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Abstract. We present a new method for choosing parameter sets for
the NTRUEncrypt public key cryptosystem. This modifies our original
method of [5] to protect against the new hybrid meet in the middle and
lattice reduction attack of [4]

1 Introduction and Notation

In [4] a new method was developed for locating an NTRUEncrypt private key.
This method combined lattice reduction with a meet in the middle approach.
The effect of this attack was to decrease the bit security of the private key, at
the cost of increasing memory usage. For example, the original N = 251, q =
197, df = 48, dg = 125 parameter set which in [5] was originally thought to have
security on the order of 80 bits, was reduced to approximately 60.3 bits.

In this note we will assume familiarity with the details and notation of NTRU-

Encrypt The reader desiring further background should consult standard refer-
ences such as [1, 2, 5].

The attack of [4] was particularly successful because for reasons of efficiency
the private key f was chosen to be binary, and to consist of the smallest possible
number of 1’s consistent with combinatorial security restraints. With the new
perspective of [4] we now see that it is necessary to enlarge the combinatorial
search size of the space f is chosen from. Fortunately, only a small modification
turns out to be necessary, and the impact on efficiency is not great.

In previous parameter choices for NTRUEncrypt we have often taken the poly-
nomials f, g to be binary, that is, drawn at random from a space of polynomials
whose coefficients consist only of 0 or 1. To increase the size of our combinatorial
search spaces while having a minimal impact on efficiency, we shift our focus now
to trinay polynomials. These are polynomials whose coefficients are all 0’s, 1’s
and −1’s. We set the notation:

TN = {trinary polynomials},

TN (d, e) =

{

trinary polynomials with exactly
d ones and e minus ones

}

.



If N is fixed, we drop it from the notation and write T and T (d, e). A further
advantage to using trinary polynomials is that q can be chosen to be a power of
2, a choice that makes reductions modulo q particularly easy.

Remark 1. No attacks are presently known that would take advantage of the
fact that q would not be prime, as N must certainly be. However the truly
conservative user might wish to restrict q to prime values.

NTRUEncrypt uses the ring of truncated polynomials (also sometimes called
the ring of convolution polynomials)

Z[X ]/(XN − 1).

We denote multiplication in this ring by ∗. At the final stage of the decryption
process, a certain polynomial is computed:

a = p ∗ r ∗ g + m ∗ f,

where p = 3 and r, f, g, m ∈ TN are trinary polynomials. The decryption process
succeeds if the maximum and minimum coefficients of a satisfy

min aj > −1

2
q and maxaj <

1

2
q.

In more efficient implementations of NTRU, the polynomial f is taken to have
the form f = 1 + p ∗ F , where F ∈ TN is trinary, so now a has the form

a = p ∗ (r ∗ g + m ∗ F ) + m.

Remark 2. For the most part we will choose parameters consistent with the more
efficient implementation. Sample parameter sets are given in Tables 1,3,5,6. Such
parameters are also, of course, valid for the less efficient trinary implementation,
although in this version the value of q can be decreased if desired. Using the
implementation where f is trinary rather than of the form f = 1 + p ∗ F ne-
cessitates extra operations in the decryption process, but allows for a reduction
in key size in exchange. This tradeoff is particularly pronounced when q = 256,
and so we do provide a table of parameters in this case (Table 2).

If we let b = r ∗ g + m ∗ F , then decryption succeeds if the coefficients of b
satisfy

min bj > −1

p

(

1

2
q − 1

)

and max bj <
1

p

(

1

2
q − 1

)

.

The probability that max bj is larger than some given value K is exactly the
quantity P3(K) that was studied in [3] and we will make extensive use of the
formulas of [3] in our calculations. (For the trinary case we use the slightly
modified probability formula for P4(K) given in [3].)

We will assume that each trinary polynomial r, g, m, F that we use is drawn
from a space TN (d, e) with

d, e ≤ df + 1 ≤ 1 + ⌊N/3⌋.



To establish parameters with bit security k we will only search among triples
df , q, N such that for r, g, m, F ∈ TN (df +1, df +1) the probability that decryp-
tion fails is less than 2−k. For such r, g, m, F by symmetry, the max and min
conditions on the coefficients have equal probability. Hence

Prob(Decryption fails) ≤ 2 Prob

(

max bj ≥ 1

p

(

1

2
q − 1

))

≤ 2P3

(

1

p

(

1

2
q − 1

))

(1)

Clearly for any choice of d, e ≤ df + 1, the probability of decryption failure will
also be less than 2−k for r, g, m, F ∈ TN (d, e).

2 A review of the hybrid attack

In this section we will review the method of [4]. We will also make some substan-
tial simplifications. These clarify the analysis by giving a somewhat undeserved
advantage to an attacker. Thus the security estimates we arrive at will be quite
conservative but will have the advantage of being relatively transparent.

The structure of the argument of [4] is simpler for the less efficient version
of NTRU where the public key has the form h ≡ f−1 ∗ g (mod q) and f, g ∈
TN (d, e). The rough idea is as follows. Suppose one is given N, q, d, e, h and hence
implicitly an NTRUEncrypt public lattice L of dimension 2N . The problem is to
locate the short vector corresponding to the secret key (f, g). One first chooses
N1 < N and removes a 2N1 by 2N1 lattice L1 from the center of L. Thus the
original matrix corresponding to L has the form

(

qIN 0
H IN

)

=





qIN−N1
0 0

∗ L1 0
∗ ∗ IN−N1



 (2)

and L1 has the form

(

qIN1
0

H1 IN1

)

. (3)

Here H1 is a truncated piece of the circulant matrix H corresponding to h
appearing in (2).

Let us suppose that an attacker must use a minimum of k1 bits of effort
to reduce L1 until all N1 of the q-vectors are removed. When this is done and
L1 is put in lower triangular form the entries on the diagonal will have values
{qα1 , qα2 , . . . , qα2N1}, where α1 + · · · + α2N1

= N1, and the αi will come very
close to decreasing linearly, with

1 ≈ α1 > · · · > α2N1
≈ 0.



That is to say, L1 will roughly obey the geometric series assumption, or GSA.
This reduction will translate back to a corresponding reduction of L, which when
reduced to lower triangular form will have a diagonal of the form

{q, q, . . . , q, qα1 , qα2 , . . . , qα2N1 , 1, 1, . . . , 1}.
The key point here is that it requires k1 bits of effort to achieve this reduction,
with α2N1

≈ 0. If k2 > k1 bits are used then the situation can be improved to
achieve α2N1

= α > 0. As k2 increases the value of α is increased.
In the previous work the following method was used to launch the meet in

the middle attack. It was assumed that the coefficients of f are partitioned into
two blocks. These are of size N1 and K = N − N1. The attacker guesses the
coefficients of f that fall into the K block and then uses the reduced basis for
L to check if his guess is correct. The main observation of [4] is that a list
of guesses can be made about half the coefficients in the K block and can be
compared to a list of guesses about the other half of the coefficients in the K
block. With a probability ps(α) a correct matching of two half guesses can be
confirmed, where ps(0) = 0 and ps(α) increases monotonically with α. In [4] a
value of α = 0.182 was used with a corresponding probability ps(0.182) = 2−13.
The probability ps(0.182) was computed by sampling and the bit requirement,
k2 was less than 60.3. In general, if one used k2 bits of lattice reduction work to
obtain a given ps(α) (as large as possible), then the number of bits required for
a meet in the middle search through the K block decreases as K decreases and
as ps(α) increases.

A very subtle point in [4] was the question of how to optimally choose N1

and k2. The objective of an attacker was to choose these parameters so that
k2 equaled the bit strength of a meet in the middle attack on K, given the
ps(α) corresponding to N1. It is quite hard to make an optimal choice, but it is
considerably easier to make this choice if one makes the simplifying assumption,
in the attacker’s benefit, that ps(α) = 1, even as α approaches 0.

We will make this simplifying assumption in this paper. Thus our question
reduces to the problem of computing the complexity of the lattice reduction
process required to remove N1 of the q-vectors in the original lattice L. Once
this is done the result is compared with the meet in the middle search on K.
When these two bit strengths are equal the attackers task will be optimized. In
the next section we examine the work required to remove q-vectors.

Remark 3. It should be stressed that the simplifying assumption we make is
to the attacker’s benefit. Thus the parameters we arrive at are stronger than
claimed. In future work we hope to include a ps(α) analysis.

3 Quantifying the removal of q-vectors

We performed a number of experiments applying the BKZ package in the NTL
library of [6] to matrices of dimension 2z by 2z of the form

(

qIz 0
Hz Iz

)

(4)



Here q would be fixed, z would be a number less than the number of q-vectors
that we expected to remove at the security level we were investigating, and Hz

would be a z by z portion of the circulant associated to an NTRU public key h
(modulo q). We applied BKZ at block sizes 10 through 21 or 22 and ran between
10 and 100 repetitions of each block size experiment. For each block size b the
initial number of q-vectors was z and we computed N1(b) equal to z minus the
number of remaining q-vectors in the output matrix from the BKZ reduction.
That is, N1(b) represented the number of q-vectors consumed by BKZ with block
size b.

We discovered that the behavior of BKZ under these conditions was far more
regular than its behavior when searching for the private key of an NTRU lattice.
For example, we took z = 150 and q = 1024 and ran 100 tests (i.e. different Hz)
on each block size 10 to 20, and 10 on block size 21. Here are values of standard
deviation of time in bits vs block size b:

{{10, 0.135426}, {11, 0.138498}, {12, 0.163593}, {13, 0.141772}, {14, 0.154801}, {15, 0.157524},

{16, 0.169264}, {17, 0.191727}, {18, 0.242162}, {19, 0.254833}, {20, 0.456409}, {21, 0.744065}}
and here are values of standard deviation of N1(b) vs block size b.

{{10, 1.21911}, {11, 1.27165}, {12, 1.27493}, {13, 1.10534}, {14, 1.09803}, {15, 1.12908},

{16, 1.10031}, {17, 1.17099}, {18, 1.02516}, {19, 0.970972}, {20, 0.993557}, {21, 0.632456}}.
In fact, N1(b) appeared to increase linearly with b as Figure 1, a graph of the
mean of N1(b), over all experiments at blocksize b, against b shows:
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Fig. 1. Mean number of consumed q-vectors N1(b) against block size, q = 1024

The relevant data is:

{{10, 117.}, {11, 118.718}, {12, 120.645}, {13, 122.355}, {14, 123.927}, {15, 125.136},



{16, 127.018}, {17, 128.482}, {18, 130.064}, {19, 131.418}, {20, 133.2}, {21, 135.8}}
and the closest fit line in Figure 1 has equation

N1(b) = 100.857 + 1.6316b. (5)

As the number of bits required to compute a given block size b, for fixed z is
O(b log b) (with the implied constant depending on z and q) it’s reasonable to
guess that a plot of the mean value of N1(b) against bits will have a good fit to
a b log b curve. In fact, our results give us the following list for the mean value
of N1(b) paired with the mean number of bits required for the computation, as
b varies from 10 to 21:

{{117., 38.6164}, {118.718, 38.8509}, {120.645, 39.0626}, {122.355, 39.3132},

{123.927, 39.5661}, {125.136, 39.8229}, {127.018, 40.1786}, {128.482, 40.5165},
{130.064, 40.9629}, {131.418, 41.5226}, {133.2, 42.4924}, {135.8, 44.937}}.
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Fig. 2. Bits required to remove q-vectors from a 300 by 300 block, q = 1024, blocks 10
to 21

The equation of the curve in Figure 2 is

626.339− 28.5139N1 + 4.93334N1 log(N1).

Notice that there is a reasonably nice fit of the points to the curve, but the
behavior seems to alter as b increases. In particular, if we only plot the points
corresponding to blocksizes 17 through 21 we obtain a considerably better fit:

The equation of the curve in Figure 3 is

2198.48− 98.946N1 + 16.918N1 log(N1). (6)
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Fig. 3. Bits required to remove q-vectors from a 300 by 300 block, q = 1024, blocks 17
to 21

Notice in particular how the coefficient of the N1 log(N1) in (6) has increased
from 4.9 to 16.9. It seems that the fundamentally exponential nature of this prob-
lem, at least when approached by the BKZ technique, becomes more apparent
as the block size increases.

We have performed similar experiments for q = 256 and q = 2048 with
similar results. Interestingly, as q increases the number of q-vectors removed by
a given block size increases. For example, we present below the analogous results
for q = 256. These were obtained by taking 10 samples each from block sizes 15
to 22.

Again N1(b) appears to increase linearly with b as Figure 4, a graph of the
mean of N1(b), over all experiments at blocksize b, against b shows:
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Fig. 4. Mean number of consumed q-vectors N1(b) against block size, q = 256



The relevant data is:

{{15, 100.1}, {16, 100.9}, {17, 103.0}, {18, 103.2},

{19, 104.3}, {20, 106.5}, {21, 108.7}, {22, 110.9}}
and the closest fit line in Figure 4 has equation

N1(b) = 76.906 + 1.50238b. (7)

Note that slope of (7) is 1.50238 versus the 1.63 slope of (5), indicating the
harder time BKZ has removing q-vectors when q is smaller.

In the case q = 256 our results give us the following list for the mean value
of N1(b) paired with the mean number of bits required for the computation, as
b varies from 15 to 22:

{{100.1, 38.1727}, {100.9, 38.3585}, {103., 38.9201}, {103.2, 39.1194},

{104.3, 39.6493}, {106.5, 40.6388}, {108.7, 42.5249}, {110.9, 46.0674}}.
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Fig. 5. Bits required to remove q-vectors from a 240 by 240 block, q = 256, blocks 15
to 22

The equation of the curve in Figure 5 is

1453.47− 79.02N1 + 14.0861N1 log(N1).

Notice that there is a reasonably nice fit of the points to the curve, but the as
in the case of q = 1024, the behavior seems to alter as b increases. In particular,
if we only plot the points corresponding to blocksizes 20 through 22 we obtain
a considerably better fit:
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Fig. 6. Bits required to remove q-vectors from a 250 by 250 block, q = 256, blocks 20
to 22

The equation of the curve in Figure 6 is

3951.88− 210.385N1 + 37.201N1 log(N1). (8)

Notice in particular how the coefficient of the N1 log(N1) in (8) has increased
from 14.0861 to 37.201. Again the fundamentally exponential nature of this prob-
lem, at least when approached by the BKZ technique, becomes more apparent
as the block size increases.

In the case of q = 2048 we have performed 100 experiments at each of the
block sizes 15 through 19. (We intend to increase this by the time this paper is
released.) The results have the same form as q = 256, q = 1024 and the analogous
extrapolation equation is

1450.46− 60.3175N1 + 10.1684N1 log(N1). (9)

Remark 4. A relevant question is: “How does the choice of z, that is, the size of
the block that one takes from the center of the matrix, affect the block size and
the number of bits required to remove a given number of q-vectors?”. The most
important thing to note is that as long as z is less than the number of q-vectors
one intends to remove, the block size is independent of z. What does depend on z,
though in a smaller way, is the number of bits necessary to accomplish a reduction
at a given block size. However this method of extrapolation of the number of
bits required to eliminate N1 q-vectors will always give an underestimate if z
is smaller than N1. This is the case for all our estimates, and thus these bit
estimates are all conservative.

We can now use equations (6), (8) and (9) to extrapolate the number of bits
required to remove a given number N1 of q-vectors. This is how the N1 column
was computed in Tables 1 - 6.



4 The meet in the middle search

Let us suppose now that an attacker has eliminated N1 of the q-vectors. The
number of coefficients of f that must be guessed is K = N − N1. Suppose that
f consists of d 1’s, e −1’s and the rest zeros. Then for some choice of d1, d2 with
0 ≤ d1 ≤ d and 0 ≤ d2 ≤ e, the K coefficients will contain d1 1’s and d2 −1’s.
An attacker must make a correct choice of d1, d2 before beginning his meet in
the middle search. In fact, any rotation of f will suffice to locate the key, and
so any rotation of f that has d1 1’s and d2 −1’s in K pre-selected locations will
give a successful outcome to the attacker. To simplify the analysis and benefit
the attacker we will assume that all N rotations of f have exactly d1 1’s and d2

−1’s in the K locations.
Thus if the attacker has guessed correctly, the meet in the middle size of the

search space is

T (N1, K, d1, d2) =

√

(

K
d1

)(

K−d1

d2

)

N1 + K
. (10)

Now we must consider the probability that for f (having exactly d 1’s and e
−1’s) a random choice of K coefficients of f contains exactly d1 1’s and d2 −1’s.
This is easily seen to be given by

P (N1, K, d1, d2) =

(

K
d1

)(

N1

d−d1

)(

K−d1

d2

)(

N1−d+d1

e−d2

)

(

N1+K

d

)(

N1+K−d

e

) . (11)

The strength of a set of parameters {N1, K, d, e} is then bounded below by the
minimum over all permissible pairs d1, d2 of the ratio T over P . We thus define
the bit strength of the parameter set {N1, K, d, e} by

S(N1, K, d, e) = min
log

(

T (N1,K,d1,d2)
P (N1,K,d1,d2)

)

log(2)
, (12)

where T (N1, K, d1, d2) is given by (10), P (N1, K, d1, d2) is given by (11), and
the minimum is taken over all pairs d1, d2 satisfying 0 ≤ d1 ≤ d and

max(0, d + e − N1 − d1) ≤ d2 ≤ max(min(K − d1, e), 0).

5 A strictly lattice based search for the key

Suppose we have located a triple df , q, N , with N = N1 + K, such that the
probability of decryption failure using the f = 1 + 3F protocol is less than
2−k (as measured by (1)), the strength against a meet in the middle attack (as
measured by (12)) is at least k, and such that the number of bits required by
the BKZ algorithm to remove N1 of the q-vectors is at least k. There is still one
more requirement that must be met.

It is possible that if df is very small compared to N and q that the time
required for BKZ to locate the actual key might be less than 2k. This is because



the characteristics of the BKZ algorithm when searching for an extremely small
vector in a lattice (that is, very much shorter than the expected shortest vector)
are different from the characteristics of the BKZ algorithm when reducing a
generic lattice. In particular, suppose a target vector τ in an NTRU lattice is
selected from TN (df +1, df), so ‖τ‖ = 2df +1. The size of the Gaussian expected
shortest vector is

σ =

√

Nq

πe
.

It has been discussed before, for example in [5], that the constant c defined by
the relation

c =
‖τ‖√
2N

· σ

is useful for measuring the time and block size required for BKZ to locate τ .
For a sequence of triples df , q, N such that N/q is held constant and c is held
constant, the time required for BKZ to locate τ has been observed (but not
proved) to be at least exponential in N as N increases. As c decreases, the time
required for BKZ to succeed decreases, while remaining exponential in N . Thus
we must consider the possibility that a particularly small value of df relative to
N and q might make it unexpectedly easy for BKZ to locate the key.

In the new context of parameter generation that we are considering here,
there is a different sequence of lattices which is a bit more convenient for our
purposes in measuring and extrapolating the strength of the BKZ algorithm.
We will find it useful to understand the properties of BKZ when applied to a
sequence of NTRU lattices with increasing N , but with fixed q and df .

Proceeding in this way we have run a number of experiments that suggest
that for fixed q, df the block size required by BKZ to locate the key increases at
least linearly with N . For example, see the following graph of block size necessary
to locate the key against N for q = 1024, df = 29
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Fig. 7. Block size required to locate the private key for q = 1024, df = 29.
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Fig. 8. Bits required to locate the private key for q = 1024, df = 29 (tail).

As the time in bits for BKZ to do a block reduction of size b is O(b log b)
it follows that the time in bits required for BKZ to locate the key in a lattice
of dimension 2N should be at least O(N log N). We thus take our experimental
results and extrapolate by using the best fit to a curve of the form

time in bits = AN log N + BN + C

that lies under the latter part of our data. We use the points coming from as
large N and block sizes as we can experimentally reach in a reasonable amount
of time. Our results suggest, that continuing to higher N and higher block sizes
will always result in higher estimates of bits required for breaking times. For the
example above, in Figure 8, the extrapolating equation is

93.2501− 3.10353N + 0.551326N log(N). (13)

Remark 5. The time required by BKZ to locate a key for fixed q and N increases
as df increases. Thus to determine that key recovery by BKZ will take at least
k bits it suffices to have performed experiments with any d′f < df that predict
greater than k bits. For example, in Table 5 the lowest df mentioned is df = 29,
and the lowest N on the table is N = 257 (though associated with a higher df ).
Substituting N = 257 into (13) we see that key security is at least 81 bits for all
N above 257 and df above 29. The next lowest N is N = 313, required for 112
of security (again with a higher df ). Substituting N = 313 into (13) we see that
key security is at least 113 bits for all N above 313 and df above 29. Continuing,
N = 347 produces at least 135 bits of security, N = 421 produces at least 189
bits of security, and N = 521 produces at least 273 bits of security. This suffices
for the entire q = 1024 table. In fact the key security requirement of this section
must always be checked, but in all cases investigated so far it has turned out
to be an easier requirement to satisfy (i.e. weaker) than the hybrid meet in the
middle attack.



6 Balancing the requirements

Recall we have assumed that each trinary polynomial r, g, m, F that we use is
drawn from a space TN (d, e) with

d, e ≤ df + 1 ≤ 1 + ⌊N/3⌋.

Remark 6. To improve the clarity of the exposition the meet in the middle ar-
gument in the previous section was built around the case f ∈ TN (d, e). However
the case f = 1 + 3 ∗F , with F ∈ TN (d, e) is argued the same way, with identical
lower bounds on security.

For concreteness, we’ll now set d = df + 1, e = df . To establish parameters
with bit security k we will only search among triples df , q, N such that for all
r, g, m, F ∈ TN (df + 1, df ) the probability that decryption fails, as guaranteed
by (1), when using the f = 1 + 3F protocol, is less than 2−k. We will use the
following procedure to choose a parameter triple which has minimal df :

– For a selection of q, for example q = 1024, 256, 2048, construct extrapolation
equations such as (6), (8) and (9). Use these equations to determine, for each
q, an associated N1 such that BKZ reduction requires at least k bits of effort
to remove N1 of the q-vectors.

– For each q, N1 pair choose any d0 ≤ ⌊q/24⌋ − 1 and such that d0 is at least
as large as any df for which experiments have been run and extrapolation
equations such as (13) have been constructed. The maximum possible width
of a polynomial occurring in decryption is 24df + 2, [3], and thus the prob-
ability of decryption failure for any choice of N corresponding to this d0 is
0.

– Use (12) to determine the minimal K for which N = N1 + K is prime and

S(N1, K, d0 + 1, d0) > k.

– Now verify via some version of (13) for the given q for which the experimental
choices of df , N are smaller than the values being tested, that the time in
bits required for BKZ to locate the key is greater than k. If so, then the triple
d0, q, N will satisfy the security requirements for bit strength k. This will be
the choice for the given q with minimal df = d0. If N is not sufficiently large
to ensure k bits of security by (13) then replace N by the smallest prime
N ′ for which this is true and set K = N ′ − N1. It is easy to see that the
requirement

S(N1, K, d0 + 1, d0) > k

will still hold, and of course decryption failure probability will still be 0. Thus
setting df = d0, N = N ′ will give us a decryption triple for q at security level
k with minimal df .

Assuming we have found a triple df , q, N at security level k with minimal
df , we may now, for d′f > df try to select a new N ′ < N . This will have the



effect of reducing key size. To accomplish this, we search among pairs d′f , K ′,
with N ′ = N1 + K ′, such that d′f ≤ ⌊(N1 + K ′)/3⌋, K ′ ≤ K and N ′ is prime,
that satisfy the requirements that the probability of decryption failure as given
by (1), is less than 2−k, and that the meet in the middle strength, given by (12) is
at least k. Of these, the choice with 2d′fN ′ minimized will be most efficient, with
the smallest number of operations performed, while the choice with minimal N ′

will have the smallest key size.

7 Sample parameter generation

Consider the case q = 1024, k = 80. Referring to (6) we see that choosing N1 =
153 will suffice to achieve 80 bits of security from the lattice reduction part of
the meet in the middle approach. We next choose d0 = 24 < 41 = ⌊q/24⌋−1 and
compute via (12) that K = 394 is the minimal K for which N = 153+394 = 547
is prime and S(153, 394, 25, 24) > 80. Thus df = 24, N = 547 will give 80 bits
of security when q = 1024. For this particular choice, 2dfN = 26256. Increasing
df and decreasing N we find that 2dfN hits a minimum at df = 29, N = 439,
with 2dfN = 25462. This gives our minimal operations triple for k = 80 and
q = 1024, and we don’t have to check decryption failure probability as 29 < 41.

We now increase df by steps. For each df we decrease N , until we reach the
minimal N for which S(153, K, df +1, df) > 80 and the probability of decryption
failure via (1) is less than 2−80. For example, we might overshoot to df = 85
and compute via (12) that K1 = 103 and df = ⌊(153 + 103)/3⌋ = 85 satisfy
S(153, 103, 86, 85 > 80. The next prime after 256 = 153+103 is N = 257 and so
we compute via (1) that for polynomials chosen from T257(86, 86) the probability
of a positive coefficient exceeding 168 is less than 2−83.2. Thus any value of q
satisfying

1

3

(

1

2
q − 1

)

≥ 168,

i.e, q ≥ 1011 will suffice for our purposes, in particular the value q = 1024.
Thus df = 85, q = 1024, N = 257 is a parameter triple giving at least 80 bits of
security. In fact, tinkering a bit with this we find that we can reduce df to 77
while keeping S(153, 104, 78, 77) > 80 and so df = 77, q = 1024, N = 257 is a
slightly more efficient parameter triple with the same key size giving at least 80
bits of security.

Following this procedure we arrive at the following tables:
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k N N1 K df Lattice bits 2dfN bits in key

80 383 141 242 31 80 23746 3447

80 439 153 286 29 120 25462 3951

112 521 151 370 36 112 37512 4689

112 521 163 358 38 168 39596 4689

128 569 155 414 40 128 45520 5121

128 569 168 401 42 192 47796 5121

160 733 162 571 44 160 64504 6597

160 787 177 610 44 240 69256 7083

192 977 168 809 46 192 89884 8793

192 1039 184 855 46 288 95588 9351

256 1913 179 1734 47 256 179822 17217

256 2039 198 1841 47 384 191666 18351
Table 3. Sample parameter choices, q = 512, f = 1 + 3F , minimal operations.

k N N1 K df Lattice bits 2dfN bits in key

160 521 162 359 59 160 61478 4689

160 557 177 380 59 240 65726 5013
Table 4. Sample parameter choices, q = 512, f = trinary.



k N N1 K df Lattice bits 2dfN bits in key

80 257 153 104 77 80 39578 2570

80 271 164 107 77 120 41734 2710

80 439 153 286 29 80 25462 4390

80 439 164 286 31 120 27218 4390

112 313 162 151 82 112 51332 3130

112 331 174 157 82 168 54284 3310

112 467 162 305 42 112 39228 4670

112 467 174 293 45 168 42030 4670

128 347 166 181 82 128 56908 3470

128 367 179 188 82 192 60188 3670

128 499 166 333 47 128 46906 4990

128 499 179 320 50 192 49900 4990

160 421 173 248 83 160 69886 4210

160 443 187 256 83 240 73538 4430

160 617 173 444 52 160 64168 6170

160 617 187 430 55 240 67870 6170

192 521 179 342 81 192 84402 5210

192 557 194 363 81 288 90234 5570

192 683 179 504 61 192 83326 6830

192 683 194 489 61 288 88790 6830

256 743 189 554 85 256 126310 7430

256 787 207 580 85 384 133790 7870

256 751 189 562 84 256 126168 7510

256 797 207 590 84 384 133896 7970
Table 5. Sample parameter choices, q = 1024, f = 1 + 3F .



k N N1 K df Lattice bits 2dfN bits in key

80 277 173 104 83 80 45982 3047

80 461 173 288 31 80 28582 5071

80 461 188 273 34 120 31348 5071

112 331 186 145 100 112 66200 3641

112 569 186 383 39 112 44382 6259

112 569 202 367 42 168 47796 6259

128 359 191 168 101 128 72518 3949

128 631 191 440 42 128 53004 6941

128 631 208 423 45 192 56790 6941

160 409 200 209 116 160 94888 4499

160 661 200 461 54 160 71388 7271

160 661 219 461 58 240 76676 7271

192 461 208 253 131 192 120782 5071

192 761 208 553 61 192 92842 8371

192 761 229 532 65 288 98930 8371

256 563 223 340 156 256 175656 6193

256 883 223 660 80 256 141280 9713

256 883 247 660 86 384 151876 9713
Table 6. Sample parameter choices, q = 2048, f = 1 + 3F .


