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1 Introduction 

1.1 Scope 
This document specifies common techniques and implementation choices using the 
NTRUEncrypt and NTRUSign public-key cryptography algorithms.  Topics covered 
include: 
 

• Cryptographic primitives – The building blocks for a secure cryptographic 
scheme 

• Cryptographic schemes – Complete sequences of operations for performing 
secure cryptographic functions 

• Supported parameter choices – Specific selections of approved sets of values for 
cryptographic parameters 

• Certificate formats – Definition of fields for data structures that cryptographically 
bind a public key (and other information) to an entity 

• ASN.1 syntax for NTRUEncrypt and NTRUSign – Standard formats of 
cryptographic data items 

 
In addition, this standard includes relevant information to assist in the development and 
interoperable implementation of NTRUEncrypt and NTRUSign, including security 
considerations and test vectors. 

1.2 Purpose 
Enormous investments in wireless and consumer infrastructures mandate the need for 
stronger, more efficient security.  First-generation security solutions offer inadequate 
efficiency and scalability to meet the requirements of mass-market adoption of wireless 
and embedded consumer applications.  To address this need, new security infrastructures 
are emerging and must be carefully, but rapidly, defined. 
 
In order to ensure interoperability within wired and wireless environments and allow for 
the rapid deployment of emerging security infrastructures, the Consortium for Efficient 
Embedded Security (CEES) began work on the Efficient Embedded Security Standards 
(EESS) in order to provide universal specifications for creating secure, interoperable 
implementations of highly efficient, highly scalable public-key security.   
 
CEES intends that the EESS will combine the experience and knowledge of experts in 
academia as well as in commercial industry to provide a complete specification of well-
studied, efficient and interoperable methodologies using modern public-key techniques.  
EESS #1 is designed to specify highly efficient public-key cryptographic techniques that 
can be used in highly scalable secure applications.  
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1.3 Compliance 
Implementations may claim compliance with the cryptographic schemes included in this 
standard provided the external interface (input and output) to the schemes is identical to 
the interface specified in this document and the supported encoding methods and 
parameter selections are used.  Internal computations may be performed as specified in 
this document, or may be performed via an equivalent sequence of operations.  In this 
document, the word “shall”  implies a requirement for an implementation to meet the 
standard, while the word “should”  denotes a choice left to the implementer. 

1.4 EESS Publication Guidelines 
CEES maintains control over the contents and publication of the EESS series. In order to 
promote an open standards process, the documents will be made available to the public 
on the CEES web site at www.ceesstandards.org.  In addition, the Consortium welcomes 
input from the community at large.  Comments may be submitted to the editor, William 
Whyte, at wwhyte@ntru.com.   

1.5 Intellectual Property 
Compliance with this standard, any other CEES standard, or any standard referenced 
herein may be subject to intellectual property claims by third parties.  By publication of 
this document, CEES takes no position with respect to the validity of such claims.  When 
possible, the CEES has made efforts to obtain information relating to patent coverage of 
techniques included in EESS. 
 
In particular, NTRU Cryptosystems, Inc. has been granted U.S. Patent No. 6,081,597, 
which covers aspects of the NTRUEncrypt public-key encryption scheme, and has 
applied for a patent (or patents) that covers the NTRUSign public-key signature scheme.  
In addition, NTRU Cryptosystems may have applied for additional patent coverage on 
implementation techniques defined in this standard.   
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2 Mathematical Foundations 
The cryptographic techniques specified in this standard require arithmetic in quotient 
polynomial rings, also called convolution polynomial rings, defined in section 2.2.3.    
Intuitively, these algebraic objects consist of polynomials with integer coefficients.  
Manipulation of these ring elements is accomplished by polynomial arithmetic modulo a 
fixed polynomial: XN – 1 in this standard. Careful selection of parameters allows fast 
implementation of these operations on a microprocessor.  For typical values of N, 
operations in these rings can be performed with 8-bit shifts, adds and multiplies.  The 
simplicity of the operations and the ability to perform coefficient operations in parallel 
account for the high speed, small footprint and ease of deployment on constrained 
devices. 
 
This section includes mathematical background for the techniques in the standard and 
provides data conversion methods for use with the cryptographic algorithms. 

2.1 Conventions and Notation 

2.1.1 Notation 

When referring to mathematical objects and data objects in this standard, the following 
notation is used.  Note that throughout the document, numbers are used to distinguish 
different, but related values (e.g. df1, df2, df3). 
 
0 Denotes the integer 0, the bit 0, or the additive identity (the element 

zero) of a ring 
1 Denotes the integer 1, the bit 1, or the multiplicative identity (the 

element one) of a ring 
*  Indicates the convolution product operation of two polynomials and is 

also used to indicate multiplication in the integers 
X The indeterminate used in polynomials 
Z The ring of integers 
mod q Used to reduce the coefficients of a polynomial into some interval of 

length q 
mod p Used to reduce a polynomial to a representative of the polynomial ring 

modulo p 
N Dimension of the polynomial ring used (i.e. polynomials are up to 

degree N-1) 
p “Small”  modulus, an integer or a polynomial 
q “Big”  modulus, usually an integer  
h NTRUEncrypt or NTRUSign public key  
r Encryption blinding value (generated from the hash of the message m)  
f NTRUEncrypt private key; part of NTRUSign private key 
g Temporary polynomial used in the key generation process in 

NTRUEncrypt; optional part of NTRUSign private key. 
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F In NTRUEncrypt, a polynomial that is used (and is often sufficient) to 
calculate the value f; in NTRUSign, part of the basis completion space, 
stored with the private key. 

G In NTRUEncrypt, a polynomial that is used (and is often sufficient) to 
calculate the value g; in NTRUSign, part of the basis completion space, 
optionally stored with the private key. 

i Message representative, a polynomial, computed by a message 
encoding operation 

e Encrypted message, a polynomial, computed by an encryption primitive 
m The message, an octet string, which is encrypted in an encryption 

scheme or whose signature is computed by a signature scheme 
f*h The convolution product of f and h, where f and h are polynomials  
dr An integer specifying the number of ones in the blinding value r  
df An integer specifying the number of ones in the polynomials that 

comprise the private key value f (usually specified as df1, df2, and df3, or 
as dF) 

dg An integer specifying the number of ones in the polynomials that 
comprise the temporary polynomial g (often specified as dG) 

db The number of random bits used as input for encryption 
Df The space of allowable values of the polynomial f (there are also spaces 

for g, r, h, etc. denoted by Dg, Dr, Dh, etc.) 
A NTRUEncrypt average decryption coefficient, used in decryption 

process to reduce into correct interval 
T Wrapping tolerance value used to determine when the decryption 

process fails 
ceil[] Ceiling function (i.e. the smallest integer greater than or equal to the 

contents of []) 
floor[] Floor function (i.e. the largest integer less than or equal to the contents 

of []) 
Hash( ) A cryptographic hash function computed on the contents of ( ) 
PRNG( ) A pseudo-random number generation function seeded with the contents 

of ( ) 
MGF( ) A mask generation function seeded with the contents of ( ) 
A||B Concatenation of the octet strings A and B where the leading octet of A 

is the leading octet of A||B and the trailing octet of B is the trailing octet 
of A||B. 

a := b Initialize or set the value of a equal to the value of b. 
DesEncrypt(o,K) The result of encrypting the octet string o with the DES algorithm 

[FIP99] under key K. 
 

2.1.2 Bit Strings and Octet Strings 

As usual, a bit is defined to be an element of the set { 0, 1} .  A bit string is defined to be 
an ordered array of bits.  A byte (also called an octet) is defined to be a bit string of 
length 8.  A byte string (also called an octet string) is an ordered array of bytes. The 
terms first and last, leftmost and rightmost, most significant and least significant, and 
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leading and trailing are used to distinguish the ends of these sequences (first, leftmost, 
most significant and leading are equivalent; last, rightmost, least significant and 
trailing are equivalent). Within a byte, we additionally refer to the high-order and low-
order bits, where high-order is equivalent to first and low-order is equivalent to last. 
 
Note that when a string is represented as a sequence, it may be indexed from left to right 
or from right to left, starting with any index. For example, consider the octet string of two 
octets: 2a 1b. This corresponds to the bit string 0010 1010 0001 1011. No matter what 
indexing system is used, the first octet is still 2a, the first bit is still 0, the last octet is still 
1b, and the last bit is still 1. The high-order bit of the second octet is 0; the low-order bit 
of the second octet is 1. 
 
In this standard, a bit string or an octet string may be used to represent a polynomial with 
coefficients reduced mod q, where q is usually either 128 or 256. In this case, the integer 
coefficients are mapped individually to bit or octet strings, which are then concatenated. 
Allowable mappings and their reverses are described in the conversion primitives 
OS2REP, BS2REP, POS2REP, RE2OSP, RE2BSP and RE2POSP in sections 2.3.4,  
2.3.5 and 2.3.6. 
 
When a bit string or an octet string is used to represent a polynomial with binary 
coefficients, for reasons of efficiency we use a mapping that is different from simply left-
to-right or right-to-left translation of bits into polynomial coefficients. This mapping and 
its reverse are described for octet strings in the conversion primitives OS2BEP and 
BE2OSP in section 2.3.7. This standard does not specify a means of converting between 
bit strings and binary ring elements. 

2.1.3 Algorithm Specification Conventions 

When specifying an algorithm or method, this standard uses four parts to specify different 
aspects of the algorithm.  They are as follows: 
 

• Components, such as choice of PRNG, are parameters that are specified before 
the beginning of the operation and that are not specific to the particular algorithm 
call.  Components tend to be kept fixed for multiple users and multiple instances 
of the algorithm call and need not be explicitly specified if they are implicitly 
known (e.g. if they are defined within a selected object identifier (OID)). 

• Inputs, such as keys and messages, are values that must be specified for each 
algorithm call.   

• Outputs, such as ciphertext, are the result of transformations on the inputs. 
• Operations specify the transformations that are performed on the data to arrive at 

the output.  Throughout the standard, the operations are defined as a sequence of 
steps.  A conformant implementation may perform the operations using any 
sequence of steps that always produces the same output as the sequence in this 
standard.  Caution should be taken to ensure that intermediate values are not 
revealed, however, as they may compromise the security of the algorithms. 
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2.2 Convolution Polynomial Ring Representation and Arithmetic  
This section describes the representation and arithmetic of quotient ring elements used 
throughout the EESS #1 standard. 

2.2.1 Modular Operations on Integers 

This standard uses integer modular arithmetic in several instances, including operations 
on the coefficients in the polynomial representation of a quotient ring element.  These 
modular operations are performed in the canonical manner, taking the remainder when 
the intermediate result is divided by the modulus.  In this standard, the representatives of 
the congruence classes modulo q are frequently taken to be different from the usual set of 
equivalence representatives [0, 1, 2, …, q – 1].  When appropriate, the range of 
representatives for modular reduction is specified explicitly. 

2.2.2 Representation of Polynomials 

Typically in mathematical literature, a polynomial a in X is denoted a(X). In this 
standard, when the meaning is clear from the context, polynomials a in the variable X 
will simply be denoted a.  Further, all polynomials used in this standard have degree N – 
1, unless otherwise noted.  In addition, given a polynomial a, a variable denoted ai, where 
i is an integer, represents the coefficient of a of degree i.  In other words, the polynomial 
denoted a represents the polynomial a(X) = a0 + a1X

1 + a2X
2 + a3X

3 + … + aN–1 X
N–1, 

unless otherwise specified.  

2.2.3 Convolution Polynomial Rings Over the Integers 

Let Z be the ring of integers.  The polynomial ring over Z, denoted Z[X], is the set of all 
polynomials with coefficients in the integers. The convolution polynomial ring (over Z) 
of degree N is the quotient ring Z[X]/(XN – 1). The product c of two polynomials a,b �  
Z[X]/(XN – 1) is given by the formula 
 

)(*)()( XbXaXc =    with    
�

≡+

=
)(mod Nkji

jik bac . 

 
Identifying polynomials a = a0 + a1X + a2X

2 + … + aN–1 X
N–1 with their coefficient vectors 

[a0, a1, a2, …, aN–1], this convolution product formula makes the space of N-tuples ZN 
into a ring. The convolution polynomial ring may thus be identified with the ring of N-
tuples with convolution product. 
 
Note that in EESS #1, all multiplications of polynomials a and b, represented as a*b, are 
taken to occur in the ring Z[X]/(XN – 1) unless otherwise noted. 
 
The convolution polynomial rings (Z/pZ)[X]/(XN – 1) and (Z/qZ)[X]/(XN – 1) are 
examples of the above, with arithmetic operations performed as specified in the following 
sections. 

2.2.4 Basic Convolution Polynomial Ring Arithmetic 

Since ring elements are represented by polynomials, canonical techniques for polynomial 
arithmetic may be used with added steps for coefficient and polynomial modular 
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reduction.  These steps are specified in sections 2.2.5 and 2.2.6, respectively.  The rule 
for multiplication is given in section 2.2.3. 

2.2.5 Reduction of a Polynomial mod q 

Throughout the document, polynomials are taken mod q, where q is an integer.  To 
reduce a polynomial mod q, one simply reduces each of the coefficients independently 
mod q into the appropriate (specified) interval. 

2.2.6 Inversion in (Z/qZ)[X]/(XN – 1) 

For certain cryptographic operations such as key generation, it is necessary to take the 
inverse of a polynomial in (Z/qZ)[X]/(XN – 1).  Section 2.2.8.4 gives an algorithm for 
doing this using the algorithms defined in sections 2.2.8.1 - 2.2.8.3. This algorithm works 
for q a power of a prime (q is often a power of 2).   

2.2.6.1 The Polynomial Division Algorithm in Zp[X] 

This algorithm divides one polynomial by another polynomial in the ring of polynomials 
with integer coefficients modulo a prime p.  All convolution operations occur in the ring 
Zp[X] in this algorithm (i.e. there is no modular reduction of the powers of the 
polynomials). 

Input: A prime p, a polynomial a in Zp[X] and a polynomial b in Zp[X] of degree N whose leading 
coefficient bN  is not 0. 

Output: Polynomials q and r in Zp[X] satisfying a = b *  q + r and deg r < deg b. 
 
1. Set r := a and q := 0 
2. Set u := bN

–1 mod p 
3. While deg r >= N do 

3.1. Set d := deg r(X) 
3.2. Set v := u* rd*X(d–N) 
3.3. Set r := r – v *  b 
3.4. Set q := q + v 

4. Return q, r 
 

2.2.6.2 The Extended Euclidean Algorithm in Zp[X] 

The Extended Euclidean Algorithm finds a greatest common divisor d (there may be 
more than one that are constant multiples of each other) of two polynomials a and b in 
Zp[X] and polynomials u and v such that a*u + b*v = d.  All convolution operations occur 
in the ring Zp[X] in this algorithm (i.e. there is no modular reduction of the powers of the 
polynomials). 

Input: A prime p and polynomials a and b in Zp[X] with a and b not both zero 

Output: Polynomials u, v, d in Zp[X] with d = GCD(a, b) and a*u + b*v = d 
1. If b = 0 then return (1,0,a) 
2. Set u := 1 
3. Set d := a  
4. Set v1 := 0 
5. Set v3 := b 
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6. While v3 �  0 do 
6.1. Use the division algorithm (section 2.2.8.1) to write d = v3*q + t3 with deg t3 < deg v3 
6.2. Set t1 := u – q*v1 
6.3. Set u := v1 
6.4. Set d := v3 
6.5. Set v1 := t1 
6.6. Set v3 := t3 

7. Set v := (d – a*u)/b  [This division is exact, i.e., the remainder is 0] 
8. Return (u,v,d) 

2.2.6.3 Inverses in Zp[X]/(XN – 1) 

The Extended Euclidean Algorithm may be used to find the inverse of a polynomial a in 
Zp[X]/(XN – 1) if the inverse exists. The condition for the inverse to exist is that GCD(a, 
XN – 1) should be a polynomial of degree 0 (i.e. a constant).  All convolution operations 
occur in the ring Zp[X]/(XN – 1) in this algorithm. 

Input: A prime p, a positive integer N and a polynomial a in Zp[X]/(XN – 1) 

Output: A polynomial b satisfying a*b = 1 in Zp[X]/(XN – 1) if a is invertible in Zp[X]/(XN – 1), otherwise 
FALSE 
 
1. Run the Extended Euclidean Algorithm (Section 2.2.8.2) with input a and (XN – 1). Let (u, v, d) be the 

output, such that a*u + (XN – 1)*v = d = GCD(a, (XN – 1)). 
2. If deg d = 0 

2.1. Return b = d–1 (mod p) * u 
3. Else return FALSE 

2.2.6.4 Inverses in Zq[X]/(XN – 1) 

This algorithm finds the inverse of a polynomial a in Zq[X]/(XN – 1), where q is a power 
of a prime.  In particular, this is used to calculate the inverse of a convolution polynomial 
mod q for NTRUEncrypt key generation where q is a power of 2. 

Input. A prime p, an exponent e such that pe = q, a positive integer N and a polynomial a in Zq[X]/(XN – 1). 

Output. An inverse b of a in the ring Zq[X]/(XN – 1) if the inverse exists, otherwise FALSE. 
 
1. Use the Inversion Algorithm (Section 2.2.8.3) to compute a polynomial b that gives an inverse of a(X) 

in Zp[X]/(XN – 1). Return FALSE if the inverse does not exist.  
2. Set n := 2 
3. While e > 0 do 

3.1. Set b := 2*b – a*b2   in Z[X]/(XN – 1), with coefficients computed modulo pn 
3.2. Set e :=floor[e/2] 
3.3. Set n := 2*n 

4. Return b(X) in Z[X]/(XN – 1) with coefficients computed modulo pe = q. 

2.2.7 Resultant Generation 

In order to calculate a complete NTRUSign private key, it may be necessary to compute 
the resultant of a polynomial with the NTRU polynomial XN – 1.  Computing resultants 
over large polynomials may require a large amount of memory and computation.  In 
order to improve the efficiency of computing the resultant, it may be desirable to 
compute the resultant modulo smaller primes and lift the results into the integers. 
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2.2.7.1 Resultant of a polynomial with XN – 1 mod p 

The resultant of a polynomial P modulo a reasonably small prime p may be calculated 
during key generation in order to find the resultant without the intermediate coefficients 
growing too big.  Note that this algorithm finds a single polynomial rhoP of degree less 
than N such that P* rhoP mod p is equal to the resultant mod XN – 1.  The multiple of XN – 
1 (denoted rhox) can be computed easily from P and rhoP if desired, but is usually not 
needed and hence is omitted from the algorithm below.  Note that the degree of rhoP will 
not be greater than N – 1, even though the computations are performed in Zp[X]. 

Input: A prime p, an integer N and a polynomial P in (Z/pZ)[X]/(XN – 1) 

Output: Polynomial rhoP in (Z/pZ)[X]/(XN – 1) and an integer resultant satisfying resultant = rhoP *  P + 
rhox *(XN – 1) in Zp[X] for some rhox in Zp[X]. 
 

1. Set polynomials A := XN – 1, B := P 
2. Set polynomials V1 := 0, V2 := 1, Temp := 0 
3. Set integers a := deg A, b := deg B, tempa := deg A, c := 0, resultant := 1 
4. While b > 0 do 

a. Set c := Bb
–1 * Aa mod p 

b. Set A := A – c*B*X(a–b) in Zp[X] 
c. Set V1 := V1 – V2*c*X(a–b) in Zp[X] 
d. If deg A < b 

i. Set resultant := resultant*Bb
(tempa–(deg A)) mod p 

ii. If tempa and b are both odd 
1. Set resultant := –resultant mod p 

iii. Set Temp := A 
iv. Set A := B 
v. Set B := Temp 
vi. Set Temp := V1 

vii. Set V1 := V2 
viii. Set V2 := Temp 
ix. Set tempa := b 

e. Set a := deg A, b := deg B 
5. Set resultant := resultant*B0

a mod p 
6. Set c := B0

–1 mod p 
7. Set rhoP := V2*c* resultant mod p 
8. Return rhoP, resultant 

2.2.7.2 Resultant of a polynomial with XN – 1  

The resultant of a polynomial P with XN – 1 may be computed by computing the resultant 
modulo a list of reasonably small primes and combining the results to obtain the resultant 
over the integers.  If the product of the primes is greater than the maximum possible 
resultant value, the resultant will always be obtained exactly.  Note that this algorithm 
finds a single polynomial rhoP of degree less than N such that P* rhoP is equal to the 
resultant mod XN – 1.  The multiple of XN – 1 (denoted rhox) can be computed easily 
from P and rhoP if desired, but is usually not needed and hence is omitted from the 
algorithm below. 

Input: A prime p, an integer N and a polynomial P in Z[X]/(XN – 1) 

Output: Polynomial rhoP in Z[X]/(XN – 1) and an integer resultant satisfying resultant = rhoP *  P + rhox 
* (XN – 1) in Zp[X] for some rhox in Zp[X]. 
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1. Select an integer Max greater than the largest possible value of the resultant (this value may be 

calculated ahead of time and simply retrieved) 
2. Select a set of m distinct primes p1, p2, p3, … , pm such that p1*p2*p3*…*pm > 2*Max 
3. Set integer pproduct := 1, resultant := 1 
4. Set polynomial rhoP := 1 
5. Set integer j := 0, temp := 0 
6. While j < m do 

a. Set temp := pj*pprod (e.g. for j = 0, set polynomial temp equal to p0*pprod, for j = 1, set 
polynomial temp equal to p1*pprod, etc.) 

b. Calculate integer resp and polynomial rhop such that rhop*P = resp in (Z/pjZ)[X]/(XN – 
1) (using algorithm 2.2.7.1) 

c. Find integers alphap and betapprod such that alphap*pj + betapprod*pprod = 1 (using 
Extended Euclidean Algorithm in the integers) 

d. Set resultant := resultant*alphap*pj + resp*betapprod*pprod (mod temp) 
e. Set rhoP := rhoP*alphap*pj + rhop*betapprod*pprod in (Z/tempZ)[X]/(XN – 1) 
f. Set pprod := temp 
g. Set j := j + 1 

7. Set rhoP := rhoP (mod 2*Max) with coefficients reduced into the range (–Max, Max] 
8. Set resultant := rhoP (mod 2*Max) reduced into the range (–Max, Max] 

Output rhoP and resultant 

2.3 Data Types and Conversions 
This section describes the primitives that shall be used to convert between different types 
of objects and strings when such conversion is required in primitives, schemes or 
encoding techniques.   

2.3.1 Converting Between Bit Strings and Octet Strings (BS2OSP and OS2BSP) 

To represent a bit string as an octet string, one simply appends enough zeroes following 
the last bit to make the number of bits a multiple of 8, and then breaks it up into octets.  
More precisely, a bit string b0 b1 … bl-1 of length l shall be converted to an octet string 
M0 M1 … Md-1 of length d = 

�
l/8�  as follows: for 0 ≤ i < d – 1, let the octet Mi = 

b8i b8i+1 … b8i+7.  The final octet Md–1 shall have its low-order 8d – l bits set to 0; its high-
order 8 – (8d – l) bits shall be b8d–8. b8d–7 … bl–1. 

The primitive that converts bit strings to octet strings is called Bit String to Octet String 
Conversion Primitive or BS2OSP.  It takes the bit string as input and outputs the octet 
string. 

The primitive that converts octet strings to bit strings is called Octet String to Bit String 
Conversion Primitive or OS2BSP.  It takes an octet string of length d and the desired 
length l of the bit string as input.  It shall output the bit string if d = 

�
l/8�  and if the final 

8d – l bits of the final octet are zero; it shall output “error”  otherwise. 

2.3.2 Converting Between Integers and Octet Strings (I2OSP and OS2IP) 

To represent a non-negative integer x as an octet string of length l (l has to be such that 
256l > x), the integer shall be written in its unique l-digit representation base 256: 

x = xl–1 256 l–1 + xl–2 256 l–2 + … + x1 256 + x0 
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where 0 ≤ xi < 256 (note that one or more leading digits will be zero if x < 256l–1).  Then 
let the octet Mi have the value xi for 0 ≤ i ≤ l-1.  The octet string shall be Ml-1 Ml-2 … M0. 
 
For example, the integer 10945 is represented by an octet string of length 3 as 00 2A C1. 
 
The primitive that converts integers to octet strings is called Integer to Octet String 
Conversion Primitive or I2OSP.  It takes an integer x and the desired length l as input and 
outputs the octet string if 256 l > x.  It shall output “error”  otherwise. 
 
The primitive that converts octet strings to integers is called Octet String to Integer 
Conversion Primitive or OS2IP.  It takes an octet string as input and outputs the 
corresponding integer.  Note that the octet string of length zero (the empty octet string) is 
converted to the integer 0. 

2.3.3 Converting Between Integers and Bit Strings (I2BSP and BS2IP) 

To represent a non-negative integer x as a bit string of length l (l has to be such that 
2l > x), the integer shall be written in its unique l-bit binary representation: 

x = xl–1 2
l–1 + xl–2 2

l–2 + … + x1 2 + x0 
 
where xi is 0 or 1 (note that one or more leading bits will be zero if x < 256 l–1).  Then let 
the bit bi have the value xi for 0 ≤ i ≤ l-1.  The bit string shall be bl-1 bl-2 … b0. 
 
For example, the integer 10945 is represented by a bit string of length 20 as 0000 0010 
1010 1100 0001. 
 
The primitive that converts integers to bit strings is called Integer to Bit String 
Conversion Primitive or I2BSP.  It takes an integer x and the desired length l as input and 
outputs the bit string if 2l > x.  It shall output “error”  otherwise. 
 
The primitive that converts bit strings to integers is called Bit String to Integer 
Conversion Primitive or BS2IP.  It takes a bit string as input and outputs the 
corresponding integer.  Note that the bit string of length zero (the empty bit string) is 
converted to the integer 0. 

2.3.4 Converting Between Ring Elements and Octet Strings (RE2OSP and 
OS2REP) 

An element a of a convolution polynomial ring, for the purposes of this standard, is 
represented by an array of N integers.  In this standard, the “big”  modulus q is always less 
than or equal to 256, so each of the N coefficients of a polynomial that is taken mod q 
may be represented as a single octet.  To represent a as an octet string, I2OSP is used to 
produce a one-octet encoding of the integer value ai of each coefficient of a in turn. The 
coefficients are encoded in increasing order starting with the constant coefficient and 
ending with the coefficient of XN-1.  The results of this conversion are placed from least 
significant to most significant in an octet string of length N.  For example, if q=128 and 
N=5, the polynomial 
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a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4 
 
is represented by the octet string 2d 02 4d 67 0c. 
 
The primitive that converts ring elements to octet strings is called Ring Element to Octet 
String Conversion Primitive or RE2OSP.  It takes a ring element a and the degree N as 
inputs and outputs the corresponding octet string. 
 
To convert an octet string back to a field element, if q is less than or equal to 256, then 
OS2IP shall be used on each octet going from least significant to most significant and the 
result is taken to be a coefficient of the polynomial a in increasing order starting with the 
coefficient of lowest degree.   
 
The primitive that converts octet strings to ring elements is called Octet String to Ring 
Element Conversion Primitive or OS2REP.  It takes the octet string, the “big”  modulus q 
as inputs and outputs the corresponding ring element.  It shall output “error”  if OS2IP 
outputs “error.”  

2.3.5 Converting Between Ring Elements and Bit Strings (RE2BSP and BS2REP) 

While octet string representation may be most convenient for ring element arithmetic in a 
microprocessor, ring elements may be more compactly stored and transmitted as bit 
strings. To represent a ring element a as a bit string, the modulus q is required. I2BSP is 
used on each coefficient of a in turn to produce a ceil[log2 q]-bit encoding of the integer 
value ai. The coefficients are encoded in increasing order starting with the constant 
coefficient and ending with the coefficient of XN-1.  The results of this conversion are 
placed from least significant to most significant in an bit string of length N ceil[log2 q].  
For example, if q=128 and N=5, the polynomial 

a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4 
 
is represented by the bit string 0101101 0000010 1001101 1100111 0001010. (If this 
were subsequently to be converted to an octet string using BS2OSP, it would become 
first the bit string 0101 1010 0000 1010 0110 1110 0111 0001 0100 0000, and then the 
octet string 5a 0a 6e 71 40). 
 
The primitive that converts ring elements to bit strings is called Ring Element to Bit 
String Conversion Primitive or RE2BSP.  It takes a ring element a, the degree N, and the 
big modulus q as inputs and outputs the corresponding bit string. 
 
To convert a bit string to a ring element, the modulus q is required.  Convert each group 
of ceil[log2 q] bits to an integer using BS2IP, starting with the least significant bits and 
going to the most significant bits, and set each coefficient from lowest degree to highest 
degree to be the integer produced. 
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The primitive that converts bit strings to ring elements is called Bit String to Ring 
Element Conversion Primitive or RE2BSP.  It takes a bit string and the modulus q as 
inputs and outputs the corresponding ring element. 

2.3.6 Converting Between Ring Elements and Packed Octet Strings (RE2POSP 
and POS2REP) 

To save space when converting between ring elements and octet strings, the ring element 
may instead be converted to a packed octet string. This conversion, and its inverse, are 
performed using the following primitive. 

2.3.6.1 Ring Element to Packed Octet String Conversion Primitive (RE2POSP) 

Input:  �  A ring element e �  The ring parameters q, N. 

Output: �  The octet string representation o of e. 

Operation: 
1. Convert e to a bit string b, using RE2BSP with inputs e, N, and q. 
2. Convert b to an octet string o using BS2OSP with input b. 
3. Output o. 

 

2.3.6.2 Packed Octet String to Ring Element Conversion Primitive (POS2REP) 

Input: �  The octet string representation o of e. �  The ring parameters q, N. 

Output:  �  A ring element e, or “error”. 

Operation: 
1. Convert i to a bit string b, using OS2BSP with inputs i, and  N *  

�
log2(q) � . If OS2BSP outputs 

“error”, output “error”. 
2. Convert b to a ring element e using BS2REP with input b and q. 
3. Output e. 

 

2.3.7 Converting Between Binary Ring Elements and Octet Strings (ME2BSP and 
BS2MEP) 

If an element in the ring Z[X]/(XN – 1) is known to have all its coefficients to be 0 or 1, it 
can be encoded as an octet string more efficiently than by the method given above. One 
considers each octet as a bit string of length 8. Then for each bit in the octet, starting with 
the low-order bit and working to the high-order bit, one sets a coefficient of the ring 
element equal to 1 if the bit is a 1 and 0 if it is a 0, starting with the low-order bit in the 
first octet and the lowest degree coefficient (degree 0). The encoding fails if the length of 
the octet string is greater than ceil[N/8]. If N is not equal to 0 mod 8, the encoding also 
fails if any of the high-order (8 – N mod 8) bits in the final octet are set. 
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More precisely, an octet string o0 o1 … ol-1 of length l ≤ floor[N/8] shall be converted to a 
binary ring element a = a0 + a1X + … + aN-1X

N-1 as follows. Consider each octet to be a 
bit string, indexed from low-order to high-order bit: thus o0 o1 … ol-1 becomes (b0,7 b0,6 
… b0,0) (b1,7 b1,6 … bl1,0) … (bl-1,7 bl-1,6 … bl-1,0). Then set a0 = b0,0, a1 = b0,1, …, a8i+j = 
bi,j, … , a8l–1 = bl–1,7, and a8l = a8l +1 = … = aN-1 = 0.   
 
An octet string o0 o1 … ol-1 of length l = ceil[N/8] shall be converted to a binary ring 
element as follows. Consider each octet to be a bit string, indexed from low-order to 
high-order bit: thus o0 o1 … ol-1 becomes (b0,7 b0,6 … b0,0) (b1,7 b1,6 … bl1,0) … (bl-1,7 bl-1,6 
… bl-1,0). If there exists an i such that 8l-8+i ≥ N  and bl-1,i is 1, output “error” . Otherwise, 
set a0 = b0,0, a1 = b0,1, …, a8i+j = bi,j, … , aN–1 = bl–1,N mod 8.   
 
An octet string o0 o1 … ol-1 of length l > ceil[N/8] shall be converted to a binary ring 
element as follows. If there is any i > ceil[N/8] such that the octet oi is non-zero, output 
“error” . Otherwise, truncate the octet string to length ceil[N/8] by discarding the final 
octets and use the method given in the previous paragraph. 
 
The primitive that converts octet strings to binary elements in the ring Z[X]/(XN – 1) is 
called Octet String to Binary Element Conversion Primitive or OS2BEP.  It takes the 
octet string as input and outputs the ring element.  If the octet string cannot be encoded 
(because bits are set which would correspond to coefficients of powers of X greater than 
or equal to XN) it shall output “error” . 
 
The primitive that converts binary elements in the ring Z[X]/(XN – 1) to octet strings is 
called Binary Element to Octet String Conversion Primitive or BE2OSP.  It takes a 
binary element a in the ring Z[X]/(XN – 1) and the desired length l of the octet string as 
input.  It shall output the octet string if l is greater than or equal to ceil[N/8] or if all the 
coefficients of a of degree 8l or greater are 0; it shall output “error”  otherwise. 
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3 Cryptographic Building Blocks 
This section defines the building blocks for implementing the NTRUEncrypt and 
NTRUSign algorithms.   
 
These building blocks have the following taxonomy: 
 

• Components consist of domain parameters, security parameters and scheme 
options.  Selections for all of the components must be made in order to properly 
implement the cryptographic schemes (defined in section 4).  The NTRUEncrypt 
components are defined in section 3.1.   

• Primitives are sequences of mathematical operations that are performed on inputs 
in order to perform a basic cryptographic function.  Primitives are designed to 
require certain properties of inputs and ensure certain properties of outputs.  They 
are not designed to provide overall security properties by themselves, but to 
provide security when used appropriately in the cryptographic schemes.  
Primitives are scheme option choices and are specified for NTRUEncrypt in 
section 3.2. 

• Encoding methods are specific scheme option choices for how to transform data 
within the cryptographic scheme, but that are not intrinsically tied to the 
cryptographic primitives.  It is possible that different encoding methods may be 
used in conjunction with the same cryptographic primitives, although in many 
cases they are closely related.  Encoding methods are scheme option choices and 
are specified for NTRUEncrypt in section 3.3. 

• Supporting algorithms are typically algorithms that are standardized by other 
standards bodies and that provide certain cryptographic properties that are 
desirable to provide security to the public-key schemes.  The supporting 
algorithms may be used in the encoding methods, the primitives or directly in the 
schemes to provide security.   

3.1 NTRUEncrypt Components 
This section defines the NTRUEncrypt components, categorizes them (as domain 
parameters, security parameters or scheme options) and gives a basic description of the 
component.  Security considerations for specific choices for the component are included 
when appropriate, however for detailed security considerations, see [IEEE P1363.1]. 
 
Instantiations of primitives and encoding methods (which are both scheme options) are 
specified in section 3.2 and section 3.3 respectively.  Required choices for all 
NTRUEncrypt components are listed in section 4.3. 

3.1.1 NTRUEncrypt Domain Parameters  

Values for each of the domain parameters must be selected in order to define the space in 
which operations are performed in NTRUEncrypt.  The domain parameters specified in 
this standard maximize efficiency and security.  Note that some domain parameters or 
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other choices may not need to be known to perform certain operations (e.g. in order to 
encrypt, one need not know the small modulus p explicitly). 

3.1.1.1 NTRUEncrypt Degree 

The degree N identifies the dimension of the convolution polynomial ring used.  
Although N is referred to here as the NTRUEncrypt degree, elements of the ring are 
represented as polynomials of degree N – 1. 
 
The specific value of N is defined for each parameter set listed in section 4.3. 

3.1.1.2 NTRUEncrypt Small Modulus 

The small modulus p is used for key generation and for coefficient modular reduction (as 
described in section 2.2.6).  The modulus p is also used implicitly in the blinding value 
generation methods and the message representative generation methods.   
 
The specific value of p is defined for each parameter set listed in section 4.3. 

3.1.1.3 NTRUEncrypt Big Modulus 

As described in section 2.2.5, the big modulus q is used to define the larger polynomial 
ring used for NTRUEncrypt. The modulus q can generally be taken to be any value that is 
relatively prime in the ring to the small modulus p.  Taking q to be equal to or slightly 
less than a power of 2 can result in faster modular arithmetic operations. 
 
The specific value of q is defined for each parameter set listed in section 4.3. 

3.1.2 NTRUEncrypt Security Parameters 

Values for each of the security parameters may be globally specified or chosen by the 
holder of the private key.  These values must be chosen from those specified in this 
standard and need not be kept secret.  The security parameters specified in this standard 
are selected to maximize efficiency and security. 

3.1.2.1 NTRUEncrypt Private Key Space 

Generally, private keys may be chosen to be any small polynomial f such that f is 
invertible in both (Z/qZ)[X]/(XN – 1) and (Z/pZ)[X]/(XN – 1). However, for improved 
efficiency, private keys in this standard shall be chosen of the form f = 1 + pF, where p is 
the small modulus and F is a polynomial in the space DF.  This restriction on the form of 
f removes the need to calculate the inverse of f mod p (since the inverse will always be 1), 
and hence key generation and decryption are faster.  For security purposes, it is strongly 
recommended that DF be large enough and the key be generated in a random enough 
manner to prevent brute force attacks.  In the key generation method given in section 
3.2.1.1, DF is the space of all polynomials of degree N – 1 that  have dF coefficients 
equal to 1 and the rest of the coefficients equal to 0.       
 
Recommended values of dF are included in each parameter set listed in section 4.3.  
These parameters are selected to provide maximum security and efficiency.  Note that, as 
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mentioned above, f in the given form is always invertible in (Z/pZ)[X]/(XN – 1) and that, 
with f(1) relatively prime to q, f will almost always be invertible in (Z/qZ)[X]/(XN – 1). 

3.1.2.2 NTRUEncrypt Temporary Polynomial Space 

In the generation of an NTRUEncrypt key, the private key f and a temporary polynomial 
g are needed to generate the public key.  The temporary polynomial g is chosen from the 
temporary polynomial space Dg.  The polynomial g shall be chosen randomly by the 
entity performing key generation from the temporary polynomial space Dg.  Dg is the 
space of all polynomials of degree N – 1 with dg coefficients equal to 1 and the rest of the 
coefficients equal to 0. 
 
Recommended values of dg are included in each parameter set listed in section 4.3.  
These parameters are selected to provide maximum security and efficiency. 

3.1.2.3 NTRUEncrypt Public Key Space 

The NTRUEncrypt public key space is uniquely determined by the NTRUEncrypt private 
key space and NTRUEncrypt temporary polynomial space and hence need not be 
specified explicitly as a security parameter.  The NTRUEncrypt public key space Dh 
consists of all polynomials h of degree N – 1 with h = f –1*g*p with coefficients reduced 
modulo q, where f, g are chosen from Df and Dg respectively, p is the small modulus as 
defined above, and f –1 is the polynomial with coefficients reduced mod q such that f –1* f 
= f*  f –1 = 1 in (Z/qZ)[X]/(XN – 1).  Note that it appears to be a very difficult problem to 
determine whether a given polynomial h is in the public-key space or not. 

3.1.3 NTRUEncrypt Scheme Options 

NTRUEncrypt scheme options consist of parameters and algorithms that do not affect the 
key space (i.e. that are not domain parameters), but that must be agreed upon in order to 
implement the NTRUEncrypt encryption scheme.  Scheme options include the chosen 
primitives and encoding methods and the parameters that are needed to completely 
specify the encoding methods and primitives. 

3.1.3.1 NTRUEncrypt Random Component Size 

The NTRUEncrypt random component size db is the number of random bits that shall be 
used as input to the message representative generation method and its inverse.  This value 
is chosen to protect the ciphertext from dictionary attacks and to make the encryption 
process non-deterministic.   
 
The specific value of db is defined for each parameter set listed in section 4.3. 

3.1.3.2 NTRUEncrypt Blinding Value Space 

The NTRUEncrypt blinding value r is determined by the message and is chosen 
deterministically from the NTRUEncrypt blinding value space Dr. The blinding value is 
an input to both the encryption primitive and the decryption primitive. This standard 
specifies one method for choosing r, which takes Dr to be the space of all polynomials of 
degree N with dr coefficients equal to 1 and the rest of the coefficients equal to 0. See 
section 3.3.1.1 for blinding value generation methods. 
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Specific permitted values of dr are defined for each parameter set listed in section 4.3. 

3.1.3.3 NTRUEncrypt Random Polynomial Generation Constant 

We generate a binary polynomial with d 1s by generating d distinct indices mod N. 
However, the pseudo-random number generators defined in this standard generate octet 
strings. In order to prevent any bias in converting these random octets to random mod N 
integers, values that would cause bias are thrown out.  For example, with N =251, each 
random octet is taken to be an integer mod 256, and values of N or higher are discarded. 
(This is a bias because there are two ways of generating a value of “1”  – 1 itself and 
252 – but only one way of generating a value of, say, 240.)  The NTRUEncrypt random 
polynomial generation constant c, is a value that is chosen for the deterministic 
generation of a polynomial from a pseudo-random number generator.  It represents the 
number of bits that are used to generate a mod N entry candidate.  The NTRUEncrypt 
random polynomial generation constant c is fixed for each degree N, and is chosen to 
minimize the number of octets expected to be output by the pseudo-random number 
generator.  As an example, for N = 347, c is chosen to be 14 because 47*347 (=16309) is 
close to 214 (=16384) so only the values greater than 16309 will be thrown out. 
 
The specific value of c is defined for each parameter set listed in section 4.3. 

3.1.3.4 NTRUEncrypt Message Length Encoding Length 

For certain message padding methods, the length of the message that is to be encrypted is 
encoded in the padded message itself.  When this type of message padding is used, the 
length of the field that represents the length of the message, called the message length 
encoding length, is represented by the parameter lLen.  For parameter sets that require the 
length of the message to be less than 256 bytes, lLen is typically set to 1.  
 
The specific value of lLen is defined for each parameter set listed in section 4.3. 

3.1.3.5 Hash Function 

NTRUEncrypt operations involve generating strings of pseudo-random output from a 
given input. The functions that generate this output are known as Mask Generation 
Functions, if they output a single arbitrary-length string, or Pseudo Random Number 
Generators, if they maintain state and produce output an arbitrary number of times. These 
two types of function are described in sections 3.1.3.6 and 3.1.3.7 below. Both of these 
functions are instantiated using a cryptographically strong hash function. The hash 
function shall be chosen from the set of approved hash functions listed in section 3.7.1. In 
this standard, the hash function used to instantiate the MGF must also be used to 
instantiate the PRNG. 
 
In this standard, hash functions are considered to take octet strings as inputs and outputs. 

3.1.3.6 Mask Generation Function 

In NTRUEncrypt message representative generation methods, a Mask Generation 
Function (MGF) may be used to help compute the message representative from the 
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message and random component.  The MGF serves the purpose of making the output 
reasonably randomly distributed and making a single bit of the output rely on multiple 
bits of the input.  An MGF is a construction built around a hash function. The hash 
function shall be chosen from the set of approved hash functions listed in section 3.7.1, 
and the MGF itself shall be chosen from the set of approved MGFs listed in section 3.7.2. 
 
In this standard, Mask Generation Functions are considered to take octet strings as inputs 
and outputs. 

3.1.3.7 Pseudo-Random Number Generation 

In NTRUEncrypt blinding value generation methods, a pseudo-random number 
generation method (PRNG) may be used to help compute the blinding value.  The 
pseudo-random number generation method serves the purpose of making an efficient and 
reasonably randomly distributed mapping from the message m and random component b 
to the blinding value. A PRNG is a construction built around a hash function. The hash 
function shall be chosen from the set of approved hash functions listed in section 3.7.1, 
and the PRNG shall be chosen from the set of approved PRNGs in section 3.7.3. 
 
In this standard, PRNGs are considered to take octet strings as inputs and outputs. 

3.1.3.8 Blinding Value Generation Method (BVGM) 

In order to protect against chosen ciphertext attacks, NTRUEncrypt encryption is made 
plaintext-aware by using a deterministic blinding value generation method (BVGM).  The 
BVGM may be used to compute the blinding value r from the padded message pm.  In 
order to compute the same values, the entity performing encryption and the entity 
performing decryption shall use the same BVGM.  The BVGM shall be chosen from the 
set of approved BVGM listed in section 3.3.1. 
 
A BVGM takes as input the padded message pm, which is an octet string, and outputs the 
blinding value r, which is a ring element. 

3.1.3.9 Key Generation Primitive (KGP) 

In order to perform any operation in NTRUEncrypt, a key pair must be generated.  
NTRUEncrypt key generation primitives are used to create key pairs that satisfy the 
required security and efficiency properties.  Once the key generation has been completed, 
the private key and public key should be retained by the party generating the key pair, 
and the public key may be distributed to the other parties. The KGP shall be chosen from 
the set of approved KGP listed in section 3.2.1. 

3.1.3.10 Encryption Primitive (EP) 

The basic operation performed during the encryption process using the public key is 
specified by the encryption primitive.  Encryption primitives typically accept the message 
to be encrypted (called the plaintext) and the public key as input and return the encrypted 
message (called the ciphertext).  The EP shall be chosen from the set of approved EP 
listed in section 3.2.2. 
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Note that the encryption scheme defined in this document does not actually use an 
encryption primitive. An encryption primitive is presented in this document for the sake 
of completeness. 

3.1.3.11 Decryption Primitive (DP) 

The basic operation performed during the decryption process using the private key is 
specified by the decryption primitive.  Decryption primitives typically accept the 
encrypted message (ciphertext) and the private key as input and return a candidate 
message (plaintext) as output.  The DP shall be chosen from the set of approved DP (and 
PDP) listed in section 3.2.3. 

3.2 NTRUEncrypt Primitives 
The following section defines the cryptographic primitives that are used in the 
NTRUEncrypt encryption scheme.  These primitives include key generation primitives, 
encryption primitives and decryption primitives. 

3.2.1 NTRUEncrypt Key Generation Primitives 

For a given set of NTRUEncrypt domain parameters, an NTRUEncrypt key pair consists 
of an NTRUEncrypt private key f, which is a polynomial of degree N-1 chosen from the 
NTRUEncrypt private key space and an NTRUEncrypt public key h, which is a 
polynomial of degree N-1 equal to f –1*g*p modulo q. 
 
NTRUEncrypt key pairs are closely associated with their domain parameters, and may 
only be used in the context of the domain parameters.  A key pair shall not be used with a 
set of domain parameters different from the one for which it was generated.  A set of 
domain parameters may be shared by a number of key pairs. 
 
In this standard, the private key f: is taken to be of the form f = 1 + pF, where p is one of 
the domain parameters defined above, and F is a polynomial in the space DF.  The 
specific recommendations for the space DF are given in section 4.3.   

3.2.1.1 Random NTRUEncrypt Key Generation Primitive – KGP-NTRU1 

An NTRUEncrypt key pair with f of the form f = 1+pF may be generated using the 
following steps.  Note that the algorithm below outputs only the values f, F and h. In 
some applications it may be desirable to store the values f –1 and g as well. 

NTRUEncrypt Components: 
— The NTRUEncrypt domain parameters N, q, p, df, dg 

Input:  None 

Output:  An NTRUEncrypt key pair consisting of the private key f and the public key h 

Operation:  The NTRUEncrypt key pair shall be computed by the following or an equivalent sequence of 
steps: 

 
1. Randomly choose a polynomial F of degree N – 1 with df coefficients equal to 1 and the 

remaining coefficients equal to 0. 
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2. Compute the polynomial f := 1 + p*F in (Z/qZ)[X]/(XN – 1) 
3. Compute the polynomial f –1 (i.e. the polynomial f –1 such that f –1* f = f*  f –1 = 1) in       

(Z/qZ)[X]/(XN – 1).  If f –1 does not exist, go to step 1. 
4. Randomly choose a polynomial g of degree N – 1 with dg coefficients equal to 1 and the 

remaining coefficients equal to 0. 
5. Compute the polynomial g –1 (i.e. the polynomial g –1 such that g –1*g = g*  g –1 = 1) in       

(Z/qZ)[X]/(XN – 1).  If g –1 does not exist, go to step 4. 
6. Compute the polynomial h := f –1*g*p in (Z/qZ)[X]/(XN – 1) 
7. Output f, h and (optionally) F. 

3.2.2 NTRUEncrypt Encryption Primitives 

There is currently only one encryption primitive specified for NTRUEncrypt.  The 
encryption primitive is the fundamental building block for the encryption operation. Note 
that the encryption scheme presented in section 4.2 does not make direct use of this 
primitive; it is presented for completeness only. 

3.2.2.1 NTRUEncrypt Encryption Primitive – SVEP-NTRU 

SVEP-NTRU is the NTRUEncrypt Encryption Primitive.  It is based on the work of 
[HPS98] and [HS00-2].  It is invoked in the scheme SVES as part of encrypting a 
message, given the message representative and the public key of the intended recipient.  
The message can be decrypted within a scheme by invoking SVDP-NTRU. 

NTRUEncrypt Components: 
— The NTRUEncrypt parameters N, q 

Input: 
— The recipient’s NTRUEncrypt public key h 
— The message representative, which is a polynomial i 
— The message blinding value, which is a polynomial r 

Output:  The encrypted message representative, which is a polynomial e 

Operation:  The encrypted message representative e shall be computed by the following or an equivalent 
sequence of steps: 
 

1. Compute the polynomial e := r*h + i in (Z/qZ)[X]/(XN – 1). 
2. Output e. 

Conformance region recommendation.  A conformance region should include: 
— At least one valid NTRUEncrypt public key h 
— All message representatives i  (and corresponding blinding values r, which are determined from i) 
 

3.2.3 NTRUEncrypt Decryption Primitives 

There is currently only one decryption primitive specified for use. 

3.2.4 NTRUEncrypt Decryption Primitive: SVDP-NTRU2 

Components: 
�  The NTRUEncrypt parameters N, q, p 

Inputs: 
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�  The recipient’s NTRUEncrypt private key f, f-1 mod p. 
�  The encrypted message representative, which is a polynomial e. 
Output: 
�  The candidate decrypted polynomial ci. 

Operations: The candidate decrypted polynomial ci shall be calculated by the following or an equivalent 
sequence of steps: 
 

1. Compute the polynomial a := e* f in (Z/qZ)[X]/(XN – 1). 
2. Compute the quantity I := (a(1) – p(1)* r(1)*g(1))* f(1)–1  (mod q), choosing I in the range (N – 

q)/2 
�
 I < (N + q)/2. 

3. Compute the quantity A := floor[(1/N) * (p(1)* r(1)*g(1) + I* f(1)) + N/2]  –  ceil[q/2]. 
4. Compute the partially decrypted polynomial a = f *  e mod q, placing the coefficients of a into the 

range [A+1, A+q]. 
5. Compute ci as 

 ci = f-1*a mod p. 
 
Notes: 
For the parameter sets given in this document, f-1 mod p is equal to 1. In this case, step 5 
becomes simply reduction mod p. 

3.3 NTRUEncrypt Encoding Methods 
Before a message is encrypted, it must be processed to guarantee certain desirable 
security properties such as semantic security. This processing typically involves the 
following steps: 
— Adding random data to obtain the padded message  
— “Masking”  the padded message to obtain the message representative 
— Deriving the blinding value from the padded message. 
 
In this document the first two of the above steps are specified in the description of the 
SVES-3 encryption scheme. This section specifies a method for generating the blinding 
value r.  

3.3.1 NTRUEncrypt Blinding Value Generation Methods 

In order to provide plaintext awareness, a blinding value generation method (BVGM) 
shall be used to generate a blinding value r from a seed seed.  This section contains the 
single BVGM approved for use with the parameter sets in this document. The BVGM 
generates a pseudo-random binary blinding value r.  

3.3.1.1 Blinding Value Generation From dr – BVGM-NTRU1 

The blinding value r shall be generated deterministically from a seed using a pseudo-
random number generator. The precise form of this seed is defined by the encryption 
scheme, but it will at a minimum include the message m and the random component b.  
Note that in this standard the number of calls made to the PRNG may vary. 

NTRUEncrypt Components: 
— The NTRUEncrypt parameters N , dr 
— The chosen pseudo-random number generator PRNG( ) 
— The hash function Hash() chosen to parameterize PRNG( )  
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— The random polynomial generation constant c 

Input: 
— The seed, which is an octet string seed 

Output: 
— The blinding value, which is a polynomial r 

 Operation:  The blinding value shall be computed by the following or an equivalent sequence of steps: 
 
1. Instantiate the pseudo-random number generator with hash function Hash() and input seed to 

produce an output stream PRNG (seed). 
2. Set B := ceil[c/8] 
3. Set t := 0 
4. Set r := 0 
5. While t < dr do 

a. Set o := next B octets of PRNG (seed)  
b. Set the high-order 8B - c bits of o to 0 
c. Set i := o converted to an integer using OS2IP 
d. If i < 2c – (2c mod N) and r(i mod N) = 0 

i. Set r(i  mod N) := 1 
ii. Set t := t + 1 

6. Return r. 
 

3.4 NTRUSign Components 
This section defines the NTRUSign components, categorizes them (as domain 
parameters, security parameters or scheme options) and gives a basic description of the 
component.  Security considerations for specific choices for the component are included 
when appropriate, however for detailed security considerations, see [IEEE P1363.1]. 
 
Instantiations of primitives and encoding methods (which are both scheme options) are 
specified in section 3.5 and 3.6 respectively.  Required choices for all NTRUSign 
components are listed in section 5.3. 

3.4.1 NTRUSign Domain Parameters 

Values for each of the domain parameters must be selected in order to define the space in 
which operations are performed in NTRUSign.  The domain parameters specified in the 
standard maximize efficiency and security.   

3.4.1.1 NTRUSign Degree 

The degree N identifies the dimension of the convolution polynomial ring used.  
Although N is referred to here as the NTRUSign degree, elements of the ring are 
represented as polynomials of degree N – 1. 
 
The specific value of N is defined for each parameter set listed in section 5.3. 

3.4.1.2 NTRUSign Big Modulus 

As described in section 2.2.5, the big modulus q is used to define the polynomial ring 
used for NTRUSign.  In this standard, the modulus q is chosen to be a power of 2.  
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The modulus q is defined for each parameter set listed in section 5.3. 

3.4.2 NTRUSign Security Parameters 

Values for each of the security parameters may be globally specified of chosen by the 
holder of the private key.  These values must be chosen from those specified in the 
standard and need not be kept secret.  The security parameters specified in the standard 
are selected to maximize efficiency and security. 

3.4.2.1 NTRUSign Private Key Space 

The NTRUSign private key consists of four polynomials (f, g, F, G).  The polynomials f 
and g uniquely determine the private key.  In general, of the four polynomials (f, g, F, G), 
only two are needed for signing. We denote these two by (f, f’). Depending on the basis 
type (see section 3.4.2.3), f’  may be F (in the standard basis) or g (in the transpose basis). 
The two components of the private key which are not used for signing may be discarded 
after key generation. 
 
Generally, the private key part f may be chosen to be any small polynomial f such that f is 
invertible in space (Z/qZ)[X]/(XN – 1).  However, for improved efficiency, f is chosen in 
this standard to be in the space Df of all polynomials of degree N – 1 that have df 
coefficients equal to 1 and the remaining coefficients equal to 0. 
 
Generally, the private key part g may be chosen to be any small polynomial g.  However, 
for improved efficiency, g is chosen in this standard to be in the space Dg of all 
polynomials of degree N – 1 that have dg coefficients equal to 1 and the remaining 
coefficients equal to 0. 
 
In addition, for certain key generation methods, it is necessary that the resultants of f and 
g with respect to XN – 1 are relatively prime.  As a result, it is important to choose the 
parameters df and dg to be relatively prime to allow this to occur.  
 
Once f and g have been chosen, the basis completion pair (F, G) is computed such that (f, 
g) and (F, G) form a small basis for the NTRUSign module – in other words, such that fG 
– Fg = q and (F, G) is small (typically of size about √(N/12) times the size of (f, g)).  The 
basis completion pair is not unique for a given (f, g), but only one such pair is needed. 
 
Generally, the basis completion pair may be any pair that completes the basis.  However, 
in order to maximize the probability of generating good signatures, the basis completion 
pair may be restricted to the space DFG that consists of all vectors whose centered norm is 
smaller than the security parameter KeyNormBound.  If during key generation, a basis 
completion pair cannot be found with centered norm less than KeyNormBound, the 
private key may be discarded and another private key chosen.   
 
Recommended values of df and dg are included with each parameter set listed in section 
5.3.  These parameters are selected to provide maximum security and efficiency. 
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The parameter KeyNormBound is not used in any of the key generation techniques 
currently described in the standard. 

3.4.2.2 NTRUSign Basis Completion Maximum Adjustment 

When computing the basis completion pair (F, G) during key generation, it is possible to 
decrease the centered norm of the basis completion pair (F, G) by adding or subtracting 
small multiples of the private key pair (f, g).  After several iterations, the loss in key 
generation efficiency may outweigh the gain from a decreased centered norm for (F, G), 
so the security parameter MaxAdjustment may be chosen to limit the iterations of this 
algorithm. 
 
Recommended values for MaxAdjustment are included in each parameter set listed in 
section 5.3. 

3.4.2.3 NTRUSign Private Key Type 

An NTRUSign basis is a set of polynomials (f, g, F, G) such that fG – Fg = q. In the 
standard NTRU lattice, the basis consists of the two vectors (f, g) and (F, G) and all of 
their componentwise rotations. Each basis of this type also defines a transpose basis (f, F) 
and (g, G), also of determinant q. It may be significantly faster to use the transpose basis, 
rather than the standard basis, as the private key for signature generation. However, if the 
transpose basis is used, one component of the signature will be significantly smaller than 
the other. This will lead to transcripts converging faster for the transpose basis than for 
the standard basis. For this reason, the use of the transpose basis is only recommended if 
at least one perturbation basis (see section 3.4.2.5) is used when signing. 
 
The type of basis used is given by the variable basisType, which can take the values 
“standard”  or “transpose”. Recommended values for basisType are included in each 
parameter set listed in section 5.3. 
 

3.4.2.4 NTRUSign Public Key Space 

The NTRUSign public key space is uniquely determined by the NTRUSign private key 
space and hence need not be specified explicitly as a security parameter.  In the standard 
lattice, the NTRUSign public key space Dh consists of all polynomials h of degree N – 1 
with h = f–1*g with coefficients reduced modulo q, where f, g are chosen from Df and Dg 
respectively and f–1 is the polynomial with coefficients reduced mod q such that f –1* f = f*  
f –1 = 1 in (Z/qZ)[X]/(XN – 1). In the transpose basis, the public key space consists of all 
polynomials h of degree N –1 with h = f–1*F mod q. 

3.4.2.5 NTRUSign Perturbation Bases 

NTRUSign signatures are not zero knowledge, and a transcript of signatures will 
gradually reveal information about the private key, leading in extreme cases to recovery 
of the key by an attacker. This information leakage can be slowed down by the use of 
perturbations. This refers to a technique where the signer first signs the message using an 
entirely private basis, such that no public information at all is known about this basis, to 
produce a perturbed message point close to the original message point. The signer then 
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signs the perturbed message point with the real private key to produce a signature that 
can be verified using the public key. 
 
This process can clearly be extended to cover the use of multiple perturbation bases, each 
of which acts on the previous perturbed message point to produce a perturbed message 
point of its own. The final perturbed message point in the secret can then be signed to 
produce the signature. 
 
Each perturbation basis used greatly increases the number of signatures that an attacker 
needs to mount an attack on the private key. However, the use of perturbation bases also 
increases the average signature norm. On average, use of B bases will increase the norms 
of signatures by √(B+1). 
 
The number of perturbation bases used is given by the variable perturbationBases. 
Recommended values for perturbationBases are included in each parameter set listed in 
section 5.3. Note that if the standard lattice is being used, the perturbation bases will also 
be in standard form, and if the transpose lattice is being used, the perturbation bases will 
also be in transpose form. 

3.4.2.6 NTRUSign Signature Failure Tolerance 

Depending on the size of the norm bound for signatures, the signature primitive may 
occasionally fail to produce a valid signature on a given message m with a given message 
randomization value r.  During the signing process, the signer may choose another 
message randomization value to produce a different message representative and a 
different signature.  Due to efficiency reasons, it may be desirable to simply fail the 
signature if after a certain number of attempts, a valid signature cannot be found.  The 
signature failure tolerance SignFailTolerance is chosen to specify the number of attempts 
made before the signature process returns a failed signature.  Note that in general this 
number may be set to a very small number as most signature attempts will pass. 
 
The specific value of the SignFailTolerance is variable for each parameter set listed in 
section 5.3., however recommended choices are specified. 

3.4.3 NTRUSign Scheme Options 

NTRUSign scheme options consist of parameters and algorithms that do not affect the 
key space (e.g. that are not domain parameters), but that must be agreed upon in order to 
implement the NTRUSign signature scheme.  Scheme options include the chosen 
primitives and encoding methods and the parameters that are needed to completely 
specify the encoding methods and primitives. 

3.4.3.1 NTRUSign Signature Norm Bound 

The NTRUSign signature norm bound NormBound is chosen to indicate how close the 
signature must be to the message representative in order for signatures to verify.  It is 
selected to be small enough to prevent forgery attacks and large enough to make the 
probability of the signature being below the norm bound high. 
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The specific value of the NormBound is defined for each parameter set listed in section 
5.3. 

3.4.3.2 NTRUSign Message Randomization Value 

The NTRUSign signature algorithm deterministically finds a reasonably close 
NTRUSign lattice point to the message representative.  Due to the unpredictable nature of 
the closeness of these lattice points, a signature attempt may on rare occasions fail to 
satisfy the needed norm bound.  The NTRUSign message randomization value r is used 
to generate a different message representative should the signature fail to satisfy the norm 
bound.   
 
The message randomization value is chosen from the message randomization value space 
Dr.  The message randomization value space is chosen to be any octet string of length lr.  
If the signature is expected never to fail this test, the value of lr may be set to 0 and 
hence, the message randomization value may be omitted.  Note that a fixed r may be 
chosen for all signature attempts and not be communicated to the verifier along with the 
signature. 
 
The specific values of lr and r are defined for each parameter set in section 5.3. 

3.4.3.3 NTRUSign Random Polynomial Generation Constant 

When randomly generating a polynomial from a pseudo-random number generator, such 
as in certain message representative generation methods, the number of output bits used 
to compute the next polynomial value needs to be selected.  The NTRUSign random 
polynomial generation constant c is a value that is chosen for the deterministic generation 
of a polynomial from a pseudo-random number generator.  It represents the number of 
bits that are used to generate a mod N entry candidate.  The NTRUSign random 
polynomial generation constant c is fixed for each degree N and is chosen to minimize 
the number of octets needed to compute the polynomial.  Note that in certain message 
representative generation methods, the polynomial is chosen as mod q coefficients (which 
is an even power of 2) instead of selecting the coefficient location mod N.  Therefore c is 
not needed for those methods. 
 
The specific value of c is defined for each parameter set listed in section 5.3. 

3.4.3.4 Hash Function 

In NTRUSign message representative generation methods, a hash function is used on the 
message to establish the seed for the pseudo-random number generator.  The hash 
function serves the purpose of making the input to the PRNG small while stil l 
maintaining the feature that each input bit affects each output bit.  The hash function may 
also be used as a part of the PRNG.  The hash function shall be chosen from the set of 
approved hash functions listed in section 3.7.1 and is defined for each parameter set in 
section 5.3. 
 
In this standard, hash functions are considered to take octet strings as inputs and outputs. 
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3.4.3.5 Pseudo-Random Number Generation 

In NTRUSign message representative generation methods, a pseudo-random number 
generation method may be used to help compute the message representative.  The PRNG 
serves the purpose of making an efficient and reasonably randomly distributed mapping 
from the hashed message to the message representative.  The PRNG shall be chosen from 
the set of approved PRNG in section 3.7.3 and is defined for each parameter set in section 
5.3. 
 
In this standard, PRNGs are considered to take octet strings as inputs and outputs. 

3.4.3.6 NTRUSign Message Representative Generation Method (MRGM) 

In order to protect against two messages being represented by points that are close to 
each other in the NTRUSign lattice, NTRUSign message representative generation 
methods (MRGM) are used to transform the messages m into message representatives i 
that are reasonably evenly distributed through the NTRUSign message space.  In order to 
compute the same values, the entity performing the signing and the entity performing the 
verification shall use the same MRGM.  The MRGM shall be chosen from the set of 
approved MRGM listed in section 3.6.1 and is defined for each parameter set in section 
5.3. 
 
A MRGM takes as input the message m, which is an octet string, and outputs the message 
representative i, which is a ring element. 

3.4.3.7 NTRUSign Key Generation Primitive (KGP) 

In order to perform any operation in NTRUSign, a key pair must be generated.  
NTRUSign key generation primitives are used to create key pairs and basis completion 
pairs that satisfy the required security and efficiency properties.  Once the key generation 
has been completed, the private key and public key should be retained by the party 
generating the key pair and the public key should be distributed to the party that will be 
performing the signature verification with the public key. 
 
The KGP shall be chosen from the set of approved KGP listed in section 3.5.1 and is 
defined for each parameter set in section 5.3. 

3.4.3.8 NTRUSign Signature Primitive (SP) 

The basic operation performed during the signing process using the private key is 
specified by the signature primitive.  Signature primitives typically accept the message 
representative and the private key as input and return the signature. 
 
The SP shall be chosen from the set of approved signature primitives listed in section 
3.5.2 and is defined for each parameter set in section 5.3. 

3.4.3.9 NTRUSign Verification Primitive (VP) 

The basic operation performed during signature verification using the public key is 
specified by the verification primitive.  Verification primitives typically accept the 
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message representative, the signature and the public key as input and return "valid" or 
"invalid".   
 
The VP shall be chosen from the set of approved verification primitives listed in section 
3.5.3 and is defined for each parameter set in section 5.3. 

3.5 NTRUSign Primitives 

3.5.1 NTRUSign Key Generation Primitives  

For a given set of NTRUSign domain parameters, an NTRUSign key pair consists of an 
NTRUSign private key basis (f, f’ ), an NTRUSign public key h, which is a polynomial of 
degree N-1 equal to f –1* f’  modulo q, and zero or more perturbation bases (fi, f’ i, hi), 
where hi = fi 

–1* f’ i modulo q. 
 
NTRUSign key pairs are closely associated with their domain parameters, and shall only 
be used in the context of the domain parameters.  A key pair shall not be used with a set 
of domain parameters different from the one for which it was generated.  A set of domain 
parameters may be shared by a number of key pairs. 
 
Key generation for NTRUSign consists of generating one or more distinct NTRUSign 
module bases. For clarity, we present key generation here in two steps: first, an algorithm 
for generating a random NTRUSign basis; second, a key generation primitive which uses 
the basis generation algorithm to generate a complete private key. 

3.5.1.1 Random NTRUSign Basis Generation 

An NTRUSign basis may be generated using the following steps.  The optional step 3 in 
the algorithm below is included to efficiently determine if the resultants of f and g are 
both divisible by 2N + 1, which is the most likely common factor of the resultants.  This 
prevents performing the expensive full resultant calculations on an (f, g) pair that will be 
discarded in step 7 anyway.  The optional steps 21-27 are included to further reduce the 
size of the basis completion pair (F, G) by adding (or subtracting) rotations of f and g.  
The smaller the basis completion pair is, the smaller (on average) the norms of the 
signatures will be. 

NTRU Components: 
— The NTRUSign domain parameters N, q 
— The NTRUSign key security parameters df, dg, MaxAdjustment (optional) 

Input:  None 

Output:  An NTRUSign basis consisting of the polynomials (f, g, F, G). 

Operation:  The NTRUSign basis shall be computed by the following or an equivalent sequence of steps: 
 
1. Randomly choose a polynomial f of degree N – 1 with df coefficients equal to 1 and the remaining 

coefficients equal to 0. 
2. Randomly choose a polynomial g of degree N – 1 with dg coefficients equal to 1 and the 

remaining coefficients equal to 0. 
3. (optional) If 2N + 1 is prime 
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a. Set integers resf1 and resg1 equal to the resultants of f and g (mod 2N + 1) respectively, 
calculating the resultants using algorithm 2.2.7.1 

b. If resf1 and resg1 are both 0, go to step 1 
4. Set integer resf equal to the resultant of f and set the polynomial rhof to satisfy the equation rhof* f 

:= resf in Z[X]/(XN – 1), using algorithm 2.2.7.2 
5. Set integer resg equal to the resultant of g and set the polynomials rhog to satisfy the equation 

rhog*g := resg in Z[X]/(XN – 1), using algorithm 2.2.7.2 
6. Compute integers alpha, beta and the gcd gcd of resf and resg such that alpha* resf + beta* resg = 

gcd (using the Extended Euclidean Algorithm in the integers) 
7. If gcd is not equal to 1, go to step 1 
8. Compute the polynomial f –1 (i.e. the polynomial f –1 such that f –1* f = f* f –1 = 1) in       

(Z/qZ)[X]/(XN – 1).  If f –1 does not exist, go to step 1. 
9. Set polynomial F := –rhog*beta*q in Z[X]/(XN – 1) 
10. Set polynomial G := rhof*alpha*q in Z[X]/(XN – 1) 
11. Let frev be the polynomial of degree N – 1 such that frev0 = f0 and frevi = fN – i for 1 ≤ i ≤ N – 1 

(this polynomial is called the reversal of f) 
12. Let grev be the polynomial of degree N – 1 such that grev0 = g0 and grevi = gN – i for 1 ≤ i ≤ N – 1 

(this polynomial is called the reversal of g) 
13. Set polynomial t := f* frev + g*grev in Z[X]/(XN – 1) 
14. Set integer rest equal to the resultant of t and set the polynomial rhot to satisfy the equation rhot* t 

:= rest in Z[X]/(XN – 1), using algorithm 2.2.7.2 
15. Set polynomial c := rhot*(frev*F + grev*G) in Z[X]/(XN – 1) 
16. Set integers i := 0, j := 0, k := 0 
17. While j < N do 

a. Set cj := floor[cj/rest + .5] 
b. Set j := j + 1 

18. Set F := F – c* f in Z[X]/(XN – 1) 
19. Set G := G – c*g in Z[X]/(XN – 1) 
20. (optional) Set integers D := 0, E := 0 
21. (optional) Set polynomials u := f, v := g 
22. (optional) Set j := 0 
23. (optional) While j < N do 

a. Set E := E + 2*N* (fj
2 + gj

2) 
b. Set j := j + 1 

24. (optional) Set E := E – (f(1) + g(1))2 
25. (optional) Set j := 0 
26. (optional) While k < MaxAdjustment and j < N do 

a. Set D := 0 
b. While i < N do 

i. Set D := D + 4*N* (Fi* fi + Gi*gi) 
ii. Set i := i + 1 

c. Set D := D – 2*(F(1) + G(1))* (f(1) + g(1)) 
d. If D > E 

i. Set F := F – u in Z[X]/(XN – 1) 
ii. Set G := G – v in Z[X]/(XN – 1) 

iii. Set k := k + 1 
iv. Set j := 0 

e. Else, if D < –E 
i. Set F := F + u in Z[X]/(XN – 1) 

ii. Set G := G + v in Z[X]/(XN – 1) 
iii. Set k := k + 1 
iv. Set j := 0 

f. Set j := j + 1 
g. Set u := u*X in Z[X]/(XN – 1) 
h. Set v := v*X in Z[X]/(XN – 1) 

27. Output f, g, F, G. 
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3.5.1.2 NTRUSign Key Generation Primitive – KGP-NTRUSign1 

The following primitive outputs an NTRUSign keypair. 

NTRU Components: 
— The NTRUSign domain parameters N, q 
— The NTRUSign key security parameters df, dg, MaxAdjustment (optional) 
�  The basisType “standard”  or “ transpose”  
�  The number of perturbation bases, perturbationBases 

Input:  None 

Output:  An NTRUSign private key consisting of the private key polynomials (f, f’ i) and 
perturbationBases number of private perturbation bases (fi, f’ i, hi), and the NTRUSign public key h. 

Operation:  The NTRUSign keypair shall be computed by the following or an equivalent sequence of 
steps: 

 
1. Set i = perturbationBases. 
2. While i �  0: 

a. Generate an NTRUSign basis (fi, gi, Fi, Gi) using the algorithm given in section 3.5.1.1. 
b. If basisType = “standard” , set f’ i = Fi. If basisType = “ transpose” , set f’ i = gi. Set hi =  fi

-1*  
f’ i mod q. 

c. Set i = i-1. 
3. The public key is h0. The private key is the set (fi, f’ i, hi) for 0 

�
 i 

�
 perturbationBases. 

3.5.2 NTRUSign Signature Primitives  

The NTRUSign signature primitives are used to generate a secure digital signature from a 
message representative.  There is only one NTRUSign signature primitive specified in 
this standard. 

3.5.2.1 NTRUSign Signature Primitive – SVSP-NTRU 

SVSP-NTRU is the NTRU Signature Primitive.  It is based on the work of [HHPSW01].   
SVSP-NTRU may be used in a signature scheme with appendix and can be invoked in 
the scheme SVSSA as part of signature generation.  Note that the message representative 
i may be the product of multiple small components (e.g. i = i0* i1*…* ij in Z[X]/(XN – 1)). 

NTRUSign Components: 
— The NTRUSign domain parameters N, q 

Input: 
— The signer’s NTRUSign private key (f, f’ )  
— The signer’s NTRUSign perturbation bases (fi, f’ i, hi) and the number perturbationBases 
— The message representative, which is a polynomial i  

Output:  The signature, which is a polynomial s 

Operation:  The signature s shall be computed by the following or an equivalent sequence of steps: 
 

1. Set s = 0. Set iLoop = perturbationBases. 
2. While iLoop �  1: 

a. Compute the polynomial B = – fiLoop
’* i in Z[X]/(XN – 1) (only need to store 2* log2q bits 

per coefficient)  
b. Set integer j := 0 
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c. While j < N do 
i. Set Bj := floor[Bj/q + .5] 

ii. Set j := j + 1 
d. Compute the polynomial b = fiLoop* i in Z[X]/(XN – 1) (only need to store 2log2q bits per 

coefficient) 
e. Set j := 0 
f. While j < N do 

i. Set bj := floor[bj/q + .5] 
ii. Set j := j + 1 

g. Set polynomial siLoop := b*  fiLoop
’ + B* fiLoop in (Z/qZ)[X]/(XN – 1) 

h. Set s := s + siLoop mod q. Set i := siLoop * (hiLoop – hiLoop + 1) mod q. Set iLoop := iLoop –1. 
3. Compute the polynomial B = – f* i in Z[X]/(XN – 1)  
4. Set integer j := 0 
5. While j < N do 

a. Set Bj := floor[Bj/q + .5] 
b. Set j := j + 1 

6. Compute the polynomial b = f* i in Z[X]/(XN – 1) 
7. Set j := 0 
8. While j < N do 

a. Set bj := floor[bj/q + .5] 
b. Set j := j + 1 

9. Set polynomial s0 := b*  f’  + B* f in (Z/qZ)[X]/(XN – 1) 
10. Output s := s + s0 mod q. 

3.5.3 NTRUSign Verification Primitives 

The NTRUSign verification primitives are used to indicate if a signature on a message 
representative satisfies the appropriate verification conditions or not.  There is only one 
NTRUSign verification primitive specified in this standard.    

3.5.3.1 NTRUSign Verification Primitive – SVVP-NTRU 

SVVP-NTRU is the NTRU Verification Primitive.  It is based on the work of 
[HHPSW01].  SVVP-NTRU may be used in a signature scheme with appendix and can 
be invoked in the scheme SVSSA as part of signature verification.  Note that the message 
representative i may be the product of multiple small components (e.g. i = i0* i1*…* ij in 
Z[X]/(XN – 1)).   

NTRUSign Components: 
— The NTRUSign parameters N, q 
— The NTRUSign security parameter NormBound 

Input: 
— The signer’s NTRUSign public key h 
— The signature to be verified, which is a polynomial s 
— The message representative i for which s is alleged to be a signature 

Output:  A message indicating that the signature is either “valid” or “ invalid”  

Operation:  A signature s shall be verified by the following or an equivalent sequence of steps: 
 
 
1. Compute the polynomial t := h*s in (Z/qZ)[X]/(XN – 1)  
2. Compute the polynomial e2 := i - t in (Z/qZ)[X]/(XN – 1) (setting coefficients in the range 0 to q 

– 1) 
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3. Let maxrange be the largest integer such that e2j – e2k = maxrange for some j, k in the range 0 to 
q – 1 and no coefficient of e2 has values between e2j and e2k 

4. Let e2l be the largest coefficient of e2 and e2m be the smallest coefficient of e2 
5. Set integer j := q – e2l + e2m 
6. If j > maxrange 

a. Set integer shift := m 
7. Else  

a. Set integer shift := j 
8. Set j := 0 
9. While j < N do 

a. Set e2j := e2j – shift (mod q) 
b. Set j := j + 1 

10. Let maxrange be the largest integer such that sj – sk = maxrange for some j, k in the range 0 to q 
– 1 and no coefficient of s has values between sj and sk 

11. Let sl be the largest coefficient of s and sm be the smallest coefficient of s 
12. Set j := q – sl + sm 
13. If j > maxrange 

a. Set shift := m 
14. Else  

a. Set shift := j 
15. Set j := 0 
16. While j < N do 

a. Set sj := sj – shift (mod q) 
b. Set j := j + 1 

17. Set j := 0 
18. Set integers ssum, e2sum, squaresum := 0 
19. While j < N do 

a. Set ssum := ssum + sj 
b. Set e2sum := e2sum + e2j 
c. Set squaresum := squaresum + sj

2 + e2j
2 

d. Set j := j + 1 
20. Compute the value CenteredNorm := sqrt((N*squaresum – ssum2 – e2sum2)/N) 
21. If CenteredNorm > NormBound 

a. Output "invalid" 
22. Else 

a. Output "valid" 
  

3.6 NTRUSign Encoding Methods 

3.6.1 NTRUSign Message Representative Generation Methods  

An MRGM must have the property that it should be computationally infeasible to find 
two messages whose message representatives are close to each other. 
 
When signing a message, the signature shall be applied to the message representative i, 
which is the result of a one-way operation on the message.  In order to generate the 
message representative, a hash function shall be applied to the message m and the 
resulting value is used to generate the message representative polynomial i. 
 
The message representative i represents the point in Z2N  [0N, i], where 0N represents the 
N-tuple of all 0's and i represents the N-tuple with entries equal to the coefficient values i j 
of the polynomial i. 
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3.6.1.1 Message Representative Generation – MRGM-NTRUSign1 

The following message representative generation method is a supported method for 
NTRUSign.  This method consists of the generation of a single pseudo-random 
polynomial with coefficients in the range [0, q – 1]. If this method is to be used, q should 
be a power of 2. 

NTRUSign Components: 
— The NTRUSign parameters N, q, where q is a power of 2. 
— The NTRUSign security parameter lr 
— The chosen pseudo-random number generator PRNG( )  
— The chosen message hash function Hash( ) 
— The hash function used to instantiate the PRNG PrngHash( ) 

Input: 
— The message, which is an octet string m 
— The message randomization value, which is an octet string r of length lr (may be the empty string) 

Output:  The message representative polynomial i 

Operation:  The message representative i shall be produced by the following or an equivalent sequence of 
steps: 
 

1. Set c := log2q (i.e. the number of bits in q, e.g. if q = 128, c = 7) 
2. Set B := ceil[c/8] 
3. Use the specified message hash function with input m||r to produce an output Hash(m||r). 
4. Instantiate the pseudo-random number generator with hash function PrngHash() and input 

Hash(m||r) to produce an output stream PRNG (Hash(m||r)). 
5. Set t := 0 
6. While t < N do 

a. Set o := next B octets of PRNG (Hash(m||r))  
b. Set the high-order 8B - c bits of o to 0 
c. Set j := o converted to an integer using OS2IP 
d. Set i t := j  
e. Set t := t + 1 

7. Return i 
 

3.6.1.2 Message Representative Generation – MRGM-NTRUSign2 

The following message representative generation method is a supported method for 
NTRUSign.  This method includes the generation of multiple small message components 
i0, i1, i2 … i(NumGroups – 1) that are multiplied together to produce the message 
representative i.  Note that it is usually desirable to store the message components in 
place of the message representative for computational efficiencies. 

NTRUSign Components: 
— The NTRUSign parameters N, q 
— The NTRUSign security parameter lr 
— The NTRUSign MRGM parameters NumGroups, NumElements 
— The random polynomial generation constant c 
— The chosen pseudo-random number generator PRNG( )  
— The chosen hash function Hash( ) 

Input: 
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— The message, which is a bit string m 
— The message randomization value r of length lr (may be the empty string) 

Output:  The message representative polynomial i (and optionally the message components i0, i1, …, 
i(NumGroups – 1)) 

Operation:  The message representative i shall be produced by the following or an equivalent sequence of 
steps: 
 

1. Set B := ceil[c/8] 
2. Use the specified hash function with input m||r to produce an output Hash(m||r). 
3. Instantiate the pseudo-random number generator with hash function PrngHash() and input 

Hash(m||r) to produce an output stream PRNG (Hash(m||r)). 
4. Set t := 0 
5. Set temp := 0 
6. While t < NumGroups do 

a. Set polynomial it := 0 (e.g. for t = 0, set polynomial i0 equal to 0, for t = 1, set 
polynomial i1 equal to 0, etc.) 

b. Set it0 := it0 + 1 
c. While temp < NumElements – 1 do 

i. Set o := next B octets of PRNG (Hash(m||r)) 
ii. Set the leftmost 8B - c bits of o to 0 

iii. Set j := o converted to an integer using OS2IP 
iv. If j < 2c – (2c mod N) 

1. Set it(j mod N) := it(j mod N) + 1 
2. Set temp := temp + 1 

d. Set temp := 0 
e. Set t := t + 1 

7. Set i := i0* i1* i2*…* i(NumGroups – 1) in (Z/qZ)[X]/(XN – 1) 
8. Return i (and optionally i0, i1, …, i(NumGroups – 1)) 

 

3.7 Supporting Algorithms 
In order to perform the NTRUEncrypt operations securely, implementers shall choose 
supporting algorithms that satisfy the security needs of the schemes.  The security level 
of the supporting algorithm typically depends on the desired security level of the scheme 
(e.g. for a desired security level of 80 bits, the SHA-1 hash algorithm is typically chosen).  
This section defines the algorithms that shall be used to meet this standard. 

3.7.1 Hash Functions 

Hash functions are used in two distinct situations in this standard: first, to hash a message 
before signing; second, as the core of a mask generation function. For security purposes, 
the hash function should be chosen at a strength commensurate to the desired security 
level. Note that the security requirements in the first case may be different from the 
security requirements in the second. The recommended parameter sets in this document 
specify hash functions appropriate to their security levels. 
 
The only currently supported hash functions for hashing a message before signing are 
SHA-1, SHA-256, SHA-384 and SHA-512 [FIP95, NIST-SHA-2]. 
 



Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003 

Page 39 of 78    

The only currently supported hash functions for use within a mask generation function 
are SHA-1, SHA-256, SHA-384, SHA-512 [FIP95, NIST-SHA-2] and MDC-2DES-
NTRU, specified below. 
 
All hash functions in this standard take an octet string as an input and produce an octet 
string as an output. For compatibility with other standards which specify input and output 
as bit strings, the conversion primitives OS2BSP and BS2OSP may be used. 

3.7.1.1 Hash Function – MDC-2DES-NTRU 

The following hash function, based on the Matyas-Meyer-Oseas MDC construction, uses 
DES encryption with two changing keys to generate a message digest of length 8 octets. 
 
A DES key has 56 cryptographically significant bits, but is conventionally represented as 
a string of eight octets in which the rightmost bit of each octet is a parity bit. This 
standard follows this convention. 

Input: The message, which is an octet string m of length l octets, with l< 232. 

Output: The message digest, which is an octet string md of length 8 octets; or “error” . 

Operation: The message digest md shall be produced by the following or an equivalent sequence of steps: 
 

1. If l > 232, output “error” and exit. 
2. Set the initial keys K0, K0' to be the following octet string: K0 := 52 52 52 52 52 52 52 52, 

K0' := 25 25 25 25 25 25 25 25. 
3. Set NumZeroes := 8 – ((l + 5) mod 8). If NumZeroes is equal to 8, set NumZeroes := 0. 
4. Create the octet string oZeroes, consisting of NumZeroes octets with the value 00. 
5. Create the octet string oLen by converting the number l to an octet string of length 4 using 

I2OSP. 
6. Set the octet string m’  := (m||80||oZeroes||oLen). 
7. Set l’  equal to the length in octets of m’ . The octets in m’  are indexed as m’0 m’1 m’ 2 m’ 3 … 

m’ l ’ -1. 
8. Set t:=0. 
9. While t < l’ /8  do 

a. Set encryption block Bt equal to the octet string m’ 8t m’ 8t+1 m’ 8t+2 m’ 8t+3 … m’ 8t+7. 
b. Calculate the intermediate ciphertext I t := DesEncrypt (Bt, Kt) 
c. Calculate the ciphertext Ct := DesEncrypt (I t, Kt’ ) 
d. Calculate the intermediate hash Ht := Ct XOR Bt. 
e. Set Kt+1 := Ht. 
f. Counting from the left, set the second and third bits of Kt+1 to 1 and 0 respectively. 
g. If necessary, set the parity bits of Kt+1. 
h. Get the initial value of Kt+1’  from Ht by setting each octet of Kt+1’  to the equivalent octet 

of Ht, right-rotated by four bits (for example, if the first octet of Ht in binary is 01011110, 
the first octet of Kt+1’  is 11100101). 

i. Counting from the left, set the second and third bits of Kt+1’  to 1 and 0 respectively. 
j. If necessary, set the parity bits of Kt+1’ . 
k. Set t := t+1. 

10. Set encryption block Bt equal to the octet string m’ l ’ -8 m’  l ’ -7 m’  l ’ -6 … m’  l ’ -1. 
11. Calculate the intermediate ciphertext I t := DesEncrypt (Bt, Kt) 
12. Calculate the ciphertext Ct := DesEncrypt (I t, Kt’ ) 
13. Calculate the final hash Ht := Ct XOR Bt. 
14. Return Ht. 
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3.7.2 Mask Generation Functions 

Mask Generation Functions (MGFs) are functions similar to hash functions, except that 
instead of producing a fixed-length output they produce an output of arbitrary length.  
 
All mask generation functions are parameterized by the choice of a core hash function. 
The only hash functions supported for use with the MGFs in this standard are SHA-1, 
SHA-256, SHA-384, SHA-512 [FIP95, NIST-SHA-2] and MDC-2DES-NTRU, specified 
in section 3.7.1.1 of this document. 
 
This standard permits the use of two mask generation functions: the MGF1, as specified 
in IEEE Standard 1363-2000 [IEEE 1363]; and the MGF-MDC-NTRU function, 
specified below. 
 
All mask generation functions in this standard take as input an octet string and the desired 
length of the output, and output an octet string. 

3.7.2.1 Mask Generation Function – MGF-1 

This mask generation function is MGF-1 as specified in [IEEE 1363]. The only hash 
functions supported for use with this mask generation function are SHA-1, SHA-256, 
SHA-384, and SHA-512 [FIP95, NIST-SHA-2] 

The function is parameterized by the following choice: 
— A hash function Hash with output length hLen octets. 

Input:  
— An octet string Z of length zLen octets 
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to 

hLen × 232).  

Output: An octet string mask of length oLen  octets; or “error” . 

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps: 
 

1. If oLen exceeds hLen × 232, or if zLen exceeds any input length limitation on the hash function 
Hash, output “error” and exit. 

2. Let M be the empty string. Let cThreshold = ceil[oLen/hLen]. 
3. Set counter := 0. 
4. While counter < cThreshold do 

a. Convert counter to an octet string C of length 4 octets using I2OSP. 
b. Compute Hash(Z || C) with the selected hash function to produce an octet string H of 

length hLen octets. 
c. Let M = M || H. 
d. Increment counter by one. 

5. Output the leading oLen octets of M as the octet string mask. 

3.7.2.2 Mask Generation Function – MGF-MDC-NTRU 

This mask generation function is a variant of MGF1 above. It is designed for the case 
where the output length of the core hash function is short. The only hash function 
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supported for use with this MGF is MDC-2DES-NTRU, specified in section 3.7.1.1 of 
this document. 

The function is parameterized by the following choice: 
— A hash function Hash with output length hLen octets. 

Input:  
— An octet string Z of length zLen octets 
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to 

hLen × 264).  

Output: An octet string mask of length oLen  octets; or “error” . 

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps: 
 

1. If oLen exceeds hLen × 264, or if zLen exceeds any input length limitation on the hash function 
Hash, output “error” and exit. 

2. Let M be the empty string. Let cThreshold = ceil[oLen/hLen]. 
3. Set counter := 0. 
4. While counter < cThreshold do 

a. Convert counter to an octet string C of length 8 octets using I2OSP. 
b. Compute Hash(C || Z) with the selected hash function to produce an octet string H of 

length hLen octets. 
c. Let M = M || H. 
d. Increment counter by one. 

5. Output the leading oLen octets of M as the octet string mask. 

3.7.3 Pseudo-Random Number Generation 

The term “pseudo-random number generators” , as used in this standard, applies to 
functions which are initialized with an octet string and may then be called repeatedly, 
producing output of a specified but arbitrary length on each call. They differ from mask 
generation functions in that they may be called multiple times, while a mask generation 
function may only be called once. 
 
All pseudo-random number generation functions are parameterized by the choice of a 
core hash function. The only hash functions supported for use with the MGFs in this 
standard are SHA-1, SHA-256, SHA-384, SHA-512 [FIP95, NIST-SHA-2] and MDC-
2DES-NTRU, specified in section 3.7.1.1 of this document. 
 
This standard permits the use of two random number generators: one based on MGF1, 
and one based on MGF-MDC-NTRU. 
 
All random number generators in this standard are initialized with an octet string, and, 
when called, output an octet string. 

3.7.3.1 Pseudo-Random Number Generator – PRNG-MGF-1 

This PRNG is based on MDC-MGF-NTRU, defined in section 3.7.2.2 above. If it is 
called once only, its operation is indistinguishable from that of MGF-MDC-NTRU. 

The function is parameterized by the following choice: 
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— A hash function Hash with output length hLen octets. 

Input:  
— An octet string Z of length zLen octets 
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to 

hLen × 232).  

Output: An octet string o of length oLen  octets; or “error” . 

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps: 
 

1. If zLen exceeds any input length limitation on the hash function Hash, output “error” and exit 
2. Initialize totLen to 0. Intialize remLen to 0.  
3. Initialize the octet string buf to be a string of zero octets of length hLen. 
4. Initialize counter:= 0. 
5. On input oLen: 

a. Set totLen:=totLen + oLen. 
b. If totLen exceeds hLen × 232, output “error” and exit. 
c. If remLen < oLen 

i. Let M be the trailing remLen octets in buf. 
ii. Let tmpLen:=oLen – remLen. 

iii. Let cThreshold = counter + ceil[tmpLen/hLen]. 
iv. While counter < cThreshold do 

1. Convert counter to an octet string C of length 4 octets using I2OSP. 
2. Compute Hash(Z || C) with the selected hash function to produce an 

octet string H of length hLen octets. 
3. Let M = M || H. 
4. Increment counter by one. If tmpLen > hLen, decrement tmpLen by 

hLen. 
v. Set remLen:=hLen – tmpLen. Set buf:=H. 

d. else 
i. Set M equal to the trailing remLen octets of buf. 

ii. Set remLen:=remLen – oLen. 
6. Output the leading oLen octets of M as the octet string o. 

3.7.3.2 Pseudo-Random Number Generator – PRNG-MDC-NTRU 

This PRNG is based on a variant of MGF1. It is designed for the case where the output 
length of the core hash function is short. The only hash function supported for use with 
this MGF is MDC-2DES-NTRU, specified in section 3.7.1.1 of this document. 

The function is parameterized by the following choice: 
— A hash function Hash with output length hLen octets. 

Input:  
— An octet string Z of length zLen octets 
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to 

hLen × 264).  

Output: An octet string mask of length oLen  octets; or “error” . 

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps: 
 

1. If zLen exceeds any input length limitation on the hash function Hash, output “error” and exit 
2. Initialize totLen to 0. Intialize remLen to 0.  
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3. Initialize the octet string buf to be a string of zero octets of length hLen. 
4. Initialize counter:= 0. 
5. On input oLen: 

e. Set totLen:=totLen + oLen. 
f. If totLen exceeds hLen × 264, output “error” and exit. 
g. If remLen < oLen 

i. Let M be the trailing remLen octets in buf. 
ii. Let tmpLen:=oLen – remLen. 

iii. Let cThreshold = counter + ceil[tmpLen/hLen]. 
iv. While counter < cThreshold do 

1. Convert counter to an octet string C of length 8 octets using I2OSP. 
2. Compute Hash(C || Z) with the selected hash function to produce an 

octet string H of length hLen octets. 
3. Let M = M || H. 
4. Increment counter by one. If tmpLen > hLen, decrement tmpLen by 

hLen. 
v. Set remLen:=hLen – tmpLen. Set buf:=H. 

h. else 
i. Set M equal to the trailing remLen octets of buf. 

ii. Set remLen:=remLen – oLen. 
6. Output the leading oLen octets of M as the octet string o. 

 

3.7.4 Random Number Generation 

In various operations specified in this standard such as key generation and signature 
generation, the generation of random numbers is required.  This standard strongly 
recommends the use of a secure random number generation method such as those 
methods that are approved by NIST in the FIPS series of standards (see [FIP00]) and by 
ANSI in the X9 series of standards (see [ANS98a] [ANS98b] [ANS98c]). 
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4 NTRUEncrypt Encryption Scheme (SVES) 
The following section defines the EESS #1 supported encryption schemes.  The only 
encryption scheme currently supported by EESS #1 is SVES.  SVES stands for Shortest 
Vector Encryption Scheme (see [IEEE P1363.1] for more information). 

4.1 NTRUEncrypt Encryption Scheme (SVES) Overview 
The general NTRUEncrypt encryption scheme is a sequence of operations that are 
performed based on the choices of the NTRUEncrypt supporting algorithms, 
NTRUEncrypt primitives and the NTRUEncrypt parameters.  In order to perform all of 
the NTRUEncrypt encryption scheme operations, the following NTRUEncrypt 
components must be specified:  
 
NTRUEncrypt Domain Parameters –  

1. Degree N   
2. Small modulus p  
3. Big modulus q 

 
NTRUEncrypt Security Parameters –  

1. Private key space Df 
2. Key generation primitive (KGP) 
3. Temporary polynomial space Dg 

 
NTRUEncrypt Scheme Options –  

1. Random component size db 
2. Message length encoding length lLen, if required 
3. Message representative generation method (MRGM) 

a. Supported mask generation function (MGF) 
b. Hash function used to instantiate MGF (Hash) 

4. Blinding value generation method (BVGM) 
a. Supported pseudo-random number generator (PRNG) 
b. Hash function used to instantiate PRNG (Hash – must be the same as the 

Hash used in the MRGM) 
c. Blinding value space Dr 
d. Random polynomial generation constant c 

5. Decryption primitive (DP) 
 
Note that since the public key space Dh is uniquely determined from Df and Dg, it is not 
listed above as a required component for the NTRUEncrypt encryption scheme. 
 
To illustrate the way that the NTRUEncrypt encryption scheme could be used, below is a 
step-by-step example of the processes that might occur when implementing the scheme.  
For simplicity, this example will use two entities, the encryptor Ernest and the decryptor 
Donna.  The exact operations for key generation, encryption and decryption are spelled 
out in section 4.2. 
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1. Donna and Ernest agree on a set of domain parameters N, p, q. (these will be 
used throughout, but not referenced explicitly) 

2. Donna and Ernest agree on the scheme options MGF, PRNG, Hash, db, Dr, c, 
BVGM, EP, PDP, DP. 

3. Donna chooses her security parameters KGP, Df, Dg. 
4. Donna generates an NTRUEncrypt key pair (f, h) (using Df, Dg and KGP). 
5. Donna sends the public key h to Ernest (note this message need not be 

encrypted, but Ernest should have some assurance that it actually came from 
Donna). 

6. Ernest chooses a message m to encrypt to Donna. 
7. Ernest generates a random component b (using db and a random number 

generator) and then calculates the padded message pm and the seed seed.  From 
seed he obtains the blinding value r (using PRNG, Hash, c and BVGM).Then 
from r and pm he obtains the message representative i (using MGF and Hash) 
and the ciphertext e. 

8. Ernest sends the ciphertext e to Donna. 
9. Donna uses DP with the private key f and the ciphertext e to find a message 

representative candidate i '. 
10. Donna recovers the candidate padded message pm' and the candidate seed seed' 

(using the inverse of MPM) and then performs the encryption on m'  (using 
seed', i ', PRNG, Hash, c, BVGM and EP) to retrieve the expected encryption 
value e'. 

11. If the resulting e' is the same as the received e and there were no padding errors, 
Donna knows that she decrypted the message properly and obtains the original 
message m = m'.  If the resulting message e' is not the same as e or if there was a 
padding error, Donna outputs “ fail” . 

4.2 NTRUEncrypt Encryption Scheme (SVES) Operations 
The NTRUEncrypt encryption scheme consists of the three operations – key generation, 
encryption and decryption.  These three operations are defined generally in this section 
without assuming any specific choices of the NTRUEncrypt components listed in section 
4.1.   

4.2.1 NTRUEncrypt Key Generation 

This section defines the NTRUEncrypt key generation operation.  Note that within the 
definition of the NTRUEncrypt spaces may be definitions of additional variables (e.g. 
when defining Df, the values df1, df2 and df3 may be specified as well as the appropriate 
method of combining them) 

NTRUEncrypt Components: 
— The NTRUEncrypt parameters N, q, p 
— The NTRUEncrypt spaces Df, Dg 

— The selected NTRUEncrypt key generation primitive KGP  

Input:  None 

Output:  An NTRUEncrypt key pair (f, h) 
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Operation:  The NTRUEncrypt key pair generation shall be computed by the following or an equivalent 
sequence of steps: 
 

1. Using KGP, with inputs N, q, p, Df, Dg, generate an NTRUEncrypt key pair (f, h) 
2. Return (f, h) 

4.2.2 NTRUEncrypt Encryption Scheme SVES-3: Encryption 

This section defines the NTRUEncrypt encryption operation for SVES-3.  Note that 
within the definition of the NTRUEncrypt spaces may be definitions of additional 
variables (e.g. when defining Dr, the values dr1, dr2 and dr3 may be specified as well as 
the appropriate method of combining them).   

Components: 
�  The length of the encoded length lLen. 
�  The number of bits of random data db, which must be a multiple of 8. 
�  The chosen Mask Generation Function and Hash Function. 
�  The chosen Blinding Value Generation Method and the associated parameters 
�  The OID, an octet string 
�  The number of bits of public key to hash, pkLen. 

Inputs: 
�  The message m, which is an octet string of length l octets 
�  The public key h 

Output:  
�  The ciphertext e, which is a ring element, or "message too long" 

Operation: The ciphertext e shall be calculated by the following or an equivalent sequence of steps: 
 

1. Calculate: 
a. nLen = ceil [N/8], the number of octets required to hold N bits.  
b. octL = the lLen-octet-long encoding of the message length l. 
c. bLen = db/8, the length in octets of the random data.  
d. maxLen = nLen - 1 - lLen - bLen, the maximum message length. 

2. If l > maxLen, output "message too long" and stop. 
3. Randomly select an octet string b of length bLen. 
4. Form the octet string p0, consisting of the 0 byte repeated (maxLen + 1 - l) times. 
5. Form the octet string M of length nLen as  

 b || octL || m || p0. 
6. Form the octet string hTrunc, consisting of the first pkLen bits of the packed representation of the 

public key h (generated using RE2POSP, section 2.3.6). Form sData as the octet string  
 OID || m || b || hTrunc 

7. Use the chosen blinding value generation method with the seed sData and the chosen parameters 
to produce r. 

8. Calculate R = r*h mod q. 
9. Calculate R2 = R mod 2. 
10. Convert R2 to the octet string oR2 using BE2OSP. 
11. Form m' by putting oR2 through the chosen MGF/Hash and XORing the leading nLen bytes of the 

output with M. 
12. Set the leading ((nLen *  8) - N) bits of the final octet of m' to 0. 
13. If  

 (N-q)/2 < m’ (1) < (N+q)/2, 
return to step 3. 

14. Convert m' to i, a binary polynomial of length N, using OS2BEP. 
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15. Calculate the ciphertext as e = R + i mod q. 

4.2.3 NTRUEncrypt Encryption Scheme SVES-3: Decryption 

 
This section defines the NTRUEncrypt decryption operation for SVES-3.  Note that 
within the definition of the NTRUEncrypt spaces may be definitions of additional 
variables (e.g. when defining Dr, the values dr1, dr2 and dr3 may be specified as well as 
the appropriate method of combining them).   

Components: 
�  The NTRUEncrypt decryption primitive to use 
�  The length of the encoded length lLen. 
�  The number of bits of random data db, which must be a multiple of 8. 
�  The chosen Mask Generation Function and Hash Function. 
�  The chosen Blinding Value Generation Method and the associated parameters 
�  The OID, an octet string 
�  The number of bits of public key to hash, pkLen. 

Inputs:  
�  The ciphertext e, which is a polynomial of degree N-1. 
�  The private key f or (f, fp). 
�  The public key h 

Output:  
�  The message m, which is an octet string, or "fail". 

Operation: The message m shall be calculated by the following or an equivalent sequence of steps: 
 

1. Calculate: 
a. nLen = ceil [N/8], the number of octets required to hold N bits.  
b. bLen = db/8, the length in octets of the random data  
c. maxLen = nLen - 1 - lLen - bLen, the maximum message length. 

2. Decrypt the ciphertext e using the selected NTRU decryption primitive with inputs e and f to get 
the candidate decrypted polynomial ci. 

3. Calculate the candidate value for r*h, cR = e - ci. 
4. Calculate cR2 = cR mod 2. 
5. Convert cR2 to the octet string coR2 using BE2OSP. 
6. Convert the binary polynomial ci to the octet string cm' using BE2OSP. 
7. Form cm by putting coR2 through the chosen MGF/Hash and XORing the leading nLen bytes of 

the output with cm'. 
8. Set the leading ((nLen *  8) - N) bits of the final octet of cM to 0. 
9. Parse cM as follows. 

a. The first bLen octets are the octet string cb.  
b. The next lLen octets represent the message length. Convert the value stored in these 

octets to the candidate message length cl. If cl > maxLen, set fail = 1 and set cl = maxL.  
c. The next cl octets are the candidate message cm. the remaining octets should be 0. If they 

are not, set fail = 1. 
10. Form the octet string hTrunc, consisting of the first pkLen bits of the packed representation of the 

public key h (generated using RE2POSP, section 2.3.6). Form sData as the octet string  
 OID || cm || cb || hTrunc 

11. Use the chosen blinding value generation method with the seed sData and the chosen parameters 
to produce r. 

12. Calculate cR' = h * cr mod q. 
13. If cR' != cR, set fail = 1 
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14. If fail = 1, output "fail". Otherwise, output cm as the decrypted message m. 

4.3 Supported Parameter Sets 
This section defines specific sets of parameters for the NTRUEncrypt encryption scheme 
(SVES) that are supported by the EESS #1 standard.  The parameters chosen in these sets 
must be used as a group and may not be mixed and matched.  Each parameter set is 
chosen to maximize both security and efficiency for the selected security level.  The best 
known attacks on these parameter sets appear to be measurable based on the parameter N, 
i.e. a larger N represents a stronger security level.  No other sets of parameters shall be 
used. 
 
The parameter sets ees139ep1, ees139ep2, ees251ep1, ees251ep2, ees251ep3, ees347ep1, 
ees503ep1 that appeared in previous versions of this document are deprecated and should 
not be used. 

4.3.1 ees251ep4 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251ep4.  This 
parameter set name stands for efficient embedded security (ees) encryption parameters 
(ep) with degree 251 (251) set 4 (4).  The object identifier for this parameter set is 
specified in section A.1. 
 
N = 251 
p = 2 
q = 239 
 

4.3.1.1 Key generation:  

KGP-NTRU2 with 
dF = 72 
Dg = g, where dg = 72 

 

4.3.1.2 Encryption/Decryption: 

SVES-3 encryption and decryption as in sections 4.2.2 and 4.2.3, parameterized as 
follows: 
 
lLen = 1 
db = 80 
SVDP-NTRU2 
MGF-1 with  

SHA-1 (MGF) 
BVGM-NTRU1 with 
 PRNG-MGF-1 with SHA-1 (PRNG) 

dr = 72 
c = 8 
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OID =  00 01 04 
pkLen = 80 

4.3.2 ees251ep5 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251ep5.  This 
parameter set name stands for efficient embedded security (ees) encryption parameters 
(ep) with degree 251 (251) set 4 (5).  The object identifier for this parameter set is 
specified in section A.1. 
 
N = 251 
p = 2 
q = 239 
 

4.3.2.1 Key generation:  

KGP-NTRU2 with 
dF = 72 
Dg = g, where dg = 72 

 

4.3.2.2 Encryption/Decryption: 

SVES-3 encryption and decryption as in sections 4.2.2 and 4.2.3, parameterized as 
follows: 
 
lLen = 1 
db = 80 
SVDP-NTRU2 
MGF-1 with  

MDC-NTRU (MGF) 
BVGM-NTRU1 with 
 PRNG-MGF-1 with MDC-NTRU (PRNG) 

dr = 72 
c = 8 

OID =  00 01 05 
pkLen = 80 
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5 NTRUSign Signature Scheme (SVSSA) 
The following section defines the EESS #1 supported signature schemes.  The only 
signature scheme currently supported by EESS #1 is SVSSA.  SVSSA stands for Shortest 
Vector Signature Scheme with Appendix (see [IEEE P1363.1] for more information). 

5.1 NTRUSign Signature Scheme (SVSSA) Overview 
The general NTRUSign signature scheme is a sequence of operations that are performed 
based on the choices of the NTRUSign supporting algorithms, NTRUSign primitives and 
the NTRUSign parameters.  In order to perform all of the NTRUSign signature scheme 
operations, the following NTRUSign components must be specified. 
 
NTRUSign Domain Parameters – 

1. Degree N 
2. Big modulus q 

 
NTRUSign Security Parameters – 

1. Private key spaces Df, Dg 
2. Basis completion space DFG 
3. Basis completion maximum adjustment MaxAdjustment (optional) 
4. Signature failure tolerance SignFailTolerance  
5. Key norm bound KeyNormBound (optional) 
6. Key generation primitive (KGP) 

 
NTRUSign Scheme Options – 

1. Signature norm bound NormBound 
2. Message randomization element space Dr 
3. Message representative generation method (MRGM) 

a. Supported hash function (Hash) 
b. Supported pseudo-random number generator (PRNG) 
c. Supported core hash function for the PRNG (PrngHash) 
d. Random polynomial generation constant c (optional) 

4. Signature primitive (SP) 
5. Verification primitive (VP) 

 
Note that since the public key space Dh is uniquely determined from Df and Dg, it is not 
listed above as a required component for the NTRUSign signature scheme. 
 
To illustrate the way that the NTRUSign signature scheme could be used, below is a step-
by-step example of the processes that might occur when implementing the scheme.  For 
simplicity, this example will use two entities, the signer Samantha and the verifier Victor.  
The exact operations for key generation, signing and verifying are spelled out in section 
5.2. 
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1. Samantha and Victor agree on a set of domain parameters N, q. (these will be 
used throughout, but not referenced explicitly) 

2. Samantha and Victor agree on the scheme options Hash, PRNG, PrngHash, c, 
NormBound, Dr, MRGM, SP, VP. 

3. Samantha chooses her security parameters KGP, Df, Dg, DFG, KeyNormBound, 
MaxAdjustment, SignFailTolerance. 

4. Samantha generates an NTRUSign key pair ((f, g), h) and basis completion pair 
(F, G) (using KGP, Df, Dg, DFG, KeyNormBound and MaxAdjustment) 

5. Samantha send the public key h to Victor (note this message need not be 
encrypted, but Victor should have some assurance that it actually came from 
Samantha). 

6. Samantha chooses a message m to sign for Victor. 
7. Samantha selects a message randomization value r, computes the message 

representative i and generates a signature s on m (using SP, Dr, MRGM, Hash, 
PRNG, c, SignFailTolerance, f, and F). 

8. Samantha may optionally check the signature (using VP, NormBound, r, s and i) 
9. Samantha sends the message m, the message randomization value r and the 

signature s to Victor (again these can be sent in the clear and Victor does not have 
to know ahead of time that it came from Samantha) 

10. Victor checks the signature on m (using MRGM, Hash, PRNG, c, VP, 
NormBound, r and s). 

11. If the signature passes, Victor trusts that Samantha generated the signature on m. 

5.2 NTRUSign Signature Scheme (SVSSA) Operations 
The NTRUSign signature scheme consists of three operations – key generation, signature 
generation and verification.  

5.2.1 NTRUSign Key Generation 

This section defines the NTRUSign key generation operation.  Note that within the 
definition of the NTRUSign spaces may be definitions of additional variables, although 
none of the parameter sets specified in this standard use these additional variables. 

NTRUSign Components: 
— The NTRUSign domain parameters N, q,  
— The NTRUSign security parameters KeyNormBound (optional), Df, Dg, DFG, MaxAdjustment 

(optional), perturbationBases. 
— The NTRUSign basisType variable, equal to “standard” or “ transpose” . 
— The selected NTRUSign key generation primitive KGP 

Input:  None 

Output:  An NTRU key pair consisting of the private key (f, g, D) and the public key h 

Operation:  The NTRU key pair shall be computed by the following or an equivalent sequence of steps: 
 
1. Using KGP, with inputs N, q, Df, Dg, DFG, perturbationBases, basisType, KeyNormBound 

(optional), MaxAdjustment (optional), generate an NTRUSign private key (fi, f’ i, hi) for 0 
�
 i 

�
 

perturbationBases and public key h. 
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5.2.2 NTRUSign Signature Operation 

This section defines the NTRUSign signature operation.  Note that within the definition 
of the NTRUSign spaces may be definitions of additional variables (e.g. when defining 
Di, the value di may be specified).  Note that h need not be known if the verification 
primitive VP is performed using alternate methods using the private key (f, g).   

NTRUSign Components: 
— The NTRUSign parameters N, q 
— The NTRUSign security parameter NormBound 

— The NTRUSign message randomization space Dr 

— The selected NTRUSign signature primitive SP 
— (optional) The selected NTRUSign verification primitive VP  
— (optional) The parameter SignFailTolerance 
— The selected NTRUSign message representative generation method MRGM 
— The selected Hash function Hash 
— The selected pseudo-random number generation function PRNG 
— The selected core hash function for the pseudo-random number generator PrngHash 

Input: 
— The signer’s NTRUSign private key (fi, f’ i, hi) for 0 

�
 i 

�
 perturbationBases  

— The message m to be signed, which is a octet string 
— (optional) The signer’s NTRUSign public key h  

Output:  The signature, which is a polynomial s and the message randomization value r 

Operation:  The signature s shall be computed by the following or an equivalent sequence of steps: 
 
1. Set integer SignFail := 0 
2. Select a message randomization value r from the space Dr (this may be done randomly or 

deterministically) 
3. Using MRGM, with inputs m, r and components N, q, lr, Hash, PRNG, PrngHash, generate the 

message representative i. 
4. Using SP, with inputs f, F, i and components N, q, generate the signature s 
5. (optional) If verification checking is desired 

a. Using VP, with inputs s, h, i and components N, q, NormBound, verify the signature s   
b. If s is not a valid signature 

i.  Go to 2 (note that if the same r is chosen, the signature will always fail) 
ii. Set SignFail := SignFail + 1 

iii. If SignFail > SignFailTolerance 
1. Output "Signature Failed" 

6. Output s and r 

5.2.3 NTRUSign Verification Operation 

This section defines the NTRUSign verification operation.        

NTRUSign Components: 
— The NTRUSign parameters N, q 
— The NTRUSign security parameter NormBound 
— The NTRUSign message randomization space Dr 

— The selected NTRUSign verification primitive VP  
— The selected NTRUSign message representative generation method MRGM 
— The selected hash function Hash 
— The selected pseudo-random number generation function PRNG 
— The selected core hash function for the pseudo-random number generator PrngHash 
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Input: 
— The signer’s NTRUSign public key h 
— The signature to be verified, which is a polynomial s 
— The message m for which s is alleged to be a signature 
— The message randomization value r 

Output:  A message indicating that the signature is either “valid” or “ invalid”  

Operation:  A signature s shall be verified by the following or an equivalent sequence of steps: 
 

1. Using MRGM, with inputs m, r and components N, q, lr, Hash, PRNG, PrngHash, generate the 
message representative i. 

2. Using VP, with inputs s, h, i and components N, q, NormBound, verify the signature s. 
3. If the verification is successful, output “valid”  and stop. 
4. Output “ invalid.”  

 

5.3 Supported Parameter Choices 
This section defines specific sets of parameters for the NTRUSign signature scheme 
(SVSSA) that are supported by the EESS #1 standard.  The parameters chosen in these 
sets must be used as a group and may not be mixed and matched.  Each parameter set is 
chosen to maximize both security and efficiency for the selected security level.  The best 
known attacks on these parameter sets appear to be measurable based on the parameter N, 
i.e. a larger N represents a stronger security level.  No other sets of parameters shall be 
used. 
 
The domain parameters for each parameter sets are required and shall be used whenever 
the parameter set is specified.  The security parameters are recommended for use with the 
specified domain parameters.  The primitives and encoding methods are typically 
specified at a higher level, but recommended choices are listed. 

5.3.1 ees251sp2 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp2.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 2 (2).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.1.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 

5.3.1.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
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MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
KGP-NTRUSign1 
perturbationBases = 0 
basisType = “standard”  

5.3.1.3 NTRUSign Scheme Options (required) 

NormBound = 310 
Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
SVVP-NTRU  
MRGM-NTRUSign2 with 
 c = 8 
 NumGroups = 13 
 NumElements = 3  

SHA-1 (Hash) 
PRNG-MGF1 with SHA-1 (PRNG) 

5.3.2 ees251sp3 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp3.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 3 (3).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.2.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 

5.3.2.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
KGP-NTRUSign1 
perturbationBases = 0 
basisType = “standard”  

5.3.2.3 NTRUSign Scheme Options (required) 

NormBound = 310 
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Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
SVVP-NTRU  
MRGM-NTRUSign2 with 
 c = 8 
 NumGroups = 13 
 NumElements = 3  

SHA-1 (Hash) 
PRNG-MGF1 with MDC-NTRU (PRNG) 

5.3.3 ees251sp4 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp4.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 4 (4).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.3.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 

5.3.3.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
KGP-NTRUSign1 
perturbationBases = 0 
basisType = “standard”  

5.3.3.3 NTRUSign Scheme Options (required) 

NormBound = 310 
Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
SVVP-NTRU  
MRGM-NTRUSign1 with 

SHA-1 (Hash) 
PRNG-MGF1 with SHA-1 (PRNG) 
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5.3.4 ees251sp5 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp5.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 5 (5).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.4.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 

5.3.4.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
KGP-NTRUSign1 
perturbationBases = 0 
basisType = “standard”  

5.3.4.3 NTRUSign Scheme Options (required) 

NormBound = 310 
Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
SVVP-NTRU  
MRGM-NTRUSign1 with 

SHA-1 (Hash) 
PRNG-MGF1 with MDC-NTRU (PRNG) 

5.3.5 ees251sp6 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp6.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 6 (6).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.5.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 
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5.3.5.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
KGP-NTRUSign1 
perturbationBases =  1 
basisType = “transpose” 

5.3.5.3 NTRUSign Scheme Options (required) 

NormBound = 310 
Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
SVVP-NTRU  
MRGM-NTRUSign2 with 
 c = 8 
 NumGroups = 13 
 NumElements = 3  

SHA-1 (Hash) 
PRNG-MGF1 with SHA-1 (PRNG) 

5.3.6 ees251sp7 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp7.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 3 (7).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.6.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 

5.3.6.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
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KGP-NTRUSign1 
perturbationBases =  1 
basisType = “transpose” 

5.3.6.3 NTRUSign Scheme Options (required) 

NormBound = 310 
Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
SVVP-NTRU  
MRGM-NTRUSign2 with 
 c = 8 
 NumGroups = 13 
 NumElements = 3  

SHA-1 (Hash) 
PRNG-MGF1 with MDC-NTRU (PRNG) 

5.3.7 ees251sp8 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp8.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 8 (8).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.7.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 

5.3.7.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
KGP-NTRUSign1 
perturbationBases =  1 
basisType = “transpose” 

5.3.7.3 NTRUSign Scheme Options (required) 

NormBound = 310 
Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
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SVVP-NTRU  
MRGM-NTRUSign1 with 

SHA-1 (Hash) 
PRNG-MGF1 with SHA-1 (PRNG) 

5.3.8 ees251sp9 

This section specifies the selected domain parameters, security parameters, primitives, 
encoding methods and supporting methods for the parameter set ees251sp9.  This 
parameter set name stands for efficient embedded security (ees) signature parameters (sp) 
with degree 251 (251) set 9 (9).  The object identifier for this parameter set is specified in 
section A.1. 

5.3.8.1 NTRUSign Domain Parameters (required) 

N = 251 
q = 128 

5.3.8.2 NTRUSign Security Parameters (recommended) 

Df = f where 
df = 73 

Dg = g, where 
 dg = 71 
DFG = any valid F, G 
MaxAdjustment = 200 
SignFailTolerance = 0 
KeyNormBound = None 
KGP-NTRUSign1 
perturbationBases =  1 
basisType = “transpose” 

5.3.8.3 NTRUSign Scheme Options (required) 

NormBound = 310 
Dr = random r where 
 lr = 1 (e.g. r is a single random octet) 
SVSP-NTRU 
SVVP-NTRU  
MRGM-NTRUSign1 with 

SHA-1 (Hash) 
PRNG-MGF1 with MDC-NTRU (PRNG) 

6 ASN.1 Syntax 
This section covers the representation of cryptographic objects used in NTRUEncrypt in 
terms of ASN.1 Syntax.  This is important for use with certificates, certificate revocation 
and other cryptographic messages.  In particular, ASN.1 syntax is used to represent the 
contents of X.509 certificates.  Some additional object identifiers and placeholders for 
ASN.1 syntax for NTRUSign are included in the ASN.1 module in Annex A for 
informational purposes. 
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6.1 General Types 

6.1.1 General Vector Types 

This section defines the ASN.1 syntax for vector types that are used to represent 
polynomials for NTRUEncrypt.  There are three primary types of vectors – public 
vectors, binary vectors and trinary vectors.  Public vectors are polynomials that have N 
coefficients that are reduced modulo q.  Binary vectors are polynomials that have N 
coefficients that are reduced modulo p, where p = 2 + X, making the coefficients all 
either 0 or 1.  Trinary vectors are polynomials that have N coefficients that are reduced 
modulo p, where p = 3, making the coefficients either 0, 1 or –1.   Coefficients in the 
vectors are always represented as positive integers, however since the coefficients are 
taken modulo either p or q, they should be reduced into the appropriate interval before 
being used (e.g. modulo 3 numbers are reduced to 0, 1 or -1 and modulo q numbers are 
usually reduced into the interval –q/2 <= x <= q/2). 
 
All of the vector types consist of a string of integer values that are concatenated and 
stored in an OCTET STRING.  Each integer is encoded by taking the smallest positive 
representation of the integer modulo p, q or N (e.g. taking –1 as a mod 3 number gives 
you the integer 2), encoding it with I2OSP, and then using OS2BSP (see section 2.3) to 
obtain a bit string of the appropriate length (e.g. truncating the leftmost 6 bits to obtain 2 
bits for a mod 3 coefficient).  The integer is recovered by obtaining the correct bit string 
(e.g. for packed NTRUEncrypt 251, each coefficient is represented by 7 bits), and using 
BS2OSP and then OS2IP (see section 2.3).  So, to encode the value 55 as a 7-bit value, 
the integer is encoded as the octet 00110111 (using I2OSP) and then it is truncated on the 
left (using OS2BSP with the desired length set to 7) to obtain the bit string 0110111.  To 
obtain the value of the coefficient represented by the bit string 0110111, the bit string is 
expanded on the left to obtain the octet 00110111 (using BS2OSP) and then converted to 
the integer 55 (using OS2IP).  
 
NTRUPublicVector ::= CHOICE { 
 modQVector   [0] IMPLICIT ModQVector, 
 packedModQVector  [1] IMPLICIT PackedModQVector, 
 … 
} 
  
NTRUBinaryVector ::= CHOICE { 

listedBinaryVector  [0] IMPLICIT ListedBinaryVector, 
 packedBinaryVector [1] IMPLICIT PackedBinaryVector, 
 modQVector  [2] IMPLICIT ModQVector, 
 …  
} 
 
Binary vectors in NTRUEncrypt usually arise from reducing some polynomial mod 2 + 
X. When a polynomial is reduced mod 2 + X using the techniques given in EESS#1, it is 
possible to get an “exception case result” , which is the polynomial 2 + X2 + X4 + … + XN-

1. This exception case cannot be encoded as a listed or packed binary vector, and must be 
encoded as a ModQVector.  
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ModQVector ::= OCTET STRING 
 
The contents of this OCTET STRING are obtained by converting a ring element to a octet 
string using the RE2OSP conversion primitive.  A ModQVector is a representation of a 
polynomial of degree N and must include all N coefficients, even if the high-order ones 
are zero. 
 
This is the preferred format for public keys, encrypted values and signatures.  
 
PackedModQVector ::= OCTET STRING 
 
The contents of this OCTET STRING are obtained by converting a ring element to a octet 
string using the RE2POSP conversion primitive.  A PackedModQVector is a 
representation of a polynomial of degree N and must include all N coefficients, even if 
the high-order ones are zero. 
 
For the NTRUEncrypt parameter sets in this standard, there is no difference between the 
ModQVector representation and the PackedModQVector representation. For the 
NTRUSign parameter sets, use of the PackedModQVector representation may result in 
saving about N bits per vector. 
 
ListedBinaryVector ::= OCTET STRING 
 
This OCTET STRING is to be interpreted as a sequence of 1-byte (for N < 256) or 2-byte 
(for 256 �  N < 512) unsigned integers.  Each integer corresponds to a coefficient of the 
polynomial that is equal to 1.  All coefficients that are not included in the list are equal to 
0.   As an example, the byte 0x25 (for N = 251) would indicate that the coefficient of the 
polynomial of degree 37 (i.e. X37) is 1.  The integers must be listed in ascending order 
numerically and no coefficient may be listed more than once.  This is the preferred format 
for NTRUEncrypt private key components. 
 
PackedBinaryVector ::= OCTET STRING 
 
This OCTET STRING is to be interpreted as a sequence of 1-bit unsigned integers.  These 
integers are packed into the OCTET STRING starting from the least significant bit of the 
first byte, without any additional padding, irrespective of the byte boundaries of the 
OCTET STRING.  The most significant bits of the final byte of the OCTET STRING are 
padded with 0's if necessary.  Each integer corresponds to a single coefficient value x in 
the range 0 <= x <= 1, ordered from lowest degree to highest.  For NTRUEncrypt-251 (or 
NTRUSign-251), NTRUEncrypt-347 and NTRUEncrypt-503, a PackedBinaryVector wil l 
take up 32 bytes (the last 5 bits are set to 0), 44 bytes (the last 5 bits are set to 0) and 63 
bytes (the last bit is set to 0) respectively. 
 
Note that the contents of a PackedBinaryVector are different from the result of encoding 
the binary vector with BRE2OSP. 
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We define two further types, which can be used to represent a polynomial of arbitrary 
degree: 
 
NTRUGeneralPolynomial ::= SEQUENCE { 
 numberOfEntries INTEGER, 
 modulus  INTEGER, 
 coefficients  GeneralVector 
} 
 
This SEQUENCE defines a polynomial with any integer modulus and any degree.  The 
INTEGER called numberOfEntries is equal to the degree + 1 of the polynomial and 
represents the number of coefficients to be listed.  The INTEGER called modulus is a 
modulus or more generally, modulus is an upper bound on the value of the coefficients of 
the polynomial.  The GeneralVector called coefficients is the concatenation of the values 
of the coefficients of the polynomial, obtained by treating the polynomial as if it were of 
degree numberOfEntries–1, converting this polynomial to an octet string using RE2OSP, 
and encoding the result as a ModQVector. 
 
GeneralVector ::= OCTET STRING 
 
This OCTET STRING is to be interpreted as a ModQVector except that only coefficients 
of the polynomial up to the specified numberOfEntries are included in the OCTET 
STRING.  So, for NTRUEncrypt-251 with a modulus q of 128, the polynomial 2 + X 
(which is the small modulus p) could be encoded as an NTRUGeneralPolynomial with 
numberOfEntries equal to 2, modulus equal to 128, and a GeneralVector whose value is 
two bytes long. 

6.1.2 Object Identifiers 

This standard uses the following base object identifiers. 
 
ntru OBJECT IDENTIFIER ::= { 

iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1) 
ntruCryptosystems (8342) } 

 
id-eess1 OBJECT IDENTIFIER ::= { ntru eess (1) eess-1 (1) } 
 

id-eess1-algs OBJECT IDENTIFIER ::= {id-eess1  1} 
id-eess1-params OBJECT IDENTIFIER ::= {id-eess1  2} 
id-eess1-encodingMethods OBJECT IDENTIFIER ::= {id-eess1 3} 

6.2 ASN.1 for NTRUEncrypt SVES 
This section defines the ASN.1 object identifiers for NTRUEncrypt keys and 
NTRUEncrypt encrypted data, and defines the types NTRUPublicKey, NTRUPrivateKey, 
NTRUEncryptedData, and EESS1v1-SVES-Parameters.  
 
The object identifier id-ntru-EESS1v1-SVES identifies NTRUEncrypt public and private 
keys and NTRUEncrypt-encrypted data. When this object identifier is used in an 
AlgorithmIdentifier, the parameters shall be of type EESS1v1-SVES-Parameters.  
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Note that EESS#1 breaks with common practice in requiring that a key be encoded with 
the scheme parameters (such as a mask generation function identifier for NTRUEncrypt 
or the verification bounds for NTRUSign) as well as with the algorithm domain 
parameters (such as N, q and p). Ensuring that a key can only be used in one scheme 
provides a defense against version rollback attacks and is good security practice. 
 
This section of this standard only defines ASN.1 for the currently supported parameter 
sets. ASN.1 for previously parameter sets will appear in a future appendix to this 
standard. 

6.2.1 NTRUEncrypt Public Keys 

 
NTRUEncrypt public keys are identified by the following object identifier: 
 
id-ntru-EESS1v1-SVES OBJECT IDENTIFIER  ::= {id-eess1-algs  1} 
 
The parameters field associated with this OID in an AlgorithmIdentifier shall have the 
type EESS1v1-SVES-params, defined in section 6.2.4 below. 
 
NTRUEncrypt public keys should be represented with the following syntax: 
 
 
NTRUPublicKey ::= SEQUENCE { 

 publicKeyVector  NTRUPublicVector,  -- h 
ntruKeyExtensions NTRUKeyExtensions OPTIONAL 
} 

 
NTRUKeyExtensions ::= SEQUENCE SIZE(1..MAX) OF NTRUKeyExtension 

 
NTRUKeyExtension ::= CHOICE { 

 keyID  [0] IMPLICIT INTEGER, 
 …} 

 
The fields of the type NTRUPublicKey have the following meanings: 
 

• publicKeyVector is the polynomial h.  If the NTRUPublicVector is a ModQVector, 
each coefficient will be represented by one byte starting with the lowest degree 
and going to the highest.  If the NTRUPublicVector is a PackedModQVector, this is 
the octet string representing h obtained using RE2BSP and then BS2OSP.  All 
coefficients up to XN-1 shall be explicitly included in publicKeyVector. 
Representing the NTRUEncrypt public key as a ModQVector is the preferred 
method. 

• ntruKeyExtensions is provided for future extensibility. Only one extension is 
defined in EESS#1. 

 
The fields of the type NTRUKeyExtension have the following meanings: 
 

• keyID can be used to associate a unique key identifier with the key. 
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• The “…” is used to indicate this object is extensible. Additional types may be 
added in future versions. 

6.2.2 NTRUEncrypt Private Keys 

 
NTRUEncrypt private keys are identified by the following object identifier: 
 
id-ntru-EESS1v1-SVES OBJECT IDENTIFIER  ::= {id-eess1-algs  1} 
 
They are distinguished from NTRUEncrypt public keys by form and by context. The 
parameters field associated with this OID in an AlgorithmIdentifier shall have the type 
EESS1v1-SVES-params, defined in section 6.2.4 below. 
 
An NTRUEncrypt private key should be represented with the following syntax: 
 
NTRUPrivateKey ::= SEQUENCE { 
 version   INTEGER, 
 publicKeyVector NTRUPublicVector OPTIONAL, 
 privateKeyType PrivateKeyType, 
 ntruPrivateKeyVectors NTRUPrivateKeyVectors, 

…} 
 
PrivateKeyType ::= INTEGER 
 
NTRUPrivateKeyVectors ::= SEQUENCE { 
 fVectors FVectors, 
 gVectors GVectors OPTIONAL } 
 
FVectors ::= SEQUENCE OF NTRUBinaryVector 
 
GVectors ::= SEQUENCE OF NTRUBinaryVector 
 
The fields of the type NTRUPrivateKey have the following meanings: 
 

• version is the version number, for compatibility with future revisions of this 
document. It shall be 0 for this version of the document. 

• publicKeyVector is the public key associated with the private key. To complete the 
ciphertext validity check when decrypting, the decrypter must know the public 
key. It can be provided either explicitly in this field, or implicitly by providing the 
GVectors in the ntruPrivateKeyVectors field. 

• privateKeyType determines the format of the private key vector. Type 1 keys have 
the form f = 1 + p* (f1* f2 + f3) with f1, f2 and f3 listed in that order in the 
ntruPrivateKeyVectors field. Type 2 keys have the form f = 1 + p*F with F listed 
in the ntruPrivateKeyVectors field. 

 
The fields of the type NTRUPrivateKeyVectors have the following meanings: 
 

• fVectors contains the f-vectors: f1, f2 and f3 if the key is of type1, F if the key is 
of type 2. The preferred format for each FVector is ListedBinaryVector. 
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• gVectors contains the vector g. This field need only be included if the 
publicKeyVector field in the NTRUPRIVATEKEY is omitted. As with FVectors, 
the preferred format for each GVector is ListedBinaryVector.  

6.2.3 NTRUEncrypt Encrypted Data 

 
NTRUEncrypt encrypted data are identified by the following object identifier: 
 
id-ntru-EESS1v1-SVES OBJECT IDENTIFIER  ::= {id-eess1-algs 1} 
 
The parameters field associated with this OID in an AlgorithmIdentifier shall have the 
type EESS1v1-SVES-params, defined in section 6.2.4 below. 
 
NTRUEncrypt encrypted data should be represented with the NTRUEncryptedData type: 
 
NTRUEncryptedData ::= NTRUPublicVector 
 
The preferred format for NTRUEncryptedData is a ModQVector. 

6.2.4 NTRUEncrypt Parameters 

This section defines the parameters associated with the id-ntru-EESS1v1-SVES OID in an 
AlgorithmIdentifier. These parameters shall have type EESS1v1-SVES-Parameters: 
 
EESS1v1-SVES-Parameters ::= CHOICE { 
 degree    Degree, -- this choice is deprecated 
 standardNTRUParameters StandardNTRUParameters, 
 explicitNTRUParameters ExplicitNTRUParameters, 
 externalParameters  NULL } 
 
StandardNTRUParameters ::= OIDS.&id({NTRUParameters}) 
 
NTRUParameters OIDS ::= { 

{ OID id-ees251ep4 } | 
{ OID id-ees251ep5 } | 

 … -- allows for future expansion 
 -- other OIDs defined in previous versions of this standard are deprecated 
 } 
 
id-ees251ep4 OBJECT IDENTIFIER ::= {id-eess1-params 12} 
id-ees251ep5 OBJECT IDENTIFIER ::= {id-eess1-params 13} 
 

• degree gives the degree of the polynomials. If this field is specified, it can only 
take the values 251, 347 or 503. If it is 251, the parameters are eess251ep1. If it is 
347, the parameters are eess347ep1. If it is 503, the parameters are eess503ep1. 
Specifying the degree is the preferred way of transmitting parameter information 
for this scheme. 

• standardNTRUParameters identifies the parameters by use of an OID. In this 
document, six OIDs are defined: eess139ep1, eess139ep2, eess251ep1, 
eess251ep2, eess347ep1 and eess503ep1. The parameter sets eess251ep1, 
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eess347ep1 and eess503ep1 can be specified in this version of the document by 
choosing to specify the degree field instead. 

• explicitNTRUParameters allows an implementer to specify parameter sets other 
than those specified in this document. It is not supported in this version of this 
document. 

• externalParameters should be used if the parameters are being inherited from 
some other source (for example, in X.509 certificates, if the parameters are being 
inherited from the CA’s parameters). 

6.3 ASN.1 for NTRUSign SVSSA 
This section defines the ASN.1 object identifiers for NTRUSign keys and NTRUSign 
signed data, and defines the types NTRUSignPublicKey, NTRUSignPrivateKey, 
NTRUSignedData, and EESS1v1-NTRUSign-Parameters.  
 
The object identifier id-ntru-EESS1v1-NTRUSign identifies NTRUSign public and private 
keys and NTRUSign signed data. When this object identifier is used in an 
AlgorithmIdentifier, the parameters shall be of type EESS1v1-NTRUSign-Parameters.  
 
Note that EESS#1 breaks with common practice in requiring that a key be encoded with 
the scheme parameters (such as the verification norm bound for NTRUSign) as well as 
with the algorithm domain parameters (such as N, q and p). Ensuring that a key can only 
be used in one scheme provides a defense against version rollback attacks and is good 
security practice. 

6.3.1 NTRUSign Public Keys 

NTRUSign public keys are identified by the following object identifier:  
 
id-ntru-EESS1v1-NTRUSign  OBJECT IDENTIFIER ::=  {id-eess1-algs 3}  
 
The parameters associated with this OID in an AlgorithmIdentifier shall have the type 
EESS1v1-NTRUSign-Parameters, defined in section 6.3.4 below. 
 
The NTRUSign public key MUST be encoded using the ASN.1 type 
NTRUSignPublicKey.  
 
NTRUSignPublicKey ::= SEQUENCE {  
        publicKeyVector         NTRUPublicVector,  -- h  
        ntruSignKeyExtensions  NTRUSignKeyExtensions OPTIONAL  
}  
 
NTRUSignKeyExtensions ::=  SEQUENCE SIZE(1..MAX) OF NTRUSignKeyExtension  
 
NTRUSignKeyExtension ::= CHOICE {  
        keyID           [0] IMPLICIT INTEGER,  
...}  
 
The fields of the type NTRUSignPublicKey have the following meanings:  
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• publicKeyVector is the polynomial h.  If the NTRUPublicVector is a ModQVector, 
each coefficient will be represented by one byte starting with the lowest degree 
and going to the highest.  If the NTRUPublicVector is a PackedModQVector, this is 
the OCTET STRING representing h obtained using RE2BSP and then BS2OSP as 
defined in section 2.1.2.  All coefficients up to XN-1 SHALL be explicitly included 
in publicKeyVector.  Representing the NTRUSign public key as a ModQVector is 
the preferred method.  

• ntruSignKeyExternsions is provided for future extensibility.  Only one extension 
is currently defined.  

 
The fields of the type NTRUSignKeyExtension have the following meanings:  
 

• keyID can be used to associate a unique key identifier with the key.  

6.3.2 NTRUSign Private Keys Syntax 

 
NTRUSign private keys are identified by the following object identifier:  
 
id-ntru-EESS1v1-NTRUSign  OBJECT IDENTIFIER ::=  {id-eess1-algs 3}  
 
They are distinguished from NTRUSign public keys by form and by context. The 
parameters associated with this OID in an AlgorithmIdentifier shall have the type 
EESS1v1-NTRUSign-Parameters, defined in section 6.3.4 below. 
 
The NTRUSign private key should be encoded with the following syntax.  
 
NTRUEncryptPrivateKey ::= SEQUENCE { 
 version    INTEGER, 
 publicKeyVector  NTRUPublicVector OPTIONAL, 
 ntruSignPrivateKeyVectors  NTRUSignPrivateKeyVectors, 

…} 
 
NTRUSignPrivateKeyVectors ::= SEQUENCE { 
 mainKey NTRUSignMainKey, 
 perturbations SEQUENCE OF { 
    NTRUSignPerturbationKey 
   } 
            } 
 
NTRUSignMainKey ::= SEQUENCE { 
 f  NTRUSignKeyVector 
 fPrime  NTRUSignKeyVector 
} 
 
NTRUSignPerturbationKey ::= SEQUENCE { 
 f  NTRUSignKeyVector 
 fPrime  NTRUSignKeyVector 
 h1minusH NTRUPublicVector 
} 
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NTRUSignKeyVector ::= CHOICE { 
 listedBinaryVector [0] IMPLICIT ListedBinaryVector, 
 packedBinaryVector [1] IMPLICIT PackedBinaryVector, 
 productFormKey [2] IMPLICIT ProductFormKey, 
 modQVector  [3] IMPLICIT ModQVector, 
 packedModQVector [4] IMPLICIT PackedModQVector 
} 
 
ProductFormKey ::= SEQUENCE { 
 a1 ListedBinaryVector, 
 a2 ListedBinaryVector, 
 a3 ListedBinaryVector, 
} 
-- product form keys are of the form a1*a2+a3 
 
The fields of the type NTRUPrivateKey have the following meanings: 
 

• version is the version number, for compatibility with future revisions of this 
document. It shall be 1 for this version of the document. Previous versions of this 
document used version number 0; this version is no longer supported. 

• publicKeyVector is the public key associated with the private key. It can be 
provided either explicitly in this field, or implicitly by providing the GVectors in 
the ntruPrivateKeyVectors field. 

• ntruSignPrivateKeyVectors contains the private key vectors as specified below.. 
 
The fields of the type NTRUSignPrivateKeyVectors have the following meanings: 
 

• mainKey contains the polynomials f0, f’ 0, as output by the key generation 
primitive. 

• perturbations contains the perturbation keys (f1, f’ 1) … (f B, f’ B), in that order. The 
number of perturbations is not explicitly stored, but can be deduced from the 
number of NTRUSignPerturbationKeys contained in perturbations. 

 
The fields of the type NTRUSignMainKey have the following meanings: 
 

• f contains the polynomial f0, as output by the key generation primitive. For the 
parameter sets in this standard, f0 will be binary and the preferred encoding of this 
polynomial is as a PackedBinaryVector. 

• f contains the polynomial f’ 0, as output by the key generation primitive. For the 
parameter sets ees251sp2 – ees251sp5 in this standard, f’ 0 will be a mod q 
polynomial and the preferred encoding of this polynomial is as a ModQVector. For 
the parameter sets ees251sp6 – ees251sp9 in this standard, f’0 will be a binary 
polynomial and the preferred encoding of this polynomial is as a 
PackedBinaryVector. 

 
The fields of the type NTRUSignPerturbationKey have the following meanings for 
perturbation key i: 
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• f contains the polynomial fi, as output by the key generation primitive. For the 
parameter sets in this standard, fi will be binary and the preferred encoding of this 
polynomial is as a PackedBinaryVector. 

• f contains the polynomial f’ i, as output by the key generation primitive. For the 
parameter sets ees251sp6 – ees251sp9 in this standard, f’ 0 will be a binary 
polynomial and the preferred encoding of this polynomial is as a 
PackedBinaryVector. (For the parameter sets ees251sp2 – ees251sp5 in this 
standard, there are no perturbation keys). 

• h1minush contains the polynomial hi – hi-1, as output by the key generation 
primitive. 

 
The fields of the type NTRUSignKeyVectors have the following meanings: 
 

• listedBinaryVector contains the relevant polynomial encoded as a 
ListedBinaryVector. 

• packedBinaryVecto contains the relevant polynomial encoded as a 
PackedBinaryVector. 

• productFormKey contains the relevant polynomial encoded as a ProductFormKey. 
• modQVector contains the relevant polynomial encoded as a ModQVector. 
• packedModQVector contains the relevant polynomial encoded as a 

PackedModQVector. 

6.3.3   NTRUSign Signed Data 

 
NTRUSign signed data are identified by the following object identifier: 
 
id-ntru-EESS1v1-NTRUSign OBJECT IDENTIFIER  ::= {id-eess1-algs 3} 
 
The parameters field associated with this OID in an AlgorithmIdentifier shall have the 
type EESS1v1-NTRUSign-Parameters, defined in section 6.3.4 below. 
 
NTRUSign signed data should be represented with the NTRUSignSignededData type: 
 
NTRUSignSignedData ::= NTRUPublicVector 
 
The preferred format for NTRUSignSignedData is a ModQVector. 

6.3.4 NTRUSign Parameters 

This section defined the parameters associated with the id-ntru-EESS1v1-NTRUSign OID 
in an AlgorithmIdentifier. These parameters shall have type EESS1v1-NTRUSign-
Parameters: 
 
EESS1v1-NTRUSign-Parameters ::= CHOICE {  
        degree                      Degree, -- deprecated 
        standardNTRsUSignParameters     StandardNTRUSignParameters,  
        explicitNTRUSignParameters   ExplicitNTRUSignParameters,  
        externalParameters         NULL   
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}  
 
When the parameters are implied by context, the parameters field SHALL contain 
externalParameters, which is the ASN.1 value NULL.    
 
When the parameters are specified by reference of a standard, the parameters shall consist 
of an OID chosen from the list NTRUSignParameters.  The current list of 
NTRUSignParameters OIDs is:  
 
StandardNTRUSignParameters ::= OIDS.&id({NTRUSignParameters})  
 
NTRUSignParameters  OIDS ::= {  
        { OID id-ees251sp2 },  
        { OID id-ees251sp3 },  
        { OID id-ees251sp4 },  
        { OID id-ees251sp5 },  
        { OID id-ees251sp6 },  
        { OID id-ees251sp7 },  
        { OID id-ees251sp8 },  
        { OID id-ees251sp9 },  
...}  
 
The above object identifiers are specified by:  
 
id-ees251sp2  OBJECT IDENTIFIER ::= {id-eess1-params 7}  
id-ees251sp3  OBJECT IDENTIFIER ::= {id-eess1-params 14}  
id-ees251sp4  OBJECT IDENTIFIER ::= {id-eess1-params 15}  
id-ees251sp5  OBJECT IDENTIFIER ::= {id-eess1-params 16}  
id-ees251sp6  OBJECT IDENTIFIER ::= {id-eess1-params 17}  
id-ees251sp7  OBJECT IDENTIFIER ::= {id-eess1-params 18}  
id-ees251sp8  OBJECT IDENTIFIER ::= {id-eess1-params 19}  
id-ees251sp9  OBJECT IDENTIFIER ::= {id-eess1-params 20}  
 
When the parameters are explicitly included, they SHALL be encoded in the ASN.1 
structure ExplicitNTRUSignParameters. This structure is not supported in this version of 
this standard. 

6.4 X.509 Certificates 
-- The following section is written in ASN.1 notation.  This section specifies 
-- the basic ASN.1 structure for EESS X.509 certificates.  Embedded within the  
-- normal X.509 data are comments indicating the preference for EESS certificates. 
-- The X.509 structure below is written to be compliant with the current draft of the 
-- ITU-T recommendation [X.509] and the IETF PKIX ID son-of-rfc 2459  
-- [ID son-of-rfc2459]. 
-- These formats are recommended for interoperability, but are not mandated by this 
-- standard. 
 
Certificate  ::=  SEQUENCE  { 
        tbsCertificate       TBSCertificate, 
        signatureAlgorithm   AlgorithmIdentifier, 
        signatureValue       BIT STRING  
}   
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   TBSCertificate  ::=  SEQUENCE  { 
        version         [0]  EXPLICIT Version DEFAULT v1, 
        serialNumber         CertificateSerialNumber, 
        signature            AlgorithmIdentifier, 
        issuer               Name, 
        validity             Validity, 
        subject              Name, 
        subjectPublicKeyInfo SubjectPublicKeyInfo, 
        issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL, 
                             -- If present, version shall be v2 or v3 
  -- The issuerUniqueID is deprecated and  
  -- should not be used for EESS certificates. 
        subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL, 
                             -- If present, version shall be v2 or v3 
    -- The subjectUniqueID is deprecated and  
  -- should not be used for EESS certificates. 
      extensions      [3]  EXPLICIT Extensions OPTIONAL 
                             -- If present, version shall be v3 
  -- Extensions are expected in EESS certificates. 
        } 
 
   Version  ::=  INTEGER  {  v1(0), v2(1), v3(2)  } 
  -- EESS certificates shall be version 3. 
 
   CertificateSerialNumber  ::=  INTEGER 
  -- CertificateSerialNumber is not restricted and is  
  -- implementation specific. 
 
   AlgorithmIdentifier ::= SEQUENCE { 
        algorithm      OBJECT IDENTIFIER, 
        parameters       ANY DEFINED BY algorithm OPTIONAL } 

-- The algorithm identifier for NTRUSign signatures is specified  
-- in sections 6.3.3.   

 
Name ::= CHOICE { 
     RDNSequence } 
  -- The CHOICE shall be RDNSequence 
 
   RDNSequence ::= SEQUENCE OF RelativeDistinguishedName 
  -- There are no restrictions on the number of 
  -- RelativeDistinguishedNames in a name. 
   
   RelativeDistinguishedName ::= SET OF AttributeTypeAndValue 
  -- There is almost always one AttributeTypeAndValue 
  -- per RelativeDistinguishedName 
 
   AttributeTypeAndValue ::= SEQUENCE { 
     type     AttributeType, 
     value    AttributeValue } 
 
   AttributeType ::= OBJECT IDENTIFIER 
   AttributeValue ::= ANY DEFINED BY AttributeType 
  -- Where there is a DirectoryString, the preferred type is 
  -- UTF8String.  In [ID son-of-rfc2459]], it is stated that after  

-- December 31, 2003, all DirectoryStrings must be UTF8String encoded. 
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  Validity ::= SEQUENCE { 
        notBefore      Time, 
        notAfter       Time } 
  -- The validity period is application specific and 
  -- not specified in this document. 
 
   Time ::= CHOICE { 
        utcTime        UTCTime, 
        generalTime    GeneralizedTime } 
  -- Following the rules for UTCTime and GeneralizedTime, 
  -- the choice will be UTCTime for all years through 2049. 
  -- The time value should be encoded as (YYMMDDHHMMSSZ), 
  -- where Z stands for GMT. 
 
UniqueIdentifier  ::=  BIT STRING 
  -- This shall not be used. 
 
SubjectPublicKeyInfo  ::=  SEQUENCE  { 
        algorithm            AlgorithmIdentifier, 
        subjectPublicKey     BIT STRING  } 
  -- See sections 6.2.1 and 6.3.1 for NTRUEncrypt and NTRUSign definitions. 
 
Extensions  ::=  SEQUENCE SIZE (1..MAX) OF Extension 
 
Extension  ::=  SEQUENCE  { 
        extnID      OBJECT IDENTIFIER, 
        critical    BOOLEAN DEFAULT FALSE, 
        extnValue   OCTET STRING  } 
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Appendix A - NTRU ASN.1 Module 
 
EESS-1 {iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1) 
ntruCryptosystems(8342) eess(1) eess-1(1) modules(0) eess-1(1)} 
 
-- $ revision: 2.0 $ 

 
DEFINITIONS EXPLICIT TAGS ::= BEGIN 
 
-- EXPORTS All; --                
-- All types and values defined in this module are exported for use in other ASN.1 modules. 
 
-- IMPORTS None; -- 
 
-- Supporting definitions 
 
AlgorithmIdentifier { ALGORITHM: IOSet } ::= SEQUENCE { 
 algorithm ALGORITHM.&id({IOSet}), 
 parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL 
} 
 
ALGORITHM ::= CLASS { 
 &id OBJECT IDENTIFIER  UNIQUE, 
 &Type OPTIONAL 
} 
 WITH SYNTAX { OID &id [PARMS &Type] } 
 
OIDS ::= ALGORITHM 
 
-- Informational object identifiers 
 
pkcs-1 OBJECT IDENTIFIER ::= { 
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 } 
 
id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8} 
 
id-sha1 OBJECT IDENTIFIER ::= {  
 iso(1) identified-organization(3) oiw(14) secsig(3) algorithms(2) 26 } 
 
id-sha256 OBJECT IDENTIFIER ::= { 

joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)  
csor(3)  nistalgorithm(4) hashalgs(2) 1 }; 

 
id-sha384 OBJECT IDENTIFIER ::= { 

joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)  
csor(3)  nistalgorithm(4) hashalgs(2) 2 }; 

 
id-sha512 OBJECT IDENTIFIER ::= { 

joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)  
csor(3)  nistalgorithm(4) hashalgs(2) 3 }; 

 
 
-- Basic object identifiers 
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ntru OBJECT IDENTIFIER ::= { 

iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1) 
ntruCryptosystems (8342) } 

 
id-eess1 OBJECT IDENTIFIER ::= { ntru eess (1) eess-1 (1) } 
 

id-eess1-algs OBJECT IDENTIFIER ::= {id-eess1  1} 
id-eess1-params OBJECT IDENTIFIER ::= {id-eess1  2} 
id-eess1-encodingMethods OBJECT IDENTIFIER ::= {id-eess1 3} 
 
-- algorithms 
 
id-ntru-EESS1v1-SVES OBJECT IDENTIFIER  ::= {id-eess1-algs  1} 
id-ntru-EESS1v1-NTRUSign OBJECT IDENTIFIER  ::= {id-eess1-algs 3} 
id-mdc-2des-ntru OBJECT IDENTIFIER ::= {id-eess1-algs 4} 
 
-- parameter set identifiers 
 
id-ees251ep4 OBJECT IDENTIFIER ::= {id-eess1-params 12} 
id-ees251ep5 OBJECT IDENTIFIER ::= {id-eess1-params 13} 
 
id-ees251sp2  OBJECT IDENTIFIER ::= {id-eess1-params 7}  
id-ees251sp3  OBJECT IDENTIFIER ::= {id-eess1-params 14}  
id-ees251sp4  OBJECT IDENTIFIER ::= {id-eess1-params 15}  
id-ees251sp5  OBJECT IDENTIFIER ::= {id-eess1-params 16}  
id-ees251sp6  OBJECT IDENTIFIER ::= {id-eess1-params 17}  
id-ees251sp7  OBJECT IDENTIFIER ::= {id-eess1-params 18}  
id-ees251sp8  OBJECT IDENTIFIER ::= {id-eess1-params 19}  
id-ees251sp9  OBJECT IDENTIFIER ::= {id-eess1-params 20}  
 
-- General types 
 
ModQVector ::= OCTET STRING 
 
PackedModQVector ::= OCTET STRING 
 
ListedBinaryVector ::= OCTET STRING 
 
PackedBinaryVector ::= OCTET STRING 
 
NTRUGeneralPolynomial ::= SEQUENCE { 
 numberOfEntries  INTEGER, 
 modulus   INTEGER, 
 coefficients   GeneralVector 
} 
 
GeneralVector ::= OCTET STRING 
 
-- NTRUEncrypt Encryption 
 
NTRUPublicVector ::= CHOICE { 
 modQVector   [0] IMPLICIT ModQVector, 
 packedModQVector  [1] IMPLICIT PackedModQVector, 
 … 
} 
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NTRUBinaryVector ::= CHOICE { 

listedBinaryVector  [0] IMPLICIT ListedBinaryVector, 
 packedBinaryVector [1] IMPLICIT PackedBinaryVector, 
 modQVector  [2] IMPLICIT ModQVector, 
 …  
} 
 
NTRUKeyExtension ::= CHOICE { 
 keyID  [0] IMPLICIT INTEGER, 
 …} 
 
NTRUPublicKey ::= SEQUENCE { 
 publicKeyVector  NTRUPublicVector, 
 ntruKeyExtensions SEQUENCE SIZE (1..MAX) OF  

NTRUKeyExtension OPTIONAL } 
 
PrivateKeyType ::= INTEGER 
FVectors ::= SEQUENCE OF NTRUBinaryVector 
GVectors ::= SEQUENCE OF NTRUBinaryVector 
 
NTRUPrivateKeyVectors ::= SEQUENCE { 
 fVectors FVectors, 
 gVectors [0] IMPLICIT GVectors OPTIONAL } 
 
NTRUPrivateKey ::= SEQUENCE { 
 version   INTEGER, 
 publicKeyVector NTRUPublicVector OPTIONAL, 
 privateKeyType PrivateKeyType, 
 ntruPrivateKeyVectors NTRUPrivateKeyVectors, 

…} 
 
NTRUEncryptedData ::= NTRUPublicVector 
 
Degree ::= INTEGER  (251 | 347 | 503, …) 
 
NTRUParameters OIDS ::= { 

{ OID id-ees251ep4 } | 
{ OID id-ees251ep5 } | 

 … -- allows for future expansion 
 -- other OIDs defined in previous versions of this standard are deprecated 
 } 
 
Version ::= INTEGER { v0(0) } (v0, …) 
 
-- NTRUSign Signing 
 
-- Encoding for NTRUSign Signatures  
 
 NTRUSignSignedData ::= NTRUPublicVector  
 
-- Encoding for NTRUSign Public Keys  
 
 NTRUSignPublicKey ::= SEQUENCE {  
         publicKeyVector         NTRUPublicVector,  -- h  
         ntruSignKeyExtensions   NTRUSignKeyExtensions OPTIONAL  
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         }  
           
 NTRUSignKeyExtensions ::=   
         SEQUENCE SIZE(1..MAX) OF NTRUSignKeyExtension  
 
 NTRUSignKeyExtension ::= CHOICE {  
         keyID           [0] IMPLICIT INTEGER,  
         ...}  
 
NTRUEncryptPrivateKey ::= SEQUENCE { 
 version    INTEGER, 
 publicKeyVector  NTRUPublicVector OPTIONAL, 
 ntruSignPrivateKeyVectors  NTRUSignPrivateKeyVectors, 

…} 
 
NTRUSignPrivateKeyVectors ::= SEQUENCE { 
 mainKey NTRUSignMainKey, 
 perturbations SEQUENCE OF { 
    NTRUSignPerturbationKey 
   } 
            } 
 
NTRUSignMainKey ::= SEQUENCE { 
 f  NTRUSignKeyVector 
 fPrime  NTRUSignKeyVector 
} 
 
NTRUSignPerturbationKey ::= SEQUENCE { 
 f  NTRUSignKeyVector 
 fPrime  NTRUSignKeyVector 
 h1minusH NTRUPublicVector 
} 
 
NTRUSignKeyVector ::= CHOICE { 
 listedBinaryVector [0] IMPLICIT ListedBinaryVector, 
 packedBinaryVector [1] IMPLICIT PackedBinaryVector, 
 productFormKey [2] IMPLICIT ProductFormKey, 
 modQVector  [3] IMPLICIT ModQVector, 
 packedModQVector [4] IMPLICIT PackedModQVector 
} 
 
ProductFormKey ::= SEQUENCE { 
 a1 ListedBinaryVector, 
 a2 ListedBinaryVector, 
 a3 ListedBinaryVector, 
} 
-- product form keys are of the form a1*a2+a3 
 
END  -- EESS-1 -- 

Appendix B - Test Vectors 
[To be added in future versions] 
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