

Efficient Embedded Security Standards (EESS)

EESS #1: Implementation Aspects of NTRUEncrypt and
NTRUSign

Consortium for Efficient Embedded Security

June 20th, 2003

Version 2.0

 Consortium for Efficient Embedded Security

License to copy this document is granted provided it is identified as
“Efficient Embedded Security Standards (EESS) #1” in all material referencing it.

Comments regarding this document are welcomed by the editor, William Whyte, wwhyte@ntru.com.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 2 of 78

Table of Contents

1 INTRODUCTION..4

1.1 SCOPE.. 4
1.2 PURPOSE .. 4
1.3 COMPLIANCE ... 5
1.4 EESS PUBLICATION GUIDELINES... 5
1.5 INTELLECTUAL PROPERTY... 5

2 MATHEMATICAL FOUNDATIONS..6

2.1 CONVENTIONS AND NOTATION... 6
2.1.1 Notation .. 6
2.1.2 Bit Strings and Octet Strings .. 7
2.1.3 Algorithm Specification Conventions .. 8

2.2 CONVOLUTION POLYNOMIAL RING REPRESENTATION AND ARITHMETIC 9
2.2.1 Modular Operations on Integers ... 9
2.2.2 Representation of Polynomials... 9
2.2.3 Convolution Polynomial Rings Over the Integers .. 9
2.2.4 Basic Convolution Polynomial Ring Arithmetic .. 9
2.2.5 Reduction of a Polynomial mod q ... 10
2.2.6 Inversion in (Z/qZ)[X]/(XN – 1) .. 10
2.2.7 Resultant Generation... 11

2.3 DATA TYPES AND CONVERSIONS ..13
2.3.1 Converting Between Bit Strings and Octet Strings (BS2OSP and OS2BSP) 13
2.3.2 Converting Between Integers and Octet Strings (I2OSP and OS2IP)............................. 13
2.3.3 Converting Between Integers and Bit Strings (I2BSP and BS2IP).................................. 14
2.3.4 Converting Between Ring Elements and Octet Strings (RE2OSP and OS2REP) 14
2.3.5 Converting Between Ring Elements and Bit Strings (RE2BSP and BS2REP) 15
2.3.6 Converting Between Ring Elements and Packed Octet Strings (RE2POSP and
POS2REP).. 16
2.3.7 Converting Between Binary Ring Elements and Octet Strings (ME2BSP and BS2MEP). 16

3 CRYPTOGRAPHIC BUILDING BLOCKS..18

3.1 NTRUENCRYPT COMPONENTS ..18
3.1.1 NTRUEncrypt Domain Parameters... 18
3.1.2 NTRUEncrypt Security Parameters .. 19
3.1.3 NTRUEncrypt Scheme Options.. 20

3.2 NTRUENCRYPT PRIMITIVES...23
3.2.1 NTRUEncrypt Key Generation Primitives.. 23
3.2.2 NTRUEncrypt Encryption Primitives ... 24
3.2.3 NTRUEncrypt Decryption Primitives ... 24
3.2.4 NTRUEncrypt Decryption Primitive: SVDP-NTRU2... 24

3.3 NTRUENCRYPT ENCODING METHODS ..25
3.3.1 NTRUEncrypt Blinding Value Generation Methods ... 25

3.4 NTRUSIGN COMPONENTS ...26
3.4.1 NTRUSign Domain Parameters ... 26
3.4.2 NTRUSign Security Parameters... 27
3.4.3 NTRUSign Scheme Options... 29

3.5 NTRUSIGN PRIMITIVES ...32
3.5.1 NTRUSign Key Generation Primitives .. 32
3.5.2 NTRUSign Signature Primitives ... 34
3.5.3 NTRUSign Verification Primitives ... 35

3.6 NTRUSIGN ENCODING METHODS...36
3.6.1 NTRUSign Message Representative Generation Methods .. 36

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 3 of 78

3.7 SUPPORTING ALGORITHMS ..38
3.7.1 Hash Functions ... 38
3.7.2 Mask Generation Functions ... 40
3.7.3 Pseudo-Random Number Generation... 41
3.7.4 Random Number Generation ... 43

4 NTRUENCRYPT ENCRYPTION SCHEME (SVES) ...44

4.1 NTRUENCRYPT ENCRYPTION SCHEME (SVES) OVERVIEW ..44
4.2 NTRUENCRYPT ENCRYPTION SCHEME (SVES) OPERATIONS ...45

4.2.1 NTRUEncrypt Key Generation ... 45
4.2.2 NTRUEncrypt Encryption Scheme SVES-3: Encryption .. 46
4.2.3 NTRUEncrypt Encryption Scheme SVES-3: Decryption .. 47

4.3 SUPPORTED PARAMETER SETS ..48
4.3.1 ees251ep4 .. 48
4.3.2 ees251ep5 .. 49

5 NTRUSIGN SIGNATURE SCHEME (SVSSA) ...50

5.1 NTRUSIGN SIGNATURE SCHEME (SVSSA) OVERVIEW ..50
5.2 NTRUSIGN SIGNATURE SCHEME (SVSSA) OPERATIONS ...51

5.2.1 NTRUSign Key Generation .. 51
5.2.2 NTRUSign Signature Operation ... 52
5.2.3 NTRUSign Verification Operation ... 52

5.3 SUPPORTED PARAMETER CHOICES...53
5.3.1 ees251sp2 .. 53
5.3.2 ees251sp3 .. 54
5.3.3 ees251sp4 .. 55
5.3.4 ees251sp5 .. 56
5.3.5 ees251sp6 .. 56
5.3.6 ees251sp7 .. 57
5.3.7 ees251sp8 .. 58
5.3.8 ees251sp9 .. 59

6 ASN.1 SYNTAX ...59

6.1 GENERAL TYPES ...60
6.1.1 General Vector Types.. 60
6.1.2 Object Identifiers ... 62

6.2 ASN.1 FOR NTRUENCRYPT SVES..62
6.2.1 NTRUEncrypt Public Keys ... 63
6.2.2 NTRUEncrypt Private Keys.. 64
6.2.3 NTRUEncrypt Encrypted Data.. 65
6.2.4 NTRUEncrypt Parameters ... 65

6.3 ASN.1 FOR NTRUSIGN SVSSA..66
6.3.1 NTRUSign Public Keys.. 66
6.3.2 NTRUSign Private Keys Syntax ... 67
6.3.3 NTRUSign Signed Data... 69
6.3.4 NTRUSign Parameters .. 69

6.4 X.509 CERTIFICATES ..70

APPENDIX A - NTRU ASN.1 MODULE ...73

APPENDIX B - TEST VECTORS..76

APPENDIX C - REVISION HISTORY ...77

APPENDIX D - REFERENCES...77

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 4 of 78

1 Introduction

1.1 Scope
This document specifies common techniques and implementation choices using the
NTRUEncrypt and NTRUSign public-key cryptography algorithms. Topics covered
include:

• Cryptographic primitives – The building blocks for a secure cryptographic
scheme

• Cryptographic schemes – Complete sequences of operations for performing
secure cryptographic functions

• Supported parameter choices – Specific selections of approved sets of values for
cryptographic parameters

• Certificate formats – Definition of fields for data structures that cryptographically
bind a public key (and other information) to an entity

• ASN.1 syntax for NTRUEncrypt and NTRUSign – Standard formats of
cryptographic data items

In addition, this standard includes relevant information to assist in the development and
interoperable implementation of NTRUEncrypt and NTRUSign, including security
considerations and test vectors.

1.2 Purpose
Enormous investments in wireless and consumer infrastructures mandate the need for
stronger, more efficient security. First-generation security solutions offer inadequate
efficiency and scalability to meet the requirements of mass-market adoption of wireless
and embedded consumer applications. To address this need, new security infrastructures
are emerging and must be carefully, but rapidly, defined.

In order to ensure interoperability within wired and wireless environments and allow for
the rapid deployment of emerging security infrastructures, the Consortium for Efficient
Embedded Security (CEES) began work on the Efficient Embedded Security Standards
(EESS) in order to provide universal specifications for creating secure, interoperable
implementations of highly efficient, highly scalable public-key security.

CEES intends that the EESS will combine the experience and knowledge of experts in
academia as well as in commercial industry to provide a complete specification of well-
studied, efficient and interoperable methodologies using modern public-key techniques.
EESS #1 is designed to specify highly efficient public-key cryptographic techniques that
can be used in highly scalable secure applications.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 5 of 78

1.3 Compliance
Implementations may claim compliance with the cryptographic schemes included in this
standard provided the external interface (input and output) to the schemes is identical to
the interface specified in this document and the supported encoding methods and
parameter selections are used. Internal computations may be performed as specified in
this document, or may be performed via an equivalent sequence of operations. In this
document, the word “shall” implies a requirement for an implementation to meet the
standard, while the word “should” denotes a choice left to the implementer.

1.4 EESS Publication Guidelines
CEES maintains control over the contents and publication of the EESS series. In order to
promote an open standards process, the documents will be made available to the public
on the CEES web site at www.ceesstandards.org. In addition, the Consortium welcomes
input from the community at large. Comments may be submitted to the editor, William
Whyte, at wwhyte@ntru.com.

1.5 Intellectual Property
Compliance with this standard, any other CEES standard, or any standard referenced
herein may be subject to intellectual property claims by third parties. By publication of
this document, CEES takes no position with respect to the validity of such claims. When
possible, the CEES has made efforts to obtain information relating to patent coverage of
techniques included in EESS.

In particular, NTRU Cryptosystems, Inc. has been granted U.S. Patent No. 6,081,597,
which covers aspects of the NTRUEncrypt public-key encryption scheme, and has
applied for a patent (or patents) that covers the NTRUSign public-key signature scheme.
In addition, NTRU Cryptosystems may have applied for additional patent coverage on
implementation techniques defined in this standard.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 6 of 78

2 Mathematical Foundations
The cryptographic techniques specified in this standard require arithmetic in quotient
polynomial rings, also called convolution polynomial rings, defined in section 2.2.3.
Intuitively, these algebraic objects consist of polynomials with integer coefficients.
Manipulation of these ring elements is accomplished by polynomial arithmetic modulo a
fixed polynomial: XN – 1 in this standard. Careful selection of parameters allows fast
implementation of these operations on a microprocessor. For typical values of N,
operations in these rings can be performed with 8-bit shifts, adds and multiplies. The
simplicity of the operations and the ability to perform coefficient operations in parallel
account for the high speed, small footprint and ease of deployment on constrained
devices.

This section includes mathematical background for the techniques in the standard and
provides data conversion methods for use with the cryptographic algorithms.

2.1 Conventions and Notation

2.1.1 Notation

When referring to mathematical objects and data objects in this standard, the following
notation is used. Note that throughout the document, numbers are used to distinguish
different, but related values (e.g. df1, df2, df3).

0 Denotes the integer 0, the bit 0, or the additive identity (the element

zero) of a ring
1 Denotes the integer 1, the bit 1, or the multiplicative identity (the

element one) of a ring
* Indicates the convolution product operation of two polynomials and is

also used to indicate multiplication in the integers
X The indeterminate used in polynomials
Z The ring of integers
mod q Used to reduce the coefficients of a polynomial into some interval of

length q
mod p Used to reduce a polynomial to a representative of the polynomial ring

modulo p
N Dimension of the polynomial ring used (i.e. polynomials are up to

degree N-1)
p “Small” modulus, an integer or a polynomial
q “Big” modulus, usually an integer
h NTRUEncrypt or NTRUSign public key
r Encryption blinding value (generated from the hash of the message m)
f NTRUEncrypt private key; part of NTRUSign private key
g Temporary polynomial used in the key generation process in

NTRUEncrypt; optional part of NTRUSign private key.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 7 of 78

F In NTRUEncrypt, a polynomial that is used (and is often sufficient) to
calculate the value f; in NTRUSign, part of the basis completion space,
stored with the private key.

G In NTRUEncrypt, a polynomial that is used (and is often sufficient) to
calculate the value g; in NTRUSign, part of the basis completion space,
optionally stored with the private key.

i Message representative, a polynomial, computed by a message
encoding operation

e Encrypted message, a polynomial, computed by an encryption primitive
m The message, an octet string, which is encrypted in an encryption

scheme or whose signature is computed by a signature scheme
f*h The convolution product of f and h, where f and h are polynomials
dr An integer specifying the number of ones in the blinding value r
df An integer specifying the number of ones in the polynomials that

comprise the private key value f (usually specified as df1, df2, and df3, or
as dF)

dg An integer specifying the number of ones in the polynomials that
comprise the temporary polynomial g (often specified as dG)

db The number of random bits used as input for encryption
Df The space of allowable values of the polynomial f (there are also spaces

for g, r, h, etc. denoted by Dg, Dr, Dh, etc.)
A NTRUEncrypt average decryption coefficient, used in decryption

process to reduce into correct interval
T Wrapping tolerance value used to determine when the decryption

process fails
ceil[] Ceiling function (i.e. the smallest integer greater than or equal to the

contents of [])
floor[] Floor function (i.e. the largest integer less than or equal to the contents

of [])
Hash() A cryptographic hash function computed on the contents of ()
PRNG() A pseudo-random number generation function seeded with the contents

of ()
MGF() A mask generation function seeded with the contents of ()
A||B Concatenation of the octet strings A and B where the leading octet of A

is the leading octet of A||B and the trailing octet of B is the trailing octet
of A||B.

a := b Initialize or set the value of a equal to the value of b.
DesEncrypt(o,K) The result of encrypting the octet string o with the DES algorithm

[FIP99] under key K.

2.1.2 Bit Strings and Octet Strings

As usual, a bit is defined to be an element of the set { 0, 1} . A bit string is defined to be
an ordered array of bits. A byte (also called an octet) is defined to be a bit string of
length 8. A byte string (also called an octet string) is an ordered array of bytes. The
terms first and last, leftmost and rightmost, most significant and least significant, and

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 8 of 78

leading and trailing are used to distinguish the ends of these sequences (first, leftmost,
most significant and leading are equivalent; last, rightmost, least significant and
trailing are equivalent). Within a byte, we additionally refer to the high-order and low-
order bits, where high-order is equivalent to first and low-order is equivalent to last.

Note that when a string is represented as a sequence, it may be indexed from left to right
or from right to left, starting with any index. For example, consider the octet string of two
octets: 2a 1b. This corresponds to the bit string 0010 1010 0001 1011. No matter what
indexing system is used, the first octet is still 2a, the first bit is still 0, the last octet is still
1b, and the last bit is still 1. The high-order bit of the second octet is 0; the low-order bit
of the second octet is 1.

In this standard, a bit string or an octet string may be used to represent a polynomial with
coefficients reduced mod q, where q is usually either 128 or 256. In this case, the integer
coefficients are mapped individually to bit or octet strings, which are then concatenated.
Allowable mappings and their reverses are described in the conversion primitives
OS2REP, BS2REP, POS2REP, RE2OSP, RE2BSP and RE2POSP in sections 2.3.4,
2.3.5 and 2.3.6.

When a bit string or an octet string is used to represent a polynomial with binary
coefficients, for reasons of efficiency we use a mapping that is different from simply left-
to-right or right-to-left translation of bits into polynomial coefficients. This mapping and
its reverse are described for octet strings in the conversion primitives OS2BEP and
BE2OSP in section 2.3.7. This standard does not specify a means of converting between
bit strings and binary ring elements.

2.1.3 Algorithm Specification Conventions

When specifying an algorithm or method, this standard uses four parts to specify different
aspects of the algorithm. They are as follows:

• Components, such as choice of PRNG, are parameters that are specified before
the beginning of the operation and that are not specific to the particular algorithm
call. Components tend to be kept fixed for multiple users and multiple instances
of the algorithm call and need not be explicitly specified if they are implicitly
known (e.g. if they are defined within a selected object identifier (OID)).

• Inputs, such as keys and messages, are values that must be specified for each
algorithm call.

• Outputs, such as ciphertext, are the result of transformations on the inputs.
• Operations specify the transformations that are performed on the data to arrive at

the output. Throughout the standard, the operations are defined as a sequence of
steps. A conformant implementation may perform the operations using any
sequence of steps that always produces the same output as the sequence in this
standard. Caution should be taken to ensure that intermediate values are not
revealed, however, as they may compromise the security of the algorithms.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 9 of 78

2.2 Convolution Polynomial Ring Representation and Arithmetic
This section describes the representation and arithmetic of quotient ring elements used
throughout the EESS #1 standard.

2.2.1 Modular Operations on Integers

This standard uses integer modular arithmetic in several instances, including operations
on the coefficients in the polynomial representation of a quotient ring element. These
modular operations are performed in the canonical manner, taking the remainder when
the intermediate result is divided by the modulus. In this standard, the representatives of
the congruence classes modulo q are frequently taken to be different from the usual set of
equivalence representatives [0, 1, 2, …, q – 1]. When appropriate, the range of
representatives for modular reduction is specified explicitly.

2.2.2 Representation of Polynomials

Typically in mathematical literature, a polynomial a in X is denoted a(X). In this
standard, when the meaning is clear from the context, polynomials a in the variable X
will simply be denoted a. Further, all polynomials used in this standard have degree N –
1, unless otherwise noted. In addition, given a polynomial a, a variable denoted ai, where
i is an integer, represents the coefficient of a of degree i. In other words, the polynomial
denoted a represents the polynomial a(X) = a0 + a1X

1 + a2X
2 + a3X

3 + … + aN–1 X
N–1,

unless otherwise specified.

2.2.3 Convolution Polynomial Rings Over the Integers

Let Z be the ring of integers. The polynomial ring over Z, denoted Z[X], is the set of all
polynomials with coefficients in the integers. The convolution polynomial ring (over Z)
of degree N is the quotient ring Z[X]/(XN – 1). The product c of two polynomials a,b �
Z[X]/(XN – 1) is given by the formula

)(*)()(XbXaXc = with
�

≡+

=
)(mod Nkji

jik bac .

Identifying polynomials a = a0 + a1X + a2X

2 + … + aN–1 X
N–1 with their coefficient vectors

[a0, a1, a2, …, aN–1], this convolution product formula makes the space of N-tuples ZN
into a ring. The convolution polynomial ring may thus be identified with the ring of N-
tuples with convolution product.

Note that in EESS #1, all multiplications of polynomials a and b, represented as a*b, are
taken to occur in the ring Z[X]/(XN – 1) unless otherwise noted.

The convolution polynomial rings (Z/pZ)[X]/(XN – 1) and (Z/qZ)[X]/(XN – 1) are
examples of the above, with arithmetic operations performed as specified in the following
sections.

2.2.4 Basic Convolution Polynomial Ring Arithmetic

Since ring elements are represented by polynomials, canonical techniques for polynomial
arithmetic may be used with added steps for coefficient and polynomial modular

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 10 of 78

reduction. These steps are specified in sections 2.2.5 and 2.2.6, respectively. The rule
for multiplication is given in section 2.2.3.

2.2.5 Reduction of a Polynomial mod q

Throughout the document, polynomials are taken mod q, where q is an integer. To
reduce a polynomial mod q, one simply reduces each of the coefficients independently
mod q into the appropriate (specified) interval.

2.2.6 Inversion in (Z/qZ)[X]/(XN – 1)

For certain cryptographic operations such as key generation, it is necessary to take the
inverse of a polynomial in (Z/qZ)[X]/(XN – 1). Section 2.2.8.4 gives an algorithm for
doing this using the algorithms defined in sections 2.2.8.1 - 2.2.8.3. This algorithm works
for q a power of a prime (q is often a power of 2).

2.2.6.1 The Polynomial Division Algorithm in Zp[X]

This algorithm divides one polynomial by another polynomial in the ring of polynomials
with integer coefficients modulo a prime p. All convolution operations occur in the ring
Zp[X] in this algorithm (i.e. there is no modular reduction of the powers of the
polynomials).

Input: A prime p, a polynomial a in Zp[X] and a polynomial b in Zp[X] of degree N whose leading
coefficient bN is not 0.

Output: Polynomials q and r in Zp[X] satisfying a = b * q + r and deg r < deg b.

1. Set r := a and q := 0
2. Set u := bN

–1 mod p
3. While deg r >= N do

3.1. Set d := deg r(X)
3.2. Set v := u* rd*X(d–N)
3.3. Set r := r – v * b
3.4. Set q := q + v

4. Return q, r

2.2.6.2 The Extended Euclidean Algorithm in Zp[X]

The Extended Euclidean Algorithm finds a greatest common divisor d (there may be
more than one that are constant multiples of each other) of two polynomials a and b in
Zp[X] and polynomials u and v such that a*u + b*v = d. All convolution operations occur
in the ring Zp[X] in this algorithm (i.e. there is no modular reduction of the powers of the
polynomials).

Input: A prime p and polynomials a and b in Zp[X] with a and b not both zero

Output: Polynomials u, v, d in Zp[X] with d = GCD(a, b) and a*u + b*v = d
1. If b = 0 then return (1,0,a)
2. Set u := 1
3. Set d := a
4. Set v1 := 0
5. Set v3 := b

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 11 of 78

6. While v3 � 0 do
6.1. Use the division algorithm (section 2.2.8.1) to write d = v3*q + t3 with deg t3 < deg v3
6.2. Set t1 := u – q*v1
6.3. Set u := v1
6.4. Set d := v3
6.5. Set v1 := t1
6.6. Set v3 := t3

7. Set v := (d – a*u)/b [This division is exact, i.e., the remainder is 0]
8. Return (u,v,d)

2.2.6.3 Inverses in Zp[X]/(XN – 1)

The Extended Euclidean Algorithm may be used to find the inverse of a polynomial a in
Zp[X]/(XN – 1) if the inverse exists. The condition for the inverse to exist is that GCD(a,
XN – 1) should be a polynomial of degree 0 (i.e. a constant). All convolution operations
occur in the ring Zp[X]/(XN – 1) in this algorithm.

Input: A prime p, a positive integer N and a polynomial a in Zp[X]/(XN – 1)

Output: A polynomial b satisfying a*b = 1 in Zp[X]/(XN – 1) if a is invertible in Zp[X]/(XN – 1), otherwise
FALSE

1. Run the Extended Euclidean Algorithm (Section 2.2.8.2) with input a and (XN – 1). Let (u, v, d) be the

output, such that a*u + (XN – 1)*v = d = GCD(a, (XN – 1)).
2. If deg d = 0

2.1. Return b = d–1 (mod p) * u
3. Else return FALSE

2.2.6.4 Inverses in Zq[X]/(XN – 1)

This algorithm finds the inverse of a polynomial a in Zq[X]/(XN – 1), where q is a power
of a prime. In particular, this is used to calculate the inverse of a convolution polynomial
mod q for NTRUEncrypt key generation where q is a power of 2.

Input. A prime p, an exponent e such that pe = q, a positive integer N and a polynomial a in Zq[X]/(XN – 1).

Output. An inverse b of a in the ring Zq[X]/(XN – 1) if the inverse exists, otherwise FALSE.

1. Use the Inversion Algorithm (Section 2.2.8.3) to compute a polynomial b that gives an inverse of a(X)

in Zp[X]/(XN – 1). Return FALSE if the inverse does not exist.
2. Set n := 2
3. While e > 0 do

3.1. Set b := 2*b – a*b2 in Z[X]/(XN – 1), with coefficients computed modulo pn
3.2. Set e :=floor[e/2]
3.3. Set n := 2*n

4. Return b(X) in Z[X]/(XN – 1) with coefficients computed modulo pe = q.

2.2.7 Resultant Generation

In order to calculate a complete NTRUSign private key, it may be necessary to compute
the resultant of a polynomial with the NTRU polynomial XN – 1. Computing resultants
over large polynomials may require a large amount of memory and computation. In
order to improve the efficiency of computing the resultant, it may be desirable to
compute the resultant modulo smaller primes and lift the results into the integers.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 12 of 78

2.2.7.1 Resultant of a polynomial with XN – 1 mod p

The resultant of a polynomial P modulo a reasonably small prime p may be calculated
during key generation in order to find the resultant without the intermediate coefficients
growing too big. Note that this algorithm finds a single polynomial rhoP of degree less
than N such that P* rhoP mod p is equal to the resultant mod XN – 1. The multiple of XN –
1 (denoted rhox) can be computed easily from P and rhoP if desired, but is usually not
needed and hence is omitted from the algorithm below. Note that the degree of rhoP will
not be greater than N – 1, even though the computations are performed in Zp[X].

Input: A prime p, an integer N and a polynomial P in (Z/pZ)[X]/(XN – 1)

Output: Polynomial rhoP in (Z/pZ)[X]/(XN – 1) and an integer resultant satisfying resultant = rhoP * P +
rhox *(XN – 1) in Zp[X] for some rhox in Zp[X].

1. Set polynomials A := XN – 1, B := P
2. Set polynomials V1 := 0, V2 := 1, Temp := 0
3. Set integers a := deg A, b := deg B, tempa := deg A, c := 0, resultant := 1
4. While b > 0 do

a. Set c := Bb
–1 * Aa mod p

b. Set A := A – c*B*X(a–b) in Zp[X]
c. Set V1 := V1 – V2*c*X(a–b) in Zp[X]
d. If deg A < b

i. Set resultant := resultant*Bb
(tempa–(deg A)) mod p

ii. If tempa and b are both odd
1. Set resultant := –resultant mod p

iii. Set Temp := A
iv. Set A := B
v. Set B := Temp
vi. Set Temp := V1

vii. Set V1 := V2
viii. Set V2 := Temp
ix. Set tempa := b

e. Set a := deg A, b := deg B
5. Set resultant := resultant*B0

a mod p
6. Set c := B0

–1 mod p
7. Set rhoP := V2*c* resultant mod p
8. Return rhoP, resultant

2.2.7.2 Resultant of a polynomial with XN – 1

The resultant of a polynomial P with XN – 1 may be computed by computing the resultant
modulo a list of reasonably small primes and combining the results to obtain the resultant
over the integers. If the product of the primes is greater than the maximum possible
resultant value, the resultant will always be obtained exactly. Note that this algorithm
finds a single polynomial rhoP of degree less than N such that P* rhoP is equal to the
resultant mod XN – 1. The multiple of XN – 1 (denoted rhox) can be computed easily
from P and rhoP if desired, but is usually not needed and hence is omitted from the
algorithm below.

Input: A prime p, an integer N and a polynomial P in Z[X]/(XN – 1)

Output: Polynomial rhoP in Z[X]/(XN – 1) and an integer resultant satisfying resultant = rhoP * P + rhox
* (XN – 1) in Zp[X] for some rhox in Zp[X].

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 13 of 78

1. Select an integer Max greater than the largest possible value of the resultant (this value may be

calculated ahead of time and simply retrieved)
2. Select a set of m distinct primes p1, p2, p3, … , pm such that p1*p2*p3*…*pm > 2*Max
3. Set integer pproduct := 1, resultant := 1
4. Set polynomial rhoP := 1
5. Set integer j := 0, temp := 0
6. While j < m do

a. Set temp := pj*pprod (e.g. for j = 0, set polynomial temp equal to p0*pprod, for j = 1, set
polynomial temp equal to p1*pprod, etc.)

b. Calculate integer resp and polynomial rhop such that rhop*P = resp in (Z/pjZ)[X]/(XN –
1) (using algorithm 2.2.7.1)

c. Find integers alphap and betapprod such that alphap*pj + betapprod*pprod = 1 (using
Extended Euclidean Algorithm in the integers)

d. Set resultant := resultant*alphap*pj + resp*betapprod*pprod (mod temp)
e. Set rhoP := rhoP*alphap*pj + rhop*betapprod*pprod in (Z/tempZ)[X]/(XN – 1)
f. Set pprod := temp
g. Set j := j + 1

7. Set rhoP := rhoP (mod 2*Max) with coefficients reduced into the range (–Max, Max]
8. Set resultant := rhoP (mod 2*Max) reduced into the range (–Max, Max]

Output rhoP and resultant

2.3 Data Types and Conversions
This section describes the primitives that shall be used to convert between different types
of objects and strings when such conversion is required in primitives, schemes or
encoding techniques.

2.3.1 Converting Between Bit Strings and Octet Strings (BS2OSP and OS2BSP)

To represent a bit string as an octet string, one simply appends enough zeroes following
the last bit to make the number of bits a multiple of 8, and then breaks it up into octets.
More precisely, a bit string b0 b1 … bl-1 of length l shall be converted to an octet string
M0 M1 … Md-1 of length d =

�
l/8� as follows: for 0 ≤ i < d – 1, let the octet Mi =

b8i b8i+1 … b8i+7. The final octet Md–1 shall have its low-order 8d – l bits set to 0; its high-
order 8 – (8d – l) bits shall be b8d–8. b8d–7 … bl–1.

The primitive that converts bit strings to octet strings is called Bit String to Octet String
Conversion Primitive or BS2OSP. It takes the bit string as input and outputs the octet
string.

The primitive that converts octet strings to bit strings is called Octet String to Bit String
Conversion Primitive or OS2BSP. It takes an octet string of length d and the desired
length l of the bit string as input. It shall output the bit string if d =

�
l/8� and if the final

8d – l bits of the final octet are zero; it shall output “error” otherwise.

2.3.2 Converting Between Integers and Octet Strings (I2OSP and OS2IP)

To represent a non-negative integer x as an octet string of length l (l has to be such that
256l > x), the integer shall be written in its unique l-digit representation base 256:

x = xl–1 256 l–1 + xl–2 256 l–2 + … + x1 256 + x0

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 14 of 78

where 0 ≤ xi < 256 (note that one or more leading digits will be zero if x < 256l–1). Then
let the octet Mi have the value xi for 0 ≤ i ≤ l-1. The octet string shall be Ml-1 Ml-2 … M0.

For example, the integer 10945 is represented by an octet string of length 3 as 00 2A C1.

The primitive that converts integers to octet strings is called Integer to Octet String
Conversion Primitive or I2OSP. It takes an integer x and the desired length l as input and
outputs the octet string if 256 l > x. It shall output “error” otherwise.

The primitive that converts octet strings to integers is called Octet String to Integer
Conversion Primitive or OS2IP. It takes an octet string as input and outputs the
corresponding integer. Note that the octet string of length zero (the empty octet string) is
converted to the integer 0.

2.3.3 Converting Between Integers and Bit Strings (I2BSP and BS2IP)

To represent a non-negative integer x as a bit string of length l (l has to be such that
2l > x), the integer shall be written in its unique l-bit binary representation:

x = xl–1 2
l–1 + xl–2 2

l–2 + … + x1 2 + x0

where xi is 0 or 1 (note that one or more leading bits will be zero if x < 256 l–1). Then let
the bit bi have the value xi for 0 ≤ i ≤ l-1. The bit string shall be bl-1 bl-2 … b0.

For example, the integer 10945 is represented by a bit string of length 20 as 0000 0010
1010 1100 0001.

The primitive that converts integers to bit strings is called Integer to Bit String
Conversion Primitive or I2BSP. It takes an integer x and the desired length l as input and
outputs the bit string if 2l > x. It shall output “error” otherwise.

The primitive that converts bit strings to integers is called Bit String to Integer
Conversion Primitive or BS2IP. It takes a bit string as input and outputs the
corresponding integer. Note that the bit string of length zero (the empty bit string) is
converted to the integer 0.

2.3.4 Converting Between Ring Elements and Octet Strings (RE2OSP and
OS2REP)

An element a of a convolution polynomial ring, for the purposes of this standard, is
represented by an array of N integers. In this standard, the “big” modulus q is always less
than or equal to 256, so each of the N coefficients of a polynomial that is taken mod q
may be represented as a single octet. To represent a as an octet string, I2OSP is used to
produce a one-octet encoding of the integer value ai of each coefficient of a in turn. The
coefficients are encoded in increasing order starting with the constant coefficient and
ending with the coefficient of XN-1. The results of this conversion are placed from least
significant to most significant in an octet string of length N. For example, if q=128 and
N=5, the polynomial

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 15 of 78

a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4

is represented by the octet string 2d 02 4d 67 0c.

The primitive that converts ring elements to octet strings is called Ring Element to Octet
String Conversion Primitive or RE2OSP. It takes a ring element a and the degree N as
inputs and outputs the corresponding octet string.

To convert an octet string back to a field element, if q is less than or equal to 256, then
OS2IP shall be used on each octet going from least significant to most significant and the
result is taken to be a coefficient of the polynomial a in increasing order starting with the
coefficient of lowest degree.

The primitive that converts octet strings to ring elements is called Octet String to Ring
Element Conversion Primitive or OS2REP. It takes the octet string, the “big” modulus q
as inputs and outputs the corresponding ring element. It shall output “error” if OS2IP
outputs “error.”

2.3.5 Converting Between Ring Elements and Bit Strings (RE2BSP and BS2REP)

While octet string representation may be most convenient for ring element arithmetic in a
microprocessor, ring elements may be more compactly stored and transmitted as bit
strings. To represent a ring element a as a bit string, the modulus q is required. I2BSP is
used on each coefficient of a in turn to produce a ceil[log2 q]-bit encoding of the integer
value ai. The coefficients are encoded in increasing order starting with the constant
coefficient and ending with the coefficient of XN-1. The results of this conversion are
placed from least significant to most significant in an bit string of length N ceil[log2 q].
For example, if q=128 and N=5, the polynomial

a[X] = 45 + 2X + 77 X2 + 103 X3 + 12 X4

is represented by the bit string 0101101 0000010 1001101 1100111 0001010. (If this
were subsequently to be converted to an octet string using BS2OSP, it would become
first the bit string 0101 1010 0000 1010 0110 1110 0111 0001 0100 0000, and then the
octet string 5a 0a 6e 71 40).

The primitive that converts ring elements to bit strings is called Ring Element to Bit
String Conversion Primitive or RE2BSP. It takes a ring element a, the degree N, and the
big modulus q as inputs and outputs the corresponding bit string.

To convert a bit string to a ring element, the modulus q is required. Convert each group
of ceil[log2 q] bits to an integer using BS2IP, starting with the least significant bits and
going to the most significant bits, and set each coefficient from lowest degree to highest
degree to be the integer produced.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 16 of 78

The primitive that converts bit strings to ring elements is called Bit String to Ring
Element Conversion Primitive or RE2BSP. It takes a bit string and the modulus q as
inputs and outputs the corresponding ring element.

2.3.6 Converting Between Ring Elements and Packed Octet Strings (RE2POSP
and POS2REP)

To save space when converting between ring elements and octet strings, the ring element
may instead be converted to a packed octet string. This conversion, and its inverse, are
performed using the following primitive.

2.3.6.1 Ring Element to Packed Octet String Conversion Primitive (RE2POSP)

Input: � A ring element e � The ring parameters q, N.

Output: � The octet string representation o of e.

Operation:
1. Convert e to a bit string b, using RE2BSP with inputs e, N, and q.
2. Convert b to an octet string o using BS2OSP with input b.
3. Output o.

2.3.6.2 Packed Octet String to Ring Element Conversion Primitive (POS2REP)

Input: � The octet string representation o of e. � The ring parameters q, N.

Output: � A ring element e, or “error”.

Operation:
1. Convert i to a bit string b, using OS2BSP with inputs i, and N *

�
log2(q) � . If OS2BSP outputs

“error”, output “error”.
2. Convert b to a ring element e using BS2REP with input b and q.
3. Output e.

2.3.7 Converting Between Binary Ring Elements and Octet Strings (ME2BSP and
BS2MEP)

If an element in the ring Z[X]/(XN – 1) is known to have all its coefficients to be 0 or 1, it
can be encoded as an octet string more efficiently than by the method given above. One
considers each octet as a bit string of length 8. Then for each bit in the octet, starting with
the low-order bit and working to the high-order bit, one sets a coefficient of the ring
element equal to 1 if the bit is a 1 and 0 if it is a 0, starting with the low-order bit in the
first octet and the lowest degree coefficient (degree 0). The encoding fails if the length of
the octet string is greater than ceil[N/8]. If N is not equal to 0 mod 8, the encoding also
fails if any of the high-order (8 – N mod 8) bits in the final octet are set.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 17 of 78

More precisely, an octet string o0 o1 … ol-1 of length l ≤ floor[N/8] shall be converted to a
binary ring element a = a0 + a1X + … + aN-1X

N-1 as follows. Consider each octet to be a
bit string, indexed from low-order to high-order bit: thus o0 o1 … ol-1 becomes (b0,7 b0,6
… b0,0) (b1,7 b1,6 … bl1,0) … (bl-1,7 bl-1,6 … bl-1,0). Then set a0 = b0,0, a1 = b0,1, …, a8i+j =
bi,j, … , a8l–1 = bl–1,7, and a8l = a8l +1 = … = aN-1 = 0.

An octet string o0 o1 … ol-1 of length l = ceil[N/8] shall be converted to a binary ring
element as follows. Consider each octet to be a bit string, indexed from low-order to
high-order bit: thus o0 o1 … ol-1 becomes (b0,7 b0,6 … b0,0) (b1,7 b1,6 … bl1,0) … (bl-1,7 bl-1,6
… bl-1,0). If there exists an i such that 8l-8+i ≥ N and bl-1,i is 1, output “error” . Otherwise,
set a0 = b0,0, a1 = b0,1, …, a8i+j = bi,j, … , aN–1 = bl–1,N mod 8.

An octet string o0 o1 … ol-1 of length l > ceil[N/8] shall be converted to a binary ring
element as follows. If there is any i > ceil[N/8] such that the octet oi is non-zero, output
“error” . Otherwise, truncate the octet string to length ceil[N/8] by discarding the final
octets and use the method given in the previous paragraph.

The primitive that converts octet strings to binary elements in the ring Z[X]/(XN – 1) is
called Octet String to Binary Element Conversion Primitive or OS2BEP. It takes the
octet string as input and outputs the ring element. If the octet string cannot be encoded
(because bits are set which would correspond to coefficients of powers of X greater than
or equal to XN) it shall output “error” .

The primitive that converts binary elements in the ring Z[X]/(XN – 1) to octet strings is
called Binary Element to Octet String Conversion Primitive or BE2OSP. It takes a
binary element a in the ring Z[X]/(XN – 1) and the desired length l of the octet string as
input. It shall output the octet string if l is greater than or equal to ceil[N/8] or if all the
coefficients of a of degree 8l or greater are 0; it shall output “error” otherwise.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 18 of 78

3 Cryptographic Building Blocks
This section defines the building blocks for implementing the NTRUEncrypt and
NTRUSign algorithms.

These building blocks have the following taxonomy:

• Components consist of domain parameters, security parameters and scheme
options. Selections for all of the components must be made in order to properly
implement the cryptographic schemes (defined in section 4). The NTRUEncrypt
components are defined in section 3.1.

• Primitives are sequences of mathematical operations that are performed on inputs
in order to perform a basic cryptographic function. Primitives are designed to
require certain properties of inputs and ensure certain properties of outputs. They
are not designed to provide overall security properties by themselves, but to
provide security when used appropriately in the cryptographic schemes.
Primitives are scheme option choices and are specified for NTRUEncrypt in
section 3.2.

• Encoding methods are specific scheme option choices for how to transform data
within the cryptographic scheme, but that are not intrinsically tied to the
cryptographic primitives. It is possible that different encoding methods may be
used in conjunction with the same cryptographic primitives, although in many
cases they are closely related. Encoding methods are scheme option choices and
are specified for NTRUEncrypt in section 3.3.

• Supporting algorithms are typically algorithms that are standardized by other
standards bodies and that provide certain cryptographic properties that are
desirable to provide security to the public-key schemes. The supporting
algorithms may be used in the encoding methods, the primitives or directly in the
schemes to provide security.

3.1 NTRUEncrypt Components
This section defines the NTRUEncrypt components, categorizes them (as domain
parameters, security parameters or scheme options) and gives a basic description of the
component. Security considerations for specific choices for the component are included
when appropriate, however for detailed security considerations, see [IEEE P1363.1].

Instantiations of primitives and encoding methods (which are both scheme options) are
specified in section 3.2 and section 3.3 respectively. Required choices for all
NTRUEncrypt components are listed in section 4.3.

3.1.1 NTRUEncrypt Domain Parameters

Values for each of the domain parameters must be selected in order to define the space in
which operations are performed in NTRUEncrypt. The domain parameters specified in
this standard maximize efficiency and security. Note that some domain parameters or

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 19 of 78

other choices may not need to be known to perform certain operations (e.g. in order to
encrypt, one need not know the small modulus p explicitly).

3.1.1.1 NTRUEncrypt Degree

The degree N identifies the dimension of the convolution polynomial ring used.
Although N is referred to here as the NTRUEncrypt degree, elements of the ring are
represented as polynomials of degree N – 1.

The specific value of N is defined for each parameter set listed in section 4.3.

3.1.1.2 NTRUEncrypt Small Modulus

The small modulus p is used for key generation and for coefficient modular reduction (as
described in section 2.2.6). The modulus p is also used implicitly in the blinding value
generation methods and the message representative generation methods.

The specific value of p is defined for each parameter set listed in section 4.3.

3.1.1.3 NTRUEncrypt Big Modulus

As described in section 2.2.5, the big modulus q is used to define the larger polynomial
ring used for NTRUEncrypt. The modulus q can generally be taken to be any value that is
relatively prime in the ring to the small modulus p. Taking q to be equal to or slightly
less than a power of 2 can result in faster modular arithmetic operations.

The specific value of q is defined for each parameter set listed in section 4.3.

3.1.2 NTRUEncrypt Security Parameters

Values for each of the security parameters may be globally specified or chosen by the
holder of the private key. These values must be chosen from those specified in this
standard and need not be kept secret. The security parameters specified in this standard
are selected to maximize efficiency and security.

3.1.2.1 NTRUEncrypt Private Key Space

Generally, private keys may be chosen to be any small polynomial f such that f is
invertible in both (Z/qZ)[X]/(XN – 1) and (Z/pZ)[X]/(XN – 1). However, for improved
efficiency, private keys in this standard shall be chosen of the form f = 1 + pF, where p is
the small modulus and F is a polynomial in the space DF. This restriction on the form of
f removes the need to calculate the inverse of f mod p (since the inverse will always be 1),
and hence key generation and decryption are faster. For security purposes, it is strongly
recommended that DF be large enough and the key be generated in a random enough
manner to prevent brute force attacks. In the key generation method given in section
3.2.1.1, DF is the space of all polynomials of degree N – 1 that have dF coefficients
equal to 1 and the rest of the coefficients equal to 0.

Recommended values of dF are included in each parameter set listed in section 4.3.
These parameters are selected to provide maximum security and efficiency. Note that, as

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 20 of 78

mentioned above, f in the given form is always invertible in (Z/pZ)[X]/(XN – 1) and that,
with f(1) relatively prime to q, f will almost always be invertible in (Z/qZ)[X]/(XN – 1).

3.1.2.2 NTRUEncrypt Temporary Polynomial Space

In the generation of an NTRUEncrypt key, the private key f and a temporary polynomial
g are needed to generate the public key. The temporary polynomial g is chosen from the
temporary polynomial space Dg. The polynomial g shall be chosen randomly by the
entity performing key generation from the temporary polynomial space Dg. Dg is the
space of all polynomials of degree N – 1 with dg coefficients equal to 1 and the rest of the
coefficients equal to 0.

Recommended values of dg are included in each parameter set listed in section 4.3.
These parameters are selected to provide maximum security and efficiency.

3.1.2.3 NTRUEncrypt Public Key Space

The NTRUEncrypt public key space is uniquely determined by the NTRUEncrypt private
key space and NTRUEncrypt temporary polynomial space and hence need not be
specified explicitly as a security parameter. The NTRUEncrypt public key space Dh
consists of all polynomials h of degree N – 1 with h = f –1*g*p with coefficients reduced
modulo q, where f, g are chosen from Df and Dg respectively, p is the small modulus as
defined above, and f –1 is the polynomial with coefficients reduced mod q such that f –1* f
= f* f –1 = 1 in (Z/qZ)[X]/(XN – 1). Note that it appears to be a very difficult problem to
determine whether a given polynomial h is in the public-key space or not.

3.1.3 NTRUEncrypt Scheme Options

NTRUEncrypt scheme options consist of parameters and algorithms that do not affect the
key space (i.e. that are not domain parameters), but that must be agreed upon in order to
implement the NTRUEncrypt encryption scheme. Scheme options include the chosen
primitives and encoding methods and the parameters that are needed to completely
specify the encoding methods and primitives.

3.1.3.1 NTRUEncrypt Random Component Size

The NTRUEncrypt random component size db is the number of random bits that shall be
used as input to the message representative generation method and its inverse. This value
is chosen to protect the ciphertext from dictionary attacks and to make the encryption
process non-deterministic.

The specific value of db is defined for each parameter set listed in section 4.3.

3.1.3.2 NTRUEncrypt Blinding Value Space

The NTRUEncrypt blinding value r is determined by the message and is chosen
deterministically from the NTRUEncrypt blinding value space Dr. The blinding value is
an input to both the encryption primitive and the decryption primitive. This standard
specifies one method for choosing r, which takes Dr to be the space of all polynomials of
degree N with dr coefficients equal to 1 and the rest of the coefficients equal to 0. See
section 3.3.1.1 for blinding value generation methods.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 21 of 78

Specific permitted values of dr are defined for each parameter set listed in section 4.3.

3.1.3.3 NTRUEncrypt Random Polynomial Generation Constant

We generate a binary polynomial with d 1s by generating d distinct indices mod N.
However, the pseudo-random number generators defined in this standard generate octet
strings. In order to prevent any bias in converting these random octets to random mod N
integers, values that would cause bias are thrown out. For example, with N =251, each
random octet is taken to be an integer mod 256, and values of N or higher are discarded.
(This is a bias because there are two ways of generating a value of “1” – 1 itself and
252 – but only one way of generating a value of, say, 240.) The NTRUEncrypt random
polynomial generation constant c, is a value that is chosen for the deterministic
generation of a polynomial from a pseudo-random number generator. It represents the
number of bits that are used to generate a mod N entry candidate. The NTRUEncrypt
random polynomial generation constant c is fixed for each degree N, and is chosen to
minimize the number of octets expected to be output by the pseudo-random number
generator. As an example, for N = 347, c is chosen to be 14 because 47*347 (=16309) is
close to 214 (=16384) so only the values greater than 16309 will be thrown out.

The specific value of c is defined for each parameter set listed in section 4.3.

3.1.3.4 NTRUEncrypt Message Length Encoding Length

For certain message padding methods, the length of the message that is to be encrypted is
encoded in the padded message itself. When this type of message padding is used, the
length of the field that represents the length of the message, called the message length
encoding length, is represented by the parameter lLen. For parameter sets that require the
length of the message to be less than 256 bytes, lLen is typically set to 1.

The specific value of lLen is defined for each parameter set listed in section 4.3.

3.1.3.5 Hash Function

NTRUEncrypt operations involve generating strings of pseudo-random output from a
given input. The functions that generate this output are known as Mask Generation
Functions, if they output a single arbitrary-length string, or Pseudo Random Number
Generators, if they maintain state and produce output an arbitrary number of times. These
two types of function are described in sections 3.1.3.6 and 3.1.3.7 below. Both of these
functions are instantiated using a cryptographically strong hash function. The hash
function shall be chosen from the set of approved hash functions listed in section 3.7.1. In
this standard, the hash function used to instantiate the MGF must also be used to
instantiate the PRNG.

In this standard, hash functions are considered to take octet strings as inputs and outputs.

3.1.3.6 Mask Generation Function

In NTRUEncrypt message representative generation methods, a Mask Generation
Function (MGF) may be used to help compute the message representative from the

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 22 of 78

message and random component. The MGF serves the purpose of making the output
reasonably randomly distributed and making a single bit of the output rely on multiple
bits of the input. An MGF is a construction built around a hash function. The hash
function shall be chosen from the set of approved hash functions listed in section 3.7.1,
and the MGF itself shall be chosen from the set of approved MGFs listed in section 3.7.2.

In this standard, Mask Generation Functions are considered to take octet strings as inputs
and outputs.

3.1.3.7 Pseudo-Random Number Generation

In NTRUEncrypt blinding value generation methods, a pseudo-random number
generation method (PRNG) may be used to help compute the blinding value. The
pseudo-random number generation method serves the purpose of making an efficient and
reasonably randomly distributed mapping from the message m and random component b
to the blinding value. A PRNG is a construction built around a hash function. The hash
function shall be chosen from the set of approved hash functions listed in section 3.7.1,
and the PRNG shall be chosen from the set of approved PRNGs in section 3.7.3.

In this standard, PRNGs are considered to take octet strings as inputs and outputs.

3.1.3.8 Blinding Value Generation Method (BVGM)

In order to protect against chosen ciphertext attacks, NTRUEncrypt encryption is made
plaintext-aware by using a deterministic blinding value generation method (BVGM). The
BVGM may be used to compute the blinding value r from the padded message pm. In
order to compute the same values, the entity performing encryption and the entity
performing decryption shall use the same BVGM. The BVGM shall be chosen from the
set of approved BVGM listed in section 3.3.1.

A BVGM takes as input the padded message pm, which is an octet string, and outputs the
blinding value r, which is a ring element.

3.1.3.9 Key Generation Primitive (KGP)

In order to perform any operation in NTRUEncrypt, a key pair must be generated.
NTRUEncrypt key generation primitives are used to create key pairs that satisfy the
required security and efficiency properties. Once the key generation has been completed,
the private key and public key should be retained by the party generating the key pair,
and the public key may be distributed to the other parties. The KGP shall be chosen from
the set of approved KGP listed in section 3.2.1.

3.1.3.10 Encryption Primitive (EP)

The basic operation performed during the encryption process using the public key is
specified by the encryption primitive. Encryption primitives typically accept the message
to be encrypted (called the plaintext) and the public key as input and return the encrypted
message (called the ciphertext). The EP shall be chosen from the set of approved EP
listed in section 3.2.2.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 23 of 78

Note that the encryption scheme defined in this document does not actually use an
encryption primitive. An encryption primitive is presented in this document for the sake
of completeness.

3.1.3.11 Decryption Primitive (DP)

The basic operation performed during the decryption process using the private key is
specified by the decryption primitive. Decryption primitives typically accept the
encrypted message (ciphertext) and the private key as input and return a candidate
message (plaintext) as output. The DP shall be chosen from the set of approved DP (and
PDP) listed in section 3.2.3.

3.2 NTRUEncrypt Primitives
The following section defines the cryptographic primitives that are used in the
NTRUEncrypt encryption scheme. These primitives include key generation primitives,
encryption primitives and decryption primitives.

3.2.1 NTRUEncrypt Key Generation Primitives

For a given set of NTRUEncrypt domain parameters, an NTRUEncrypt key pair consists
of an NTRUEncrypt private key f, which is a polynomial of degree N-1 chosen from the
NTRUEncrypt private key space and an NTRUEncrypt public key h, which is a
polynomial of degree N-1 equal to f –1*g*p modulo q.

NTRUEncrypt key pairs are closely associated with their domain parameters, and may
only be used in the context of the domain parameters. A key pair shall not be used with a
set of domain parameters different from the one for which it was generated. A set of
domain parameters may be shared by a number of key pairs.

In this standard, the private key f: is taken to be of the form f = 1 + pF, where p is one of
the domain parameters defined above, and F is a polynomial in the space DF. The
specific recommendations for the space DF are given in section 4.3.

3.2.1.1 Random NTRUEncrypt Key Generation Primitive – KGP-NTRU1

An NTRUEncrypt key pair with f of the form f = 1+pF may be generated using the
following steps. Note that the algorithm below outputs only the values f, F and h. In
some applications it may be desirable to store the values f –1 and g as well.

NTRUEncrypt Components:
— The NTRUEncrypt domain parameters N, q, p, df, dg

Input: None

Output: An NTRUEncrypt key pair consisting of the private key f and the public key h

Operation: The NTRUEncrypt key pair shall be computed by the following or an equivalent sequence of
steps:

1. Randomly choose a polynomial F of degree N – 1 with df coefficients equal to 1 and the

remaining coefficients equal to 0.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 24 of 78

2. Compute the polynomial f := 1 + p*F in (Z/qZ)[X]/(XN – 1)
3. Compute the polynomial f –1 (i.e. the polynomial f –1 such that f –1* f = f* f –1 = 1) in

(Z/qZ)[X]/(XN – 1). If f –1 does not exist, go to step 1.
4. Randomly choose a polynomial g of degree N – 1 with dg coefficients equal to 1 and the

remaining coefficients equal to 0.
5. Compute the polynomial g –1 (i.e. the polynomial g –1 such that g –1*g = g* g –1 = 1) in

(Z/qZ)[X]/(XN – 1). If g –1 does not exist, go to step 4.
6. Compute the polynomial h := f –1*g*p in (Z/qZ)[X]/(XN – 1)
7. Output f, h and (optionally) F.

3.2.2 NTRUEncrypt Encryption Primitives

There is currently only one encryption primitive specified for NTRUEncrypt. The
encryption primitive is the fundamental building block for the encryption operation. Note
that the encryption scheme presented in section 4.2 does not make direct use of this
primitive; it is presented for completeness only.

3.2.2.1 NTRUEncrypt Encryption Primitive – SVEP-NTRU

SVEP-NTRU is the NTRUEncrypt Encryption Primitive. It is based on the work of
[HPS98] and [HS00-2]. It is invoked in the scheme SVES as part of encrypting a
message, given the message representative and the public key of the intended recipient.
The message can be decrypted within a scheme by invoking SVDP-NTRU.

NTRUEncrypt Components:
— The NTRUEncrypt parameters N, q

Input:
— The recipient’s NTRUEncrypt public key h
— The message representative, which is a polynomial i
— The message blinding value, which is a polynomial r

Output: The encrypted message representative, which is a polynomial e

Operation: The encrypted message representative e shall be computed by the following or an equivalent
sequence of steps:

1. Compute the polynomial e := r*h + i in (Z/qZ)[X]/(XN – 1).
2. Output e.

Conformance region recommendation. A conformance region should include:
— At least one valid NTRUEncrypt public key h
— All message representatives i (and corresponding blinding values r, which are determined from i)

3.2.3 NTRUEncrypt Decryption Primitives

There is currently only one decryption primitive specified for use.

3.2.4 NTRUEncrypt Decryption Primitive: SVDP-NTRU2

Components:
� The NTRUEncrypt parameters N, q, p

Inputs:

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 25 of 78

� The recipient’s NTRUEncrypt private key f, f-1 mod p.
� The encrypted message representative, which is a polynomial e.
Output:
� The candidate decrypted polynomial ci.

Operations: The candidate decrypted polynomial ci shall be calculated by the following or an equivalent
sequence of steps:

1. Compute the polynomial a := e* f in (Z/qZ)[X]/(XN – 1).
2. Compute the quantity I := (a(1) – p(1)* r(1)*g(1))* f(1)–1 (mod q), choosing I in the range (N –

q)/2
�
 I < (N + q)/2.

3. Compute the quantity A := floor[(1/N) * (p(1)* r(1)*g(1) + I* f(1)) + N/2] – ceil[q/2].
4. Compute the partially decrypted polynomial a = f * e mod q, placing the coefficients of a into the

range [A+1, A+q].
5. Compute ci as

 ci = f-1*a mod p.

Notes:
For the parameter sets given in this document, f-1 mod p is equal to 1. In this case, step 5
becomes simply reduction mod p.

3.3 NTRUEncrypt Encoding Methods
Before a message is encrypted, it must be processed to guarantee certain desirable
security properties such as semantic security. This processing typically involves the
following steps:
— Adding random data to obtain the padded message
— “Masking” the padded message to obtain the message representative
— Deriving the blinding value from the padded message.

In this document the first two of the above steps are specified in the description of the
SVES-3 encryption scheme. This section specifies a method for generating the blinding
value r.

3.3.1 NTRUEncrypt Blinding Value Generation Methods

In order to provide plaintext awareness, a blinding value generation method (BVGM)
shall be used to generate a blinding value r from a seed seed. This section contains the
single BVGM approved for use with the parameter sets in this document. The BVGM
generates a pseudo-random binary blinding value r.

3.3.1.1 Blinding Value Generation From dr – BVGM-NTRU1

The blinding value r shall be generated deterministically from a seed using a pseudo-
random number generator. The precise form of this seed is defined by the encryption
scheme, but it will at a minimum include the message m and the random component b.
Note that in this standard the number of calls made to the PRNG may vary.

NTRUEncrypt Components:
— The NTRUEncrypt parameters N , dr
— The chosen pseudo-random number generator PRNG()
— The hash function Hash() chosen to parameterize PRNG()

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 26 of 78

— The random polynomial generation constant c

Input:
— The seed, which is an octet string seed

Output:
— The blinding value, which is a polynomial r

 Operation: The blinding value shall be computed by the following or an equivalent sequence of steps:

1. Instantiate the pseudo-random number generator with hash function Hash() and input seed to

produce an output stream PRNG (seed).
2. Set B := ceil[c/8]
3. Set t := 0
4. Set r := 0
5. While t < dr do

a. Set o := next B octets of PRNG (seed)
b. Set the high-order 8B - c bits of o to 0
c. Set i := o converted to an integer using OS2IP
d. If i < 2c – (2c mod N) and r(i mod N) = 0

i. Set r(i mod N) := 1
ii. Set t := t + 1

6. Return r.

3.4 NTRUSign Components
This section defines the NTRUSign components, categorizes them (as domain
parameters, security parameters or scheme options) and gives a basic description of the
component. Security considerations for specific choices for the component are included
when appropriate, however for detailed security considerations, see [IEEE P1363.1].

Instantiations of primitives and encoding methods (which are both scheme options) are
specified in section 3.5 and 3.6 respectively. Required choices for all NTRUSign
components are listed in section 5.3.

3.4.1 NTRUSign Domain Parameters

Values for each of the domain parameters must be selected in order to define the space in
which operations are performed in NTRUSign. The domain parameters specified in the
standard maximize efficiency and security.

3.4.1.1 NTRUSign Degree

The degree N identifies the dimension of the convolution polynomial ring used.
Although N is referred to here as the NTRUSign degree, elements of the ring are
represented as polynomials of degree N – 1.

The specific value of N is defined for each parameter set listed in section 5.3.

3.4.1.2 NTRUSign Big Modulus

As described in section 2.2.5, the big modulus q is used to define the polynomial ring
used for NTRUSign. In this standard, the modulus q is chosen to be a power of 2.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 27 of 78

The modulus q is defined for each parameter set listed in section 5.3.

3.4.2 NTRUSign Security Parameters

Values for each of the security parameters may be globally specified of chosen by the
holder of the private key. These values must be chosen from those specified in the
standard and need not be kept secret. The security parameters specified in the standard
are selected to maximize efficiency and security.

3.4.2.1 NTRUSign Private Key Space

The NTRUSign private key consists of four polynomials (f, g, F, G). The polynomials f
and g uniquely determine the private key. In general, of the four polynomials (f, g, F, G),
only two are needed for signing. We denote these two by (f, f’). Depending on the basis
type (see section 3.4.2.3), f’ may be F (in the standard basis) or g (in the transpose basis).
The two components of the private key which are not used for signing may be discarded
after key generation.

Generally, the private key part f may be chosen to be any small polynomial f such that f is
invertible in space (Z/qZ)[X]/(XN – 1). However, for improved efficiency, f is chosen in
this standard to be in the space Df of all polynomials of degree N – 1 that have df
coefficients equal to 1 and the remaining coefficients equal to 0.

Generally, the private key part g may be chosen to be any small polynomial g. However,
for improved efficiency, g is chosen in this standard to be in the space Dg of all
polynomials of degree N – 1 that have dg coefficients equal to 1 and the remaining
coefficients equal to 0.

In addition, for certain key generation methods, it is necessary that the resultants of f and
g with respect to XN – 1 are relatively prime. As a result, it is important to choose the
parameters df and dg to be relatively prime to allow this to occur.

Once f and g have been chosen, the basis completion pair (F, G) is computed such that (f,
g) and (F, G) form a small basis for the NTRUSign module – in other words, such that fG
– Fg = q and (F, G) is small (typically of size about √(N/12) times the size of (f, g)). The
basis completion pair is not unique for a given (f, g), but only one such pair is needed.

Generally, the basis completion pair may be any pair that completes the basis. However,
in order to maximize the probability of generating good signatures, the basis completion
pair may be restricted to the space DFG that consists of all vectors whose centered norm is
smaller than the security parameter KeyNormBound. If during key generation, a basis
completion pair cannot be found with centered norm less than KeyNormBound, the
private key may be discarded and another private key chosen.

Recommended values of df and dg are included with each parameter set listed in section
5.3. These parameters are selected to provide maximum security and efficiency.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 28 of 78

The parameter KeyNormBound is not used in any of the key generation techniques
currently described in the standard.

3.4.2.2 NTRUSign Basis Completion Maximum Adjustment

When computing the basis completion pair (F, G) during key generation, it is possible to
decrease the centered norm of the basis completion pair (F, G) by adding or subtracting
small multiples of the private key pair (f, g). After several iterations, the loss in key
generation efficiency may outweigh the gain from a decreased centered norm for (F, G),
so the security parameter MaxAdjustment may be chosen to limit the iterations of this
algorithm.

Recommended values for MaxAdjustment are included in each parameter set listed in
section 5.3.

3.4.2.3 NTRUSign Private Key Type

An NTRUSign basis is a set of polynomials (f, g, F, G) such that fG – Fg = q. In the
standard NTRU lattice, the basis consists of the two vectors (f, g) and (F, G) and all of
their componentwise rotations. Each basis of this type also defines a transpose basis (f, F)
and (g, G), also of determinant q. It may be significantly faster to use the transpose basis,
rather than the standard basis, as the private key for signature generation. However, if the
transpose basis is used, one component of the signature will be significantly smaller than
the other. This will lead to transcripts converging faster for the transpose basis than for
the standard basis. For this reason, the use of the transpose basis is only recommended if
at least one perturbation basis (see section 3.4.2.5) is used when signing.

The type of basis used is given by the variable basisType, which can take the values
“standard” or “transpose”. Recommended values for basisType are included in each
parameter set listed in section 5.3.

3.4.2.4 NTRUSign Public Key Space

The NTRUSign public key space is uniquely determined by the NTRUSign private key
space and hence need not be specified explicitly as a security parameter. In the standard
lattice, the NTRUSign public key space Dh consists of all polynomials h of degree N – 1
with h = f–1*g with coefficients reduced modulo q, where f, g are chosen from Df and Dg
respectively and f–1 is the polynomial with coefficients reduced mod q such that f –1* f = f*
f –1 = 1 in (Z/qZ)[X]/(XN – 1). In the transpose basis, the public key space consists of all
polynomials h of degree N –1 with h = f–1*F mod q.

3.4.2.5 NTRUSign Perturbation Bases

NTRUSign signatures are not zero knowledge, and a transcript of signatures will
gradually reveal information about the private key, leading in extreme cases to recovery
of the key by an attacker. This information leakage can be slowed down by the use of
perturbations. This refers to a technique where the signer first signs the message using an
entirely private basis, such that no public information at all is known about this basis, to
produce a perturbed message point close to the original message point. The signer then

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 29 of 78

signs the perturbed message point with the real private key to produce a signature that
can be verified using the public key.

This process can clearly be extended to cover the use of multiple perturbation bases, each
of which acts on the previous perturbed message point to produce a perturbed message
point of its own. The final perturbed message point in the secret can then be signed to
produce the signature.

Each perturbation basis used greatly increases the number of signatures that an attacker
needs to mount an attack on the private key. However, the use of perturbation bases also
increases the average signature norm. On average, use of B bases will increase the norms
of signatures by √(B+1).

The number of perturbation bases used is given by the variable perturbationBases.
Recommended values for perturbationBases are included in each parameter set listed in
section 5.3. Note that if the standard lattice is being used, the perturbation bases will also
be in standard form, and if the transpose lattice is being used, the perturbation bases will
also be in transpose form.

3.4.2.6 NTRUSign Signature Failure Tolerance

Depending on the size of the norm bound for signatures, the signature primitive may
occasionally fail to produce a valid signature on a given message m with a given message
randomization value r. During the signing process, the signer may choose another
message randomization value to produce a different message representative and a
different signature. Due to efficiency reasons, it may be desirable to simply fail the
signature if after a certain number of attempts, a valid signature cannot be found. The
signature failure tolerance SignFailTolerance is chosen to specify the number of attempts
made before the signature process returns a failed signature. Note that in general this
number may be set to a very small number as most signature attempts will pass.

The specific value of the SignFailTolerance is variable for each parameter set listed in
section 5.3., however recommended choices are specified.

3.4.3 NTRUSign Scheme Options

NTRUSign scheme options consist of parameters and algorithms that do not affect the
key space (e.g. that are not domain parameters), but that must be agreed upon in order to
implement the NTRUSign signature scheme. Scheme options include the chosen
primitives and encoding methods and the parameters that are needed to completely
specify the encoding methods and primitives.

3.4.3.1 NTRUSign Signature Norm Bound

The NTRUSign signature norm bound NormBound is chosen to indicate how close the
signature must be to the message representative in order for signatures to verify. It is
selected to be small enough to prevent forgery attacks and large enough to make the
probability of the signature being below the norm bound high.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 30 of 78

The specific value of the NormBound is defined for each parameter set listed in section
5.3.

3.4.3.2 NTRUSign Message Randomization Value

The NTRUSign signature algorithm deterministically finds a reasonably close
NTRUSign lattice point to the message representative. Due to the unpredictable nature of
the closeness of these lattice points, a signature attempt may on rare occasions fail to
satisfy the needed norm bound. The NTRUSign message randomization value r is used
to generate a different message representative should the signature fail to satisfy the norm
bound.

The message randomization value is chosen from the message randomization value space
Dr. The message randomization value space is chosen to be any octet string of length lr.
If the signature is expected never to fail this test, the value of lr may be set to 0 and
hence, the message randomization value may be omitted. Note that a fixed r may be
chosen for all signature attempts and not be communicated to the verifier along with the
signature.

The specific values of lr and r are defined for each parameter set in section 5.3.

3.4.3.3 NTRUSign Random Polynomial Generation Constant

When randomly generating a polynomial from a pseudo-random number generator, such
as in certain message representative generation methods, the number of output bits used
to compute the next polynomial value needs to be selected. The NTRUSign random
polynomial generation constant c is a value that is chosen for the deterministic generation
of a polynomial from a pseudo-random number generator. It represents the number of
bits that are used to generate a mod N entry candidate. The NTRUSign random
polynomial generation constant c is fixed for each degree N and is chosen to minimize
the number of octets needed to compute the polynomial. Note that in certain message
representative generation methods, the polynomial is chosen as mod q coefficients (which
is an even power of 2) instead of selecting the coefficient location mod N. Therefore c is
not needed for those methods.

The specific value of c is defined for each parameter set listed in section 5.3.

3.4.3.4 Hash Function

In NTRUSign message representative generation methods, a hash function is used on the
message to establish the seed for the pseudo-random number generator. The hash
function serves the purpose of making the input to the PRNG small while stil l
maintaining the feature that each input bit affects each output bit. The hash function may
also be used as a part of the PRNG. The hash function shall be chosen from the set of
approved hash functions listed in section 3.7.1 and is defined for each parameter set in
section 5.3.

In this standard, hash functions are considered to take octet strings as inputs and outputs.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 31 of 78

3.4.3.5 Pseudo-Random Number Generation

In NTRUSign message representative generation methods, a pseudo-random number
generation method may be used to help compute the message representative. The PRNG
serves the purpose of making an efficient and reasonably randomly distributed mapping
from the hashed message to the message representative. The PRNG shall be chosen from
the set of approved PRNG in section 3.7.3 and is defined for each parameter set in section
5.3.

In this standard, PRNGs are considered to take octet strings as inputs and outputs.

3.4.3.6 NTRUSign Message Representative Generation Method (MRGM)

In order to protect against two messages being represented by points that are close to
each other in the NTRUSign lattice, NTRUSign message representative generation
methods (MRGM) are used to transform the messages m into message representatives i
that are reasonably evenly distributed through the NTRUSign message space. In order to
compute the same values, the entity performing the signing and the entity performing the
verification shall use the same MRGM. The MRGM shall be chosen from the set of
approved MRGM listed in section 3.6.1 and is defined for each parameter set in section
5.3.

A MRGM takes as input the message m, which is an octet string, and outputs the message
representative i, which is a ring element.

3.4.3.7 NTRUSign Key Generation Primitive (KGP)

In order to perform any operation in NTRUSign, a key pair must be generated.
NTRUSign key generation primitives are used to create key pairs and basis completion
pairs that satisfy the required security and efficiency properties. Once the key generation
has been completed, the private key and public key should be retained by the party
generating the key pair and the public key should be distributed to the party that will be
performing the signature verification with the public key.

The KGP shall be chosen from the set of approved KGP listed in section 3.5.1 and is
defined for each parameter set in section 5.3.

3.4.3.8 NTRUSign Signature Primitive (SP)

The basic operation performed during the signing process using the private key is
specified by the signature primitive. Signature primitives typically accept the message
representative and the private key as input and return the signature.

The SP shall be chosen from the set of approved signature primitives listed in section
3.5.2 and is defined for each parameter set in section 5.3.

3.4.3.9 NTRUSign Verification Primitive (VP)

The basic operation performed during signature verification using the public key is
specified by the verification primitive. Verification primitives typically accept the

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 32 of 78

message representative, the signature and the public key as input and return "valid" or
"invalid".

The VP shall be chosen from the set of approved verification primitives listed in section
3.5.3 and is defined for each parameter set in section 5.3.

3.5 NTRUSign Primitives

3.5.1 NTRUSign Key Generation Primitives

For a given set of NTRUSign domain parameters, an NTRUSign key pair consists of an
NTRUSign private key basis (f, f’), an NTRUSign public key h, which is a polynomial of
degree N-1 equal to f –1* f’ modulo q, and zero or more perturbation bases (fi, f’ i, hi),
where hi = fi

–1* f’ i modulo q.

NTRUSign key pairs are closely associated with their domain parameters, and shall only
be used in the context of the domain parameters. A key pair shall not be used with a set
of domain parameters different from the one for which it was generated. A set of domain
parameters may be shared by a number of key pairs.

Key generation for NTRUSign consists of generating one or more distinct NTRUSign
module bases. For clarity, we present key generation here in two steps: first, an algorithm
for generating a random NTRUSign basis; second, a key generation primitive which uses
the basis generation algorithm to generate a complete private key.

3.5.1.1 Random NTRUSign Basis Generation

An NTRUSign basis may be generated using the following steps. The optional step 3 in
the algorithm below is included to efficiently determine if the resultants of f and g are
both divisible by 2N + 1, which is the most likely common factor of the resultants. This
prevents performing the expensive full resultant calculations on an (f, g) pair that will be
discarded in step 7 anyway. The optional steps 21-27 are included to further reduce the
size of the basis completion pair (F, G) by adding (or subtracting) rotations of f and g.
The smaller the basis completion pair is, the smaller (on average) the norms of the
signatures will be.

NTRU Components:
— The NTRUSign domain parameters N, q
— The NTRUSign key security parameters df, dg, MaxAdjustment (optional)

Input: None

Output: An NTRUSign basis consisting of the polynomials (f, g, F, G).

Operation: The NTRUSign basis shall be computed by the following or an equivalent sequence of steps:

1. Randomly choose a polynomial f of degree N – 1 with df coefficients equal to 1 and the remaining

coefficients equal to 0.
2. Randomly choose a polynomial g of degree N – 1 with dg coefficients equal to 1 and the

remaining coefficients equal to 0.
3. (optional) If 2N + 1 is prime

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 33 of 78

a. Set integers resf1 and resg1 equal to the resultants of f and g (mod 2N + 1) respectively,
calculating the resultants using algorithm 2.2.7.1

b. If resf1 and resg1 are both 0, go to step 1
4. Set integer resf equal to the resultant of f and set the polynomial rhof to satisfy the equation rhof* f

:= resf in Z[X]/(XN – 1), using algorithm 2.2.7.2
5. Set integer resg equal to the resultant of g and set the polynomials rhog to satisfy the equation

rhog*g := resg in Z[X]/(XN – 1), using algorithm 2.2.7.2
6. Compute integers alpha, beta and the gcd gcd of resf and resg such that alpha* resf + beta* resg =

gcd (using the Extended Euclidean Algorithm in the integers)
7. If gcd is not equal to 1, go to step 1
8. Compute the polynomial f –1 (i.e. the polynomial f –1 such that f –1* f = f* f –1 = 1) in

(Z/qZ)[X]/(XN – 1). If f –1 does not exist, go to step 1.
9. Set polynomial F := –rhog*beta*q in Z[X]/(XN – 1)
10. Set polynomial G := rhof*alpha*q in Z[X]/(XN – 1)
11. Let frev be the polynomial of degree N – 1 such that frev0 = f0 and frevi = fN – i for 1 ≤ i ≤ N – 1

(this polynomial is called the reversal of f)
12. Let grev be the polynomial of degree N – 1 such that grev0 = g0 and grevi = gN – i for 1 ≤ i ≤ N – 1

(this polynomial is called the reversal of g)
13. Set polynomial t := f* frev + g*grev in Z[X]/(XN – 1)
14. Set integer rest equal to the resultant of t and set the polynomial rhot to satisfy the equation rhot* t

:= rest in Z[X]/(XN – 1), using algorithm 2.2.7.2
15. Set polynomial c := rhot*(frev*F + grev*G) in Z[X]/(XN – 1)
16. Set integers i := 0, j := 0, k := 0
17. While j < N do

a. Set cj := floor[cj/rest + .5]
b. Set j := j + 1

18. Set F := F – c* f in Z[X]/(XN – 1)
19. Set G := G – c*g in Z[X]/(XN – 1)
20. (optional) Set integers D := 0, E := 0
21. (optional) Set polynomials u := f, v := g
22. (optional) Set j := 0
23. (optional) While j < N do

a. Set E := E + 2*N* (fj
2 + gj

2)
b. Set j := j + 1

24. (optional) Set E := E – (f(1) + g(1))2
25. (optional) Set j := 0
26. (optional) While k < MaxAdjustment and j < N do

a. Set D := 0
b. While i < N do

i. Set D := D + 4*N* (Fi* fi + Gi*gi)
ii. Set i := i + 1

c. Set D := D – 2*(F(1) + G(1))* (f(1) + g(1))
d. If D > E

i. Set F := F – u in Z[X]/(XN – 1)
ii. Set G := G – v in Z[X]/(XN – 1)

iii. Set k := k + 1
iv. Set j := 0

e. Else, if D < –E
i. Set F := F + u in Z[X]/(XN – 1)

ii. Set G := G + v in Z[X]/(XN – 1)
iii. Set k := k + 1
iv. Set j := 0

f. Set j := j + 1
g. Set u := u*X in Z[X]/(XN – 1)
h. Set v := v*X in Z[X]/(XN – 1)

27. Output f, g, F, G.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 34 of 78

3.5.1.2 NTRUSign Key Generation Primitive – KGP-NTRUSign1

The following primitive outputs an NTRUSign keypair.

NTRU Components:
— The NTRUSign domain parameters N, q
— The NTRUSign key security parameters df, dg, MaxAdjustment (optional)
� The basisType “standard” or “ transpose”
� The number of perturbation bases, perturbationBases

Input: None

Output: An NTRUSign private key consisting of the private key polynomials (f, f’ i) and
perturbationBases number of private perturbation bases (fi, f’ i, hi), and the NTRUSign public key h.

Operation: The NTRUSign keypair shall be computed by the following or an equivalent sequence of
steps:

1. Set i = perturbationBases.
2. While i � 0:

a. Generate an NTRUSign basis (fi, gi, Fi, Gi) using the algorithm given in section 3.5.1.1.
b. If basisType = “standard” , set f’ i = Fi. If basisType = “ transpose” , set f’ i = gi. Set hi = fi

-1*
f’ i mod q.

c. Set i = i-1.
3. The public key is h0. The private key is the set (fi, f’ i, hi) for 0

�
 i

�
 perturbationBases.

3.5.2 NTRUSign Signature Primitives

The NTRUSign signature primitives are used to generate a secure digital signature from a
message representative. There is only one NTRUSign signature primitive specified in
this standard.

3.5.2.1 NTRUSign Signature Primitive – SVSP-NTRU

SVSP-NTRU is the NTRU Signature Primitive. It is based on the work of [HHPSW01].
SVSP-NTRU may be used in a signature scheme with appendix and can be invoked in
the scheme SVSSA as part of signature generation. Note that the message representative
i may be the product of multiple small components (e.g. i = i0* i1*…* ij in Z[X]/(XN – 1)).

NTRUSign Components:
— The NTRUSign domain parameters N, q

Input:
— The signer’s NTRUSign private key (f, f’)
— The signer’s NTRUSign perturbation bases (fi, f’ i, hi) and the number perturbationBases
— The message representative, which is a polynomial i

Output: The signature, which is a polynomial s

Operation: The signature s shall be computed by the following or an equivalent sequence of steps:

1. Set s = 0. Set iLoop = perturbationBases.
2. While iLoop � 1:

a. Compute the polynomial B = – fiLoop
’* i in Z[X]/(XN – 1) (only need to store 2* log2q bits

per coefficient)
b. Set integer j := 0

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 35 of 78

c. While j < N do
i. Set Bj := floor[Bj/q + .5]

ii. Set j := j + 1
d. Compute the polynomial b = fiLoop* i in Z[X]/(XN – 1) (only need to store 2log2q bits per

coefficient)
e. Set j := 0
f. While j < N do

i. Set bj := floor[bj/q + .5]
ii. Set j := j + 1

g. Set polynomial siLoop := b* fiLoop
’ + B* fiLoop in (Z/qZ)[X]/(XN – 1)

h. Set s := s + siLoop mod q. Set i := siLoop * (hiLoop – hiLoop + 1) mod q. Set iLoop := iLoop –1.
3. Compute the polynomial B = – f* i in Z[X]/(XN – 1)
4. Set integer j := 0
5. While j < N do

a. Set Bj := floor[Bj/q + .5]
b. Set j := j + 1

6. Compute the polynomial b = f* i in Z[X]/(XN – 1)
7. Set j := 0
8. While j < N do

a. Set bj := floor[bj/q + .5]
b. Set j := j + 1

9. Set polynomial s0 := b* f’ + B* f in (Z/qZ)[X]/(XN – 1)
10. Output s := s + s0 mod q.

3.5.3 NTRUSign Verification Primitives

The NTRUSign verification primitives are used to indicate if a signature on a message
representative satisfies the appropriate verification conditions or not. There is only one
NTRUSign verification primitive specified in this standard.

3.5.3.1 NTRUSign Verification Primitive – SVVP-NTRU

SVVP-NTRU is the NTRU Verification Primitive. It is based on the work of
[HHPSW01]. SVVP-NTRU may be used in a signature scheme with appendix and can
be invoked in the scheme SVSSA as part of signature verification. Note that the message
representative i may be the product of multiple small components (e.g. i = i0* i1*…* ij in
Z[X]/(XN – 1)).

NTRUSign Components:
— The NTRUSign parameters N, q
— The NTRUSign security parameter NormBound

Input:
— The signer’s NTRUSign public key h
— The signature to be verified, which is a polynomial s
— The message representative i for which s is alleged to be a signature

Output: A message indicating that the signature is either “valid” or “ invalid”

Operation: A signature s shall be verified by the following or an equivalent sequence of steps:

1. Compute the polynomial t := h*s in (Z/qZ)[X]/(XN – 1)
2. Compute the polynomial e2 := i - t in (Z/qZ)[X]/(XN – 1) (setting coefficients in the range 0 to q

– 1)

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 36 of 78

3. Let maxrange be the largest integer such that e2j – e2k = maxrange for some j, k in the range 0 to
q – 1 and no coefficient of e2 has values between e2j and e2k

4. Let e2l be the largest coefficient of e2 and e2m be the smallest coefficient of e2
5. Set integer j := q – e2l + e2m
6. If j > maxrange

a. Set integer shift := m
7. Else

a. Set integer shift := j
8. Set j := 0
9. While j < N do

a. Set e2j := e2j – shift (mod q)
b. Set j := j + 1

10. Let maxrange be the largest integer such that sj – sk = maxrange for some j, k in the range 0 to q
– 1 and no coefficient of s has values between sj and sk

11. Let sl be the largest coefficient of s and sm be the smallest coefficient of s
12. Set j := q – sl + sm
13. If j > maxrange

a. Set shift := m
14. Else

a. Set shift := j
15. Set j := 0
16. While j < N do

a. Set sj := sj – shift (mod q)
b. Set j := j + 1

17. Set j := 0
18. Set integers ssum, e2sum, squaresum := 0
19. While j < N do

a. Set ssum := ssum + sj
b. Set e2sum := e2sum + e2j
c. Set squaresum := squaresum + sj

2 + e2j
2

d. Set j := j + 1
20. Compute the value CenteredNorm := sqrt((N*squaresum – ssum2 – e2sum2)/N)
21. If CenteredNorm > NormBound

a. Output "invalid"
22. Else

a. Output "valid"

3.6 NTRUSign Encoding Methods

3.6.1 NTRUSign Message Representative Generation Methods

An MRGM must have the property that it should be computationally infeasible to find
two messages whose message representatives are close to each other.

When signing a message, the signature shall be applied to the message representative i,
which is the result of a one-way operation on the message. In order to generate the
message representative, a hash function shall be applied to the message m and the
resulting value is used to generate the message representative polynomial i.

The message representative i represents the point in Z2N [0N, i], where 0N represents the
N-tuple of all 0's and i represents the N-tuple with entries equal to the coefficient values i j
of the polynomial i.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 37 of 78

3.6.1.1 Message Representative Generation – MRGM-NTRUSign1

The following message representative generation method is a supported method for
NTRUSign. This method consists of the generation of a single pseudo-random
polynomial with coefficients in the range [0, q – 1]. If this method is to be used, q should
be a power of 2.

NTRUSign Components:
— The NTRUSign parameters N, q, where q is a power of 2.
— The NTRUSign security parameter lr
— The chosen pseudo-random number generator PRNG()
— The chosen message hash function Hash()
— The hash function used to instantiate the PRNG PrngHash()

Input:
— The message, which is an octet string m
— The message randomization value, which is an octet string r of length lr (may be the empty string)

Output: The message representative polynomial i

Operation: The message representative i shall be produced by the following or an equivalent sequence of
steps:

1. Set c := log2q (i.e. the number of bits in q, e.g. if q = 128, c = 7)
2. Set B := ceil[c/8]
3. Use the specified message hash function with input m||r to produce an output Hash(m||r).
4. Instantiate the pseudo-random number generator with hash function PrngHash() and input

Hash(m||r) to produce an output stream PRNG (Hash(m||r)).
5. Set t := 0
6. While t < N do

a. Set o := next B octets of PRNG (Hash(m||r))
b. Set the high-order 8B - c bits of o to 0
c. Set j := o converted to an integer using OS2IP
d. Set i t := j
e. Set t := t + 1

7. Return i

3.6.1.2 Message Representative Generation – MRGM-NTRUSign2

The following message representative generation method is a supported method for
NTRUSign. This method includes the generation of multiple small message components
i0, i1, i2 … i(NumGroups – 1) that are multiplied together to produce the message
representative i. Note that it is usually desirable to store the message components in
place of the message representative for computational efficiencies.

NTRUSign Components:
— The NTRUSign parameters N, q
— The NTRUSign security parameter lr
— The NTRUSign MRGM parameters NumGroups, NumElements
— The random polynomial generation constant c
— The chosen pseudo-random number generator PRNG()
— The chosen hash function Hash()

Input:

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 38 of 78

— The message, which is a bit string m
— The message randomization value r of length lr (may be the empty string)

Output: The message representative polynomial i (and optionally the message components i0, i1, …,
i(NumGroups – 1))

Operation: The message representative i shall be produced by the following or an equivalent sequence of
steps:

1. Set B := ceil[c/8]
2. Use the specified hash function with input m||r to produce an output Hash(m||r).
3. Instantiate the pseudo-random number generator with hash function PrngHash() and input

Hash(m||r) to produce an output stream PRNG (Hash(m||r)).
4. Set t := 0
5. Set temp := 0
6. While t < NumGroups do

a. Set polynomial it := 0 (e.g. for t = 0, set polynomial i0 equal to 0, for t = 1, set
polynomial i1 equal to 0, etc.)

b. Set it0 := it0 + 1
c. While temp < NumElements – 1 do

i. Set o := next B octets of PRNG (Hash(m||r))
ii. Set the leftmost 8B - c bits of o to 0

iii. Set j := o converted to an integer using OS2IP
iv. If j < 2c – (2c mod N)

1. Set it(j mod N) := it(j mod N) + 1
2. Set temp := temp + 1

d. Set temp := 0
e. Set t := t + 1

7. Set i := i0* i1* i2*…* i(NumGroups – 1) in (Z/qZ)[X]/(XN – 1)
8. Return i (and optionally i0, i1, …, i(NumGroups – 1))

3.7 Supporting Algorithms
In order to perform the NTRUEncrypt operations securely, implementers shall choose
supporting algorithms that satisfy the security needs of the schemes. The security level
of the supporting algorithm typically depends on the desired security level of the scheme
(e.g. for a desired security level of 80 bits, the SHA-1 hash algorithm is typically chosen).
This section defines the algorithms that shall be used to meet this standard.

3.7.1 Hash Functions

Hash functions are used in two distinct situations in this standard: first, to hash a message
before signing; second, as the core of a mask generation function. For security purposes,
the hash function should be chosen at a strength commensurate to the desired security
level. Note that the security requirements in the first case may be different from the
security requirements in the second. The recommended parameter sets in this document
specify hash functions appropriate to their security levels.

The only currently supported hash functions for hashing a message before signing are
SHA-1, SHA-256, SHA-384 and SHA-512 [FIP95, NIST-SHA-2].

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 39 of 78

The only currently supported hash functions for use within a mask generation function
are SHA-1, SHA-256, SHA-384, SHA-512 [FIP95, NIST-SHA-2] and MDC-2DES-
NTRU, specified below.

All hash functions in this standard take an octet string as an input and produce an octet
string as an output. For compatibility with other standards which specify input and output
as bit strings, the conversion primitives OS2BSP and BS2OSP may be used.

3.7.1.1 Hash Function – MDC-2DES-NTRU

The following hash function, based on the Matyas-Meyer-Oseas MDC construction, uses
DES encryption with two changing keys to generate a message digest of length 8 octets.

A DES key has 56 cryptographically significant bits, but is conventionally represented as
a string of eight octets in which the rightmost bit of each octet is a parity bit. This
standard follows this convention.

Input: The message, which is an octet string m of length l octets, with l< 232.

Output: The message digest, which is an octet string md of length 8 octets; or “error” .

Operation: The message digest md shall be produced by the following or an equivalent sequence of steps:

1. If l > 232, output “error” and exit.
2. Set the initial keys K0, K0' to be the following octet string: K0 := 52 52 52 52 52 52 52 52,

K0' := 25 25 25 25 25 25 25 25.
3. Set NumZeroes := 8 – ((l + 5) mod 8). If NumZeroes is equal to 8, set NumZeroes := 0.
4. Create the octet string oZeroes, consisting of NumZeroes octets with the value 00.
5. Create the octet string oLen by converting the number l to an octet string of length 4 using

I2OSP.
6. Set the octet string m’ := (m||80||oZeroes||oLen).
7. Set l’ equal to the length in octets of m’ . The octets in m’ are indexed as m’0 m’1 m’ 2 m’ 3 …

m’ l ’ -1.
8. Set t:=0.
9. While t < l’ /8 do

a. Set encryption block Bt equal to the octet string m’ 8t m’ 8t+1 m’ 8t+2 m’ 8t+3 … m’ 8t+7.
b. Calculate the intermediate ciphertext I t := DesEncrypt (Bt, Kt)
c. Calculate the ciphertext Ct := DesEncrypt (I t, Kt’)
d. Calculate the intermediate hash Ht := Ct XOR Bt.
e. Set Kt+1 := Ht.
f. Counting from the left, set the second and third bits of Kt+1 to 1 and 0 respectively.
g. If necessary, set the parity bits of Kt+1.
h. Get the initial value of Kt+1’ from Ht by setting each octet of Kt+1’ to the equivalent octet

of Ht, right-rotated by four bits (for example, if the first octet of Ht in binary is 01011110,
the first octet of Kt+1’ is 11100101).

i. Counting from the left, set the second and third bits of Kt+1’ to 1 and 0 respectively.
j. If necessary, set the parity bits of Kt+1’ .
k. Set t := t+1.

10. Set encryption block Bt equal to the octet string m’ l ’ -8 m’ l ’ -7 m’ l ’ -6 … m’ l ’ -1.
11. Calculate the intermediate ciphertext I t := DesEncrypt (Bt, Kt)
12. Calculate the ciphertext Ct := DesEncrypt (I t, Kt’)
13. Calculate the final hash Ht := Ct XOR Bt.
14. Return Ht.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 40 of 78

3.7.2 Mask Generation Functions

Mask Generation Functions (MGFs) are functions similar to hash functions, except that
instead of producing a fixed-length output they produce an output of arbitrary length.

All mask generation functions are parameterized by the choice of a core hash function.
The only hash functions supported for use with the MGFs in this standard are SHA-1,
SHA-256, SHA-384, SHA-512 [FIP95, NIST-SHA-2] and MDC-2DES-NTRU, specified
in section 3.7.1.1 of this document.

This standard permits the use of two mask generation functions: the MGF1, as specified
in IEEE Standard 1363-2000 [IEEE 1363]; and the MGF-MDC-NTRU function,
specified below.

All mask generation functions in this standard take as input an octet string and the desired
length of the output, and output an octet string.

3.7.2.1 Mask Generation Function – MGF-1

This mask generation function is MGF-1 as specified in [IEEE 1363]. The only hash
functions supported for use with this mask generation function are SHA-1, SHA-256,
SHA-384, and SHA-512 [FIP95, NIST-SHA-2]

The function is parameterized by the following choice:
— A hash function Hash with output length hLen octets.

Input:
— An octet string Z of length zLen octets
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to

hLen × 232).

Output: An octet string mask of length oLen octets; or “error” .

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps:

1. If oLen exceeds hLen × 232, or if zLen exceeds any input length limitation on the hash function
Hash, output “error” and exit.

2. Let M be the empty string. Let cThreshold = ceil[oLen/hLen].
3. Set counter := 0.
4. While counter < cThreshold do

a. Convert counter to an octet string C of length 4 octets using I2OSP.
b. Compute Hash(Z || C) with the selected hash function to produce an octet string H of

length hLen octets.
c. Let M = M || H.
d. Increment counter by one.

5. Output the leading oLen octets of M as the octet string mask.

3.7.2.2 Mask Generation Function – MGF-MDC-NTRU

This mask generation function is a variant of MGF1 above. It is designed for the case
where the output length of the core hash function is short. The only hash function

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 41 of 78

supported for use with this MGF is MDC-2DES-NTRU, specified in section 3.7.1.1 of
this document.

The function is parameterized by the following choice:
— A hash function Hash with output length hLen octets.

Input:
— An octet string Z of length zLen octets
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to

hLen × 264).

Output: An octet string mask of length oLen octets; or “error” .

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps:

1. If oLen exceeds hLen × 264, or if zLen exceeds any input length limitation on the hash function
Hash, output “error” and exit.

2. Let M be the empty string. Let cThreshold = ceil[oLen/hLen].
3. Set counter := 0.
4. While counter < cThreshold do

a. Convert counter to an octet string C of length 8 octets using I2OSP.
b. Compute Hash(C || Z) with the selected hash function to produce an octet string H of

length hLen octets.
c. Let M = M || H.
d. Increment counter by one.

5. Output the leading oLen octets of M as the octet string mask.

3.7.3 Pseudo-Random Number Generation

The term “pseudo-random number generators” , as used in this standard, applies to
functions which are initialized with an octet string and may then be called repeatedly,
producing output of a specified but arbitrary length on each call. They differ from mask
generation functions in that they may be called multiple times, while a mask generation
function may only be called once.

All pseudo-random number generation functions are parameterized by the choice of a
core hash function. The only hash functions supported for use with the MGFs in this
standard are SHA-1, SHA-256, SHA-384, SHA-512 [FIP95, NIST-SHA-2] and MDC-
2DES-NTRU, specified in section 3.7.1.1 of this document.

This standard permits the use of two random number generators: one based on MGF1,
and one based on MGF-MDC-NTRU.

All random number generators in this standard are initialized with an octet string, and,
when called, output an octet string.

3.7.3.1 Pseudo-Random Number Generator – PRNG-MGF-1

This PRNG is based on MDC-MGF-NTRU, defined in section 3.7.2.2 above. If it is
called once only, its operation is indistinguishable from that of MGF-MDC-NTRU.

The function is parameterized by the following choice:

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 42 of 78

— A hash function Hash with output length hLen octets.

Input:
— An octet string Z of length zLen octets
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to

hLen × 232).

Output: An octet string o of length oLen octets; or “error” .

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps:

1. If zLen exceeds any input length limitation on the hash function Hash, output “error” and exit
2. Initialize totLen to 0. Intialize remLen to 0.
3. Initialize the octet string buf to be a string of zero octets of length hLen.
4. Initialize counter:= 0.
5. On input oLen:

a. Set totLen:=totLen + oLen.
b. If totLen exceeds hLen × 232, output “error” and exit.
c. If remLen < oLen

i. Let M be the trailing remLen octets in buf.
ii. Let tmpLen:=oLen – remLen.

iii. Let cThreshold = counter + ceil[tmpLen/hLen].
iv. While counter < cThreshold do

1. Convert counter to an octet string C of length 4 octets using I2OSP.
2. Compute Hash(Z || C) with the selected hash function to produce an

octet string H of length hLen octets.
3. Let M = M || H.
4. Increment counter by one. If tmpLen > hLen, decrement tmpLen by

hLen.
v. Set remLen:=hLen – tmpLen. Set buf:=H.

d. else
i. Set M equal to the trailing remLen octets of buf.

ii. Set remLen:=remLen – oLen.
6. Output the leading oLen octets of M as the octet string o.

3.7.3.2 Pseudo-Random Number Generator – PRNG-MDC-NTRU

This PRNG is based on a variant of MGF1. It is designed for the case where the output
length of the core hash function is short. The only hash function supported for use with
this MGF is MDC-2DES-NTRU, specified in section 3.7.1.1 of this document.

The function is parameterized by the following choice:
— A hash function Hash with output length hLen octets.

Input:
— An octet string Z of length zLen octets
— The desired length of the output, which is a positive integer oLen. (oLen shall be less than or equal to

hLen × 264).

Output: An octet string mask of length oLen octets; or “error” .

Operation: The octet string mask shall be produced by the following or an equivalent sequence of steps:

1. If zLen exceeds any input length limitation on the hash function Hash, output “error” and exit
2. Initialize totLen to 0. Intialize remLen to 0.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 43 of 78

3. Initialize the octet string buf to be a string of zero octets of length hLen.
4. Initialize counter:= 0.
5. On input oLen:

e. Set totLen:=totLen + oLen.
f. If totLen exceeds hLen × 264, output “error” and exit.
g. If remLen < oLen

i. Let M be the trailing remLen octets in buf.
ii. Let tmpLen:=oLen – remLen.

iii. Let cThreshold = counter + ceil[tmpLen/hLen].
iv. While counter < cThreshold do

1. Convert counter to an octet string C of length 8 octets using I2OSP.
2. Compute Hash(C || Z) with the selected hash function to produce an

octet string H of length hLen octets.
3. Let M = M || H.
4. Increment counter by one. If tmpLen > hLen, decrement tmpLen by

hLen.
v. Set remLen:=hLen – tmpLen. Set buf:=H.

h. else
i. Set M equal to the trailing remLen octets of buf.

ii. Set remLen:=remLen – oLen.
6. Output the leading oLen octets of M as the octet string o.

3.7.4 Random Number Generation

In various operations specified in this standard such as key generation and signature
generation, the generation of random numbers is required. This standard strongly
recommends the use of a secure random number generation method such as those
methods that are approved by NIST in the FIPS series of standards (see [FIP00]) and by
ANSI in the X9 series of standards (see [ANS98a] [ANS98b] [ANS98c]).

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 44 of 78

4 NTRUEncrypt Encryption Scheme (SVES)
The following section defines the EESS #1 supported encryption schemes. The only
encryption scheme currently supported by EESS #1 is SVES. SVES stands for Shortest
Vector Encryption Scheme (see [IEEE P1363.1] for more information).

4.1 NTRUEncrypt Encryption Scheme (SVES) Overview
The general NTRUEncrypt encryption scheme is a sequence of operations that are
performed based on the choices of the NTRUEncrypt supporting algorithms,
NTRUEncrypt primitives and the NTRUEncrypt parameters. In order to perform all of
the NTRUEncrypt encryption scheme operations, the following NTRUEncrypt
components must be specified:

NTRUEncrypt Domain Parameters –

1. Degree N
2. Small modulus p
3. Big modulus q

NTRUEncrypt Security Parameters –

1. Private key space Df
2. Key generation primitive (KGP)
3. Temporary polynomial space Dg

NTRUEncrypt Scheme Options –

1. Random component size db
2. Message length encoding length lLen, if required
3. Message representative generation method (MRGM)

a. Supported mask generation function (MGF)
b. Hash function used to instantiate MGF (Hash)

4. Blinding value generation method (BVGM)
a. Supported pseudo-random number generator (PRNG)
b. Hash function used to instantiate PRNG (Hash – must be the same as the

Hash used in the MRGM)
c. Blinding value space Dr
d. Random polynomial generation constant c

5. Decryption primitive (DP)

Note that since the public key space Dh is uniquely determined from Df and Dg, it is not
listed above as a required component for the NTRUEncrypt encryption scheme.

To illustrate the way that the NTRUEncrypt encryption scheme could be used, below is a
step-by-step example of the processes that might occur when implementing the scheme.
For simplicity, this example will use two entities, the encryptor Ernest and the decryptor
Donna. The exact operations for key generation, encryption and decryption are spelled
out in section 4.2.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 45 of 78

1. Donna and Ernest agree on a set of domain parameters N, p, q. (these will be
used throughout, but not referenced explicitly)

2. Donna and Ernest agree on the scheme options MGF, PRNG, Hash, db, Dr, c,
BVGM, EP, PDP, DP.

3. Donna chooses her security parameters KGP, Df, Dg.
4. Donna generates an NTRUEncrypt key pair (f, h) (using Df, Dg and KGP).
5. Donna sends the public key h to Ernest (note this message need not be

encrypted, but Ernest should have some assurance that it actually came from
Donna).

6. Ernest chooses a message m to encrypt to Donna.
7. Ernest generates a random component b (using db and a random number

generator) and then calculates the padded message pm and the seed seed. From
seed he obtains the blinding value r (using PRNG, Hash, c and BVGM).Then
from r and pm he obtains the message representative i (using MGF and Hash)
and the ciphertext e.

8. Ernest sends the ciphertext e to Donna.
9. Donna uses DP with the private key f and the ciphertext e to find a message

representative candidate i '.
10. Donna recovers the candidate padded message pm' and the candidate seed seed'

(using the inverse of MPM) and then performs the encryption on m' (using
seed', i ', PRNG, Hash, c, BVGM and EP) to retrieve the expected encryption
value e'.

11. If the resulting e' is the same as the received e and there were no padding errors,
Donna knows that she decrypted the message properly and obtains the original
message m = m'. If the resulting message e' is not the same as e or if there was a
padding error, Donna outputs “ fail” .

4.2 NTRUEncrypt Encryption Scheme (SVES) Operations
The NTRUEncrypt encryption scheme consists of the three operations – key generation,
encryption and decryption. These three operations are defined generally in this section
without assuming any specific choices of the NTRUEncrypt components listed in section
4.1.

4.2.1 NTRUEncrypt Key Generation

This section defines the NTRUEncrypt key generation operation. Note that within the
definition of the NTRUEncrypt spaces may be definitions of additional variables (e.g.
when defining Df, the values df1, df2 and df3 may be specified as well as the appropriate
method of combining them)

NTRUEncrypt Components:
— The NTRUEncrypt parameters N, q, p
— The NTRUEncrypt spaces Df, Dg

— The selected NTRUEncrypt key generation primitive KGP

Input: None

Output: An NTRUEncrypt key pair (f, h)

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 46 of 78

Operation: The NTRUEncrypt key pair generation shall be computed by the following or an equivalent
sequence of steps:

1. Using KGP, with inputs N, q, p, Df, Dg, generate an NTRUEncrypt key pair (f, h)
2. Return (f, h)

4.2.2 NTRUEncrypt Encryption Scheme SVES-3: Encryption

This section defines the NTRUEncrypt encryption operation for SVES-3. Note that
within the definition of the NTRUEncrypt spaces may be definitions of additional
variables (e.g. when defining Dr, the values dr1, dr2 and dr3 may be specified as well as
the appropriate method of combining them).

Components:
� The length of the encoded length lLen.
� The number of bits of random data db, which must be a multiple of 8.
� The chosen Mask Generation Function and Hash Function.
� The chosen Blinding Value Generation Method and the associated parameters
� The OID, an octet string
� The number of bits of public key to hash, pkLen.

Inputs:
� The message m, which is an octet string of length l octets
� The public key h

Output:
� The ciphertext e, which is a ring element, or "message too long"

Operation: The ciphertext e shall be calculated by the following or an equivalent sequence of steps:

1. Calculate:
a. nLen = ceil [N/8], the number of octets required to hold N bits.
b. octL = the lLen-octet-long encoding of the message length l.
c. bLen = db/8, the length in octets of the random data.
d. maxLen = nLen - 1 - lLen - bLen, the maximum message length.

2. If l > maxLen, output "message too long" and stop.
3. Randomly select an octet string b of length bLen.
4. Form the octet string p0, consisting of the 0 byte repeated (maxLen + 1 - l) times.
5. Form the octet string M of length nLen as

 b || octL || m || p0.
6. Form the octet string hTrunc, consisting of the first pkLen bits of the packed representation of the

public key h (generated using RE2POSP, section 2.3.6). Form sData as the octet string
 OID || m || b || hTrunc

7. Use the chosen blinding value generation method with the seed sData and the chosen parameters
to produce r.

8. Calculate R = r*h mod q.
9. Calculate R2 = R mod 2.
10. Convert R2 to the octet string oR2 using BE2OSP.
11. Form m' by putting oR2 through the chosen MGF/Hash and XORing the leading nLen bytes of the

output with M.
12. Set the leading ((nLen * 8) - N) bits of the final octet of m' to 0.
13. If

 (N-q)/2 < m’ (1) < (N+q)/2,
return to step 3.

14. Convert m' to i, a binary polynomial of length N, using OS2BEP.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 47 of 78

15. Calculate the ciphertext as e = R + i mod q.

4.2.3 NTRUEncrypt Encryption Scheme SVES-3: Decryption

This section defines the NTRUEncrypt decryption operation for SVES-3. Note that
within the definition of the NTRUEncrypt spaces may be definitions of additional
variables (e.g. when defining Dr, the values dr1, dr2 and dr3 may be specified as well as
the appropriate method of combining them).

Components:
� The NTRUEncrypt decryption primitive to use
� The length of the encoded length lLen.
� The number of bits of random data db, which must be a multiple of 8.
� The chosen Mask Generation Function and Hash Function.
� The chosen Blinding Value Generation Method and the associated parameters
� The OID, an octet string
� The number of bits of public key to hash, pkLen.

Inputs:
� The ciphertext e, which is a polynomial of degree N-1.
� The private key f or (f, fp).
� The public key h

Output:
� The message m, which is an octet string, or "fail".

Operation: The message m shall be calculated by the following or an equivalent sequence of steps:

1. Calculate:
a. nLen = ceil [N/8], the number of octets required to hold N bits.
b. bLen = db/8, the length in octets of the random data
c. maxLen = nLen - 1 - lLen - bLen, the maximum message length.

2. Decrypt the ciphertext e using the selected NTRU decryption primitive with inputs e and f to get
the candidate decrypted polynomial ci.

3. Calculate the candidate value for r*h, cR = e - ci.
4. Calculate cR2 = cR mod 2.
5. Convert cR2 to the octet string coR2 using BE2OSP.
6. Convert the binary polynomial ci to the octet string cm' using BE2OSP.
7. Form cm by putting coR2 through the chosen MGF/Hash and XORing the leading nLen bytes of

the output with cm'.
8. Set the leading ((nLen * 8) - N) bits of the final octet of cM to 0.
9. Parse cM as follows.

a. The first bLen octets are the octet string cb.
b. The next lLen octets represent the message length. Convert the value stored in these

octets to the candidate message length cl. If cl > maxLen, set fail = 1 and set cl = maxL.
c. The next cl octets are the candidate message cm. the remaining octets should be 0. If they

are not, set fail = 1.
10. Form the octet string hTrunc, consisting of the first pkLen bits of the packed representation of the

public key h (generated using RE2POSP, section 2.3.6). Form sData as the octet string
 OID || cm || cb || hTrunc

11. Use the chosen blinding value generation method with the seed sData and the chosen parameters
to produce r.

12. Calculate cR' = h * cr mod q.
13. If cR' != cR, set fail = 1

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 48 of 78

14. If fail = 1, output "fail". Otherwise, output cm as the decrypted message m.

4.3 Supported Parameter Sets
This section defines specific sets of parameters for the NTRUEncrypt encryption scheme
(SVES) that are supported by the EESS #1 standard. The parameters chosen in these sets
must be used as a group and may not be mixed and matched. Each parameter set is
chosen to maximize both security and efficiency for the selected security level. The best
known attacks on these parameter sets appear to be measurable based on the parameter N,
i.e. a larger N represents a stronger security level. No other sets of parameters shall be
used.

The parameter sets ees139ep1, ees139ep2, ees251ep1, ees251ep2, ees251ep3, ees347ep1,
ees503ep1 that appeared in previous versions of this document are deprecated and should
not be used.

4.3.1 ees251ep4

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251ep4. This
parameter set name stands for efficient embedded security (ees) encryption parameters
(ep) with degree 251 (251) set 4 (4). The object identifier for this parameter set is
specified in section A.1.

N = 251
p = 2
q = 239

4.3.1.1 Key generation:

KGP-NTRU2 with
dF = 72
Dg = g, where dg = 72

4.3.1.2 Encryption/Decryption:

SVES-3 encryption and decryption as in sections 4.2.2 and 4.2.3, parameterized as
follows:

lLen = 1
db = 80
SVDP-NTRU2
MGF-1 with

SHA-1 (MGF)
BVGM-NTRU1 with
 PRNG-MGF-1 with SHA-1 (PRNG)

dr = 72
c = 8

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 49 of 78

OID = 00 01 04
pkLen = 80

4.3.2 ees251ep5

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251ep5. This
parameter set name stands for efficient embedded security (ees) encryption parameters
(ep) with degree 251 (251) set 4 (5). The object identifier for this parameter set is
specified in section A.1.

N = 251
p = 2
q = 239

4.3.2.1 Key generation:

KGP-NTRU2 with
dF = 72
Dg = g, where dg = 72

4.3.2.2 Encryption/Decryption:

SVES-3 encryption and decryption as in sections 4.2.2 and 4.2.3, parameterized as
follows:

lLen = 1
db = 80
SVDP-NTRU2
MGF-1 with

MDC-NTRU (MGF)
BVGM-NTRU1 with
 PRNG-MGF-1 with MDC-NTRU (PRNG)

dr = 72
c = 8

OID = 00 01 05
pkLen = 80

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 50 of 78

5 NTRUSign Signature Scheme (SVSSA)
The following section defines the EESS #1 supported signature schemes. The only
signature scheme currently supported by EESS #1 is SVSSA. SVSSA stands for Shortest
Vector Signature Scheme with Appendix (see [IEEE P1363.1] for more information).

5.1 NTRUSign Signature Scheme (SVSSA) Overview
The general NTRUSign signature scheme is a sequence of operations that are performed
based on the choices of the NTRUSign supporting algorithms, NTRUSign primitives and
the NTRUSign parameters. In order to perform all of the NTRUSign signature scheme
operations, the following NTRUSign components must be specified.

NTRUSign Domain Parameters –

1. Degree N
2. Big modulus q

NTRUSign Security Parameters –

1. Private key spaces Df, Dg
2. Basis completion space DFG
3. Basis completion maximum adjustment MaxAdjustment (optional)
4. Signature failure tolerance SignFailTolerance
5. Key norm bound KeyNormBound (optional)
6. Key generation primitive (KGP)

NTRUSign Scheme Options –

1. Signature norm bound NormBound
2. Message randomization element space Dr
3. Message representative generation method (MRGM)

a. Supported hash function (Hash)
b. Supported pseudo-random number generator (PRNG)
c. Supported core hash function for the PRNG (PrngHash)
d. Random polynomial generation constant c (optional)

4. Signature primitive (SP)
5. Verification primitive (VP)

Note that since the public key space Dh is uniquely determined from Df and Dg, it is not
listed above as a required component for the NTRUSign signature scheme.

To illustrate the way that the NTRUSign signature scheme could be used, below is a step-
by-step example of the processes that might occur when implementing the scheme. For
simplicity, this example will use two entities, the signer Samantha and the verifier Victor.
The exact operations for key generation, signing and verifying are spelled out in section
5.2.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 51 of 78

1. Samantha and Victor agree on a set of domain parameters N, q. (these will be
used throughout, but not referenced explicitly)

2. Samantha and Victor agree on the scheme options Hash, PRNG, PrngHash, c,
NormBound, Dr, MRGM, SP, VP.

3. Samantha chooses her security parameters KGP, Df, Dg, DFG, KeyNormBound,
MaxAdjustment, SignFailTolerance.

4. Samantha generates an NTRUSign key pair ((f, g), h) and basis completion pair
(F, G) (using KGP, Df, Dg, DFG, KeyNormBound and MaxAdjustment)

5. Samantha send the public key h to Victor (note this message need not be
encrypted, but Victor should have some assurance that it actually came from
Samantha).

6. Samantha chooses a message m to sign for Victor.
7. Samantha selects a message randomization value r, computes the message

representative i and generates a signature s on m (using SP, Dr, MRGM, Hash,
PRNG, c, SignFailTolerance, f, and F).

8. Samantha may optionally check the signature (using VP, NormBound, r, s and i)
9. Samantha sends the message m, the message randomization value r and the

signature s to Victor (again these can be sent in the clear and Victor does not have
to know ahead of time that it came from Samantha)

10. Victor checks the signature on m (using MRGM, Hash, PRNG, c, VP,
NormBound, r and s).

11. If the signature passes, Victor trusts that Samantha generated the signature on m.

5.2 NTRUSign Signature Scheme (SVSSA) Operations
The NTRUSign signature scheme consists of three operations – key generation, signature
generation and verification.

5.2.1 NTRUSign Key Generation

This section defines the NTRUSign key generation operation. Note that within the
definition of the NTRUSign spaces may be definitions of additional variables, although
none of the parameter sets specified in this standard use these additional variables.

NTRUSign Components:
— The NTRUSign domain parameters N, q,
— The NTRUSign security parameters KeyNormBound (optional), Df, Dg, DFG, MaxAdjustment

(optional), perturbationBases.
— The NTRUSign basisType variable, equal to “standard” or “ transpose” .
— The selected NTRUSign key generation primitive KGP

Input: None

Output: An NTRU key pair consisting of the private key (f, g, D) and the public key h

Operation: The NTRU key pair shall be computed by the following or an equivalent sequence of steps:

1. Using KGP, with inputs N, q, Df, Dg, DFG, perturbationBases, basisType, KeyNormBound

(optional), MaxAdjustment (optional), generate an NTRUSign private key (fi, f’ i, hi) for 0
�
 i

�

perturbationBases and public key h.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 52 of 78

5.2.2 NTRUSign Signature Operation

This section defines the NTRUSign signature operation. Note that within the definition
of the NTRUSign spaces may be definitions of additional variables (e.g. when defining
Di, the value di may be specified). Note that h need not be known if the verification
primitive VP is performed using alternate methods using the private key (f, g).

NTRUSign Components:
— The NTRUSign parameters N, q
— The NTRUSign security parameter NormBound

— The NTRUSign message randomization space Dr

— The selected NTRUSign signature primitive SP
— (optional) The selected NTRUSign verification primitive VP
— (optional) The parameter SignFailTolerance
— The selected NTRUSign message representative generation method MRGM
— The selected Hash function Hash
— The selected pseudo-random number generation function PRNG
— The selected core hash function for the pseudo-random number generator PrngHash

Input:
— The signer’s NTRUSign private key (fi, f’ i, hi) for 0

�
 i

�
 perturbationBases

— The message m to be signed, which is a octet string
— (optional) The signer’s NTRUSign public key h

Output: The signature, which is a polynomial s and the message randomization value r

Operation: The signature s shall be computed by the following or an equivalent sequence of steps:

1. Set integer SignFail := 0
2. Select a message randomization value r from the space Dr (this may be done randomly or

deterministically)
3. Using MRGM, with inputs m, r and components N, q, lr, Hash, PRNG, PrngHash, generate the

message representative i.
4. Using SP, with inputs f, F, i and components N, q, generate the signature s
5. (optional) If verification checking is desired

a. Using VP, with inputs s, h, i and components N, q, NormBound, verify the signature s
b. If s is not a valid signature

i. Go to 2 (note that if the same r is chosen, the signature will always fail)
ii. Set SignFail := SignFail + 1

iii. If SignFail > SignFailTolerance
1. Output "Signature Failed"

6. Output s and r

5.2.3 NTRUSign Verification Operation

This section defines the NTRUSign verification operation.

NTRUSign Components:
— The NTRUSign parameters N, q
— The NTRUSign security parameter NormBound
— The NTRUSign message randomization space Dr

— The selected NTRUSign verification primitive VP
— The selected NTRUSign message representative generation method MRGM
— The selected hash function Hash
— The selected pseudo-random number generation function PRNG
— The selected core hash function for the pseudo-random number generator PrngHash

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 53 of 78

Input:
— The signer’s NTRUSign public key h
— The signature to be verified, which is a polynomial s
— The message m for which s is alleged to be a signature
— The message randomization value r

Output: A message indicating that the signature is either “valid” or “ invalid”

Operation: A signature s shall be verified by the following or an equivalent sequence of steps:

1. Using MRGM, with inputs m, r and components N, q, lr, Hash, PRNG, PrngHash, generate the
message representative i.

2. Using VP, with inputs s, h, i and components N, q, NormBound, verify the signature s.
3. If the verification is successful, output “valid” and stop.
4. Output “ invalid.”

5.3 Supported Parameter Choices
This section defines specific sets of parameters for the NTRUSign signature scheme
(SVSSA) that are supported by the EESS #1 standard. The parameters chosen in these
sets must be used as a group and may not be mixed and matched. Each parameter set is
chosen to maximize both security and efficiency for the selected security level. The best
known attacks on these parameter sets appear to be measurable based on the parameter N,
i.e. a larger N represents a stronger security level. No other sets of parameters shall be
used.

The domain parameters for each parameter sets are required and shall be used whenever
the parameter set is specified. The security parameters are recommended for use with the
specified domain parameters. The primitives and encoding methods are typically
specified at a higher level, but recommended choices are listed.

5.3.1 ees251sp2

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp2. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 2 (2). The object identifier for this parameter set is specified in
section A.1.

5.3.1.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

5.3.1.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 54 of 78

MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None
KGP-NTRUSign1
perturbationBases = 0
basisType = “standard”

5.3.1.3 NTRUSign Scheme Options (required)

NormBound = 310
Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU
SVVP-NTRU
MRGM-NTRUSign2 with
 c = 8
 NumGroups = 13
 NumElements = 3

SHA-1 (Hash)
PRNG-MGF1 with SHA-1 (PRNG)

5.3.2 ees251sp3

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp3. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 3 (3). The object identifier for this parameter set is specified in
section A.1.

5.3.2.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

5.3.2.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G
MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None
KGP-NTRUSign1
perturbationBases = 0
basisType = “standard”

5.3.2.3 NTRUSign Scheme Options (required)

NormBound = 310

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 55 of 78

Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU
SVVP-NTRU
MRGM-NTRUSign2 with
 c = 8
 NumGroups = 13
 NumElements = 3

SHA-1 (Hash)
PRNG-MGF1 with MDC-NTRU (PRNG)

5.3.3 ees251sp4

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp4. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 4 (4). The object identifier for this parameter set is specified in
section A.1.

5.3.3.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

5.3.3.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G
MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None
KGP-NTRUSign1
perturbationBases = 0
basisType = “standard”

5.3.3.3 NTRUSign Scheme Options (required)

NormBound = 310
Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU
SVVP-NTRU
MRGM-NTRUSign1 with

SHA-1 (Hash)
PRNG-MGF1 with SHA-1 (PRNG)

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 56 of 78

5.3.4 ees251sp5

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp5. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 5 (5). The object identifier for this parameter set is specified in
section A.1.

5.3.4.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

5.3.4.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G
MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None
KGP-NTRUSign1
perturbationBases = 0
basisType = “standard”

5.3.4.3 NTRUSign Scheme Options (required)

NormBound = 310
Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU
SVVP-NTRU
MRGM-NTRUSign1 with

SHA-1 (Hash)
PRNG-MGF1 with MDC-NTRU (PRNG)

5.3.5 ees251sp6

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp6. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 6 (6). The object identifier for this parameter set is specified in
section A.1.

5.3.5.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 57 of 78

5.3.5.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G
MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None
KGP-NTRUSign1
perturbationBases = 1
basisType = “transpose”

5.3.5.3 NTRUSign Scheme Options (required)

NormBound = 310
Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU
SVVP-NTRU
MRGM-NTRUSign2 with
 c = 8
 NumGroups = 13
 NumElements = 3

SHA-1 (Hash)
PRNG-MGF1 with SHA-1 (PRNG)

5.3.6 ees251sp7

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp7. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 3 (7). The object identifier for this parameter set is specified in
section A.1.

5.3.6.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

5.3.6.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G
MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 58 of 78

KGP-NTRUSign1
perturbationBases = 1
basisType = “transpose”

5.3.6.3 NTRUSign Scheme Options (required)

NormBound = 310
Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU
SVVP-NTRU
MRGM-NTRUSign2 with
 c = 8
 NumGroups = 13
 NumElements = 3

SHA-1 (Hash)
PRNG-MGF1 with MDC-NTRU (PRNG)

5.3.7 ees251sp8

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp8. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 8 (8). The object identifier for this parameter set is specified in
section A.1.

5.3.7.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

5.3.7.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G
MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None
KGP-NTRUSign1
perturbationBases = 1
basisType = “transpose”

5.3.7.3 NTRUSign Scheme Options (required)

NormBound = 310
Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 59 of 78

SVVP-NTRU
MRGM-NTRUSign1 with

SHA-1 (Hash)
PRNG-MGF1 with SHA-1 (PRNG)

5.3.8 ees251sp9

This section specifies the selected domain parameters, security parameters, primitives,
encoding methods and supporting methods for the parameter set ees251sp9. This
parameter set name stands for efficient embedded security (ees) signature parameters (sp)
with degree 251 (251) set 9 (9). The object identifier for this parameter set is specified in
section A.1.

5.3.8.1 NTRUSign Domain Parameters (required)

N = 251
q = 128

5.3.8.2 NTRUSign Security Parameters (recommended)

Df = f where
df = 73

Dg = g, where
 dg = 71
DFG = any valid F, G
MaxAdjustment = 200
SignFailTolerance = 0
KeyNormBound = None
KGP-NTRUSign1
perturbationBases = 1
basisType = “transpose”

5.3.8.3 NTRUSign Scheme Options (required)

NormBound = 310
Dr = random r where
 lr = 1 (e.g. r is a single random octet)
SVSP-NTRU
SVVP-NTRU
MRGM-NTRUSign1 with

SHA-1 (Hash)
PRNG-MGF1 with MDC-NTRU (PRNG)

6 ASN.1 Syntax
This section covers the representation of cryptographic objects used in NTRUEncrypt in
terms of ASN.1 Syntax. This is important for use with certificates, certificate revocation
and other cryptographic messages. In particular, ASN.1 syntax is used to represent the
contents of X.509 certificates. Some additional object identifiers and placeholders for
ASN.1 syntax for NTRUSign are included in the ASN.1 module in Annex A for
informational purposes.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 60 of 78

6.1 General Types

6.1.1 General Vector Types

This section defines the ASN.1 syntax for vector types that are used to represent
polynomials for NTRUEncrypt. There are three primary types of vectors – public
vectors, binary vectors and trinary vectors. Public vectors are polynomials that have N
coefficients that are reduced modulo q. Binary vectors are polynomials that have N
coefficients that are reduced modulo p, where p = 2 + X, making the coefficients all
either 0 or 1. Trinary vectors are polynomials that have N coefficients that are reduced
modulo p, where p = 3, making the coefficients either 0, 1 or –1. Coefficients in the
vectors are always represented as positive integers, however since the coefficients are
taken modulo either p or q, they should be reduced into the appropriate interval before
being used (e.g. modulo 3 numbers are reduced to 0, 1 or -1 and modulo q numbers are
usually reduced into the interval –q/2 <= x <= q/2).

All of the vector types consist of a string of integer values that are concatenated and
stored in an OCTET STRING. Each integer is encoded by taking the smallest positive
representation of the integer modulo p, q or N (e.g. taking –1 as a mod 3 number gives
you the integer 2), encoding it with I2OSP, and then using OS2BSP (see section 2.3) to
obtain a bit string of the appropriate length (e.g. truncating the leftmost 6 bits to obtain 2
bits for a mod 3 coefficient). The integer is recovered by obtaining the correct bit string
(e.g. for packed NTRUEncrypt 251, each coefficient is represented by 7 bits), and using
BS2OSP and then OS2IP (see section 2.3). So, to encode the value 55 as a 7-bit value,
the integer is encoded as the octet 00110111 (using I2OSP) and then it is truncated on the
left (using OS2BSP with the desired length set to 7) to obtain the bit string 0110111. To
obtain the value of the coefficient represented by the bit string 0110111, the bit string is
expanded on the left to obtain the octet 00110111 (using BS2OSP) and then converted to
the integer 55 (using OS2IP).

NTRUPublicVector ::= CHOICE {
 modQVector [0] IMPLICIT ModQVector,
 packedModQVector [1] IMPLICIT PackedModQVector,
 …
}

NTRUBinaryVector ::= CHOICE {

listedBinaryVector [0] IMPLICIT ListedBinaryVector,
 packedBinaryVector [1] IMPLICIT PackedBinaryVector,
 modQVector [2] IMPLICIT ModQVector,
 …
}

Binary vectors in NTRUEncrypt usually arise from reducing some polynomial mod 2 +
X. When a polynomial is reduced mod 2 + X using the techniques given in EESS#1, it is
possible to get an “exception case result” , which is the polynomial 2 + X2 + X4 + … + XN-

1. This exception case cannot be encoded as a listed or packed binary vector, and must be
encoded as a ModQVector.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 61 of 78

ModQVector ::= OCTET STRING

The contents of this OCTET STRING are obtained by converting a ring element to a octet
string using the RE2OSP conversion primitive. A ModQVector is a representation of a
polynomial of degree N and must include all N coefficients, even if the high-order ones
are zero.

This is the preferred format for public keys, encrypted values and signatures.

PackedModQVector ::= OCTET STRING

The contents of this OCTET STRING are obtained by converting a ring element to a octet
string using the RE2POSP conversion primitive. A PackedModQVector is a
representation of a polynomial of degree N and must include all N coefficients, even if
the high-order ones are zero.

For the NTRUEncrypt parameter sets in this standard, there is no difference between the
ModQVector representation and the PackedModQVector representation. For the
NTRUSign parameter sets, use of the PackedModQVector representation may result in
saving about N bits per vector.

ListedBinaryVector ::= OCTET STRING

This OCTET STRING is to be interpreted as a sequence of 1-byte (for N < 256) or 2-byte
(for 256 � N < 512) unsigned integers. Each integer corresponds to a coefficient of the
polynomial that is equal to 1. All coefficients that are not included in the list are equal to
0. As an example, the byte 0x25 (for N = 251) would indicate that the coefficient of the
polynomial of degree 37 (i.e. X37) is 1. The integers must be listed in ascending order
numerically and no coefficient may be listed more than once. This is the preferred format
for NTRUEncrypt private key components.

PackedBinaryVector ::= OCTET STRING

This OCTET STRING is to be interpreted as a sequence of 1-bit unsigned integers. These
integers are packed into the OCTET STRING starting from the least significant bit of the
first byte, without any additional padding, irrespective of the byte boundaries of the
OCTET STRING. The most significant bits of the final byte of the OCTET STRING are
padded with 0's if necessary. Each integer corresponds to a single coefficient value x in
the range 0 <= x <= 1, ordered from lowest degree to highest. For NTRUEncrypt-251 (or
NTRUSign-251), NTRUEncrypt-347 and NTRUEncrypt-503, a PackedBinaryVector wil l
take up 32 bytes (the last 5 bits are set to 0), 44 bytes (the last 5 bits are set to 0) and 63
bytes (the last bit is set to 0) respectively.

Note that the contents of a PackedBinaryVector are different from the result of encoding
the binary vector with BRE2OSP.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 62 of 78

We define two further types, which can be used to represent a polynomial of arbitrary
degree:

NTRUGeneralPolynomial ::= SEQUENCE {
 numberOfEntries INTEGER,
 modulus INTEGER,
 coefficients GeneralVector
}

This SEQUENCE defines a polynomial with any integer modulus and any degree. The
INTEGER called numberOfEntries is equal to the degree + 1 of the polynomial and
represents the number of coefficients to be listed. The INTEGER called modulus is a
modulus or more generally, modulus is an upper bound on the value of the coefficients of
the polynomial. The GeneralVector called coefficients is the concatenation of the values
of the coefficients of the polynomial, obtained by treating the polynomial as if it were of
degree numberOfEntries–1, converting this polynomial to an octet string using RE2OSP,
and encoding the result as a ModQVector.

GeneralVector ::= OCTET STRING

This OCTET STRING is to be interpreted as a ModQVector except that only coefficients
of the polynomial up to the specified numberOfEntries are included in the OCTET
STRING. So, for NTRUEncrypt-251 with a modulus q of 128, the polynomial 2 + X
(which is the small modulus p) could be encoded as an NTRUGeneralPolynomial with
numberOfEntries equal to 2, modulus equal to 128, and a GeneralVector whose value is
two bytes long.

6.1.2 Object Identifiers

This standard uses the following base object identifiers.

ntru OBJECT IDENTIFIER ::= {

iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1)
ntruCryptosystems (8342) }

id-eess1 OBJECT IDENTIFIER ::= { ntru eess (1) eess-1 (1) }

id-eess1-algs OBJECT IDENTIFIER ::= {id-eess1 1}
id-eess1-params OBJECT IDENTIFIER ::= {id-eess1 2}
id-eess1-encodingMethods OBJECT IDENTIFIER ::= {id-eess1 3}

6.2 ASN.1 for NTRUEncrypt SVES
This section defines the ASN.1 object identifiers for NTRUEncrypt keys and
NTRUEncrypt encrypted data, and defines the types NTRUPublicKey, NTRUPrivateKey,
NTRUEncryptedData, and EESS1v1-SVES-Parameters.

The object identifier id-ntru-EESS1v1-SVES identifies NTRUEncrypt public and private
keys and NTRUEncrypt-encrypted data. When this object identifier is used in an
AlgorithmIdentifier, the parameters shall be of type EESS1v1-SVES-Parameters.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 63 of 78

Note that EESS#1 breaks with common practice in requiring that a key be encoded with
the scheme parameters (such as a mask generation function identifier for NTRUEncrypt
or the verification bounds for NTRUSign) as well as with the algorithm domain
parameters (such as N, q and p). Ensuring that a key can only be used in one scheme
provides a defense against version rollback attacks and is good security practice.

This section of this standard only defines ASN.1 for the currently supported parameter
sets. ASN.1 for previously parameter sets will appear in a future appendix to this
standard.

6.2.1 NTRUEncrypt Public Keys

NTRUEncrypt public keys are identified by the following object identifier:

id-ntru-EESS1v1-SVES OBJECT IDENTIFIER ::= {id-eess1-algs 1}

The parameters field associated with this OID in an AlgorithmIdentifier shall have the
type EESS1v1-SVES-params, defined in section 6.2.4 below.

NTRUEncrypt public keys should be represented with the following syntax:

NTRUPublicKey ::= SEQUENCE {

 publicKeyVector NTRUPublicVector, -- h
ntruKeyExtensions NTRUKeyExtensions OPTIONAL
}

NTRUKeyExtensions ::= SEQUENCE SIZE(1..MAX) OF NTRUKeyExtension

NTRUKeyExtension ::= CHOICE {

 keyID [0] IMPLICIT INTEGER,
 …}

The fields of the type NTRUPublicKey have the following meanings:

• publicKeyVector is the polynomial h. If the NTRUPublicVector is a ModQVector,
each coefficient will be represented by one byte starting with the lowest degree
and going to the highest. If the NTRUPublicVector is a PackedModQVector, this is
the octet string representing h obtained using RE2BSP and then BS2OSP. All
coefficients up to XN-1 shall be explicitly included in publicKeyVector.
Representing the NTRUEncrypt public key as a ModQVector is the preferred
method.

• ntruKeyExtensions is provided for future extensibility. Only one extension is
defined in EESS#1.

The fields of the type NTRUKeyExtension have the following meanings:

• keyID can be used to associate a unique key identifier with the key.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 64 of 78

• The “…” is used to indicate this object is extensible. Additional types may be
added in future versions.

6.2.2 NTRUEncrypt Private Keys

NTRUEncrypt private keys are identified by the following object identifier:

id-ntru-EESS1v1-SVES OBJECT IDENTIFIER ::= {id-eess1-algs 1}

They are distinguished from NTRUEncrypt public keys by form and by context. The
parameters field associated with this OID in an AlgorithmIdentifier shall have the type
EESS1v1-SVES-params, defined in section 6.2.4 below.

An NTRUEncrypt private key should be represented with the following syntax:

NTRUPrivateKey ::= SEQUENCE {
 version INTEGER,
 publicKeyVector NTRUPublicVector OPTIONAL,
 privateKeyType PrivateKeyType,
 ntruPrivateKeyVectors NTRUPrivateKeyVectors,

…}

PrivateKeyType ::= INTEGER

NTRUPrivateKeyVectors ::= SEQUENCE {
 fVectors FVectors,
 gVectors GVectors OPTIONAL }

FVectors ::= SEQUENCE OF NTRUBinaryVector

GVectors ::= SEQUENCE OF NTRUBinaryVector

The fields of the type NTRUPrivateKey have the following meanings:

• version is the version number, for compatibility with future revisions of this
document. It shall be 0 for this version of the document.

• publicKeyVector is the public key associated with the private key. To complete the
ciphertext validity check when decrypting, the decrypter must know the public
key. It can be provided either explicitly in this field, or implicitly by providing the
GVectors in the ntruPrivateKeyVectors field.

• privateKeyType determines the format of the private key vector. Type 1 keys have
the form f = 1 + p* (f1* f2 + f3) with f1, f2 and f3 listed in that order in the
ntruPrivateKeyVectors field. Type 2 keys have the form f = 1 + p*F with F listed
in the ntruPrivateKeyVectors field.

The fields of the type NTRUPrivateKeyVectors have the following meanings:

• fVectors contains the f-vectors: f1, f2 and f3 if the key is of type1, F if the key is
of type 2. The preferred format for each FVector is ListedBinaryVector.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 65 of 78

• gVectors contains the vector g. This field need only be included if the
publicKeyVector field in the NTRUPRIVATEKEY is omitted. As with FVectors,
the preferred format for each GVector is ListedBinaryVector.

6.2.3 NTRUEncrypt Encrypted Data

NTRUEncrypt encrypted data are identified by the following object identifier:

id-ntru-EESS1v1-SVES OBJECT IDENTIFIER ::= {id-eess1-algs 1}

The parameters field associated with this OID in an AlgorithmIdentifier shall have the
type EESS1v1-SVES-params, defined in section 6.2.4 below.

NTRUEncrypt encrypted data should be represented with the NTRUEncryptedData type:

NTRUEncryptedData ::= NTRUPublicVector

The preferred format for NTRUEncryptedData is a ModQVector.

6.2.4 NTRUEncrypt Parameters

This section defines the parameters associated with the id-ntru-EESS1v1-SVES OID in an
AlgorithmIdentifier. These parameters shall have type EESS1v1-SVES-Parameters:

EESS1v1-SVES-Parameters ::= CHOICE {
 degree Degree, -- this choice is deprecated
 standardNTRUParameters StandardNTRUParameters,
 explicitNTRUParameters ExplicitNTRUParameters,
 externalParameters NULL }

StandardNTRUParameters ::= OIDS.&id({NTRUParameters})

NTRUParameters OIDS ::= {

{ OID id-ees251ep4 } |
{ OID id-ees251ep5 } |

 … -- allows for future expansion
 -- other OIDs defined in previous versions of this standard are deprecated
 }

id-ees251ep4 OBJECT IDENTIFIER ::= {id-eess1-params 12}
id-ees251ep5 OBJECT IDENTIFIER ::= {id-eess1-params 13}

• degree gives the degree of the polynomials. If this field is specified, it can only
take the values 251, 347 or 503. If it is 251, the parameters are eess251ep1. If it is
347, the parameters are eess347ep1. If it is 503, the parameters are eess503ep1.
Specifying the degree is the preferred way of transmitting parameter information
for this scheme.

• standardNTRUParameters identifies the parameters by use of an OID. In this
document, six OIDs are defined: eess139ep1, eess139ep2, eess251ep1,
eess251ep2, eess347ep1 and eess503ep1. The parameter sets eess251ep1,

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 66 of 78

eess347ep1 and eess503ep1 can be specified in this version of the document by
choosing to specify the degree field instead.

• explicitNTRUParameters allows an implementer to specify parameter sets other
than those specified in this document. It is not supported in this version of this
document.

• externalParameters should be used if the parameters are being inherited from
some other source (for example, in X.509 certificates, if the parameters are being
inherited from the CA’s parameters).

6.3 ASN.1 for NTRUSign SVSSA
This section defines the ASN.1 object identifiers for NTRUSign keys and NTRUSign
signed data, and defines the types NTRUSignPublicKey, NTRUSignPrivateKey,
NTRUSignedData, and EESS1v1-NTRUSign-Parameters.

The object identifier id-ntru-EESS1v1-NTRUSign identifies NTRUSign public and private
keys and NTRUSign signed data. When this object identifier is used in an
AlgorithmIdentifier, the parameters shall be of type EESS1v1-NTRUSign-Parameters.

Note that EESS#1 breaks with common practice in requiring that a key be encoded with
the scheme parameters (such as the verification norm bound for NTRUSign) as well as
with the algorithm domain parameters (such as N, q and p). Ensuring that a key can only
be used in one scheme provides a defense against version rollback attacks and is good
security practice.

6.3.1 NTRUSign Public Keys

NTRUSign public keys are identified by the following object identifier:

id-ntru-EESS1v1-NTRUSign OBJECT IDENTIFIER ::= {id-eess1-algs 3}

The parameters associated with this OID in an AlgorithmIdentifier shall have the type
EESS1v1-NTRUSign-Parameters, defined in section 6.3.4 below.

The NTRUSign public key MUST be encoded using the ASN.1 type
NTRUSignPublicKey.

NTRUSignPublicKey ::= SEQUENCE {
 publicKeyVector NTRUPublicVector, -- h
 ntruSignKeyExtensions NTRUSignKeyExtensions OPTIONAL
}

NTRUSignKeyExtensions ::= SEQUENCE SIZE(1..MAX) OF NTRUSignKeyExtension

NTRUSignKeyExtension ::= CHOICE {
 keyID [0] IMPLICIT INTEGER,
...}

The fields of the type NTRUSignPublicKey have the following meanings:

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 67 of 78

• publicKeyVector is the polynomial h. If the NTRUPublicVector is a ModQVector,
each coefficient will be represented by one byte starting with the lowest degree
and going to the highest. If the NTRUPublicVector is a PackedModQVector, this is
the OCTET STRING representing h obtained using RE2BSP and then BS2OSP as
defined in section 2.1.2. All coefficients up to XN-1 SHALL be explicitly included
in publicKeyVector. Representing the NTRUSign public key as a ModQVector is
the preferred method.

• ntruSignKeyExternsions is provided for future extensibility. Only one extension
is currently defined.

The fields of the type NTRUSignKeyExtension have the following meanings:

• keyID can be used to associate a unique key identifier with the key.

6.3.2 NTRUSign Private Keys Syntax

NTRUSign private keys are identified by the following object identifier:

id-ntru-EESS1v1-NTRUSign OBJECT IDENTIFIER ::= {id-eess1-algs 3}

They are distinguished from NTRUSign public keys by form and by context. The
parameters associated with this OID in an AlgorithmIdentifier shall have the type
EESS1v1-NTRUSign-Parameters, defined in section 6.3.4 below.

The NTRUSign private key should be encoded with the following syntax.

NTRUEncryptPrivateKey ::= SEQUENCE {
 version INTEGER,
 publicKeyVector NTRUPublicVector OPTIONAL,
 ntruSignPrivateKeyVectors NTRUSignPrivateKeyVectors,

…}

NTRUSignPrivateKeyVectors ::= SEQUENCE {
 mainKey NTRUSignMainKey,
 perturbations SEQUENCE OF {
 NTRUSignPerturbationKey
 }
 }

NTRUSignMainKey ::= SEQUENCE {
 f NTRUSignKeyVector
 fPrime NTRUSignKeyVector
}

NTRUSignPerturbationKey ::= SEQUENCE {
 f NTRUSignKeyVector
 fPrime NTRUSignKeyVector
 h1minusH NTRUPublicVector
}

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 68 of 78

NTRUSignKeyVector ::= CHOICE {
 listedBinaryVector [0] IMPLICIT ListedBinaryVector,
 packedBinaryVector [1] IMPLICIT PackedBinaryVector,
 productFormKey [2] IMPLICIT ProductFormKey,
 modQVector [3] IMPLICIT ModQVector,
 packedModQVector [4] IMPLICIT PackedModQVector
}

ProductFormKey ::= SEQUENCE {
 a1 ListedBinaryVector,
 a2 ListedBinaryVector,
 a3 ListedBinaryVector,
}
-- product form keys are of the form a1*a2+a3

The fields of the type NTRUPrivateKey have the following meanings:

• version is the version number, for compatibility with future revisions of this
document. It shall be 1 for this version of the document. Previous versions of this
document used version number 0; this version is no longer supported.

• publicKeyVector is the public key associated with the private key. It can be
provided either explicitly in this field, or implicitly by providing the GVectors in
the ntruPrivateKeyVectors field.

• ntruSignPrivateKeyVectors contains the private key vectors as specified below..

The fields of the type NTRUSignPrivateKeyVectors have the following meanings:

• mainKey contains the polynomials f0, f’ 0, as output by the key generation
primitive.

• perturbations contains the perturbation keys (f1, f’ 1) … (f B, f’ B), in that order. The
number of perturbations is not explicitly stored, but can be deduced from the
number of NTRUSignPerturbationKeys contained in perturbations.

The fields of the type NTRUSignMainKey have the following meanings:

• f contains the polynomial f0, as output by the key generation primitive. For the
parameter sets in this standard, f0 will be binary and the preferred encoding of this
polynomial is as a PackedBinaryVector.

• f contains the polynomial f’ 0, as output by the key generation primitive. For the
parameter sets ees251sp2 – ees251sp5 in this standard, f’ 0 will be a mod q
polynomial and the preferred encoding of this polynomial is as a ModQVector. For
the parameter sets ees251sp6 – ees251sp9 in this standard, f’0 will be a binary
polynomial and the preferred encoding of this polynomial is as a
PackedBinaryVector.

The fields of the type NTRUSignPerturbationKey have the following meanings for
perturbation key i:

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 69 of 78

• f contains the polynomial fi, as output by the key generation primitive. For the
parameter sets in this standard, fi will be binary and the preferred encoding of this
polynomial is as a PackedBinaryVector.

• f contains the polynomial f’ i, as output by the key generation primitive. For the
parameter sets ees251sp6 – ees251sp9 in this standard, f’ 0 will be a binary
polynomial and the preferred encoding of this polynomial is as a
PackedBinaryVector. (For the parameter sets ees251sp2 – ees251sp5 in this
standard, there are no perturbation keys).

• h1minush contains the polynomial hi – hi-1, as output by the key generation
primitive.

The fields of the type NTRUSignKeyVectors have the following meanings:

• listedBinaryVector contains the relevant polynomial encoded as a
ListedBinaryVector.

• packedBinaryVecto contains the relevant polynomial encoded as a
PackedBinaryVector.

• productFormKey contains the relevant polynomial encoded as a ProductFormKey.
• modQVector contains the relevant polynomial encoded as a ModQVector.
• packedModQVector contains the relevant polynomial encoded as a

PackedModQVector.

6.3.3 NTRUSign Signed Data

NTRUSign signed data are identified by the following object identifier:

id-ntru-EESS1v1-NTRUSign OBJECT IDENTIFIER ::= {id-eess1-algs 3}

The parameters field associated with this OID in an AlgorithmIdentifier shall have the
type EESS1v1-NTRUSign-Parameters, defined in section 6.3.4 below.

NTRUSign signed data should be represented with the NTRUSignSignededData type:

NTRUSignSignedData ::= NTRUPublicVector

The preferred format for NTRUSignSignedData is a ModQVector.

6.3.4 NTRUSign Parameters

This section defined the parameters associated with the id-ntru-EESS1v1-NTRUSign OID
in an AlgorithmIdentifier. These parameters shall have type EESS1v1-NTRUSign-
Parameters:

EESS1v1-NTRUSign-Parameters ::= CHOICE {
 degree Degree, -- deprecated
 standardNTRsUSignParameters StandardNTRUSignParameters,
 explicitNTRUSignParameters ExplicitNTRUSignParameters,
 externalParameters NULL

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 70 of 78

}

When the parameters are implied by context, the parameters field SHALL contain
externalParameters, which is the ASN.1 value NULL.

When the parameters are specified by reference of a standard, the parameters shall consist
of an OID chosen from the list NTRUSignParameters. The current list of
NTRUSignParameters OIDs is:

StandardNTRUSignParameters ::= OIDS.&id({NTRUSignParameters})

NTRUSignParameters OIDS ::= {
 { OID id-ees251sp2 },
 { OID id-ees251sp3 },
 { OID id-ees251sp4 },
 { OID id-ees251sp5 },
 { OID id-ees251sp6 },
 { OID id-ees251sp7 },
 { OID id-ees251sp8 },
 { OID id-ees251sp9 },
...}

The above object identifiers are specified by:

id-ees251sp2 OBJECT IDENTIFIER ::= {id-eess1-params 7}
id-ees251sp3 OBJECT IDENTIFIER ::= {id-eess1-params 14}
id-ees251sp4 OBJECT IDENTIFIER ::= {id-eess1-params 15}
id-ees251sp5 OBJECT IDENTIFIER ::= {id-eess1-params 16}
id-ees251sp6 OBJECT IDENTIFIER ::= {id-eess1-params 17}
id-ees251sp7 OBJECT IDENTIFIER ::= {id-eess1-params 18}
id-ees251sp8 OBJECT IDENTIFIER ::= {id-eess1-params 19}
id-ees251sp9 OBJECT IDENTIFIER ::= {id-eess1-params 20}

When the parameters are explicitly included, they SHALL be encoded in the ASN.1
structure ExplicitNTRUSignParameters. This structure is not supported in this version of
this standard.

6.4 X.509 Certificates
-- The following section is written in ASN.1 notation. This section specifies
-- the basic ASN.1 structure for EESS X.509 certificates. Embedded within the
-- normal X.509 data are comments indicating the preference for EESS certificates.
-- The X.509 structure below is written to be compliant with the current draft of the
-- ITU-T recommendation [X.509] and the IETF PKIX ID son-of-rfc 2459
-- [ID son-of-rfc2459].
-- These formats are recommended for interoperability, but are not mandated by this
-- standard.

Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING
}

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 71 of 78

 TBSCertificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version shall be v2 or v3
 -- The issuerUniqueID is deprecated and
 -- should not be used for EESS certificates.
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version shall be v2 or v3
 -- The subjectUniqueID is deprecated and
 -- should not be used for EESS certificates.
 extensions [3] EXPLICIT Extensions OPTIONAL
 -- If present, version shall be v3
 -- Extensions are expected in EESS certificates.
 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }
 -- EESS certificates shall be version 3.

 CertificateSerialNumber ::= INTEGER
 -- CertificateSerialNumber is not restricted and is
 -- implementation specific.

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

-- The algorithm identifier for NTRUSign signatures is specified
-- in sections 6.3.3.

Name ::= CHOICE {
 RDNSequence }
 -- The CHOICE shall be RDNSequence

 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
 -- There are no restrictions on the number of
 -- RelativeDistinguishedNames in a name.

 RelativeDistinguishedName ::= SET OF AttributeTypeAndValue
 -- There is almost always one AttributeTypeAndValue
 -- per RelativeDistinguishedName

 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

 AttributeType ::= OBJECT IDENTIFIER
 AttributeValue ::= ANY DEFINED BY AttributeType
 -- Where there is a DirectoryString, the preferred type is
 -- UTF8String. In [ID son-of-rfc2459]], it is stated that after

-- December 31, 2003, all DirectoryStrings must be UTF8String encoded.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 72 of 78

 Validity ::= SEQUENCE {
 notBefore Time,
 notAfter Time }
 -- The validity period is application specific and
 -- not specified in this document.

 Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }
 -- Following the rules for UTCTime and GeneralizedTime,
 -- the choice will be UTCTime for all years through 2049.
 -- The time value should be encoded as (YYMMDDHHMMSSZ),
 -- where Z stands for GMT.

UniqueIdentifier ::= BIT STRING
 -- This shall not be used.

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }
 -- See sections 6.2.1 and 6.3.1 for NTRUEncrypt and NTRUSign definitions.

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 73 of 78

Appendix A - NTRU ASN.1 Module

EESS-1 {iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1)
ntruCryptosystems(8342) eess(1) eess-1(1) modules(0) eess-1(1)}

-- $ revision: 2.0 $

DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS All; --
-- All types and values defined in this module are exported for use in other ASN.1 modules.

-- IMPORTS None; --

-- Supporting definitions

AlgorithmIdentifier { ALGORITHM: IOSet } ::= SEQUENCE {
 algorithm ALGORITHM.&id({IOSet}),
 parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL
}

ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Type OPTIONAL
}
 WITH SYNTAX { OID &id [PARMS &Type] }

OIDS ::= ALGORITHM

-- Informational object identifiers

pkcs-1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8}

id-sha1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3) algorithms(2) 26 }

id-sha256 OBJECT IDENTIFIER ::= {

joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
csor(3) nistalgorithm(4) hashalgs(2) 1 };

id-sha384 OBJECT IDENTIFIER ::= {

joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
csor(3) nistalgorithm(4) hashalgs(2) 2 };

id-sha512 OBJECT IDENTIFIER ::= {

joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
csor(3) nistalgorithm(4) hashalgs(2) 3 };

-- Basic object identifiers

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 74 of 78

ntru OBJECT IDENTIFIER ::= {

iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprises(1)
ntruCryptosystems (8342) }

id-eess1 OBJECT IDENTIFIER ::= { ntru eess (1) eess-1 (1) }

id-eess1-algs OBJECT IDENTIFIER ::= {id-eess1 1}
id-eess1-params OBJECT IDENTIFIER ::= {id-eess1 2}
id-eess1-encodingMethods OBJECT IDENTIFIER ::= {id-eess1 3}

-- algorithms

id-ntru-EESS1v1-SVES OBJECT IDENTIFIER ::= {id-eess1-algs 1}
id-ntru-EESS1v1-NTRUSign OBJECT IDENTIFIER ::= {id-eess1-algs 3}
id-mdc-2des-ntru OBJECT IDENTIFIER ::= {id-eess1-algs 4}

-- parameter set identifiers

id-ees251ep4 OBJECT IDENTIFIER ::= {id-eess1-params 12}
id-ees251ep5 OBJECT IDENTIFIER ::= {id-eess1-params 13}

id-ees251sp2 OBJECT IDENTIFIER ::= {id-eess1-params 7}
id-ees251sp3 OBJECT IDENTIFIER ::= {id-eess1-params 14}
id-ees251sp4 OBJECT IDENTIFIER ::= {id-eess1-params 15}
id-ees251sp5 OBJECT IDENTIFIER ::= {id-eess1-params 16}
id-ees251sp6 OBJECT IDENTIFIER ::= {id-eess1-params 17}
id-ees251sp7 OBJECT IDENTIFIER ::= {id-eess1-params 18}
id-ees251sp8 OBJECT IDENTIFIER ::= {id-eess1-params 19}
id-ees251sp9 OBJECT IDENTIFIER ::= {id-eess1-params 20}

-- General types

ModQVector ::= OCTET STRING

PackedModQVector ::= OCTET STRING

ListedBinaryVector ::= OCTET STRING

PackedBinaryVector ::= OCTET STRING

NTRUGeneralPolynomial ::= SEQUENCE {
 numberOfEntries INTEGER,
 modulus INTEGER,
 coefficients GeneralVector
}

GeneralVector ::= OCTET STRING

-- NTRUEncrypt Encryption

NTRUPublicVector ::= CHOICE {
 modQVector [0] IMPLICIT ModQVector,
 packedModQVector [1] IMPLICIT PackedModQVector,
 …
}

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 75 of 78

NTRUBinaryVector ::= CHOICE {

listedBinaryVector [0] IMPLICIT ListedBinaryVector,
 packedBinaryVector [1] IMPLICIT PackedBinaryVector,
 modQVector [2] IMPLICIT ModQVector,
 …
}

NTRUKeyExtension ::= CHOICE {
 keyID [0] IMPLICIT INTEGER,
 …}

NTRUPublicKey ::= SEQUENCE {
 publicKeyVector NTRUPublicVector,
 ntruKeyExtensions SEQUENCE SIZE (1..MAX) OF

NTRUKeyExtension OPTIONAL }

PrivateKeyType ::= INTEGER
FVectors ::= SEQUENCE OF NTRUBinaryVector
GVectors ::= SEQUENCE OF NTRUBinaryVector

NTRUPrivateKeyVectors ::= SEQUENCE {
 fVectors FVectors,
 gVectors [0] IMPLICIT GVectors OPTIONAL }

NTRUPrivateKey ::= SEQUENCE {
 version INTEGER,
 publicKeyVector NTRUPublicVector OPTIONAL,
 privateKeyType PrivateKeyType,
 ntruPrivateKeyVectors NTRUPrivateKeyVectors,

…}

NTRUEncryptedData ::= NTRUPublicVector

Degree ::= INTEGER (251 | 347 | 503, …)

NTRUParameters OIDS ::= {

{ OID id-ees251ep4 } |
{ OID id-ees251ep5 } |

 … -- allows for future expansion
 -- other OIDs defined in previous versions of this standard are deprecated
 }

Version ::= INTEGER { v0(0) } (v0, …)

-- NTRUSign Signing

-- Encoding for NTRUSign Signatures

 NTRUSignSignedData ::= NTRUPublicVector

-- Encoding for NTRUSign Public Keys

 NTRUSignPublicKey ::= SEQUENCE {
 publicKeyVector NTRUPublicVector, -- h
 ntruSignKeyExtensions NTRUSignKeyExtensions OPTIONAL

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 76 of 78

 }

 NTRUSignKeyExtensions ::=
 SEQUENCE SIZE(1..MAX) OF NTRUSignKeyExtension

 NTRUSignKeyExtension ::= CHOICE {
 keyID [0] IMPLICIT INTEGER,
 ...}

NTRUEncryptPrivateKey ::= SEQUENCE {
 version INTEGER,
 publicKeyVector NTRUPublicVector OPTIONAL,
 ntruSignPrivateKeyVectors NTRUSignPrivateKeyVectors,

…}

NTRUSignPrivateKeyVectors ::= SEQUENCE {
 mainKey NTRUSignMainKey,
 perturbations SEQUENCE OF {
 NTRUSignPerturbationKey
 }
 }

NTRUSignMainKey ::= SEQUENCE {
 f NTRUSignKeyVector
 fPrime NTRUSignKeyVector
}

NTRUSignPerturbationKey ::= SEQUENCE {
 f NTRUSignKeyVector
 fPrime NTRUSignKeyVector
 h1minusH NTRUPublicVector
}

NTRUSignKeyVector ::= CHOICE {
 listedBinaryVector [0] IMPLICIT ListedBinaryVector,
 packedBinaryVector [1] IMPLICIT PackedBinaryVector,
 productFormKey [2] IMPLICIT ProductFormKey,
 modQVector [3] IMPLICIT ModQVector,
 packedModQVector [4] IMPLICIT PackedModQVector
}

ProductFormKey ::= SEQUENCE {
 a1 ListedBinaryVector,
 a2 ListedBinaryVector,
 a3 ListedBinaryVector,
}
-- product form keys are of the form a1*a2+a3

END -- EESS-1 --

Appendix B - Test Vectors
[To be added in future versions]

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 77 of 78

Appendix C - Revision History
Draft 1.0 available March 27, 2001
Draft 2.0 available May 18, 2001
Draft 3.0 available July 9, 2001
Draft 3.2 available August 30, 2001
Draft 4.0 available March 9, 2002
Draft 5.0 available September 6, 2002
Version 1.0 available November 12, 2002
Version 2.0 available April 14, 2003

Appendix D - References
[ANS98a] ANSI X9.31-1998, Digital Signatures Using Reversible Public Key

Cryptography for the Financial Services Industry (rDSA).

[ANS98b] ANSI X9.42, Public Key Cryptography for the Financial Services Industry:
Agreement of Symmetric Keys Using Diffie-Hellman and MQV Algorithms,
draft, 1998.

[ANS98c] ANSI X9.62-1998, Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA).

[FIP95] FIPS PUB 180-1, Secure Hash Standard, Federal Information Processing
Standards Publication 180-1, U.S. Department of Commerce/National Institute
of Standards and Technology, National Technical Information Service,
Springfield, Virginia, April 17, 1995 (supersedes FIPS PUB 180). Available at
http://www.itl.nist.gov/div897/pubs/fip180-1.htm.

[FIP99] FIPS PUB 46-3, Data Encryption Standard, Federal Information Processing
Standards Publication 186-2, U.S. Department of Commerce/National Institute
of Standards and Technology, National Technical Information Service,
Springfield, Virginia, October 1999. Available at http://csrc.nist.gov/fips/.

[FIP00] FIPS PUB 186-2, Digital Signature Standard, Federal Information Processing
Standards Publication 186-2, U.S. Department of Commerce/National Institute
of Standards and Technology, National Technical Information Service,
Springfield, Virginia, February 2000. Available at http://csrc.nist.gov/fips/.

[HPS98] J. Hoffstein, J. Pipher, J. Silverman, NTRU: A Ring Based Public Key
Cryptosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June
1998, J.P. Buhler (ed.), Lecture Notes in Computer Science 1423, Springer-
Verlag, Berlin, 1998, 267-288.

[HPS01] J. Hoffstein, J. Pipher, J. Silverman, NSS: The NTRU Signature Scheme, Proc.
EUROCRYPT 2001, Lecture Notes in Computer Science, Springer-Verlag,,
2001, to appear.

[HPS01-2] J. Hoffstein, J. Pipher, J. Silverman, Enhanced Encoding and Verification
Methods for the NTRU Signature Scheme, NTRU Technical Report 017, 2001,
<www.ntru.com>.

Efficient Embedded Security Standard (EESS) #1: Version 2 June, 2003

Page 78 of 78

[HS99] J. Hoffstein, J. Silverman, Reaction attacks against the NTRU public key
cryptosystem, NTRU Technical Report 015, 1999, <www.ntru.com>.

[HS00] J. Hoffstein, J. Silverman, Optimizations for NTRU, Public-Key Cryptography
and Computational Number Theory (Warsaw, September 2000), DeGruyter, to
appear.

[HS00-2] J. Hoffstein, J. Silverman, Protecting NTRU Against Chosen Ciphertext and
Reaction Attacks, Technical Report 16, 2000, <www.ntru.com>.

[HS01] J. Hoffstein, J. Silverman, Random Small Hamming Weight Products with
Applications to Cryptography, Com2MaC Workshop on Cryptography (Pohang,
Korea, June 2000), Discrete Mathematics, to appear.

[IEEE 1363] IEEE Std 1363-2000: IEEE Standard Specifications for Public-Key
Cryptography, IEEE Computer Society, New York, NY, August 2000, Institute
of Electrical and Electronics Engineers

[IEEE P1363.1] IEEE Draft Standard P1363.1 D2: IEEE Standard Specifications for
Public-Key Cryptographic Techniques Based on Hard Problems over Lattices,
Draft 2, May 2001, Available at http://grouper.ieee.org/groups/1363.

[ITU-T X.509] ITU-T Recommendation X.509 (pre-published 03/00) (also ISO/IEC
9594-8:1998): Information Technology – Open Systems Interconnection – The
Directory: Authentication Framework

[ID son-of-rfc2459] draft-ietf-pkix-new-part1-03.txt – Internet X.509 Public Key
Infrastructure Certificate and CRL Profile (to obsolete RFC 2459), Housley et
al, November 2000

[NIST-SHA-2] National Institute of Standards and Technology. Descriptions of SHA-
256, SHA-384, and SHA-512. October 12, 2000. Available at
http://csrc.nist.gov/cryptval/shs.html.

2.2.6 2.2.7 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 3.2.1 3.2.1.1 3.2.2 3.2.2.1 3.2.3 3.2.4 Error!
Reference source not found. 3.3.1 3.3.1.1 3.5.1.1 3.5.2.1 3.6.1 3.6.1.1 3.6.1.2 3.7.1
3.7.1.1 3.7.2 3.7.2.1 3.7.2.2 3.7.3 3.7.3.1 3.7.3.2 3.7.4 4.3

