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Abstract. The Learning with Errors (LWE) problem has become a central building block
of modern cryptographic constructions. This work collects and presents hardness results for
concrete instances of LWE. In particular, we discuss algorithms proposed in the literature
and give the expected resources required to run them. We consider both generic instances of
LWE as well as small secret variants. Since for several methods of solving LWE we require
a lattice reduction step, we also review lattice reduction algorithms and propose a refined
model for estimating their running times. We also give concrete estimates for various families
of LWE instances, provide a Sage module for computing these estimates and highlight gaps
in the knowledge about algorithms for solving the Learning with Errors problem.

1 Introduction

Lattice-based cryptography. Lattice-based cryptography has become popular in recent years for
several reasons. One dates back to the work of Ajtai [Ajt96] who linked the average case complex-
ity of lattice problems to the worst case, showing that a random instance of the shortest vector
problem in a lattice is hard. A second reason is its potential application in a post-quantum world,
since no efficient quantum algorithms are known for lattice problems. On the other hand, problems
such as factoring and discrete logarithm would no longer be hard in the presence of a quantum
computer [BBD09]. A third reason is the wealth of applications of lattice-based cryptography,
perhaps the most notably of which is its role in the realisation of fully homomorphic encryption
by Gentry [Gen09] and in follow up works (e.g. [vDGHV10,BGV12,GHS12a]). Lattice problems
have also been the basis of Public Key Encryption [Reg05], including CCA secure schemes [Pei09];
Identity Based Encryption [GPV08] and the more general Hierarchical Identity Based Encryp-
tion [CHKP12]; oblivious transfer schemes [PVW08]; Circular-Secure Encryption [ACPS09]; and
Leakage-Resilient Encryption [GKPV10]. Recently, candidate constructions for multi-linear maps
based on presumed hard problems in lattices have been proposed [GGH13,GGH14].

Learning with Errors. One lattice problem on whose hardness several cryptosystems are based
is the Learning with Errors (LWE) problem [Reg05,Pei09,PW11]. LWE was introduced by Regev
in [Reg05] and is provably as hard as worst-case lattice problems [Reg05,BLP+13]. It is a gener-
alisation of the Learning Parity with Noise (LPN) problem into larger moduli q.

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability distribution on
Z and s be a secret vector in Znq . We denote by Ls,χ the probability distribution on Znq × Zq
obtained by choosing a ∈ Znq uniformly at random, choosing e ∈ Z according to χ, and returning
(a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq.
Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq × Zq are sampled according to
Ls,χ or the uniform distribution on Znq × Zq.
Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+e) ∈ Znq ×Zq sampled according
to Ls,χ.



Contributions. The first contribution of this survey is to gather and present algorithms available in
the literature used for solving LWE.In particular, we identify three strategies for solving LWE, and
give the algorithms available in the literature for solving LWE via one of these strategies. While in
recent years several such algorithms were proposed and analysed, most treatments of LWE do not
consider these results when discussing its hardness. By providing an accessible survey on available
techniques we hope to motivate research to push the state-of-the-art in this area forward.

We note that in most previous works the hardness of LWE is treated only asymptotically. Indeed,
it is not uncommon to hide logarithmic and constant factors in the exponent of complexity expres-

sions. For example, Arora and Ge [AG11] specify the complexity of their algorithm as 2Õ(n2ξ), for
some ξ such that αq = nξ. While such statements – separating essential from inessential factors
– allow us to understand the behaviour of various families of algorithms and of the problem in
general, they need to be refined in order to gain insights into the concrete hardness of LWE.The
importance of this could be seen, for example, when it comes to designing actual systems based on
LWE.Here we must select parameters to ensure that the problem instance generated is hard with
respect to a particular security parameter λ while still keeping parameters as small as possible for
performance reasons. For this we must be able to identify the fastest known way of solving LWE
with that choice of parameters, and be assured that this attack takes 2λ operations. The second
contribution of this survey is hence that where possible we provide concrete estimates for how long
it takes to solve LWE.

Since for most algorithms no closed formulae are known expressing their complexities, the third
contribution of this survey is that we provide a module for the Sage mathematics software [S+14]
which, given the parameters of an LWE instance, outputs estimates for the concrete running time
of the algorithms discussed in this survey. We also apply this estimator to various families of LWE
parameters from the literature and discuss areas where the collective knowledge is limited in order
to motivate further research.

Instances. To this end we need to characterise LWE instances. In this survey we always let χ be
a discrete Gaussian distribution with centre zero and width parameter αq, denoted by DZ,αq. A
discrete Gaussian distribution with centre µ and width parameter αq samples elements with a

probability proportional to exp(−π (x−µ)2
(αq)2 ). The standard deviation of a continuous Gaussian with

width parameter αq is σ = αq√
2π

and we roughly have this relation when we discretise, as long as

σ is bigger than the smoothing parameter ηε(Z) of Z [DB13]. For ease of analysis, some works
(e.g. [LP11]) treat the error terms as not too dissimilar from samples from a continuous Gaussian,
and we join them in this approach whenever this occurs.

We then characterise LWE instances as follows:

1. Typically, we have q ≈ nc and αq =
√
n, i.e. α ≈ n1/2−c, for c a small constant. The relation

αq >
√
n allows the reduction of GapSVP to LWE to go through [Reg09]. In particular,

Regev uses αq = 2
√
n. Intuitively this is because a step in the reduction loses a factor of

√
n.

Furthermore, if αq <
√
n then Arora and Ge’s algorithm is subexponential [AG11]. In this

survey, we simply pick αq =
√
n, ignoring the constant 2 as it does not affect our estimates

much. In this case we may characterise the instance by n (and c).
2. The most generic characterisation is by n, α, q.
3. In some applications, the secret s is not chosen uniformly at random from Zq but we have the

guarantee that all the s(i) are “small”, e.g. ∈ {0, 1}. In this case we characterise the instance
by n, α, q, ψ where ψ is the distribution of the s(i).

In many applications, we are only given access to m = Õ (n) samples. In this case, we would
characterise the instance by m,n, α, q. However, in this work we will assume that we have access
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to as many samples m as we require. This is a reasonable assumption because the hardness of
the LWE problem itself is essentially independent of the number of samples [Reg10]. This could
be explained by the result that given a fixed (polynomial) number of samples, one can generate
arbitrarily many more, with only a slight worsening in the error [GPV08,ACPS09]. The new
samples come with the caveat, though, that they are no longer independent.

Structure. In Section 2 we give relevant tools which we will use later. In Section 3 we review lattice
reduction algorithms as these will also be useful. In Section 4 we explain the three main strategies
for solving LWE.In Section 5 we describe the algorithms which can be used to solve LWE via
a chosen strategy. In particular we consider instances of LWE characterised both by n, α, q and
the special case q = nc, αq =

√
n. In Section 6 we concentrate on the third characterisation of

LWE:those instances with a small secret. In Section 7 we apply our estimator to parameter choices
from the literature. Finally, in Section 8 we make some concluding remarks.

2 Notation & Tools

Logarithms are base 2 if not stated otherwise. We write ln for the natural logarithm. We denote
vectors in bold, e.g. a, and matrices in upper-case bold, e.g. A. By a(i) we denote the i-th com-
ponent of a, i.e. a scalar. In contrast, ai is the i-th element of a list of vectors. We denote by 〈·, ·〉
the usual dot product of two vectors and by 〈·, ·〉p this dot product modulo p. We write 2 ≤ ω < 3
for the linear algebra constant. We adopt the convention that the first non-zero vector, say b0, in
a reduced lattice basis is the shortest vector in the basis.

Since we will use lattice reduction later on, we need some basic definitions about lattices. A lattice
L in Rm is a discrete additive subgroup. In this survey we restrict our attention to viewing a
lattice L(B) as being generated by a (non-unique) basis B = {b0, . . . ,bn−1} ⊂ Zm of linearly-
independent integer vectors. The rank of the lattice L is defined to be the rank of the basis matrix
B with rows consisting of the basis vectors. If the rank equals m we say that L is full-rank. We
are only concerned with such lattices in this work and henceforth assume that the lattices we
deal with are full-rank. In addition, we are only concerned with q-ary lattices which are those
such that qZm ⊆ L ⊆ Zm. Note that every q-ary lattice is full-rank. Throughout, we adopt the
convention that a lattice is generated by integer combinations of row vectors, to match software
conventions. The volume vol (L) of a full-rank lattice L is the absolute value of the determinant
of any basis of the lattice. The ith successive minimum of a lattice, λi(L), is the radius of the
smallest ball centred at the origin containing at least i linearly independent lattice vectors. The

Gaussian heuristic states that λ1(L) ≈
√

m
2πevol (L)

1/m
.

We now give three lemmas which will be useful later. The first shows that given samples from
Ls,χ we can construct LWE instances where the secret vector follows the same distribution as the
error.

Lemma 1 ([ACPS09]). Let DZn,αq be an n-dimensional extension of DZ,αq where each compo-
nent is sampled according to DZ,αq. Then, given access an oracle Ls,χ returning samples of the
form (a, c) = (a, 〈a, s〉+ e) ∈ Znq ×Zq with a ← U

(
Znq
)
, e← DZ,αq and s ∈ Znq , we can construct

samples of the form (a, c) = (a, 〈a, e〉+e) ∈ Znq ×Zq with a ← U
(
Znq
)
, e← DZ,αq and e ← DZn,αq

in 2n2 operations in Zq per sample, at the loss of n samples overall and with O (nω) operations
for precomputation.

Proof. Take n samples from Ls,χ and write:

(A0, c0) = (A0,A0 · s + e0)
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where A0 ∈ Zn×nq . With probability
∏n
i=1(qn − qi−1)/qn

2

this matrix is invertible. Precompute

A−10 and store it; this costs O (nω) operations. Now, to produce n samples of the form (a, c) =
(a, 〈a, e〉+ e) ∈ Znq × Zq with a ← U

(
Znq
)
, e← DZ,αq and e ← DZn,αq we sample:

(a1, c1) = (a1,a1 · s + e1)

from Ls,χ and compute:

a1 ·A−10 · c0 − c1 = a1 ·A−10 (A0 · s + e0)− a1 · s − e1

= a1 ·A−10 ·A0 · s + a1 ·A−10 e0 − a1 · s − e1

= a1 · s + a1 ·A−10 e0 − a1 · s − e1

= a1 ·A−10 e0 − e1.

Now, since DZ,αq is symmetric and A−10 has full rank, we get that

(a1 ·A−10 ,a1 ·A−10 c0 + c1) = (a1 ·A−10 ,a1 ·A−10 e0 − e1)

are n valid samples of the form (a, c) = (a, 〈a, e〉+ e) ∈ Znq ×Zq with a ← U
(
Znq
)
, e← DZ,αq and

e ← DZn,αq. Finally, computing a1 ·A−10 takes 2n2 operations in Zq. ut

In certain cases we have the notion of ‘modulus switching’ which means that given samples from
Ls,χ, we can construct LWE instances where the modulus is now p for some particular p < q.
Modulus switching was initially introduced to speed-up homomorphic encryption [BV11] but can
also be employed to reduce the cost of solving LWE in certain cases [AFFP14]. Modulus switching
can be thought of as analogous to the difference between computing with single instead of double
precision floating point numbers, where switching refers to opting to compute in the lower precision
of a machine float. In the LWE context, for some p < q, modulus switching is considering an
instance of LWE (mod q) as a scaled instance of LWE (mod p). This incurs a noise increase which
is only small if s is small, so the technique can only be used for small secrets. The requirements
on p must be balanced. On the one hand, minimising p will minimise the running time of most
algorithms (see Section 6). On the other hand, picking p too small increases the noise level leading

to a higher solving complexity. Our choice of p ensures that
∥∥∥〈pq · a − ⌊pq · a⌉, s〉∥∥∥ ≈ p

q · ‖e‖ if s

is small enough. This means that the new error term after modulus switching is essentially the
previous error scaled. In particular, we have the following lemma:

Lemma 2 ([BV11,BLP+13]). Let (a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq be sampled from Ls,χ. Let

p ≈
√

2π n
12 ·

σs
α , where σs is the standard deviation of elements in the secret s. If p < q then

(⌊
p

q
· a
⌉
,

⌊
p

q
· c
⌉)

in Znp × Zp

follows a distribution close to Ls,DZ,
√

2αp+O(1)
.

4



Proof. Consider⌊
p

q
· c
⌉

=

⌊
p

q

(
〈a, s〉+ e

)⌉
=

⌊〈
p

q
· a, s

〉
p

+
p

q
· e

⌉

=

⌊〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a −

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e

⌉

=

〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a −

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e+ e′, where e′ ∈ [−0.5, 0.5]

=

〈⌊
p

q
· a
⌉
, s

〉
p

+ e′′ +
p

q
· e+ e′.

Since p
q · a −

⌊
p
q · a

⌉
takes values ∈ [−0.5, 0.5] we have that e′′ ≈

√
n/12σs. Targeting e′′ ≈ p

q · e
we get

p

q
· αq/

√
2π ≈

√
n/12σs

p · α/
√

2π ≈
√
n/12σs

p ≈
√

2π

α
·
√
n/12σs.

p ≈
√

2π n

12
· σs
α
.

p
q · e is a scaled discrete Gaussian, e′′ is an inner product and thus approaches a discrete Gaussian

as n increases, e′ is distributed in [−0.5, 0.5] from which the claim follows. ut

The following lemma shows the equivalence of Decision-LWE and Search-LWE. Search to decision
is trivial: if search is solved, s is known, so e = c−〈a, s〉 can be computed. The nontrivial direction
is due to Regev [Reg09], which is reproduced with proof below. Having established equivalence,
whenever a method can be shown to solve Search-LWE or Decision-LWE we can speak of it solving
LWE.

Lemma 3 (Lemma 4.2 in [Reg09]). Let n ≥ 1 be some integer, 2 ≤ q ≤ poly(n) be a prime,
and χ be some distribution on Zq. Assume that we have access to a procedure W that, for all s,
accepts with probability exponentially close to 1 on inputs from Ls,χ and rejects with probability
exponentially close to 1 on uniformly random inputs. Then, there exists an efficient algorithm W ′

that, given samples from Ls,χ for some s, outputs s with probability exponentially close to 1.

Proof. We show how W ′ finds the first component s(0) of s; finding the other components is similar.
For any k ∈ Zq consider the following transformation. Given a pair (a, c) as input to W ′, let it
output the pair (a + (l, 0, . . . , 0), c+ lk) where l ∈ Zq is chosen uniformly at random. It is easy to
see that this transformation takes the uniform distribution to itself. On the other hand suppose
the input pair (a, c) is sampled from Ls,χ. If k = s(0) then this transformation takes Ls,χ into
itself. If k 6= s(0) then this transformation takes Ls,χ to the uniform distribution. There are only
polynomially many (namely q) possibilities for s(0), so we can try all of them as possible k values.
For each k value, let the output of W ′ be the input to W . Then as W can distinguish Ls,χ from
uniform, it can tell whether k = s(0). ut
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3 Lattice Reduction Algorithms

Many algorithms for solving LWE rely on lattice reduction as the central step. Hence, in this
section we briefly review lattice reduction algorithms and discuss the current state-of-affairs in
terms of estimating their running time. Since this survey is concerned with discussing algo-
rithms for solving LWE this section is kept rather brief and the interested reader is directed
to [MR09,Reg09,Ngu10,Ngu11,LP11] for further details on lattices.

Lattice reduction algorithms can be viewed as a hierarchy: cases of BKZ based on the block size
parameter k. For k = 2 we are essentially running LLL, which runs in polynomial time but the
reduced basis output will only contain a short vector to within exponential factors. When k = n,
i.e the full size of the basis, then the output basis would be HKZ (Hermite-Korkine-Zolotarev)
reduced. This is in some sense optimally reduced, but requires exponential runtime. Hence, when
performing lattice reduction, one generally uses BKZ with some intermediary block size.

The quality of a basis output by a lattice reduction algorithm is characterised by the Hermite
factor δn0 , which is defined such that the shortest non-zero vector b0 in the output basis has the

following property: ‖b0‖ = δn0 vol (L)
1/n

. We may also refer to δ0 itself, and call it the root-Hermite
factor. We call its logarithm to base 2 the log root-Hermite factor.

3.1 LLL

LLL can be considered as a generalisation of the two dimensional algorithm by Lagrange and
sometimes attributed to Gauss (see for example [Jou09]). The output of this algorithm is a basis
{b0,b1} such that ‖b0‖ ≤ ‖b1‖ and the Gram-Schmidt coefficient µ1,0 ≤ 1

2 . In particular, ‖b0‖ =
λ1 and ‖b1‖ = λ2. The algorithm works by taking in a pair of vectors b0 ≤ b1 and then setting
b1 = b1−bµ1,0eb0, then swapping the vectors and repeating until no more changes can be made.
Thus, when this terminates, we must have µ1,0 ≤ 1

2 .

To extend into higher dimensions one would like to do something similar but the optimal way to
do this is not clear because of the additional choice of directions. Notice that the Gauss algorithm

ensures that ‖b1‖
‖b0‖ is not too small, in particular, ‖b1‖

‖b0‖ ≥ 1 − µ2
1,0 ≥ 3

4 (see e.g. [LvdPdW12] for

more details). An LLL reduced basis satisfies a relaxed general version of this: ‖bi‖
‖bi−1‖ ≥ δ−µ

2
i,i−1

for some δ ∈
(
1
4 , 1
)
. This relaxation, known as the Lovász condition, is necessary for polynomial

runtime. A typical choice is δ = 3
4 .

More formally, a basis {b0,b1, . . .bn−1} is LLL-reduced if it satisfies the Lovász condition (for
some δ) and it is size reduced; that is, µi,j ≤ 1

2 for 0 ≤ j < i ≤ n− 1.

Essentially, LLL works by size reducing the basis vectors pairwise, and then checking if the Lovász
condition still holds; if it does not, then it swaps the current vector with the previous vector. In
more detail, let the input basis be {b0, . . .bn−1}. Starting at i = 1 and incrementing upwards,
consider bi and size reduce with respect to bj for j = i− 1 down to j = 0. Then check if bi and
bi−1 satisfy the Lovász condition. If they do, increment i; if not, swap them and decrement i to
ensure the swap has not affected the Lovász condition holding in the previous pair.

Running Time. It is well known the runtime of LLL is polynomial and indeed this was proved as
it was introduced [LLL82]. In particular for an input basis where for all i, ‖bi‖ < B, LLL outputs
an LLL-reduced basis in time O

(
n5+ε log2+εB

)
(using fast integer multiplication). In more re-

cent variants, improvements have been made. For example, one variant introduced by Nguyen and
Stehlé called L2 [NS05] provably outputs an LLL-reduced basis in timeO

(
n5+ε logB + n4+ε log2B

)
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(using fast integer multiplication). That is, one that only grows quadratically in logB. Heuristi-
cally, variants of LLL achieve O

(
n3 log2B

)
[CN11].

Quality of Output. LLL theoretically achieves a Hermite factor of
(
4
3

)n−1
4 [LLL82]. In practice,

it behaves much better and a root-Hermite factor δ0 of 1.0219 is reported in [GN08].

Implementations. LLL and its variants is implemented in many software packages, notably in
NTL [Sho], FLINT [HJP14] and fplll [CPS13]. The latter also implements L2.

3.2 BKZ

The BKZ algorithm requires an algorithm solving exact SVP in possibly smaller dimensions as a
subroutine. The typical methods of doing this are computing the Voronoi cell of the lattice, sieving
or enumeration [HPS11b]. Below we refer to running any of these algorithms as calling an SVP
oracle.

The BKZ algorithm runs as follows, where at every stage b0, . . . ,bn−1 is the updated basis. The
input basis is LLL reduced, and the first block is b0, . . . ,bk−1. Call the SVP oracle to obtain a
short vector, b∗0, in the space spanned by these vectors. We now have k + 1 vectors spanning a
k dimensional space, so we call LLL to obtain a new set of k linearly independent vectors. The
second block is made of vectors which are the projection of b1, . . . ,bk onto 〈b0〉⊥ (the space which
is the span of the orthogonal complement of b0). Again we call the SVP oracle to obtain a short
vector in this space, b∗1, which can be viewed as the projection of some b′1 in the lattice. Now
we call LLL on b0,b1, . . . ,bk,b

′
1 to update the list of basis vectors. The next block is made of

vectors which are the projection of b2, . . . ,bk+1 onto 〈b0,b1〉⊥ (the space which is the span of the
orthogonal complement of b0 and b1), and again the SVP oracle is called to obtain a short vector
in this space, which can be viewed as a projected b′2; and this procedure carries on through the
basis. The first n− k+ 1 blocks are all of size k, and then after this point each block is one vector
shorter than the previous block. The output basis of this process is another LLL reduced basis,
which can be treated as a new input, and the whole process continues again, until a basis passes
through unchanged, at which point the algorithm terminates.

A HKZ reduced basis {b0, . . .bd−1} is a basis such that its Gram-Schmidt vectors b∗i satisfy the
property that ‖b∗i ‖ = λ1(πi(L)) for 0 ≤ i ≤ d − 1 where πi(L) = 〈b0, . . . ,bi−2〉⊥. We can see
that BKZ constructively achieves a basis with the following property: each block of size k (e.g.
b0, . . . ,bk−1), that is all the first n − k + 1 blocks, is a HKZ reduced basis. Therefore, if k = n
then the whole output basis is HKZ reduced.

BKZ 2.0. Several improvements of BKZ have been suggested and their combination is often
referred to as BKZ 2.0 [CN11]. These improvements include some heuristically better techniques
such as extreme pruning [GNR10], early termination, and local block pre-processing. Extreme
pruning takes place in the enumeration subroutine, and it works by not exploring all branches
in the search tree, with the hope that a short enough vector is still found, therefore decreasing
runtime. Early termination is based on the heuristic observation that the quality of the output
basis increases more dramatically in the earlier rounds of BKZ. Therefore, continuing to reduce the
lattice offers diminishing returns in the basis quality, and early termination decreases the runtime
while still returning a basis close to the desired quality. Local block pre-processing takes the form
of running BKZ-k′ with early termination for some value k′ so that the local basis is more than
merely LLL reduced.
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Quality of Output. Chen [Che13] gives a limiting value of δ0 achievable by BKZ as a function
of the block size k which we may apply as an estimate for δ0 even when n is finite:

lim
n→∞

δ0 =

(
k

2πe
(πk)

1
k

) 1
2(k−1)

. (1)

The same numerical estimate can also be achieved by running the BKZ 2.0 simulator [CN11].

The ‘lattice rule of thumb’ is often used to approximate what δ0 a given k can achieve by δ0 = k
1
2k .

This expression, in turn is often approximated by δ0 = 21/k [Ste13] to ease analysis.

We note that depending on which estimate is used vastly different relations between k and δ0 are
assumed. To illustrate this, we plot predictions for δ0 for block sizes 50 ≤ k ≤ 250 in Figure 1.

40 60 80 100 120 140 160 180 200 220 240 260

1.005

1.01

1.015

1.02

1.025

k

δ 0

k
1
2k

2
1
k

( k
2πe
· (π k)1/k)

1
2(k−1)

BKZ sim. (n = 390)

Fig. 1. Estimates for δ0 for BKZ-k. The BKZ simulator was run on input resembling a 390× 390 dimen-
sional q-ary lattice.

Assuming that the data from the BKZ simulator is a good enough indication for actual behaviour,
we may conclude from Figure 1 that we do not need to consider the approximation k

1
2k as it

is always too pessimistic. The approximation 2
1
k is closer to the actually expected behaviour,

but as we will show below it implies a simple sub-exponential algorithm for solving LWE via
straightforward lattice reduction.

Running Time. The running time of BKZ is mainly determined by two factors: firstly, the time
tk it takes to find shortest or short enough vectors in lattices of dimension k; and secondly, the
number of BKZ rounds ρ needed. We assume CPU clock cycles as our basic unit to abstract from
CPU clock speeds. If tk is the number of clock cycles it takes to solve SVP in dimension k we
expect BKZ to take ρ · n · tk clock cycles.

SVP Oracles. As mentioned above, three main families of algorithms exist for finding shortest
vectors [HPS11b]. Computing the Voronoi cell of the lattice takes about 22k+o(k) operations and
2k+o(k) memory. Sieving takes about 22.465k+o(k) operations and 21.325k+o(k) memory in its provable
variant and 20.3774 k operations and 20.2925 k memory in its heuristic variant [BGJ13]. Enumeration

is typically implemented in a fashion requiring 2O(k2) operations and poly(k) memory, but can
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be shown to achieve kO(k) operations and poly(k) memory (cf. [MW14] for a recent proposal with

low overhead). All known implementations of BKZ use enumeration with a complexity of 2O(k2)

as it beats other methods for dimensions achievable in practice. We note that this complicates
deriving estimates for large block sizes from experimental evidence.

Estimating ρ. No closed formula for the expected number of BKZ rounds is known. The best

upper bound is exponential, but after ρ ≈ n2

k2 log n many rounds, the quality of the basis is already
very close to the final output [HPS11a].

Asymptotic Behaviour. Before we discuss existing estimates for the running time of BKZ in the
literature, we briefly discuss the expected asymptotic behaviour of the algorithm. The ‘lattice
rule of thumb’ puts the relation between the block size k and δ0 as δ0 = k1/2k, which implies
k/ log(k) = 1/(2 log δ0). To solve this for k we need the following technical lemma:

Lemma 4. For i ≥ 1, let gi(x) = x log(gi−1(x)) with g0(x) = 2. If a/ log(a) = b and log(a) ≥ 1
then

a ≥ gn(b)

for any n ≥ 0. In particular, for log(a) > 2, a = g∞(b).

Proof. For the first claim, notice that a ≥ g0(b) = 2 as log(a) ≥ 1. Furthermore, a ≥ g1(b) = b as
a/ log(a) = b so a ≥ b. We also have a ≥ g2(b) = b log(b):

a = b log a

⇒ a ≥ b
⇒ log a ≥ log b

⇒ a ≥ b log b

For the inductive step,

suppose a ≥ gi(b)
⇒ log a ≥ log(gi(b))

a = b log a

⇒ a ≥ b log(gi(b)) = gi+1(b).

So by induction, we have a ≥ gn(b). For the second claim, when log(a) > 2, b = a/ log(a) > 2.
We now prove by induction that gn(b) ≥ gn−1(b) for all n ≥ 1. For the base case, we have
g1(b) = b > 2 = g0(b). For the inductive step,

suppose gi(b) ≥ gi−1(b)

⇒ gi(b)
gi−1(b)

≥ 1

⇒ log ( gi(b)
gi−1(b)

) ≥ 0

Now gi+1(b)− gi(b) = b log ( gi(b)
gi−1(b)

) ≥ 0

⇒ gi+1(b) ≥ gi(b)

Thus we have that gn(b) is an increasing sequence, and by the first claim, it is bounded above by
a. So it is convergent and we may denote its limit by g∞(b). This satisfies g∞(b) = b log (g∞(b))
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and so g∞(b)
log (g∞(b)) = a

log(a) . Now, for x ≥ 4, the function x
log(x) is one-to-one. Note that we have

gn(b) > 2 for all n so also g∞(b) > 2.

It remains to prove that g∞(b) ≥ 4, which implies g∞(b) = a. To show this, we require some
further properties of the function x

log(x) . Consider the solutions of the equation x
log(x) = 2. These

are precisely x = 2 and x = 4. By differentiating x
log(x) and evaluating at these values, and with

the observation that x
log(x) is continuous for x > 1, we can see that x

log(x) takes values below 2

precisely for 2 < x < 4. But, a/ log(a) > 2. So we must be in the region x ≥ 4. So, x
log(x) is

injective here and we may conclude g∞(b) = a as required. ut

Hence, we have k ≥ gn

(
1

2 log δ0

)
. In particular, we have k ≥ g1

(
1

2 log δ0

)
= − log(2 log δ0)

2 log δ0
. Ignoring

constants, this expression simplifies to − log(log δ0)
log δ0

. It follows that the log of the time complexity
of the BKZ algorithm is as follows.

Lemma 5. The log of the time complexity for running BKZ to achieve a root-Hermite factor δ0
is:

Ω

(
log2 (log δ0)

log2 δ0

)
if calling the SVP oracle costs O

(
2n

2
)
,

Ω

− log
(
− log log δ0

log δ0

)
log log δ0

log δ0

 if calling the SVP oracle costs O (nn),

Ω

(
− log log δ0

log δ0

)
if calling the SVP oracle costs O (2n).

Existing Estimates. The following estimates for the running time of BKZ exist in the literature.

– Lindner and Peikert [LP11] give an estimate for the runtime (in seconds) of BKZ as

log tBKZ(δ0) =
1.8

log δ0
− 110

based on experiments with the implementation of BKZ in the NTL library [Sho]. That is,
improvements such as extreme pruning, early termination, and local block pre-processing were
not used. To convert the estimate to a more general metric, we may notice that it was derived
from experiments performed on a computer running at 2.3GHz. We can hence convert this to

clock cycles, giving a runtime of 2
1.8

log δ0
−110 · 2log (2.3·109) = 2

1.8
log δ0

−110+log (2.3·109) ≈ 2
1.8

log δ0
−78.9

clock cycles. It should be noted that this is a linear model, which does not fit the actual
implementation on BKZ in the NTL library as this uses an enumeration subroutine requiring

2O(k2) time. As we will show below in Section 5.3, applying this model to predict the behaviour
of BKZ leads to a subexponential algorithm for LWE, which is widely believed to not be the
case.

– Albrecht et al. [ACF+13] use data points of Liu and Nguyen [LN13] to extrapolate a model
similar to Lindner and Peikert’s [LP11] and conclude the running time of BKZ 2.0 (in seconds)
to be

log tBKZ(δ0) =
0.009

log2 δ0
− 27.

They argue that for current implementations and estimates based on them the runtime of
BKZ being nonlinear in log δ0 is more fitting than a linear model such as that of Lindner
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and Peikert. The analysis is in the same metric, in particular it gives a runtime in seconds
assuming a 2.3GHz computer, so we can convert this into clock cycles to give a runtime of

2
0.009

log2 δ0
−27+log (2.3·109) ≈ 2

0.009
log2 δ0

+4.1
. We refer to this as the delta-squared model. It should be

noted, though, that the running times on which this model is based were not independently
verified which limits their utility. Note that this estimate drops the log2(log δ0) factor from
Lemma 5.

– Chen and Nguyen provide an simulation algorithm for BKZ 2.0 [CN11,Che13] for arbitrarily
high block size, under the assumption that each block behaves as a random basis. The authors
note that this assumption may not hold for block sizes k < 50. The algorithm takes as input
the logs of the norms of the Gram-Schmidt vectors belonging to the input matrix and a block
size k. It outputs the expected logs of the norms of the Gram-Schmidt vectors of the BKZ-k
reduced basis as well as the number of BKZ rounds ρ needed. Combined with estimates for tk
(see below) we may turn this into an estimator for the running time.

– van de Pol and Smart [vdPS13] consider the problem from the perspective of using BKZ to
solve an LWE or lattice-based system. They assume one has a desired level of security 2λ

(a maximum number of operations an adversary can perform) and a lattice dimension m and
using this to find the lowest δ0 which can be achieved in 2λ operations, minimising over possible
choices of the block size k and the number of rounds ρ = ρ(k,m, λ). This is in contrast to an
approach where the parameters of the system correspond to a δ0 which then implies a certain
security level. They use a table of Chen and Nguyen [CN11, Table 3] to estimate the cost of one
enumeration for a given k and to calculate the total number of enumerations one can perform
for this k (to reach the maximum of 2λ operations). Note that this means they do not consider
block sizes k > 250 as Chen and Nguyen do not give estimates for those. Smart and van de Pol
remark that δ0 seems to converge to a value depending only on k, corroborating other results
in the literature. They note further that the convergence is slower in higher dimension.

Estimates for tk. In Table 1 we list estimates for solving SVP in dimension k which were derived
as follows. The first row – labelled ‘fplll’ – was derived by calling the SVP function available in
fplll 4.0.4 [CPS13] for dimensions up to 53 and by fitting ak2 + bk+ c to the logs of these averaged
running times. The second row – labelled ‘enum’ – was derived by fitting ak2 + bk + c to the last
row of Table 3 in [CN11] and assuming one enumeration costs 200 clock cycles as in [CN11]. The
third row is taken from [BGJ13] which reports a complexity of 0.3374 k and a running time of
2080 hours for block size 90.

name data source log(tk)

fplll fplll 4.0.4 0.0135 k2 − 0.2825 k + 21.02
enum [CN11] 0.0029 k2 − 0.1227 k + 23.83
sieve [BGJ13] 0.3774 k + 20

Table 1. Estimates for the cost in clock cycles to solve SVP in dimension k.

Overall. By setting ρ ≈ n2

k2 log(n), we assume that running BKZ for block size k and dimension

n costs n3

k2 log(n) · tk CPU cycles where tk is taken from Table 1 based on how the SVP oracle is
instantiated.

Implementations. BKZ is implemented in NTL [Sho] and fplll [CPS13]. Neither of these imple-
mentations incorporate all techniques which are collectively known as BKZ 2.0. However, the next
version of fplll is expected to make progress in that direction [ACPS14].
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3.3 Choosing m

In some of the algorithms below we will have a choice of which lattice to consider. In particular,
the situation will arise where our task is to find a vector with a target norm in a lattice with a
given volume vol (L) but variable dimension. Given this degree of freedom, we will have to choose
an optimal subdimension m to perform lattice reduction on. To find this optimal subdimension
we need to find m such that

‖v‖ = δm0 vol (L)
1/m

is minimised. If, as in many applications below, vol (L) = qn this becomes ‖v‖ = δm0 qn/m. Then,

m =

√
n log q

log δ0

is the optimal subdimension to consider [MR09]. This ‘optimal subdimension’ is also often heuris-
tically chosen even when the above relation between volume and dimension does not hold. In
[vdPS13] the authors choose m based on the best δ0 which can be obtained for a given security
level. In one example the dimension they choose is similar to the ‘optimal subdimension’.

4 Strategies

In this section we discuss three strategies for solving LWE: solving Decision-LWE by finding a short
vector v such that 〈v,a〉 = 0; solving Search-LWE by finding a short e such that 〈a,x〉 = c − e
for some unknown x; or solving Search-LWE by finding an s′ such that 〈a, s′〉 is close to c. All
algorithms in Section 5 follow one of these strategies.

4.1 Short Integer Solutions (SIS)

To distinguish the case where m samples (A, c) either: follow Ls,χ, and hence satisfy c = As + e
with e(i) ← DZ,αq; or c is uniformly random, we can try to find a short vector v such that v ·A = 0.
Expressed as a lattice problem, we aim to find a vector v in the scaled (by q) dual lattice of the
lattice generated by A, i.e. the lattice L = {w ∈ Zmq | wA ≡ 0 mod q}, which is exactly solving
the Short Integer Solutions problem. Consider 〈v, c〉. If c = As + e then 〈v, c〉 = 〈v, e〉 which
follows a Gaussian distribution over Z considered modulo q. In particular, it often returns small
samples as both v and e are small. On the other hand, if c is uniform then 〈v, c〉 is uniform on
Zq. So we may distinguish these two cases, thus solving Decision-LWE. We must however ensure
‖v‖ is suitably short. If ‖v‖ is too large then the (Gaussian) distribution of 〈v, e〉 will be too flat
to distinguish from random. In particular, we have the following lemma:

Lemma 6 ([LP11]). Given an LWE instance characterised by n, α, q and a vector v of length
‖v‖ in the scaled dual L = {w ∈ Zmq | wA ≡ 0 mod q}, the statistical distance of 〈v, e〉 and the
uniform distribution on Zq is close to exp(−π · (‖v‖ · α)2).

Remark 1. For example, Stehlé [Ste13] states that a suitably short choice to distinguish Ls,χ from
random is ‖v‖ · αq ≤ q, i.e. ‖v‖ = 1/α. By Lemma 6, this results in a probability of about 1/23
to distinguish correctly.
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We note that depending on the algorithm used to obtain the short vector v, it may be advantageous
to accept a longer vector as output. This decreases the success probability ε, but then running the
algorithm several (e.g 1/ε) times will achieve a success probability very close to 1. This may be
faster than the alternative, which uses fewer vectors (runs of the algorithm) at a higher success
probability, but takes significantly longer to obtain these shorter vectors

Corollary 1. To obtain a probability ε of success in solving an LWE instance parametrised by n,

q and α via the SIS strategy, we require a vector v with ‖v‖ = 1
α

√
ln( 1

ε )/π.

Methods of finding a short vector in the dual lattice, or in a lattice generally, will be described in

the sections below. For ease of exposition we let f(ε) denote
√

ln( 1
ε )/π.

4.2 Bounded Distance Decoding (BDD)

Given m samples (A, c = As + e) following Ls,χ we may observe that c is close to a linear
combination of the columns of A. Furthermore, since the noise is Gaussian, almost all of the
noise is within, say, three times the standard deviation (that is, 3αq√

2π
) from 0. Consider the lattice

spanned by the columns of A. We can see that c is a point which is bounded in distance from a
lattice point w = As. Hence, we may view the LWE instance as a Bounded Distance Decoding
(BDD) problem instance in this lattice. This problem is as follows: given a basis of a lattice, a
target vector, and a bound on the distance from the target to the lattice, find a lattice vector
within that bound of the target vector. In this case, our solution to the BDD problem would be
the lattice point w, from which we may then use linear algebra to recover s and therefore solve
Search-LWE. (In the event A is not invertible, call for more samples until it is.)

4.3 Solving for s

A variant of the previous strategy is to search for a suitable s directly such that ‖As − c‖ is
small. This literally solves Search-LWE. While this and the previous technique are related by
simple linear algebra, i.e. knowing e trivially allows to recover s and vice versa, they differ in
which of e or s they target.

5 Algorithms

5.1 Exhaustive Search

Exhaustive search directly solves for s as in Section 4.3.

Theorem 1. The time complexity of solving Search-LWE with exhaustive search is (αq)n · 2n =
2n logαq+logn+1. The memory complexity is n. The sample complexity is 2n.

Proof. Apply Lemma 1 to obtain an LWE instance with si ← DZ,αq. We are therefore able to
estimate the size of each component of the secret as E[‖si‖] ≤ αq. Therefore, to check all possible
secrets we must enumerate approximately (αq)n vectors. For each vector we perform about 2n
operations in Zq when computing the inner product.
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Corollary 2. Let q = nc and αq =
√
n. Then the time complexity of solving Search-LWE with

exhaustive search is (αq)n · 2n = 2
1
2n logn+logn+1. The memory complexity is n. The sample com-

plexity is n.

Remark 2. The complexity is independent of α and q but depends on their product αq and n.

Meet-in-the-Middle A Meet-in-the-Middle (MITM) attack also directly solves for s as in Sec-
tion 4.3. This is a time-memory trade-off and hence a faster method than a naive brute force but
at the cost of an increased requirement on memory.

Theorem 2. Let the LWE instance be parametrised by n, α, q. Then the time taken to solve
Search-LWE using MITM is (αq)n/2 · 2n = 2

1
2n logαq+logn+1. The memory complexity is (αq)n/2.

Proof. Apply Lemma 1 to obtain an LWE instance with si ← DZ,αq. Given a sample (a, 〈a, s〉+e),
split a in half and for each possibility of s compute the inner products of the first halves of a
and s and the inner products of the second halves. Call the set of these inner products I0 and I1.
Construct a table indexed by elements of I0 and I1, so that, for example, the inner product i in I0 is
listed with all choices of (the first half of) s such that

〈
(a(0), . . . ,a(n/2)−1), (s(0), . . . , s(n/2−1))

〉
= i.

We will need about 2n operations per entry for computing the inner product. Now search for near
collisions i.e. i0 ∈ I0, i1 ∈ I1 with i0 + i1 small. Tracing back to a choice for the relevant halves of
s, we can guess s and be correct with non-negligible probability.

Corollary 3. Let q = nc and αq =
√
n. Then, the time complexity of solving Search-LWE using

MITM is (αq)n2n = 2
1
4n logn+logn+1. The memory complexity is (αq)n/2 = 2

n
4 logn.

5.2 BKW

The BKW (Blum, Kalai, Wasserman) algorithm was introduced in [BKW03] and shows that
subexponential algorithms exist for learning parity functions in the presence of noise. The BKW
algorithm solves the LPN (Learning Parity with Noise) problem in time 2O(n/ logn). LPN can be
considered as a special case of LWE with q = 2. BKW can be adapted to solve LWE [Reg09] and
the complexity of this has been studied in [ACF+13]. In particular, BKW solves LWE via the SIS
strategy (cf. Section 4.1).

To solve with this strategy, given m samples (A, c) following Ls,χ, we require short vectors vi in
the scaled (by q) dual lattice of the lattice generated by the rows of A. BKW constructs these by
adding elements from a tables with qb entries each, where each table is used to find collisions on
b components of a (a row of A).

In more detail, BKW constructs the vi as follows. Given a sample a, BKW splits the n components
into a blocks each of width b. There are a stages of the algorithm in which the algorithm creates
tables by searching for collisions in the appropriate b coefficients of a. In the first stage after
an appropriate number of samples we obtain two vectors which agree on a(0), . . . ,a(b−1). The
algorithm will then take these and subtract them producing a row with a(0) = · · · = a(b−1) = 0
which is stored for use in the next stage (considering a(b), . . . ,a(2b−1)).

The vi are of length
√

2a. In the first stage, suppose we find a collision with the first b components.
Adding those vectors clearing the first b components in a produces a vi candidate of length

√
2

as we are adding two vectors. Moving on to the next stage, two such vectors are added to clear
the next b columns, resulting in a vi candidate of length

√
22, and so on for all a stages.
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The algorithm maintains a tables of size qb where b = n/a and its running time is typically
dominated by this magnitude. In general, we have the following complexity for solving Decision-
LWE with BKW.

Theorem 3 ([ACF+13]). Let (ai, ci) be samples following Ls,χ or a uniform distribution on
Znq × Zq, 0 < b ≤ n be a parameter, 0 < ε < 1 the targeted success rate and a = n/b the addition
depth. Then, the expected cost of the BKW algorithm to distinguish Ls,χ from random with success
probability ε is(

qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)− ba(a− 1)

4
− b

6

(
(a− 1)3 +

3

2
(a− 1)2 +

1

2
(a− 1)

))
(2)

additions/subtractions in Zq to produce elimination tables,

m ·
(a

2
· (n+ 2)

)
with m = ε/ exp

(
−π α2 2a

)
(3)

additions/subtractions in Zq to produce samples. Furthermore,

a ·
⌈
qb

2

⌉
+m (4)

calls to Ls,χ and storage for (
qb

2

)
· a ·

(
n+ 1− ba− 1

2

)
(5)

elements in Zq are needed.

To pick a and b, recall from Remark 1 that in order to distinguish Ls,χ from random using SIS an
appropriately short choice for vi is ‖vi‖ · αq ≤ q hence a suitable choice for a is

√
2a · αq ≤ q√

2a ≤ α−1

a ≤ log(α−2).

Corollary 4 ([ACF+13]). Let a = −2 logα and b = n/a. The expected cost of the BKW algo-
rithm to distinguish Ls,χ from random is(

qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+ poly(n) ≤ qb · a2n+ poly(n)

= O
(
qn/(−2 logα) · (−2 logα)2n

)
= O

(
2n log q/(−2 logα) · (−2 logα)2n

)

operations in Zq Furthermore, a ·
⌈
qb

2

⌉
+ poly(n) calls to Ls,χ and storage for(

qb

2

)
· a · n

elements in Zq are needed.

Specialising Corollary 4 with q = nc and αq =
√
n we get:
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Corollary 5. Let q = nc, α q =
√
n. Set a = −2 logα and b = n/a. The expected cost of the BKW

algorithm to distinguish Ls,χ from random is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+ poly(n) ≤ qb ·

(
a2n
)

+ poly(n)

= O
(

2n log q/−2 logα · poly(n)
)

= O
(

2
cn logn

(2c−1) logn · poly(n)
)

= O
(

2
n

2−(1/c) · poly(n)
)

operations in Zq.

Remark 3. It is easy to see that the complexity of the BKW algorithm is determined by n and
αq and not α or q. However as q grows the leading coefficient of the complexity approaches 1/2
as 1/c vanishes. This shows that in some sense the ‘limit’ of BKW is O

(
2(1/2)n

)
.

We note, however, that this strategy of picking a and b is not optimal. These choices, which
produce an easy, closed form for the complexity, ensure that m = poly(n), which implies that
almost all time is spent constructing ‘elimination tables’, whereas the second step of the algorithm
– producing candidates for distinguishing – is very efficient. A better strategy is to balance both
steps, i.e. to find a and b such that(

qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
= ε/ exp

(
−π α2 2a

)
·
(a

2
· (n+ 2)

)
.

While this can make a significant difference for picking concrete parameters, it does not change
the asymptotic behaviour of the algorithm and its performance characteristics.

Example 1. Choosing n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 we expect the cost of
distinguishing Ls,χ to be 2188.1 operations in Zq by Corollary 4. Balancing the two steps of the
algorithm would reduce this to 2171 operations in Zq.

Finally, we note that a reference implementation of the BKW algorithm for LWE is available as
[Alb13].

5.3 Using Lattice Reduction To Distinguish

Lattice reduction is another means to find short vectors in the scaled dual lattice, enabling us to
solve LWE via the SIS strategy. Again we consider the scaled dual lattice L = {w ∈ Zmq | wA ≡ 0
mod q}. To construct this lattice from a given A ∈ Zm×nq : compute a basis B for the nullspace of

AT over Zq, lift to Z and extend by qI ∈ Zm×m to make it q-ary and compute a basis for L. The
lattice L has dimension m, and with high probability rank m and volume vol (L) = qn [MR09].

By our convention lattice reduction will return the shortest non-zero vector b0 it found as the
first vector of a reduced basis, which by definition is a short vector in L, so that b0 A = 0 mod q.
Heuristically, for a good enough output basis all vectors could be used, as they will all be somewhat
short, i.e. not too dissimilar in length from each other.
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Lemma 7. Let an LWE instance be parametrised by n, α, q. Any lattice reduction algorithm
achieving log root-Hermite factor

log δ0 =
log2

(
α 1
f(ε)

)
4n log q

can distinguish Ls,χ with probability ε.

Proof. With high probability vol (L) = qn and by definition the Hermite factor is δm0 = ‖v‖
vol(L)

1
m

so we have ‖v‖ = δm0 q
n
m . On the other hand, we require ‖v‖ = 1

αf(ε) by Corollary 1. By

Section 3.3 the optimal subdimension m which minimises the quantity δm0 q
n
m is m =

√
n log q
log δ0

.

Since we assume we can choose any number of samples m, we always choose to use this optimal

subdimension. Rearranging with this value of m, we obtain log δ0 =
log2 ( 1

α f(ε))
4n log q =

log2 (α 1
f(ε) )

4n log q as
our desired log root-Hermite factor. ut

Corollary 6. Given an LWE instance parametrised by n, q = nc, αq =
√
n. Any lattice reduction

algorithm achieving log root-Hermite factor

log δ0 =

((
c− 1

2

)
log n+ log f(ε)

)2
4cn log n

can distinguish Ls,χ with probability ε.

Proof.

δm0 q
n
m = ‖v‖

δm0 n
cn
m = nc−

1
2 f(ε)√

cn log n

log δ0
log δ0 +

cn√
cn logn
log δ0

log n =

(
c− 1

2

)
log n+ log f(ε)

cn log n log δ

log δ0
+ cn log n =

√
cn log n

log δ0

((
c− 1

2

)
log n+ log f(ε)

)

2cn log n =

√
cn log n

log δ0

((
c− 1

2

)
log n+ log f(ε)

)
2cn log n((

c− 1
2

)
log n+ log f(ε)

) =

√
cn log n

log δ0

(2cn log n)2((
c− 1

2

)
log n+ log f(ε)

)2 =
cn log n

log δ0

4cn log n((
c− 1

2

)
log n+ log f(ε)

)2 =
1

log δ0((
c− 1

2

)
log n+ log f(ε)

)2
4cn log n

= log δ0

ut
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Remark 4. Assuming q = nc and αq =
√
n we can see that for large q and hence large c, lattice

reduction becomes easier, as we get a larger δ0. Contrasting this with BKW, we can see while
that algorithm is somewhat competitive in time complexity with lattice reduction for small q, it is
much worse than the latter for large q as they are, for example, used in homomorphic encryption
schemes [GHS12b] (cf. Section 7).

Having established the target δ0, we can combine it with estimates about lattice reduction running
times from Section 3.2. In Table 2 we list estimates for how long it would take lattice reduction
algorithms to achieve our target δ0 for f(ε) = 1, i.e. ε ≈ 1/23.

model block size k log clock cycles

rule of thumb k
log k

= 4n log q

log2 ( 1
α )

O (k)

simp. rule of thumb 4n log q

log2 ( 1
α )

O
(

4n log q

log2 ( 1
α )

)
Lindner & Peikert ? 7.2n log q

log2 ( 1
α )
− 78.9

delta-squared model ? 0.144n2 log2 q

log4 ( 1
α )

+ 4.1

q = nc, α = n1/2−c

rule of thumb k
log k

= 4cn logn

((c− 1
2 ) logn)2

O (k)

simp. rule of thumb 4cn logn

((c− 1
2 ) logn)2

O
(

4cn logn

((c− 1
2 ) logn)2

)
Lindner & Peikert ? 7.2cn logn

((c− 1
2 ) logn)2

− 78.9

delta-squared model ? 0.144c2n2 log2 n

((c− 1
2 ) logn)4

+ 4.1

Table 2. Time complexity for distinguishing Ls,χ from random based on lattice reduction estimates from
the literature.

Considering the right-most column of Table 2 it is clear that both the Lindner-Peikert model
as well as the simplified lattice rule of thumb would predict a subexponential running time for
solving LWE with SIS. Since this is widely assumed to not be the case, we may discount these
approximations as too optimistic.

As pointed out in Section 4.1 above, the strategy as discussed so far is not optimal. Given access
to sufficiently many samples m it is usually beneficial to run lattice reduction for a smaller target
success probability ε′ and to repeat this process ≈ ε/ε′ times to boost the overall success probability
to the desired success probability.

Example 2. Setting n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 following [Reg09] and picking
ε = 0.1 we get a target δ0 = 1.004051 by Lemma 7 and thus m = 838. Computing the expected
number of clock cycles according to the various models available to us, we end up with the following
estimates.

model block size k log clock cycles

rule of thumb 832 ≈ 832
simp. rule of thumb 172 ≈ 172

Lindner & Peikert ? 223
delta-squared model ? 269

fplll 391 1990
bkz2 391 436
sieve 391 185
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In contrast, picking ε′ such that ε/ε′ multiplied by the solving time is minimised we get:

model log(ε′) δ0 block size k log clock cycles

rule of thumb -66 1.006042 585 ≈ 585
simp. rule of thumb -15 1.005005 154 ≈ 154

Lindner & Peikert -29 1.005454 ? 179
delta-squared model -35 1.005586 ? 178

fplll -51 1.005854 224 700
bkz2 -28 1.005430 252 207
sieve -21 1.005232 267 170

5.4 Decoding Attack

This attack solves LWE via the BDD strategy (cf. [LP11]). The most basic way of solving a BDD
instance is using Babai’s Nearest Plane algorithm [Bab85]. This attack can be summarised as
follows: let there be m samples of an LWE instance parametrised by n, α, q so we have a set
of samples (A, c). Perform lattice reduction on the lattice L(AT ) to obtain a new basis B for
this lattice, where the quality of this basis is characterised as usual by the root-Hermite factor
δ0. Babai’s Nearest Plane algorithm works by recursively computing the closest vector on the
sublattice spanned by subsets of the Gram-Schmidt vectors b∗i .

This recovers the vector s with probability

m−1∏
i=0

erf

(
‖b∗i ‖

√
π

2αq

)
under the assumption that sampling from the discrete Gaussian is approximately the same as
sampling from a continuous Gaussian [LP11].

The probability the nearest planes algorithm finds the vector s is given by the probability that
the error vector e lies in the parallelepiped s +P(B∗). So, it can be seen that in this approach the
success probability is determined by the quality of the lattice reduction.

Lindner and Peikert Nearest Planes Lindner and Peikert [LP11] suggest an alteration of
Babai’s algorithm, designed to widen the fundamental parallelepiped in the direction of b∗i by a
factor of some di ∈ Z>0, thereby increasing the chance of e falling inside it. This will find multiple
solutions, which can be searched through exhaustively to find the correct solution.

This modifies the success probability to

m−1∏
i=0

erf

(
di · ‖b∗i ‖

√
π

2αq

)
. (6)

There is no obvious way to analytically determine the optimal di to achieve a desired success
probability. However, Lindner and Peikert suggest a simple heuristic method in which di are chosen
to maximise min1≤i≤m (di · ‖b∗i ‖). This can be shown to return optimal values if we restrict our

di to powers of 2 only. Since erf(2x)
erf(x) > erf(2y)

erf(y) for all 0 < x < y, then clearly the optimal value is

obtained by doubling di whenever di · ‖bi‖ is minimal. Therefore, maximising the minimum of the
values di · ‖bi‖ is optimal for di powers of 2.
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Given m,n, α and q as above, let tNP (δ0, ε) = tnode ·
∏m−1
i=0 di such that Equation (6) is at least ε

where tnode is the number of clock cycles it takes to visit one node. Then the time for a decoding
attack to achieve a success probability ε could be determined as

tdec(ε) = min
δ0
{tBKZ(δ0) + tNP (δ0, ε)} .

Hence, on the one hand, with a more reduced a basis, the values of di can be smaller, so the Nearest
Planes algorithm requires less time. On the other hand, the lattice reduction takes significantly
more time for smaller approximation factors.

We note that in [LP11, Figure 4] it appears as though this quantity has not been optimised.
The authors find values for δ0 for which the time of a decoding attack is less than an equivalent
distinguishing attack (cf. Section 5.3), but these values are not necessarily optimal, i.e. the lattice
reduction step and the decoding step are not always balanced.

We note that just as in Section 5.3 we may opt to run the attack many times with a lower
advantage. This typically improves the overall complexity.

Solving BDD by Enumeration: an Update (Liu, Nguyen) Liu and Nguyen [LN13] note that
the Lindner Peikert algorithm (as well as Babai’s) can be viewed as a form of pruned enumeration,
but with a different rule to Gama, Nguyen and Regev’s pruned enumeration [GNR10]. Namely, let
v be a node and t be a target vector. GNR pruning keeps nodes with bounded projections whereas
the Lindner Peikert algorithm keeps nodes with bounded coordinates, in particular |ζi(v − t)| ≤
di||b∗i ||/2 where ζi(x) =

〈x,b∗i 〉
||b∗i ||

. Liu and Nguyen note that this can be generalised to arbitrary

bounds on coordinates, |ζi(v − t)| ≤ Ri for some parameters Ri not necessarily dependent on the
||b∗i ||s.

Due to these similarities between the Lindner Peikert method and pruning techniques, Liu and
Nguyen implement a variant of the LP algorithm in the context of pruning algorithms, using
arbitrary Ri. They also randomise the input basis, allowing them to repeat the algorithm multiple
times, which has the result of increasing both the runtime and success probability linearly. Since we
assume access to as many samples as required, we do not rely on rerandomisation when estimating
complexity. These two factors result in more flexibility in tuning the parameters, and improved
results for solving BDD.

However, instead of using the enumeration framework as simply a method to improve the algorithm
of Lindner and Peikert, Liu and Nguyen go on to directly apply pruned enumeration to solve BDD.
This follows the earlier work of Gama, Nguyen and Regev [GNR10], and uses linear pruning in
which the bounds Rk =

√
k/mRm are used. Over the same parameters used in [LP11], this linear

pruning is shown to improve on both the original Nearest Planes algorithm and the improved
variant.

Runtime Analysis In any lattice decoding attack, the runtime is determined by balancing the
lattice reduction step against the final step which enumerates possible solutions and outputs an
answer with a certain probability.

For Babai’s algorithm, the runtime is determined by calculating the Gram-Schmidt orthogonalisa-
tion - which can be done with floating point arithmetic in O

(
n3
)
. If using either of the extensions

to Babai’s algorithm this is still a component, but the main factor determining the runtime is the
number of points which are calculated.

Similarly, if using a form of enumeration, we are mostly interested in how many points are enumer-
ated. Therefore, to calculate the runtime of the BDD attack, we simplify the various enumeration
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algorithms to two expressions: the time it takes to enumerate one point; and the success probability
for a certain number of enumerations.

For example, Lindner and Peikert estimate that running Babai’s algorithm once takes tnode =
2−16 · 2.33 · 109 ≈ 215.1 clock cycles, whereas [GNR10] achieve 0.94 · 107 nodes per second which is
approximately 2−23 seconds per enumeration. In our estimator (cf. Section 7) we assume tnode =
215.1.

Calculating the success probability is harder. For Nearest Planes, we can use Equation 6, but
we still need to determine the optimal values for di for which we do not know a closed formula.
In practice, though, we can follow Lindner & Peikert’s strategy of increasing di one by one. For
enumeration and pruning, we need to use the method as used in [LN13], which experimentally
calculates the success probability by sampling.

The most significant factor affecting the success probability is the quality of the reduced basis which
is provided (i.e. what value δ0 is achieved). For example, Babai’s algorithm without a preceding
lattice reduction only gives solutions up to an exponential factor. In a sense, the methods proposed
here for performing a decoding attack can be seen as a way to halt the lattice reduction when
it is possible to obtain a solution with a reasonable success probability, and optionally repeating
to increase the probability of solving the problem. The overall runtime is then calculated by
estimating the optimal time to halt the reduction and attempt to solve.

Example 3. For n = 192, q = 4093, αq = 8.87 [LP11] report 274 seconds when running the attack
232 times with advantage 2−32 and δ0 = 1.0083 whereas the randomised NP used by Liu and
Nguyen is able to perform the decoding attack using a lattice reduction with δ0 = 1.0077 and
ε = 2−12. This lattice reduction takes 265.6 seconds in the Lindner & Peikert model for lattice
reduction. Our estimator suggests ε = 2−9 and δ0 = 1.0076 which implies a lattice reduction cost
of 263.8 seconds also in the Lindner & Peikert model (for compatibility).

We note that these improvements depend on balancing many parameters in an optimal way.
Calculating the success probability can only be done numerically, and optimising parameters
requires many computations. Our estimator (cf. Section 7) does not provide a routine for estimating
the cost using [LN13] but we restrict out attention to [LP11] which gives comparable results and
is easier to estimate.

5.5 Reducing BDD to uSVP

Albrecht, Fitzpatrick and Göpfert [AFG13] consider the complexity of solving LWE via BDD by
reducing BDD to uSVP (unique Shortest Vector Problem). It is folklore that solving BDD via
uSVP is generally the most efficient strategy. Formally, the γ-uSVP problem is as follows: given a
lattice L such that λ2(L) > γλ1(L), find a shortest nonzero vector in L.

To reduce BDD to uSVP Kannan’s embedding technique [Kan87] is used. The idea is to embed
L(A) = {Au | u ∈ Znq }, the lattice generated by the columns of the LWE instance (and our
usual lattice for consideration when are solving with the BDD strategy), into a higher-dimensional
lattice L(B) with γ-uSVP structure. That is, B is constructed as

B =

(
Ã 0
c t

)
,

where Ã is a basis for the q-ary lattice spanned by the columns of A.
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Let y ∈ L, for some lattice L, be the closest lattice point to some point x, i.e. the point minimising
‖x− y‖. We can then define the distance from x to the lattice L, dist(x, L), as this length. If the

embedding factor t = dist(c, L(A)) < λ1(L(A)))
2γ then L(B) contains a γ-unique shortest vector,

c′ = (e,−t) [LM09], which if we can find, we can take the first m components to recover e, hence
solving also the BDD instance.

To solve a γ-uSVP instance, we may reduce the problem to κ-HSVP (Hermite Shortest Vector
Problem). Let γ = κ2. Lovasz [Lov86] showed that any algorithm which can solve κ-HSVP, such
as a lattice reduction algorithm, can be used linearly many times to solve approximate SVP with
approximation factor κ2. Intuitively, a lattice with uSVP structure has one direction in which its
shortest vector is somewhat shorter than all other directions. A sufficiently precise lattice reduction
algorithm (for example) can produce a vector so short it must be in this special direction. More
precisely, a solution to κ2-approximate SVP would be a vector v such that ‖v‖ ≤ κ2λ1(L). On
the other hand, any vector w which is not the shortest (and independent of the shortest vector)
satisfies ‖w‖ ≥ λ2(L) > κ2λ1(L). So, we must have v is a multiple of a shortest vector, and hence
we have solved κ2-uSVP. Luzzi et al. [LLLS11] show that whenever κ >

√
N , for N the dimension

of the lattice, this result can be improved. They show any algorithm solving κ-HSVP can be used
to solve γ-uSVP, where γ ≈

√
Nκ.

The above are theoretical results. In practice, an algorithm solving HSVP will solve uSVP instances
where the gap is λ2(L) > τδm0 λ1(L) with some probability depending on τ . The value τ is taken to
be a constant, which is experimentally derived in [GN08] and which depends on both the nature
of the lattices considered, the lattice reduction algorithm used and the target success rate.

To estimate the time complexity of this approach we firstly must establish the variables m and
τ . The determination of τ is discussed at length in [AFG13] but essentially we have that τ ≈ 0.3
is a fair estimate for success probability 10% based on the experiments mentioned above as well
as in [AFG13]. We stress that no data is publicly available on τ for smaller success probability.
Determining m depends on how we choose the embedding factor t. We may have t = ‖e‖ or
t < ‖e‖.

Suppose firstly that t = ‖e‖. We will need the following lemma from [AFG13].1

Lemma 8 (Lemma 2 in [AFG13]). Let A ∈ Zn×mq , let αq > 0 and let ε′ > 1. Let e be drawn

from DZm,αq. Under the assumption that λ1(L(A)) ≥
√

m
2πevol (L)

1/m
and that the rows of A are

linearly independent over Zq, we can create an embedding lattice with λ2/λ1-gap greater than

min{q, q
1− n

m Γ (1+m
2 )

1
m

√
π

}
ε′s
√
m√
π

≈
min{q, q1− n

m

√
m
2πe}

ε′s
√
m√
π

with probability greater than 1− (ε′ · exp (1− ε′2)/2)m.

Hence, setting t = ‖e‖, B is a basis of a lattice whose gap is determined by Lemma 8. Using
Lemma 8 and under the assumption q1−

n
m

√
m
2πe < q, we require a gap of approximately size

λ2
λ1

=
q1−

n
m

√
1
2e

ε′αq

1 To avoid notational conflict we refer to their constant c > 1 as a constant ε′ > 1 and we replace their s
for the width parameter of the Gaussian with our αq.
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and so we require a δ0 determined by q1−
n
m

√
1
2e ≥ τδm0 ε′αq. In [AFG13] it is shown that for a

fixed δ0 the optimal subdimension is m =
√

n log q
log δ0

as in Section 3.3. We may use this to determine

δ0 using the expression above (where for simplicity we assume equality).

Lemma 9. Given an LWE instance characterised by n, α, q. Any lattice reduction algorithm
achieving log root-Hermite factor

log δ0 =
log2

(
τε′α
√

2e
)

4n log q

solves LWE, by reducing BDD to uSVP, with success probability greater than

ετ ·
(
1− (ε′ · exp (1− ε′2)/2)m

)
for some fixed τ ≤ 1 and 0 < ετ < 1 as a function of τ .

Proof. From the above discussion, and assuming for simplicity an equality, we require a δ0 deter-
mined by the following equation:

q

1− n√
n log q
log δ0

√
1

2e
= τ ε′ αq δ

√
n log q
log δ0

0

Rearranging, we obtain

1− n√
n log q
log δ0

 log q + log

√
1

2e
= log (τε′αq) +

√
n log q

log δ0
log δ0


√

n log q
log δ0

− n√
n log q
log δ0

 log q −

√
n log q

log δ0
log δ0 = log (τε′αq)− log

√
1

2e
√

n log q
log δ0

− n√
n log q
log δ0

 log q −

√
n log q

log δ0
log δ0 = log

(
τε′αq

√
2e
)

√
n log q

log δ0
log
(
τε′α
√

2e
)

= 2n log q

n log q

log δ0
log2

(
τε′α
√

2e
)

= 4n2(log q)2

log2
(
τε′α
√

2e
)

4n log q
= log δ0.

Finally, the success probability is computed as the probability the gap is as required in Lemma 8
multiplied by the success probability of our algorithm ετ . ut

Corollary 7. Given an LWE instance characterised by n, q = nc, αq =
√
n. Any lattice reduction

algorithm achieving log root-Hermite factor
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log δ0 =

(
(c− 1/2) log n− log

(
τε′
√

2e
))2

4cn log n

solves LWE, by reducing BDD to uSVP, with success probability greater than

ετ ·
(
1− (ε′ · exp (1− ε′2)/2)m

)
for some fixed τ ≤ 1 and 0 < ετ < 1 in function of τ .

Secondly, suppose t < ‖e‖. In this case no efficient method for determining λ2

λ1
is known. The

assumption in [AFG13] which attempts to overcome this is that the same size of gap is required
as it is in the case that t = ‖e‖. A modified value for τ is then derived under this assumption.
Setting t = 1 is typically more efficient than t = ‖e‖, see [AFG13] for details.

Comparing Corollary 7 with Corollary 6 we find that solving LWE via BDD by reducing to
uSVP is more efficient than solving LWE via one call to an algorithm solving SIS whenever
log(1/(τε′

√
2e)) > log(f(ε)) under the condition that ε = ετ ·

(
1− (ε′ · exp (1− ε′2)/2)m

)
so that

the success probabilities are equal in both cases.

Example 4. Letting n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 following [Reg09] and choosing
t = 1, τ = 0.310 and ε′ = 1.01 we get a target δ0 = 1.004634 by Lemma 9 and thus m = 783.
According to [AFG13] we have ετ = 0.1. Computing the expected number of clock cycles according
to the various models available to us, we end up with the following estimates.

model block size k log clock cycles

rule of thumb 710 ≈ 710
simp. rule of thumb 150 ≈ 150

Lindner & Peikert ? 191
delta-squared model ? 206

fplll 321 1344
bkz2 321 307
sieve 321 165

The time complexity reported here is smaller than in the first example of Example 2 but not
necessarily smaller than the data reported in the second example there. Since the only values for
τ reported in [AFG13] correspond to ετ = 0.1, we cannot estimate how BDD-via-uSVP would
behave in the low advantage regime.

5.6 Arora-Ge and Gröbner Bases

Arora and Ge proposed an alternative approach to solving Search-LWE by setting up a system of
noise free non-linear polynomials of which the secret s is a root [AG11]. This approach solves for
s directly.

In particular, [AG11] offers an algorithm for solving Search-LWE in time 2Õ(n2ξ), where ξ is a
constant such that αq = nξ. The algorithm proceeds by assuming that the error always falls in
the range [−t, t] for some t ∈ Z such that d = 2t + 1 < q. This follows from the chance of falling
outside this interval dropping exponentially fast. In particular, we have the following standard
fact about the Gaussian distribution:
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Lemma 10. Let χ denote the Gaussian distribution with standard deviation σ. Furthermore, for

x > 0, we denote Q(x) = 1
2

(
1− erf

(
x√
2

))
. Then, for all C > 0, it holds that:

Pr[e← χ : |e| > C · σ] ≈ 2×Q(C) ≤ 2

C
√

2π
e−C

2/2 ∈ eO(−C2).

From this fact, polynomials are constructed from the observation that the error, when falling in
this range, is always a root of the polynomial P (x) = x

∏d
i=1(x + i)(x − i). Then, we know the

secret s is a root of P (a · x− c) constructed from LWE samples. In Arora-Ge the system of non-
linear equations constructed this way is solved by linearisation. However, this means that we need
O
(
n2t+1

)
samples. As we increase the number of samples, we increase the probability that the

error falls outside of the interval [−t, t]. We then have to increase the range, leading to a larger
degree, which requires even more samples. Balancing these two requirements of keeping the degree
low and acquiring enough samples, the overall complexity is given by the following result.

Theorem 4 (Theorem 5 in [ACF+14]). Let n, q, σ = α q be parameters of an LWE instance,
and as before let ω denote the linear algebra constant. Let DAG = 8σ2 log n + 1. If DAG ∈ o(n)
then the Arora-Ge algorithm solves Search-LWE in time complexity

O
(

2
ω·DAG log n

DAG · σ q log q
)

= O
(

2 8ω σ2 logn(logn−log(8σ2 logn)) · poly(n)
)

and memory complexity

O
(

2
2·DAG log n

DAG · σ q log q
)

= O
(

2 16σ2 logn(logn−log(8σ2 logn)) · poly(n)
)
.

If n ∈ o(DAG) then the Arora-Ge algorithm solves Search-LWE in time complexity

O
(

2ω·n log
DAG
n · σ q log q

)
= O

(
2ω n log(8σ2 logn)−n logn · poly(n)

)
and memory complexity

O
(

2 2n log
DAG
n · σ q log q

)
= O

(
2 2n log(8σ2 logn)−n logn · poly(n)

)
.

This can be improved by using Gröbner basis techniques [ACF+14]. In particular, to solve via
linearisation as in [AG11], we require O

(
nd
)

equations, but Gröbner basis algorithms will work
when fewer equations than this are available at the cost of a more expensive solving step. In

particular, the complexity of computing a Gröbner basis is O
((
n+Dreg

Dreg

)ω)
, where Dreg is the

degree of regularity of the ideal I spanned by the polynomials. The degree Dreg is the index of the
first non-positive coefficient of the Hilbert series expansion of the ideal I. In general, it is hard to
compute the Hilbert series, but for semi-regular sequences, it has an easy form. The Hilbert series
of a semi-regular sequence with m polynomials of degree d in n variables is:

HI(z) :=
(1− zd)m

(1− z)n
.

It is assumed that random systems behave like semi-regular sequences. Thus, assuming our non-
linear equations behave like random equations of the same degree, we can estimate the cost of
solving LWE by expanding this power-series until the first non-positive coefficient. In particular,
assuming αq =

√
n we get:
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Theorem 5 ([ACF+14]). Let (ai, bi) for i ≥ 1 be elements of Znq × Zq sampled according to

Ls,χ with αq =
√
n. There is an algorithm recovering the secret with time complexity O

(
22.82ωn

)
,

memory complexity O
(
25.64n

)
and sample complexity m = exp(π4 · n).

Remark 5. The complexity solely depends on αq, which corresponds to the degree, and n, which
corresponds to the number of variables. Adjusting q while keeping αq the same will not affect the
runtime.

6 Small Secret Variants

In several applications based on LWE, the secret s is not chosen uniformly at random from Zq but
instead chosen from a different distribution where all the components s(i) are “small”, e.g. they
are chosen from {0, 1} or {−1, 0, 1}. In this section we consider the complexity of solving LWE in
this special case. We characterise an instance by n, α, q, ψ where ψ is the distribution of s(i). We
assume we have as many samples m as we need.

6.1 Exhaustive Search

In Section 5.1 above we saw that exhaustive search can be solved by checking all the vectors within
a sphere of radius αq which is essentially the size of the secret. Even without explicitly knowing
ψ, we can restrict our search to the support of ψ, for example {−1, 0, 1}. We can simply check all
possible s with s(i) chosen from this set. Then by the same argument as in Theorem 1, exhaustive

search will take time 3n · (2n) = 2n log 3+logn+1 if s(i) ∈ {−1, 0, 1}.

MITM By exactly the same argument as in Theorem 2, whatever time we would expect it
to take to solve exhaustive search (which depends on ψ), we may achieve essentially the same
speed up as we would do applying a Meet-in-the-Middle strategy to a general LWE instance.
So, if the components s(i) are selected from {−1, 0, 1} then an MITM strategy will take time

3n/2 · (2n) = 2
1
2n log 3+logn+1 and require 3n/2 memory.

6.2 Lattice Reduction for Small Secret LWE

For an LWE instance parametrised by n, α, q and with a small secret, we may apply modulus
switching and consider the instance mod p where p < q. This allows for a larger δ0 than would be
required for an instance parametrised by the same n, α, q and with a secret where s(i) is chosen
from all Zq. After modulus switching, the transformed instance has error which is slightly larger
and its distribution is no longer exactly a discrete Gaussian. Nonetheless, heuristically, algorithms
which solve LWE still solve these LWE-like problem instances and so we assume that after modulus
switching, we have an LWE instance characterised by n,

√
2α and p. So, for any algorithm with a

lattice reduction step (for example, those described in Sections 5.3, 5.4 and 5.5), in the case where
we have a small secret, we may obtain a speed up by modulus switching before performing the
lattice reduction, and then continuing to run the algorithms as described above.

As an example we consider distinguishing LWE by lattice reduction as in Section 5.3. As with a
general secret, we assume the size of the small vector we aim to output is ‖v‖ = 1

αf(ε).
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Lemma 11. Let a small secret LWE instance be characterised by n, α, q and s(i) ← ψ. Then the
log root-Hermite factor log δ0 required to distinguish by lattice reduction is

log δ0 =

(
log
(√

2α 1
f(ε)

))2
4n log p

for p such that ∥∥∥∥〈pq · a −
⌊
p

q
· a
⌉
, s

〉∥∥∥∥ ≈ p

q
· ‖e‖ .

Proof. Using Lemma 2, modulus switch and transform the LWE instance (a, c) ∈ Znq × Zq into

an LWE instance in Znp × Zp. Now the instance is parametrised by n, p,
√

2α and by the same

argument as in Lemma 7 we require δ0 = 2
(log(

√
2α 1
f(ε) ))

2

4n log p . ut

Corollary 8. Let a small secret LWE instance be characterised by n, α, q and ψ, suppose αq =
√
n

and q = nc and ψ is such that the standard deviation of the elements in the secret s is σs. Then
the log root-Hermite factor log δ0 that is required is

log δ0 =

(
log
( √

2
f(ε)n

1
2−c
))2

4n
(

log
(√

π√
6
σs

)
+ c log n

)

Proof. From Lemma 2 we have p = σs
α

√
2πn
12 = σs

√
2
√
π
√
n√

12α
=
√
π√
6
σsn

c.

By Lemma 11 we have

log δ0 =

(
log
(√

2α 1
f(ε)

))2
4n log p

=

(
log
(√

2α 1
f(ε)

))2
4n log

(√
π√
6
σsnc

)
=

(
log
( √

2
f(ε)n

1
2−c
))2

4n
(

log
(√

π√
6
σs

)
+ c log n

)

ut

Example 5. Setting n = 256, q = 65537 and σ = αq/
√

2π ≈ 25.53 following [Reg09] and ψ =
U (Z2) we have σs = 0.5. Modulus switching reduces the size of the modulus to p = 5928. Picking
ε = 0.1 we get a target δ0 = 1.00465678 by Lemma 7 and thus m = 781. Computing the expected
number of clock cycles according to the various models available to us, we end up with the following
estimates.
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model block size k log clock cycles

rule of thumb 706 ≈ 706
simp. rule of thumb 150 ≈ 150

Lindner & Peikert ? 190
delta-squared model ? 204

fplll 318 1312
bkz2 318 295
sieve 318 157

6.3 BKW Small Secret

In this section we consider [AFFP14]. In this work ψ is not specified but it is assumed that the s(i)
are chosen from {−1, 0, 1} or {0, 1}. The authors employ their own variant of BKW to achieve a
complexity reduction for solving BKW with small secret. Their technique is lazy modulus switching,
a variant of modulus switching. To maximise complexity improvements, the authors only modulus
switch when necessary, and employ techniques such as searching for collisions mod p but remaining
in Zq when doing arithmetic on the rows.

Theorem 6 ([AFFP14]). Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,
b ∈ Z with 1 ≤ b ≤ n and σs the standard deviation of the secret vector components. Let also σr
be the variance of random elements in Zr. Define a = dn/be and pick a pair (p,m∗) such that

b σ2
r σ

2
s

∑a−1
i=0 v(i) ≤ 2aσ. Then Bs,χ(b, a− 1, p) will return (ã0, c̃0), . . . , (ãm−1, c̃m−1) where c̃i has

standard deviation ≤
√

2a+1σ. Furthermore this costs pb

2

(
a(a−1)

2 (n+ 1)
)

+ (m+m∗)na additions

in Zq and apb

2 +m+m∗ calls to Ls,χ.

In particular, for a typical choice of parameters: q ≈ nc for some small c ≥ 1, a = log n, b = n
logn ,

recall that standard BKW has complexity O
(
2cn · n log2 n

)
. Here, using naive modulus switching,

the complexity of solving is O
(

2n(c+
log d
logn ) · n log2 n

)
. Using lazy modulus switching (Corollary 3

of [AFFP14]), the complexity of solving is O
(

2n(c+
log d− 1

2
log logn

logn ) · n log2 n

)
, where in both cases

0 < d ≤ 1 is a constant.

6.4 Arora-Ge and Gröbner Bases

We may exploit small secrets when reducing LWE to solving a non-linear system of equations
as in Section 5.6. To encode that our secret is small, we add low-degree equations of the form∏s−1
i=0 x− ji where s is the cardinality of the support for ψ and ji are the elements of the support.

We may then expand the Hilbert series to establish the expected degree of semi-regularity.

7 Examples

In this section we use our estimator to apply techniques discussed in Sections 5 and 6 to pa-
rameter sets from the literature. Our estimator is available at https://bitbucket.org/malb/

lwe-estimator. We consider the following parameter sets.
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Regev These are Regev’s example choices for parameters from [Reg09].

We use [AFC+13] to pick q ≈ n2 and α = 1/(
√

2πn log2
2 n).

LindnerPeikert We use [AFC+13] to select parameters as suggested in [LP11] given n.

FHE Given n and the multiplicative depth L we set q = 216.5·L+5.4 · 82L−3 · nL
and α =

√
2π · 3.2/q inspired by parameters suggested in [GHS12c].

We always assume s(i) ← {0, 1}.

In our tables “MITM” refers to the Meet-in-the-Middle algorithm given in Section 5.1, “BKW”
to the BKW algorithm discussed in Section 5.2, “SIS” to the algorithm discussed in Section 5.3,
“BDD” to the algorithm discussed in Section 5.4, “uSVP” to the algorithm discussed in Section 5.5
and “Arora-GB” to applying Gröbner basis algorithms as discussed in Section 5.6. In those tables
concerning small secret variants, the same labels refer to the small secret variants of the respective
algorithms. The columns “ops” refer to estimated bit operations which we identify with CPU
clock cycles. This identification slightly favours lattice reduction algorithms compared to other
algorithms, because CPUs do more than one operation per bit per clock cycle. The columns
“mem” refer to storage requirements of elements in Zq. The columns “calls” refers to the number
of calls to the LWE oracle. All columns list the logarithm to base two of their respective values.
The columns “renum” resp. “rsieve” refer to BKZ 2.0 estimates based on the row “enum” resp.
“sieve” in Table 1. We use the “renum” estimates to optimise parameters for “SIS” and “BDD”.
The column “enum” gives the number of enumerations in the decoding stage of “BDD”. If “–” is
listed instead of a number, it means our estimator did not return a value or was not run because
it does not cover this particular case. This can happen when estimates only exist for special cases
such as when applying Gröbner bases.

MITM BKW SIS BDD uSVP
n ops mem calls ops mem calls renum rsieve calls ops enum calls renum rsieve calls
64 133.2 129.6 7.0 55.2 48.1 43.0 39.9 51.5 9.7 39.5 23.6 8.5 46.9 58.5 10.7

128 324.6 320.8 8.0 98.3 90.7 84.6 66.1 83.4 20.5 59.7 43.6 15.5 58.3 76.0 11.8
256 781.0 777.0 9.0 182.8 173.3 167.4 207.7 170.5 60.4 180.3 164.5 36.4 225.1 146.1 12.9
512 1847.2 1843.0 10.0 354.9 346.6 338.5 932.3 335.0 103.5 642.6 626.8 85.4 1371.3 308.2 13.9

1024 4293.7 4289.4 11.0 697.7 689.2 680.1 4591.7 678.5 181.5 2185.6 2169.7 232.3 7983.9 678.4 15.0

Table 3. Regev

MITM BKW SIS BDD uSVP
n ops mem calls ops mem calls renum rsieve calls ops enum calls renum rsieve calls
64 42.6 32.0 7.0 42.2 35.4 30.3 39.3 53.0 8.5 39.0 23.2 8.2 46.2 57.8 10.5

128 75.8 64.0 8.0 72.1 64.8 58.7 56.8 74.6 17.3 51.0 35.0 11.3 51.7 67.4 11.5
256 141.0 128.0 9.0 130.5 122.9 115.9 153.7 138.5 40.2 135.4 119.5 28.2 152.5 124.4 12.6
512 270.2 256.0 10.0 239.9 229.7 223.3 607.5 280.9 93.1 456.1 440.7 73.1 851.7 251.7 13.6

1024 527.3 512.0 11.0 456.7 448.6 439.5 2845.6 548.9 154.1 1514.1 1498.6 184.0 4809.4 537.3 14.6

Table 4. Regev with s(i) ← {0, 1}
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MITM BKW SIS BDD uSVP Arora-GB
n ops mem calls ops mem calls renum rsieve calls ops enum calls renum rsieve calls ops mem calls
64 104.4 100.9 7.0 52.3 45.2 40.2 39.6 51.1 9.5 39.1 23.2 8.4 46.6 58.1 10.6 289.3 285.9 92.1

128 188.2 184.8 8.0 85.8 78.7 72.6 61.2 79.0 20.3 55.6 40.0 13.3 54.4 71.6 11.6 504.8 501.3 389.3
256 405.4 401.8 9.0 153.5 146.1 139.1 171.6 154.5 55.2 151.3 135.7 34.2 180.4 133.2 12.6 – – –
512 746.2 742.6 10.0 277.7 266.3 261.6 681.3 303.0 106.1 495.5 479.7 85.0 1051.7 274.6 13.6 – – –

1024 1624.9 1621.2 11.0 528.4 520.7 511.6 3037.9 588.4 183.0 1561.9 1545.9 181.9 5734.1 581.8 14.6 – – –

Table 5. LindnerPeikert

MITM BKW SIS BDD uSVP Arora-GB
n ops mem calls ops mem calls renum rsieve calls ops enum calls renum rsieve calls ops mem calls
64 42.5 32.0 7.0 42.1 35.3 30.2 39.3 50.8 9.4 39.0 23.2 8.2 46.2 57.8 10.5 249.6 246.3 257.2

128 75.5 64.0 8.0 70.2 63.5 57.4 64.5 82.2 22.2 58.4 42.6 13.3 56.3 73.9 11.5 504.7 501.3 534.4
256 140.6 128.0 9.0 128.5 121.4 114.4 188.9 164.5 61.2 165.2 149.3 36.2 207.6 140.9 12.6 – – –
512 269.6 256.0 10.0 240.2 233.2 225.1 854.0 339.1 120.1 588.6 572.9 103.0 1433.8 313.3 13.6 – – –

1024 526.7 512.0 11.0 471.1 463.8 454.8 3876.5 664.5 209.1 1841.2 1825.9 211.9 7868.4 673.0 14.7 – – –

Table 6. LindnerPeikert with s(i) ← {0, 1}

MITM BKW SIS BDD uSVP
n ops mem calls ops mem calls renum rsieve calls ops enum calls renum rsieve calls
64 44.7 32.0 7.0 52.9 41.0 36.0 37.1 48.7 8.1 37.8 21.8 8.0 45.8 57.4 10.3

128 77.8 64.0 8.0 84.3 72.4 66.4 40.3 51.8 9.1 41.1 25.1 9.0 49.0 60.6 11.4
256 142.8 128.0 9.0 146.4 134.4 127.4 43.5 55.0 10.1 44.4 28.5 10.0 52.2 63.7 12.4
512 271.9 256.0 10.0 269.7 257.6 249.6 46.6 58.1 11.1 47.6 31.7 11.1 55.3 66.8 13.4

1024 528.9 512.0 11.0 515.2 503.0 493.9 67.7 84.3 13.1 64.6 48.5 12.1 70.3 87.9 14.4
2048 1042.0 1024.0 12.0 1006.3 994.0 984.0 283.1 168.5 25.1 257.9 242.1 19.1 273.6 163.9 15.4

Table 7. FHE with L = 2 and s(i) ← {0, 1}

MITM BKW SIS ‘ ‘BDD uSVP
n ops mem calls ops mem calls renum rsieve calls ops enum calls renum rsieve calls
64 47.1 32.0 7.0 61.4 44.7 39.7 36.9 48.4 8.0 37.9 21.9 8.0 45.8 57.3 10.3

128 80.2 64.0 8.0 94.1 77.4 71.3 40.0 51.6 9.0 41.3 25.4 9.0 48.9 60.4 11.3
256 145.2 128.0 9.0 158.5 141.6 134.6 43.2 54.7 10.0 44.2 28.2 10.0 52.0 63.6 12.3
512 274.3 256.0 10.0 286.2 269.2 261.2 46.3 57.8 11.0 47.9 32.2 11.0 55.2 66.7 13.3

1024 531.3 512.0 11.0 539.6 522.5 513.5 49.4 60.9 12.0 52.1 36.8 12.0 58.3 69.8 14.3
2048 1044.4 1024.0 12.0 – – – 52.5 64.0 13.0 56.9 41.7 13.0 61.3 72.9 15.3
4096 2069.4 2048.0 13.0 – – – 55.6 67.1 14.0 58.7 43.4 14.0 64.4 76.0 16.3
8192 4118.5 4096.0 14.0 – – – 108.7 111.1 15.0 111.0 95.8 15.0 115.2 118.9 17.3

16384 8215.5 8192.0 15.0 – – – 565.1 220.3 19.0 549.0 533.8 16.0 561.3 224.7 18.3

Table 8. FHE with L = 10 and s(i) ← {0, 1}
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8 Discussion

The problems of giving the concrete hardness of the Learning with Errors problem are manifold.

No closed formulas. For most algorithms, there is no closed formula which expresses the running
time in terms of the parameters specifying the problem (e.g. n, q, α). This makes direct comparisons
difficult. This problem is addressed by the Sage module, enabling us to estimate running times of
the various algorithms for particular parameter choices.

The results of applying this Sage module broadly agree with the literature. By our estimates the
parameter choices made in [GHS12c] are too conservative, as first observed by van de Pol and
Smart [vdPS13]. This is because their parameters were chosen assuming Lindner and Peikert’s
estimate for the runtime of BKZ, which we rule out from among the choices of estimates because
it implies a subexponential algorithm for solving LWE.

No single best algorithm. Our results indicate that there is not one algorithm which always out-
performs all others on the parameter sets we tested, and so we cannot recommend to consider one
particular algorithm to achieve security level λ. Which algorithm performs best depends on the
concrete parameters considered. For small n, BDD may be favourable (see e.g. Table 5). For large
n, BKW may be fastest when considering public-key encryption (see e.g. Table 3) but not when
considering homomorphic encryption schemes which require large q. For the particular case of the
FHE parameters we considered (Table 7 and Table 8) we see that BKW is far slower than the
other algorithms, for a given n.

Moreover, we cannot even rule out certain algorithms from consideration. For example, while the
Arora-Ge algorithm and its Gröbner basis variants always perform much worse than other algo-
rithms in our tests, it is shown in [ACF+14] that this family of algorithms outperforms other
families when considering a particular variant of LWE, i.e. UniformNoise-LWE instances. Simi-
larly, as expected, the MITM approach performs considerably worse than other approaches in the
uniform secret setting, but is rather competitive in the small secret setting.

Time-memory trade-offs. According to our estimates of running BKZ, for larger n, using sieving
as the SVP oracle is faster than BKZ 2.0 as practically implemented using enumeration. This is to
be expected given that sieving is asymptotically faster than enumeration. It is important to note,
however, that sieving would require an amount of memory so substantial that taking both time
and memory into consideration, for most parameters we consider, both require about the same
amount of total resources. Hence, taking both memory and time into consideration it is not clear
that sieving is worth considering for reasonable security levels, such as, say, λ = 128. A completely
analogous statement can be made of comparing an exhaustive search with a Meet-in-the-Middle
attack or when considering the BKW algorithm.

Incomplete data. Our estimator results appear to show that for any n, and for whichever SVP
oracle, BDD is faster than uSVP. This at first sight appears to contradict the folklore that a
reduction to uSVP is the fastest way to solve LWE. However, a reason for this discrepancy is that
we are able to optimise parameters for BDD but we do not know how to do this for uSVP. As
highlighted in Section 5.5, for success probability 10% we have that τ ≈ 0.3 is a fair estimate
based on experiments in the literature, but no data is publicly available from which to estimate τ
for smaller success probabilities.

This is just one area in which more data is required. Our estimator is built from the curves fitted
to the data from the literature given in Table 1 and as such more experimental data on the
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runtime of enumeration and sieving would be very valuable in terms of refining the estimates. To
reiterate, the analysis on which the estimator is based is sound given the current state of the art,
but intrinsically depends on the formulae for sieving and enumeration, and so refinements in this
area will refine our estimator accordingly. As lattice reduction is a central step in many of the
algorithms, this is of particular importance.

Another possible direction of future work is developing algorithms for small secret LWE. As men-
tioned above, MITM performs fairly competitively with other algorithms in this case, but intu-
itively this is about the worst possible algorithm - one would expect that essentially an exhaustive
search be somewhat slower than a specially designed algorithm for the problem. This may suggest
there is more to be done in this area.
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Optimisations. PhD thesis, École Normale Supérieure Paris, 2013. http://cseweb.ucsd.

edu/~lducas/Thesis/index.html.

33

http://eprint.iacr.org/2014/1018
https://github.com/dstehle/fplll
http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf
http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf
https://bitbucket.org/malb/bkw-lwe/
http://eprint.iacr.org/2013/685
http://eprint.iacr.org/2013/685
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://cseweb.ucsd.edu/~lducas/Thesis/index.html
http://cseweb.ucsd.edu/~lducas/Thesis/index.html


Gen09. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 1–17. Springer, May 2013.

GGH14. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. Cryptology ePrint Archive, Report 2014/645, 2014. http://eprint.iacr.org/

2014/645.
GHS12a. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog

overhead. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 465–482. Springer, April 2012.

GHS12b. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 850–867. Springer, August 2012.

GHS12c. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
IACR Cryptology ePrint Archive, 2012:99, 2012.

Gil10. Henri Gilbert, editor. EUROCRYPT 2010, volume 6110 of LNCS. Springer, May 2010.
GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness

of the learning with errors assumption. In Andrew Chi-Chih Yao, editor, ICS, pages 230–240.
Tsinghua University Press, 2010.

GN08. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, April 2008.

GNR10. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme
pruning. In Gilbert [Gil10], pages 257–278.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 197–206. ACM Press, May 2008.

Hal09. Shai Halevi, editor. CRYPTO 2009, volume 5677 of LNCS. Springer, August 2009.
HJP14. William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library for Number

Theory, 2014. Version 2.4.4, http://flintlib.org.
HPS11a. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algorithms
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