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Abstract. HMQV is a hashed variant of the MQV key agreement pro-
tocol proposed by Krawczyk at CRYPTO 2005. In this paper, we present
some attacks on HMQV and MQV that are successful if public keys are
not properly validated. In particular, we present an attack on the two-
pass HMQV protocol that does not require knowledge of the victim’s
ephemeral private keys. The attacks illustrate the importance of perform-
ing some form of public-key validation in Diffie-Hellman key agreement
protocols, and furthermore highlight the dangers of relying on security
proofs for discrete-logarithm protocols where a concrete representation
for the underlying group is not specified.

1 Introduction

Public-key validation is a process whose purpose is to verify that a public key
possesses certain arithmetic properties. Public-key validation is especially im-
portant in Diffie-Hellman protocols where a party B̂ derives a secret session key
K by combining his private key with a public key received from a second party
Â and subsequently uses K in some symmetric-key protocol (e.g., encryption
or message authentication) with Â. A dishonest party Â might select an invalid
public key in such a way that the use of K reveals information about B̂’s pri-
vate key. Lim and Lee [18] demonstrated the importance of public-key validation
by presenting small-subgroup attacks on some discrete logarithm key agreement
protocols that are effective if the receiver of a group element does not verify
that the element belongs to the desired group of high order (e.g., a prime-order
DSA-type subgroup of F

∗
p). In [5,3], invalid-curve attacks were designed that are

effective on elliptic curve protocols if the receiver of a point does not verify that
the point indeed lies on the chosen elliptic curve. Kunz-Jacques et al. [15] showed
that the zero-knowledge proof proposed in [4] for proving possession of discrete
logarithms in groups of unknown order can be broken if a dishonest verifier se-
lects invalid parameters during its interaction with the prover. More recently,
Chen, Cheng and Smart [7] illustrated the importance of public-key validation
in identity-based key agreement protocols that use bilinear pairings.

The MQV protocols [16] are a family of authenticated Diffie-Hellman proto-
cols that have been widely standardized [1,2,9,27]. In the two-pass and three-pass
versions of the protocol, the communicating parties Â and B̂ exchange static
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(long-term) and ephemeral (short-term) public keys, and thereafter derive a se-
cret key from these values. In the one-pass version, only one party contributes
an ephemeral public key. In 2005, Krawczyk [12,13] presented the HMQV proto-
cols, which are hashed variants of the MQV protocols. The primary advantages
of HMQV over MQV are better performance and a rigorous security proof. The
improved performance of HMQV is a direct consequence of not requiring the val-
idation of ephemeral and static public keys — unlike with MQV where these op-
erations are mandated. Despite the omission of public-key validation, Krawczyk
was able to devise proofs that the HMQV protocols are secure in the random
oracle model assuming the intractability of the computational Diffie-Hellman
problem (and some variants thereof) in the underlying group.

Menezes [19] identified some flaws in the HMQV security proofs and presented
small-subgroup attacks on the protocols. The attacks exploit the omission of
validation for both ephemeral and static public keys, and allow an adversary to
recover the victim’s static private key. The attacks on the one-pass protocol are
the most realistic, while the attacks on the two-pass and three-pass protocols
are harder to mount in practice because the adversary needs to learn some of
the victim’s ephemeral private keys.

In this paper, we further investigate the effects of omitting public-key valida-
tion in HMQV and MQV. For the most part, we will only consider the two-pass
HMQV protocol (which we call the HMQV protocol), which is the core member
of the HMQV family. We identify a subtle flaw in the HMQV security proof
which leads to an attack that does not require knowledge of ephemeral private
keys, thereby contradicting the claim made in [13] that the HMQV protocol
(without public-key validation) is provably secure if the adversary never learns
any ephemeral private keys. We also consider the vulnerability of HMQV and
MQV if only static public keys are validated, or if only ephemeral public keys
are validated. These hypothetical scenarios are worth investigating because the
reasons for omitting public-key validation can be different for ephemeral and
static keys — validation of ephemeral public keys may be omitted for perfor-
mance reasons, while validation of static public keys may be omitted because
the certification authority may not be configured to perform such tests [13].

We emphasize that many of the attacks described in this paper cannot be
mounted in realistic settings. For example, the aforementioned attack on HMQV
that does not require knowledge of ephemeral private keys is described in certain
underlying groups that have never been proposed for practical use. Moreover,
this attack fails if the underlying group is a DSA-like group or a prime-order
subgroup of an elliptic curve group as proposed for standardization in [14]. We
also caution against inferring from our work that one must necessarily (fully)
validate public keys in all Diffie-Hellman key agreement protocols. For example,
the version of HMQV proposed in [14] only requires that a few simple and
efficient checks be performed on static and ephemeral public keys. Moreover,
even in the situation where one is concerned that ephemeral private keys might
be leaked, [14] only requires that ephemeral and static public keys be jointly
validated, thus saving a potentially expensive validation step (cf. §6).
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The remainder of this paper is organized as follows. The MQV and HMQV
protocols are reviewed in §2. The new attack on HMQV that does not require
knowledge of ephemeral private keys is presented in §3, and the associated flaw
in the HMQV security proof is identified. In §4 we present attacks on HMQV
in the case where only ephemeral public keys are validated. In §5 it is shown
that MQV is insecure if validation of ephemeral public keys is omitted. In §6
we describe the approach taken in [14] to guard against the kinds of attacks
discussed in this paper. An example is presented in §7 to illustrate the potential
pitfalls if public keys are not completely validated. The paper concludes with
some remarks in §8.

2 The HMQV Key Agreement Protocol

Let G = 〈g〉 be a multiplicatively-written cyclic group of prime order q, and let
1 denote the identity element in G. Let H be a hash function, and let H be an
l-bit hash function where l = (�log2 q�+ 1)/2. Party Â’s static private key is an
integer a ∈R [0, q − 1], while her static public key is the group element A = ga.
Similarly, party B̂ has a static key pair (B, b) where b ∈R [0, q − 1] and B = gb.

2.1 Description of HMQV

In the (two-pass) HMQV protocol as presented in [12,13], parties Â and B̂
establish a secret session key as follows:

1. Â selects an ephemeral private key x ∈R [0, q−1] and computes her ephemeral
public key X = gx. Â then sends (Â, B̂, X) to B̂.

2. Upon receiving (Â, B̂, X), B̂ checks that X �= 0,1 selects an ephemeral key
pair (Y, y), and sends (B̂, Â, Y ) to Â. B̂ proceeds to compute sB = y +
eb mod q and σ = (XAd)sB where d = H(X, B̂) and e = H(Y, Â).2

3. Upon receiving (B̂, Â, Y ), Â checks that Y �= 0, and computes sA = x +
da mod q and σ = (Y Be)sA where again d = H(X, B̂) and e = H(Y, Â).

4. The secret session key is K = H(σ) = H(gsAsB ).

The messages transmitted in steps (1) and (2) may include certificates for the
static public keys A and B, respectively. Note that HMQV does not mandate
that static and ephemeral public keys be validated, i.e., verified as being non-
identity elements of G.

1 Note that 0 �∈ G. The check X �= 0 (and Y �= 0) makes sense in some settings, e.g.,
when G is a multiplicative subgroup of a finite field; in this case 0 is the additive
identity of the field.

2 The HMQV papers [12,13] do not explicitly state that sA (and sB) should be com-
puted modulo q. The attacks in this paper can still be launched if sA (and sB) are
not reduced modulo q.
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2.2 Description of MQV

The three essential differences between the MQV protocol (as standardized in
[27]) and the HMQV protocol are the following:

1. Static and ephemeral public keys must be validated in MQV.3
2. In MQV, the integers d and e are derived from the group elements X and

Y , respectively. For example, if G is a group of elliptic curve points, then d
and e are derived from the l least significant bits of the x-coordinates of X
and Y respectively.

3. The secret session key is K = H(σ, Â, B̂).4

2.3 Security Proofs

Krawczyk [12,13] provided a very extensive analysis of HMQV. He proved that
the protocol satisfies the Canetti-Krawczyk definition [6] for secure key agree-
ment, under the assumptions that H and H are random oracles and that the
computational Diffie-Hellman (CDH) problem5 in G is intractable. The Canetti-
Krawczyk security definition is a very strong one in that the adversary controls
all communications between parties and its goal is very modest — distinguishing
a target session key from a purely random key. The protocol remains secure even
if the adversary is allowed to learn session keys different from the target session
key. Krawczyk also proved that the protocol is resistant to attacks when the
adversary is permitted to learn the ephemeral private keys of sessions; for this
property the ‘Gap Diffie-Hellman’ and ‘KEA1’ assumptions about G are needed.

2.4 An Attack

We describe the attack on HMQV that was presented in [19]. The attack exploits
the omission of public-key validation for ephemeral and static public keys, and
also the ability of the adversary to learn the victim’s ephemeral private keys.

We suppose that there is an algebraic structure R (e.g., a field, ring, or group)
such that:

1. The elements of R are represented in the same format as elements of G (e.g.,
bitstrings of the same length).

2. The group operation for G is defined on elements of R.

For the attack in this section, we further assume that there is a subset G′ of R
such that:

3. G′ is a cyclic group with respect to the operation defined on G.
4. G′ has order t where t = 2r for some small r (e.g., r = 4).

3 Actually ‘embedded’ validation may be performed on ephemeral public keys. The
details are not relevant to the attacks presented in this paper.

4 The identities Â, B̂ are included in the derivation of K from σ in order to thwart
Kaliski’s unknown-key share attack [10].

5 The CDH problem in G = 〈g〉 (with respect to g) is that of computing CDH(X, Y ) =
Xy = Y x given g, X = gx and Y = gy.
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For example, if G is amultiplicative subgroup of order q of F
∗
p (the integers

modulo p) and t | (p−1)/q, then we can take R = Fp and G′ to be the unique sub-
group of F

∗
p of order t. Note that elements of G and R have the same representa-

tion (integers modulo p), and the common operation is multiplication modulo p.
As a second example, suppose that G = E(Fp) where E : V 2 = U3+αU +β is an
(additively-written) elliptic curve defined over Fp, and let E′ : V 2 = U3+αU +β′

be another elliptic curve defined over Fp such that t | #E′(Fp). Then we can take
R = E′(Fp) and G′ to be a subgroup of E′(Fp) of order t. Again, the elements
of G and R have the same representation (pairs of integers modulo p), and the
group law for E and E′ are the same since the usual chord-and-tangent laws for
E and E′ do not (explicitly) use the coefficients β and β′ (see §4).

The attack proceeds as follows. The adversary Â chooses an element γ ∈ G′

of order t = 2r, selects a, x ∈ [1, t − 1], computes A = γa and X = γx, and
sends (Â, B̂, X) to B̂. While B̂ is computing the session key K = H((XAd)sB ),
the adversary learns B̂’s ephemeral private key y. Let β = XAd = γx+da, so K =
H(βsB ). Â then learns the session key K.6 Now Â computes K ′ = H(βc) for c =
0, 1, 2, . . . , t − 1 until K ′ = K, in which case Â has determined sB mod t. After
repeating this procedure a few times, Â can use the Leadbitter-Smart lattice attack
[17] to find the l most significant bits of b. The remaining l bits of b can thereafter
be determined in O(q1/4) time using Pollard’s lambda method [24].

3 No Ephemeral Private Key Leakage

The adversary in the attack of §2.4 requires knowledge of the victim’s ephemeral
private keys. While resistance to ephemeral private key leakage is a desirable
attribute of a key establishment protocol7, it is arguably not a fundamental
security requirement. In [13] it is claimed that the HMQV protocol is provably
secure if the adversary does not learn any ephemeral private keys. In this section
we demonstrate that this claim is false.

3.1 A New Attack

Suppose that G = 〈g〉 is a multiplicatively-written group of prime order q, and
suppose that the CDH problem in G is intractable. We further assume that R
is a ring such that:

1. The elements of R are represented in the same format as elements of G (e.g.,
bitstrings of the same length).

2. The multiplication operation for R is defined in the same way as the oper-
ation for G. In particular, G is a subgroup of the group of units U(R) of
R.

6 Suppose, for example, that B̂ sends Â an authenticated message (m,τ = MACK(m)).
Then Â can learn K by computing τ ′ = MACK′(m) where K′ = H(βc) for c =
0, 1, 2, . . . , t − 1 until τ ′ = τ .

7 In [12,13], resistance of Diffie-Hellman protocols to damage from the disclosure of
ephemeral private keys is described as a ‘prime security concern’.
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3. There exists an element T ∈ R, T �= 0, such that T 2 = 0 (where “0” denotes
the additive identity element in R).

The new attack on HMQV assumes that parties do not validate ephemeral
public keys. The adversary Ĉ intercepts the message (Â, B̂, X) sent by Â and re-
places it with (Â, B̂, T ). Similarly, Ĉ intercepts B̂’s response (B̂, Â, Y )
and forwards (B̂, Â, T ) to Â. If R is commutative then, assuming that sA ≥ 2 and
sB ≥ 2, it is easy to see that both Â and B̂ compute the session key K = H(0).
Of course, Ĉ can also compute this key.

If R is not commutative, then the value of the session key depends on the par-
ticular exponentiation method used by the parties. Suppose that Â determines
the session key by first calculating tA = esA mod q and then using simultane-
ous multiple exponentiation [20, Algorithm 14.88] to compute σ = T sABtA and
K = H(σ). This algorithm first computes TB and initializes an accumulator to
1. It then repeatedly examines the bits of sA and tA from left to right. During
each iteration, either 1, T , B or TB is multiplied into the accumulator which is
then squared. Now, if the most significant bits of sA and tA are 1 and 0, respec-
tively, then the accumulator takes on the values 1, T , T 2, . . .. Hence Â computes
σ = 0. Similarly, B̂ may compute σ = 0, in which case Ĉ also learns the session
key K = H(0).

3.2 Examples of Groups

We give two examples of groups that satisfy the conditions of §3.1. These ex-
amples do not have any immediate practical relevance since such groups are not
being deployed in practice. Nonetheless, they serve to refute the claim made in
[12,13] that HMQV is provably secure regardless of the representation used for
the elements of the G (subject to the constraint that the CDH problem in G be
intractable).

A Commutative Example. Let p be a 1024-bit prime such that p − 1 has a
160-bit prime divisor q. Consider the commutative ring R = Zp2 . Then U(R) is
cyclic and #U(R) = p(p − 1). Let G be the order-q cyclic subgroup of U(R).
The CDH problem in G is believed to be intractable. The element T = p ∈ Zp2

satisfies T �= 0 and T 2 = 0.

A Non-commutative Example. Again, let p be a 1024-bit prime such that
p − 1 has a 160-bit prime divisor q. Consider the non-commutative ring R of
2 × 2 matrices over Fp. Then #U(R) = (p2 − 1)(p2 − p). Let g ∈ U(R) be an
element of order q, and let G = 〈g〉. The CDH problem in G is equivalent to the
CDH problem in the order-q subgroup of F

∗
p (see [21]) and is therefore believed

to be intractable. The element

T =
[
0 0
1 0

]

satisfies T �= 0 and T 2 = 0.
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3.3 Flaw in the HMQV Proof

The HMQV security proof in [13] has two main steps. First, an ‘exponential
challenge-response’ signature scheme XCR is defined and proven secure in the
random oracle model under the assumption that the CDH problem in G is in-
tractable. Second, the security of XCR (actually a ‘dual’ version of XCR) is
proven to imply the security of HMQV.

In the XCR signature scheme, a verifier Â selects x ∈R [0, q − 1] and sends
the challenge X = gx and a message m to the signer B̂. B̂ responds by selecting
y ∈R [0, q − 1] and sending the signature (Y = gy, σ = XsB ) to Â where
sB = y + eb mod q, e = H(Y, m), and (B, b) is B̂’s static key pair. The signature
is accepted by Â provided that Y �= 0 and σ = (Y Be)x. XCR signatures are
different from ordinary digital signatures — Â cannot convince a third party
that B̂ generated a signature (Y, σ) for message m and challenge X because Â
could have generated this signature herself.

The XCR security proof in [12,13] uses the forking lemma of Pointcheval
and Stern [23]. The proof hypothesizes the existence of a forger who, on input
B, X0 ∈R G and a signing oracle for B̂, produces a message m0 and a valid
signature (Y0, σ) for m0;8 that is Y0 �= 0 and σ = (Y0B

e)x0 where e = H(Y0, m0)
and X0 = gx0.9 Now, in order to compute CDH(B, X0), the forger is run twice
with input B, X0. The forger’s hash function and signature queries are suitably
answered so that the two invocations of the forger eventually produce valid
forgeries (m0, Y0, σ) and (m0, Y0, σ

′) where e = H(Y0, m0), e′ = H
′
(Y0, m0), and

e �≡ e′ (mod q). To conclude the argument, one notes that

σ

σ′ =
(Y0B

e)x0

(Y0Be′)x0
= (Bx0)e−e′

(1)

whence CDH(B, X0) = (σ/σ′)(e−e′)−1
can be efficiently computed.

The flaw in this argument is the assumption that the Y0 terms in (1) can be
cancelled under the sole condition that Y0 �= 0. While the cancellation in (1)
is valid if Y0 ∈ G (which is the case if Y0 has been validated), in general one
needs to make additional assumptions including that Y0 is invertible. Thus, since
the description of XCR does not mandate that the verifier validate Y , the XCR
security proof in [12,13] is incorrect.

This flaw in the XCR security proof accounts for the following attack on XCR.
Let R and T be as defined in §3.1, and suppose for the sake of concreteness that R
is commutative. A forger can respond to Â’s challenge (X, m) with the signature
(Y = T, σ = 0). The signature is accepted by Â since T �= 0 and (TBe)x = 0.
This attack on XCR in turn explains why the attack described in §3.1 can be
launched on HMQV.
8 There is also the requirement that (m0, Y0) did not appear in any of B̂’s responses

to the forger’s signature queries.
9 The XCR security definition in [12,13] incorrectly states that the forger’s output

(m0, Y0, σ) should satisfy Y0 �= 0 and σ = Xy0+eb
0 where Y = gy0 . The latter

condition is not equivalent to the condition σ = (Y0B
e)x0 in the case where Y0 �∈ G

— indeed y0 is not even defined when Y0 �∈ G.
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4 No Static Public-Key Validation

We describe an attack on HMQV in the hypothetical situation where ephemeral
public keys are validated but static public keys aren’t. As mentioned in the Intro-
duction, this situation is worth investigating because validation for static public
keys may be omitted if a certification authority is not configured to perform such
tests. We describe attacks that can be mounted in the realistic setting where G
is a DSA-type group or an elliptic curve group.

4.1 DSA-Type Groups

We suppose that G is the order-q subgroup of F
∗
p, and that t = 2r is a divisor of

(p− 1)/q. Let γ ∈ F
∗
p be an element of order t. Using the notation introduced in

§2.4, we have R = Fp and G′ = 〈γ〉.
The adversary Â selects a valid X ∈ G and computes d = (H(X, B̂))−1 mod q

and A = γX−d−1 mod q. She certifies A as her (invalid) static public key and
sends X to B̂ who computes β = XAd = γd and K = H(βsB ). As in the attack
described in §2.4, Â learns y, K, and sB mod t; repeating this procedure yields
half the bits of b.

4.2 Elliptic Curves Groups

We suppose that G = E(Fp) where E : V 2 = U3 + αU + β is an elliptic curve of
prime order defined over the prime field Fp. Let P1 = (u1, v1) and P2 = (u2, v2)
be two finite points in E(Fp) with P1 �= −P2, and let P3 = (u3, v3) = P1 + P2.
The usual formulae for computing P3 are:

u3 = λ2 − u1 − u2, (2)
v3 = λ(u1 − u3) − v1, (3)

where

λ =
v2 − v1

u2 − u1
or λ =

3u2
1 + α

2v1
,

depending on whether P1 �= P2 or P1 = P2. Note that the formulae do not
(explicitly) depend on the coefficient β.

The adversary Â’s goal is to select two points A, X ∈ Fp×Fp such that (i) X is
valid, i.e., X ∈ E(Fp), X �= ∞; and (ii) T = X+dA is a point of order 16 on some
curve E′ : V 2 = U3+αU +β′ defined over Fp, where d = H(X, B̂) and X +dA is
computed using the formulas for E(Fp). Using the notation introduced in §2.4,
we have R = E′(Fp), G′ = 〈T 〉, and t = 16. The adversary then certifies A as
her (invalid) static public key and sends X to B̂, who computes K = H(sBT ).
As in the attack described in §2.4, Â learns y, K, and sB mod t; repeating this
procedure yields half the bits of b.

The adversary can proceed to determine A and X as follows. She first selects
an arbitrary finite point X = (u2, v2) ∈ E(Fp) such that d = H(X, B̂) is odd.
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Now let A = (z, 0), where z ∈ Fp is an indeterminate whose value will be
specified later. Since d is odd, application of the group law for E yields dA = A.
The coordinates (u3, v3) of T = X + dA are then derived using (2) and (3):

u3 =
(

v2

u2 − z

)2

− z − u2 and v3 =
v2

u2 − z
(z − u3). (4)

Define
β′ = v2

3 − u3
3 − αu3, (5)

so that T = (u3, v3) is an Fp-point on the elliptic curve

E′ : V 2 = U3 + αU + β′. (6)

We next show how division polynomials can be used to select z ∈ Fp so that T
has order 16. The following result is well known (e.g., see [25]).

Theorem 1. Consider the division polynomials Ψk(U, V ) ∈ Fp[U, V ] associated
with an elliptic curve E/Fp : V 2 = U3 + αU + β and defined recursively as
follows:

Ψ1(U, V ) = 1
Ψ2(U, V ) = 2V

Ψ3(U, V ) = 3U4 + 6αU2 + 12βU − α2

Ψ4(U, V ) = 4V (U6 + 5αU4 + 20βU3 − 5α2U2 − 4αβU − 8β2 − α3)

Ψ2k+1(U, V ) = Ψk+2Ψ
3
k − Ψ3

k+1Ψk−1 for k ≥ 2

Ψ2k(U, V ) = Ψk(Ψk+2Ψ
2
k−1 − Ψk−2Ψ

2
k+1)/2V for k ≥ 3.

Let Ψ ′
k be the polynomial obtained by repeatedly replacing occurrences of V 2 in

Ψk by U3 + αU + β, and define

fk =
{

Ψ ′
k(U, V ), if k is odd,

Ψ ′
k(U, V )/V, if k is even.

Then in fact fk ∈ Fp[U ]. Moreover, if P = (u, v) ∈ E(Fp) such that 2P �= ∞,
then kP = ∞ if and only if fk(u) = 0.

It follows from Theorem 1 that the roots of the polynomial

g(U) =
f16(U)
f8(U)

are precisely the U -coordinates of points of order 16 in E(Fp), and hence deg(g) =
96.

Now to determine T , the adversary computes h(z) = g(u3), where g(U) is
associated with E′ : V 2 = U3 + αU + β′, and where u3 and β′ are defined in
(4) and (5). It can be seen that h(z) = h1(z)/h2(z), where h1, h2 ∈ Fp[z] and
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deg(h1) = 288.10 If the polynomial h1 has a root z in Fp, then the associated
point T is guaranteed to have order 16 in E′(Fp). Since X can be chosen uni-
formly at random from E(Fp), it is reasonable to make the heuristic assumption
that h1 is a “random” degree-288 polynomial over Fp. The following result en-
sures that there is a very good chance that h1 will indeed have a root in Fp.
The result is well known (e.g., see Exercise 1 in §4.6.2 of [11]), but we include
its proof for the sake of completeness.

Lemma 1. For p � n ≥ 10, the proportion of degree-n polynomials over Fp

that have at least one root in Fp is approximately (1 − 1
e ) ≈ 0.632.

Proof. It suffices to consider monic polynomials over Fp.
The generating function for the number of monic polynomials over Fp with

respect to degree is

Φ(x) =
∑
i≥0

pixi =
1

1 − px
. (7)

Let L(n, p) denote the number of degree-n monic irreducible polynomials over Fp.
Since every monic polynomial can be written as a product of monic irreducible
polynomials, the generating function Φ(x) can be written as

Φ(x) =
∏
i≥1

(
1

1 − xi

)L(i,p)

. (8)

Now, the generating function for monic polynomials with no linear factors (i.e.,
no roots in Fp) is

Φ̃(x) =
∏
i≥2

(
1

1 − xi

)L(i,p)

. (9)

Multiplying (8) by (1 − x)L(1,p) = (1 − x)p yields

Φ̃(x) =
(1 − x)p

1 − px
. (10)

Letting [·] denote the coefficient operator, it follows from (10) that the number
R(n, p) of monic polynomials of degree n over Fp that have at least one root in
Fp is

R(n, p) = pn − [xn]Φ̃(x) = pn −
n∑

i=0

(
p

i

)
(−1)ipn−i.

For p � n ≥ 10, we have

R(n, p) ≈ pn
n∑

i=1

(−1)i−1

i!
≈ pn

∑
i≥1

(−1)i−1

i!
= pn

(
1 − 1

e

)
.

10 More generally, if t = 2r then deg(g) = 3 · 22r−3 and deg(h1) = 9 · 22r−3.
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Example 1. (determination of A, X , T and E′) Consider the NIST-recommended
elliptic curve [8] defined by the equation E : V 2 = U3 − 3U + β over Fp, where
p = 2192 − 264 − 1 and

β = 2455155546008943817740293915197451784769108058161191238065.

Suppose that we select

X = (602046282375688656758213480587526111916698976636884684818,

174050332293622031404857552280219410364023488927386650641)

in E(Fp), and

A = (2664590514587922359853612565516270937783866981812798250851, 0).

Then the point T = X + A computed using the group law for E(Fp) is

T = (5350077178842604929587851454217201721791103389533004256989,
4170329249603673452251890924513609385018269372344921771517).

T is a point of order 16 on E′ : y2 = x3 − 3x + β′, where

β′ = 2271835836669632292423953498680460143165540922751246538627.

5 No Ephemeral Public-Key Validation

In this section we consider attacks in the hypothetical situation where static
public keys are validated but ephemeral public keys aren’t. We don’t know of
any attacks on HMQV in the case where the underlying group G is a DSA-type
group or an elliptic curve group (cf. §4.1 and §4.2). In particular, we don’t know
how to extend the attacks described in §4.1 and §4.2 to this setting. The difficulty
is in part because of the complicated relationship between X and d = H(X, Â)
whereby d is not determined until X has been fixed.

However, we observe that attacks can be launched on MQV if ephemeral public
keys are not validated. Suppose that G = E(Fp) where E/Fp : V 2 = U3+αU +β
is an elliptic curve of prime order. The adversary Ĉ, who wishes to impersonate
Â to B̂, selects u1 ∈R Fp and sets X = (u1, z) where z is an indeterminate. Since
in MQV d depends only on u1, Ĉ can then compute Ã = dA, where A is Â’s
(valid) static public key. Using the method of §4.2, Ĉ can use the t-th division
polynomial (for some small t) to determine z, β′ ∈ Fp so that T = X + Ã has
order t on E′ : V 2 = U3 + αU + β′. The adversary sends X to B̂ who computes
the session key K = H(T sB , Â, B̂). Now Ĉ can guess the session key with non-
negligible success probability 1

t . Alternatively, if Ĉ can learn B̂ ephemeral’s
private keys y, then Ĉ can determine B̂’s static private key b as in §2.4.
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6 Partial Validation

It may be possible to circumvent the attacks described in the preceding sections
without performing (full) public-key validation on static and ephemeral public
keys. For example, consider the version of HMQV that has recently been pro-
posed for standardization by the IEEE 1363 standards group [14]. This proposal
specifies HMQV in the concrete setting of a DSA-type group G, i.e., G is the
order-q subgroup of the multiplicative group F

∗
p of a prime field. The only checks

required on ephemeral and static public keys is that they be integers in the in-
terval [2, p−1]. In [14] it is claimed that this instantiation of HMQV is provably
secure (under the assumptions that CDH in G is intractable, and that the em-
ployed hash functions are random functions) as long as ephemeral private keys
are never leaked. Moreover, in order to resist attacks that may be mounted in the
face of ephemeral private key leakage, the recipient of an ephemeral key X and
static key A only needs to verify that Zq = 1 and Z �= 1 where Z = XAd. Such a
check is more efficient that separately verifying that Aq = 1 and Xq = 1. Again,
[14] claims that this version of HMQV is provably secure even if the adversary
is able to learn some ephemeral private keys.

7 Almost Validation

A public key X is said to have been almost validated if it has been verified
that X ∈ G but not necessarily that X �= 1. Protocol descriptions sometimes
inadvertently omit the condition X �= 1; see for example the ‘G-tests’ in [13].
Performing almost validation instead of full validation of public keys may lead
to new vulnerabilities. This section gives an example of this likelihood.

In the one-pass HMQV protocol [13], only the initiator contributes an ephe-
meral public key. The initiator Â sends (Â, B̂, X) to B̂ and computes the session
key K = H(BsA) where sA = x + da mod q and d = H(X, Â, B̂). The receiver
B̂ verifies that X �= 0 and computes K = H((XAd)b).

In [19] it was shown that the one-pass HMQV protocol succumbs to a Kaliski-
style unknown-key share attack [10] even if public keys are (fully) validated. The
attack is ‘on-line’ in the sense that the adversary needs to have her static public
key certified during the attack. We next present an ‘off-line’ Kaliski-style attack
on the one-pass HMQV protocol which succeeds if ephemeral public are (fully)
validated but static public keys are only almost validated.

The adversary Ĉ registers in advance the static public key C = 1 with the
certification authority. Now, when Â sends (Â, B̂, X), Ĉ replaces this message
with (Â, Ĉ, T ) where T = XAd and d = H(X, Â, B̂). Note that T is valid,
whereas C is only partially valid. The recipient B̂ computes d′ = H(T, Ĉ, B̂)
and

K = H((TCd′
)b) = H(T b) = H((XAd)b).

Thus Â and B̂ have computed the same session key, but B̂ mistakenly believes
that the key is shared with Ĉ.
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8 Concluding Remarks

The attacks on HMQV presented in §2.4, §3.1 and §4 are also effective on MQV
if validation of static or ephemeral public keys is omitted. The attacks are sum-
marized in Table 1. While these attacks are not necessarily practical and may

Table 1. Attacks on HMQV (and MQV without validation) described in this paper.
† The attack of §5 applies to MQV only.

Static Ephemeral Ephemeral
public keys public keys private keys Attacks
validated? validated? secure?√ √ √

No attack known√ √ × No attack known
× √ √

No attack known√ × √ §3.1, §5†
√ × × §3.1, §5†

× × √ §3.1, §5†

× √ × §4.1, §4.2
× × × §2.4, §3.1, §4.1, §4.2, §5†

not be a threat in real-world settings, they nonetheless illustrate the importance
of performing some form of validation for static and ephemeral public keys in
Diffie-Hellman key agreement protocols. Furthermore, the attacks highlight the
danger of relying on security proofs for discrete-logarithm protocols where a con-
crete representation for the underlying group is not specified. In particular, since
public keys in HMQV are not necessarily valid, the security of HMQV depends
on several aspects of the representation for the underlying group G including
the manner in which the group operation is performed, and the particular algo-
rithm chosen for computing (XAd)sB and (Y Be)sA . For other examples of the
pitfalls when relying on security proofs where a concrete representation of the
underlying group is not specified, see [22] and [26].
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