hash2(hk2, lpar2, x ))
– HashL̄lpar

(hk, lpar, x ) = Hash1(hk1, lpar1, x );

– ProjHashL̄lpar
(hp, lpar, x ,w) =

{
ProjHash1(hp1, lpar1, x ,w) if x ∈ L̄lpar1 ,

hp∆ ⊕ ProjHash2(hp2, lpar2, x ,w) if x ∈ L̄lpar2 .

Once again, the Smoothness is then guaranteed for words outside L = Llpar1,ltrap1 ∪Llpar2,ltrap2 .

5.3 Witness Encryption

Another application of our previous SPHF would be in the domain of witness encryption [GGSW13]
for statements derived from the language of ciphertexts as defined in Example 2.12. 17

Definition 5.1. Let (L̄lpar ⊆ Llpar,ltrap ⊆ Xlpar)lpar,ltrap be languages defined as before. A witness
encryption scheme for these languages is defined by the two probabilistic polynomial-time algorithms:
(EncryptWE,DecryptWE), where:

– EncryptWE(1n, x ,M) generates a ciphertext C from a plaintext M , a security parameter n, and
a word x ∈ X .

– DecryptWE(C,w) decrypts the ciphertext C into M using the witness.

It has to satisfy the two following properties:

– Correctness. For any security parameter n, message M ∈ {0, 1}, and x ∈ L̄lpar such that
R̄(x ,w) holds, we have

Pr[DecryptWE(EncryptWE(1n, x ,M),w) = M ] ≥ 1− negl(n) .

– Soundness. For any probabilistic polynomial-time adversary A, there exists a negligible function
negl(.) such that for any positive integer n, if (ltrap, lpar)← Setup.lpar(1n), with overwhelming
probability over the randomness of Setup.lpar, for any x /∈ Llpar,ltrap:

Pr
A

[EncryptWE(1n, x , 0) = 1]− Pr
A

[EncryptWE(1n, x , 1) = 1] < negl(n) .

In the original definition [GGSW13], there was a voluntary gap between the soundness and
correctness, as nothing is said for words in the language for no known witnesses. Over lattice-
based schemes, it is natural to extend the gap, by considering L̄lpar for the correctness, while
defining the soundness for Llpar,ltrap, as in our new definition. Another minor difference is the
introduction of language parameters (ltrap, lpar), as we are considering only restricted languages
17 The concept of using SPHF to generically build Witness Encryption was already mentioned as folklore in the

introduction of [ABP15a], but as far as we know it was not properly detailed anywhere.
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(and not NP-complete languages as in [GGSW13]). We point out that our construction achieve
statistical soundness (i.e., against any adversary) and therefore also satisfies (up to this additional
gap and the language parameters) adaptive soundness as defined in [BH15].

Concretely, here is our construction. Assuming an SPHF on the language L̄lpar, we can build a
witness encryption as follows:

– EncryptWE(1n, x ,M) outputs C = (hp,H ⊕M), by running HashKG(lpar), ProjKG(hk, lpar, x ),
Hash(hk, lpar, x ) to compute hk, hp,H.

– DecryptWE(C,w) recoversM = P⊕pH by parsing C as hp, P , and computing pH = ProjHash(hp,
lpar, x ,w).

Theorem 5.2. The above construction is a correct and statistically sound witness encryption
scheme.

Proof. Under the correctness of the underlying SPHF, one obtains:

Pr [DecryptWE(EncryptWE(1n, x ,M),w) = M ] ≥ 1− negl(n) .

It is interesting to note, that in case of an ε-approximate SPHF, one can still achieve an ε-approximate
correctness for the encryption.

The smoothness of the SPHF, ensures that for x not in the language, H is seemingly random from
the point of view of an adversary, hence H⊕M is too, which guarantees the desired soundness. ut
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A CCA2 and tag-CCA Security

In this section, we remind the definitions of IND-CCA2 and tag-IND-CCA2 encryption schemes,
recall the generic transformation from the latter to the former, before proving tag-IND-CCA2
security for the scheme of Section 2.2.

A.1 Definitions

Definition A.1 (Labeled Encryption Scheme). A (labeled) public-key encryption scheme is
defined by four algorithms:

– KeyGen(1n) takes as input a unary representation of the security parameter and generates a
pair of keys (dk, ek), where dk is the secret decryption key and ek is the public encryption key;

– Encrypt(ek, label,M ; ρ) produces a ciphertext C on the input message M under the label label
and encryption key ek, using the random coins ρ;

– Decrypt(dk, label, C) outputs the plaintext M encrypted in C under the label label, or ⊥;

and satisfies the following property:

– Correctness. For any security parameter n, with overwhelming probability over (dk, ek) ←
KeyGen(1n), for any label label, for any message M , for any ciphertext C ← Encrypt(ek,
label,M ; ρ), we have Decrypt(dk, label, C) = M .

Definition A.2 (IND-CCA2 Security). An encryption scheme E = (KeyGen,Encrypt,Decrypt)
is IND-CCA2 if the advantage of any polynomial-time adversary A in distinguishing Expcca−0

E,A (1n)
from Expcca−1

E,A (1n) is negligible in the security parameter n, where the experiments Expcca−b
E,A (1n) are

depicted in Fig. 6. Informally, this notion states that an adversary should not be able to efficiently
guess which message has been encrypted even if he chooses the two original plaintexts, and can ask
several decryption of ciphertexts as long as they are not the challenge one.

Expcca−b
E,A (1n)

1. (dk, ek)← KeyGen(1n)
2. (M0,M1)← A(FIND : ek,ODecrypt(dk, ·, ·))
3. C∗ ← Encrypt(ek, label∗,Mb)
4. b′ ← A(GUESS : C∗, label∗,ODecrypt(dk, ·, ·))
5. IF (label∗, C∗) ∈ CT RETURN 0
6. ELSE RETURN b′

ODecrypt(dk, label, C)
7. Add (label, C) to CT
8. RETURN Decrypt(dk, label, C)

Fig. 6: Security Experiment for CCA2 security.

This IND-CCA2 notion can be relaxed into a weaker tag-IND-CCA2 security notion.

Definition A.3 (Tag-IND-CCA2 Security). An encryption scheme E = (KeyGen,Encrypt,
Decrypt) is tag-CCA2-secure if the advantage of any polynomial-time adversary A in distinguishing
Exptag-cca−0

E,A (1n) from Exptag-cca−1
E,A (1n) is negligible in the security parameter n, where the experiments
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Exptag-cca−b
E,A (1n) are defined as the experiments Expcca−b

E,A (1n) depicted in Fig. 6, except that the line
5 is superseded by:
6. IF (label∗, ·) ∈ CT RETURN 0.
In other words, the adversary is not allowed to query the decryption oracle on a ciphertext with the
same label label (also called a tag and denoted u in this context) as the challenge one.

Finally, we recall that the weaker IND-CPA security notion is defined similarly as the IND-CCA2
or tag-IND-CCA2 security notion, except that the adversary is not given access to the decryption
oracle ODecrypt. If the tag of a tag-IND-CCA2 encryption scheme is fixed to some public constant,
then the resulting scheme is IND-CPA.

A.2 From Tag-IND-CCA2 to IND-CCA2

We can convert a tag-IND-CCA2 encryption scheme (KeyGen′,Encrypt′,Decrypt′) with message space
{0, 1} and label (a.k.a., tag) space {0, 1}n into an IND-CCA2 encryption scheme (KeyGen,Encrypt,
Decrypt) with message space {0, 1}ν (for some ν polynomial in n) and label space {0, 1}∗, us-
ing [DDN03]. Concretely, we suppose that we have a strongly unforgeable one-time signature scheme
and we define:

– KeyGen(1n) outputs (dk, ek)← KeyGen′(1n);
– Encrypt(ek, label ∈ {0, 1}∗,M ∈ {0, 1}ν) generates a signature key sk and an associated

verification key pk (for the strongly unforgeable one-time signature, we suppose that pk
can be represented as a n-bit string without loss of generality), computes for 1 ≤ i ≤ ν,
Ci ← Encrypt′(ek, pk,Mi), and outputs C := (C1, . . . , Cν , pk, σ), where σ is a signature under
sk of (C1, . . . , Cν , pk, label);

– Decrypt(dk, label ∈ {0, 1}∗, C) parses C as (C1, . . . , Cν , pk, σ), abort (i.e., return ⊥) if σ is not
a valid signature of (C1, . . . , Cν , pk, label) under pk, otherwise computes for 1 ≤ i ≤ ν, Mi =
Decrypt′(dk, pk, Ci), and output the bit string M ∈ {0, 1}ν corresponding to the concatenation
of M1, . . . ,Mν .

A.3 Proof of Tag-IND-CCA2 Security of our Encryption Scheme (Theorem 2.9)

The proof follows closely the proof of the original scheme in [MP12]. We proceed with Hybrid
games.

Hybrid H0. The first hybrid game H0 is the tag-IND-CCA2 game described in Fig. 6.

Hybrid H1, Setup. In a second game H1, we pick u∗ ∈ U , and we set the public key to be
A0 = [Ā ; RĀ − G h(u∗)], where (T ,A) ← TrapGen(1n, 1m, q), with T = [−R | I] and A =
[Ā ; RĀ]. Note that A0 is statistically close to uniform, so that this new public key is statistically
indistinguishable from the one from H0.

Hybrid H1, decryption queries. To handle decryption queries on tags u 6= u∗, the reduction simply
outputs 

µ if g−1
A0

(T , 2c, h(u− u∗)) = 2e+ (0, . . . , 0, µ) where e ∈ Zm
and ‖e‖ ≤ B′ with B′ := q/Θ(

√
m) ,

⊥ otherwise.

By the correctness of the g−1
A0

algorithm (Lemma 2.8), this procedure outputs µ if and only if
d(c− Encode(µ), Λ(Au)) < B′, which is exactly the same behavior than in game H0.
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Hybrid H1, challenge ciphertext. For the challenge ciphertext, choose µ ∈ {0, 1}, and set tag u = u∗.
Choose s ∈ Znq , e← Dm

Z,σ, and set b̄ = Ās+ e. Define Q = [Im̄ ; R]. Note that Qb̄ = Au∗s+Qe.
We then set the ciphertext to be:

c = Qb̄+ ê+ Encode(µ) ,

where ê← Dm
Z,
√
Σ

and Σ = t2Im − σ2QQt.18 We note that

c = Au∗s+ e′ + Encode(µ) , where e′ = Qe+ ê .

We will argue that c is distributed as in game H0. For this, it suffices to show that e′ is negligibly
close to DZm,t. Because Qe belongs to Zm the distribution Qe′+DZm,

√
Σ of e′ is equal to DZm,t,Qe.

It remains to apply the convolution Theorem of Peikert [Pei10, Theorem 3.1], as already detailed
in [MP12, Section 5.4].

Hybrid H2. In a third game H2, we only change the challenge ciphertext, and we now pick b̄
uniformly random in Zm̄q , which is indistinguishable from the previous game by the assumption of
hardness of the LWEχ,q problem, for χ = DZ,σ.

In H2, the adversary receives c = Qb+ ê+Encode(µ), with Qb̄ = [b̄ ; Rb̄]t. But (Ā,RĀ, b̄,Rb̄)
is statistically negligibly close to uniform over the randomness of R← Dnk×m̄ by the leftover hash
lemma. In particular, c is uniform and independent from the public key A0 and the message µ, so
the advantage of the adversary is negligible against game H2. ut

B SPHF

In this appendix, we formally define approximate KV-SPHFs and describe the generic transforma-
tions of SPHFs sketched in Section 2.3 and summarized in Fig. 1.

B.1 Formal Definition of Approximate KV-SPHF

Definition B.1. An approximate KV-SPHF is defined as in Definition 2.13 except that the algo-
rithm ProjKG does not take as input the word x , approximate correctness is modified accordingly,
and smoothness is replaced by the following stronger property:
(KV-)smoothness. For any positive integer n, if (ltrap, lpar)← Setup.lpar(1n), with overwhelming
probability over the randomness of Setup.lpar, for all f onto X \Llpar the following distributions
have statistical distance negligible in n:

{(lpar, f(hp), hp,H) | hk← HashKG(lpar), H← Hash(hk, lpar, f(hp)), hp = ProjKG(hk, lpar)} ,

{(lpar, f(hp), hp,H) | hk← HashKG(lpar), H← {0, 1}ν , hp = ProjKG(hk, lpar)} .

An approximate KV-SPHF is called a KV-SPHF if it is ε(n)-correct with ε(n) negligible in the
security parameter n.

B.2 Generic Transformations of Bit-SPHFs and SPHFs

From Approximate Bit-SPHF to Approximate SPHF. This transformation is straightfor-
ward, we simply need to enhance the output of the hash function, by sampling several independent
hash keys hk, and concatenating the output of all the corresponding Hash results.

Lemma B.2. Let (HashKG′,ProjKG′,Hash′,ProjHash′) be an ε-correct approximate bit-SPHF. Then
the SPHF (HashKG,ProjKG,Hash,ProjHash) defined as follows is an (ε + ε′)-correct approximate
SPHF, for any constant ε′ > 0.
18 The procedure to sample from such a distribution is described in [Pei10,MP12].
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– HashKG(lpar) generates a hashing key hk = (hk1, . . . , hkν) by running ν times HashKG′(lpar),
where ν = Ω(n);

– ProjKG(hk, lpar, x ) derives a projection key hp from the hashing key hk, by computing hpi =
ProjKG′(hki, lpar, x ) (for i ∈ {1, . . . , ν}) and setting hp = (hp1, . . . , hpν).

– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν, by computing the various hash values Hi =
Hash(hki, lpar, x ) (for i ∈ {1, . . . , ν}) and concatenating the ouputs: H = H1‖ . . . ‖Hν ;

– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν , by computing the projected
hash values pHi = ProjHash′(hpi, lpar, x ,w) (for i ∈ {1, . . . , ν}) and concatenating them: pH =
pH1‖ . . . ‖pHν ;

Proof. Approximate correctness. We have for every i:

Pr
hki

[Hash′(hki, lpar, x ) = ProjHash′(hpi, lpar, x ,w)] ≥ 1− ε .

Hence, the property on the concatenation, using the Hoeffding bound.
Smoothness. This follows from a classical hybrid argument by considering intermediate distribu-
tions ∆i where the first i values Hi are random, and the others are honestly computed, as each
SPHF is independent and smooth. ut

From Approximate Correctness to Correctness. There exists a generic transformation,
implicit in [KV09], from an approximate SPHF to an SPHF. The idea is quite simple, it requires
the use of an error correcting code (noted ECC in the following) capable of correcting an ε-fraction
of errors.

Lemma B.3. Let (HashKG′,ProjKG′,Hash′,ProjHash′) be an ε-correct approximate SPHF (with
hash values in {0, 1}ν) and ECC be an error correcting code capable of correcting an ε-fraction of
error. Then the SPHF (HashKG,ProjKG,Hash,ProjHash) defined as follows is a (regular) SPHF:

– HashKG(lpar) sets hk1 ← HashKG′(lpar), and picks a random hk2 from {0, 1}ν . It then returns
hk = (hk1, hk2);

– ProjKG(hk, lpar, x ) computes hp1 ← ProjKG′(hk1, lpar, x ), and computes c = ECC(hk2),H′ ←
Hash′(hk1, lpar, x ), and sets hp2 = c⊕ H′;

– Hash(hk, lpar, x ) simply outputs H = hk2;
– ProjHash(hp, lpar, x ,w) computes pH′ = ProjHash′(hp1, lpar, x ,w) and sets pH = ECC−1(pH′ ⊕

hp2).

We stress that this transformation always gives a SPHF (and not a KV-SPHF), even if the
original approximate SPHF is an approximate KV-SPHF, as the ProjKG algorithm requires to run
the approximate Hash′ algorithm, and therefore requires the knowledge of the word x .

Proof. Approximate-correctness. In an honest execution, the approximate correctness guaran-
tees that HW(pH′,H′) ≤ ε · n. In particular, this means that HW(pH′ ⊕ hp2, c) ≤ ε · n. Now, the
capacity of the error-correcting code leads to the conclusion: pH = H
Smoothness. Smoothness of the original SPHF ensures that when x /∈ L , H′ is negligibly close
to uniform even when knowing hp′. Therefore, it completely masks c (in hp2) and thus H = hk2 is
negligibly close to uniform even when knowing hp1 = hp′ and hp2 = c⊕ H′. ut

From Imperfectly Universal Bit-KV-PHFs to KV-SPHFs. The idea is quite simple: we first
XOR the hash values of several independent executions of the bit-KV-PHF to amplify universality
and get a statistically universal bit-KV-PHF. To convert the resulting bit-KV-PHF into a KV-
SPHF, we then increase the output length using basic concatenation and parallel executions as in
Lemma B.2.
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Lemma B.4. Let (HashKG′,ProjKG′,Hash′,ProjHash′) be a ε-universal bit-KV-PHF. Then the
SPHF (HashKG,ProjKG,Hash,ProjHash) defined as follows is a KV-SPHF:

– HashKG(lpar) generates a hashing key hk = (hk(1,1), . . . , hk(η,ν)) by running η · ν times the
original hashing key generation HashKG′(lpar), where η = ω(− logn/ log ε) and ν is the output
length of the SPHF;

– ProjKG(hk, lpar) derives a projection key hp from the hashing key hk, by computing hp(i,j) =
ProjKG′(hk(i,j), lpar) and setting hp = (hp(1,1), . . . , hp(η,ν)).

– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν , by computing the various hash values H(i,j) =
Hash(hk(i,j), lpar, x ), and then Hj = H1,j ⊕ · · · ⊕ Hη,j (for i, j ∈ {1, . . . , ν}), and concatenating
the ouputs: H = H1‖ . . . ‖Hν ;

– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν, by computing the hash
values H(i,j) = Hash(hk(i,j), lpar, x ), and then Hj = H1,j ⊕ · · · ⊕ Hη,j (for i, j ∈ {1, . . . , ν}), and
concatenating the ouputs: H = H1‖ . . . ‖Hν ;

Proof. Correctness. Correctness is straightforward as the original bit-KV-PHF is statistically
correct.
Smoothness. With overwhelming probability over lpar, for each j ∈ {1, . . . , ν}, for any projection
key hp, we have:∣∣∣∣2 · Pr

hk

[
H1,j ⊕ · · · ⊕ Hη,j = 1

∣∣∣ ∀i ∈ {1, . . . , η}, hpi,j = ProjKG(hki,j , lpar)
]
− 1

∣∣∣∣
=
∣∣∣∣Ehk

[
(−1)H1,j · (−1)H2,j · · · (−1)Hη,j

∣∣∣ ∀i ∈ {1, . . . , η}, hpi,j = ProjKG(hki,j , lpar)
]∣∣∣∣

=
∣∣∣∣∣ E
hk1,j

[
(−1)H1,j

∣∣∣ hp1,j = ProjKG(hk1,j , lpar)
]
· · · E

hkη,j

[
(−1)Hη,j

∣∣∣ hpη,j = ProjKG(hkη,j , lpar)
]∣∣∣∣∣

≤ εη = 2−ω(logn) ,

where H(i,j) = Hash(hk(i,j), lpar, x ), E denotes the expectation, and the second equality comes from
the independence of the hashing keys hki,j . In other words, if ν = 1, then we would have constructed
a statistically universal bit-KV-PHF.

Smoothness follows immediately. ut
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