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Abstract

The “learning with errors” (LWE) problem is to distinguish random linear equations, which have been
perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as
hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora
of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent
quadratic overhead in the use of LWE. A main open question was whether LWE and its applications
could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash
functions (and related primitives).

We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring-
LWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the
ring-LWE distribution is pseudorandom, assuming that worst-case problems on ideal lattices are hard
for polynomial-time quantum algorithms. Applications include the first truly practical lattice-based
public-key cryptosystem with an efficient security reduction; moreover, many of the other applications of
LWE can be made much more efficient through the use of ring-LWE.

1 Introduction

Over the last decade, lattices have emerged as a very attractive foundation for cryptography. The appeal of
lattice-based primitives stems from the fact that their security can often be based on worst-case hardness
assumptions, and that they appear to remain secure even against quantum computers.

Many lattice-based cryptographic schemes are based directly upon two natural average-case problems
that have been shown to enjoy worst-case hardness guarantees. The short integer solution (SIS) problem was
first shown in Ajtai’s groundbreaking work [Ajt96] to be at least as hard as approximating several worst-case
lattice problems, such as the (decision version of the) shortest vector problem, to within a polynomial factor
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in the lattice dimension. More recently, Regev [Reg05] defined the learning with errors (LWE) problem
and proved that it enjoys similar worst-case hardness properties, under a quantum reduction. (That is, an
efficient algorithm for LWE would imply efficient quantum algorithms for approximate lattice problems.)
Peikert [Pei09] subsequently proved the hardness of LWE under certain lattice assumptions, via a classical
reduction.

The SIS problem may be seen as a variant of subset-sum over a particular additive group. In more detail,
let n ≥ 1 be an integer dimension and q ≥ 2 be an integer modulus; the problem is, given polynomially
many random and independent ai ∈ Znq , to find a ‘small’ integer combination of them that sums to 0 ∈ Znq .
The LWE problem is closely related to SIS, and can be stated succinctly as the task of distinguishing ‘noisy
linear equations’ from truly random ones. More specifically, the goal is to distinguish polynomially many
pairs of the form (ai, bi ≈ 〈ai, s〉) ∈ Znq × Zq from uniformly random and independent pairs. Here s ∈ Znq
is a uniformly random secret (which is kept the same for all pairs), each ai ∈ Znq is uniformly random and
independent, and each inner product 〈ai, s〉 ∈ Zq is perturbed by a fresh random error term that is typically
distributed like a (rounded) normal variable.

In recent years, a multitude of cryptographic schemes have been proposed around the SIS and LWE
problems. The SIS problem has been the foundation for one-way [Ajt96] and collision-resistant hash func-
tions [GGH96], identification schemes [MV03, Lyu08, KTX08], and digital signatures [GPV08, CHKP10,
Boy10, MP12, Lyu12]. The LWE problem has proved to be amazingly versatile, serving as the basis for secure
public-key encryption under both chosen-plaintext [Reg05, PVW08, LP11] and chosen-ciphertext [PW08,
Pei09, MP12] attacks, oblivious transfer [PVW08], identity-based encryption [GPV08, CHKP10, ABB10a,
ABB10b], various forms of leakage-resilient cryptography (e.g., [AGV09, ACPS09, GKPV10]), fully homo-
morphic encryption [BV11, BGV12] (following the seminal work of Gentry [Gen09]), and much more.

A main drawback of schemes based on the SIS and LWE problems, however, is that they tend not to
be efficient enough for practical applications. Even the simplest primitives, such as one-way and collision-
resistant hash functions, have key sizes and require computation times that are at least quadratic in the main
security parameter, which needs to be in the several hundreds for sufficient security against known attacks
(see, e.g., [MR09, LP11]).

A promising approach for avoiding this intrinsic inefficiency is to use lattices that possess extra algebraic
structure. Influenced by the heuristic design of the NTRU cryptosystem [HPS98], Micciancio [Mic02]
proposed a ‘compact,’ efficient one-way (though not collision-resistant) function using a ring-based variant
of SIS that he proved is at least as hard as worst-case problems on cyclic lattices. Later, Peikert and
Rosen [PR06] and Lyubashevsky and Micciancio [LM06] independently showed that a modified ring-SIS
problem is as hard as worst-case problems on ideal lattices (a generalization of cyclic lattices), which led to
constructions of collision-resistant hash functions with practical implementations [LMPR08]. These results
paved the way for other efficient cryptographic constructions, including identification schemes [Lyu09] and
signatures [LM08, Lyu09], though not any public-key encryption applications.

Despite its expected utility, a compact analogue of LWE with comparable security properties has not
yet appeared in the literature (though see Section 1.4 for discussion of a recent related work). Indeed, the
perspectives and techniques that have so far been employed for the ring-SIS problem appear insufficient for
adapting the more involved hardness proofs for LWE to the ring setting. Our main contributions in this paper
are to define a ring-based variant of LWE and to prove its hardness under worst-case assumptions on ideal
lattices.
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1.1 Results

Here we give an informal overview of the ring-LWE problem and our hardness results for it. See Section 1.2
below for a discussion of some of the technical points omitted from this overview.

Let f(x) = xn + 1 ∈ Z[x], where the security parameter n is a power of 2, making f(x) irreducible
over the rationals. Let R = Z[x]/ 〈f(x)〉 be the ring of integer polynomials modulo f(x). Elements
of R (i.e., residues modulo f(x)) can be represented by integer polynomials of degree less than n. Let
q = 1 mod 2n be a sufficiently large public prime modulus (bounded by a polynomial in n), and let
Rq = R/ 〈q〉 = Zq[x]/ 〈f(x)〉 be the ring of integer polynomials modulo both f(x) and q. The qn elements
of Rq may be represented by polynomials of degree less than n whose coefficients are from {0, . . . , q − 1}.

The ring-LWE problem in R, denoted R-LWE, may be informally defined as follows (the formal, more
general definition is given in Section 3): fix a certain error distribution over R that is concentrated on ‘small’
elements, and let s = s(x) ∈ Rq be a uniformly random ring element. Analogously to LWE, the goal is
to distinguish arbitrarily many independent ‘random noisy ring equations’ from truly uniform pairs. More
specifically, the noisy equations are of the form (a, b ≈ a · s) ∈ Rq ×Rq, where each a is uniformly random,
and each product a · s is perturbed by a term drawn independently from the error distribution over R.

Main Theorem 1 (Informal). Suppose that it is hard for polynomial-time quantum algorithms to approx-
imate (the search version of) the shortest vector problem (SVP) in the worst case on ideal lattices in R to
within a fixed poly(n) factor. Then any poly(n) number of samples drawn from the R-LWE distribution are
pseudorandom to any polynomial-time (possibly quantum) attacker.

For the ring R defined above, the family of ideal lattices is essentially the family of all “anti-cyclic integer
lattices,” i.e., lattices in Zn that are closed under the operation that cyclically rotates the coordinates and
negates the cycled element (see below for the more general definition of ideal lattices). Our main theorem
follows from two component results: the first one (proved in Section 4) is a quantum reduction from
worst-case approximate SVP on ideal lattices to the search version of ring-LWE; the second one (proved in
Section 5) shows that the R-LWE distribution is in fact pseudorandom assuming that the search problem is
hard. More details on the proof are given in Section 1.3 below.

Efficiency. For cryptographic applications, the R-LWE problem has many attractive features. First note
the cryptographic strength of R-LWE versus standard LWE (or, for that matter, any other common number-
theoretic assumption): each noisy product b ≈ a · s gives n simultaneously pseudorandom values over Zq,
rather than just one scalar, yet the cost of generating it is quite small: polynomial multiplication can be
performed in O(n log n) scalar operations, and in parallel depth O(log n), using the Fast Fourier Trans-
form (FFT) or its variants, with highly optimized implementations in practice (see [LMPR08] and the
companion paper [LPR12]). Finally, in most applications each sample (a, b) ∈ Rq ×Rq from the R-LWE
distribution can replace n samples (a, b) ∈ Znq × Zq from the standard LWE distribution, thus reducing the
size of the public key (and often the secret key as well) by a factor of n. This is especially beneficial because
key size has probably been the main barrier to practical lattice-based cryptosystems enjoying rigorous security
analysis.

Security. Given the utility, flexibility, and efficiency of the ring-LWE problem, a natural question is: how
plausible is the underlying assumption? All of the algebraic and algorithmic tools (including quantum
computation) that we employ in our hardness reductions can also be brought to bear against SVP and other
problems on ideal lattices. Yet despite much effort, no significant progress in attacking these problems has
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been made. The best known algorithms for ideal lattices perform essentially no better than their generic
counterparts, both in theory and in practice. In particular, the asymptotically fastest known algorithms for
obtaining an approximation to SVP on ideal lattices to within polynomial factors require time 2Ω(n), just as
in the case of general lattices [AKS01, MV10].

We also gain some confidence in the hardness of ideal lattices from the fact that they arise naturally in
algebraic number theory, a deep and well-studied branch of mathematics that has been investigated reasonably
thoroughly from a computational point of view (see, e.g., [Coh93]). Due to their recent application in the
design of cryptographic schemes, however, it is probably still too early to say anything about their security
with great confidence. Further study is certainly a very important research direction.

Applications. As mentioned above, a remarkable number and variety of cryptographic constructions have
been based on standard LWE. Most of these applications can be made more efficient, and sometimes even
practical for real-world usage, by adapting them to ring-LWE. This process is often straightforward, but
in some cases it requires additional technical tools to obtain the tightest and most efficient results. In a
companion paper [LPR12] we give a collection of such tools, which include a strong ‘regularity’ lemma for
the ring setting, tight bounds on the growth of error terms under ring operations, and fast special-purpose
algorithms for important operations like generating error terms according to the appropriate distributions. We
also construct several ring-LWE-based cryptosystems using these tools.

As one example application, here we sketch a simple and efficient semantically secure public-key
cryptosystem, but defer a precise analysis to [LPR12]. For concreteness, fix the ring R = Z[x]/ 〈xn + 1〉
for n a power of 2. The key-generation algorithm chooses a uniformly random element a ∈ Rq as well as
two random ‘small’ elements s, e ∈ R from the error distribution. It outputs s as the secret key and the pair
(a, b = a · s+ e) ∈ R2

q as the public key. To encrypt an n-bit message z ∈ {0, 1}n, we view it as an element
of R by using its bits as the 0-1 coefficients of a polynomial. The encryption algorithm then chooses three
random ‘small’ elements r, e1, e2 ∈ R from the error distribution and outputs the pair (u, v) ∈ R2

q as the
encryption of z, where

u = a · r + e1 mod q and v = b · r + e2 + bq/2e · z mod q.

The decryption algorithm simply computes

v − u · s = (r · e− s · e1 + e2) + bq/2e · z mod q.

For an appropriate choices of parameters, the coefficients of r · e− s · e1 + e2 ∈ R have magnitudes less
than q/4, so the bits of z can be recovered by rounding each coefficient of v − u · s back to either 0 or bq/2e,
whichever is closest modulo q.

Semantic security follows from two easy applications of the pseudorandomness of ring-LWE. First we
note that ring-LWE samples are pseudorandom even when the secret is also chosen from the error distribution,
by a transformation to the “(Hermite) normal form” analogous to the one for standard LWE [MR09, ACPS09].
Therefore, the public key (a, b) ∈ Rq is pseudorandom, so as a thought experiment we may replace it with a
truly uniform pair. Then we see that (ignoring the message component bq/2e · z) the pairs (a, u), (b, v) ∈ R2

q ,
which constitute the entire view of a passive adversary, are ring-LWE samples with secret r and hence are
also pseudorandom, which implies semantic security.

1.2 More Details

Here we fill in some of the missing details in the high-level description above.
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The underlying ring. Our main focus in this work is on the rings Z[x]/ 〈Φm(x)〉 of integer polynomials
modulo a cyclotomic polynomial Φm(x). To recall, the mth cyclotomic polynomial Φm(x) ∈ Z[x] is the
polynomial of degree n = ϕ(m) whose roots are all the primitive mth roots of unity ζjm ∈ C, where
ζm = exp(2π

√
−1/m) and 1 ≤ j < m with j coprime to m. For instance, when m ≥ 2 is a power of 2, we

have Φm(x) = xn + 1 where n = m/2. From an algebraic point of view, it is more natural to view these
rings as the rings of algebraic integers in cyclotomic number fields (as opposed to rings of polynomials), and
this is indeed the perspective we adopt.

Rings of integers in (not necessarily cyclotomic) number fields have some nice algebraic properties
that are essential to our results. For instance, they have unique factorization of ideals, and their fractional
ideals form a multiplicative group; in general, neither property holds in Z[x]/ 〈f(x)〉 for monic irreducible
f(x), as demonstrated by the ring Z[x]/

〈
x2 + 3

〉
. In addition, cyclotomic number fields have Galois (i.e.,

automorphism) groups that ‘act transitively’ on certain collections of prime ideals while still preserving
the LWE error distribution, which is an essential fact used in the second component of our proof. The first
component of our proof does not need this latter property, and therefore applies more generally to rings of
integers in arbitrary (not necessarily cyclotomic) number fields. It is likely that our second component can
also be somewhat extended beyond cyclotomic number fields, but we do not attempt to do so here.

Ideal lattices and the canonical embedding. Fix some underlying ring R, e.g., the ring of algebraic
integers in a cyclotomic number field as above. Recall that an ideal is an additive subgroup that is closed
under multiplication by elements of R. In the case of cyclotomic rings Z[x]/ 〈Φm(x)〉, the latter constraint is
equivalent to requiring closure under multiplication by x. Fix also an additive isomorphism σ mapping the
ring R to some lattice σ(R) in Rn. For instance, the naı̈ve “coefficient embedding” maps any element of R
to the integer vector in Zn whose coordinates are exactly the coefficients of that element when viewed as a
polynomial residue. The family of ideal lattices (for the ring R and embedding σ) is the set of all lattices
σ(I) for ideals I in R. For example, when working with the ring Z[x]/ 〈xn + 1〉 for n a power of 2 and the
coefficient embedding, one obtains the family of all “anti-cyclic integer lattices” mentioned above.

Unlike almost all previous works in the area (e.g., [Mic02, PR06, LM06, LM08, Gen09, Lyu09, SSTX09]),
we choose not to use the naı̈ve coefficient embedding, and instead use throughout this work the so-called
canonical embedding from algebraic number theory (also adopted in the prior work [PR07]), whose definition
will appear later.

By definition, any two embeddings are related to each other simply by a fixed linear transformation on Rn.
Moreover, in many cases the distortion introduced by this transformation is small; for example, in the ring
Z[x]/ 〈xn + 1〉 where n is a power of 2, the transformation is even an isometry (i.e., a scaled rotation). In
particular, worst-case lattice problems like approximate-SVP are equivalent under any two embeddings, up
to a factor corresponding to the distortion between them. Hence, one might wonder why bother with the
canonical embedding and not just work with the naı̈ve one. Yet due to its central role in the study of number
fields and many useful geometric properties, we contend that the canonical embedding is the ‘right’ notion to
use in the study of ideal lattices. We elaborate on this point in the last part of this section.

Error distribution. One important issue we have ignored so far is the precise error distribution in the
definition of ring-LWE for which our hardness results hold. As in the standard LWE problem, the error
distribution we use is a (centered) Gaussian. However, unlike the standard LWE problem where the error is a
one-dimensional Gaussian (and hence the distribution can be specified by just one parameter, the standard
deviation), here the error is an n-dimensional Gaussian. While in general specifying an n-dimensional
centered Gaussian distribution requires an entire n-by-n covariance matrix, our error distributions are always
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diagonal in the canonical embedding. In other words, when viewed in the canonical embedding, our error
distributions are product distributions in which each component is a (one-dimensional, centered) normal
distribution with a certain standard deviation, and hence an entire error distribution is defined by just n
parameters. When all these parameters are equal, we say that the distribution is spherical.

Notice that all of the above is under the assumption that we are using the canonical embedding. When
using another embedding (say, the naı̈ve coefficient embedding), the error distribution is still a multivariate
Gaussian (since a linear transformation of a Gaussian is Gaussian), but its coordinates need no longer be
independent. (One exception is spherical error with an underlying ring Z[x]/ 〈xn + 1〉 for n a power of 2;
here the two embeddings are isometric, and hence the error also has i.i.d. coordinates in the coefficient
embedding, albeit with a different standard deviation due to the scaling involved.)

For our ring-LWE hardness results, the search problem requires a solution for any Gaussian error
distribution whose n parameters are all at most some parameter α. For the average-case decision problem,
the n parameters are themselves chosen at random and kept secret (see Definition 3.5). This situation is in
contrast with standard LWE, where the error distribution, being one-dimensional, is simply a fixed normal
distribution.

The above non-spherical error distributions might be an artifact of our proof technique, and although they
typically do not cause any serious problems, they might make certain applications and their proofs more
cumbersome. Fortunately, if we restrict the ring-LWE problem (in either its search or decision form) to any
bounded number ` of samples, then we can prove hardness for a fixed, spherical error distribution that is only
about an `1/4 factor wider than the non-spherical one with random parameters (see Theorem 5.2). Because
the security reductions for most ring-LWE-based cryptographic schemes use only a small number of samples
(often, ` = O(1) or ` = O(log n)), it is appropriate and simpler to use spherical error in those applications.
Finally, we mention that if one assumes the hardness of the search problem with a fixed spherical Gaussian
error distribution and unbounded samples (which seems plausible, but is not implied by our worst-case
hardness proof), then the average-case decision problem for the very same error distribution (and unbounded
samples) is also hard (see Theorem 5.3).

In praise of the canonical embedding. While the number-theoretic perspective on ideal lattices (and in
particular the use of the canonical embedding) requires some investment in the mathematical background, we
find that it delivers many nice geometric and algebraic properties that pay dividends in the ease of working
with the objects, and in the strength and generality of results that can be obtained. We now describe a few
examples of this.

First, unlike the coefficient embedding, under the canonical embedding both addition and multiplication of
ring elements are simply coordinate-wise. As a result, both operations have simple geometric interpretations
that lead to tight bounds, and product distributions (such as Gaussians) behave very nicely under both addition
and multiplication. By contrast, analyzing multiplication under the coefficient embedding required previous
works to use rather crude quantities like the “expansion factor” of the ring. The expansion factor bounds the
worst-case ratio of ‖σ(a · b)‖ to ‖σ(a)‖ · ‖σ(b)‖ over all a, b ∈ R, but on average (over the random choice
of a, b from natural distributions), it is often quite loose. Moreover, it does not provide any more detailed
information about how a · b relates to a and b geometrically, e.g., for analyzing probability distributions.

Second, although for many rings the canonical and coefficient embeddings are (nearly) isometric, in
many other rings of interest the distortion between them can be very large—even super-polynomial in the
dimension for some cyclotomic polynomial rings [Erd46]. This may explain why previous work was mostly
restricted to Z[x]/ 〈xn + 1〉 for n a power of 2, and a few other concrete rings, whereas we can prove tight
geometric bounds and hardness results for all cyclotomic rings (regardless of their expansion factor).
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A third point in favor of the canonical embedding is that it behaves very nicely under the automorphisms
that are crucial to the second component of our proof: they simply permute the axes of the embedding.

1.3 Proof Outline and Techniques

As mentioned before, our main theorem consists of two component results, which we now describe in more
detail. We note that the two parts are essentially independent, and can be read separately.

First component: worst-case hardness of the search problem. In the first component we give a quantum
reduction from approximate SVP (in the worst case) on ideal lattices in R to the search version of ring-LWE,
where the goal is to recover the secret s ∈ Rq (with high probability, for any s) from arbitrarily many noisy
products. This result is stated formally as Theorem 4.1, and is proved throughout Section 4. As already
mentioned before, this reduction actually works in general (not necessarily cyclotomic) number fields.

Our reduction follows the general outline of Regev’s iterative quantum reduction for general lat-
tices [Reg05]. In fact, we use the quantum part of the reduction in [Reg05] essentially as a black box;
the main effort is in the classical (non-quantum) part, and requires perspectives and tools from algebraic
number theory such as the canonical embedding and the Chinese remainder theorem (CRT).

In particular, one of the main technical contributions is the use of the CRT for ‘clearing the ideal’ I from an
arbitrary ideal lattice instance (see Lemmas 2.14 and 2.15). This involves mapping the quotient ring I/qI to
the fixed quotient ringR/qR in an ‘algebraically consistent’ way (formally, as an isomorphism ofR-modules).
We believe that this technique should be useful elsewhere; in particular, it implies simpler and slightly tighter
hardness proofs for ring-SIS through the use of the ‘discrete Gaussian’ style of worst-case to average-case
reduction from [GPV08]. Lacking this technique, prior reductions for ideal lattices following [Mic02] used
samples from a principal subideal of I with known generator; however, this restriction does not seem
compatible with the approaches of [Reg05, GPV08], where the reduction must deal with Gaussian samples
from the full ideal I.

Second component: search / decision equivalence. In the second component we give a reduction from
the search problem (shown hard in the first component) to the decision variant, thereby showing that the
R-LWE distribution is pseudorandom. As alluded to before, we actually provide two variants of the reduction:
one to the decision problem with a nonspherical error distribution (Theorem 5.1), and one to the decision
problem with a spherical error distribution but with a bounded number of samples (Theorem 5.2). We stress
that these reductions are entirely classical (not quantum) and hence if one is willing to assume the classical
hardness of the search problem, one gets classical hardness of the decision problem. Moreover, if we assume
hardness of the search problem under a fixed spherical Gaussian error distribution (which is not implied by
our worst-case hardness proof), then an easy simplification of our search-to-decision reduction (Theorem 5.3)
gives hardness of the decision variant under the same error distribution. The same can be proved for many
other natural error distributions, which demonstrates that our second component is of value even without the
first one.

Our approach is also inspired by analogous reductions for the standard LWE problem [BFKL93, Reg05],
but again the ring context presents significant new obstacles, primarily related to proving that the entire
n-dimensional quantity b ≈ a · s is pseudorandom. Here again, the solution seems to rely inherently on
tools from algebraic number theory: we develop new techniques that exploit special properties of cyclotomic
number fields of degree n — namely, that they are Galois (i.e., have n automorphisms) — and our particular
choice of modulus q — namely, that 〈q〉 ‘splits completely’ into n prime ideals qi each of norm q = poly(n),
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which are permuted transitively by the automorphisms. (Interestingly, this complete splitting is also useful
for performing the ring operations very efficiently in practice; see Section 2.4 and also [LMPR08]).

The basic outline of the reduction is as follows. First, by a hybrid argument we show that any distinguisher
between the uniform distribution and the ring-LWE distribution with secret s ∈ Rq must have some noticeable
advantage relative to some prime ideal factor qi of 〈q〉 (of the distinguisher’s choice); this advantage can be
amplified using standard self-reduction techniques. Next, we give an efficient search-to-decision reduction
that finds the value of s modulo qi, using the fact that the ring modulo qi is a field of order q = poly(n).
Then, because the automorphisms of the number field permute the qis, we can find s modulo every qj by
applying an appropriate automorphism to the ring-LWE distribution. (Crucially, the error distribution also
remains legal under the automorphisms.) This lets us recover all of s mod q using the Chinese remainder
theorem.

1.4 Related Work

In a concurrent and independent work, Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09] formulated a
variant of LWE quite similar to ours. We believe that our results subsume those of [SSTX09], although their
techniques, being quite modular, are of independent interest and might have further applications.

In more detail, their main result is analogous to our first component, showing hardness of the search
problem based on worst-case lattice problems and using a quantum reduction. However, whereas we show
a quantum reduction directly from the worst-case lattice problems, Stehlé et al. show a quantum reduction
from the ring-SIS problem, which they then combine with prior (classical) reductions from worst-case lattice
problems to ring-SIS [PR06, LM06]. Their reduction highlights a nice duality between (ring-)LWE and
(ring-)SIS (first observed in [GPV08]), and builds on the quantum machinery from [Reg05], together with
some new observations.

Although both reductions show hardness of the search problem, there are a couple of notable differences.
Whereas our reduction shows hardness of the search problem with an unbounded number of samples, the
reduction of Stehlé et al. shows hardness of the search problem with any a priori bounded number of samples.
It is probably possible to generate an unbounded number of samples from this bounded number of given
samples by taking random combinations, although this would incur an additional loss in the parameters.
Another difference is that their proof is presented only for the ring Z[x]/ 〈xn + 1〉 for n a power of 2, whereas
ours works for the ring of integers in any number field.

Probably the most significant difference between our work and that of [SSTX09] is that the latter has no
analogue of our second component, namely the search-to-decision reduction. As a result, for cryptographic
applications Stehlé et al. use hard-core bits obtained via the efficient Goldreich-Levin construction based on
Toeplitz matrices [Gol04, Section 2.5]. This approach, however, induces a security reduction that runs in
exponential time in the number of hard bits. In particular, encrypting in amortized Õ(1) time per message bit
induces the assumption that worst-case lattice problems are hard for 2o(n)-time quantum algorithms. This
much stronger assumption is of course quite undesirable, and moreover, since it requires a higher dimension n
for the same level of security, the efficiency of the resulting cryptosystem (which is the main reason for using
ring-LWE in the first place) is harmed. In contrast, we obtain a linear number of hard bits by showing directly
that the ring-LWE distribution is pseudorandom; in particular, this yields a cryptosystem with the same (or
even slightly better) running times under a fully polynomial security reduction.

Subsequent work. Since the publication of a preliminary version of this paper, several works have appeared
which use our results for cryptographic purposes. These include the work of Stehlé and Steinfeld [SS11] who
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show how a slight modification of the NTRU cryptosystem can be based on ring-LWE, constructions of fully
homomorphic encryption schemes by Brakerski, Gentry, and Vaikuntanathan [BV11, BGV12] and multikey
fully homomorphic schemes by Lopez-Alt, Tromer, and Vaikuntanathan [LTV12], and more. Also, Langlois
and Stehlé [LS12] showed how to extend ring-LWE to more general settings of the modulus q.

Outline. We start in Section 2 with some background material on lattices and Gaussian measures, followed
by an overview of concepts from algebraic number theory required for our proofs. Although the latter
material is mostly standard, we are not aware of any single accessible reference that covers all the necessary
background. Section 3 gives the formal definition of the ring-LWE problem, both in its search and average-
case decision versions, and states our main theorem. In Section 4 we prove the hardness of the search
ring-LWE problem. We continue in Section 5 with several reductions to the average-case decision problem.
The latter two sections are the main contributions of the paper, and are essentially independent of each other.

Acknowledgments. We thank Damien Stehlé for useful discussions, and for sharing with us, together with
Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa, an early draft of their result.

2 Preliminaries

For a vector x in Rn or Cn and p ∈ [1,∞], we define the `p norm as ‖x‖p = (
∑

i∈[n]|xi|
p)1/p when p <∞,

and ‖x‖∞ = maxi∈[n]|xi| when p =∞.

2.1 The Space H

When working with number fields and ideal lattices, it is convenient to work with the space H ⊆ Rs1 × C2s2

for some numbers s1 + 2s2 = n, defined as

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j , ∀ j ∈ [s2]} ⊆ Cn.

It is not difficult to verify that H (with the inner product induced on it by Cn) is isomorphic to Rn as an
inner product space. This can seen via the orthonormal basis {hi}i∈[n], defined as follows: for j ∈ [n], let
ej ∈ Cn be the vector with 1 in its jth (complex) coordinate, and 0 elsewhere. Then for j ∈ [s1], we take
hj = ej ∈ Cn and for s1 < j ≤ s1 + s2 we take hj = 1√

2
(ej + ej+s2) and hj+s2 =

√
−1√
2

(ej − ej+s2).
Note that the complex conjugation operation (which maps H to itself) acts in the {hi}i∈[n] basis by flipping
the sign of all coordinates in {s1 + s2 + 1, . . . , n}.

We will also equip H with the `p norm induced on it from Cn. Namely, for any a1, . . . , an ∈ R, the `p
norm of the element

∑
aihi ∈ H is given by

∥∥∥ n∑
i=1

aihi

∥∥∥
p

=
( s1∑
i=1

|ai|p + 2

s1+s2∑
i=s1+1

(
a2i+a

2
i+s2

2

)p/2)1/p
.

We note that for any p ∈ [1,∞], this norm is equal within a factor of
√

2 to (
∑n

i=1 |ai|p)
1/p, which is the `p

norm induced on H from the isomorphism with Rn described above, and that for the `2 norm we in fact have
an equality. This near equivalence between H and Rn will allow us to use known definitions and results on
lattices in our setting, the only minor caveat being the

√
2 factor when dealing with `p norms for p 6= 2.
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2.2 Lattice Background

We define a lattice as a discrete additive subgroup of H . We deal exclusively with full-rank lattices, which
are generated as the set of all integer linear combinations of some set of n linearly independent basis vectors
B = {b1, . . . ,bn} ⊂ H:

Λ = L(B) =
{∑
i∈[n]

zibi : z ∈ Zn
}
.

The minimum distance λ1(Λ) of a lattice Λ in a given norm ‖·‖ is the length of a shortest nonzero lattice
vector: λ1(Λ) = min0 6=x∈Λ‖x‖. We use the Euclidean norm unless stated otherwise; for the minimum
distance of Λ in the `p norm, we write λ(p)

1 (Λ).
The dual lattice of Λ ⊂ H is defined as Λ∗ = {x ∈ H : 〈Λ,x〉 ⊆ Z}. It is easy to see that (Λ∗)∗ = Λ.

2.2.1 Gaussian Measures

For r > 0, define the Gaussian function ρr : H → (0, 1] as ρr(x) = exp(−π〈x,x〉/r2) = exp(−π‖x‖22/r2).
By normalizing this function we obtain the continuous Gaussian probability distribution Dr of width r,
whose density is given by r−n · ρr(x). We extend this to elliptical (non-spherical) Gaussian distributions
in the basis {hi}i∈[n] as follows. Let r = (r1, . . . , rn) ∈ (R+)n be a vector of positive real numbers such
that rj+s1+s2 = rj+s1 for each j ∈ [s2]. Then a sample from Dr is given by

∑
i∈[n] xihi, where the xi are

chosen independently from the (one-dimensional) Gaussian distribution Dri over R.
Micciancio and Regev [MR04] introduced a lattice quantity called the smoothing parameter, and related

it to various lattice quantities.

Definition 2.1. For a lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is defined to be the
smallest r such that ρ1/r(Λ

∗\{0}) ≤ ε.

Lemma 2.2 ([MR04, Lemmas 3.2, 3.3]). For any n-dimensional lattice Λ, we have η2−2n(Λ) ≤
√
n/λ1(Λ∗),1

and ηε(Λ) ≤
√

ln(n/ε)λn(Λ) for all 0 < ε < 1.

The following lemma explains the name “smoothing parameter.”

Lemma 2.3 ([MR04, Lemma 4.1] and [Reg05, Claim 3.8]). For any lattice Λ, ε > 0, r ≥ ηε(Λ), and
c ∈ H , the statistical distance between (Dr + c) mod Λ and the uniform distribution modulo Λ is at
most ε/2. Alternatively, we have ρr(Λ + c) ∈ [1−ε

1+ε , 1] · ρr(Λ).

For a lattice Λ, point u ∈ H , and real r > 0, define the discrete Gaussian probability distribution over
Λ + u with parameter r as

DΛ+u,r(x) =
ρr(x)

ρr(Λ + u)
∀ x ∈ Λ + u.

Lemma 2.4 ([Ban93, Lemma 1.5(i)]). For any n-dimensional lattice Λ and r > 0, a point sampled from
DΛ,r has Euclidean norm at most r

√
n, except with probability at most 2−2n.

We also need the following property of the smoothing parameter, which says that continuous noise
‘smooths’ the discrete structure of a discrete Gaussian distribution into a continuous one.

1Note that we are using ε = 2−2n instead of 2−n as in [MR04], but the proof is exactly the same.
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Lemma 2.5 ([Reg05]). Let Λ be a lattice, let u ∈ H be any vector, and let r, s > 0 be reals. Assume
that 1/

√
1/r2 + 1/s2 ≥ ηε(Λ) for some ε < 1

2 . Consider the continuous distribution Y on H obtained
by sampling from DΛ+u,r and then adding an element drawn independently from Ds. Then the statistical
distance between Y and D√r2+s2 is at most 4ε.

2.3 Algebraic Number Theory Background

Algebraic number theory is the study of number fields. Here we review the necessary background, presenting
for concreteness the special case of cyclotomic number fields as a running example. In this subsection
we cover the relevant mathematical and computational background; in Section 2.4 we cover additional
special properties of cyclotomic number fields. More background and complete proofs can be found in any
introductory book on the subject, e.g., [Ste04].

2.3.1 Number Fields

An algebraic number ζ ∈ C is any root of a polynomial f(x) ∈ Q[x]. The minimal polynomial of ζ is the
unique monic (i.e., having leading coefficient 1) irreducible f(x) ∈ Q[x] of minimal degree having ζ as a
root. The conjugates of ζ are all the roots of its minimal polynomial. An algebraic integer is an algebraic
number whose minimal polynomial f(x) is in Z[x].

A number field is a field extension K = Q(ζ) obtained by adjoining an algebraic integer ζ to the field of
rationals. Let the minimal polynomial f(x) of ζ have degree n. Then because f(ζ) = 0, there is a natural
isomorphism between Q[x] modulo f(x) and K, given by x 7→ ζ, and the number field K can be seen as an
n-dimensional vector space over Q with basis {1, ζ, . . . , ζn−1}. This is called the power basis of K.

Let m be a positive integer, and let ζ = ζm = exp(2π
√
−1/m) ∈ C be the principal mth root of unity.

Define the mth cyclotomic number field K = Q(ζ), and the mth cyclotomic polynomial

Φm(x) =
∏
k∈Z∗m

(x− ζk).

Observe that the values ζk run over all the primitive mth roots of unity in C, thus Φm(x) has degree
n = ϕ(m), the totient of m. Clearly Φm(x) is monic, and it is known (though not trivial to show) that
Φm(x) ∈ Z[x] and is irreducible. Therefore, ζ is an algebraic integer with minimal polynomial Φm(x); ζ’s
conjugates are all the n primitive mth roots of unity; and K has degree n.

Two useful facts about cyclotomic polynomials are that Φm(x) = xm−1 + · · · + x + 1 for prime m,
and Φm(x) = Φm0(xm/m0) where m0 is the radical of m, i.e., the product of all primes dividing m. For
instance, Φ8(x) = x4 + 1 and Φ9(x) = x6 + x3 + 1. (However, not all cyclotomic polynomials have 0-1, or
even small, coefficients: e.g., Φ6(x) = x2 − x + 1, Φ3·5·7(x) has a −2 coefficient, and Φ3·5·7·11·13(x) has
coefficients with magnitudes as large as 22.)

2.3.2 Embeddings and Geometry

Here we describe the embeddings of a number field, which induce a natural ‘canonical’ geometry on it.
A number field K = Q(ζ) of degree n has exactly n field homomorphisms σi : K → C that fix every

element of Q. Concretely, these embeddings map ζ to each of its conjugates; it can be verified that these
are the only field homomorphisms from K to C because ζ’s conjugates are the only roots of ζ’s minimal
polynomial f(x). An embedding whose image lies in R (corresponding to a real root of f ) is called a real
embedding; otherwise (for a complex root of f ) it is called a complex embedding. Because complex roots of
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f(x) come in conjugate pairs, so too do the complex embeddings. The number of real embeddings is denoted
s1 and the number of pairs of complex embeddings is denoted s2, so we have n = s1 + 2s2. The pair (s1, s2)
is called the signature of K. By convention, we let {σj}j∈[s1] be the real embeddings, and we order the
complex embeddings so that σs1+s2+j = σs1+j for j ∈ [s2]. The canonical embedding σ : K → Rs1 ×C2s2

is defined as
σ(x) = (σ1(x), . . . , σn(x)).

The canonical embedding σ is a field homomorphism from K to Rs1 × C2s2 , where multiplication and
addition in Rs1 × C2s2 are both component-wise. Due to the pairing of the complex embeddings, we have
that σ maps into H (defined in Section 2.1 above).

By identifying elements K with their canonical embeddings in H , we can speak of geometric norms
(e.g., the Euclidean norm) on K. Recalling that we define norms on H as those induced from Cn, we see that
for any x ∈ K and any p ∈ [1,∞], the `p norm of x is simply ‖x‖p = ‖σ(x)‖p = (

∑
i∈[n]|σi(x)|p)1/p for

p <∞, and is maxi∈[n]|σi(x)| for p =∞. (As always, we assume the `2 norm when p is omitted.) Because
multiplication of embedded elements is component-wise (since σ is a ring homomorphism), we have

‖x · y‖p ≤ ‖x‖∞ · ‖y‖p
for any x, y ∈ K and any p ∈ [1,∞]. Thus the `∞ norm acts as an ‘absolute value’ for K that bounds how
much an element ‘expands’ any other by multiplication.

Using the canonical embedding also allows us to think of the Gaussian distribution Dr for r ∈ (R+)n

over H (or its discrete analogue over a lattice in H) as a distribution over K. (Strictly speaking, the
distribution Dr is not over K, but rather over the field tensor product KR = K ⊗Q R, which is isomorphic
to H .) Since multiplication of elements in the number field is mapped to coordinate-wise multiplication in H ,
we have that for any element x ∈ K, the distribution of x ·Dr is Dr′ , where r′i = ri · |σi(x)|. (This uses
the fact that our distributions have the same variance in the real and imaginary components of each complex
embedding.)

Example 2.6. For the mth cyclotomic field where ζ = ζm for m ≥ 3, there are 2s2 = n = ϕ(m) complex
embeddings (and no real ones), which are given by σi(ζ) = ζi for i ∈ Z∗m. (In this case it is convenient to
index the embeddings σi by elements of Z∗m instead of [n].) For any element x = ζj ∈ K in the power basis
of K, all the embeddings of x have magnitude 1, and hence ‖x‖2 =

√
n and ‖x‖∞ = 1.

2.3.3 Trace and Norm

Abstractly, the (field) trace Tr = TrK/Q : K → Q and (field) norm N = NK/Q : K → Q of x ∈ K are the
trace and determinant, respectively, of the linear transformation on K (viewed as a vector space over Q)
representing multiplication by x. Concretely, the trace and norm can be shown to be the sum and product,
respectively, of the embeddings:

Tr(x) =
∑
i∈[n]

σi(x) and N(x) =
∏
i∈[n]

σi(x).

Using either definition, it is routine to verify that trace and norm are additive and multiplicative, respectively.
Moreover, for all x, y ∈ K,

Tr(x · y) =
∑
i∈[n]

σi(x) · σi(y) = 〈σ(x), σ(y)〉.

Thus, Tr(x · y) is a symmetric bilinear form akin to the inner product of the embeddings of x and y.
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Example 2.7. Let ζ = ζ5 be a root of the cyclotomic polynomial Φ5(x) =
∏
i∈Z∗5

(x− ζi) = x4 + x3 + x2 +

x+ 1, and consider the element y = 1
2 − ζ ∈ K = Q(ζ). Then Tr(y) =

∑
i∈Z∗5

(1
2 − ζ

i) = 2− (−1) = 3,
and N(y) =

∏
i∈Z∗5

(1
2 − ζ

i) = Φ5(1
2) = 31

16 .

2.3.4 Ring of Integers and Its Ideals

For a number field K, let OK ⊂ K denote the set of all algebraic integers in K. This set forms a ring (under
the usual addition and multiplication operations in K), called the ring of integers of the number field. The
norm and trace of an algebraic integer are themselves rational integers (i.e., in Z).

It happens that OK is a free Z-module of rank n, i.e., it is the set of all Z-linear combinations of some
basis B = {b1, . . . , bn} ⊂ OK . Such a set is called an integral basis, and it is also a Q-basis for K (and an
R-basis for KR). As usual, there are infinitely many such bases when n > 1.

Example 2.8. Continuing our example of themth cyclotomic number fieldK = Q(ζm) of degree n = ϕ(m),
the power basis {1, ζm, . . . , ζn−1

m } of K also happens to be an integral basis, i.e., OK = Z[ζm]. (In general,
it is unusual for the power basis of a number field to generate the entire ring of integers.)

An (integral) ideal I ⊆ OK is a nontrivial (i.e., I 6= ∅ and I 6= {0}) additive subgroup that is closed
under multiplication byOK , i.e., r ·x ∈ I for any r ∈ OK and x ∈ I .2 An ideal I inOK is finitely generated
as the set of all OK-linear combinations of some g1, g2, . . . ∈ OK , denoted I = 〈g1, g2, . . .〉. (In fact, it is
known that two generators always suffice.) More useful to us is the fact that an ideal is also a free Z-module
of rank n, i.e., it is generated as the set of all Z-linear combinations of some basis {u1, . . . , un} ⊂ OK .

The norm of an ideal I is its index as an additive subgroup ofOK , i.e., N(I) = |OK/I|. The sum I +J
of two ideals is the set of all x+ y for x ∈ I, y ∈ J , and the product ideal IJ is the set of all finite sums of
terms xy for x ∈ I, y ∈ J . This notion of norm for ideals generalizes the field norm defined above, in the
sense that N(〈x〉) = |N(x)| for any x ∈ OK , and N(IJ ) = N(I) N(J ).

Two ideals I,J ⊆ OK are said to be coprime (or relatively prime) if I +J = OK . An ideal p ( OK is
prime if whenever ab ∈ p for some a, b ∈ OK , then a ∈ p or b ∈ p (or both). In OK , an ideal p is prime if
and only if it is maximal, i.e., if the only proper superideal of p is OK itself, which implies that the quotient
ring OK/p is the finite field of order N(p). The ring OK has unique factorization of ideals, that is, every
ideal I ⊆ OK can be expressed uniquely as a product of powers of prime ideals.

A fractional ideal I ⊂ K is a set such that dI ⊆ OK is an integral ideal for some d ∈ OK . Its norm is
defined as N(I) = N(dI)/|N(d)|. The set of fractional ideals form a group under multiplication, and the
norm is a multiplicative homomorphism on this group.

2.3.5 Ideal Lattices

Here we recall how (fractional) ideals in K yield lattices under the canonical embedding, and describe some
of their properties. Recall that a fractional ideal I has a Z-basis U = {u1, . . . , un}. Therefore, under the
canonical embedding σ, the ideal yields a rank-n ideal lattice σ(I) having basis {σ(u1), . . . , σ(un)} ⊂ H .
For convenience, we often identify an ideal with its embedded lattice, and speak of, e.g., the minimum
distance λ1(I) of an ideal, etc.

One defines the (absolute) discriminant ∆K of a number field K to be the square of the fundamental
volume of σ(R), the embedded ring of integers. Equivalently, ∆K = |det(Tr(bi · bj))| where b1, . . . , bn is
any integral basis of OK .3 Consequently, the fundamental volume of any ideal lattice σ(I) is N(I) ·

√
∆K .

2Some texts also define the trivial set {0} as an ideal, but in this work it is more convenient to exclude it.
3In some texts the discriminant is defined as a signed quantity, but in this work we only care about its magnitude.
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For example, the discriminant of the mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m) is
known to be

∆K =
mn∏

prime p|m

pn/(p−1)
≤ nn,

where the product in the denominator runs over all primes p dividing m. The inequality above is tight in the
special case when m is a power of two, where n = m/2.

The following lemma gives upper and lower bounds on the minimum distance of an ideal lattice. The
upper bound is an immediate consequence of Minkowski’s first theorem; the lower bound follows from the
arithmetic mean/geometric mean inequality, and the fact that |N(x)| ≥ N(I) for any nonzero x ∈ I.

Lemma 2.9 ([PR07]). For any fractional ideal I in a number field K of degree n, and any p ∈ [1,∞],

n1/p ·N(I)1/n ≤ λ
(p)
1 (I) ≤ n1/p ·N(I)1/n ·

√
∆

1/n
K .

2.3.6 Duality

Here we recall the notion of a dual ideal and explain its close connection to both the inverse ideal and the
dual lattice. For more details, see [Con09] as an accessible reference.

For any lattice L in K (i.e., for the Z-span of any Q-basis of K), its dual is defined as

L∨ = {x ∈ K : Tr(xL) ⊆ Z}.

It is not difficult to see that, under the canonical embedding into H , L∨ embeds as the complex conjugate of
the dual lattice, i.e., σ(L∨) = σ(L)∗. This is due to the fact that Tr(xy) =

∑
i σi(x)σi(y) = 〈σ(x), σ(y)〉.

It is also easy to check that (L∨)∨ = L, and that if L is a fractional ideal, then L∨ is one as well.
For any Q-basis B = {b1, . . . , bn} of K, we denote its dual basis by B∨ = {b∨1 , . . . , b∨n}, which is

characterized by Tr(bi · b∨j ) = 1 if i = j, and 0 otherwise. It is immediate that (B∨)∨ = B, and if B
generates a fractional ideal, then B∨ generates its dual. Note also that if x ∈ KR is represented uniquely
with respect to basis B as x =

∑
i∈[n] xi · bi for xi ∈ R, then xi = Tr(x · b∨i ) by linearity of Tr.

Except in the trivial number field K = Q, the ring of integers R = OK is not self-dual, nor are an ideal
and its inverse dual to each other. Fortunately, a useful and important fact is that an ideal and its inverse
are related by multiplication with the dual ideal of the ring: for any fractional ideal I, its dual ideal is
I∨ = I−1 ·R∨. (Notice that for I = R this holds trivially, since R−1 = R.) The factor R∨ is a fractional
ideal whose inverse (R∨)−1, called the different ideal, is integral and of norm N((R∨)−1) = ∆K . The
fractional ideal R∨ itself is often called the codifferent. One especially nice case is the mth cyclotomic
number field for m = 2k of degree n = ϕ(m) = m/2, for which R∨ =

〈
n−1

〉
is just a scaling of R.

2.3.7 Computation in Number Fields

We now recall how objects over K and OK are represented and operated upon by algorithms, in the general
case. For more details, see, e.g., [Coh93]. (Faster algorithms for cyclotomic number fields exist; see
Section 2.4.2 below.) When quantifying computational complexity in the context of a number field K,
“polynomial” is taken to mean some polynomial in n, log ∆K , and the total bit length of any inputs. (In all
the concrete families of number fields we use, log ∆K is itself a small polynomial in n.)
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Because OK is a free Z-module of rank n, the ring OK can be represented relative to some integral basis
B = {b1, . . . , bn} ⊂ OK , which is also a Q-basis for K. I.e., every element x ∈ K is represented uniquely
by a vector x = (x1, . . . , xn) ∈ Qn where x =

∑
i∈[n] xi · bi, and x ∈ OK if and only if every xi ∈ Z.

Addition in K (and OK) is computed simply by component-wise addition of the representation vectors
of the addends. For computing the multiplication operation in K (and OK), it suffices by linearity to know
each product bi · bj ∈ OK for i, j ∈ [n]. The representations of these terms (as usual, with respect to B) are
integral vectors of polynomial size, and constitute the entire description of K andOK . Given this description,
it is possible to compute multiplicative inverses in polynomial time.

An (integral) ideal I ⊆ OK is represented by a Z-basis for I, that is, a set UI = {u1, . . . , un} ⊂ OK
such that I =

∑
i∈[n] Z · ui (where as always, each ui is represented relative to a fixed integral basis B). A

fractional ideal I is represented by also including a denominator d ∈ OK such that d · I is an integral ideal.
With these representations, in deterministic polynomial time it is possible to check that a given basis generates
an ideal I, to compute the norm of I, to compute the inverse ideal I−1, to reduce a given element in K
modulo a given basis of I, and to compute the Hermite normal form (HNF) of I, along with the unimodular
integer matrix relating the HNF to the input basis. Given two ideals I,J , it is possible to compute the
product ideal IJ in deterministic polynomial time, and if J ⊆ I, to select a uniformly random element
from the quotient group I/J in polynomial time, and to enumerate I/J in deterministic polynomial time
per element.

Recall from Section 2.2.1 that the elliptical Gaussian distribution Dr corresponds (under the canonical
embedding) to the sum of independent one-dimensional Gaussian multiples of the orthonormal basis vectors hi
for H . Therefore, it is possible to sample in polynomial time from Dr over KR (up to any desired precision),
given r and the representations of each hi relative to B. (Equivalently, it is enough to know σ(B), the
embedding of the power basis into H .)

The following are the three main (seemingly hard) computational problems on ideal lattices that we deal
with in this work.

Definition 2.10 (SVP and SIVP). Let K be a number field endowed with some geometric norm (e.g., the `2
norm), and let γ ≥ 1. The K-SVPγ problem (in the given norm) is: given a (fractional) ideal I in K, find
some nonzero x ∈ I such that ‖x‖ ≤ γ · λ1(I).4 The K-SIVPγ problem is defined similarly: here the goal
is to find n linearly independent vectors whose norms are all at most γ · λn(I).

Definition 2.11 (BDD). Let K be a number field endowed with some geometric norm (e.g., the `∞ norm),
let I be a (fractional) ideal in K, and let d < λ1(I)/2. The K-BDDI,d problem (in the given norm) is:
given I and y of the form y = x+ e for some x ∈ I and ‖e‖ ≤ d, find x.

Without loss of generality, the above problems may be restricted to integral ideals I ⊆ OK , by the
following scaling argument: if I is a fractional ideal with denominator d ∈ OK (such that dI ⊆ OK is an
integral ideal), then the scaled ideal N(d) · I ⊆ OK , because N(d) ∈ 〈d〉.

2.3.8 Chinese Remainder Theorem

Here we recall the Chinese remainder theorem (CRT) for the ring of integers R = OK in a number field K,
and some of its important consequences for our work.

Lemma 2.12 (Chinese remainder theorem). Let I1, . . . , Ir be pairwise coprime ideals in R, and let I =∏
i∈[r] Ii. The natural ring homomorphism R →

⊕
i∈[r](R/Ii) induces a ring isomorphism R/I →⊕

i∈[r](R/Ii).

4Note that the decision version of SVP on ideals lattices is typically easy to approximate (see Lemma 2.9).
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The following lemma shows that we can efficiently compute a “CRT basis” C for any set of pairwise
coprime ideals I1, . . . , Ir, i.e., elements c1, . . . , cr ∈ R such that ci = 1 mod Ii and ci = 0 mod Ij for all
i 6= j. Such a basis allows us to invert the isomorphism described in Lemma 2.12, as follows: for any given
w = (w1, . . . , wr) ∈

⊕
i(R/Ii), the value v =

∑
iwi · ci mod I is the unique element in R/I that maps

to w under the ring isomorphism.

Lemma 2.13. There is a deterministic polynomial-time algorithm that, given coprime ideals I,J ⊆ R
(represented by Z-bases), outputs some c ∈ J such that c = 1 mod I . More generally, there is a deterministic
polynomial-time algorithm that, given pairwise coprime ideals I1, . . . , Ir, outputs a CRT basis c1, . . . , cr ∈
R for those ideals.

Proof. The algorithm is a generalization of the extended Euclidean algorithm for the integers Z. It works as
follows: given arbitrary Z-bases BI and BJ for I and J respectively, let B = BI ∪ BJ be the (possibly
overdetermined) basis for I + J = R. Compute from B the Hermite normal form basis H = {h1, . . . , hn}
for R, yielding an expression of each hi as a Z-combination of elements in B. Write the element 1 ∈ R as a
Z-combination of elements in H , and hence as a Z-combination of elements in BI ∪BJ . From this we get
elements x ∈ I, y ∈ J such that x + y = 1. Finally, output the element c = y = 1 − x ∈ J , which is 1
modulo I. For the second part of the claim, to compute each ci we simply let I = Ii and J =

∏
j 6=i Ij .

The next two lemmas combine to give an efficiently computable bijection (and moreover, an isomorphism
of R-modules) between the quotient groups I/qI and J /qJ for any fractional ideals I,J . This will be an
important tool for ‘clearing out’ the arbitrary ideal I in our BDD-to-LWE reduction in Section 4.1 (and more
generally, in other worst-case to average-case reductions for ideal lattices). We note that these lemmas are
probably standard for experts in computational number theory, but we believe their application in our context
is new.

Lemma 2.14. Let I and J be ideals in R. There exists t ∈ I such that the ideal t · I−1 ⊆ R is coprime
to J . Moreover, such t can be found efficiently given I and the prime ideal factorization of J .

Proof. Let p1, . . . , pr be the given prime divisors of J . For each i ∈ [r], let ei ≥ 0 be the largest power
of pi that divides I. (Such ei can be computed efficiently by trial division and binary search, because ei
cannot exceed log N(I)/ log N(pi).) For each i ∈ [r], choose an arbitrary ti ∈ peii that is not in pei+1

i . By
the Chinese remainder theorem, there exists t ∈ R such that

t = 0 mod
(
I/
∏

i∈[r]
peii

)
and ∀i ∈ [r], t = ti mod pei+1

i .

(Note that the ideals in question are pairwise coprime.) Moreover, such t can be found efficiently using a
CRT basis for the ideals pei+1

i and I/
∏
i p
ei
i . Now because t is 0 modulo every peii , it follows that t ∈ I.

To finish, we need to show that t · I−1 is not divisible by any pi. Supposing to the contrary implies that
piI| 〈t〉, and since pei+1

i |piI we have t ∈ pei+1
i . But t = ti 6= 0 mod pei+1

i , a contradiction.

Upon first reading, in the following lemma the reader may wish to think of the idealM as the multiplica-
tive identity (i.e., the entire ring R).

Lemma 2.15. Let I and J be ideals in R, let t ∈ I be such that t · I−1 is coprime with J , and letM be
any fractional ideal in K. Then the function θt : K → K defined as θt(u) = t · u induces an isomorphism
fromM/JM to IM/IJM, as R-modules. Moreover, this isomorphism may be efficiently inverted given
I, J ,M, and t.

16



Proof. That θt induces a homomorphism of R-modules follows immediately from the fact that it represents
multiplication by a fixed t ∈ R.

Now consider the function induced by θt having domainM and range IM/IJM. Its kernel is JM,
which may be seen as follows: first, θt(JM) = t · JM ⊆ IJM. Second, if θt(u) = 0 for some u ∈M,
then t · u ∈ IJM which implies (t · I−1) · (u · M−1) ⊆ J . Because t · I−1 and J are coprime ideals in
R, we have u · M−1 ⊆ J ⇒ u ∈ JM. So the function fromM/JM to IM/IJM induced by θt is
injective. It remains to show that it is surjective. (Actually, surjectivity follows immediately from the fact that
both quotient groups have cardinality N(J ), but below we give a constructive proof that also demonstrates
efficient invertibility.)

Let v ∈ IM be arbitrary. By hypothesis, t · I−1 and J are coprime, so we can use the algorithm
from Lemma 2.13 to compute some c ∈ t · I−1 such that c = 1 mod J . Then let a = c · v ∈ t · M, and
observe that a− v = v · (c− 1) ∈ IJM. Let w = a/t ∈ M; then θt(w) = t · (a/t) = v mod IJM, so
w mod JM is the preimage of v mod IJM.

2.4 Special Properties of Cyclotomic Number Fields

Here we recall a few more useful facts about cyclotomic number fields. We use these in our search-to-decision
reductions of Section 5, and for fast operations in the number field and its ring of integers. Throughout this
subsection, let K = Q(ζ) for ζ = ζm = exp(2π

√
−1/m) be the mth cyclotomic number field, which has

minimal polynomial Φm(x) of degree n = ϕ(m), and let R = OK = Z[ζ].

2.4.1 Prime Splitting and Automorphisms

For an integer prime q ∈ Z, the factorization of the ideal 〈q〉 is as follows. Let the factorization of the
cyclotomic polynomial Φm(x) modulo q (i.e., in Zq[x]) into monic irreducible polynomials be Φm(x) =∏
i(fi(x))ei . (Note that this factorization can be computed efficiently [Sho09, Chapter 20].) Then in OK ,

the prime ideal factorization of 〈q〉 is 〈q〉 =
∏
i q
ei
i , where each qi = 〈q, fi(ζ)〉 is a prime ideal with norm

qdeg(fi).5

For an integer prime q = 1 mod m, the field Zq has a primitive mth root of unity ω, because the
multiplicative group of Zq is cyclic with order q − 1. Indeed, there are n = ϕ(m) distinct such roots of unity
ωi ∈ Zq, for i ∈ Z∗m. Therefore, Φm(x) factors in Zq[x] as Φ(x) =

∏
i∈Z∗m(x− ωi). The ideal 〈q〉 ⊂ OK

then “splits completely” into n distinct prime ideals, as 〈q〉 =
∏
i∈Z∗m qi where qi =

〈
q, ζ − ωi

〉
is prime

and has norm q. (The fact that the ideal 〈q〉 splits into distinct prime ideals with small norm will be crucial in
our search-to-decision reduction for ring-LWE.)

The number field K has n = ϕ(m) automorphisms τk : K → K indexed by k ∈ Z∗m, which are defined
as τk(ζ) = ζk.6 It is easily seen that τk is indeed an automorphism: ζk is a primitive mth root of unity
and hence a root of the generating polynomial Φm(x), so τk is a field isomorphism from Q(ζ) to Q(ζk).
Moreover, ζk ∈ Q(ζ) and (ζk)j = ζ ∈ Q(ζk) for j = k−1 ∈ Z∗m, so Q(ζk) = Q(ζ). The following lemma
says that the automorphisms τj “act transitively” on the prime ideals qi, i.e., each qi is sent to each qj by some
automorphism τk. We note that the lemma follows directly from the fact that cyclotomic number fields are
Galois extensions of Q (see, e.g., [Ste04, Chapter 13]); here we give an elementary proof for completeness.

5In fact, this factorization holds in any monogenic ring of integers OK = Z[ζ], with Φm(x) replaced by the minimal polynomial
of ζ.

6The reader may notice that these automorphisms coincide exactly with the n field embeddings σi : K → C of the number field;
in fact, every automorphism of K is necessarily an embedding into C. Because an automorphism is a strictly stronger notion than an
embedding (indeed, a typical degree-n number field has fewer than n automorphisms), we use separate notation for the two concepts.
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Lemma 2.16. Using the notation above, for any i, j ∈ Z∗m we have τj(qi) = qi/j .

Proof. By definition, τj(qi) = τj(
〈
q, ζ − ωi

〉
) =

〈
q, ζj − ωi

〉
. Now observe that

ζj − ωi = ζj − (ωi/j)j = (ζ − ωi/j) ·
(
ζj−1 + ωi/j · ζj−2 + · · ·+ (ωi/j)j−1

)
mod q,

where the summation on the right is in OK . Thus τj(qi) ⊆
〈
q, ζ − ωi/j

〉
= qi/j .

For the reverse inclusion, note that ζ−ωi/j = (ζj)1/j−(ωi)1/j factors similarly (modulo q) as a multiple
of ζj − ωi, and therefore qi/j ⊆

〈
q, ζj − ωi

〉
= τj(qi).

2.4.2 Efficient Operations via the Chinese Remainder Transform

The naive algorithms for multiplication and inversion in number fields require Θ(n2) scalar operations,
where n is the degree of the number field. Fortunately, in cyclotomic number fields, these and other
operations can be performed in O(n log n) scalar operations (with small hidden constant) using FFT-like
algorithms. For the purposes of this paper, it is enough that all operations we need can be performed
in polynomial time (see Section 2.3.7). In the companion paper [LPR12], we give fast special-purpose
algorithms for computing in cyclotomic number fields and rings.

3 The Ring-LWE Problem and Main Results

Here we define the ring-LWE distribution (actually, family of distributions) and the main computational
problems associated with it. Ring-LWE is parameterized by a number field K with ring of integers R = OK
and a (rational) integer modulus q ≥ 2. For any fractional ideal J in K, we let Jq denote J /qJ . Recall
that R∨ is the dual (or “codifferent”) fractional ideal of R, and let T = KR/R

∨.

Definition 3.1 (Ring-LWE Distribution). For s ∈ R∨q (the “secret”) and an error distribution ψ over KR,
a sample from the ring-LWE distribution As,ψ over Rq × T is generated by choosing a← Rq uniformly at
random, choosing e← ψ, and outputting (a, b = (a · s)/q + e mod R∨).

Definition 3.2 (Ring-LWE, Search). Let Ψ be a family of distributions over KR. The search version of the
ring-LWE problem, denoted R-LWEq,Ψ, is defined as follows: given access to arbitrarily many independent
samples from As,ψ for some arbitrary s ∈ R∨q and ψ ∈ Ψ, find s.

The following decision form of the problem, whose hardness means (informally) that the ring-LWE
distribution is pseudorandom, is usually more suitable for cryptographic applications. In Section 5, we show
that it is in fact equivalent to the search version, under certain conditions on the parameters.

Definition 3.3 (Ring-LWE, Average-Case Decision). Let Υ be a distribution over a family of error distri-
butions, each over KR. The average-case decision version of the ring-LWE problem, denoted R-DLWEq,Υ,
is to distinguish with non-negligible advantage between arbitrarily many independent samples from As,ψ,
for a random choice of (s, ψ)← U(R∨q )×Υ, and the same number of uniformly random and independent
samples from Rq × T.

For an asymptotic treatment of the ring-LWE problems, we let K come from an infinite sequence of
number fields K = {Kn} of increasing dimension n, and let q, Ψ, and Υ depend on n as well.
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Recall that when informally describing ring-LWE in the introduction, we said that the secret s belongs
to Rq (and so the products a · s are also in Rq) whereas in the formal definition above s is in R∨q (and so the
a · s are in R∨q ). Since the description in the introduction was specialized to the mth cyclotomic ring for
m = 2k (i.e., R = Z[x]/ 〈xn + 1〉 for n = 2k−1), these two variants are actually equivalent. This follows
from the fact that for this ring the codifferent R∨ = n−1R is simply a scaling of the ring, and so one can
transform samples (a, b = (a · s)/q + e) to (a, b′ = b · n = (a · s′)/q + e′), where s′ = s · n ∈ Rq and
e′ = e · n. We note that a similar transformation can be performed for all other cyclotomics (and in fact all
rings of integers) by Lemma 2.15. However, unless m is of the form 2k3`, this transformation necessarily
distorts the error distribution, scaling each coordinate of the canonical embedding by different factors. It is
therefore usually more appropriate to leave the secret in R∨q , as in our formal definition above (see Section 3.3
below for further discussion).

3.1 Error Distributions

We first define the family of LWE error distributions for which our reduction to the search version of ring-LWE
(in Section 4) applies.

Definition 3.4. For a positive real α > 0, the family Ψ≤α is the set of all elliptical Gaussian distributions Dr

(over KR) where each parameter ri ≤ α.

Our hardness results for the average-case decision problem (in Section 5) apply to cyclotomic number
fields, and use a distribution Υ over error distributions, defined as follows. The gamma distribution Γ(2, 1)
with shape parameter 2 and scale parameter 1 has density given by x exp(−x) for x ≥ 0, and zero for x < 0.
Sampling from this gamma distribution can be done efficiently by, e.g., sampling two uniform variables
U1, U2 in [0, 1] and outputting − lnU1 − lnU2. Other equally good choices are possible (e.g., a Gaussian
distribution) and we make this particular choice for convenience.

Definition 3.5. Let K be the mth cyclotomic number field having degree n = ϕ(m). For a positive real
α > 0, a distribution sampled from Υα is given by an elliptical Gaussian distribution Dr (over KR) whose
parameters are r2

i = r2
i+n/2 = α2(1 +

√
nxi), where x1, . . . , xn/2 are chosen independently from the

distribution Γ(2, 1).

Notice that error distributions drawn from Υα typically have parameters of size roughly O(α · n1/4).
It is important to keep in mind that in our definition of ring-LWE, the error distribution is added moduloR∨.

As a result, in order for the problem not to be trivially impossible to solve, the error must not exceed the
smoothing parameter of R∨, or else the ring-LWE distribution will be statistically indistinguishable from
uniform (for any value of s). For example, in the case of a cyclotomic R = Z[x]/ 〈xn + 1〉 for n = 2k,
we have λn(R∨) = 1/

√
n and so by Lemma 2.2 we obtain an upper bound of ω(

√
log n)/

√
n on the error

parameters. This is in contrast to standard LWE, where the error is added modulo Z and hence can be as large
as a constant.

3.2 Main Theorem

We can now finally state our main theorem, obtained by combining Theorem 4.1 with Theorems 5.1 and 5.2.
We note that each of these component theorems, as well as Theorem 5.3, should be of independent interest.
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Theorem 3.6. Let K be the mth cyclotomic number field having dimension n = ϕ(m) and R = OK be
its ring of integers. Let α = α(n) > 0, and let q = q(n) ≥ 2, q = 1 mod m be a poly(n)-bounded prime
such that αq ≥ ω(

√
log n). Then there is a polynomial-time quantum reduction from Õ(

√
n/α)-approximate

SIVP (or SVP) to R-DLWEq,Υα . Alternatively, for any ` ≥ 1, we can replace the target problem by the
problem of solving R-DLWEq,Dξ given only ` samples, where ξ = α · (n`/ log(n`))1/4.

Notice that in the latter reduction we use DLWE with a fixed (spherical) error distribution Dξ, instead of
a distribution over error distributions. Also note that when ` is small, which is often the case in applications,
both reductions lead to essentially the same error parameters.

For applications, it is typically more useful to work with a ‘discrete’ variant of ring-LWE in which the b
component of each sample is taken from a finite set, instead of the continuous domain T. (Indeed, this is
how we described the ring-LWE problem in the introduction.) As in standard LWE, this is easily achieved by
discretizing the samples. In more detail, one transforms each sample (a, b = (a ·s)/q+e mod R∨) ∈ Rq×T
to (a, bq · be = a · s+ bq · ee mod qR∨) ∈ Rq ×R∨q , where b·e : KR → R∨ denotes some natural rounding
operation, e.g., the one that rounds to the nearest integer each coefficient with respect to some fixed Z-basis
of R∨. Then as long as b·e maps the uniform distribution over KR/qR

∨ to the uniform distribution over R∨q
(which should be the case for any natural rounding operation), the discretized samples will be pseudorandom
if the original ones were. Note also that if the original error distribution of e is Gaussian, then the induced
distribution of bq · ee can be made a true discrete Gaussian over R∨ (as opposed to a “rounded continuous
Gaussian”) by using a suitable form of randomized rounding [GPV08, Pei10], instead of the deterministic
coefficient rounding above.

3.3 Why This is the Right Definition of Ring-LWE

Our definition of ring-LWE and hardness results make three, seemingly arbitrary, choices: the public value a
is drawn from Rq, the secret s belongs to R∨q , and the error distributions are “spherically bounded,” namely,
the bound α in the definition of Ψ≤α is the same for all coordinates of the embedding (and similarly for the
error distributions used in the average-case problem). Indeed, there is some arbitrariness in the definition: for
instance, taking a ∈ Jq and s ∈ J ∨q for any fixed fractional ideal J (and keeping the same error distribution)
leads to a computationally equivalent problem.7 For example, we could take a from R∨q and s from Rq.

This brings us to the following natural question: modulo these equivalences, why are our choices the
“right” ones? In particular, why not take both a and s in Rq, and use a spherically bounded error distribution?
As described earlier, in certain cases (e.g., the mth cyclotomic for m = 2k3`) this definition is equivalent
to the original one, but it turns out that in general it leads to a pure loss in two ways: once in the provable
hardness of the problem for a given spherical error bound (due to the inherent distortion in mapping R∨

to R), and again in the amount of error that can be used in typical applications. By contrast, our choices turn
out to be the most mathematically natural and computationally effective ones, for a variety of reasons that we
now explain.

The first reason is that our choices emerge naturally in the core BDD-to-LWE reduction of Section 4, due
to the R∨ ratio between the dual and inverse ideals (recall that I∨ = R∨ · I−1 for any fractional ideal I).
In more detail, in our reduction the secret s corresponds to the unknown closest point x ∈ I∨ of a BDD
instance, and the public elements a are obtained from Gaussian samples over I. After ‘clearing the ideal’ I

7This follows by the ‘clearing ideals’ technique of Lemma 2.15. We note that standard LWE also admits an analogous formulation:
for any n-dimensional lattice L and its dual L∗, we can take a ∈ L/qL, s ∈ L∗/qL∗, and b ≈ 〈a, s〉/q mod 1. In that setting, the
self-dual lattice L = Zn is of course the most natural choice.
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(using Lemma 2.15), we end up with secret s ∈ R∨q , public elements a ∈ Rq, and spherically bounded error
from the products of the spherical Gaussian samples with the BDD offset vector.

Another important reason for our choices relates to cryptographic applications in cyclotomic rings. Fixing
encryption as an example, we wish to have as much security as possible, which by our results means using as
much spherically bounded error as possible, yet still decrypt correctly, which requires removing the error
from noisy products using knowledge of the secret. For our choices, this means solving BDD for spherically
bounded error on the ideal R∨. The amount of spherical error that can be efficiently decoded from an
ideal essentially depends inversely on the λn parameter of its dual ideal. The dual of R∨ is R, which, for
cyclotomic rings of degree n, has n elements 1, ζ, . . . , ζn−1 of Euclidean norm

√
n, and hence λn(R) =

√
n.

This turns out to be the smallest possible (relative to its norm), by Lemma 2.9. Therefore, among all ideals of
the same norm, the codifferent R∨ is decodable under the most spherical Gaussian error. By contrast, for
most cyclotomics this is not true of R itself, because its dual ideal R∨ typically does not have optimally short
vectors.8

A final reason for our choice is by analogy to the standard LWE and SIS (short integer solution) problems,
which may be seen as problems on dual random lattices (see, e.g., [GPV08]). In the ring setting, an instance
of ring-SIS is given by a tuple a = (a1, . . . , am) ∈ Rmq , which defines the “q-ary” lattice Λ⊥(a):

qRm ⊆ Λ⊥(a) =
{
z = (z1, . . . , zm) ∈ Rm :

∑
i∈[m]

aizi = 0 ∈ Rq
}
⊆ Rm.

Analogously to standard LWE, we wish to view ring-LWE as a bounded-distance decoding problem on the
dual lattice of Λ⊥(a) ⊆ Rm, under the canonical embedding.9 It can be seen that this dual lattice is

(Λ⊥(a))∨ = (R∨)m +
{

(a · s)/q : s ∈ R∨q
}
⊆ (1/q) · (R∨)m,

where the product a · s = (a1 · s, . . . , am · s). Therefore, it is natural that the ring-LWE distribution should
produce noisy products of the form (ai · s)/q, for random values ai ∈ Rq and some fixed s ∈ R∨q .

Finally, we remark that working with R∨ and R∨q is computationally just as efficient as working with R
and Rq, by the Chinese remainder theorem and its consequences. (See the companion paper [LPR12] for
details.)

4 Hardness of Search-LWE

Throughout this section, let K denote an arbitrary number field of degree n with ring of integers R = OK .
For concreteness, the reader may wish to keep in mind the particular case of a cyclotomic number field,
although the results in this section apply to arbitrary number fields. The following is the main theorem of this
section.

Theorem 4.1. Let K be an arbitrary number field of degree n and R = OK . Let α = α(n) > 0, and let
q = q(n) ≥ 2 be such that αq ≥ ω(

√
log n). There is a probabilistic polynomial-time quantum reduction

from K-DGSγ to R-LWEq,Ψ≤α , where γ = ηε(I) · ω(
√

log n)/α for some negligible ε = ε(n).

8In some cryptographic applications, several ring-LWE samples are combined, requiring decoding on ideals derived from the
one used in the original ring-LWE samples (e.g., starting from our R∨, one needs to decode (R∨)k for some k > 1). The same
considerations discussed here reveal that R∨ is essentially optimal also in these applications. See [LPR12] for further details.

9As expected, the dual Λ∨ of a lattice Λ ⊂ Km is the set of all x ∈ Km such that
∑
i∈[m] Tr(xi · vi) ∈ Z for all v ∈ Λ.
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Here, K-DGSγ denotes the discrete Gaussian sampling problem [Reg05], which asks, given an ideal I
in K and a number r ≥ γ = γ(I), to produce samples from the distribution DI,r. It is easy to show
reductions from standard lattice problems to DGS, as was done in [Reg05]: using the facts that ηε(I) ≤
λn(I) · ω(

√
log n) for any fractional ideal I and some negligible ε(n) (Lemma 2.2), and that a sample

from DI,γ has length at most γ
√
n with overwhelming probability (Lemma 2.4), an oracle for K-DGSγ

immediately implies an oracle for Õ(
√
n/α)-approximate SIVP on ideal lattices in K. In cyclotomic number

fields, where λn(I) = λ1(I) for any fractional ideal I (because multiplying a shortest nonzero element
v ∈ I by 1, ζ, . . . , ζn−1 gives n linearly independent elements of the same length), this also implies an oracle
for Õ(

√
n/α)-approximate SVP.

Proof of Theorem 4.1. The proof follows Regev’s proof in [Reg05] for general lattices, replacing its core
component with an analogous statement for ideal lattices (Lemma 4.5). For completeness, we now describe
the reduction in some detail, focusing on the necessary modifications. The reduction works by repeated
applications of an iterative step, which consists of the following two parts.

The first part, which forms the core of [Reg05], is a reduction from BDD on the dual lattice to LWE,
which uses Gaussian samples over the primal lattice. In Section 4.1 we show how to perform an analogous
reduction in the ring setting for an arbitrary ideal I. Namely, we show that given an oracle that generates
samples from the discrete Gaussian distribution DI,r for some (not too small) r > 0, using an oracle for
R-LWEq,Ψ≤α we can solve the BDD problem on the dual ideal I∨ to within distance αq/(

√
2r) in the `∞

norm.
The second part is quantum, and is essentially identical to the one in Regev’s reduction, which reads as

follows:

Lemma 4.2 ([Reg05, Lemma 3.14]). There is an efficient quantum algorithm that, given any n-dimensional
lattice Λ, a number d > 0, and an oracle that solves BDD on Λ∨ to within distance d, outputs samples from
DΛ,

√
n/(
√

2d).

We actually need a slightly different (and essentially stronger) statement, namely, one where the assumption is
that the oracle solves BDD to within `∞ distance d · ω(

√
log n)/

√
n.10 We obtain this statement by noticing

that the algorithm used in the proof of the lemma calls the BDD oracle on points whose offset from the lattice
Λ∨ is sampled from Dd/(

√
2n); that it suffices if the oracle succeeds with all but negligible probability over the

choice of such points (and its own randomness); and that such a point has `∞ norm at most d ·ω(
√

log n)/
√
n

except with negligible probability.
We now combine the two parts to obtain the iterative step. Its input consists of samples from the

discrete Gaussian distribution DI,r. Using an oracle for R-LWEq,Ψ≤α , we obtain an algorithm for BDD
on I∨ to within distance αq/(

√
2r) in the `∞ norm. Using this in the second (quantum) step with d =

αq
√
n/(r · ω(

√
log n)), we obtain a quantum procedure that produces samples from the discrete Gaussian

distribution DI,r′ for r′ = r · ω(
√

log n)/(αq). Assuming αq ≥ ω(
√

log n), we can have (say) r′ ≤ r/2 so
that the output distribution DI,r′ is half as wide as the input distribution DI,r.

We can now complete the description of the reduction. We start with an exponentially large value of r so
that the samples from DI,r can be generated classically (see [Reg05, Lemma 3.2]). Then we repeatedly apply
the iterative step, obtaining samples from progressively narrower and narrower distributions. The process
continues as long as the lower bound on r in Lemma 4.5 holds, which is what leads (after the final iteration)
to the γ stated in the theorem.

10A similar but more extensive strengthening is used by Stehlé et al. [SSTX09].
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We note that one can interpret the first step itself as a classical (non-quantum) reduction from a seemingly
hard (but non-standard) worst-case lattice problem to ring-LWE, similar to what was done in [Pei09]. In
particular, since one can efficiently generate Gaussian samples from Λ using any set of n sufficiently short
linearly independent lattice vectors [GPV08], the worst-case problem can defined as follows: given an ideal I
together with a set of n linearly independent (or in the case of cyclotomics, even just one nonzero) elements
of I of Euclidean length at most r/ω(

√
log n), solve BDD on the dual I∨ to within `∞ distance αq/(

√
2r).

4.1 The BDD to LWE Reduction

We first observe that to solve BDD on an ideal I , it suffices to find the solution modulo qI . This is actually a
special case of a lemma from [Reg05], which gives a lattice-preserving reduction for BDD in general lattices.
Because the reduction is lattice-preserving, it also applies to ideal lattices.

Definition 4.3. The q-BDDI,d problem (in any norm) is: given an instance y of BDDI,d that has solution
x ∈ I, find x mod qI.

Lemma 4.4 (Special case of [Reg05, Lemma 3.5]). For any q ≥ 2, there is a deterministic polynomial-time
reduction from BDDI,d (in any `p norm) to q-BDDI,d (in the same norm).

We now give our main reduction, from q-BDD to LWE.

Lemma 4.5. Let α > 0, let q ≥ 2 be a (rational) integer with known factorization, let I be an ideal in R,
and let r ≥

√
2q · ηε(I) for some negligible ε = ε(n). Given an oracle for the discrete Gaussian distribution

DI,r, there is a probabilistic polynomial-time (classical) reduction from q-BDDI∨,d (in the `∞ norm) to
R-LWEq,Ψ≤α , where d = αq/(

√
2r).

Note that the hypothesis that I is an integral ideal (in R) is without loss of generality, by the scaling
argument at the end of Section 2.3.7. Also recall the notation T = KR/R

∨ and Jq = J /qJ for any ideal J .

Proof. The high-level description of the reduction is as follows. Its input is a q-BDDI∨,d instance y = x+ e
(where x ∈ I∨ and ‖e‖∞ ≤ d), and it is given access to an oracle that generates independent samples
from the discrete Gaussian distribution DI,r, and an oracle L that solves R-LWE. The reduction produces
samples from the LWE distribution As,ψ, where the secret s and the error distribution ψ are related to x and e,
respectively. Finally, given the solution s output by L, the reduction recovers x mod qI∨ from s.

In detail, the reduction does the following, given a q-BDDI∨,d instance y:

1. Compute an element t ∈ I such that t · I−1 and 〈q〉 are coprime.

(By Lemma 2.14, such t exists and can be found efficiently using the factorization of 〈q〉.)

2. For each sample requested by L, get a fresh z ← DI,r from the Gaussian oracle and provide to L the
pair (a, b) ∈ Rq × T, computed as follows: let e′ ← Dα/

√
2, and

a = θ−1
t (z mod qI) ∈ Rq and b = (z · y)/q + e′ mod R∨.

(Recall that by Lemma 2.15 with J = 〈q〉 andM = R, the function θt(u) = t · u induces a bijection
from Rq to Iq, which can be efficiently inverted given I, q, and t.)
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3. When L produces a solution s ∈ R∨q , output θ−1
t (s) ∈ I∨q .

(Again, by Lemma 2.15 with J = 〈q〉 andM = I∨ = I−1 ·R∨, the function θt induces a bijection
from I∨q to R∨q , which can be efficiently inverted).

The correctness of the reduction follows from Lemma 4.6 below, which says that the samples (a, b)
are distributed according to As,ψ for s = θt(x mod qI∨) ∈ R∨q and some ψ ∈ Ψ≤α. By hypothesis, L
returns s, so the reduction outputs θ−1

t (s) = x mod qI∨, which is the correct solution to its q-BDDI∨,d
input instance.

Lemma 4.6. Let y be the BDDI∨,d instance given to the reduction above, where y = x+ e for some x ∈ I∨
and ‖e‖∞ ≤ d. Each pair (a, b) produced by the reduction has distribution As,ψ (up to negligible statistical
distance), for s = θt(x mod qI∨) = t · x ∈ R∨q and some ψ ∈ Ψ≤α.

Proof. We first show that in each output pair (a, b), the component a ∈ Rq is within negligible distance
of uniform. Because r ≥ q · ηε(I), the second statement in Lemma 2.3 implies that all possible values of
z mod qI (when z is chosen from DI,r) are obtained with probabilities that are in some interval [1−ε

1+ε , 1] · β
for some β > 0, from which it follows easily that z mod qI is within distance (say) 2ε of the uniform
distribution on Iq. Finally, because θt induces a bijection fromRq to Iq by Lemma 2.15, a = θ−1

t (z mod qI)
is within statistical distance 2ε of uniform over Rq.

Now condition on any fixed value of a. We next analyze the component

b = (z · y)/q + e′ = (z · x)/q + (z/q) · e+ e′ mod R∨,

starting with (z · x)/q. By definition of a, we have z = θt(a) = a · t ∈ Iq. Because x ∈ I∨ = I−1 ·R∨, we
have

z · x = θt(a) · x = a · (t · x) mod R∨q .

Then because s = t ·x mod R∨q , we have z ·x = a ·s mod R∨q , which implies (z ·x)/q = (a ·s)/q mod R∨.
To analyze the remaining (z/q) · e+ e′ term, note that conditioned on the value of a, the random variable

z/q has distribution DI+u/q,r/q, where I + u/q is some coset of I (specifically, u = θt(a) mod qI) and
r/q ≥

√
2 · ηε(I). Note that

(r/q) · ‖e‖∞ ≤ (r/q) · d = α/
√

2,

so we may apply Lemma 4.7 below; it implies that the distribution of (z/q) · e + e′ is within negligible
statistical distance of the elliptical Gaussian Dr, where each

r2
i = (r/q)2 · |σi(e)|2 + (α/

√
2)2 ≤ (r/q)2 · d2 + α2/2 = α2.

We conclude that each (a, b) is distributed as As,ψ for some ψ ∈ Ψ≤α, as desired.

Lemma 4.7. Let I be a (fractional) ideal in K, and let r ≥
√

2 · ηε(I) for some ε = negl(n). Let e ∈ K
be fixed, let z be distributed as DI+v,r for arbitrary v ∈ K, and let e′ be distributed as Dr′ for some
r′ ≥ r · ‖e‖∞. Then the distribution of z · e + e′ is within negligible statistical distance of the elliptical
Gaussian distribution Dr over KR, where r2

i = r2 · |σi(e)|2 + (r′)2.

Proof. We can write z · e+ e′ as (z + e′/e) · e. The distribution of e′/e is the elliptical Gaussian Dt, where
each ti = r′/|σi(e)| ≥ r′/‖e‖∞ ≥ r. Thus e′/e can be written as the sum f + g of independent f and g,
where f has distribution Dr, and g has distribution Dt′ where (t′i)

2 = t2i − r2.
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Now by Lemma 2.5, the distribution of z + f is negligibly far from D√2r, so (z + e′/e) = (z + f + g)
has distribution negligibly far from Dt′′ , where

(t′′i )
2 = 2r2 + t2i − r2 = r2 + (r′)2/|σi(e)|2.

We conclude that (z + e′/e) · e has distribution negligibly far from Dr, as desired.

5 Pseudorandomness of Ring-LWE

In this section we show that for appropriate choices of ring, modulus, and error distribution, the average-case
decision version of the ring-LWE problem is hard, i.e., the ring-LWE distribution is pseudorandom. For
concreteness and simplicity, we specialize the discussion to cyclotomic fields (though it seems likely that
our techniques can be extended to deal with other number fields). So throughout this section we assume
that ζ = ζm ∈ C is a primitive mth root of unity, K = Q(ζ) is the mth cyclotomic number field having
dimension n = ϕ(m), R = OK = Z[ζ] is its ring of integers, R∨ = O∨K is its dual (codifferent) ideal,
and q = 1 mod m is a poly(n)-bounded prime. Recall that q splits completely as 〈q〉 =

∏
i∈Z∗m qi, where

qi =
〈
q, ζ − ri

〉
is a prime ideal of norm N(qi) = q and r ∈ Zq is any primitivemth root of unity mod q. Also

recall that the automorphisms of K are τk(ζ) = ζk for k ∈ Z∗m, and that τk(qi) = qi·k−1 and τ−1
k = τk−1 .11

The following is the main theorem of this section. It gives a reduction from the search variant of ring-LWE
(which by Theorem 4.1 is as hard as a worst-case lattice problem) to the average-case decision problem
ring-DLWE (see Definition 3.3). This establishes the hardness of the average-case problem, which means
that the LWE distribution As,ψ is itself pseudorandom when both s and the error distribution ψ are chosen at
random from appropriate distributions (and kept secret).

Theorem 5.1. Let R and q be as above and let αq ≥ ηε(R∨) for some negligible ε = ε(n). Then there is a
randomized polynomial-time reduction from R-LWEq,Ψ≤α to R-DLWEq,Υα .

Note that η2−n(R∨) ≤
√
n/λ1(R) = 1, where the inequality follows by Lemma 2.2, and the equality

λ1(R) =
√
n holds because ‖σ(1)‖ =

√
n and λ1(R) ≥

√
n by Lemma 2.9. So in the above theorem it

suffices to take αq ≥ 1, which is a slightly weaker hypothesis than that of Theorem 4.1.
The proof of Theorem 5.1 is obtained by combining four reductions, as summarized in the following

diagram; the numbers refer to lemma numbers, and the definitions of all intermediate problems are given
later. We note that in order to apply the last reduction (Lemma 5.14), we need a certain property of our family
of noise distribution; this property is proved in Lemma 5.13.

LWEq,Ψ
5.5−−−−−−−−−→

Automorphisms
qi-LWEq,Ψ

5.9−−−−−−−−−→
Search/Decision

WDLWEiq,Ψ
5.12−−−−−−−−−→

Worst/Average
DLWEiq,Υ

5.14−−−−→
Hybrid

DLWEq,Υ.

This sequence of reductions is similar in spirit to the one given in previous work on the standard LWE
problem [Reg05]. However, there are a few important differences, requiring the introduction of new tools.
One fundamental issue arising in the ring setting is that an oracle for DLWE might only let us deduce the
value of the secret s relative to one ideal factor qi of 〈q〉. In order to recover the entire secret, we ‘shuffle’ the
qi factors using the field’s automorphisms to recover s relative to every qj (see Lemma 5.5).

Another challenge arises from the fact that the reduction in Section 4 establishes the hardness of LWEq,Ψ
for non-spherical Gaussian error distributions ψ ∈ Ψ, which individually are not necessarily invariant under

11In fact, for any constant c dividing n, our results generalize easily to the case where q splits only into n/c distinct prime ideals qi,
each of norm qc = poly(n), because the automorphisms still act transitively upon the qis.
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the field’s automorphisms. (However, the whole family Ψ of distributions is.) As a result, our reduction to an
average-case problem (obtained in Lemma 5.12) needs to randomize the error distribution itself, which leads
to a distribution Υ over Gaussian noise distributions that are both non-spherical and wider by a factor of about
n1/4. Although this is somewhat undesirable, we do not see any way to avoid it completely. Fortunately,
this has only a minor effect on the resulting applications, i.e., adding an extra step of choosing the noise
parameters.

Alternatively, there are two ways to avoid randomizing the error distribution in certain contexts. First, in
many cryptographic applications there is a natural bound on the number of LWE samples available to the
adversary. In such cases, the following theorem establishes pseudorandomness with a fixed spherical noise
distribution.

Theorem 5.2. Let R, q, and α be as in Theorem 5.1, and let ` ≥ 1. There is a randomized polynomial-
time reduction from solving R-LWEq,Ψ≤α to solving R-DLWEq,Dξ given only ` samples, where ξ = α ·
(n`/ log(n`))1/4.

The proof of Theorem 5.2 uses the same sequence of reductions as in Theorem 5.1, except that Lemma 5.12
is replaced with Lemma 5.16.

Second, any fixed spherical Gaussian distribution Dα is invariant under all the automorphisms; therefore,
if one assumes that the search problem LWEq,Dα is hard (which seems very plausible, though we do not have
a worst-case hardness proof), then one can simplify our chain of reductions to use error distribution Dα in
all the average-case problems. In this case, there is no need to use a distribution Υ over error distributions,
and we do not need to lose the factor n1/4. The proof again uses the same sequence of reductions as that
of Theorem 5.1, except that Lemma 5.12 is modified so as not to randomize the error distribution, only the
secret s (resulting in a considerably simpler proof).

Theorem 5.3. Let R, q, and α be as in Theorem 5.1. There is a randomized polynomial-time reduction from
solving R-LWEq,Dα to solving R-DLWEq,Dα .

5.1 Search to Worst-Case Decision

Here we reduce the search version of LWEq,Ψ to a certain decision problem relative to just one arbitrary
prime ideal qi. All of the problems considered here are worst-case over the choice of s ∈ R∨q and error
distribution ψ ∈ Ψ, where Ψ is the family of allowed error distributions (though the actual error terms drawn
from ψ are still random), and their solutions must be found with overwhelming probability (over all the
randomness of the experiment).

Our first reduction is to the following intermediate problem. Note that by Lemmas 2.12 and 2.15, there is
an efficiently computable and invertible R-module isomorphism between R∨q and

⊕
i∈Z∗m(R∨/qiR

∨).

Definition 5.4 (LWE over qi). The qi-LWEq,Ψ problem is: given access to As,ψ for some arbitrary s ∈ R∨q
and ψ ∈ Ψ, find s mod qiR

∨.

Lemma 5.5 (LWE to qi-LWE). Suppose that the family Ψ is closed under all the automorphisms of K, i.e.,
ψ ∈ Ψ ⇒ τk(ψ) ∈ Ψ for every k ∈ Z∗m. Then for every i ∈ Z∗m, there is a deterministic polynomial-time
reduction from LWEq,Ψ to qi-LWEq,Ψ.

Proof. We use the oracle for qi-LWE along with the field automorphisms τk to recover the value s mod qjR
∨

for every j ∈ Z∗m. We can then efficiently reconstruct s ∈ R∨q using the Chinese remainder theorem.
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The reduction that finds s mod qjR
∨ works as follows: transform each sample (a, b)← As,ψ into the

sample (τk(a), τk(b)) ∈ Rq × T, where k = j/i ∈ Z∗m and hence τk(qj) = qi. (Note that R and R∨ are
fixed by every automorphism τk, so τk(Rq) = Rq and τk(T) = T = KR/R

∨.) Give the transformed samples
to the qi-LWEq,Ψ oracle, and when the oracle returns its answer t ∈ R∨/qiR∨, return τ−1

k (t) ∈ R∨/qjR∨.
We now prove that τ−1

k (t) = s mod qjR
∨. For each sample (a, b) from As,ψ, notice that because

b = as/q + e mod R∨ and τk(q) = q, we have

τk(b) = τk(a) · τk(s)/q + τk(e) mod R∨.

Because τk is an automorphism onR, τk(a) is uniformly random in τk(Rq) = Rq, and the pairs (τk(a), τk(b))
are distributed according to Aτk(s),ψ′ where ψ′ = τk(ψ) ∈ Ψ. The oracle must therefore return t =

τk(s) mod qiR
∨, and τ−1

k (t) = s mod τ−1
k (qiR

∨) = s mod qjR
∨, as desired.

We now observe that Ψ≤α satisfies the closure property required by the above lemma.

Lemma 5.6. For any α > 0, the family Ψ≤α is closed under every automorphism τ of K, i.e., ψ ∈ Ψ≤α ⇒
τ(ψ) ∈ Ψ≤α.

Proof. Let τj : K → K be any automorphism of K, which is of the form τj(ζ) = ζj for some j ∈ Z∗m. Then
for any ψ = Dr ∈ Ψ≤α, we have τj(Dr) = Dr′ ∈ Ψ≤α, where the entries of r′ are merely a rearrangement
of the entries of r and hence are all at most α. This follows from the fact that for i ∈ Z∗m and for any element
ζk of the power basis for K, we have σi(ζk) = (ζk)i = (ζk·j)i/j = σi/j(τj(ζ

k)). Thus, for any x ∈ K the
coordinates of σ(x) ∈ H and σ(τj(x)) ∈ H are merely a rearrangement of each other.

For our second reduction, we need to introduce a few more definitions. For notational convenience, we
identify the elements of Z∗m with their integer representatives from the set {1, . . . ,m− 1}, with the usual
ordering. For i ∈ Z∗m we let i− denote the largest element in Z∗m less than i, defining 1− to be 0.

Definition 5.7 (Hybrid LWE distribution). For i ∈ Z∗m, s ∈ R∨q , and a distribution ψ over KR, the
distribution Ais,ψ over Rq × T is defined as follows: choose (a, b) ← As,ψ and output (a, b + r/q) where
r ∈ R∨q is uniformly random and independent mod qjR

∨ for all j ≤ i, and is 0 mod all the remaining qjR
∨.

Also define A0
s,ψ simply as As,ψ.

Definition 5.8 (Worst-case decision LWE relative to qi). For i ∈ Z∗m and a family of distributions Ψ, the
WDLWEiq,Ψ problem is defined as follows: given access to Ajs,ψ for arbitrary s ∈ R∨q , ψ ∈ Ψ, and
j ∈ {i−, i}, find j.

Lemma 5.9 (Search to Decision). For any i ∈ Z∗m, there is a probabilistic polynomial-time reduction from
qi-LWEq,Ψ to WDLWEiq,Ψ.

Proof. The idea for recovering s mod qiR
∨ is to try each of its possible values, modifying the samples

we receive from As,ψ so that on the correct value the modified samples are distributed according to Ai−s,ψ,
whereas on all the other values the modified samples are distributed according to Ais,ψ. We can then use the
WDLWEiq,Ψ oracle to tell us which distribution was generated. Because there are only N(qi) = q = poly(n)
possible values for s mod qiR

∨, we can enumerate over all of them efficiently and discover the correct value.
We now give the transformation that takes some g ∈ R∨q and maps As,ψ to either Ai−s,ψ or Ais,ψ, depending

on whether or not g = s mod qiR
∨ (its values mod the other qjR

∨ are irrelevant). Given a sample
(a, b)← As,ψ, the transformation produces a sample

(a′, b′) = (a+ v, b+ (r + vg)/q) ∈ Rq × T,
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where v ∈ Rq is uniformly random mod qi and is 0 mod the other qj , and r ∈ R∨q is uniformly random
and independent mod qjR

∨ for all j < i, and is 0 mod all the remaining qjR
∨. First, notice that since a is

uniformly distributed in Rq, so is a′. Next, condition on any fixed value of a′. Then b′ can be written as

b′ = b+ (r + vg)/q = (as+ r + vg)/q + e

= (a′s+ r + v(g − s))/q + e,

where e is drawn from ψ.
We consider two cases. First, assume that g = s mod qiR

∨. Then by the Chinese remainder theorem
(Lemma 2.12), v(g − s) = 0 ∈ R∨q , and hence the distribution of (a′, b′) is exactly Ai−s,ψ. Next, assume
that g 6= s mod qiR

∨. Then since qi is a maximal ideal (which in R is equivalent to being a prime ideal),
R∨/qiR

∨ is a field, and hence v(g − s) ∈ R∨ is distributed uniformly mod qiR
∨ (and is zero mod all other

qjR
∨). From this it follows that v(g − s) + r is uniformly random and independent mod qjR

∨ for all j ≤ i,
and is 0 mod all the remaining qjR

∨. Hence, the distribution of (a′, b′) is exactly Ais,ψ, as promised.

5.2 Worst-Case Decision to Average-Case Decision

We now reduce the worst-case decision problem WDLWEiq,Ψ (where Ψ is a family of Gaussian noise
distributions) to an entirely average-case problem, namely, distinguishing As,ψ from the uniform distribution
(with any non-negligible advantage) for a random choice of both s and ψ, where the parameters of the error
distribution ψ themselves are drawn at random from a certain distribution Υ and kept secret.

We first define the following variant of average-case decision LWE.

Definition 5.10 (Average-case decision LWE relative to qi). For i ∈ Z∗m and a distribution Υ over error
distributions, we say that an algorithm solves the DLWEiq,Υ problem if with a non-negligible probability over
the choice of a random (s, ψ)← U(R∨q )×Υ, it has a non-negligible difference in acceptance probability on
inputs from Ais,ψ versus inputs from Ai−s,ψ.

We will need the following technical claim.

Claim 5.11. Let P be the distribution Γ(2, 1)n andQ be the distribution (Γ(2, 1)−z1)×· · ·×(Γ(2, 1)−zn)
for some 0 ≤ z1, . . . , zn ≤ 1/

√
n. Then any set A ⊆ Rn whose measure under P is non-negligible also has

non-negligible measure under Q.

Proof. For any two probability density functions P,Q : Rn → R≥0 define

R(P ||Q) =

∫
Rn

P (x)2

Q(x)
dx,

with the convention that the fraction is zero when both numerator and denominator are zero. (The logarithm
of this quantity is known as the Rényi divergence of order 2.) By Cauchy-Schwarz, for any set A ⊆ Rn,

(
∫
A P (x) dx)2∫
AQ(x) dx

≤
∫
A

P (x)2

Q(x)
dx ≤ R(P ||Q).

Hence if a setA has non-negligible measure under P , andR(P ||Q) ≤ poly(n) thenA also has non-negligible
measure under Q.
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We now apply this in our setting. A straightforward calculation shows that for all z > 0,

R(Γ(2, 1) ||Γ(2, 1)− z) = ez
(

1− z + z2ez
∫ ∞
z

x−1e−xdx

)
,

which, for small z is easily seen to be 1 + z2 log(1/z) +O(z2). Hence,

R(Γ(2, 1)n || (Γ(2, 1)− z1)× · · · × (Γ(2, 1)− zn))

= R(Γ(2, 1) ||Γ(2, 1)− z1) · · ·R(Γ(2, 1) ||Γ(2, 1)− zn)

is polynomial in n.

Lemma 5.12 (Worst-case to average-case). For any α > 0 and every i ∈ Z∗m, there is a randomized
polynomial-time reduction from WDLWEiq,Ψ≤α to DLWEiq,Υα .

Proof. For some s′ ∈ R∨q , r′ ∈ (R+)n, and k ∈ Z∗m, consider the transformation mapping each (a, b) to
(a, b+ (a · s′ + r)/q + e′) where e′ is chosen from Dr′ , and r ∈ R∨q is uniformly random and independent
mod qjR

∨ for all j ≤ k, and 0 mod all the remaining qjR
∨. Then it is easy to see that for all s ∈ R∨q and

i ∈ Z∗m, this transformation maps Ais,ψ to Amax{k,i}
s+s′,ψ+Dr′

.
The reduction repeats the following a polynomial number of times. Choose a uniform s′ ∈ R∨q as well

as reals x1, . . . , xn/2 chosen independently from the distribution Γ(2, 1) and let r′ ∈ (R+)n be defined by
r′2j = r′2j+n/2 = α2√nxj for j ∈ [n/2]. Then estimate the acceptance probability of the oracle on the
following two input distributions: the first is obtained from our input by applying the above transformation
with parameters s′, r′, and i−; the second is obtained similarly using parameters s′, r′, and i. If in any of
these polynomial number of attempts a non-negligible difference is observed between the two acceptance
probabilities, output “i−”; otherwise output “i”.

Notice that if our input distribution is Ais,ψ, then in each of the attempts, the two distributions on which
we estimate the oracle’s acceptance probability are exactly the same, hence we output “i” with overwhelming
probability. So assume that our input distribution is Ai−s,Dr

for some r satisfying that all ri are in [0, α]. In
this case we estimate the oracle’s acceptance probability on Ai−s+s′,Dr+Dr′

and Ais+s′,Dr+Dr′
, and notice

that Dr + Dr′ = Dr′′ where r′′2j = r2
j + r′2j . Let S be the set of all pairs (s, ψ) for which the oracle has

a non-negligible difference in acceptance probability on Ai−s,ψ and Ais,ψ. By assumption, the measure of S
under U(R∨q )×Υα is non-negligible. By Claim 5.11, (s+ s′, Dr +Dr′) ∈ S with non-negligible probability
and the lemma follows.

Lemma 5.13. Let α ≥ ηε(R
∨)/q for some ε > 0. Then for any ψ in the support of Υα and s ∈ R∨q , the

distribution Am−1
s,ψ is within statistical distance ε/2 of the uniform distribution over (Rq,T).

Proof. By definition, a sample from the distribution Am−1
s,ψ is given by (a, (a · s + r)/q + e) where e is

chosen from ψ, a is chosen uniformly from Rq, and r is chosen uniformly from R∨q . It suffices to show that
conditioned on any fixed value of a, the second element of the pair is within statistical distance ε of the
uniform distribution over T. So fix some value of a. Notice first that (a · s+ r)/q is distributed like a uniform
element of (q−1R∨)/R∨. Moreover, any noise distribution ψ in the support of Υα can be written as the sum
of two independent Gaussian noise distributions Dr +Dr′ , the first with parameters ri = α and the second
with parameters (r′i)

2 = xi ≥ 0. By Lemma 2.3 and our assumption on α, the sum of a uniform element of
(q−1R∨)/R∨ and noise chosen from Dr is within statistical distance ε/2 of the uniform distribution on T,
and clearly this remains the case after adding the independent noise Dr′ .
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Lemma 5.14 (Hybrid). Let Υ be a distribution over noise distributions satisfying that for any ψ in the
support of Υ and any s ∈ R∨q , the distribution Am−1

s,ψ is within negligible statistical distance from uniform.
Then for any oracle solving the DLWEq,Υ problem, there exists an i ∈ Z∗m and an efficient algorithm that
solves DLWEiq,Υ using the oracle.

Proof. We use a simple hybrid argument. Let (s, ψ) be any pair for which the oracle distinguishes between
As,ψ and uniform inputs with a non-negligible advantage. By Markov’s inequality, the probability measure
of such pairs is non-negligible. Since A0

s,ψ = As,ψ, and Am−1
s,ψ is negligibly far from the uniform distribution,

we see that for each such (s, ψ) there must exist an i ∈ Z∗m for which the oracle distinguishes between Ais,ψ
and Ai−s,ψ with non-negligible advantage. The lemma follows by taking the i that is associated to the set of
pairs (s, ψ) of highest probability.

This completes the proof of Theorem 5.1. To prove Theorem 5.2, we start with a technical claim and
proceed with an alternative noise reduction.

Claim 5.15. Let r1, . . . , rn ∈ R+ and s1, . . . , sn ∈ R+ be such that for all i, |si/ri−1| <
√

log n/n. Then
any set A ⊆ Rn whose measure under the Gaussian distribution Dr1 × · · · ×Drn is non-negligible, also has
non-negligible measure under Ds1 × · · · ×Dsn .

Proof. We use the same notation and technique as in Claim 5.11. An easy calculation shows that for all
r > 0 and α > 1/

√
2,

R(Dr ||Dαr) =
α2

√
2α2 − 1

,

which is smaller than, say, 1 + 3(α− 1)2 for α sufficiently close to 1. Hence,

R(Dr1 × · · · ×Drn ||Ds1 × · · · ×Dsn) = R(Dr1 ||Ds1) · · ·R(Drn ||Dsn)

≤ (1 + 3 log n/n)n = poly(n).

Lemma 5.16 (Worst-case to average-case with spherical noise). For any α > 0, ` ≥ 1, and every i ∈ Z∗m,
there is a randomized polynomial-time reduction from solving WDLWEiq,Ψ≤α to solving DLWEiq,Dξ given

only ` samples, where ξ = α(n`/ log(n`))1/4.

Proof. For some s′ ∈ R∨q , k ∈ Z∗m, and e1, . . . , e` ∈ T, consider the transformation mapping ` samples
(ai, bi)

`
i=1 to (ai, bi+ (ai ·s′+ ri)/q+ ei)

`
i=1 where r1, . . . , r` ∈ R∨q are chosen independently to be uniform

mod qjR
∨ for all j ≤ k, and 0 mod all the remaining qjR

∨. Then it is easy to see that for all s ∈ R∨q , ψ, r′,
and i ∈ Z∗m, if we sample from (Ais,ψ)` (i.e., ` independent samples from Ais,ψ) and apply this transformation
with e1, . . . , e` chosen independently from Dr′ , then the output distribution (averaged over the choice of
e1, . . . , e`) is (A

max{k,i}
s+s′,ψ+Dr′

)`.
The reduction repeats the following a polynomial number of times. Choose a uniform s′ ∈ R∨q as well

as e1, . . . , e` chosen independently from Dξ. Then estimate the acceptance probability of the oracle on the
following two input distributions: the first is obtained from our input by applying the above transformation
with parameters s′, e1, . . . , e`, and i−; the second is obtained similarly using parameters s′, e1, . . . , e`, and i.
If in any of these polynomial number of attempts a non-negligible difference is observed between the two
acceptance probabilities, output “i−”; otherwise output “i”.
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Notice that if our input distribution is Ais,ψ, then in each of the attempts, the two distributions on which
we estimate the oracle’s acceptance probability are exactly the same, hence we output “i” with overwhelming
probability. So assume that our input distribution is Ai−s,Dr

for some r satisfying that all ri are in [0, α].
Let Bi−(s′, e1, . . . , e`) and Bi(s′, e1, . . . , e`) be the two distributions on ` pairs which our reduction uses
as input to the oracle. Define the vector r′ with coordinates r′2j = ξ2 − r2

j so that Dr + Dr′ = Dξ. By
our observation above, the average of Bi−(s′, e1, . . . , e`) over e1, . . . , e` chosen independently from Dr′ is
(Ai−s+s′,Dξ)

` and similarly with Bi and Ai. Let S be the set of all tuples (s, e1, . . . , e`) for which the oracle
has a non-negligible difference in acceptance probability on Bi−(s′, e1, . . . , e`) and Bi(s′, e1, . . . , e`). By
assumption and a Markov argument, the measure of S under U(R∨q )× (Dr′)

` is non-negligible. Since

1 ≤ ξ√
ξ2 − r2

i

≤ ξ√
ξ2 − α2

≤ 1 +

√
log(n`)

n`
,

it follows from Claim 5.15 that the measure of S under U(R∨q )× (Dξ)
` is also non-negligible, and we are

done.
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