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Introduction

Cryptography is the collection of methods and approaches for concealing infor-
mation in communications from the access by unwished or unauthorized parties.
A logical art for dealing with this problem is known from early Antiquity and
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it developed along the centuries, mostly in the frame in which two parties, say
nobleman and general, or concealed lovers, communicated in writing by send-
ing each other messages, which could only be understood when knowing some
additional data—secret keys—and the details for the procedure of encrypting and
decrypting the messages—algorithm. Algorithms were often assembled from a
collection of useful basic ideas, known by tradition.

Traditional Secret Key Cryptography

Transposing the alphabet of a spoken language into a sequence of numeric codes
is always useful for discussing cryptographic ideas. Suppose thus that the Latin
alphabet a; b; : : : ; z is encoded in ascending order by the numbers 0; 1; : : : ; 24. The
idea of permuting the letters cyclically by a constant � was purportedly used by
Caesar in the Gallic wars—hence the name of Caesar code. For instance, for � D 3,
the word ATHENS becomes DWKHQV. For decryption, use � D 25 � 3 D 22.
One can improve the security of this code, by using context specific keys, key
sequences, and other well-defined combination—such variations were investigated
in the 16th century by the French diplomat Blaise de Vigenère. The purpose was to
counter the obvious weakness of the Caesar code with respect to frequency attacks:
provided a sufficiently large cipher code, and knowing that letters like e; a;m occur
much more frequently than z; h; q, one can easily determine the value of � , thus
compromising the whole encryption. Since these ideas can in addition be combined
with some commonly known text modifications, the bag of tricks for artisanal
cryptography offered sufficient variety for satisfying the needs until the advent of
the 20th century. In parallel with the development of new, particular algorithms of
encryption, the analysis of methods for discovering both keys and the particularities
of an encryption procedure—like for instance, the frequency analysis mentioned
for the Caesar cipher—developed itself into the science of cryptanalysis. Today,
cryptanalysis and cryptography are regarded as the two complementary aspects of
the science of cryptology. While the creation of private codes and keys could be
considered to some extent as a playful, even enjoyable undertaking, which requires
some rigor though, for preventing countermeasures of the cryptanalyst, the classical
encryption has one more important limitation: the peers need to be in anticipated
agreement regarding both of the encryption algorithm and the keys. This leads to
several consequences: the first is that one would wish the algorithm to be so strong,
that it suffices to exchange the keys while keeping the same algorithm over longer
periods. The second is that one needs well-trained and faithful couriers for the keys.

In order to illustrate the methods and challenges of classical ciphers, we propose
to the reader to try and decrypt the following small text, which was encrypted by
a scheme developed by the 10-year-old daughter of the first author starting from
a children’s game encryption, found in a book, and which they use for discussing
within a gang of good friends. The cipher text is:
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TGGMCITGWKKNKVCTZCOKNUKECFGOZCCFCWK

It is obtained by a combination of the ideas discussed above.

The Advent of Computing Machines . . .

In the 20th century, military confrontations became more devastating, and the power
of data processing with the help of machines increased without precedent. However,
until World War II and even later, the basic scheme for secure communication
remained the same: the secret communicators shared some common algorithm,
which could eventually be performed by a machine, and they were using some
shared secret key, for the diffusion of which many lives were put in danger. One
of the most documented episodes of warfare use of cryptography was the German
development of their encryption machine Enigma II on the basis of a simpler, earlier
version Enigma I, which had been a commercial product before the war.1 Little did
they know that this unfortunate combination of economic and military application
had led to the fact that a team of young Polish mathematicians from Poznan were in
possession of a means for breaking Enigma I. When hired by the British authorities,
the work for breaking the enhanced version was, against the German expectation,
an achievable one, and the breaking of Enigma had its important consequences for
the outcome of the war [10, 19].

. . . and of Personal Computers and Networked Communications

The advent of computers brought on the one hand the massive improvement
of computational capacities, then, in the early 1970s, and on the other as the
US-army built the ARPA-net, the advent of networked communications, an ancestor
of the Internet. In light of this progress, cryptography was led into simplifying
the definition of its object and tasks. Some very useful principles have been
established, which stay to hold. First, it was understood that there is little security
in the use of proprietary, secret algorithms—the choice of cryptographers going
in the direction of simple, publicly known and well-understood and cryptanalized
algorithms. As long as the bag of tricks is known, it can even happen more easily
that a flaw escapes in the design of a proprietary algorithm. As a consequence
the assumed gain of security obtained from keeping a secret of the cryptographic
procedure is counterbalanced by the insecurity stemming from the lack of reliable
cryptanalysis. In simple words, the modern attitude to security is resumed in the

1The development of Enigma I during the early days of mechanical office machine, shows that
there has always existed an important requirement for cryptography also in business.
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paradigm publically known and cryptanalized algorithm and secret keys. As a
consequence, the protection of keys becomes the center of the security concerns
and is offered the due attention: the system is as secure as the keys are. In addition,
the new approach to cryptography promises that, due to the collective scrutiny of
the cryptographic community, in time the most efficient and reliable algorithms are
naturally selected, while weaknesses and possible attacks eventually show up in the
processes. An algorithm is more reliable when it has longly resisted public scrutiny
by the community, and not when it is based on sophisticated secret tricks.

We mentioned that in early times of cryptography, secret keys were transported
by couriers, which brought their life in danger for this purpose, while even later, in
times of telegraphic transmission of keys, the problem of building secure channels
for key transmission was a crucial one. In the seventies, the first networked system
of computers became conceivable. It physically realized by the American army, in
the form of the ARPA net, which first connected between 1972–1974 a number of
Universities on the East and West Coast, for research and experimental purposes.
The notion of remote computer-communication became tangible for the users of
the net.

Under these conditions, it became obvious that the old systems for secure key
distribution could no longer satisfy the needs of security for this technological
advance and some new ideas were called for, in order to solve the problem in a
simple, time-efficient, and reliable way.

The idea was provided by the concept of public-key cryptography, which was
born in Stanford from the joint work of W. Diffie and R. Hellman who studied
public key infrastructures, and R. Merkle who studied secret key distribution. Here
is the way Diffie and Hellman presented the problem in [8], which mentions the
joint work with Merkle: In turn, such applications (fast computers) create a need
for new types of cryptographic systems, which minimize the necessity of secure key
distribution channels and supply the equivalent of a written signature.

Public Key Cryptography Arises

The idea was remarkably simple and elegant. Its natural properties were strikingly
reflected 30 years later, when it became publicly known and verified, that J. Ellison,
an engineer and cryptographer working for MI5s General Communication Head-
Quarters GCHQ, had developed exactly the same concepts and schemes as Diffie,
Hellman and Merkle, yet seven years earlier. The research was only declassified
after the year 2000; it was a matter of academic debate, if a person working for secret
services, outside the academic community should be granted credit for scientific
developments. Beyond these it is in any way remarkable that the same ideas could
be developed twice in a totally independent way.

Traditionally, a protected communication was established by using secret key
cryptography. In a wide area communication network, in which numerous peers
could communicate over large distances, the chances for establishing a common
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secret key prior to communication are low, so there was demand for a procedure
which would allow a pair of peers A and B—Alice and Bob, as cryptographers
often used to name them—to dispose of a shared secret key, without any prior
communication, either direct or by means of a parallel, secured channel. Only some
public known data base�, and algorithm could be accepted as premise for achieving
the purpose.

The concept of public key cryptography, introduced by the three authors men-
tioned above, is simply described by the following: If X is a peer who wants to
engage in secure network communication, he should start by generating a set of data,
which is bundled into his own secret key SX . A subset of this data, bundled in the
public key PX will be made public to all peers he might be wishing to communicate
with—it will be, for instance, part of the data base �, or it may be transmitted over
any unsecured channel. The two keys should enjoy the following two properties:

1. Both keys can be used for encrypting texts according to some algorithm yet to be
defined.

2. Messages encrypted by SX can be decrypted by PX and vice versa. Moreover,
the keys should be sufficiently random: the chances for two peers generating
accidentally the same secret key should be close to zero.

3. It should be computationally unfeasible to derive SX from PX .

For ascertaining the third condition, one usually derives the public key PX from
the secret one, by using some kind of trap-door function f . Under this term, one
understands an invertible function, such that the value of f is very easy to compute,
but the inverse is computable in theory, but infeasible in practice, provided the data
is sufficiently large. A typical such example is the map f W N � N ! N which
associates two primes p; q to their product n D p � q. This can be computed very
efficiently even for quite large primes. However, the inverse problem, of factoring
n is assumed. There is no proof for the fact that there cannot exist some fast—e.g.
polynomial algorithm, thus one whose run-time is a polynomial in the number m D
log2.n/ of bits of the input number n—for factoring integers. However, the problem
is one of the most intensively researched ones in algorithmic number theory; after
decades of collective work, the most efficient algorithm for factoring, the Number
Field Sieve (NFS) requires the order of

ecm
1=3

binary operations, to be very hard.
On the basis of the premises 1.–3., if Alice and Bob want to communicate,

then Alice sends to Bob messages encrypted by PB , which she may retrieve from
the public key repository. However, only Bob can decrypt the message, so the
communication is secured. Based on this idea, a further useful application emerged:
it is often useful to be able to certify the ownership of some message, to sign the
message in a unique and non-repudiable way. In this case, secrecy is less of a
concern than ownership is. The solution consists of associating a short cryptographic
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hash-valueH to the message, which is encrypted by the secret key SA. Any receiver
will then be able to regenerate the hash value on his own, decrypt the encrypted hash
with PA, and then compare the two results. If they match, Bob has a proof that it
was Alice who sent the message.

Within the next 20 years the public key cryptography and the academic paradigm
of cryptology spread out and reached probably even most of the banks and
diplomatic transmissions, which traditionally used to consider the use of private
algorithm as a particularly welcome increase of security.2

Classical Public Key Cryptosystems

In the next two years after the abstract definition of public key cryptography, two
major algorithms that implement this idea and are still in use today, were invented.3

The first one was using the discrete logarithm problem in the multiplicative group
of finite fields as a trap door. If p is some large prime and g 2 F

�
p generates the

multiplicative group modulo p and a D gc 2 F
�
p , then it is easy to compute

f .x/ D b D ax; for arbitrary x:

However, to recover x from b, the Discrete Logarithm Problem in finite fields, is a
computationally hard problem—thus adequate for a trap door function. For the fac-
toring problem, there is no proof that no faster algorithms can be found—however,
the best one discovered until today has a comparable asymptotic complexity to the
number field sieve for factoring integers, mentioned above.

Diffie and Hellman proposed an algorithm for exchange of a shared secret over
an insecure channel, and is widely known as the Diffie-Hellman key exchange
algorithm. It functions as follows: If p and g 2 F

�
p are like before—these being

public data—then Alice and Bob start by choosing some random one-time keys
AR;BR, which are elements of Z=..q�1/ �Z/. Then Alice sends to BobMA D gAR
and receives from Bob MB D gBR . The reader can verify that by using the private
data and the data received, both Alice and Bob may retrieve S D gAR �BR , which is
the data from which the common secret key is extracted. However an eavesdropper,
who is always called Eve in cryptography, would only know gAR and gBR , but
not AR or BR. The system can be broken by breaking the Discrete Logarithm.
But, does the converse also hold? This is not known. The particular, more special

2This fact was reflected again in the fact that the producers of cryptographic machinery were
involved in customer tailoring algorithms for this purpose. In the late nineties, manufacturers of
cryptographic hardware still had only a precious few customers insisting on the “privilege” of
purchasing machines which run according to some unique and “secret” algorithm.
3It is also noteworthy that, after J. Ellis had defined the abstract notion of public key cryptosystems,
in a similar way to Diffie, Hellman and Merkle, the same algorithms were discovered in MI5 too,
by C. Crook and M. Williamson, only in the reverse order.
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problem in which one should retrieve gxy 2 F
�
p from gx; gy has received the name

DH-Problem, for obvious reasons. More recently, variants of the Diffie–Hellman
key exchange have been proposed, which can be proved to be equivalent to the DH
problem: i.e., they can be broken if and only if the DH problem is broken. The key
exchange algorithm does not offer the possibility to generate signatures; however,
J. L. Massey and J. K. Omura proposed in 1983, a variant based also on the discrete
logarithm trap door function, which allows also public key encryption, and thus
signatures.

We should mention that in general public key algorithms are much slower
than secret key encryption. Therefore it is most likely that one would use them
for establishing a shared secret key, after which a communication session can be
encrypted with a common agreed secret key algorithm, using the established key.
For this purpose the original Diffie–Hellman algorithm is sufficient. Incidentally
this two-step approach to encryption is the core idea in the SSL/TLS protocol,
developed between 1992–2002, and which is currently used in all confidential https
communications on the Internet—for instance, when you book an electronic flight
ticket, or buy a book from Amazon.

The first proper public key encryption algorithm was provided one year later,
in 1977, by R. Rivest, A. Shamir, and L. Adleman at MIT. Their algorithm, widely
known as RSA after the initials of their names, uses the problem of factoring integers
as a trap door. A secret key consists of SA D fp; q; dg, where p; q are two large
primes satisfying some additional randomness conditions and

0 < d < .p � 1/.q � 1/; with .d; pq.p � 1/.q � 1// D 1

is a random number; if e 2 N is such that

ed 
 1 mod .p � 1/.q � 1/;

the public key consists only of PA D .n; e/, with n D p � q. In some instances, e
is a fixed number for the whole system, so d will be determined by the holder of
the secret key using the same defining congruence. With these prerequisites, if M
is a short message it will be identified with a number in Z=.n � Z/ and its public
key encryption Me 
 Me mod n can be computed in the open, but can only be
decrypted by Alice, the holder of d , since

M 
Md
e DMed mod n:

Conversely, if Alice encryptsM with d , then anyone can recoverM and upon doing
so will have a proof Alice having produced the encryption: indeed, only the owner
of the secret key could produce this encryption, which can thus act as a private
signature of Alice.

Despite initial attempts of the NSA to inhibit the publicizing of the ideas of
public key encryption and RSA, these were brought to the public already in 1977 by
Martin Gardner in his widely read column “Mathematical Games” in the Scientific
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American magazine and were eventually published in the communications of the
ACM [31]: the way to public key cryptography was open!

In the same year 1978, R. McEliece proposed a somewhat different cryptosystem,
which was inspired from coding theory. The trap door function is drawn in this case
from general linear codes, a context in which the parameters of a linear code are
specially adapted to the purpose of public key cryptography. The resulting algorithm
has an advantage compared to the number theory-based algorithm mentioned above
and some further, based on elliptic curves, that we shall discuss below, since it is
faster. However, the keys may be as large as 1MB , which compares poorly to the
128B required by RSA for a comparable level of security.4

Cryptanalysis

In 1978, Hellman and Merkle invented a public key cryptosystem that did not rely
on number theory, but rather on the NP-complete knapsack problem.

The first major success of public key cryptography was that the expectation
became true, and the domain of cryptanalysis—concerned with the analysis of
possible attacks against cryptographic schemes—became a flourishing academic
domain of investigation. One of the most spectacular successes was due to the
development of the lattice reduction algorithm by A. Lenstra, H. Lenstra Jr., and L.
Lòvasz, the LLL-algorithm. Given a lattice L � Z

n, there exists a base consisting
of the shortest vectors. Classical algorithms for finding such a base are known
from the work of Charles Hermite. Only, in the case when the base is presented
by an initial generating system of very large vectors, the process is exponential.
The algorithm was developed from techniques used by Lòvasz in integer program-
ming; the idea was to use an approximate Gram-Schmidt-orthogonalization which
provides some close to minimal vectors in L . The advantage is that the algorithm
runs in polynomial time and has therefore a wide variety of applications both in
cryptography and in number theory itself. One of the first applications of LLL was in
showing that the keys of the knapsack cryptosystem could be cracked in polynomial
time: in order to do so, one had only to solve a particularly simple subfamily of
problems belonging to the knapsack family. This result showed the advantage of
public academic scrutiny of cryptographic schemes, since it had only taken five
years to reveal the weaknesses of one of them. But it also blocked the way for
applications of the knapsack. Some improved versions have been presented, that
could never be attacked—but they never made it to public applications.

The most important effect of cryptanalysis was less visible. The community
quickly developed its own language and defined a variety of subtle attack scenarios,

4One compares the security of two fundamentally different algorithms, by estimating the parameter
sets required, such that breaking the given algorithms by means of the best state-of-the-art
algorithm would require comparably large amounts of time.
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in which the eavesdropper Eve was offered increasing levels of advantages: thus Eve
can simply tap a wire communication, but she might also collect large amounts of
data signed by Alice, or even induce her into signing a chosen suite of messages.
Thus, possible attacks could be investigated for these various levels of disclosure.
The procedure is very fruitful, since the algorithms to which no attack is found,
even under the most generous premises for Eve, is for good reasons assumed to
offer reliable security.

Later, the encryption hardware began being regarded as a point of attack, as it
was observed that physical measurements on a chip while it is computing an RSA
encryption, for instance, may reveal some bits of the secret key. Additional measures
were then developed to protect from these side channel attacks. This way, well-
defined attack scenarios are used for checking the security of various cryptosystems
and protocols.

The development of cryptography is triggered by the two opposite demands,
for efficiency and for security. It occurred more than once, that the wish for
efficiency led to the use of some extreme key configurations. These provided
particularly efficient arithmetic, thus effective computation of the cryptographic
scheme. However, as in the case of the knapsack problem, the question could have
been asked, if by restricting to particular families of the key space, one did not
move into a particular instance of the general, hard problem, to which the trap door
function was associated. The question was first answered by the observation that no
algorithms are currently known that could take advantage of the particular family
of keys used. But eventually, an attack was discovered, which discarded the use of
certain keys, or even whole cryptographic schemes. As an example, it is for instance,
useful to have a universal, short public exponent e for the RSA scheme. This had
been used in practice in the late 1980s. But M. Hagstad and then D. Coppersmith
showed that if e is too small, it is easy to gather sufficiently many messages signed
by the same key SA, and then use simple arithmetic in order to crack that key.
Therefore, the smallest fixed key currently allowed by standards is e D 216 C 1,
and this may change with the growth of computing and storage capacities.

We have already discussed the fact that for the number theoretical public key
systems introduced so far, an efficient attack of the underlying number theoretic
problem (factoring or discrete logarithm) breaks the schemes. Conversely however,
it is not known if general attacks can be found that break the scheme without
offering an efficient general solution for the inversion of the trap door function.
Such questions about provable security became actual in the late nineties. We have
already mentioned that by modelling the DH-problem, which is a particular form of
the discrete logarithm, the best results available in this direction were obtained by
U. Maurer [23] and V. Shoup, and various coauthors, e.g. in [6].
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Dickman’s Theorem and the Trap Door Functions

In the thirties of the last century, J. Dickson considered the question of estimating
the largest prime factors of some random integer n. Using heuristic estimates on the
repartition of primes, he found for instance that if pjn is the largest prime dividing
n, then p D O.nln 2/. More generally, an integer n > 1 is defined to be y-smooth if
none of its prime factors exceeds y. The function

 .x; y/ D ]f 1 � n � x W n is y-smooth g

counts the smooth numbers less than x. With these definitions, Dickman also proved
that for all u > 0 there is a real number �.u/ such that

 .x; x1=u/ � �.u/x:

The function �.u/ was described in terms of a differential equation, in which u was
fixed for x !1.

Half a century later, the gap was filled by Canfield, Erdős and Pomerance [5],
who proved that

Theorem 1 (Canfield, Erdős and Pomerance). For all real sequences with
u!1 under the constraint u < .1 � �/ ln x= ln ln x, one has

 .x; x1=u/ D xu�uCo.u/ (1)

As a consequence one concludes that with probability P > 1=2 one out of

LnŒ1=2; 1� WD e
p

log.n/ log log.n/

random integers belonging to the interval .0; n/ will be y-smooth, for
y D O.LŒ1=2; 1�/. Bounds of the type

LnŒc; d � D ed log.n/c log log.n/1�c ; 0 < c < 1

are called subexponential for obvious reasons: they grow much faster than any
polynomial in m D log.n/ but substantially slower than em. All the state-of-the-
art, subexponential algorithms for solving either a variant of the discrete logarithm
problem, or for factoring integers, take advantage in some way of this consequence
or variants thereof.

We exemplify here the ideas on the instance of the quadratic sieve method, which
is a classical fast algorithm for factoring integers. It has its origin in the following
simple observation of Fermat: if m is a composite integer, then the congruence

x2 
 c mod m
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will have at least four solutions, and there are x; y such that x 6
 ˙y mod m, but
x2 
 y2 mod m. Then .xCy;m/ is a non-trivial factor ofm. Theorem 1 helps find
such pairs x; y, as follows: for numbers x.i/ in some interval dpneC i; 0 � i � B ,
one computes the remainder5

r.i/ D x.i/2 rem m

and retains only those values of x, for which r is a B-smooth number. After
gathering sufficiently many such relations, one may hope that the product of some
r.i/ is a square: namely, that there is an index subset J � Œ0; B� such that

Y

i2J
r.i/ D R2; R 2 Z:

Letting then

X D
Y

i2J
x.i/;

we obtain the congruence

X2 
 R2 mod m:

If in addition, X 6
 ˙R mod m, which should happen with probability � 1=2,
then .X ˙ R;m/ is a non-trivial factor of m. The method relies on some empirical
assumptions on the repartition of factors of r.i/: namely, that the distribution
of these residues is such that one may apply the relation (1) for estimating the
probability that one of these numbers is B-smooth. These allow to establish an
optimal bound

B � exp.
p

log.m/ log log.m// D LnŒ1=2; 1�:
In our case B D L.nI 1=2/ and the quadratic sieve runs in time polynomial in
B-experience having so far confirmed the underlying heuristical assumptions.

The following nice example is taken from the book of R. Crandall and C.
Pomerance [7]: let m D 1649, with 41 D dpme. We find

412 
 32 mod mI 422 
 115 mod mI 432 
 200 mod m:

Since 32 � 200 D 25C3 � 52 D 802, we let R D 80 and

X D 41 � 43 D 422 � 1 
 114 mod m;

finding that 1142 
 802 mod m and eventually 17 D .114 � 80; 1649/, which is a
non-trivial factor.

5In computational algebra, the notation x rem y stands for the unique representative of the
equivalence class of x mod y which lays in the interval Œ0; y/.
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For the discrete logarithm problem in F
�
p , which consists of determining x such

that gx 
 b mod p, one uses smooth numbers as follows: Fix a smoothness bound
y and let q1; : : : ; qr < y be all the primes up to y. For random values of m, one
computes u D gm rem p and keeps only those values of u which are y-smooth.
After collecting sufficiently many relations, one will then be able to compute the
discrete logarithms li such that qi 
 gli mod p. Next, one tries random values
of k searching for ones that make v D bg�k rem p be a y-smooth number. The
precomputed values li will then help determine x D k C logp.v/ from the prime
decomposition of v. This algorithm also relies on heuristic assumptions, on the basis
of which the running time is LpŒ1=2;

p
2�.

At the end of the 1980s, John Pollard found a way for applying the idea of the
quadratic sieve to integers in number fields rather than Q. The method was first
applied to the factorization of the Fermat number F9 D 22

9 C 1. In the following
years, it was generalized and improved by a series of mathematicians, starting
with A. Lenstra and M. Manasse. The resulting number field sieve is currently the
asymptotically fastest factoring method and it runs in time O.LnŒ1=3; c�/, for some
constant c < 2.

Similar methods are known for the discrete logarithm method: they use number
fields in case of larger characteristics, and function fields for small characteristics.
Like in the case of factoring, their running time is also O.LnŒ1=3; c�/. Current
records reach as high as 7–800 binary digits for factoring composite of general
form and � 5–600 for the discrete logarithm in prime fields. During more than one
decade, the discrete logarithm was hardest in finite fields Fp` for which ` � log.p/:
these orders of magnitude could not be attacked by either number or function field
sieves.

Recently A. Joux from INRIA Nancy developed a series of new ideas for
improving discrete logarithms in finite non-prime extensions. There are several
versions and applications of these ideas. First, they succeed in filling in the gap
that existed between the function field and the number field sieve, by providing
algorithms in the order of LpŒ1=3; c�, and also for the case of extension fields with
` � log.p/. They allow to solve the discrete logarithm problem in quasi-polynomial
for field Fp` when ` � p; the result has been presented at Eurocrypt 2013 and is
published in [1]. The ideas find another application in discrete logarithm in the fields
of characteristic two extension degree F2q�k with q a prime and k an integer related
to q. Joux also announced a variant of his method to yield an algorithm for discrete
logarithms in general fields of characteristic two, running in LqŒ1=4; c�, where q is
the size of the field [18]. This would be the first known algorithm of this efficiency.
The developments in this field are still quite fluid, but certainly within the following
months to a few years, some important and efficient versions of discrete logarithm
algorithms in a variety of fields will be well described and understood.
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Elliptic Curves

The cryptographic schemes discussed so far use multiplicative groups .Z=n � Z/�
or F

�
q and related trap door function. Having (computational) access to a larger

family of well-understood abelian groups would certainly enlarge the possibilities
for cryptographic and algorithmic applications.

In 1984 René Schoof made the way by opening the discovery of a polynomial
time algorithm for counting the number of points on an elliptic curve over a finite
field. This brought the groups of algebraic geometry in the realm of applications
and algorithms. Within one year, H. W. Lenstra Jr. proposed an important variant
of Pollard’s rho-method for factoring, based on elliptic curves: the elliptic curve
method or ECM. Also, V. Miller and N. Koblitz proposed independently the use of
elliptic curves for cryptography. The ECM method has a run-time comparable to
the quadratic sieve, but it behaves particularly well for numbersm which have some
small prime factors, i.e. sensibly smaller than

p
m: the run time is namely estimated

to be LpŒ1=2;
p
2�, where p is the smallest prime dividing m.

We recall that an ordinary elliptic curve over a finite field Fq D Fp` of
characteristic p > 3 is the set of solutions

Eq.a; b/ WD fP D .X; Y / W Y 2 D X3 C aX C b;X; Y 2 Fqg � F
2
q :

There is an abelian addition ˚ defined on this curve, which has the point at infinity
O as neutral element. The neutral element can be understood as arising when the
addition law, which is based on rational functions, leads to a division by zero. The
formally correct definition is obtained by embedding the curve in a projective space.
The curve is ordinary, if it is not singular and not supersingular, two conditions that
can be verified in terms of q; b;Fq . Thus

Eq.a; b/ D .Eq.a; b/;˚/
becomes an abelian group. The classical theorem of Hasse gives the following
bounds for the size of this finite group:

jEq.a; b/ � q C 1/j < 2pq: (2)

An elliptic curve can be defined in a similar way over the algebraic closure Fq .
Its N -torsion is

E ŒN � D fP 2 E W ŒN �P D Og;
where ŒN �P denotes the N -fold addition of P to itself. The torsion subgroup is—
with one exception—a two-dimensional free Z=.N �Z/-module, and a vector space,
for prime N . If � 2 Fq is a primitive N�th root of unity, there is a non-degenerate
bilinear, skew symmetric pairing:

h�; �i W E ŒN � � E ŒN �! h�i; (3)
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the Weil pairing. In particular, if P;Q are linear independent torsion points, then

hP; Œx�Qi D .hP;Qi/x ; (4)

an identity in the multiplicative group .FqŒ��/�.
The idea of the ECM factoring method of Lenstra adapts an older algorithm of

Pollard, which was designed to work in multiplicative groups, to the larger family of
elliptic curves. It can be described briefly as follows: if n is a number to be factored,
one draws random numbers a; b such that a point P D .X; Y / is known with

Y 2 D X3 C aX C b; 0 � X; Y < n:
Assume now that n has a prime divisor p such that m WD jEp.a; b/j is a B-smooth
integer for some fixed, not too large integer B . If K D B Š, then in the process
of computing the multiple ŒK�P by additions and doublings on the curve modulo
n, one will most probably encounter a factorization of n: some denominator will
be divisible by p (point at infinity!), but not by all the primes dividing n. Lenstra
proved that for uniform randomly distributed a; b, the numbersm are close to being
uniformly distributed in the Hasse interval (2). Theorem 1 then implies that by
choosing B D LpŒ1=2; 1� random curves, one will find a curve for which m is
B-smooth with probability> 1=2. This explains the main steps of the algorithm and
of its proof. The interested reader may use Silverman’s [34] and Washington’s [35]
textbooks for a detailed rigorous introduction to elliptic curves and their applications
to cryptography.

Counting Points

The idea of Schoof is both elegant and important, beyond even the immediate
algorithmic and cryptographic applications: it opened a new area of research for
practical algorithms for counting points on finite abelian varieties. This research
area is still growing, while the main domain of application goes beyond the
limits of cryptography, since at least a decade. The algorithms are more and more
used for larger computations related to mathematical questions such as the Birch
Swinnerton-Dyer conjecture, and other properties of L-series. See also [30] for an
elementary theoretical application of point counting.

Initially, Schoof [32] started from the following simple remark: if

Ep.a; b/ W Y 2 D X3 C aX C b
is an elliptic curve defined over the finite field Fp , of which one assumes that
it is ordinary, then Riemann’s conjecture for elliptic curves implies that, in the
endomorphism ring of the curve End.Ep;Fp/ defined over the algebraic closure
of Fp , the Frobenius verifies the quadratic equation

˚2 � t˚ C p D 0: (5)



Computational Number Theory and Cryptography 363

Since Ep is fixed by ˚ , we have

jEp.a; b/j D p � t C 1

for the number of points fixed by the Frobenius. Counting the points is thus
equivalent to determining the value of the trace of the Frobenius t ; since the Hasse
inequality (2) states that

t < 2
p
p;

it suffices to determine the remainder t rem ` for a set of small primes with:

L D
Y

` > 2
p
p:

Therefore, the core step of the algorithm consists in modeling the `-torsion EpŒ`�
into an algebra

B D FpŒX; Y �=
�
 `.X/; Y

2 � .X3 C aX C b/� ;
P D �

X C . `.X//; Y C .Y 2 � .X3 C aX C b//� 2 B:

in which `.X/ is the `-division polynomial which has as roots all the x-coordinates
of `-division points. Therefore, any such point enjoys the properties which define
the generic `-torsion point P 2 B. It is then a straightforward computation, to
determine t rem ` from the identity

˚2P C pP D t˚P:

The seminal idea of Schoof, to determine the parameters of the Riemann
�-function from projections in torsion spaces, and thus counting points on varieties
over finite fields was both improved for simple varieties, such as elliptic curves, and
extended to more general abelian varieties. In the first case, the primary thing to
do was to reduce the size of the algebra B—which can be done by finding smaller
factors of  `.X/ mod p.

The breakthrough in this direction was indicated by Noam Elkies (cf. [9, 33]),
who brought modular forms in the game, thus showing how to find in half of
the cases some factors f .X/j `.X/ of linear degree, compared to the quadratic
degree in ` of the division polynomial. The `-torsion EpŒ`� Š F

2
` as a vector space;

fixing two linear independent points P;Q 2 EpŒ`�, we see that G WD Gal .B=Fp/
acts on the vector space EpŒ`� by acting on the base P;Q. We obtain herewith a
representation � W G ! GL2.F`/, with respect to which �.˚/ verifies the same
quadratic equation. Let ı be the discriminant of the quadratic polynomial in (5),
which is the same as the characteristic polynomial of the image of �.˚/ 2 GL2.F`/.
Then, according to the value of the Legendre symbol

�
ı
`

� 2 f1; 0;�1g, the matrix
�.˚/ is diagonalizable, has normal upper triangular form or has eigenvalues in F`2 .
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In the first case, there are two eigenpoints P;Q of the Frobenius and the orbit of
their x coordinates under multiplication on the curve is galois invariant. We obtain
herewith the eigenpolynomials

fP .X/ D
.`�1/=2Y

kD1
.X � .Œk�P /x/ j  `.X/; where

deg.fP / D .` � 1/=2; and deg. `/ D .`2 � 1/=2;

together with a new algebra B
0, obtained by replacing  ` with fP . For the

computation of FP , Elkies considered the function field CŒŒj.q/��. Some classical
arguments on Eisenstein series and �0.`/-modular forms, imply that for each j -
invariant jm of an `-isogenous curve to Ep—or also, for each zero of the modular
equation ˚`.X; j.q//—there is a polynomial fj .X/ 2 C ŒŒj.q/��ŒX� which has the
x-coordinates of the kernel of the respective isogeny as zeroes. The polynomials
can be constructed in the function field by manipulations of q-expansions and
they have the useful property that all the coefficients are algebraic integers. The
insight of Elkies was to show that one can substitute for jm the value of some
zero ˚`.X; j.Ep// mod p and reduce the coefficients of fj .X/ modulo p, thus
obtaining some eigenpolynomial corresponding to the value of jm. Indeed, if E
is any curve over Q which reduces to Ep at some prime ideal above p, then its
j -invariant reduces to the one of Ep and so do the invariants of its `-isogenies.
Therefore, if the modular equation has linear factors jm over Fp , by inserting these
in the expression for fj .X/, upon reduction at the same prime, the coefficients
of the polynomial fj map to the ones of some eigenpolynomial. Using improved
algorithms for manipulation of series [4], one can compute the eigenpolynomials in
time O.log3.p//, the running time being dominated by the computation of zeroes
of ˚`.X; j.Ep// mod p. Further improvements can be achieved by using the galois
structure of the resulting algebras [25]. The galois theory of finite, commutative
algebras has wider applications in algorithmic context and was generalized in [27].

For curves defined over finite fields of small characteristic p, it is possible
to project (5) in the pN -torsion group. Using different flavors of cohomology
combined with Newton iterations, various authors starting with T. Satoh, K. Kedlaya
and A. Lauder developed in this way, the most efficient point counting algorithms
for elliptic curves. Some of them are generalized to super elliptic curves, elliptic
surfaces, etc. However, this approach works best only for very small characteristics.

Cryptography

The elliptic curve-based cryptographic schemes which have survived scrutiny and
became part of current standards on public key cryptography are essentially variants
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of the Diffie-Hellman key exchange scheme and are based on the difficulty of
solving the discrete logarithm problem: find x such that

Œx�P D Q; for P;Q 2 Ep.a; b/

being points on an elliptic curve, such thatQ is known to generate a cyclic group of
high order. Unlike in finite fields, the discrete logarithm problem on elliptic curves
is not known to allow any sub-exponential time solutions. The best known methods
have run time O.

p
p/, where p is the characteristic of the (prime) field over which

Ep is defined. As a consequence, one can work in much smaller groups than in the
case of the multiplicative groups of finite fields, still achieving the same estimated
security of a scheme, with respect to state-of-the-art attacks. This advantage led to a
new wave of interest for elliptic curve cryptography in connection with the security
of mobile phones.

The Weil pairing requires certain caution though. One may in principle use the
identity (4) in order to reduce the discrete logarithm problem on the elliptic curve to
one in the multiplicative group of the field Fr WD FqŒ��. Since discrete logarithms in
multiplicative groups allow for subexponential algorithms, being thus much more
efficient, the size of this extension Fr plays an important role and the reduction
might cause problems when Fr is not too large. The use of the Weil pairing for
the discrete logarithm on supersingular elliptic curves was pointed out for the first
time by Gerhard Frey. The problem came to light when Frey was asked to estimate
a software using these curves—on which a particularly efficient implementation
of the group laws is possible—for its security. He showed that for these specific
curves, the Weil pairing reduced the elliptic curve logarithm problem to one in finite
fields of critically small size—Fr D Fqk for k 2 f2; 3; 6g, thus leading to serious
security problems. The idea was taken over by A. J. Menezes, P. C. van Oorschot
and S. A. Vanstone and is currently known in the literature under the name of MOV
attack. The attack is in general inefficient, but discarded the use of supersingular
curves for cryptographic purposes, for the reasons mentioned above. Interestingly,
more than a decade later, due to the increasing demand for efficient cryptography
using short bandwidth, in application to securing cell phone communications,
the supersingular curves found a revival. Recently, some research is invested in
finding good combinations of finite fields and supersingular curves, such that on the
one hand time savings can be made in the arithmetic, and on the other hand
the field Fr D Fq6 is intractable for the number field sieve discrete logarithm.
This example shows that there still is a certain volatility about development of
practical cryptographic system, which however overlaps the reliable overall results
of cryptanalysis.

A further example where efficiency is sought at the critical border line of the
MOV attacks are the so-called Koblitz curves, defined over fields K D Fp` of small
characteristic and having a; b 2 Fp . Since p is small, it is of course likely that the
field Fr 
 K required for a MOV attack is a not very large extension of K, even
when the curves are not supersingular.
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In the last years, D. Boneh and A. Joux developed the idea of identity-based
cryptography. In order to cope with increasing demand of various cryptographic
keys, the idea is to provide the possibility in some limited networks for the user
to have access to his secret key, essentially by means of his own identity. The most
spread implementation of this idea also uses Weil pairing, and is thus called pairing-
based cryptography. The recent developments in discrete logarithms for fields of
small characteristics described above have thus an important impact, requiring
significant increases in the size of the keys used.

Despite standardization, which made cryptographic developments obsolete on
the Internet, there are thus reasons why research in this particular area is still
very fertile. We recommend the detailed and lively survey of Heß et. al. [16]. The
interested reader is referred to [20–22, 24, 26, 28] for further reading.

Key Management and Biometry

Since the security of a cryptosystem relies on its keys, it is an important task to
manage these keys in a secure and efficient way. In a public-key environment, one
discerns the following essentially distinct aspects:

A. Managing secret keys. Since these are data without meaning for humans, they
should necessarily be stored on some electronic media, thus leading to the
security concern that only the authorized key possessor should have access to
the use of these keys.

B. Trusting public keys. We have seen that in the public key setting, Alice needs
to use some public key of Bob. This can either be provided by Bob during the
communication, or read from a common, public data base. But in both cases,
since the key is obtained over the network, Alice wishes to be certain that the
public key received really belongs to Bob. Otherwise, Eve might for instance
provide an own key, while convincing Alice that she obtained the public key
of Bob. In this way Eve would be in the position of decrypting messages that
Alice had encrypted in the assumption they should only be accessible to Bob,
the rightful owner of the secret key belonging to the public one that she received.

There are various solutions for solving both of the above problems. For the first,
keys can be stored on some card device, that needs to be activated by some password.
Alternatively, the same principle can be replicated on any variety of secure storage
media, including an encrypted hard disk. Alternatively, the user may have access
to secure applications that manage keys locally on his behalf. In this case, the
activation password will be application-dependent.

For the second problem, the key idea is called certification. Some trusted
authority, which has verified the physical identity of Bob matching to his pubic key,
will add a signature on this public key, made with the secret key of the authority.
The signature put by the trusted authority upon Bob’s key is also called a certificate.
The trusted authority’s public key will be accessible in a non-forgeable way, so Alice
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can verify the signature, thus gaining trust for the fact that Bob’s key is genuine.
In practice, in order to generate a chain of trust reaching from Bob to Alice it
may sometimes be necessary to build up a chain of certificates: trusted authority
T1 certifies Bob’s key, T2 certifies the one of T1, reaching to Tk which is the last
authority the key of which is unconditionally trusted by Alice.

Public Key Infrastructure

The principle is very useful and works well in local networks belonging to an
environment which has an own hierarchy of trust which can be naturally mapped
to the certificate hierarchy. Such are, for instance, large enterprises, administrations
and government institutions. Since auxiliary problems of secure key generation,
certificate production and verification, secure storage, etc. follow from these key
management problems, producing professional solutions to the key management
problem of large intranets became a market and the typical software solutions are
called Public Key Infrastructures (PKI), being systems that allow to implement all
the above-mentioned functionalities within the intranet of some institution.

Note that in this case the fact of having a common institutional frame is a major
help, since it allows to distribute the trust according to well-defined rules that belong
to the institution and are very likely to exist independently of the cryptographic
setting. It is, however, not always the case that secured communication needs to
be established within a closed intranet. In that case, although numerous major
companies offer the facility of key generation and distribution, thus offering
themselves like some kind of trusted authority for the customer, the level of trust
that can be offered to such commercial solutions is rather low and would not suffice
for offering reliable confidentiality.

The Open System Approach

An alternative idea was invented by Paul Zimmerman, who has developed a public
domain software for secure mail exchange, called Pretty Good Cryptography, and
which is meanwhile available also as professional software. Zimmerman’s idea
of trust in an open network is strikingly simple: it is likely to assume that the
communicating peers—Alice and Bob—can agree upon some commonly trusted
instance, say Tim. In that case Bob can either already hold a certificate signed by
Tim, or one signed by a person that holds a certificate signed by Tim, and so on.
If this chain of verifications breaks up, then Bob will be able to provide Alice with
a set of certificates that convince her that Tim indirectly trusts Bob. Otherwise, Bob
will have to ask Tim for a certificate which shall be provided a posteriori. In this way
the ring of certificates of each peer grows dynamically, by request and need. While
the trust system here is perfectly non-hierarchical and symmetric—now peer has an
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unconditional level of trust, some other problems must be taken into consideration.
For instance, the fact that the trust chain can be quite unreliable, especially when
growing too long. InstanceAmay trustB within a certain frame, andB may trustC ,
but at the end A might not have a sufficient level of trust in C at all, and would not
have signed a certificate if directly asked for one.

These elementary concerns have not been mentioned here with the aim of an
exhaustive discussion, but rather in order to raise the awareness about the multiple
facets of the problem of secure key management, while indicating the most impor-
tant approaches for a solution, with their known advantages and disadvantages.

Passwords and Biometry

We have mentioned that in the case of problem A above, Alice may end up having a
multitude of secret keys distributed through various applications she may work with
on a permanent basis. And the access to her secret keys will be granted by some
password, that should sufficiently identify her. This and other contexts in which
access is granted based on passwords leads to new issues. First, in order to grant
the password with sufficient security, there should exist both a minimal dynamics—
requiring periodical password changes—as a sufficient randomness in the passwords
themselves, which is seldom granted when using passwords that can be memorized
by humans. Add to this the expectation that the password of the same peer, for
different applications or environments should differ—so that the compromising of
one password does not put in danger the whole range of domains accessed by Alice.
We see that the access control by means of passwords poses problems itself.

The identification of persons by means of their physical body or dynamics—
called biometric recognition—is a specialty that grew from forensic needs develop-
ing itself in the computer era into a self-contained branch of computer science at
the intersection of image processing, pattern recognition and security. Whether the
biometry of concern is provided by fingerprints, iris or face traits, voice or writing
patterns, biometric recognition has always the following specific characteristics:

a. Identification is a stochastic process and not a deterministic one, as for instance in
the case of a password verification by means of some one-way function. Since the
biometrics of a person are sampled at two distinct places in time and space, they
will not be identical. Due to this and a series of additional factors of incertitude
introduced by the physical and computer-processing, identification will always
be subject to error. The standard way to measure these average errors is by
overlapping the two possible error sources: false accept, when another person is
falsely accepted for Alice and false reject when Alice’s identity is not accepted
on the basis of her biometry and she is rejected. The equal error rate (EER) is the
optimal performance of a system in which the two error rates are identical.
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b. Unless the data caption system has a reliable method for distinguishing
live, natural biometrics from artificial counterfacts, impersonation attacks are
possible.

c. Biometrics are unique, so a biometric trait once compromised for a certain type
of application, is irreplaceable and ulterior use of that biometrics has lost its
security.

Despite these quite restrictive conditions of use, biometric identification has the
important advantage of commodity: it can make the necessity of multiple, dynamic
passwords obsolete. As a consequence, biometry is already in use for access control
applications of low security sensitiveness: access to lounges, clubs, hotel rooms or as
replacement for visitor’s cards. It can also replace the login password for personal
computers. When it comes to security applications, neither the potential uses nor
the attacks are so well delimited and classified as is the case in cryptography.
Consequently the security claims one encounter in the vast literature of the field
does not offer the reliability expected from the context of cryptography. One should
therefore recall as a rule of thumb the fact that the probability of a successful
attack against a biometric system is quite well approximated by the EER of the
system. Since EER of one in a million are seldom—being claimed for some systems
using iris recognition, it can be seen that biometric identification is practical and
comfortable, but yet not acceptable in conjunction with cryptographic applications.
The use of multiple biometrics—including multifinger recognition—is therefore an
area of active research, in which one of the subtle issues to consider is the fact that
it should not be possible to uncouple the individual biometrics.

Quantum Technology and Other Cryptosystems

The main intensively used public key cryptography methods rely on the number
theoretic problems described above. There have been numerous interesting attempts
to use the large list of NP complete problems in order to derive some trap door
function—the knapsack problem is only one of the most famous ones. We can hardly
go into the detail necessary in order to pay justice both to the interest of the attempts
and the reasons for their failure or restricted use.

Before discussing below several alternative cryptosystems which survived the
scrutiny of cryptananlyst and are still discussed as possible alternatives, we turn
here our attention to the contribution of physics.

The Advent of Quantum Theory

Since the early 1980s the Canadian mathematicians G. Brassard and C. Crépeau
suggested the use of quantum effects for security applications: the simple idea



370 P. Mihăilescu and M.Th. Rassias

was that Eve could not tap a quantum communication wire, without destroying the
information content transmitted, so security would be provided by a self-destruction
mechanism introduced by quantum mechanics in the confidential information
transmitted. The physical and cryptographical aspects of the idea have been in active
research ever since. Unlike the mathematical systems already described, or also
others that follow, which can be conceived and analyzed on paper, after which their
practical realization reduces to quite a simple task of programming, the difficulties
encountered in this case were and remain of physical nature. In the first decade of
this century, several practical implementations of quantum6 cryptography have been
announced, reaching over distances of up to 100 km. It is thus the distance and the
stability of quantum transmission via fiber-optics which is the bottleneck for this
system.

In the nineties of the last century, various ingenious experiments and ideas for
alternative computing infrastructures were imagined or even tested. One may men-
tion along these lines, L. Adleman’s—one of the inventors of RSA—experiments
for computing with bacteria.7 Perhaps the most persisting future projection in this
context is the concept of quantum computing; in this case there is a physical idea
behind, which is stable enough in order to lead to formal mathematical models of
computations that might be performed on quantum computers; one can use for a start
the short introduction given in [10]. Using existing models of quantum computers,
mathematicians since more than a decade have been developing algorithms that run
according to the given model. It is, for instance, known that quantum computers can
invert all the trap door functions used in the cryptographic schemes described above,
in polynomial time. Developing models for quantum computing is an ongoing
area of intensive research activity in which some of the most eminent theoretical
mathematicians and physicists find appealing questions. For instance, the Fields
medalist Michael H. Freedman leads the Q-Section of Microsoft where he applies
topological methods to quantum computation (cf. [3, 11–15]).

The quantum computers information unit is a qubit; unlike a bit, a qubit can,
simply speaking, carry any superposition of the states 0 and 1. The calculation
on a quantum computer with n qubits ends with measurement of all the states,
collapsing each qubit into one of the two pure states. It is the fact that computations
happen in a state of superposition of all quantum states which leads to the distinct
superior capacities of quantum computers. Somehow similar to the case of quantum
cryptography, there is a major physical problem in the realization of quantum
computers, and that is realizing stable qubits, stability being with respect to the
influence of the environment and in particular other qubits. There are persistent
announcements of small progress in the technology of quantum computing, keeping

6The reader should not confuse quantum cryptography with quantum computing, where quantum
effects are wished to help computations, not only secure information transmission: the physical
challenges are even larger in the latter case.
7The idea showed to be in principle feasible, but never reached more than the representation of the
decimal digits on such “computers.”
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the hope alive that one might live the day when first experimental quantum
computers carrying more than 3–4 qubits will be routinely available. For instance,
in order to factor an RSA key of the currently standard length of 1024 bits, a
quantum computer should have in the order of magnitude of 1024 qubits. With this
prerequisite however, the number would be factored within milliseconds.

Alternative Cryptosystems

Public key cryptography is sensibly slower than secret key encryption, by a factor of
roughly 1,000, as a thumb rule. This led to the wish to design some fast asymmetric
schemes that do not use the kind of arithmetics that are the bottlenecks for the DH
and RSA systems.

A successful solution in this respect was invented by three number theorists:
J. Hoffstein, J. Pipher and J.H. Silverman [17]; they designed the cryptosystem
NTRU (Number Theorists are Us), which uses arithmetic in a ring of truncated poly-
nomials, such that decryption—the slower operation—can be done in O.n log.n//
rather than O.n2 log.n// or more operations, as is the case for RSA. Here, the
constant n is roughly the key size. In the case of NTRU, this is slightly larger
for comparable security; for instance, a comparable security to the one provided
by RSA keys of 1024 bits may require NTRU bits of 4000 bits. This key increase
is affordable, for the performance advantage gained. The security of the system is
based on the problem of finding shortest vectors in large lattices. While the best
methods for solving this problem continuously improve, this fact can be easily
compensated for, by accordingly small increases of the key sizes. The system NTRU
has been developed a lot during the last 15 years and was accepted five years ago
also as an IEEE standard.

Recently, Dan Bernstein gave a new revival to McElieces algorithms, by devel-
oping a variant which is technically improved for efficiency and uses, among others,
some algorithms for polynomial simultaneous evaluation and interpolation, which
developed in part after the original invention of the cryptosystem. Bernstein refers
to his variant as Mcbits [2] and uses the argument that unlike the number theoretical
cryptosystems, this scheme is resistant to the state-of-the-art models of quantum
computing. One may of course argue that the day when quantum computers
become routinely available, it should be expectable that quantum encryption is
available too, thus making mathematical cryptography somehow obsolete. The
practical bottleneck of Mcbits in present days is the size of the keys, with ranges
to several megabytes. It is otherwise an efficient algorithm which can be taken
into consideration in environments in which communicating large keys is less of
a bottleneck than the computation time for encryption/decryption.

A further family of interesting public key schemes uses non-commutative
groups—such as for instance braid groups, (e.g. cf. [29]). Their developers also
make a point out of the fact that the scheme is resistant to quantum computing.
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Conclusion

Cryptography was born in the early ages as a skill of mental combinations put at
the service of privacy and military protection. It developed over time into a highly
mathematized discipline, which unites the science of concealing with the analysis
of attacks into one single unit, cryptorology. While the last decades of research and
the development of computers have offered satisfactorily wide methods for solving
the elementary needs of security, it seems that the prognoses for the future are
more captivated by the advent of physical solutions offered by quantum mechanics,
both to the cryptanalysis of the most widely spread public key schemes but also,
constructively, for the implementation of new, purely physical cryptosystems.
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