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Preface

This book deals with several aspects of what is now called “explicit number
theory,” not including the essential algorithmic aspects, which are for the
most part covered by two other books of the author [Coh0] and [Coh1]. The
central (although not unique) theme is the solution of Diophantine equa-
tions, i.e., equations or systems of polynomial equations that must be solved
in integers, rational numbers, or more generally in algebraic numbers. This
theme is in particular the central motivation for the modern theory of arith-
metic algebraic geometry. We will consider it through three of its most basic
aspects.

The first is the local aspect: the invention of p-adic numbers and their
generalizations by K. Hensel was a major breakthrough, enabling in particular
the simultaneous treatment of congruences modulo prime powers. But more
importantly, one can do analysis in p-adic fields, and this goes much further
than the simple definition of p-adic numbers. The local study of equations
is usually not very difficult. We start by looking at solutions in finite fields,
where important theorems such as the Weil bounds and Deligne’s theorem
on the Weil conjectures come into play. We then lift these solutions to local
solutions using Hensel lifting.

The second aspect is the global aspect: the use of number fields, and
in particular of class groups and unit groups. Although local considerations
can give a considerable amount of information on Diophantine problems,
the “local-to-global” principles are unfortunately rather rare, and we will
see many examples of failure. Concerning the global aspect, we will first
require as a prerequisite of the reader that he or she be familiar with the
standard basic theory of number fields, up to and including the finiteness of
the class group and Dirichlet’s structure theorem for the unit group. This can
be found in many textbooks such as [Sam] and [Marc]. Second, and this is
less standard, we will always assume that we have at our disposal a computer
algebra system (CAS) that is able to compute rings of integers, class and unit
groups, generators of principal ideals, and related objects. Such CAS are now
very common, for instance Kash, magma, and Pari/GP, to cite the most useful
in algebraic number theory.
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The third aspect is the theory of zeta and L-functions. This can be consid-
ered a unifying theme3 for the whole subject, and it embodies in a beautiful
way the local and global aspects of Diophantine problems. Indeed, these func-
tions are defined through the local aspects of the problems, but their analytic
behavior is intimately linked to the global aspects. A first example is given by
the Dedekind zeta function of a number field, which is defined only through
the splitting behavior of the primes, but whose leading term at s = 0 contains
at the same time explicit information on the unit rank, the class number, the
regulator, and the number of roots of unity of the number field. A second
very important example, which is one of the most beautiful and important
conjectures in the whole of number theory (and perhaps of the whole of math-
ematics), the Birch and Swinnerton-Dyer conjecture, says that the behavior
at s = 1 of the L-function of an elliptic curve defined over Q contains at the
same time explicit information on the rank of the group of rational points
on the curve, on the regulator, and on the order of the torsion group of the
group of rational points, in complete analogy with the case of the Dedekind
zeta function. In addition to the purely analytical problems, the theory of
L-functions contains beautiful results (and conjectures) on special values, of
which Euler’s formula

∑
n�1 1/n2 = π2/6 is a special case.

This book can be considered as having four main parts. The first part gives
the tools necessary for Diophantine problems: equations over finite fields,
number fields, and finally local fields such as p-adic fields (Chapters 1, 2, 3,
4, and part of Chapter 5). The emphasis will be mainly on the theory of
p-adic fields (Chapter 4), since the reader probably has less familiarity with
these. Note that we will consider function fields only in Chapter 7, as a tool
for proving Hasse’s theorem on elliptic curves. An important tool that we will
introduce at the end of Chapter 3 is the theory of the Stickelberger ideal over
cyclotomic fields, together with the important applications to the Eisenstein
reciprocity law, and the Davenport–Hasse relations. Through Eisenstein reci-
procity this theory will enable us to prove Wieferich’s criterion for the first
case of Fermat’s last theorem (FLT), and it will also be an essential tool in
the proof of Catalan’s conjecture given in Chapter 16.

The second part is a study of certain basic Diophantine equations or
systems of equations (Chapters 5, 6, 7, and 8). It should be stressed that
even though a number of general techniques are available, each Diophantine
equation poses a new problem, and it is difficult to know in advance whether
it will be easy to solve. Even without mentioning families of Diophantine
equations such as FLT, the congruent number problem, or Catalan’s equation,
all of which will be stated below, proving for instance that a specific equation
such as x3 + y5 = z7 with x, y coprime integers has no solution with xyz �= 0
seems presently out of reach, although it has been proved (based on a deep
theorem of Faltings) that there are only finitely many solutions; see [Dar-Gra]

3 Expression due to Don Zagier.
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and Chapter 14. Note also that it has been shown by Yu. Matiyasevich (after
a considerable amount of work by other authors) in answer to Hilbert’s tenth
problem that there cannot exist a general algorithm for solving Diophantine
equations.

The third part (Chapters 9, 10, and 11) deals with the detailed study
of analytic objects linked to algebraic number theory: Bernoulli polynomi-
als and numbers, the gamma function, and zeta and L-functions of Dirichlet
characters, which are the simplest types of L-functions. In Chapter 11 we
also study p-adic analogues of the gamma, zeta, and L-functions, which have
come to play an important role in number theory, and in particular the Gross–
Koblitz formula for Morita’s p-adic gamma function. In particular, we will
see that this formula leads to remarkably simple proofs of Stickelberger’s con-
gruence and the Hasse–Davenport product relation. More general L-functions
such as Hecke L-functions for Grössencharacters, Artin L-functions for Galois
representations, or L-functions attached to modular forms, elliptic curves, or
higher-dimensional objects are mentioned in several places, but a systematic
exposition of their properties would be beyond the scope of this book.

Much more sophisticated techniques have been brought to bear on the
subject of Diophantine equations, and it is impossible to be exhaustive. Be-
cause the author is not an expert in most of these techniques, they are not
studied in the first three parts of the book. However, considering their impor-
tance, I have asked a number of much more knowledgeable people to write
a few chapters on these techniques, and I have written two myself, and this
forms the fourth and last part of the book (Chapters 12 to 16). These chap-
ters have a different flavor from the rest of the book: they are in general not
self-contained, are of a higher mathematical sophistication than the rest, and
usually have no exercises. Chapter 12, written by Yann Bugeaud, Guillaume
Hanrot, and Maurice Mignotte, deals with the applications of Baker’s explicit
results on linear forms in logarithms of algebraic numbers, which permit the
solution of a large class of Diophantine equations such as Thue equations
and norm form equations, and includes some recent spectacular successes.
Paradoxically, the similar problems on elliptic curves are considerably less
technical, and are studied in detail in Section 8.7. Chapter 13, written by
Sylvain Duquesne, deals with the search for rational points on curves of genus
greater than or equal to 2, restricting for simplicity to the case of hyperelliptic
curves of genus 2 (the case of genus 0—in other words, of quadratic forms—is
treated in Chapters 5 and 6, and the case of genus 1, essentially of elliptic
curves, is treated in Chapters 7 and 8). Chapter 14, written by the author,
deals with the so-called super-Fermat equation xp +yq = zr, on which several
methods have been used, including ordinary algebraic number theory, classi-
cal invariant theory, rational points on higher genus curves, and Ribet–Wiles
type methods. The only proofs that are included are those coming from alge-
braic number theory. Chapter 15, written by Samir Siksek, deals with the use
of Galois representations, and in particular of Ribet’s level-lowering theorem
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and Wiles’s and Taylor–Wiles’s theorem proving the modularity conjecture.
The main application is to equations of “abc” type, in other words, equations
of the form a + b + c = 0 with a, b, and c highly composite, the “easiest”
application of this method being the proof of FLT. The author of this chapter
has tried to hide all the sophisticated mathematics and to present the method
as a black box that can be used without completely understanding the un-
derlying theory. Finally, Chapter 16, also written by the author, gives the
complete proof of Catalan’s conjecture by P. Mihăilescu. It is entirely based
on notes of Yu. Bilu, R. Schoof, and especially of J. Boéchat and M. Mischler,
and the only reason that it is not self-contained is that it will be necessary to
assume the validity of an important theorem of F. Thaine on the annihilator
of the plus part of the class group of cyclotomic fields.

Warnings

Since mathematical conventions and notation are not the same from one
mathematical culture to the next, I have decided to use systematically un-
ambiguous terminology, and when the notations clash, the French notation.
Here are the most important:

– We will systematically say that a is strictly greater than b, or greater than
or equal to b (or b is strictly less than a, or less than or equal to a), although
the English terminology a is greater than b means in fact one of the two
(I don’t remember which one, and that is one of the main reasons I refuse
to use it) and the French terminology means the other. Similarly, positive
and negative are ambiguous (does it include the number 0)? Even though
the expression “x is nonnegative” is slightly ambiguous, it is useful, and I
will allow myself to use it, with the meaning x � 0.

– Although we will almost never deal with noncommutative fields (which is
a contradiction in terms since in principle the word field implies commu-
tativity), we will usually not use the word field alone. Either we will write
explicitly commutative (or noncommutative) field, or we will deal with spe-
cific classes of fields, such as finite fields, p-adic fields, local fields, number
fields, etc., for which commutativity is clear. Note that the “proper” way
in English-language texts to talk about noncommutative fields is to call
them either skew fields or division algebras. In any case this will not be an
issue since the only appearances of skew fields will be in Chapter 2, where
we will prove that finite division algebras are commutative, and in Chapter
7 about endomorphism rings of elliptic curves over finite fields.

– The GCD (respectively the LCM) of two integers can be denoted by (a, b)
(respectively by [a, b]), but to avoid ambiguities, I will systematically use
the explicit notation gcd(a, b) (respectively lcm(a, b)), and similarly when
more than two integers are involved.
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– An open interval with endpoints a and b is denoted by (a, b) in the En-
glish literature, and by ]a, b[ in the French literature. I will use the French
notation, and similarly for half-open intervals (a, b] and [a, b), which I will
denote by ]a, b] and [a, b[. Although it is impossible to change such a well-
entrenched notation, I urge my English-speaking readers to realize the
dreadful ambiguity of the notation (a, b), which can mean either the or-
dered pair (a, b), the GCD of a and b, the inner product of a and b, or the
open interval.

– The trigonometric functions sec(x) and csc(x) do not exist in France, so
I will not use them. The functions tan(x), cot(x), cosh(x), sinh(x), and
tanh(x) are denoted respectively by tg(x), cotg(x), ch(x), sh(x), and th(x)
in France, but for once to bow to the majority I will use the English names.

– �(s) and �(s) denote the real and imaginary parts of the complex number
s, the typography coming from the standard TEX macros.

Notation

In addition to the standard notation of number theory we will use the fol-
lowing notation.

– We will often use the practical self-explanatory notation Z>0, Z�0, Z<0,
Z�0, and generalizations thereof, which avoid using excessive verbiage. On
the other hand, I prefer not to use the notation N (for Z�0, or is it Z>0?).

– If a and b are nonzero integers, we write gcd(a, b∞) for the limit of the
ultimately constant sequence gcd(a, bn) as n → ∞. We have of course
gcd(a, b∞) =

∏
p|gcd(a,b) pvp (a), and a/ gcd(a, b∞) is the largest divisor of a

coprime to b.
– If n is a nonzero integer and d | n, we write d‖n if gcd(d, n/d) = 1. Note

that this is not the same thing as the condition d2 � n, except if d is prime.
– If x ∈ R, we denote by 	x
 the largest integer less than or equal to x (the

floor of x), by �x� the smallest integer greater than or equal to x (the ceiling
of x, which is equal to 	x
+1 if and only if x /∈ Z), and by 	x� the nearest
integer to x (or one of the two if x ∈ 1/2 + Z), so that 	x� = 	x + 1/2
.
We also set {x} = x− 	x
, the fractional part of x. Note that for instance
	−1.4
 = −2, and not −1 as almost all computer languages would lead us
to believe.

– For any α belonging to a field K of characteristic zero and any k ∈ Z�0

we set (
α

k

)
=

α(α− 1) · · · (α− k + 1)
k!

.

In particular, if α ∈ Z�0 we have
(
α
k

)
= 0 if k > α, and in this case we will

set
(
α
k

)
= 0 also when k < 0. On the other hand,

(
α
k

)
is undetermined for

k < 0 if α /∈ Z�0.
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– Capital italic letters such as K and L will usually denote number fields.
– Capital calligraphic letters such as K and L will denote general p-adic fields

(for specific ones, we write for instance Kp).
– Letters such as E and F will always denote finite fields.
– The letter Z indexed by a capital italic or calligraphic letter such as ZK ,

ZL, ZK, etc., will always denote the ring of integers of the corresponding
field.

– Capital italic letters such as A, B, C, G, H, S, T , U , V , W , or lowercase
italic letters such as f , g, h, will usually denote polynomials or formal power
series with coefficients in some base ring or field. The coefficient of degree m
of these polynomials or power series will be denoted by the corresponding
letter indexed by m, such as Am, Bm, etc. Thus we will always write (for
instance) A(X) = AdX

d +Ad−1X
d−1+ · · ·+A0, so that the ith elementary

symmetric function of the roots is equal to (−1)iAd−i/Ad.
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8.1.5 The Näıve and Canonical Heights . . . . . . . . . . . . . . . . . . 529



Table of Contents xvii

8.2 Description of 2-Descent with Rational 2-Torsion . . . . . . . . . . . 532
8.2.1 The Fundamental 2-Isogeny . . . . . . . . . . . . . . . . . . . . . . . . 532
8.2.2 Description of the Image of φ . . . . . . . . . . . . . . . . . . . . . . 534
8.2.3 The Fundamental 2-Descent Map . . . . . . . . . . . . . . . . . . . 535
8.2.4 Practical Use of 2-Descent with 2-Isogenies . . . . . . . . . . 538
8.2.5 Examples of 2-Descent using 2-Isogenies . . . . . . . . . . . . . 542
8.2.6 An Example of Second Descent . . . . . . . . . . . . . . . . . . . . 546

8.3 Description of General 2-Descent . . . . . . . . . . . . . . . . . . . . . . . . . 548
8.3.1 The Fundamental 2-Descent Map . . . . . . . . . . . . . . . . . . . 548
8.3.2 The T -Selmer Group of a Number Field . . . . . . . . . . . . . 550
8.3.3 Description of the Image of α . . . . . . . . . . . . . . . . . . . . . . 552
8.3.4 Practical Use of 2-Descent in the General Case . . . . . . . 554
8.3.5 Examples of General 2-Descent . . . . . . . . . . . . . . . . . . . . . 555

8.4 Description of 3-Descent with Rational 3-Torsion Subgroup . . 557
8.4.1 Rational 3-Torsion Subgroups . . . . . . . . . . . . . . . . . . . . . . 557
8.4.2 The Fundamental 3-Isogeny . . . . . . . . . . . . . . . . . . . . . . . . 558
8.4.3 Description of the Image of φ . . . . . . . . . . . . . . . . . . . . . . 560
8.4.4 The Fundamental 3-Descent Map . . . . . . . . . . . . . . . . . . . 563

8.5 The Use of L(E, s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
8.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
8.5.2 The Case of Complex Multiplication . . . . . . . . . . . . . . . . 565
8.5.3 Numerical Computation of L(r)(E, 1) . . . . . . . . . . . . . . . 572
8.5.4 Computation of Γr(1, x) for Small x . . . . . . . . . . . . . . . . 575
8.5.5 Computation of Γr(1, x) for Large x . . . . . . . . . . . . . . . . 580
8.5.6 The Famous Curve y2 + y = x3 − 7x + 6 . . . . . . . . . . . . 582

8.6 The Heegner Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
8.6.1 Introduction and the Modular Parametrization . . . . . . . 584
8.6.2 Heegner Points and Complex Multiplication . . . . . . . . . 586
8.6.3 The Use of the Theorem of Gross–Zagier . . . . . . . . . . . . 589
8.6.4 Practical Use of the Heegner Point Method . . . . . . . . . . 591
8.6.5 Improvements to the Basic Algorithm, in Brief . . . . . . . 596
8.6.6 A Complete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

8.7 Computation of Integral Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
8.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
8.7.2 An Upper Bound for the Elliptic Logarithm on E(Z) . 601
8.7.3 Lower Bounds for Linear Forms in Elliptic Logarithms 603
8.7.4 A Complete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

8.8 Exercises for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Index of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Index of Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

General Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639



xviii Table of Contents

Volume II

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Part III. Analytic Tools

9. Bernoulli Polynomials and the Gamma Function . . . . . . . . . . 3
9.1 Bernoulli Numbers and Polynomials . . . . . . . . . . . . . . . . . . . . . . 3

9.1.1 Generating Functions for Bernoulli Polynomials . . . . . . 3
9.1.2 Further Recurrences for Bernoulli Polynomials . . . . . . . 10
9.1.3 Computing a Single Bernoulli Number . . . . . . . . . . . . . . 14
9.1.4 Bernoulli Polynomials and Fourier Series . . . . . . . . . . . . 16

9.2 Analytic Applications of Bernoulli Polynomials . . . . . . . . . . . . . 19
9.2.1 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.2.2 The Euler–MacLaurin Summation Formula . . . . . . . . . . 21
9.2.3 The Remainder Term and the Constant Term . . . . . . . . 25
9.2.4 Euler–MacLaurin and the Laplace Transform . . . . . . . . 27
9.2.5 Basic Applications of the Euler–MacLaurin Formula . . 31

9.3 Applications to Numerical Integration . . . . . . . . . . . . . . . . . . . . . 35
9.3.1 Standard Euler–MacLaurin Numerical Integration . . . . 36
9.3.2 The Basic Tanh-Sinh Numerical Integration Method . . 37
9.3.3 General Doubly Exponential Numerical Integration . . . 39

9.4 χ-Bernoulli Numbers, Polynomials, and Functions . . . . . . . . . . 43
9.4.1 χ-Bernoulli Numbers and Polynomials . . . . . . . . . . . . . . 43
9.4.2 χ-Bernoulli Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4.3 The χ-Euler–MacLaurin Summation Formula . . . . . . . . 50

9.5 Arithmetic Properties of Bernoulli Numbers . . . . . . . . . . . . . . . 52
9.5.1 χ-Power Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.5.2 The Generalized Clausen–von Staudt Congruence . . . . 61
9.5.3 The Voronoi Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.5.4 The Kummer Congruences . . . . . . . . . . . . . . . . . . . . . . . . 67
9.5.5 The Almkvist–Meurman Theorem . . . . . . . . . . . . . . . . . . 70

9.6 The Real and Complex Gamma Functions . . . . . . . . . . . . . . . . . 71
9.6.1 The Hurwitz Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . 71
9.6.2 Definition of the Gamma Function . . . . . . . . . . . . . . . . . . 77
9.6.3 Preliminary Results for the Study of Γ(s) . . . . . . . . . . . . 81
9.6.4 Properties of the Gamma Function . . . . . . . . . . . . . . . . . 84
9.6.5 Specific Properties of the Function ψ(s) . . . . . . . . . . . . . 95
9.6.6 Fourier Expansions of ζ(s, x) and log(Γ(x)) . . . . . . . . . . 100

9.7 Integral Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.7.1 Generalities on Integral Transforms . . . . . . . . . . . . . . . . . 104
9.7.2 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.7.3 The Mellin Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Table of Contents xix

9.7.4 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.8 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.8.2 Integral Representations and Applications . . . . . . . . . . . 113

9.9 Exercises for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10. Dirichlet Series and L-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.1 Arithmetic Functions and Dirichlet Series . . . . . . . . . . . . . . . . . . 151

10.1.1 Operations on Arithmetic Functions . . . . . . . . . . . . . . . . 152
10.1.2 Multiplicative Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.1.3 Some Classical Arithmetical Functions . . . . . . . . . . . . . . 155
10.1.4 Numerical Dirichlet Series . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.2 The Analytic Theory of L-Series . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.2.1 Simple Approaches to Analytic Continuation . . . . . . . . . 163
10.2.2 The Use of the Hurwitz Zeta Function ζ(s, x) . . . . . . . . 168
10.2.3 The Functional Equation for the Theta Function . . . . . 169
10.2.4 The Functional Equation for Dirichlet L-Functions . . . 172
10.2.5 Generalized Poisson Summation Formulas . . . . . . . . . . . 177
10.2.6 Voronoi’s Error Term in the Circle Problem. . . . . . . . . . 182

10.3 Special Values of Dirichlet L-Functions . . . . . . . . . . . . . . . . . . . . 186
10.3.1 Basic Results on Special Values . . . . . . . . . . . . . . . . . . . . 186
10.3.2 Special Values of L-Functions and Modular Forms . . . . 193
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Part III

Analytic Tools



9. Bernoulli Polynomials and the Gamma
Function

We now begin our study of analytic methods in number theory. This is of
course a vast subject, but we will not deal with what is usually called “an-
alytic number theory,” but with the methods that are related to the study
of L-functions, which we will study in the next chapter. This essentially in-
volves Bernoulli numbers and polynomials, the Euler–MacLaurin summation
formula, and the gamma function and related functions.

9.1 Bernoulli Numbers and Polynomials

9.1.1 Generating Functions for Bernoulli Polynomials

We start by recalling some properties of Bernoulli numbers and polynomials.

Definition 9.1.1. We define the Bernoulli polynomials Bk(x) and their ex-
ponential generating function E(t, x) by

E(t, x) =
tetx

et − 1
=
∑
k�0

Bk(x)
k!

tk ,

and the Bernoulli numbers Bk by Bk = Bk(0).

The first few polynomials are B0(x) = 1, B1(x) = x − 1/2, B2(x) =
x2 − x + 1/6, and B3(x) = x3 − 3x2/2 + x/2. Note that most of the results
that we give in this section for Bernoulli polynomials also apply to Bernoulli
numbers by specializing to 0 the variable x.

The reader will notice as we go along that more natural numbers would
be Bk/k instead of Bk. However, it is impossible to change a definition that
is centuries old.

Proposition 9.1.2. We have the following properties:

(1) B′
k(x) = kBk−1(x).

(2) Bk(x) is a monic polynomial of degree k.
(3) For k �= 1 we have Bk(1) = Bk(0) = Bk, while for k = 1 we have

B1(1) = 1/2 = B1(0) + 1. In other words, if we set δk,1 = 1 if k = 1 and
δk,1 = 0 otherwise, we have Bk(1) = Bk + δk,1.
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(4) Bk = 0 if k is odd and k � 3.
(5) We have

Bk(x) =
k∑

j=0

(
k

j

)
Bjx

k−j .

Proof. All these results are immediate consequences of the definition: (1)
is equivalent to ∂E(t,x)

∂x = tE(t, x), (2) follows by induction, (3) is equivalent
to E(t, 1)−E(t, 0) = t, (4) to the fact that E(t, 0) + t/2 = (t/2) cotanh(t/2)
is an even function, and (5) by formal multiplication of the power series for
etx by E(t, 0). ��

It is immediate to check that (1) and (3) together with B0(x) = 1 in fact
characterize Bernoulli polynomials (Exercise 1).

In addition to the initial values B0 = 1 and B1 = −1/2, the first few
nonzero values are B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 =
5/66, B12 = −691/2730, B14 = 7/6, B16 = −3617/510. For instance, every
time that you meet the (prime) number 691, you must immediately think of
the Bernoulli number B12.

Further immediate properties of Bernoulli polynomials are the following.

Proposition 9.1.3. We have

Bk(x + 1) = Bk(x) + kxk−1 ,

Bk(−x) = (−1)k(Bk(x) + kxk−1) ,

Bk(1− x) = (−1)kBk(x) ,

k∑
j=0

(
k

j

)
yk−jBj(x) = Bk(x + y) , and in particular

k−1∑
j=0

(
k

j

)
Bj(x) = kxk−1 , hence

k−1∑
j=0

(
k

j

)
Bj = 0 for k �= 1 ,

∑
0�j<N

Bk

(
x +

j

N

)
=

Bk(Nx)
Nk−1

for N ∈ Z�1 .

Proof. It is immediate that these formulas are equivalent respectively to
the trivial identities E(t, x + 1) = E(t, x) + tetx, E(−t,−x) = etE(t, x) =
E(t, x)+tetx, E(−t, 1−x) = E(t, x), E(t, x+y) = etyE(t, x), (et−1)E(t, x) =
tetx, and

∑
0�j<N E(Nt, x + j/N) = NE(t,Nx). ��
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Note that the formula for Bk(−x) generalizes the fact that Bk = 0 for
k � 3 odd. Like all formulas involving j/N for 0 � j < N , the last formula
is called the distribution formula for Bernoulli polynomials.

Bernoulli numbers and polynomials are by definition Taylor coefficients
of certain power series. Thus they occur in the Taylor expansion of a number
of classical functions, as follows.

Proposition 9.1.4. We have the following Taylor series expansions with
radii of convergence R indicated in parentheses:

cotanh(t) =
1
t

+
∑
k�1

22k B2k

(2k)!
t2k−1 (R = π) ,

cotan(t) =
1
t
−
∑
k�1

(−1)k−122k B2k

(2k)!
t2k−1 (R = π) ,

tanh(t) =
∑
k�1

22k(22k − 1)
B2k

(2k)!
t2k−1 (R = π/2) ,

tan(t) =
∑
k�1

(−1)k−122k(22k − 1)
B2k

(2k)!
t2k−1 (R = π/2) ,

1
sinh(t)

=
1
t
−
∑
k�1

2(22k−1 − 1)
B2k

(2k)!
t2k−1 (R = π) ,

1
sin(t)

=
1
t

+
∑
k�1

(−1)k−12(22k−1 − 1)
B2k

(2k)!
t2k−1 (R = π) ,

2
et + 1

= 1−
∑
k�1

2(22k − 1)
B2k

(2k)!
t2k−1 (R = π) .

Proof. By definition

cotanh(t) =
cosh(t)
sinh(t)

=
et + e−t

et − e−t
=

e2t + 1
e2t − 1

= 1 +
1
t

2t

e2t − 1
,

and since cotan(t) = i cotanh(it) the first two formulas follow. Next, we note
the trigonometric identity tan(t) = cotan(t) − 2 cotan(2t), which immedi-
ately leads to the expansion for tan(t), and the one for tanh(t) follows from
tanh(t) = tan(it)/i. Next, we note that 1/(et−e−t) = 1/(et−1)−1/(e2t−1),
giving the formula for 1/ sinh(t), hence for 1/ sin(t), and we also note that
1/(et + 1) = 1/(et − 1) − 2/(e2t − 1), giving the last formula. The state-
ments about the radii of convergence can be proved either directly from the
asymptotic estimate for Bernoulli numbers that we will give below (Corollary
9.1.22), or from the fact that it is equal to the distance from the origin of the
nearest singularity. ��

Corollary 9.1.5. We have
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Bk

(
1
2

)
= −

(
1− 1

2k−1

)
Bk ,

and in particular the polynomial Bk(x) is divisible by x(x− 1/2)(x− 1) when
k is odd and k � 3.

Proof. For the first formula we note that tet/2/(et−1) = (t/2)/ sinh(t/2),
and the second statement follows from the vanishing of Bk for k � 3 odd and
the fact that Bk(1) = Bk(0) for k �= 1. ��

Definition 9.1.6. We define the tangent numbers Tk for k � 0 by

Tk = 2k+1(2k+1 − 1)
Bk+1

k + 1
.

Thus tanh(t) =
∑

k�1 T2k−1t
2k−1/(2k − 1)! and similarly for tan(t). We

have T0 = −1, T2k = 0 for k � 1, and the first few values of Tk for k odd are
T1 = 1, T3 = −2, T5 = 16, T7 = −272, T9 = 7936.

Corollary 9.1.7. The tangent numbers satisfy the recurrence

k∑
j=1

(
2k − 1
2j − 1

)
T2j−1 = 1 for k > 0 ,

and in particular T2k−1 ∈ Z for all k � 1.

Proof. This immediately follows from the identity cosh(t) tanh(t) =
sinh(t), and the details are left to the reader. ��

The fact that T2k−1 ∈ Z also follows from the Clausen–von Staudt theo-
rem that we will prove below (Exercise 59).

Definition 9.1.8. We define the Euler numbers Ek for k � 0 by setting
E2k+1 = 0 for k � 0 and

E2k = −42k+1 B2k+1(1/4)
2k + 1

.

The first few values are E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385,
so once again if you meet the prime 61 in a computation, you may suspect
that it comes from E6.

Proposition 9.1.9. We have

B2k(1/4) = B2k(3/4) =
B2k(1/2)

22k
= − 1

22k

(
1− 1

22k−1

)
B2k ,

and the Taylor series expansions
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1
cosh(t)

=
∑
k�0

E2k

(2k)!
t2k (R = π/2) ,

1
cos(t)

=
∑
k�0

(−1)k E2k

(2k)!
t2k (R = π/2) .

Proof. Multiplying the identity 1/(et + 1) = 1/(et− 1)− 2/(e2t− 1) given
above by et/2 and replacing t by 2t, we obtain

1
cosh(t)

=
2et

e2t + 1
= −

∑
k�1

2k 2kBk(1/4)−Bk(1/2)
k!

tk−1 .

Since cosh(t) is an even function, we first deduce that 22kB2k(1/4) =
B2k(1/2), and since B2k(1 − x) = B2k(x), we obtain the first formula. Fur-
thermore, since B2k+1(1/2) = 0 for k � 0 by the above corollary, we have

1
cosh(t)

= −
∑
k�0

42k+1 B2k+1(1/4)
(2k + 1)!

t2k ,

giving the formula for 1/ cosh(t), the last formula following by changing t
into it. ��

Corollary 9.1.10. The Euler numbers satisfy the recurrence

k∑
j=0

(
2k

2j

)
E2j = 0 for k > 0 ,

and in particular E2k ∈ Z for all k.

Proof. This immediately follows from the identity cosh(t)(1/ cosh(t)) = 1.
It also follows from the second formula of Proposition 9.1.14 below applied to
x = y = 1/4. We thus have E2k = −∑

0�j<k

(
2k
2j

)
E2j , from which we deduce

by induction that E2k is an integer for all k. ��

Remark. Although Bernoulli numbers satisfy the recurrence
∑k−1

j=0

(
k
j

)
Bj =

0, which is very similar to the one for Ek if we replace k by 2k and Bj by 0
when j > 1 is odd, the main difference is that this recurrence leads to

Bk−1 = −1
k

k−2∑
j=0

(
k

j

)
Bj

for k � 2, and the denominator 1/k implies that the Bk are not necessarily
integers (we will study some of their arithmetic properties in Section 9.5, and
in particular we will see that the only integral B2k is B0 = 1).
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Interestingly enough, although the natural generating function for Bernoulli
polynomials is the exponential generating function E(t, x) =

∑
k�0 Bk(x)tk/k!,

it is also possible to consider the ordinary generating function

S(t, x) =
∑
k�0

Bk(x)
tk+1

,

and I thank D. Zagier for pointing this out to me. We could of course consider
the generating function

∑
k�0 Bk(x)tk = S(1/t, x)/t, but the corresponding

formulas would be slightly more complicated.
It is easy to check that the series S(t, x) does not converge for any value

of t, but as a formal power series it makes sense, and we will also see that
even though the series is divergent we can assign to it a specific value. Note,
however, that in Chapter 11 we will see that it converges for all p-adic values
of t such that |t| > 1, and that S(t, x) = ψp

′(t − x + 1) (which follows
immediately from Proposition 11.5.2 (2)), to be compared with Corollary
9.1.13, which is formally identical.

Proposition 9.1.11. We have

S(−t,−x) = −S(t, x)− 1
(t− x)2

,

S(t, x + 1) = S(t, x) +
1

(t− x)2
,

S(t− y, x) = S(t, x + y) ,

and in particular

S(t− 1, x) = −S(−t,−x) = S(t, x) +
1

(t− x)2
and

S(t, x) = S(t− x, 0) .

Proof. Using the formula for Bn(−x) mentioned above we have

S(−t,−x) =
∑
k�0

(−1)k+1 Bk(−x)
tk+1

= −
∑
k�0

Bk(x) + kxk−1

tk+1

= −S(t, x)− 1
t2

1
(1− x/t)2

= −S(t, x)− 1
(t− x)2

,

proving the first formula, and the second follows similarly from the formula
for Bk(x + 1) (or from the first and the formula for Bk(1− x)).

For the third, we use the formula for Bk(x + y), which gives
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S(t, x + y) =
∑
k�0

t−(k+1)
k∑

j=0

(
k

j

)
yk−jBj(x)

=
∑
j�0

Bj(x)t−(j+1)
∑
k�j

(
k

j

)
(y/t)k−j

=
∑
j�0

Bj(x)t−(j+1)(1− y/t)−(j+1) ,

proving the third formula. The final two follow from this and the first two.
��

Proposition 9.1.12. As a formal power series in t, S(t, x) is the Laplace
transform of E(t, x); in other words, we have formally

S(t, x) =
∫ ∞

0

e−tuE(u, x) du .

Furthermore, for t > x− 1 the above integral converges absolutely.

Proof. The first statement is clear by expanding E(u, x) as a power series
in u since ∫ ∞

0

e−tuuk du =
k!

tk+1
,

and the second follows since the integrand is continuous everywhere and is
asymptotic to ueu(x−1−t) as u →∞. ��

Corollary 9.1.13. For t > x− 1 we have

S(t, x) = ψ′(t− x + 1) = ψ′(t− x)− 1
(t− x)2

,

where ψ = Γ′/Γ is the logarithmic derivative of the gamma function (see
Definition 9.6.13).

Proof. From Corollary 9.6.43 below we have

ψ′(s + 1) =
∫ ∞

0

ve−sv

ev − 1
dv ,

so the result follows from the proposition. ��

See also Theorems 9.6.48 and 9.6.49 for continued fraction expansions of
S(t, x).
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9.1.2 Further Recurrences for Bernoulli Polynomials

There are a great many useful recurrences for Bernoulli numbers and poly-
nomials. We begin with the following.

Proposition 9.1.14. For k � 0 we have

k∑
j=0

(
k

j

)
yk−j Bj+1(x)

j + 1
=

Bk+1(x + y)− yk+1

k + 1
,

�k/2�∑
j=0

(
k

2j

)
1

y2j

B2j+1(x)
2j + 1

=
Bk+1(x + y) + (−1)kBk+1(x− y)

(2k + 2)yk
,

�k/2�∑
j=1

(
k

2j − 1

)
1

y2j

B2j(x)
2j

=
Bk+1(x + y) + (−1)k−1Bk+1(x− y)− 2yk+1

(2k + 2)yk+1
.

Proof. We could give a proof of the first formula directly from the generat-
ing function, as we did for Proposition 9.1.3. It is however instructive to give
an alternative proof. After all, if we integrate with respect to x the formula
for Bk(x + y) given in Proposition 9.1.3 and use B′

j+1(x) = (j + 1)Bj(x), we
obtain the result up to addition of a function of y, which is not easy to de-
termine. This approach almost never works. What does almost always work
is to use trivial transformations of binomial coefficients. Here we note that
for j � 1 we have

(
k
j

)
= (k/j)

(
k−1
j−1

)
, so that

yk +
k∑

j=1

k

j

(
k − 1
j − 1

)
Bj(x) = Bk(x + y) ,

from which the first formula follows by dividing by k and changing j into
j + 1 and k into k + 1. The other two formulas follow by computing the sum
and difference of the first formula applied to y and to −y. ��

Corollary 9.1.15. For k � 0 We have

k−1∑
j=0

(
k

j

)
Bj+1(x)

j + 1
= xk − 1

k + 1
,

k−1∑
j=0

(
2k

2j

)
B2j+1(x)
2j + 1

=
x2k − (x− 1)2k

2
,

k∑
j=1

(
2k

2j − 1

)
B2j(x)

2j
=

x2k + (x− 1)2k

2
− 1

2k + 1
,

k∑
j=1

(
2k

2j − 1

)
22j B2j(x)

2j
= 22k

(
x− 1

2

)2k

− 1
2k + 1

,
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k∑
j=0

(
2k + 1

2j

)
B2j+1(x)
2j + 1

=
x2k+1 + (x− 1)2k+1

2
,

k∑
j=1

(
2k + 1
2j − 1

)
B2j(x)

2j
=

x2k+1 − (x− 1)2k+1

2
− 1

2k + 2
,

k∑
j=0

(
2k + 1

2j

)
22j B2j+1(x)

2j + 1
= 22k

(
x− 1

2

)2k+1

.

Proof. These formulas are obtained by suitable specializations to y = 1
or y = 1/2 of the formulas of the proposition. ��

Remarks. (1) If we want formulas involving Bj(x) itself instead of Bj(x)/j,
we simply differentiate with respect to x the formulas of the proposition
and of the corollary. We can of course differentiate several times. In-
versely, if we want formulas involving Bj(x)/(j(j + 1)) for instance, we
must in principle integrate the given formulas, but as explained above this
will not give the constant term, so we simply use as above the relation(
k
j

)
= (k/j)

(
k−1
j−1

)
for j � 1; see Exercise 23.

(2) Since Bk(x+1) and Bk(1−x) have simple expressions in terms of Bk(x),
if we want to specialize again the above formulas (or their derivatives),
we may as well restrict to 0 � x � 1/2. Using the formulas Bk(0) = Bk,
Bk(1/2) = −(1−1/2k−1)Bk, B2k(1/4) = −(1/22k)(1−1/22k−1)B2k, and
the analogous formulas for B2k(1/3) and B2k(1/6) given by Exercise 10,
we obtain in this way a very large number of recurrence relations for
Bernoulli numbers. We can obtain even more such relations by replacing
directly x and y in the formulas of Proposition 9.1.14, for instance x =
y = 1/4 in the third formula. We also obtain the standard relation for
Euler numbers given in Corollary 9.1.10 by choosing x = y = 1/4 in the
second formula. It is to be noted, however, that all these formulas have
approximately k terms; in other words, they express B2k in terms of all
the B2j for 1 � j < k. We are going to see that we can reduce this by a
factor of 2.

The second type of recurrence that we are going to study is not well
known, although it is essentially due to Seidel in 1877, and Lucas soon af-
terward. It has the advantage of having half as many terms in the sum,
and smaller binomial coefficients. I thank my colleague C. Batut for having
pointed it out to me.

Proposition 9.1.16. For any k and m in Z�0 we have
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max(k,m)∑
j=1

((
k

j

)
+ (−1)j+1

(
m

j

))
Bk+m+1−j(x)
k + m + 1− j

= xk(x− 1)m +
(−1)m+1

(k + m + 1)
(
k+m

k

) ,

max(k,m)∑
j=1

((
k

j

)
+ (−1)j+1

(
m

j

))
Bk+m−j(x)

= xk−1(x− 1)m−1((k + m)x− k) ,

�(k−1)/2�∑
j=0

(
k

2j + 1

)
B2k−2j(x)
2k − 2j

=
xk(x− 1)k

2
+

(−1)k+1

(4k + 2)
(
2k
k

) ,

�k/2�∑
j=0

((
k

2j + 1

)
+
(

k + 1
2j + 1

))
B2k+1−2j(x)
2k + 1− 2j

= xk(x− 1)k(x− 1/2)

(in all the above we recall that when k ∈ Z�0 we have
(
k
j

)
= 0 if j < 0 or if

j > k).

Proof. Consider x as a fixed parameter and set

Fx(t) =
E(t, x)

t
=

etx

et − 1
=

1
t

+
∑
k�0

Bk+1(x)
k + 1

tk

k!
,

let D = d/dt be the differentiation operator with respect to t, and let I be
the identity operator. We begin with the following lemma.

Lemma 9.1.17. With the above notation we have

(etDm(D + I)k −Dk(D − I)m)Fx(t) = xk(x− 1)mext .

Proof. For simplicity write Fx instead of Fx(t). Leibniz’s rule can be writ-
ten in operator notation

DN (eatFx) =

⎛⎝ N∑
j=0

(
N

j

)
aN−jeatDj

⎞⎠Fx = eat(D + aI)NFx .

If we apply Dk to the defining identity etFx − Fx = ext we thus obtain
et(D + I)kFx −DkFx = xkext, so multiplying by e−t we have

(D + I)kFx − e−tDkFx = xket(x−1) ,

and finally applying Dm we obtain

Dm(D + I)kFx − e−t(D − I)mDkFx = xk(x− 1)met(x−1) ,
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proving the lemma after multiplication by et. ��

Proof of the proposition. Denote by G[0] (not G(0)) the constant term in
a Laurent series G(t). Taking constant terms in the lemma we obtain

k∑
j=0

(
k

j

)
(etDk+m−jFx(t))[0]+

m∑
j=0

(−1)j+1

(
m

j

)
(Dk+m−jFx(t))[0] = xk(x−1)m .

By definition we have (DNFx)[0] = BN+1(x)/(N + 1), and

DNFx(t) =
(−1)NN !

tN+1
+
∑
j�0

Bj+N+1(x)
j + N + 1

tj

j!
,

(etDNFx(t))[0] =
(−1)NN !
(N + 1)!

+
BN+1(x)
N + 1

=
(−1)N

N + 1
+

BN+1(x)
N + 1

,

so replacing in the formula we obtain

k∑
j=0

(
k

j

)
(−1)k+m−j

k + m− j + 1
+

max(k,m)∑
j=1

((
k

j

)
+ (−1)j+1

(
m

j

))
Bk+m+1−j

k + m + 1− j

= xk(x− 1)m ,

where the second sum starts at j = 1, since for j = 0 the binomial coefficients
cancel. Furthermore, we have

k∑
j=0

(−1)j

(
k

j

)
1

k + m + 1− j
=
∫ 1

0

tm(t− 1)k dt

= (−1)k

∫ 1

0

tm(1− t)k dt =
(−1)k

(k + m + 1)
(
k+m

k

) ,

since it is easily shown by induction on k that∫ 1

0

tm(1− t)k dt =
k!m!

(k + m + 1)!
=

1
(k + m + 1)

(
k+m

k

)
(see Proposition 9.6.39 below for a more general formula). Replacing gives
the first formula of the proposition. The second immediately follows by dif-
ferentiating with respect to x, the third follows by choosing m = k in the
first formula, and the fourth by choosing m = k + 1 in the first formula and
subtracting the third. ��

Corollary 9.1.18. For any k and m in Z�0 we have

max(k,m)∑
j=0

((
k

j

)
+ (−1)k+m

(
m

j

))
Bk+m+1−j

k + m + 1− j
=

(−1)m+1

(k + m + 1)
(
k+m

k

) ,



14 9. Bernoulli Polynomials and the Gamma Function

max(k,m)∑
j=0

((
k

j

)
+ (−1)k+m+1

(
m

j

))
Bk+m−j = 0 ,

for k � 1
�(k−1)/2�∑

j=0

(
k

2j + 1

)
B2k−2j

2k − 2j
=

(−1)k+1

(4k + 2)
(
2k
k

) ,

for k � 2
�k/2�∑
j=0

((
k

2j + 1

)
+
(

k + 1
2j + 1

))
B2k−2j = 0

and
�k/2�∑
j=0

((
k

2j + 1

)
+
(

k + 1
2j + 1

))
42jE2k−2j = (−3)k .

Proof. The first four formulas follow by taking x = 0 in the proposition
and using the formulas for the odd Bernoulli numbers. The replacement of
(−1)j by ±(−1)k+m and the fact that we begin at j = 0 removes the special
cases. The details are left to the reader. The last formula is obtained by
taking x = 1/4 in the last formula of the proposition. ��

A restatement of the fourth formula is the following:

Corollary 9.1.19. For k � 2 we have

B2k = − 1
(k + 1)(2k + 1)

�k/2�∑
j=1

(2k − 2j + 1)
(

k + 1
2j + 1

)
B2k−2j .

We could of course restate in the same way the last formula to obtain a
shorter recurrence for Euler numbers, but it is not certain that this would be
any better than the standard one since the recurrence would involve nonin-
tegral rational numbers.

Thus, as mentioned above, we obtain a recurrence giving B2k as a linear
combination of the preceding B2k−2j , but only those with 2k− 2j � 2�k/2�,
hence half as many as the formulas obtained using the more standard recur-
rences. Furthermore, the coefficients of the linear combinations are smaller
binomial coefficients since (forgetting the simple factor (2k − 2j + 1)) they
have the form

(
k+1

j

)
instead of

(
2k
j

)
.

9.1.3 Computing a Single Bernoulli Number

If we want to compute a table of Bernoulli numbers up to a desired limit, the
above recurrence or others are suitable. But if we want to compute a single
value of a Bernoulli number Bk for k even, computing all the preceding Bj
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up to Bk using recurrences is a waste of time and space since there exist
more efficient direct methods. We assume of course that k is even. The first
method is based on a direct formula for Bk given in Exercise 26. The second
method is based on two results that we shall prove below (Corollary 9.1.21
and Theorem 9.5.14). One is the well-known formula

Bk = (−1)k/2−1 2 · k!
(2π)k

∑
m�1

1
mk

,

which gives a very precise asymptotic estimate on the size of Bk. The other is
the Clausen–von Staudt congruence, which gives the exact denominator Dk

of the rational number Bk:

Dk =
∏

(p−1)|k
p ,

where the product is over prime numbers p such that (p − 1) | k. It is thus
sufficient to compute an approximation Ak to DkBk such that |Ak−DkBk| <
1/2, and the numerator of Bk will then be equal to the nearest integer to Ak.
This indeed gives a very efficient method to compute an individual value of
Bk.

Note that the implementation of this method should be done with care.
We first compute the denominator Dk and k! in a näıve way. We must then
estimate the number of decimal digits d with which to perform the computa-
tion, and the number N of terms to take in the zeta series. A cursory analysis
shows that one can take

d = 3 + �d1/ log(10)� N = 1 + �exp((d1 − log(k − 1))/(k − 1))� ,

where

d1 = log(Dk) + (k + 1/2) log(k)− k(log(2π) + 1) + log(2π)/2 + log(2) + 0.1 .

Thanks to Stirling’s formula the reader will recognize that d1 is close to
log(Dk|Bk|), and the 3+ and 1+ are safety precautions. Note that the above
computations should be done to the lowest possible accuracy, since at this
point we only want integers d and N .

The computation of π can be done using many different methods, but
since anyway you will have to use a CAS for the multiprecision operations,
this is always built in. Of course πk is computed using a binary powering
method.

When k is large all this takes only a small fraction of the time, almost all
the time being spent in the computation of ζ(k) =

∑
m�1 m−k to the desired

number of decimal digits d. Note that since k is large, ζ(k) is very close to
1. Once again there are several methods to do this computation, but in the
author’s opinion the best method is as follows. First, instead of computing
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the series ζ(k), we compute the Euler product 1/ζ(k) =
∏

p(1 − 1/pk), the
product being over all prime numbers up to the precomputed limit N . Second,
the multiplication of the current product P by 1− 1/pk is not done näıvely
as P (1 − 1/pk) but as P − t(P, d − k log(p))/pk, where t(P, d′) is equal to
P truncated to the accuracy d′. Indeed, contrary to most computations in
numerical analysis, here we need absolute and not relative accuracy. Although
this is a technical remark it can in itself gain a factor of 3 or 4.

Note that when suitably implemented the above method is so efficient
that it can even be faster than the method using recurrences for computing
a table.

To give an idea of the speed, on a Pentium 4 at 3 Ghz the computation of
B10000 requires 33 seconds using the formula of Exercise 26, but only 0.3 sec-
onds using the above method. The computation of all Bernoulli numbers up
to B5000 requires 205 seconds using the standard recurrences given above and
26 seconds using the above method that computes each number individually,
which is indeed considerably faster.

9.1.4 Bernoulli Polynomials and Fourier Series

In this section we give a direct link between Bernoulli polynomials and cer-
tain Fourier series. This will later be useful for computing special values of
Dirichlet L-functions (see Section 10.3).

It is important to compute the Fourier series corresponding to the func-
tions Bk(x) for k � 1 (for k = 0 it is trivial), more precisely to the functions
obtained by extending by periodicity of period 1 the kth Bernoulli polyno-
mial on the interval [0, 1[. We will denote by {x} the fractional part of x,
in other words the unique real number in [0, 1[ such that x − {x} ∈ Z, i.e.,
{x} = x − 	x
. The function Bk({x}) is evidently periodic of period 1. The
result is as follows.

Theorem 9.1.20. (1) For n � 2 even we have∑
k�1

cos(2πkx)
kn

=
(−1)n/2+1

2
(2π)nBn({x})

n!
.

(2) For n � 1 odd we have∑
k�1

sin(2πkx)
kn

=
(−1)(n+1)/2

2
(2π)nBn({x})

n!
,

except for n = 1 and x ∈ Z, in which case the left-hand side is evidently
equal to 0.

(3) For x /∈ Z we have∑
k�1

cos(2πkx)
k

= − log(2| sin(πx)|) .
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Proof. (1) and (2). Since Bn(1) = Bn(0) for n �= 1, the function Bn({x})
is piecewise C∞ and continuous for n � 2, with simple discontinuities at the
integers if n = 1. If n � 2 we thus have

Bn({x}) =
∑
k∈Z

cn,ke2iπkx ,

with

cn,k =
∫ 1

0

Bn(t)e−2iπkt dt .

For n = 1, the same formula is valid for x /∈ Z, and for x ∈ Z we must replace
B1({x}) by (B1(1−) + B1(0+))/2 = 0.

Using the definitions and the formulas B′
n(x) = nBn−1(x) and Bn(1) =

Bn(0) for n �= 1, by integration by parts we obtain for k �= 0

cn,k =
n

2iπk
cn−1,k and c1,k = − 1

2iπk
,

hence by induction

cn,k = − n!
(2iπk)n

.

On the other hand, we clearly have

cn,0 =
Bn+1(1)−Bn+1(0)

n + 1
= 0

as soon as n � 1. Thus, with the above interpretation for x ∈ Z when n = 1,
we obtain that for n � 1 we have

Bn({x}) = − n!
(2iπ)n

∑
k 
=0

e2iπkx

kn
.

Separating the cases n even and n odd, and grouping the terms k and −k
proves (1) and (2).

For (3) we proceed differently. We have

∑
k�1

cos(2πkx)
k

= �
⎛⎝∑

k�1

e2iπkx

k

⎞⎠ = −� (log(1− e2iπx)
)

= − log
(∣∣1− e2iπx

∣∣) = − log(2| sin(πx)|) ,

proving the theorem. ��

Corollary 9.1.21. For n � 1 we have∑
k�1

1
k2n

=
(−1)n−1

2
(2π)2nB2n

(2n)!
,
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and for n � 0 we have

∑
k�0

(−1)k

(2k + 1)2n+1
=

(−1)n−1

2
(2π)2n+1B2n+1(1/4)

(2n + 1)!
=

(−1)n

2
(π/2)2n+1E2n

(2n)!
.

In particular, the sign of B2n is equal to (−1)n−1 for n � 1 and the sign of
E2n is equal to (−1)n for n � 0, so both have alternating signs.

Proof. This is a direct consequence of the theorem by choosing x = 0 for
n even and x = 1/4 for n odd. Note that

∑
k�0(−1)k/(2k + 1)2n+1 > 0 since

it is an alternating series with decreasing terms. ��

Note that these are special cases of Theorem 10.3.1, which we will prove in
the next chapter. Conversely, we can give an alternative proof of this theorem
using Theorem 9.1.20; see Exercise 35 of Chapter 10.

Corollary 9.1.22. As n tends to infinity, we have

B2n ∼ (−1)n−1 2(2n)!
(2π)2n

and

E2n ∼ (−1)n 2(2n)!
(π/2)2n+1

.

Proof. Clear since
∑

k�1 1/k2n and
∑

k�0(−1)k/(2k +1)2n+1 tend to 1 as
n →∞. ��

This corollary shows that, as already mentioned, most asymptotic expan-
sions involving Bernoulli numbers or Euler numbers will diverge, since (2n)!
grows much faster than any power of n. Only rare expansions which have an
expression such as (2n)! in the denominator may converge.

Examples.∑
k�1

1
k2

=
π2

6
,

∑
k�1

1
k4

=
π4

90

∑
k�1

1
k6

=
π6

945
,

∑
k�1

1
k8

=
π8

9450
,

∑
k�0

(−1)k

2k + 1
=

π

4
,

∑
k�0

(−1)k

(2k + 1)3
=

π3

32
,

∑
k�0

(−1)k

(2k + 1)5
=

5π5

1536
,

∑
k�0

(−1)k

(2k + 1)7
=

61π7

184320
,

∑
k�0

(−1)k

(2k + 1)9
=

277π9

8257536
.

Note also the following corollary, which is very useful for giving upper
bounds on the remainder terms in the Euler–MacLaurin summation formula.

Corollary 9.1.23. If n is even we have
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sup
x∈R

|Bn({x})| = |Bn|

and if n is odd we have

sup
x∈R

|Bn({x})| � 7|Bn+1|
n + 1

.

Proof. The first statement immediately follows from Theorem 9.1.20 and
the fact that | cos(2πkx)| � 1, with equality for all k if x = 0. This proof is not
valid for n odd. For n = 1 we have B1(x) = x−1/2, hence supx∈R |B1({x})| =
1/2 < 7|B2/2|, since B2 = 1/6. For n � 3 odd, we have∣∣∣∣Bn({x})

Bn+1

∣∣∣∣ � 2(n!)
(2π)n

ζ(n)
(2π)n+1

2((n + 1)!)ζ(n + 1)
=

2π

n + 1
ζ(n)

ζ(n + 1)
.

It is easily checked that for s � 3 the function ζ(s)/ζ(s + 1) is decreasing,
so it attains its maximum value for s = 3, and the second result follows
since 2πζ(3)/ζ(4) < 7. Note that one can prove the same result with 2π
instead of 7, and that 2π is the optimal constant, but we do not need this
for applications since we only want to give a reasonable upper bound for the
error terms. ��

9.2 Analytic Applications of Bernoulli Polynomials

Even though for us the main use of Bernoulli numbers is of number-theoretic
nature, as we shall see for special values of L-functions (we have already
seen some examples above) and, as we shall see in Chapter 11, in congru-
ence properties leading to the definition of p-adic zeta and L-functions, it
is important to note that they are also essential for purely analytic reasons,
mainly because of the Euler–MacLaurin summation formula.

In addition to the above section on generating functions and recurrences,
we will thus devote four sections to Bernoulli polynomials. The present sec-
tion and the next deal with the analytic properties, i.e., essentially those
linked to the Euler–MacLaurin formula, Section 9.4 deals with χ-Bernoulli
polynomials, and Section 9.5 deals with the arithmetic properties of Bernoulli
numbers.

9.2.1 Asymptotic Expansions

We begin by recalling the definition of an asymptotic expansion. Even though
we can define this in a more general setting, we will assume that we deal with
asymptotic expansions at infinity.
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Definition 9.2.1. Let uN be a sequence of complex numbers. We will say
that a sequence (an) is the sequence of coefficients of an asymptotic expansion
(at infinity) of uN if for every k � 0, as N →∞ we have

uN = a0 +
a1

N
+

a2

N2
+ · · ·+ ak

Nk
+ o(1/Nk) ,

where we recall that f(N) = o(1/Nk) means that Nkf(N) tends to 0 as
N →∞.

It is easy to see by induction on k that an asymptotic expansion, if it
exists, is unique. However, I emphasize the fact that in practice it is quite
rare that the corresponding power series

∑
j�0 aj/N

j converges; in other
words, the power series

∑
j�0 ajx

j usually has a radius of convergence equal
to 0. Nevertheless, by abuse of notation we will write

uN = a0 +
a1

N
+

a2

N2
+ · · · ,

when it is understood that it is an asymptotic expansion in the above sense,
and not a convergent power series.

Even though the series converges nowhere in general, we can usually use
an asymptotic expansion to compute uN numerically to quite high accuracy,
by bounding the error term o(1/Nk). We will see below as applications of the
Euler–MacLaurin summation formula many examples of asymptotic expan-
sions, of bounds on the error terms, and of numerical computations. For the
moment consider the following example.

Example. Let uN be defined by

uN = eN

∫ ∞

N

e−t

t
dt

(this is equal to eNE1(N), see Section 8.5.3). Successive integration by parts
shows by induction that

uN =
0!
N
− 1!

N2
+

2!
N3

− · · ·+ (−1)k−1 (k − 1)!
Nk

+ (−1)kk!eN

∫ ∞

N

e−t

tk+1
dt .

It is easy to show that this defines an asymptotic expansion in the above
sense, so we will write

eN

∫ ∞

N

e−t

t
dt =

0!
N
− 1!

N2
+

2!
N3

− · · ·+ (−1)k−1 (k − 1)!
Nk

+ · · · ,

knowing that this expansion converges for no value of N . From the explicit
expression of the remainder term it is however clear that uN is always be-
tween two consecutive terms (this is very frequently the case in asymptotic
expansions), and in particular the error is less than the absolute value of the
first neglected term. If for instance we choose N = 40, taking k = 40 we see
that the error is less than 40!/4041 < 2 · 10−18, so that we can compute very
accurately the value of u40 (we obtain u40 = 0.024404115079628577 . . .).
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In practice we generalize the notion of asymptotic expansion in two ways:
first by allowing a finite number of auxiliary functions of N such as positive
powers of N , powers of logarithms or exponentials, etc., either additively or
multiplicatively; second by allowing the expansion to be in powers of some
other function of N than 1/N , most frequently 1/N1/2 or more generally
1/Nα for some α > 0.

9.2.2 The Euler–MacLaurin Summation Formula

The Euler–MacLaurin summation formula is a simple but powerful tool that
enables us to solve (for instance) the following problems:

– Find the asymptotic expansion of the Nth partial sum of a divergent series.
– Find the asymptotic expansion of the Nth remainder of a convergent series,

and consequently considerably accelerate the convergence of the series.
– Find the asymptotic expansion of the difference between a definite integral

and corresponding Riemann sums, which allows us to compute much more
accurately and much faster the numerical value of the integral.

– Determine whether a given series converges by comparison with the corre-
sponding integral.

We will see several examples of all of this. The general Euler–MacLaurin
formula is not complicated, and is easy to prove, but this does not prevent
it from being very useful. Taylor’s formula is of a similar kind, and in fact
Bourbaki calls formulas analogous to Euler–MacLaurin generalized Taylor
expansions.

Although we could directly state and prove the formula, we prefer to begin
with some preliminary remarks. We have seen above that Bn(x+1)−Bn(x) =
nxn−1. This should be compared with the identity (xn)′ = nxn−1. Here the
operation is derivation, and the antiderivative of nxn−1 is xn. In our case, the
operation is close to the derivation, it is the difference operator f(x+1)−f(x),
and the “antidifference” of nxn−1 is Bn(x). This is why Bernoulli polynomials
(and numbers) are so important in everything having to do with sums, as we
will see in the Euler–MacLaurin summation formula.

The aim of this summation formula is to give an asymptotic expansion
for a general sum of the type

∑
0�m�N−1 f(m), where f is a regular function

(for instance real analytic) on R. Before giving a formal and rigorous proof,
we will use a heuristic argument that is useful in other contexts. Denote by
D the derivation operator d/dt. If f is an entire function, we have by Taylor’s
expansion

f(m) =
∑
k�0

mk f (k)(0)
k!

=

(∑
k�0

mkDk

k!

)
(f)(0) = (emDf)(0) ,

in a reasonable operator sense. Thus
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∑
0�m�N−1

f(m) =

( ∑
0�m�N−1

emDf

)
(0) =

(
eND − 1
eD − 1

f

)
(0)

=
(

1
eD − 1

f

)
(N)−

(
1

eD − 1
f

)
(0) ,

since all power series operators in D commute and once again by Taylor we
have eNDf(0) = f(N). By definition 1/(eD− 1) = 1/D +

∑
j�1(Bj/j!)Dj−1.

The operator 1/D is of course the antiderivative operator, i.e., the integral,
hence the above formal reasoning leads to the formula

∑
0�m�N−1

f(m) =
∫ N

0

f(t) dt +
∑
j�1

Bj

j!
(f (j−1)(N)− f (j−1)(0)) .

This heuristic reasoning is essentially correct, but we have not taken into
account the convergence conditions since in general the series that we have
obtained is not convergent. In fact, the goal of the Euler–MacLaurin sum-
mation formula is to give an asymptotic expansion of the left-hand side, not
an exact formula. The precise theorem is as follows, which we give in a more
general form.

Theorem 9.2.2 (Euler–MacLaurin). Let a and b be two real numbers
such that a � b, and assume that f ∈ Ck([a, b]) for some k � 1. Then

∑
a<m�b

m∈Z

f(m) =
∫ b

a

f(t) dt +
k∑

j=1

(−1)j

j!

(
Bj({b})f (j−1)(b)−Bj({a})f (j−1)(a)

)

+
(−1)k−1

k!

∫ b

a

f (k)(t)Bk({t}) dt .

Proof. We give a clean proof, using (very little) the language of distribu-
tions, and explain very briefly afterward how to avoid it.

By the basic properties of Bernoulli polynomials, we know that B′
k({t}) =

kBk−1({t}) for k � 2, except for k = 2 on a set of measure zero (the integers).
Furthermore, B′

1({t}) = B0({t})−δZ(t), where δZ(t) is the Dirac distribution
concentrated on Z. Thus, if we set

Rk =
(−1)k−1

k!

∫ b

a

f (k)(t)Bk({t}) dt ,

integration by parts gives for k � 2

Rk =
(−1)k−1

k!

(
Bk({b})f (k−1)(b)−Bk({a})f (k−1)(a)

)
+ Rk−1 .

For k = 1 we first assume that a /∈ Z and b /∈ Z. Integration by parts gives
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R1 = B1({b})f(b)−B1({a})f(a)−
∫ b

a

f(t) dt +
∑

a<m�b

f(m) .

Furthermore, we note that R1 = R1(a, b) is a continuous function of a and b,
and it is easily checked by letting a or b tend to integers that the right-hand
side of this formula is also continuous, so it is valid for all a and b, integral
or not. Using the recurrence on Rk we thus obtain

Rk =
k∑

j=1

(−1)j−1

j!

(
Bj({b})f (j−1)(b)−Bj({a})f (j−1)(a)

)
−
∫ b

a

f(t) dt +
∑

a<m�b

f(m) ,

proving the theorem.
To avoid the (very elementary) use of the Dirac distribution, we proceed

as follows. Setting a0 = 	a
 and b0 = 	b
, we split the integral into the sum
of an integral from a to a0 + 1, of integrals from a0 + i to a0 + i + 1 for
1 � i � b0 − a0 − 1, and of an integral from b0 to b. We then perform the
same integrations by parts as above on each individual integral, and putting
everything together we of course obtain the same result. ��

The following corollary gives three alternative forms of the Euler–MacLaurin
formula, which for simplicity we give only for b = a + N with N ∈ Z�0, so
that {b} = {a}.
Corollary 9.2.3. Let a ∈ R, N ∈ Z�0, and k ∈ Z�1.

(1) If f ∈ Ck([a,N + a]) we have

N−1∑
m=0

f(m+a) =
∫ N+a

a

f(t) dt+
k∑

j=1

Bj

j!

(
f (j−1)(N + a)− f (j−1)(a)

)
+Rk(f,N) ,

with Rk(f,N) =
(−1)k−1

k!

∫ N+a

a

f (k)(t)Bk({t− a}) dt .

(2) If f ∈ C2k([a,N + a]) we have

N∑
m=0

f(m + a) =
∫ N+a

a

f(t) dt +
f(N + a) + f(a)

2

+
k∑

j=1

B2j

(2j)!

(
f (2j−1)(N + a)− f (2j−1)(a)

)
+ R2k(f,N) ,

with R2k(f,N) = − 1
(2k)!

∫ N+a

a

f (2k)(t)B2k({t− a}) dt .
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(3) If f ∈ C2k([1, N ]) we have

N∑
m=1

f(m) =
∫ N

1

f(t) dt +
f(N) + f(1)

2

+
k∑

j=1

B2j

(2j)!

(
f (2j−1)(N)− f (2j−1)(1)

)
+ R2k(f,N) ,

with R2k(f,N) = − 1
(2k)!

∫ N

1

f (2k)(t)B2k({t}) dt .

Note that the main term of the last formula is equivalent to the one
that we have obtained by our heuristic reasoning. Note also that we use the
notation Rk(f,N) with slightly different meanings.

Proof. For (1) we apply the theorem to a = 0 and b = N , replace the
function f(t) by f(t + a), and subtract f(N + a)− f(a). Formula (2) follows
by changing k into 2k and using the values of the odd Bernoulli numbers.
Formula (3) follows from (2) by choosing a = 1 and changing N into N − 1.

��

Corollary 9.2.4. Let f ∈ C2k([a,∞[) for some a ∈ R. Assume that both
the series

∑
m�a f(m) and the integral

∫∞
a

f(t) dt converge, and that the
derivatives f (2j−1)(N) tend to 0 as N →∞ for 1 � j � k. Then

∞∑
m=N+1

f(m) =
∫ ∞

N

f(t) dt− f(N)
2

−
k∑

j=1

B2j

(2j)!
f (2j−1)(N) + R2k(f,N) ,

with
R2k(f,N) = − 1

(2k)!

∫ ∞

N

f (2k)(t)B2k({t}) dt .

Proof. Immediate and left to the reader (Exercise 52). ��

Remark. If it is inconvenient to compute the successive derivatives of the
function f , we could hope to replace them for instance by the iterated forward
differences obtained by iterating (δf)(t) = f(t+1)− f(t) (or by the centered
differences f(t+1/2)− f(t− 1/2) if preferred). In this case, we would need a
formula involving this operator instead of the derivative operator D = d/dt.
This is where the heuristic reasoning made at the beginning comes in handy:
by Taylor we have δ = eD − 1, hence D = log(1 + δ). Thus the operator
1/(eD−1) that is involved in the Euler–MacLaurin formula can be rewritten
formally as

1
eD − 1

=
1
D

+
(

1
eD − 1

− 1
D

)
=

1
D

+
(

1
δ
− 1

log(1 + δ)

)
.
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Thus if we define the δ-Bernoulli numbers bk by

t

log(1 + t)
=
∑
k�0

bk

k!
tk ,

we have
1

eD − 1
=

1
D
−
∑
k�1

bk

k!
δk−1 .

From the formal Euler–MacLaurin formula we can thus deduce an asymptotic
expansion for

∑
0�m�N−1 f(m+a) involving the antiderivative operator 1/D

and the iterates of the forward difference operator instead of the iterates of the
derivative operator. An analogous argument also holds for similar operators
(everywhere-convergent power series in D with zero constant term).

9.2.3 The Remainder Term and the Constant Term

To use the Euler–MacLaurin formula (usually in the form of Corollary 9.2.3)
we must give an estimate for the remainder term. We give it for the second
formula of the corollary, the third being obtained by replacing [a,N +a] with
[1, N ].

Proposition 9.2.5. Assume that f ∈ C2k+2([a,N + a]) and denote by
T2k+2(f,N) the first “neglected term” in Corollary 9.2.3 (2), in other words
T2k+2(f,N) = (B2k+2/(2k + 2)!)(f (2k+1)(N + a)− f (2k+1)(a)). Assume that
f (2k+2)(t) has constant sign on [a, a + N ]. Then

(1) The remainder term R2k(f,N) has the same sign as T2k+2(f,N) and
satisfies |R2k(f,N)| � 2(1− 2−2k−2)|T2k+2(f,N)|.

(2) If, in addition, f ∈ C2k+4([a, a + N ]) and f (2k+4)(t) are also of constant
sign on [a, a + N ] then |R2k(f,N)| � |T2k+2(f,N)|; in other words, the
remainder term is in absolute value smaller than the first neglected term.

The term T2k+2(f,N) is of course not to be confused with the tangent
numbers T2k−1.

Proof. (1). For notational simplicity set K = 2k + 2, and let ε = ±1 be
such that εf (K)(t) � 0 for t ∈ [a,N + a]. Since |BK(t)| � |BK | for t ∈ [0, 1]
(Corollary 9.1.23) we have

|RK(f,N)| � |BK |
K!

∫ N+a

a

|f (K)(t)| dt � |BK |
K!

ε

∫ N+a

a

f (K)(t) dt

� |BK |
K!

ε(f (K−1)(N + a)− f (K−1)(a)) � |TK(f,N)| .

On the other hand, applying Corollary 9.2.3 to k and to k + 1 it is clear
that R2k(f,N) = TK(f,N) + RK(f,N). Since we have just proved that
|RK(f,N)| � |TK(f,N)| it follows that R2k(f,N) has the same sign as
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TK(f,N) and also that |R2k(f,N) � 2TK(f,N). To obtain the slightly
stronger inequality given in the proposition we write

TK(f,N) =
BK

K!

∫ N+a

a

(f (K)(t) dt ,

so that

R2k(f,N) = TK(f,N)+RK(f,N) =
1

K!

∫ N+a

a

f (K)(t)(BK−BK({t−a})) dt .

By Exercise 15 we have |BK −BK({t− a})| � 2(1− 2−K)|BK |, proving (1).
(2). Applying (1) to 2k + 2 instead of 2k, for t ∈ [a,N + a] we have

sign(R2k+2(f,N)) = sign(T2k+4(f,N)) = sign(B2k+4) sign(f2k+4(t))

= − sign(B2k+2) sign(f (2k+2)(t)) = − sign(T2k+2(f,N)) ,

where sign(0) agrees with any value of ±1. Since R2k(f,N) = T2k+2(f,N) +
R2k+2(f,N) it follows that |R2k(f,N)| � |T2k+2(f,N)| as claimed. ��

The following is another useful form of the Euler–MacLaurin formula,
where we introduce the notion of “constant term,” used by Ramanujan with-
out any justification.

Corollary 9.2.6. Let k � 1, and let f ∈ Ck([a,∞[).

(1) Assume that the sign of f (k)(t) is constant on [a,∞[ and that f (k−1)(t)
tends to 0 as t →∞. There exists a constant zk(f, a) such that

N−1∑
m=0

f(m+a) = zk(f, a)+
∫ N+a

a

f(t) dt+
k−1∑
j=1

Bj

j!
f (j−1)(N +a)+Rk(f,N) ,

where

Rk(f,N) =
(−1)k

k!

∫ ∞

N+a

f (k)(t)(Bk({t− a})−Bk) dt

tends to 0 as N →∞.
(2) Let k0 � 1 be an integer. If the sign of f (k)(t) is constant and f (k−1)(t)

tends to 0 as t →∞ for all k � k0, then for k � k0 the constant zk(f, a)
is independent of k. It will be simply denoted by z(f, a) and called the
constant term of the formula, and we have the following identity, valid
for any fixed k � k0:

z(f, a) = −
k∑

j=1

Bj

j!
f (j−1)(a) +

(−1)k−1

k!

∫ ∞

a

f (k)(t)Bk({t− a}) dt .



9.2 Analytic Applications of Bernoulli Polynomials 27

Proof. By the Euler–MacLaurin formula, we have for all k � 1

N−1∑
m=0

f(m + a) = zk(f, a,N) +
∫ N+a

a

f(t) dt +
k∑

j=1

Bj

j!
f (j−1)(N + a) ,

where

zk(f, a,N) = −
k∑

j=1

Bj

j!
f (j−1)(a) +

(−1)k−1

k!

∫ N+a

a

f (k)(t)Bk({t− a}) dt .

Since the sign of f (k)(t) is constant it follows that the above integral is
bounded in absolute value by supt∈[0,1] |Bk(t)||f (k−1)(N + a) − f (k−1)(a)|.
Since by assumption f (k−1)(t) tends to 0 as t → ∞, it is in particular
bounded, and it follows that the integral

∫∞
a

f (k)(t)Bk({t−a}) dt is absolutely
convergent. Thus zk(f, a,N) = zk(f, a) + Ik(f,N) with

zk(f, a) = −
k∑

j=1

Bj

j!
f (j−1)(a) +

(−1)k−1

k!

∫ ∞

a

f (k)(t)Bk({t− a}) dt

and

Ik(f,N) =
(−1)k

k!

∫ ∞

N+a

f (k)(t)Bk({t− a}) dt .

Since the integral of f (k)(t)Bk({t − a}) converges (absolutely) at infinity,
Ik(f,N) tends to 0 as N → ∞. Finally, by assumption f (k−1)(N + a) also
tends to 0 and we have

Bk

k!
f (k−1)(N + a) = −Bk

k!

∫ ∞

N+a

f (k)(t) dt ,

proving (1).
If in addition we assume that f (k)(t) has constant sign and that f (k−1)(t)

tends to 0 as t → ∞ for all k � k0, then subtracting (1) for k from (1) for
k + 1 we obtain

0 = zk+1(f, a)− zk(f, a) +
Bk

k!
f (k−1)(N + a) + o(1) ,

so letting N → ∞ and using the fact that f (k−1)(t) tends to 0, we deduce
that zk+1(f, a) = zk(f, a), hence that zk(f, a) is indeed independent of k,
proving (2). ��

9.2.4 Euler–MacLaurin and the Laplace Transform

See Section 9.7.4 for more details on the Laplace transform. Recall the fol-
lowing definition:
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Definition 9.2.7. Let g be a piecewise continuous function on [0,∞[ such
that for all a > 0, the function g(t)e−at tends to 0 as t →∞. We define the
Laplace transform L(g) of g by the formula

L(g)(x) =
∫ ∞

0

e−txg(t) dt .

Thanks to the assumptions on g it is clear that L(g) is well defined and
defines a holomorphic function on �(x) > 0, and that

L(g)(k)(x) = (−1)k

∫ ∞

0

e−txtkg(t) dt = (−1)kL(tkg)(x) .

In addition, note that by Fubini’s formula we have∫ b

a

L(g)(x) dx =
∫ ∞

0

e−at − e−bt

t
g(t) dt .

Applying this with g(t) = 1, hence L(x) = 1/x, and a = 1 gives the well-
known and important formula

log(x) =
∫ ∞

0

e−t − e−xt

t
dt .

The relation between the Laplace transform and the Euler–MacLaurin
formula is clear: if f(x) = L(g)(x), then for instance∑

1�m�N

f(m) =
∫ ∞

0

1− e−Nt

et − 1
g(t) dt .

From this we obtain both a formula for the sum of the infinite series if it
converges (or more generally for the constant term z(f, 1) defined above) by
letting N tend to infinity, and a formula for the remainder term in Euler–
MacLaurin by expanding 1/(et− 1) in terms of Bernoulli numbers and using
the formula given above for f (k)(N).

Since there are many forms of the Euler–MacLaurin formula, there are as
many expressions for the remainder term and the constant term. We give the
following:

Proposition 9.2.8. Keep the above assumptions on g and set f(x) =
L(g)(x). For k � 1 we have

(1)

(−1)k−1

k!

∫ N+a

a

f (k)(t)Bk({t− a}) dt

=
∫ ∞

0

g(t)

(
1

et − 1
−

k∑
j=0

Bj

j!
tj−1

)(
e−at − e−(N+a)t

)
dt .
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(2) If f satisfies the assumptions of Corollary 9.2.6 (1 ) then

Rk(f,N) =
(−1)k

k!

∫ ∞

N+a

f (k)(t)(Bk({t− a})−Bk) dt

= −
∫ ∞

0

g(t)

(
1

et − 1
−

k−1∑
j=0

Bj

j!
tj−1

)
e−(N+a)t dt .

Proof. Immediate from the above remarks and left to the reader (Exercise
31). Note that the result is false for k = 0. ��

Corollary 9.2.9. Keep the above assumptions on g and assume that f and
all its derivatives have constant sign and tend to 0 as t → ∞. With the
notation of Corollary 9.2.6 we have

z(f, a) =
f(a)

2
+
∫ ∞

a

f ′(t)
(
{t− a} − 1

2

)
dt

=
∫ ∞

0

g(t)
(

1
1− e−t

− 1
t

)
e−at dt .

Proof. Simply take k = 1 in the proposition. ��

Examples. As examples of the proposition and its corollary, we give the
following formulas. The functions Γ(x), ψ(x), and ζ(s, x) will be defined and
studied in more detail below.

Proposition 9.2.10. (1) For �(s) > 0 and x > 0 we have

ζ(s, x + 1) =
x1−s

s− 1
− s

∫ ∞

x

{t− x}
ts+1

dt =
1

Γ(s)

∫ ∞

0

ts−1e−xt

et − 1
dt .

(2) In particular, for �(s) > 0 we have

ζ(s) =
1

s− 1
+ 1− s

∫ ∞

1

{t}
ts+1

dt =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt .

(3) For x > 0 we have

ψ(x + 1) = log(x) +
∫ ∞

x

{t− x}
t2

dt

= log(x) +
∫ ∞

0

(
1
t
− 1

et − 1

)
e−tx dt =

∫ ∞

0

(
e−t

t
− e−tx

et − 1

)
dt .

(4) In particular,

γ = 1−
∫ ∞

1

{t}
t2

dt =
∫ ∞

0

(
1

et − 1
− e−t

t

)
dt .
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(5) For x > 0 we have

log(Γ(x + 1)) =
(

x +
1
2

)
log(x)− x +

1
2

log(2π)− I(x) ,

where

I(x) =
∫ ∞

x

{t− x} − 1/2
t

dt =
∫ ∞

0

(
1
t
− 1

et − 1
− 1

2

)
e−xt

t
dt ,

so that

log(Γ(x + 1)) =
∫ ∞

0

(
x

e−t

t
− 1− e−xt

t(et − 1)

)
dt .

(6) In particular,

1
2

log(2π) = 1 +
∫ ∞

1

{t} − 1/2
t

dt =
∫ ∞

0

(
1
t
− e−t

2
− 1

et − 1

)
dt

t
.

Proof. All the results except (5) and (6) are direct consequences of the
definitions and of the proposition and its corollary. For (5) and (6), the for-
mulas involving fractional parts come from Euler–MacLaurin, the formula for
log(2π)/2 coming from Stirling’s formula (see below). It is to be noted that
the integrals are only conditionally convergent. If you are uncomfortable with
this, do an integration by parts to obtain formulas involving B2({t}), which
will be absolutely convergent.

For the Laplace-type formulas we integrate the formula for ψ(x + 1), use
Stirling’s formula, do some rearrangements, and use the Laplace formula for
log(x) seen above. The details will be seen below when we study the gamma
function (Proposition 9.6.29 and Corollary 9.6.31). ��

If we assume only that f is a holomorphic function of x for �(x) > 0, but
not necessarily given as a Laplace transform, we have the following.

Proposition 9.2.11 (Abel–Plana). Assume that f is a holomorphic func-
tion on �(z) > 0, that f(z) = o(exp(2π|�(z)|)) as |�(z)| → ∞ uniformly in
vertical strips of bounded width, and that f and all its derivatives have con-
stant sign and tend to 0 as x→∞ in R.

(1) If a > 0 we have

z(f, a) =
f(a)

2
+ i

∫ ∞

0

f(a + it)− f(a− it)
e2πt − 1

dt .

(2) If a > 1/2 we have

z(f, a) =
∫ 1/2

0

f(a− 1/2 + t) dt

− i

∫ ∞

0

f(a− 1/2 + it)− f(a− 1/2− it)
e2πt + 1

dt .
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Proof. See Exercise 33. ��

Remarks. (1) If f(x) = L(g)(x) this proposition implies Corollary 9.2.9;
see Exercise 29.

(2) The formula is usually given in the first form. However, the second one
is better suited for numerical computation since there is no problem in
computing the integrand close to t = 0, while with the first form we must
use some sort of Taylor expansion to obtain the result accurately.

9.2.5 Basic Applications of the Euler–MacLaurin Formula

As already mentioned, the Euler–MacLaurin formula has many applications.
We begin with the easiest.

Proposition 9.2.12. For every k � 1 we have

N∑
m=1

mk =
1

k + 1

(
Nk+1 +

k + 1
2

Nk +
k∑

j=2

(
k + 1

j

)
BjN

k+1−j

)

= Nk +
Bk+1(N)−Bk+1(0)

k + 1
=

Bk+1(N + 1)−Bk+1(0)
k + 1

,

and more generally∑
0�m<N

(m + x)k =
Bk+1(N + x)−Bk+1(x)

k + 1
.

Proof. Immediate application of Euler–MacLaurin with f(t) = tk. The
proposition is also easily proved directly using Proposition 9.1.3. ��

Examples.

N∑
m=1

m =
N(N + 1)

2
,

N∑
m=1

m2 =
N(N + 1)(2N + 1)

6
,

N∑
m=1

m3 =
N2(N + 1)2

4
,

N∑
m=1

m4 =
N(N + 1)(2N + 1)(3N2 + 3N − 1)

30
.

Proposition 9.2.13. Let α ∈ C be different from −1.

(1) For every k > �(α) + 1 such that k � 1 we have

N∑
m=1

mα = ζ(−α) +
Nα+1

α + 1
+

Nα

2
+

k∑
j=2

(
α

j − 1

)
Bj

j
Nα−j+1 + Rk(α,N) ,

where
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Rk(α,N) = (−1)k

(
α

k

)∫ ∞

N

tα−kBk({t}) dt .

When k is even we have

|Rk(α,N)| �
∣∣∣∣( α

k + 1

)
Bk+2

k + 2
Nα−k−1

∣∣∣∣ ;

in other words, |Rk(α,N)| is smaller than the modulus of the first omitted
term, and in particular Rk(α,N) tends to 0 as N →∞.

(2) With the same assumptions, we have the formula

ζ(−α) = − 1
α + 1

−
k∑

j=1

(
α

j − 1

)
Bj

j
+ (−1)k−1

(
α

k

)∫ ∞

1

tα−kBk({t}) dt .

Proof. The first statement follows directly from the Euler–MacLaurin for-
mula and Proposition 9.2.5, apart from the determination of the constant.
Fix some integer k0 > �(α) + 1 such that k0 � 1, and let fα(t) = tα. For all
k � k0 the sign of f

(k)
α (t) is constant and f

(k−1)
α (t) tends to 0 as t → ∞, so

that we can apply Corollary 9.2.6. The first formula applied to fα(t), a = 1,
and N replaced by N − 1 gives

N−2∑
m=0

(m+1)α = z(fα, 1)+
Nα+1 − 1

α + 1
− Nα

2
+

k∑
j=2

(
α

j − 1

)
Bj

j
Nα−j+1 + o(1) .

Adding Nα to both sides shows that the constant is equal to z(fα, 1)−1/(α+
1).

Now using again Corollary 9.2.6 (2), we obtain that for any fixed k � k0

we have

z(fα, 1) = −
k∑

j=1

(
α

j − 1

)
Bj

j
+ (−1)k−1

(
α

k

)∫ ∞

1

tα−kBk({t}) dt .

From this formula it is immediately obvious that for all α ∈ C the function
z(fα, 1) is a complex differentiable function of α, hence a holomorphic func-
tion. On the other hand, for α < −1 in the formula that we have proved we
may choose k0 = 1, hence

N∑
m=1

mα = z(fα, 1)− 1
α + 1

+
Nα+1

α + 1
+

Nα

2
+ o(1) = z(fα, 1)− 1

α + 1
+ o(1) ,

and since the left-hand side converges to ζ(−α), we deduce that z(fα, 1) =
ζ(−α) + 1/(α + 1). Since this is true on an open subset of C and both sides
are meromorphic functions, it is true for all α ∈ C such that α �= −1, proving
(1). Statement (2) follows by taking N = 1. ��

On the other hand, for α = −1 we have the following.
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Proposition 9.2.14. (1) For k � 1 we have

N∑
m=1

1
m

= log N + γ +
1

2N
−

k∑
j=2

Bj

jN j
+ Rk(−1, N) ,

where γ is Euler’s constant and

Rk(−1, N) =
∫ ∞

N

t−1−kBk({t}) dt .

When k is even we have

|Rk(−1, N)| � |Bk+2|
(k + 2)Nk+2

;

in other words, |Rk(−1, N)| is smaller than the modulus of the first omit-
ted term.

(2) For k � 1 we have

γ =
1
2

+
k∑

j=2

Bj

j
−
∫ ∞

1

t−1−kBk({t}) dt .

(3) We have lims→1(ζ(s)− 1/(s− 1)) = γ.

Proof. (1) is again a direct application of Euler–MacLaurin and the defi-
nition of γ, and (2) follows by choosing N = 1. If we choose k = 1 in (2) of
the preceding proposition with α = −s we obtain

ζ(s) =
1

s− 1
+

1
2
− s

∫ ∞

1

t−s−1B1({t}) dt ,

so by absolute convergence

lim
s→1

(
ζ(s)− 1

s− 1

)
=

1
2
−
∫ ∞

1

t−2B1({t}) dt = γ

by (2). ��

Examples.

N∑
m=1

1
m

= log N + γ + O(1/N) ,

N∑
m=1

1√
m

= 2
√

N + ζ(1/2) + O(1/
√

N) ,

N∑
m=1

√
m =

2
3
N
√

N +
1
2

√
N + ζ(−1/2) + O(1/

√
N) .
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An important practical question is how to compute Euler’s constant
(or ζ(−α), or other constants of the type z(f, a) occurring in the Euler–
MacLaurin formula). It is out of the question to use the above definition
since the convergence is much too slow. The whole point is that one can use
the Euler–MacLaurin formula with suitably chosen parameters N and n.

As a toy example, assume for instance that we do not want to use Bernoulli
numbers Bj for j > 12. We will thus use k = 12 in the formula. Since all the
conditions of Proposition 9.2.5 are satisfied, we deduce that the modulus of
the remainder r12 is bounded by

|B14|
14!

13!
N14

=
1

12N14
.

Thus if we only take N = 10, we obtain 15 decimal digits of the cor-
rect result, using only the partial sum of the first ten terms plus a few
corrective terms coming from the Euler–MacLaurin formula (we obtain
γ = 0.577215664901533 . . .).

The same method can be used for many other sums or limits of the same
kind. For instance, we can easily compute to 15 decimal digits any reasonable
value of ζ(s); see Exercise 42.

If we choose f(N) = log N , the summation formula immediately gives
Stirling’s formula in the following weak form:

log(N !) = (N + 1/2) log N −N + C + O(1/N)

for a certain constant C. As above, it is easy to compute C numerically. The
asymptotic expansion given by Euler–MacLaurin is

log(N !) =
(

N +
1
2

)
log N −N + C +

B2

1 · 2N
+

B4

3 · 4N3
+ · · · .

However, the constant C can also be computed exactly. Classically this is
done using Wallis’s formulas (see Proposition 9.6.22). However, a more so-
phisticated, but more natural, way to compute it is to take the derivative
with respect to α of the formulas of Proposition 9.2.13. Let us explain how
this is done, since it can be used in other situations (see Exercise 44). Assume
that �(α) < 1, so that we can choose k = 1. We have

N∑
m=1

mα = ζ(−α) +
Nα+1

α + 1
+

Nα

2
− α

∫ ∞

N

tα−1({t} − 1/2) dt .

Differentiating with respect to α and setting α = 0, we obtain

N∑
m=1

log m = −ζ ′(0) + N log N −N +
1
2

log N −
∫ ∞

N

{t} − 1/2
t

dt .

Since the last integral tends to 0 as N →∞, we deduce that our constant C
is equal to −ζ ′(0) = log(2π)/2, as we will see in Section 10.2.4.
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Remark. As already mentioned, if you are uncomfortable with the condi-
tionally convergent integrals that occur in the above reasoning, simply choose
k = 2 instead of k = 1. Everything will be absolutely convergent but the com-
putations will of course be slightly longer.

The reader is strongly advised to solve Exercise 44 for analogous results.

The Euler–MacLaurin summation formula also permits the determination
of the convergence behavior of certain series. We give the following example.
Let x be a nonzero real number and let α ∈ R. We want to know the behavior
(convergent or divergent) of the series

S =
∞∑

m=1

sin(x log m)
mα

.

Since | sin(x log m)| � 1, if α > 1 the series trivially converges absolutely, and
if α � 0 the general term does not tend to 0, so the series diverges. We can
thus assume that 0 < α � 1.

We use Euler–MacLaurin with k = 2, obtaining
N∑

m=1

sin(x log m)
mα

=
∫ N

1

sin(x log t)
tα

dt +
sin(x log N)

2Nα
+ r1 ,

with

r1 =
∫ N

1

B1({t})x cos(x log t)− α sin(x log t)
tα+1

dt .

Since B1({t}) is bounded and α + 1 > 1, it is clear that the integral defining
r1 is absolutely convergent as N → ∞, and in particular has a limit. The
term sin(t log N)/(2Nα) tends to 0 as N →∞. It follows that our series has
the same convergence properties as the integral. In the integral we make the
change of variables t = eu, and we obtain∫ N

1

sin(x log t)
tα

dt =
∫ log N

0

sin(xu)e(1−α)u du .

It is now an easy exercise (for instance by explicit computation) to show that
for 0 < α � 1 the integral does not converge as N → ∞, and so neither
does our series (there are, of course, other ways to prove this, for instance by
grouping terms such that exp(kπ/|x|) � m < exp((k + 1)π/|x|)).

9.3 Applications to Numerical Integration

It is clear that in the opposite direction to the above examples, the Euler–
MacLaurin formula gives approximations of integrals by sums, which often
allows the numerical computation of these integrals. It is to be stressed from
the start that our goal is to give high-precision approximations to integrals,
not only 15 decimal digits, say.
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9.3.1 Standard Euler–MacLaurin Numerical Integration

We begin with a direct application of Euler–MacLaurin. In the next subsec-
tions we will give little-known but very powerful methods for high-precision
numerical integration.

Let f ∈ Cr([a, b]), where [a, b] is a finite interval. When N is large the
integral from a to b of f can be reasonably well approximated by the Riemann
sum

b− a

N

N−1∑
m=0

f(a + m(b− a)/N) .

The Euler–MacLaurin formula allows us to state this much more precisely,
and as usual gives us both an asymptotic expansion of the difference and an
efficient method to compute the integral numerically.

Proposition 9.3.1. Let [a, b] be a finite closed interval, and assume that
f ∈ Ck([a, b]) for some k � 1. Then for any integer N � 1, if we set h =
(b− a)/N we have∫ b

a

f(t) dt = h

N−1∑
m=0

f(a + mh) + h
f(b)− f(a)

2

−
k∑

j=2

Bj

j!
hj

(
f (j−1)(b)− f (j−1)(a)

)
+

(−1)k

k!
hk

∫ b

a

f (k)(t)Bk({(t− a)/h}) dt .

Proof. For t ∈ [0, N ], set g(t) = f(a + ht) and apply the formula to the
function g on the interval [0, N ]. Since g(j)(t) = hjf (j)(a + ht), we obtain

N−1∑
m=0

f(a + hm) =
∫ N

0

f(a + ht) dt− f(b)− f(a)
2

+
k∑

j=2

Bj

j!
hj−1

(
f (j−1)(b)− f (j−1)(a)

)
+

(−1)k−1

k!
hk

∫ N

0

f (k)(a + ht)Bk({t}) dt ;

hence by making the change of variables a + ht = t′ in both integrals we
obtain
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N−1∑
m=0

f(a + hm) =
1
h

∫ b

a

f(t) dt− f(b)− f(a)
2

+
k∑

j=2

Bj

j!
hj−1

(
f (j−1)(b)− f (j−1)(a)

)
+

(−1)k−1

k!
hk−1

∫ b

a

f (k)(t)Bk({(t− a)/h}) dt ;

hence, transferring to the left the integral that we want, we obtain the desired
formula. ��

Remarks. (1) To avoid the term h(f(b) − f(a))/2, it is neater to replace
the asymmetrical Riemann sum

∑
0�m�N−1 by the symmetrical sum∑′

0�m�N , where the ′ indicates that the extremal terms m = 0 and
m = N must be counted with coefficient 1/2.

(2) In the sum from j = 2 to k we can of course restrict only to j even, and
we may also choose k even (or k odd) as desired.

Example. Let us use the above formula to compute log 2. We choose f(t) =
1/(1 + t), whose integral from 0 to 1 is equal to log 2. We have f (j)(t) =
(−1)jj!/(1 + t)j+1 and f(m/N) = N/(N + m). We deduce that for all k and
N we have

log 2 =
N∑

m=1

1
N + m

+
1

4N
−

k∑
j=2

Bj(1− 2−j)
jN j

+
1

Nk

∫ 1

0

Bk({Nt})
(1 + t)k+1

dt .

To bound the remainder, we choose as usual k even, and we can then bound
|Bk({Nt})| by |Bk|. We bound 1/(1 + t)k+1 by 1, and we deduce that the
remainder is bounded by |Bk|/Nk. Choosing k = 12, we see that with N = 10
the remainder is bounded by 3 ·10−13. Thus, as usual with Euler–MacLaurin,
by dividing the interval of integration into only 10 subintervals, and adding
a few corrective terms, we obtain 13 decimal digits of the result.

9.3.2 The Basic Tanh-Sinh Numerical Integration Method

We now consider a little-known but much more powerful method, due to
Takahashi and Mori, see [Tak-Mor] and [Mori], which the author learned
from [Bor-Bai-Gir]. Apart from the evident fact that this method is quite
recent, the main reason that this method is not widespread is that the usual
practitioners of numerical integration are engineers and numerical analysts,
who in general do not need more than 15 correct decimal places. In contrast,
in number theory we often want to identify certain integrals using linear
dependence techniques (see Section 2.3.5). For this we often need hundreds
if not thousands of decimal places, and the standard methods are totally
unsuitable for that purpose.
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Assume first that F ∈ C∞(R) is such that for all k � 0 the derivatives
F (k)(x) tend to 0 as |x| → ∞ at least as fast as 1/|x|α for some α > 1, and let
h be a small positive parameter. Applying Corollary 9.2.3 with N replaced
by 2N and f(t) replaced by F (h(t − N)), we obtain the following formula
valid for all k � 1:

h

N∑
m=−N

F (mh) =
∫ N

−N

F (t) dt + h
F (N) + F (−N)

2

+
k∑

j=1

B2jh
2j

(2j)!

(
F (2j−1)(N)− F (2j−1)(−N)

)
+ h2k+1R2k(F,N) ,

with

R2k(F,N) = − 1
(2k)!

∫ N

−N

F (2k)(t)B2k({t}) dt .

From the assumptions on F we can let N tend to infinity and we obtain the
simple estimate∣∣∣∣∣

∫ ∞

−∞
F (t) dt− h

∞∑
m=−∞

F (mh)

∣∣∣∣∣ � C2kh2k+1 ,

with

C2k =
|B2k|
(2k)!

∫ ∞

−∞
|F (2k)(t)| dt .

In other words, for such functions F , as h tends to 0 the difference between
the sum and the integral tends to 0 faster than any power of h. In actual
practice the convergence is usually (although not always) at least as fast as
e−C/|h| for some C > 0; see Exercise 47.

Now let f ∈ C∞(]−1, 1[) be integrable on [−1, 1] (it may have singularities
at the endpoints). The fundamental trick is as follows. We introduce the magic
function φ(t) = tanh(sinh(t)). This function has the following evident proper-
ties: it is a one-to-one odd map from R to ]−1, 1[, and as t → ±∞ it tends to
±1 doubly exponentially fast ; more precisely, sign(t)− tanh(sinh(t)) behaves
approximately like 2/ exp(exp(|t|)). Thus the function F (t) = f(φ(t))φ′(t)
will certainly satisfy our assumptions above, and in fact its derivatives will
tend to zero extremely rapidly (and in particular F (t) will be in the so-called
Schwartz class). Changing variables and applying the above remark based on
Euler–MacLaurin we obtain∫ 1

−1

f(x) dx =
∫ ∞

−∞
f(φ(t))φ′(t) dt = h

∞∑
m=−∞

f(φ(mh))φ′(mh) + R(h) ,

where the remainder term R(h) tends to 0 very fast.
If f is a meromorphic function in C, and not only a C∞ function on R, it

can be shown that |R(h)| < e−C/|h| for some C > 0, and that with N function
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evaluations we can reach an accuracy on the order of exp(−CN/ log(N)) for
some (other) C > 0.

Remark. It can also be shown that double-exponential convergence at in-
finity is optimal: choosing for instance functions giving triple-exponential
convergence would give worse results. In particular, as we will see below, it
is necessary to adapt the magic function φ(t) to the class of functions to be
integrated.

Assume for instance that we want to compute the integral with an accu-
racy of approximately 500 decimal digits (this would be completely impossible
with classical methods). We note that, due to the doubly exponential behav-
ior, we have φ(t) < 10−500 for t � 7.05, so we sum only for |m| < 7.05/h.
Although it is not easy to estimate R(h) accurately we try successive values
h = 1/2r for r = 2, 3, etc., until the value of the sum stabilizes. For instance,
for 500 decimals, h = 1/28 is almost always sufficient.

Since this method is so useful we give an explicit algorithm essentially
copied from [Bor-Bai-Gir] (the case in which we want to integrate on more
general intervals than [−1, 1] is studied in the next section). The algorithm
needs to be given a small integral parameter r such that h = 1/2r, which is
found empirically by trying two or three values (for instance, as mentioned
above we choose r = 8 for 500 decimal digits).

Algorithm 9.3.2 (Tanh-Sinh Numerical Integration) Given an integra-
ble C∞ function f on ]−1, 1[, an accuracy ε, and a small integral parameter r � 2
as above, this algorithm computes an approximation to

∫ 1

−1
f(x) dx of order ε.

1. [Initialize] Set h ← 1/2r, e1 ← eh, e2 ← 1, i← 0.

2. [Fill Arrays x[ ] and w[ ]] Set c ← e2 + 1/e2, s ← e2 − c, e3 ← 2/
(
e2s + 1

)
,

x[i] = 1− e3, w[i] ← ce3(1 + x[i]), e2 ← e1e2. If e3 > ε, set i ← i + 1 and
go to Step 2. Otherwise set w[0] ← w[0]/2, n ← i, S ← 0, and p ← 2r (n
will be the largest index i for which we have computed x[i] and w[i]; it will
never exceed 20 · 2r).

3. [Outer Loop] Set p ← p/2 and i← 0.

4. [Inner Loop] If (2p) � i or if p = 2r−1 then set S ← S+w[i](f(−x[i])+f(x[i])).
Set i← i + p, and if i � n go to Step 4.

5. [Terminate?] If p � 2 go to Step 3; otherwise, output pS/2r and terminate
the algorithm.

Steps 1 and 2 should of course be done once and for all, independently of
the function f .

9.3.3 General Doubly Exponential Numerical Integration

The above method computes
∫ 1

−1
f(x) dx in a quite general setting, but one

in which f must be a C∞ function and have at most reasonable type singular-
ities at the endpoints ±1. We now consider more general cases. We start by
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splitting the integral into a sum of integrals where the possible singularities
are at the endpoints, so we assume that we are in this case. For integration
on a finite interval [a, b] we of course use the formula∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f

(
b + a

2
+

b− a

2
x

)
dx .

For integration on a semi-infinite interval [a,∞[ (or symmetrically ]−∞, a])
we could use a change of variable x �→ 1/x, but this would give wild singular-
ities at 0. Thus in these cases it is better to use other integration methods of
“doubly exponential” type, similar to the tanh-sinh method. For instance, for
an integral of the form I =

∫∞
0

f(x) dx, where f tends to 0 not too rapidly
as x → ∞ (for instance like 1/xn for some n > 1). we may use the change
of variable x = exp(K sinh(t)) for some constant K > 0, and write that I is
very well approximated by

h
∑
m∈Z

f(exp(K sinh(mh)))K cosh(mh) exp(K sinh(mh)) .

On the other hand, if f tends to 0 exponentially fast as x → ∞, say as
exp(−x) for some a > 0, then we may use the change of variables x =
exp(t− exp(−t)) and write that I is very well approximated by

h
∑
m∈Z

f(exp(mh− exp(−mh)))(1 + exp(−t)) exp(t− exp(−t)) .

It is essential to adjust the change of variable to the rate at which f tends to
0 at infinity (if it does! but see below for oscillatory functions). For instance,
if f tends to 0 as exp(−g(x)) for some strictly increasing function g going to
∞ with x we should use the change of variables x = g−1(exp(t− exp(−t))).
See Exercise 48 for

∫∞
−∞ f(x) dx.

None of the above solutions is satisfactory for dealing with an oscillatory
integral. Let us consider a typical example. Assume that we want to compute∫∞
0

sin(x)/x dx. The change of variable gives∫ ∞

0

sin(x)
x

dx =
∫ 1

0

sin(x)
x

dx +
∫ 1

0

sin(1/x)
x

dx ,

and the singularity of the function sin(1/x)/x at x = 0 is too wild to be
accessible to any integration method. We must therefore proceed differently.
Once again there are two completely different methods: one consists in trying
to save what we can from the tanh-sinh method; the other is to choose another
function φ(t). We consider first what we can salvage of the tanh-sinh method.

Assume that we want to compute an integral of the form∫ ∞

a

s(x)f(x) dx ,
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where s and f are C∞ functions satisfying the following additional properties
(note that much weaker assumptions are possible):

(1) The function f(x) is nonnegative and decreases monotonically to 0 as
x →∞.

(2) There exists a “half-period” P > 0 such that s(x + P ) = −s(x) for all x
(hence s(x + 2P ) = s(x)), and such that s(x) � 0 for x ∈ [0, P ].

We can then write∫ ∞

a

s(x)f(x) dx =
∫ 0

a

s(x)f(x) dx +
∑
k�0

∫ (k+1)P

kP

s(x)f(x) dx

=
∫ 0

a

s(x)f(x) dx +
∑
k�0

(−1)kIk ,

where

Ik =
∫ P

0

s(x)f(x + kP ) dx .

Each individual integral can be computed using the tanh-sinh (or any other)
method, and note that the values of s(x) for x ∈ [0, P ] (more precisely of
s((P/2)(1 ± x[i])) for 0 � i � n in the notation of the algorithm) should
be computed and tabulated once and for all since they are used in all the
integrals.

The infinite alternating sum will in general converge very slowly. However,
there is a nice trick due to F. Rodriguez-Villegas, D. Zagier, and the author
for accelerating alternating series in a very simple manner as follows (see
[Coh-Vil-Zag]).

Algorithm 9.3.3 (Alternating Sums) Given an “alternating” series S =∑
k�0(−1)kIk and an accuracy ε, this algorithm computes an approximation to

S of order ε.

1. [Initialize] Set n← �0.57| log(ε)|�, d ← (1+
√

2)2n, d ← (d+1/d)/2, b ← −1,
c ← −d, s← 0, k ← 0.

2. [Loop] Set c← b− c, s← s + cIk, b ← (k + n)(k − n)b/((k + 1/2)(k + 1)),
k ← k + 1. If k � n − 1 go to Step 2; otherwise, output s/d and terminate
the algorithm.

The (easy) proof of the validity of this algorithm for a wide class of
sums (not only alternating, and not necessarily convergent) is given in
[Coh-Vil-Zag].

Applied to our specific problem, it gives a reasonably efficient method
(although much slower than standard tanh-sinh integration) for integrating
reasonable oscillatory functions on an infinite interval.

The second method consists in changing the function φ(t). Contrary to
the preceding methods we must choose φ depending on the summation step
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h. Assume that the integral has the form
∫∞
0

sin(x)f(x) dx, where f(x) is as
above, and in particular nonoscillating. The above-mentioned authors show
that the choice

x = φ(t) =
(π/h)t

1− exp(− sinh(t))

leads to an excellent doubly exponential method. It should be stressed that
this is specific to an integral from 0 to infinity, and with the specific oscillating
function s(x) = sin(x). This leads to the following:

(1) For an integral whose lower bound is not 0, write∫ ∞

a

sin(x)f(x) dx =
∫ ∞

0

sin(x)f(x) dx−
∫ a

0

sin(x)f(x) dx ,

the second integral being computed by ordinary tanh-sinh integration.
(2) If s(x) = sin(kx), write∫ ∞

0

sin(kx)f(x) dx =
1
k

∫ ∞

0

sin(x)f
(x

k

)
dx .

(3) If s(x) = cos(kx), write∫ ∞

0

cos(kx)f(x) dx =
1
k

∫ ∞

π/2

sin(x)f
(

x− π/2
k

)
dx ,

and then use (1).
(4) If s(x) is a general periodic function, compute its Fourier coefficients and

apply the above.

Although more complicated to use practice, this is much faster than the
use of alternating sums as above.

Examples. To compute our initial example
∫∞
0

sin(x)/x dx we apply di-
rectly the above method with f(x) = 1/x, s(x) = sin(x), and P = π.

To compute
∫∞
0

sin2(x)/x2 dx we first write sin2(x) = (1− cos(2x))/2, so
that∫ ∞

0

sin2(x)
x2

dx =
1
2

∫ π/4

0

1− cos(2x)
x2

dx +
1
2

∫ ∞

π/4

1
x2
− 1

2

∫ ∞

π/4

cos(2x)
x2

=
1
2

∫ π/4

0

1− cos(2x)
x2

dx +
2
π

+
1
2

∫ ∞

0

sin(2x)
(x + π/4)2

,

and this last integral is computed by the above method with f(x) = 1/(x +
π/4)2, s(x) = sin(2x), and P = π/2.

To the required accuracy we obtain the well-known values (see Proposition
9.6.38) ∫ ∞

0

sin(x)
x

dx =
∫ ∞

0

sin2(x)
x2

=
π

2
.
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9.4 χ-Bernoulli Numbers, Polynomials, and Functions

We now want to generalize the Euler–MacLaurin summation formula to more
general sums of the form

∑
j χ(j)f(j), where χ is a periodic arithmetic func-

tion, for instance χ(j) = (−1)j , or χ a Dirichlet character (see the next
chapter). For this we must generalize Bernoulli numbers and polynomials.
Thus we let χ be a function from Z to C that is assumed to be m-periodic
with m ∈ Z�1, in other words such that χ(r +m) = χ(r) for all r ∈ Z, where
m is not necessarily the minimal period. We do not necessarily assume that
χ is a Dirichlet character.

9.4.1 χ-Bernoulli Numbers and Polynomials

There are essentially four possible definitions of the χ-Bernoulli numbers and
polynomials, which differ only slightly from one another. Each definition has
advantages and disadvantages. The most common one, found for instance in
[Was], is mainly given for its application to p-adic L-functions, but is not well
suited to the χ-Euler–MacLaurin formula or, for that matter, to special values
of L-functions when χ is not necessarily a character. We will use a slight
variant of that definition, which has the advantage of being more elegant
in many formulas, and of exactly generalizing ordinary Bernoulli numbers
and polynomials, but which gives slightly less uniform formulas for p-adic
L-functions.

Definition 9.4.1. We define the χ-Bernoulli polynomials Bk(χ, x) by

E(χ, t, x) = tetx

∑
0�r<m χ(r)ert

emt − 1
=
∑
k�0

Bk(χ, x)
k!

tk ,

and the χ-Bernoulli numbers Bk(χ) by Bk(χ) = Bk(χ, 0).

The definition of the χ-Bernoulli numbers (hence implicitly of the χ-
Bernoulli polynomials) used in [Was] and many other places consists in re-
placing the sum from 0 to m− 1 by the sum from 1 to m. This has the effect
of replacing Bk(χ, x) by Bk(χ, x) + χ(0)kxk−1, so that in particular the χ-
Bernoulli numbers themselves differ from the present ones only when k = 1
and χ(0) �= 0, which in the context of Dirichlet characters means that χ is
the trivial character.

Since there is an important alternative definition of Bernoulli numbers
and polynomials, it is essential to introduce the following definition, which
will enable us to use both definitions concurrently.

Definition 9.4.2. For any function χ defined on Z we define the function
χ− by χ−(n) = χ(−n).
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Thus, if χ is a Dirichlet character we have χ− = χ(−1)χ, so that, contrary
to χ, χ− is not a Dirichlet character when χ(−1) = −1, but only a periodic
arithmetic function.

Lemma 9.4.3. We have

tetx

∑
1�r�m χ(r)e−rt

1− e−mt
=
∑
k�0

Bk(χ−, x)
k!

tk .

Proof. Immediate and left to the reader. ��

See also Proposition 9.4.9 below.
The alternative definition would be to use Bk(χ−, x) as χ-Bernoulli poly-

nomials. We will see that this is indeed the natural definition to use in many
applications.

Proposition 9.4.4. We have B′
k(χ, x) = kBk−1(χ, x).

Proof. Clear since (d/dx)E(χ, t, x) = tE(χ, t, x). ��

Proposition 9.4.5. We have the following formulas:

Bk(χ, x) =
k∑

j=0

(
k

j

)
Bj(χ)xk−j = mk−1

∑
0�r<m

χ(r)Bk

(
x + r

m

)

=
k∑

j=0

(
k

j

)
Bjm

j−1
∑

0�r<m

χ(r)(x + r)k−j , and

Bk(χ) = mk−1
∑

0�r<m

χ(r)Bk

( r

m

)
=

k∑
j=0

(
k

j

)
Bjm

j−1Sk−j(χ) ,

where Sn(χ) =
∑

0�r<m χ(r)rn.

Proof. The first formula follows from the identity E(χ, t, x) = etxE(χ, t, 0).
The second follows from

E(χ, t, x) =
1
m

∑
0�r<m

χ(r)
mte((x+r)/m)mt

emt − 1

=
1
m

∑
0�r<m

χ(r)
∑
k�0

Bk

(
x + r

m

)
mk

k!
tk

by definition of Bernoulli polynomials. The third formula follows from Bk(z) =∑k
j=0

(
k
j

)
Bjz

k−j , and the last two are obtained by specializing to x = 0. ��

For example,
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B0(χ) =
1
m

∑
0�r<m

χ(r) , B1(χ) =
1
m

∑
0�r<m

χ(r)
(
r − m

2

)
, and

B2(χ) =
1
m

∑
0�r<m

χ(r)
(

r2 −mr +
m2

6

)
.

For future reference, note the following results.

Corollary 9.4.6. If x ∈ Z�0 we have

mk−1
∑

0�r<m

χ(x + r)Bk

(
x + r

m

)
= Bk(χ) + k

∑
0�r<x

χ(r)rk−1 .

Proof. Indeed, for any function f and x ∈ Z� 0 we have∑
0�r<m

f(x + r) =
∑

x�r<m+x

f(r) =
∑

0�r<m

f(r) +
∑

0�r<x

(f(r + m)− f(r)) ,

so the formula follows from Bk(z + 1)−Bk(z) = kzk−1 and the proposition.
��

Lemma 9.4.7. If m | M then

Bk(χ, x) = Mk−1
∑

0�r<M

χ(r)Bk

(
x + r

M

)
.

Proof. Write n = M/m, and for 0 � r < M let r = qm + s with 0 �
s < m and 0 � q < n. By the distribution formula for Bernoulli polynomials
(Proposition 9.1.3) we have

Mk−1
∑

0�r<M

χ(r)Bk

(
x + r

M

)
= Mk−1

∑
0�s<m

χ(s)
∑

0�q<n

Bk

(
x + s

M
+

q

n

)

=
Mk−1

nk−1

∑
0�s<m

χ(s)Bk

(
n(x + s)

M

)

= mk−1
∑

0�s<m

χ(s)Bk

(
x + s

m

)
= Bk(χ, x)

as claimed. ��

Proposition 9.4.8. We have

Bk(χ, x + m) = Bk(χ, x) + k
∑

0�r<m

χ(r)(x + r)k−1 .
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Proof. Follows from the formula

E(χ, t, x + m)− E(χ, t, x) = t
∑

0�r<m

χ(r)e(x+r)t .

��

Proposition 9.4.9. (1) We have

Bk(χ,−x) = (−1)k(Bk(χ−, x) + χ(0)kxk−1) ,

or equivalently,

Bk(χ−, x) = (−1)kBk(χ,−x)− χ(0)kxk−1 .

In particular, Bk(χ−) = (−1)kBk(χ) − χ(0)δk,1, where we recall that
δk,1 = 1 if k = 1, and δk,1 = 0 otherwise.

(2) In particular, if χ is an even function then Bk(χ) = 0 for k � 3 odd and
B1(χ) = −χ(0)/2, while if χ is an odd function then Bk(χ) = 0 for all
k � 0 even.

Proof. An easy computation shows that

E(χ−, t, x)− E(χ,−t,−x) = −χ(0)text ,

which is clearly equivalent to the first formula, and the other statements
follow by specializing to x = 0. ��

The above proposition will be used in particular when χ is a Dirichlet
character.

9.4.2 χ-Bernoulli Functions

Definition 9.4.10. We define the χ-Bernoulli functions and we denote by
Bk(χ, {x}χ) the functions defined for x ∈ R by

Bk(χ, {x}χ) = mk−1
∑

r mod m

χ(r)Bk

({
x + r

m

})
.

Note that since χ(r) and {(x+r)/m} are periodic functions in r of period
dividing m it is not necessary to specify the precise range of summation for
r, so we simply write r mod m. It is clear that Bk(χ, {x}χ) generalizes the
function Bk({x}), and that Bk(χ, {0}χ) = Bk(χ).

Proposition 9.4.11. The χ-Bernoulli functions satisfy the following prop-
erties:

(1) We have B0(χ, {x}χ) = B0(χ) = S0(χ)/m.
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(2) We have
B′

1(χ, {x}χ) = B0(χ, {x}χ)−
∑
r∈Z

χ−(r)δr(x) ,

where δr is the Dirac distribution concentrated at the point r.
(3) We have B′

k(χ, {x}χ) = kBk−1(χ, {x}χ) for all k � 1 and all x /∈ Z.
(4) The function Bk(χ, {x}χ) is continuous for k � 2.
(5) We have

∫m

0
Bk(χ, {x}χ) dx = 0 for k � 1.

(6) If n ∈ Z we have

lim
x→n
x>n

B1(χ, {x}χ) = B1(χ, {n}χ) and

lim
x→n
x<n

B1(χ, {x}χ) = B1(χ, {n}χ) + χ−(n) .

(7) On any interval ]r, r + 1[ with r ∈ Z the function Bk(χ, {x}χ) is a poly-
nomial of degree less than or equal to k.

(8) For k � 2 we have Bk(χ, {x}χ) ∈ Ck−2(R).
(9) Bk(χ, {x + m}χ) = Bk(χ, {x}χ) for all x ∈ R and k � 0.

Conversely, the sequence of χ-Bernoulli functions is the only sequence satis-
fying properties (1 ) to (5 ) above.

Proof. All these properties are essentially clear from the definition and
the basic properties of ordinary Bernoulli polynomials. For instance, let us
prove (2) and (8). An easy exercise in distributions (Exercise 50) shows that{

x + r

m

}′
=

1
m
−
∑
q∈Z

δqm−r(x) ,

and (2) immediately follows. Property (8) follows from the fact that Bk({x}) ∈
Ck−2(R). The easy proofs of the other properties are left to the reader (Ex-
ercise 50).

Let us now prove the converse. Let Ck(x) be another sequence of functions
satisfying the first five properties above and set Dk(x) = Ck(x)−Bk(χ, {x}χ).
We prove by induction that Dk = 0. This is clear for k = 0. For k = 1 we
have D′

1(x) = 0 in the sense of distributions, so D1(x) is a constant, and this
constant is 0 since

∫m

0
D1(x) dx = 0. Assume now k � 2 and that Dk−1 = 0.

By (3) the function Dk(x) is constant on any interval ]r, r + 1[ with r ∈ Z.
But since k � 2, by (4) we know that Dk(x) is continuous on R. It follows
that Dk(x) is constant on R, and as in the case k = 1 this constant is 0 since∫m

0
Dk(x) dx = 0, proving the proposition. ��

In the context of this proposition, which is the key to the χ-Euler–
MacLaurin formula, it is clear that Bk(χ−) would be a better definition of
the χ-Bernoulli numbers. In fact, we have the following:
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Proposition 9.4.12. We have

Bk(χ, {−x}χ) = (−1)kBk(χ−, {x}χ)− χ(x)δx,Zδk,1 ,

where δx,Z = 1 if x ∈ Z and δx,Z = 0 otherwise.

Proof. Left to the reader (Exercise 51). Note that this generalizes Propo-
sition 9.4.9. ��

Proposition 9.4.13. For x ∈ R�0 we have

Bk(χ, {x}χ) = Bk(χ, x)− k
∑

1�r�x

χ−(r)(x− r)k−1 .

Proof. Denote by Rk(x) the right-hand side of this formula. We could
show that Rk(x) satisfies the first five conditions of Proposition 9.4.11, but
it is easier to reason directly. Set Ck(x) =

∑
1�r�x χ−(r)(x− r)k−1. If x � 0

we have

Ck(x + m) =
∑

1�r�x+m

χ−(r)(x + m− r)k−1

=
∑

1�r�m

χ−(r)(x + m− r)k−1 +
∑

m+1�r�x+m

χ−(r)(x + m− r)k−1

=
∑

1�r�m

χ−(r)(x + m− r)k−1 + Ck(x) ,

so that

Ck(x + m)− Ck(x) =
∑

0�r<m

χ(r)(x + r)k−1 =
Bk(χ, x + m)−Bk(χ, x)

k

by Proposition 9.4.8. It follows that Rk(x) = Bk(χ, x) − kCk(x) is periodic
of period dividing m, as is the left-hand side of the equality to be proved, so
we may assume that 0 � x < m. In that case

Bk(χ, {x}χ) = mk−1
∑

0�r<m

χ(r)Bk

({
x + r

m

})

= mk−1

( ∑
0�r<m−x

χ(r)Bk

(
x + r

m

)
+

∑
m−x�r<m

χ(r)Bk

(
x + r

m
− 1

))
,

so by Proposition 9.1.3,

Bk(χ, {x}χ) = mk−1
∑

0�r<m

χ(r)Bk

(
x + r

m

)
− k

∑
m−x�r<m

χ(r)(x + r −m)k−1

= Bk(χ, x)− k
∑

1�r�x

χ−(r)(x− r)k−1
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after changing r into m− r, proving the proposition. ��

Note that even for χ = 1, in other words for ordinary Bernoulli polyno-
mials, the above proposition gives the not completely trivial formula

Bk({x}) = Bk(x)− k
∑

1�r�x

(x− r)k−1 ,

which is of course an immediate consequence of the formula Bk(x) = k(x −
1)k−1 + Bk(x− 1).

Since the χ-Bernoulli functions are the natural generalizations of the func-
tions Bn({x}), it is natural to compute their Fourier expansions as periodic
functions of period m. Recall from Definition 2.1.38 that we have defined
Gauss sums by the formula

τ(χ, a) =
∑

r mod m

χ(r)e2iπar/m .

Proposition 9.4.14. For n � 2 we have the Fourier expansion

Bn(χ, {x}χ) = −n!mn−1

(2iπ)n

∑
k∈Z, k 
=0

τ(χ, k)
kn

e2iπkx/m .

For n = 1 this formula must be modified as follows: the right-hand side must
be understood as a symmetrical summation, in other words as the limit as
N → ∞ of the sum for |k| � N , and the left-hand side must be changed to
B1(χ, {x}χ) + χ(x)/2 if x ∈ Z.

Proof. We have seen above that the function Bn(χ, {x}χ) is piecewise
C∞ and continuous for n � 2, with simple discontinuities at the integers
if n = 1, and periodic of period (dividing) m. Thus for n � 2 we have
Bn(χ, {x}χ) =

∑
k∈Z cn,k exp(2iπkx/m) with

cn,k =
1
m

∫ m

0

Bn(χ, {t}χ)e−2iπkt/m dt .

For n = 1 the same formula is valid for x /∈ Z, and for x ∈ Z we must replace
B1(χ, {x}χ) by (B1(χ, x+) + B1(χ, x−))/2 = B1(χ, {x}χ) + χ(x)/2.

For k = 0 and n > 0, we have cn,0 = 0 by property (5) of Proposition
9.4.11. For k �= 0 and n � 2, by integration by parts we compute that
cn,k = (nm/(2iπk))cn−1,k, so that cn,k = (n!mn−1/(2iπk)n−1)c1,k. For k �= 0
and n = 1, by integration by parts we find that

c1,k = − 1
2iπk

∫ m+

0+
e−2iπkt/m

∑
r∈Z

χ(r)δ−r(t) dt

= − 1
2iπk

∑
r mod m

χ(r)e2iπkr/m = −τ(χ, k)
2iπk

,
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proving the proposition. As before, it is immediate to transform this proof
into one not using distributions explicitly. ��

9.4.3 The χ-Euler–MacLaurin Summation Formula

The χ-Euler–MacLaurin formula, which is the exact generalization of Theo-
rem 9.2.2, is the following.

Proposition 9.4.15. As above, let χ be a periodic arithmetic function of
period (dividing) m, let a and b be two real numbers such that a � b, and
assume that f ∈ Ck([a, b]) for some k � 1. Then∑

a<r�b
r∈Z

χ(r)f(r) = B0(χ−)
∫ b

a

f(t) dt

+
k∑

j=1

(−1)j

j!

(
Bj(χ−, {b}χ)f (j−1)(b)−Bj(χ−, {a}χ)f (j−1)(a)

)
+

(−1)k−1

k!

∫ b

a

f (k)(t)Bk(χ−, {t}χ) dt .

Proof. The Bernoulli functions have been defined exactly in order for this
proposition to be valid, and as can clearly be seen, in the present context it
would have been much better to choose Bk(χ−, x) as definition of χ-Bernoulli
polynomials. By their basic properties, if we set

Rk(χ, f) =
(−1)k−1

k!

∫ b

a

f (k)(t)Bk(χ−, {t}χ) dt ,

then for k � 2 integration by parts gives

Rk(χ, f) =
(−1)k−1

k!
(Bk(χ−, {b}χ)f (k−1)(b)−Bk(χ−, {a}χ)f (k−1)(a))

+ Rk−1(χ−, f) .

For k = 1, as in the proof of Theorem 9.2.2 we first assume that a and b are
not in Z, in which case we obtain

R1(χ−, f) = f(b)B1(χ−, {b}χ)− f(a)B1(χ−, {a}χ)

−B0(χ−)
∫ b

a

f(t) dt +
∑

a<r�b
r∈Z

χ(r)f(r) .

We then note that R1(χ−, f) = R1(χ−, f, a, b) is a continuous function of a
and b, and that the right-hand side of the above equality is also continuous,
since by Proposition 9.4.11 (6), for n ∈ Z we have limx→n, x>n B1(χ−, {x}χ) =
B1(χ−, {n}χ) and limx→n, x<n B1(χ−, {x}χ) = B1(χ−, {n}χ)+χ(n), and the
result follows. ��
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Corollary 9.4.16. If N ∈ Z�0 is such that m | N and if f ∈ Ck([0, N ]) we
have for k � 1

∑
0�r<N

χ(r)f(r) = B0(χ)
∫ N

0

f(t) dt

+
k∑

j=1

Bj(χ)
j!

(
f (j−1)(N)− f (j−1)(0)

)
+ Rk(χ, f) ,

with

Rk(χ, f) =
(−1)k−1

k!

∫ N

0

f (k)(t)Bk(χ−, {t}χ) dt .

Proof. This follows from the above proposition and the formulas

Bj(χ−, {0}χ) = Bj(χ−) = (−1)jBj(χ)− χ(0)δj,1

coming from Proposition 9.4.9.

Corollary 9.4.17. If m | N and k � 0 we have∑
0�r<N

χ(r)(x + r)k =
Bk+1(χ,N + x)−Bk+1(χ, x)

k + 1
.

Proof. Clear. ��

This corollary exactly generalizes Proposition 9.2.12.

Corollary 9.4.18. Assume in addition that f ∈ Ck([1,∞[), that both the se-
ries

∑
r�1 χ(r)f(r) and the integral

∫∞
1

f(t) dt converge, and that the f (j)(N)
tend to 0 as N →∞ for 0 � j � k − 1. Then for k � 1 we have

∑
r�N

χ(r)f(r) = B0(χ)
∫ ∞

N

f(t) dt−
k∑

j=1

Bj(χ)
j!

f (j−1)(N)

+
(−1)k−1

k!

∫ ∞

N

f (k)(t)Bk(χ−, {t}χ) dt .

Proof. Immediate and left to the reader (Exercise 52). ��

Examples. As a first example we choose χ(r) = (−1)r−1, so that m = 2 and
S0(χ) = 0. By the explicit formulas for Bk(χ) and for Bk(1/2) we find that
for all k we have Bk(χ) = (−1)k2k−1(Bk(1/2)− Bk(1)) = −(2k − 1)Bk. For
instance, choosing f(t) = 1/t we obtain the following asymptotic expansion
for N even:
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∑
r�N+1

(−1)r−1

r
= log(2)−

∑
1�r�N

(−1)r−1

r

=
1

2N
−
∑
j�1

(22j − 1)
B2j

2jN2j
=

1
2N

−
∑
j�1

T2j−1

(2N)2j
,

where the T2j−1 ∈ Z are the tangent numbers.
As second example we choose χ(r) =

(−4
r

)
, in other words χ(r) = 0 for

r even and χ(r) = (−1)(r−1)/2 for r odd, so that m = 4 and S0(χ) = 0.
By the explicit formulas for Bk(χ) and for the Euler numbers, we find that
Bk(χ) = 0 for k even and Bk(χ) = kEk−1/2 for k odd. Thus, for instance,
choosing again f(t) = 1/t and multiplying by 2 we obtain for 4 | N the
asymptotic expansion

2
∑

r�N/2+1

(−1)r−1

2r − 1
=

π

2
− 2

∑
1�r�N/2

(−1)r−1

2r − 1
=
∑
j�0

E2j

N2j+1
.

The two formulas above are given in [Bor-Bai] as the explanation of an amus-
ing numerical phenomenon. If we compute the sum S of the first 5000000
terms of the above series for π/2, in other words if we choose N = 107, and
if we put below it the value of π/2, we find that

S = 1.570796226794896619232321691639751392098584699693652910487470911 . . . ,
π

2
= 1.570796326794896619231321691639751442098584699687552910487472296 . . . .

Thus, even though S and π/2 differ by approximately 10−7, the digits
of π/2 can still be recognized much further. In fact, we see that at 10−7

we must subtract 1 · 10−7, at 10−21 we must subtract −1 · 10−21, at 10−35

we must subtract 5 · 10−35, at 10−49 we must subtract −61 · 10−49, etc., and
similarly for log(2). We thus recognize the Euler numbers and the asymptotic
expansion given above.

9.5 Arithmetic Properties of Bernoulli Numbers

9.5.1 χ-Power Sums

The following notation will be essential.

Definition 9.5.1. (1) We denote by Zp the ring of p-adic integers of Cp, in
other words elements α such that |α| � 1.

(2) If α, β, and γ are in Zp with γ �= 0, we write α ≡ β (mod γ) (or α ≡ β
(mod γZp)) if (α− β)/γ ∈ Zp.
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If k � 0 and χ is a primitive character modulo f , we set

Sk(χ) =
∑

0�r<f

χ(r)rk .

Lemma 9.5.2. (1) For any m ∈ Z�0 we have∑
0�r<mf

χ(r)rk ≡ mSk(χ) (mod f) .

(2) If, in addition, gcd(m, f) = 1 and χ is nontrivial, then∑
0�r<mf

χ(r)rk ≡ mSk(χ) (mod mf) .

Proof. Immediate by writing r = qf + s or r = qm + s respectively, and
left to the reader (Exercise 55). ��

The goal of this technical section is to give rather precise estimates on
the divisibility properties of Sk(χ). We may of course assume that χ is a
nontrivial character. In particular, S0(χ) = 0, so we may assume that k � 1.
We will divide our study into three cases: the case that f is not a prime
power, the case that f is an odd prime power, which is more difficult, and
the case that f is a power of 2.

Theorem 9.5.3. Let χ be a nontrivial primitive Dirichlet character of con-
ductor f , and assume that f is not a prime power.

(1) We have Sk(χ) ≡ 0 (mod 2f).
(2) If gcd(f, k∞) �= f then Sk(χ) ≡ 0 (mod 2f gcd(k, f∞)).

Proof. (1). Since f is not a prime power there exist coprime integers f1

and f2 such that f = f1f2, with f1 > 1 and f2 > 1. By Proposition 2.1.34
there exist primitive characters χ1 of conductor f1 and χ2 of conductor f2

such that χ = χ1χ2. For 0 � r < f we can write in a unique way r = f1r2+r1

with 0 � r1 < f1 and 0 � r2 < f2, so that

Sk(χ) =
∑

0�r1<f1
0�r2<f2

χ1χ2(f1r2 + r1)(f1r2 + r1)k =
∑

0�j�k

(
k

j

)
f j
1Tk,j(χ) ,

where
Tk,j(χ) =

∑
0�r1<f1

χ1(r1)r
k−j
1

∑
0�r2<f2

χ2(f1r2 + r1)r
j
2 .

Since f1 and f2 are coprime we have
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∑
0�r2<f2

χ2(f1r2 + r1) = χ2(f1)
∑

r2 mod f2

χ2(r2 + r1f
−1
1 )

=
∑

r3 mod f2

χ2(r3) = 0

since χ2 is a primitive, hence nontrivial, character modulo f2 > 1, so that
Tk,0(χ) = 0. This shows that Sk(χ) ≡ 0 (mod f1), and by symmetry Sk(χ) ≡
0 (mod f2), so Sk(χ) ≡ 0 (mod f) since f1 and f2 are coprime. To prove the
stronger congruence modulo 2f , without loss of generality we may assume
that f2 is odd.

Assume first that f1 is even, hence that 4 | f1. Since Tk,0(χ) = 0 we have
Sk(χ) ≡ nf1Tk,1(χ) (mod 4f1). If we write

Tk,1(χ) =
∑

0�r1<f1
0�r2<f2

f(r1, r2) with f(r1, r2) = χ1(r1)χ2(f1r2 + r1)rk−1
1 r2,

we see that f(f1 − r1, f2 − r2 − 1) ≡ f(r1, r2) (mod 2). Since the involution
(r1, r2) �→ (f1− r1, f2− r2− 1) has a single fixed point (r1, r2) = (f1/2, (f2−
1)/2) and f(r1, r2) = 0 (since χ1(f1/2) = 0), it follows that Tk,1(χ) ≡ 0
(mod 2), so we deduce that Sk(χ) ≡ 0 (mod 2f1) in this case, hence that
Sk(χ) ≡ 0 (mod 2f) since f2 is coprime to 2f1, as claimed. Note for future
reference that the same proof shows that Tk,j(χ) ≡ 0 (mod 2) when f1 is
even and f2 is odd.

If f1 is odd then f is odd, and since k > 0 we have

Sk(χ) ≡
∑

0�r<f, r odd

χ(r) ≡ 0 (mod 2)

by Corollary 2.1.37, since by assumption χ is primitive and f is not a prime
power, proving (1) in general since we already know that Sk(χ) ≡ 0 (mod f).

(2). If f and k are coprime there is nothing more to prove, so we assume
that gcd(f, k) > 1. Here we choose specifically f1 = gcd(f, k∞). By definition
f1 | f , f2 = f/f1 is coprime to f1, and gcd(f, k) | f1, so in particular f1 > 1,
and finally by assumption we have f2 > 1. From the proof of (1) we know
that there exist algebraic integers Tk,j such that Sk(χ) =

∑
1�j�k

(
k
j

)
f j
1Tk,j .

I claim that gcd(k, f∞) | (k
j

)
f j−1
1 for all j ∈ [1, k]. Indeed, by definition we

have gcd(k, f∞) =
∏

p|f pvp (k); hence let p be a prime dividing f and k, so
that p | f1. By Lemma 4.2.8 we have

vp

((
k

j

)
f j−1
1

)
� j − 1 + max(vp(k)− vp(j), 0) .

If vp(k) � vp(j) this is greater than or equal to vp(k) + j − 1 − vp(j), and
j−1−vp(j) � 0 for all j � 1. If vp(k) < vp(j) this is greater than or equal to
j − 1 = j − 1− vp(j) + vp(j) > vp(k) for the same reason, proving my claim.
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We thus have Sk(χ) ≡ 0 (mod f1 gcd(k, f∞)), and since Sk(χ) ≡ 0 (mod f2)
and f2 is coprime to kf1, we deduce that Sk(χ) ≡ 0 (mod f gcd(k, f∞)).

To prove the stronger congruence, we reason as follows. If k is odd, (1) and
what we have just proved imply that Sk(χ) ≡ 0 (mod f lcm(2, gcd(k, f∞))),
hence modulo 2f gcd(k, f∞). We may therefore assume that k is even. Using
the same notation as above, since f2 is coprime to kf1 it is odd, and we have
Sk(χ) ≡ 0 (mod f2). Since f1 is divisible by 4, we have seen in the proof of
(1) that Tk,j ≡ 0 (mod 2) for all j, so that the formula for Sk(χ) given above
implies that Sk(χ) ≡ 0 (mod 2f1 gcd(k, f∞)), proving the theorem. ��

We now consider the more delicate case that f = pv is an odd prime
power. We begin with the case v = 1.

Lemma 9.5.4. Let χ be any character modulo p for some odd prime p, let
o(χ) | (p − 1) be the order of χ, and let K = Q(χ) = Q(ζo(χ)) be the corre-
sponding cyclotomic field.

(1) If o(χ) �= (p− 1)/ gcd(p− 1, k) then Sk(χ) ≡ 0 (mod p).
(2) If o(χ) = (p − 1)/ gcd(p − 1, k) there exists a (necessarily unique) prime

ideal p of K above p such that Sk(χ) ≡ 0 (mod q) for all prime ideals q
above p with q �= p, while Sk(χ) ≡ −1 (mod p).

Proof. Let L = Q(ζp−1) ⊃ K. Since p ≡ 1 (mod p − 1), by Proposition
3.5.18 the prime p splits completely in L. Let P be some prime ideal of L
above p. By definition of the Teichmüller character (Definition 3.6.2) we have
ωP(x) ≡ x (mod P), so that

pSk(χ) =
∑

0�r<p

χ(r)rk ≡
∑

r mod p

(χωk
P)(r) (mod P) .

Thus, by orthogonality of characters, if χ �= ω−k
P we have pSk(χ) ≡ 0

(mod P), and otherwise pSk(χ) ≡ p− 1 ≡ −1 (mod P). Since ωP has order
p− 1, ω−k

P has exact order (p− 1)/ gcd(p− 1, k), hence if this is not equal to
o(χ) we deduce that pSk(χ) ≡ 0 (mod p), proving (1). On the other hand,
since all characters of order p − 1 are of the form ωP for some (unique) P,
all characters of order (p− 1)/ gcd(p− 1, k) are of the form ω−k

P for some P.
It follows that if o(χ) = (p− 1)/ gcd(p− 1, k) we have χ = ω−k

P for some P.
By Lemma 3.6.3 (3), P may not be unique, but the ideal p of K = Q(ζo(χ))
below P is unique, and since p is totally split the result follows. ��

We can deduce from this the general case v � 1 and p odd, as follows.

Theorem 9.5.5. Let p be an odd prime, let v ∈ Z�1, let χ be a primitive
Dirichlet character of conductor f = pv, let o(χ) be the order of χ, and let
K = Q(χ) = Q(ζo(χ)) be the cyclotomic field generated by the values of χ.

(1) If either o(χ) �= pv−1(p − 1)/ gcd(p − 1, k) or p | k and v � 2, we have
Sk(χ) ≡ 0 (mod f).
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(2) If o(χ) = pv−1(p− 1)/ gcd(p− 1, k), and p � k or v = 1, then Sk(χ) ≡ 0
(mod f/p).

(3) More precisely, there exists a unique prime ideal p of K above p such that
vq(Sk(χ)/f) = 0 for all prime ideals q of K above p different from p, and
such that

vp

(
Sk(χ)

f
+

1
p

)
� 0 if v = 1,

vp

(
Sk(χ)

f
− k

1− χ(1 + p)

)
� 0 if v � 2.

(4) If χ is an even character then Sk(χ) ≡ 0 (mod 2), so that Sk(χ) ≡ 0
(mod 2f) or (mod 2f/p) depending on whether we are in case (1 ) or
(2 ) above.

Proof. (1), (2), and (3). The case v = 1 is nothing else than Lemma 9.5.4,
so assume v � 2. Let r be coprime to p. Writing r ≡ r1r2 (mod pv) with
r1 = rpv−1

, it is clear that r1 is unique modulo p and that r2 ≡ 1 (mod p)
(see Lemma 2.1.26). Dually, we can write χ = χ1χ2 with χ1 = χpv−1

, and it
is immediate to see that χ1 is a (possibly trivial) character modulo p, and χ2

is a primitive character of exact order pv−1. Since r2 ≡ 1 (mod p) we have
χ1(r2) = 1, and since r1 is a pv−1th power we have χ2(r1) = 1. It follows
that

χ(r) = χ1(r1)χ2(r1)χ1(r2)χ(r2) = χ1(r1)χ2(r2) .

Thus

Sk(χ) =
∑

0�r<pv

χ(r)rk

≡
∑

r1 mod p

χ1(r1)rk
1

∑
r2 mod pv

r2≡1 (mod p)

χ2(r2)rk
2 ≡ S1S2 (mod pv)

with evident notation. Since S1 is the sum studied in Lemma 9.5.4, we now
study S2. By Lemma 2.1.26, for any a ≡ 1 (mod p) there exists a unique x
modulo pv−1 such that a ≡ (1 + p)x (mod pv), so that

S2 ≡
∑

x (mod pv−1)

χ2(1 + p)x(1 + p)kx ≡ (1 + p)kpv−1 − 1
χ2(1 + p)(1 + p)k − 1

(mod pv) .

Since v � 2 we have (1 + p)kpv−1 ≡ 1 + kpv (mod pv+1). Furthermore, (1 +
p)k ≡ 1 (mod p), χ2(1 + p) is a primitive pv−1th root of unity, so vp(χ2(1 +
p)− 1) = 1/φ(pv−1) < 1 by Proposition 3.5.5. Since χ1(1 + p) = 1, it follows
finally that

S2 ≡ kpv

χ(1 + p)− 1
(mod pv) .
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Since we want S1S2 modulo pv and we have vp(χ(1+p)−1) < 1, it is enough
to know S1 modulo p. Since χ1 = χpv−1

, we deduce from Lemma 9.5.4 that
if o(χ) �= pv−1(p − 1)/ gcd(p − 1, k) then S1 ≡ 0 (mod p), so that S1S2 ≡ 0
(mod pv), proving (1). Otherwise, there exists a unique prime ideal p above p
in K1 = Q(ζ(p−1)/ gcd(p−1,k)) such that S1 ≡ 0 (mod q) for any prime ideal q
of K1 above p and S1 ≡ −1 (mod p). However, in the extension K/K1 all the
prime ideals above p are totally ramified; in other words, every prime ideal
q of K1 above p splits as qZK = Qφ(pv−1), and in particular there is a single
prime ideal of K above each prime ideal q of K1 that is above p. Furthermore,
χ(1+p)−1 ∈ Q(ζpv−1) has norm p by Proposition 3.5.5, so vQ(χ(1+p)−1) = 1
for every prime ideal Q of K above p. If we denote by P the one above p we
thus have vQ(S/pv) � 0 for Q �= P, and vP(S/pv − k/(1 − χ(1 + p))) � 0,
proving (3).

For (4), we simply note that

Sk(χ) ≡
∑

0�r<f

χ(r)rk ≡
∑

0�r<f, r odd

χ(r) ≡ 0 (mod 2)

by Corollary 2.1.37 (1), since we have assumed that χ is an even character
(the result of (4) is trivially false if χ is an odd character). ��

We finally consider the last remaining case, that f = 2v.

Theorem 9.5.6. If χ is a primitive Dirichlet character of conductor f = 2v

for some v � 1 we have

Sk(χ) ≡

⎧⎪⎪⎨⎪⎪⎩
0 (mod 2f) if k is even,

2f

1− χ(5)
(mod 2f) if k is odd and v � 3,

6 (mod 2f) if k is odd and v = 2.

Proof. Since there are no primitive characters modulo 2, we may assume
that v � 2. The only primitive character modulo 4 is χ(r) = (−1)(r−1)/2 for
r odd, so that Sk(χ) = 1 − 3k, and this is congruent to 0 modulo 8 if k is
even, and to 6 modulo 8 if k is odd, proving the case v = 2. Thus assume
that v � 3, so that if 0 � r < f satisfies r ≡ 1 (mod 4) there exists a unique
z ∈ [0, 2v−2[ such that r ≡ 5z (mod f). Thus

Sk(χ) =
∑

0�r<f
r≡1 (mod 4)

χ(r)rk +
∑

0�r<f
r≡3 (mod 4)

χ(r)rk

=
∑

0�r<f
r≡1 (mod 4)

χ(r)rk +
∑

0�r<f
r≡1 (mod 4)

χ(f − r)(f − r)k
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≡ (1 + (−1)kχ(−1))
∑

0�r<f
r≡1 (mod 4)

χ(r)rk

+ fk(−1)k−1χ(−1)
∑

0�r<f
r≡1 (mod 4)

χ(r)rk−1 (mod 4f)

by the binomial theorem, since 4 | f . The second sum is easily treated: we
have ∑

0�r<f
r≡1 (mod 4)

χ(r)rk−1 ≡
∑

0�r<f
r≡1 (mod 4)

χ(r) ≡
∑

0�z<2v−2

χ(5)z (mod 4) .

This is a geometric series, and χ(5) �= 1; otherwise χ(5z) = 1 for all z, so
that χ would be the trivial character if χ(−1) = 1, and equal to

(−4
.

)
if

χ(−1) = −1, both of which are excluded since by assumption χ is a primitive
character modulo f � 8. It follows that the last sum is equal to

χ(5)2
v−2 − 1

χ(5)− 1
=

χ
(
52v−2)− 1
χ(5)− 1

= 0

since 52v−2 ≡ 1 (mod f). We have thus shown that

Sk(χ) ≡ (1 + (−1)kχ(−1))
∑

0�r<f
r≡1 (mod 4)

χ(r)rk (mod 4f) ,

so that Sk(χ) ≡ 0 (mod 4f) if χ(−1) = (−1)k−1. Thus assume that χ(−1) =
(−1)k. As above, we have∑

0�r<f
r≡1 (mod 4)

χ(r)rk ≡
∑

0�z<2v−2

χ(5)z5kz ≡ 5k2v−2 − 1
5kχ(5)− 1

(mod f) ,

where here the denominator trivially cannot vanish. Since 1+(−1)kχ(−1) = 2
we can thus write

Sk(χ) ≡ (5k2v−2 − 1)
2

5kχ(5)− 1
(mod 2f) .

Since v2(χ(5) − 1) � 1, as in the case p � 3 we deduce that 2/(5kχ(5) −
1) ≡ 2/(χ(5)− 1) (mod 2Z2), so its 2-adic valuation is nonnegative. Finally,
since v2(52v−2 − 1) = v, we have v2(5k2v−2 − 1) = v + v2(k), so that the
first factor is divisible by 2f if k is even, while if k is odd we deduce that
Sk(χ)/f ≡ 2/(χ(5)− 1) ≡ 2/(1−χ(5)) (mod 2Z2), proving the theorem. ��

Corollary 9.5.7. Let χ be a nontrivial primitive Dirichlet character of con-
ductor f and of order o(χ).
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(1) If either f is not a prime power, or if f = pv is an odd prime power and
either o(χ) �= pv−1(p − 1)/ gcd(p − 1, k) or p | k or v = 1, or if f = 2v

with either v � 3 or k even, then Sk(χ) ≡ 0 (mod f).
(2) If either f is not a prime power, or if f = pv is an odd prime power and

either o(χ) �= pv−1(p − 1)/ gcd(p − 1, k) or p | k or v � 2, and χ is an
even character, or if f = 2v with k even, then Sk(χ) ≡ 0 (mod 2f).

Proof. Clear. ��

Corollary 9.5.8. Let D be the discriminant of a quadratic field, let k ∈ Z�1,
and set Sk(D) =

∑
0�r<|D|

(
D
r

)
rk.

(1) If |D| is a prime p such that k ≡ (p−1)/2 (mod p−1) then Sk(D) ≡ −1
(mod D).

(2) (a) If D = −4, then for k odd we have Sk(D) ≡ −2 (mod 2D) and for
k even we have Sk(D) ≡ 0 (mod 2D).

(b) If D = −8, then for k odd we have Sk(D) ≡ 8 (mod 2D) and for k
even we have Sk(D) ≡ 0 (mod 8D).

(c) If D = 8, then for k odd we have Sk(D) ≡ 0 (mod 8D) and for k
even we have Sk(D) ≡ 0 (mod 2D).

(3) In all other cases Sk(D) ≡ 0 (mod D). More precisely, if we are not in
case (1) or (2) then:
(a) If D �= −p for an odd prime p then Sk(D) ≡ 0 (mod 2D).
(b) If D = −p then Sk(D) ≡ D (mod 2D)
(c) If D �= −p and D � 4k then Sk(D) ≡ 0 (mod 2D gcd(k,D∞)).

The fact that negative prime discriminants are singled out by this corol-
lary corresponds to an important algebraic fact: for instance by Dirichlet’s
class number formula, for D < −4 the class number h(D) of the imaginary
quadratic field of discriminant D, which is of course an integer, is equal to
S1(D)/D. Statements (3) (a) and (b) mean that h(D) is odd if and only if
D = −p for an odd prime p (and in addition for D = −8 and D = −4).

Corollary 9.5.9. Let D be the discriminant of a quadratic field, and assume
that either D ≡ 0 (mod 4) or D > 0.

(1) We have ∑
0�r<|D|

(
D

r

)
r2 ≡ 0 (mod 4D) ,

except if D = −4, 5, or 8, in which case the left-hand side is equal
respectively to −8, 4, or 16.

(2) We have ∑
0�r<|D|

(
D

r

)
r4 ≡ 0 (mod 8D) ,

except if D = −4 or 8, in which case the left-hand side is equal respectively
to −80 = −24 · 5 or 1696 = 25 · 53.
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Proofs. Immediate consequences of the theorem and of the fact that when
χ is an even character and k � 2 is even, then Sk(χ) ≡ 0 (mod 8), except
when k = 2, in which case the congruence is only modulo 4 (Exercise 56). ��

Corollary 9.5.10. Let χ be a primitive character of conductor f such that
4 | f , and let k ∈ Z�0.

(1) If f is not a power of 2 we have

∑
0�r<f/2

χ(r)rk ≡
{

0 (mod f) if χ(−1) = (−1)k ,
0 (mod 4) if χ(−1) = (−1)k−1 .

(2) If f = 2v with v � 3 we have

∑
0�r<f/2

χ(r)rk ≡

⎧⎪⎨⎪⎩
f

1− χ(5)
(mod f) if χ(−1) = (−1)k ,

4
1− χ(5)

(mod 4) if χ(−1) = (−1)k−1 .

If f = 4 we have of course
∑

0�r<f/2 χ(r)rk = 1.

Proof. Assume first that χ(−1) = (−1)k. We have

Sk(χ) =
∑

0�r<f/2

(χ(r)rk + χ(f − r)(f − r)k)

≡ 2
∑

0�r<f/2

χ(r)rk − χ(−1)kf
∑

0�r<f/2

χ(r)rk−1 (mod f2) .

Now it is clear that

χ(−1)
∑

0�r<f/2

χ(r)rk−1 ≡
∑

0�r<f/2

χ(r) (mod 2) .

This last sum vanishes when χ is an even (nontrivial) character, and by Corol-
lary 2.1.30 when χ is odd we have χ(f/2−r) = χ(r), so that

∑
0�r<f/2 χ(r) =

2
∑

0�r<f/4 χ(r) ≡ 0 (mod 2). It follows from Theorem 9.5.3 that if f is not
a power of 2 then 2

∑
0�r<f/2 χ(r)rk ≡ 0 (mod 2f), and from Theorem 9.5.6

that if f = 2v with v � 3 then 2
∑

0�r<f/2 χ(r)rk ≡ 2f/(1−χ(5)) (mod 2f),
proving the theorem when χ(−1) = (−1)k.

Assume now that χ(−1) = (−1)k−1. Since we only want congruences
modulo 4 and since r2 ≡ 1 (mod 8) when 2 � r, we have∑

0�r<f/2

χ(r)rk ≡
∑

0�r<f/2

χ1(r) (mod 4) ,
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where χ1 = χ if k is even and χ1 =
(−4

.

)
χ if k is odd, so that in both cases

the character χ1 is odd and its conductor is still equal to f (note that f �= 4).
By Corollary 2.1.30 once again, we have∑
0�r<f

χ1(r)r =
∑

0�r<f/2

(χ1(r)r+χ1(r+f/2)(r+f/2)) = −(f/2)
∑

0�r<f/2

χ1(r) .

As before it follows from Theorems 9.5.3 and 9.5.6 that the left hand side is
divisible by 2f when f is not a power of 2 and congruent to 2f/(1 − χ(5))
modulo 2f if f = 2v with v � 3, so that

∑
0�r<f/2 χ1(r) is congruent to 0 or

to 4/(χ(5)− 1) modulo 4, proving the theorem when χ(−1) = (−1)k−1 (note
that 4/(χ(5)− 1) ≡ 4/(1− χ(5)) (mod 4)). ��

9.5.2 The Generalized Clausen–von Staudt Congruence

Lemma 9.5.11. Let χ be a primitive Dirichlet character of conductor f and
let p be a prime number.

(1) If f > 1 and either f is not a power of p, or p = 2 and f = 2v with
v � 3, then vp(Bk(χ)) � 0 for all k � 0.

(2) In all other cases, in other words if either f = 1, or f = pv with p odd,
or f = 4, then vp(Bk(χ)) � −1 for all k � 0.

Proof. Set N = lcm(f, p). By Corollary 9.4.17 we have∑
0�r<N

χ(r)rk =
1

k + 1

∑
1�j�k+1

(
k + 1

j

)
Bk+1−j(χ)N j

=
∑

0�j�k

(
k

j

)
Bk−j(χ)

N j+1

j + 1
,

so we obtain the induction formula

Bk(χ) =
1
N

∑
0�r<N

χ(r)rk −
∑

1�j�k

(
k

j

)
Bk−j(χ)

N j

j + 1
.

Set z = 0 in case (1) and z = −1 in case (2). We prove by induction on k
that vp(Bk(χ)) � z for all k � 0. Let k � 0, and assume that we have shown
that vp(Bj) � z for j < k, so that vp(Bk−j(χ)) � z for 1 � j � k. Since
trivially vp(j + 1) � j for j � 1 and p | N , we have vp(N j/(j + 1)) � 0, so
the valuation of the second sum in the induction formula is also greater than
or equal to z. For the first term we consider three cases.
Case 1: p � f and f > 1. Then N = pf , and writing r = qp + s we have∑

0�r<N

χ(r)rk =
∑

0�s<p

∑
0�q<f

χ(qp + s)(qp + s)k

≡
∑

0�s<p

sk
∑

0�q<f

χ(qp + s) (mod p) .
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Since p is coprime to f the map q �→ qp + s is a bijection from (Z/fZ)∗ onto
itself, and since χ is a nontrivial character,

∑
0�q<f χ(qp + s) = 0, so that∑

0�r<N χ(r)rk ≡ 0 (mod p). Thus the p-adic valuation of the first term in
our induction is nonnegative, so is greater than or equal to z, proving the
result in this case.
Case 2: f = 1. This case is immediate: we have N = p, so the valuation of
the first term of our induction formula is greater than or equal to z = −1.
Case 3: p | f . In this case we have N = f , so the first term of our induction
formula is equal to Sk(χ)/f , with the usual notation Sk(χ) =

∑
0�r<f χ(r)rk.

Note that since p | f , if f is a prime power it must be a power of p. Thus
if f is not a power of p or if p = 2 and f = 2v with v � 3, it follows from
Theorems 9.5.3 and 9.5.6 that vp(Sk(χ)/f) � 0 > z. On the other hand, if f
is an odd prime power or if f = 4, it follows from Theorems 9.5.5 and 9.5.6
that vp(Sk(χ)/f) � −1 = z, proving the lemma. ��

Lemma 9.5.12. Let χ be a primitive Dirichlet character of conductor f and
let p be a prime number. Assume that we are in case (2 ) of the preceding
lemma, in other words that either f = 1, or f = pv with p odd or with p = 2
and v = 2. Then for all k such that χ(−1) = (−1)k we have

pBk(χ) ≡
⎧⎨⎩

Sk(χ)
pv−1

(mod p) if f > 1,∑
0�r<p rk (mod p) if f = 1.

Note that if χ(−1) = (−1)k−1 we have Bk(χ) = 0 except if k = 1 and
f = 1, in which case Bk(χ) = B1 = −1/2; see Proposition 9.4.9.

Proof. Keep the notation of the preceding proof. Since p | N it is immedi-
ate to check that vp(N j−1/(j + 1)) � 0 for j � 2, and also for j = 1 if p �= 2.
Since from the preceding lemma we know that vp(Bj(χ)) � −1, it follows
that for j � 1 we have

vp(Bk−j(χ)N j/(j + 1)) = vp(NBk−j(χ)N j−1/(j + 1)) � 0 ,

except perhaps for j = 1 when p = 2. Thus by our induction formula we have

pBk(χ) ≡ p

N

∑
0�r<N

χ(r)rk − kpN

2
Bk−1(χ) (mod p) ,

where the last term can be omitted if p �= 2, and must be omitted if k = 0.
Note, in addition, that by Proposition 9.4.9, since we have assumed that
χ(−1) = (−1)k we have Bk−1(χ) = 0 except if χ is even and k = 2, but then
v2(kpN/2) � 2, so the last term can also be omitted in that case. We deduce
that

pBk(χ) ≡ p

N

∑
0�r<N

χ(r)rk (mod p) .
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When f > 1 we have N = f = pv, and when f = 1 we have N = p, so the
lemma follows. ��

From this lemma and the results of the preceding subsection, it is now
immediate to deduce the generalized Clausen–von Staudt congruence.

Theorem 9.5.13. Let χ be a primitive Dirichlet character of conductor f ,
denote as usual by o(χ) the order of χ, and let K = Q(χ) = Q(ζo(χ)). For any
k � 0 such that χ(−1) = (−1)k, the number Bk(χ) is an algebraic integer,
with the following exceptions:

(1) When f = 1: if p is a prime such that (p − 1) � k then vp(Bk) � 0, and
if (p− 1) | k we have vp(Bk + 1/p) � 0.

(2) When f = 4: we have Bk(χ) + 1/2 ∈ Z.
(3) When f = pv with p an odd prime and v � 1, and o(χ) = pv−1(p −

1)/ gcd(p − 1, k), and either p � k or v = 1: in this case, there exists a
unique prime ideal p of K above p such that vq(Bk(χ)) � 0 for any prime
ideal q �= p of K (above p or not), and such that for q = p we have

vp

(
Bk(χ) +

1
p

)
� 0 if v = 1,

vp

(
Bk(χ)− k

1− χ(1 + p)

)
� 0 if v � 2.

Proof. All these results follow immediately from Lemma 9.5.12: for f = 1
we apply Lemma 9.5.4, for f = 4 we use the evaluation Sk(χ) = 1− 3k, and
for the other values of f we use Theorems 9.5.3, 9.5.5, and 9.5.6. ��

See Corollary 11.4.2 for the corresponding and stronger result for Bk(χ)/k.

The special case f = 1 of the above theorem is the usual Clausen–von
Staudt congruence, which we restate because of its importance:

Theorem 9.5.14 (Clausen–von Staudt). For any even k ∈ Z>0 we have

Bk ≡ −
∑

(p−1)|k

1
p

(mod 1) ,

where it is understood that p is a positive prime number.

The Clausen–von Staudt theorem means that vp(Bk) = 0 if (p − 1) � k
and Bk ≡ −1/p (mod 1) if (p− 1) | k. We will see in Proposition 11.4.4 and
especially in Corollary 11.4.7 that this can be strengthened. For instance,
(when (p− 1) | k) we have Bk ≡ (1− 1/p) (mod p) for p = 2, 5, and 13.

Write Bk = Nk/Dk uniquely with Nk and Dk coprime and Dk > 0.
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Corollary 9.5.15. For even k > 0 we have

Dk =
∏

(p−1)|k
p .

Proof. Indeed, from the theorem it is clear that Dk divides
∏

(p−1)|k p,
but conversely for any prime p such that (p− 1) | k the theorem implies that
vp(Bk) = −1, so that the product of such p divides Dk. ��

Corollary 9.5.16. (1) For even k > 0 we have 6 | Dk.
(2) If k = 2q, where q is a prime such that 2q +1 is not prime, then Dk = 6.
(3) The number of even k � X such that Dk > 6 is greater than or equal to

X/4, and in particular has a strictly positive lower density.

Proof. The fact that 6 | Dk is clear from the above corollary. If k = 2q
with q prime, the only divisors of k are 1, 2, q, and 2q, so the only possible
primes p are 2, 3, q + 1, and 2q + 1. But q + 1 is even (unless q = 2, which is
excluded since 2q + 1 must not be prime) so is not prime, and 2q + 1 is not
prime by assumption, so Dk = 6 as claimed. Finally, note that if for instance
4 | k then 30 | Dk, so that at least half of even k’s have Dk > 6. ��

This corollary applies for instance when q is a prime such that q ≡ 1
(mod 6) or q ≡ 7 (mod 10).

It is, however, possible to prove a stronger result as follows (see [Erd-Wag]):

Theorem 9.5.17. For every given D divisible by 6 the density of even pos-
itive integers k such that Dk = D exists and is strictly positive.

For instance, for Dk = 6 the proportion seems experimentally to be
around 0.14 of all even numbers.

9.5.3 The Voronoi Congruence

The exposition of the this subsection and the next two is taken with little
change from Ireland–Rosen [Ire-Ros]. As already mentioned, almost all of the
results will be given in a stronger form in Chapter 11, using the expansion
around s = 1 of p-adic L-functions (Theorem 11.3.21), although the tools
used are not really any deeper.

Recall that we have written canonically Bk = Nk/Dk. By abuse of nota-
tion, since in the rest of this chapter we will no longer consider χ-power sums
or χ-Bernoulli numbers, for k � 1 we will set

Sk(n) =
∑

0�r<n

rk .

We begin with the following result.
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Proposition 9.5.18. For all even k � 2 and all n � 1 we have

DkSk(n) ≡ Nkn (mod n2) .

Proof. By the Euler–MacLaurin formula (which we used more generally
in the proof of Lemma 9.5.11), we can write

Sk(n) =
k∑

j=0

Ak,jn
2 with Ak,j =

(
k

j

)
Bk−j

nj−1

j + 1
.

I first claim that for j � 1, if p | n and p � 5, then Ak,j is p-integral. Indeed,
for j = 1 the result is trivial for k > 2 since k− 1 is odd, and for k = 2 since
A2,1 = −1/2, and we exclude p = 2 for the moment. Similarly for j = 2,
nj−1/(j + 1) = n/3 is divisible by p since p �= 3, and we have shown that
pBk−2 is p-integral. For j � 3, note that since p � 5 it is easy to show that
pj−2/(j + 1) is p-integral, so that vp(nj−1/(j + 1)) � 1, and since we have
shown that vp(Bk−j) � −1 my claim follows.

I now claim that for j � 1 then v2(Ak,j) � −1 and v3(Ak,j) � −1 when
3 | n. Consider first the case p = 2. If j = 1 we have as usual Bk−1 = 0 if
k > 2, and A2,1 = −1/2 as already mentioned. For j > 1 we have Bk−j = 0
except if j is even or j = k − 1. But if j is even then v2(j + 1) = 0, so that
v2(Ak,j) � v2(Bk−j) � −1, while for j = k − 1 we have Ak,k−1 = −nk−2/2,
and hence v2(Ak,k−1) � −1.

Consider now the case p = 3 and p | n. Since Ak,2 =
(
k
2

)
Bk−2n/3 and

Ak,3 =
(
k
3

)
Bk−3n

2/4, it is clear that v3(Ak,j) =� −1 for j = 2 and j = 3.
For j � 4 we easily check that 3j−2/(j +1) is 3-integral, so that v3(Ak,j) � 0
in that case, proving my claim.

Summarizing my claims, we have proved that for all j � 1 the number
6Ak,j is p-integral for all p | n. If we write 6Ak,j = ak,j/bk,j with ak,j and
bk,j coprime, this means that gcd(bk,j , n) = 1. Thus

Sk(n) = nBk +
k∑

j=1

Ak,jn
2 =

k∑
j=1

ak,j

6bk,j
n2 .

Let B be the LCM of the bk,j , which is still coprime to n. Multiplying by
BDk we obtain

BDkSk(n) = BnNk + (Dk/6)
k∑

j=1

ak,j(B/bk,j)n2 ≡ BnNk (mod n2)

since 6 | Dk by the Clausen–von Staudt congruence. Since B is coprime to n
we can divide this congruence by B, proving the proposition. ��

Lemma 9.5.12 tells us that (for k even) pBk ≡ Sk(p) (mod p), and it is
immediate to see that the above proposition together with the Clausen–von
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Staudt theorem tells us that if (p−1) � k we even have pBk ≡ Sk(p) (mod p2).
In fact, not only is the restriction (p − 1) � k unnecessary, but even more is
true.

Corollary 9.5.19. If p � 5 and k is even then

pBk ≡ Sk(p) (mod p3) ,

except if (p − 1) | (k − 2) and p � k(k − 1), in which case the congruence is
only modulo p2.

Proof. Using again the expression for Sk(p) used at the beginning of the
proof of Proposition 9.5.18, the Clausen–von Staudt theorem, and Bk−1 = 0
when k � 4 is even, we deduce that

Sk(p) = pBk +
k(k − 1)p3

6
Bk−2 ,

and the conclusion again follows from the Clausen–von Staudt theorem for
p � 5. It is immediate to see that the congruence is true modulo p2 for k = 2.

��

We can now state and prove the Voronoi congruences.

Proposition 9.5.20 (Voronoi). For any even k � 2 and for all coprime
integers a and n in Z>0 we have

(ak − 1)Nk ≡ kak−1Dk

n−1∑
m=1

mk−1
⌊ma

n

⌋
(mod n) .

Proof. For 1 � m � n − 1, write ma = qmn + rm with 0 � rm < n, so
qm = 	ma/n
. By the binomial theorem we have

(ma)k ≡ rk
m + knqmrk−1

m ≡ rk
m + kn(ma)k−1

⌊ma

n

⌋
(mod n2) .

However, since a and n are coprime, r1, . . . , rn−1 is a permutation of 1, . . . ,
n− 1. Thus, summing the above congruence for 1 � m � n− 1 gives

akSk(n) ≡ Sk(n) + knak−1
n−1∑
m=1

mk−1
⌊ma

n

⌋
(mod n2) .

Multiplying by Dk, using Proposition 9.5.18, and dividing by n gives the
desired result. ��

Corollary 9.5.21. Let p be a prime such that p ≡ 3 (mod 4) and p > 3.
Then

2
(

2−
(

2
p

))
B(p+1)/2 ≡ −

(p−1)/2∑
m=1

(
m

p

)
(mod p) .
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Proof. We set k = (p + 1)/2, a = 2, and n = p in the above proposition.
Since for any a we have a(p−1)/2 ≡ (

a
p

)
(mod p), we obtain

(
2
(

2
p

)
− 1

)
N(p+1)/2 ≡ p + 1

2

(
2
p

)
D(p+1)/2

p−1∑
m=1

(
m

p

)⌊
2m

p

⌋
(mod p) .

Now 	2m/p
 is equal to 0 for m < (p−1)/2, and to 1 for (p+1)/2 � m � p−1.
Since vp(D(p+1)/2) = 0 by Corollary 9.5.15 (since otherwise (p−1) | (p+1)/2,
hence p − 1 � (p + 1)/2, which is possible only for p = 3, which we have
excluded), it follows that

2
(

2
(

2
p

)
− 1

)
B(p+1)/2 ≡

(
2
p

) p−1∑
m=(p+1)/2

(
m

p

)
(mod p) .

The result follows from the fact that
∑

1�m�p−1

(
m
p

)
= 0. ��

Corollary 9.5.22. Let p be a prime such that p ≡ 3 (mod 4) and p > 3. If we
denote by h(−p) the class number of the imaginary quadratic field Q(

√−p),
then

h(−p) ≡ −2B(p+1)/2 (mod p) .

Proof. The classical Dirichlet class number formula gives for any funda-
mental discriminant D < −4 the identity(

2−
(

D

2

))
h(D) =

�|D|/2�∑
m=1

(
D

m

)
.

When D = −p with p ≡ 3 (mod 4), thanks to the quadratic reciprocity law
this can be rewritten(

2−
(

2
p

))
h(−p) =

(p−1)/2∑
m=1

(
m

p

)
.

The corollary thus immediately follows from the preceding one. ��

Note that even though this is not a very practical method of computation
of h(−p), it does determine the value of h(−p) exactly from that of B(p+1)/2

modulo p since it is well known and easy to show that h(−p) < p1/2 log p/π <
p for all p > 3.

9.5.4 The Kummer Congruences

We begin with the following result.
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Proposition 9.5.23 (J. Adams). If (p− 1) � k then Bk/k is p-integral.

Proof. By Theorem 9.5.14, we already know that Bk is p-integral. Write
k = pek0 with p � k0. Choosing n = pe in Proposition 9.5.20, we see that
(ak−1)Nk ≡ 0 (mod pe). Take for a a primitive root modulo p. Since (p−1) �
k, we have p � ak − 1. Thus Nk ≡ 0 (mod pe), so Bk/k = (Nk/k)/Dk is p-
integral. ��

The main result of this section is the following theorem, essentially due
to Kummer.

Theorem 9.5.24 (Kummer). For any k � 2 even, set

z(k) = (pk−1 − 1)Bk/k = (1− pk−1)ζ(1− k) .

Then if (p− 1) � k and k′ ≡ k (mod φ(pe)) we have z(k′) ≡ z(k) (mod pe).

Proof. If we set s = vp(k), the above proposition shows that ps | Nk. In
Proposition 9.5.20 we choose n = pe+s. Since ps divides both k and Nk, we
can divide the congruence by ps, and since k/ps and Dk are coprime to p we
can divide by both and we obtain the congruence

(ak − 1)Bk

k
≡ ak−1

pe+s−1∑
m=1

mk−1

⌊
ma

pe+s

⌋
(mod pe) .

We have ∑
1�m�pe+s−1

mk−1

⌊
ma

pe+s

⌋
=

∑
1�m�pe+s−1

p�m

mk−1

⌊
ma

pe+s

⌋

+ pk−1
∑

1�m�pe+s−1−1

mk−1

⌊
ma

pe+s−1

⌋
.

Using the congruence that we have obtained above with e replaced by e− 1,
since k � 2 we deduce that

pk−1(ak − 1)Bk

k
≡ pk−1ak−1

∑
1�m�pe+s−1

mk−1

⌊
ma

pe+s−1

⌋
(mod pe) .

Putting the two congruences and the above identity together, we obtain

(1− pk−1)(ak − 1)Bk

k
≡ ak−1

∑
1�m�pe+s−1

p�m

mk−1

⌊
ma

pe+s

⌋
(mod pe) .

Now note that when p � m as in the last sum, k′ ≡ k (mod φ(pe)) implies that
mk′−k ≡ 1 (mod pe) (Euler’s theorem for the group (Z/peZ)∗ of cardinality
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φ(pe)), so that mk′−1 ≡ mk−1 (mod pe). It follows that the right-hand side
of the above congruence is unchanged modulo pe if we replace k by k′ ≡ k
(mod φ(pe)) (recall that a is coprime to n = pe+s, hence not divisible by p).
We deduce that

(1− pk′−1)(ak′ − 1)Bk′

k′ ≡ (1− pk−1)(ak − 1)Bk

k
(mod pe)

when k′ ≡ k (mod φ(pe)). We now choose for a a primitive root modulo p.
Since (p − 1) � k (hence (p − 1) � k′), it follows that ak − 1 and ak′ − 1 are
coprime to p, and as above, ak′−1 ≡ ak−1 (mod pe). We can thus divide the
above congruence by ak − 1, thus giving the congruence of the theorem. ��

Corollary 9.5.25. If k and k′ are even with min(k, k′) � e + 1, and p is
a prime such that (p − 1) � k and k′ ≡ k (mod φ(pe)), then Bk′/k′ ≡ Bk/k
(mod pe).

Proof. Clear from the above theorem since Bk/k is p-integral by Proposi-
tion 9.5.23. ��

In Section 11.4.2 we will see that the Kummer congruences are closely
related to the p-adic zeta function and L-functions. In fact, we will give a
statement (Proposition 11.4.4) that includes the case (p− 1) | k. These con-
gruences can also be used in connection with Fermat’s last theorem, because
of the following result, which we will prove in Chapter 11 (Theorem 11.4.10;
see also [Was]):

Theorem 9.5.26. An odd prime p is irregular if and only if it divides the
numerator of some Bk for k � p− 3.

Proposition 9.5.27. The set of irregular primes is infinite.

Proof. Let {p1, . . . , ps} be a nonempty set of irregular primes (this is
possible since 37 is irregular). In the way of Euclid’s proof of the infinitude
of primes, we will construct an irregular prime that is not in this set, proving
the proposition. Set n =

∏
1�i�s(pi − 1). Since pi � 37 for all i, we have

n � 36, so by trivial estimates we have |Bn/n| > 1. It follows that there
exists a prime p such that vp(Bn/n) > 0. I claim that p is irregular and
distinct from the pi. Indeed, by the Clausen–von Staudt congruence we know
that (p− 1) � n, so that p �= pi and p �= 2. Furthermore, if r is the remainder
of the Euclidean division of n by p − 1 we have 2 � r � p − 3 and r even,
and by Corollary 9.5.25 we have Bn/n ≡ Br/r (mod p). Since vp(Bn/n) > 0
it follows that vp(Br) = vp(Br/r) > 0, so that p is irregular. ��

As already mentioned in the section on FLT, a famous conjecture is that
the set of regular primes is also infinite, with density among primes equal to
exp(−1/2).
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9.5.5 The Almkvist–Meurman Theorem

We will give two proofs of this theorem, the first one in this section, the second
as Exercise 63. Furthermore, in Section 11.4.3, we will prove a stronger result.
We begin with a lemma of independent interest.

Lemma 9.5.28 (Hermite). Let p be a prime number and let n � 1 be an
integer. We have the congruence∑

1�j�(n−1)/(p−1)

(
n

(p− 1)j

)
≡ 0 (mod p) .

Proof. By Lemma 2.5.1 we know that for m � 1 we have
∑

a∈Fp
am =

−δm,p−1, where δm,p−1 = 1 if (p − 1) | m and δm,p−1 = 0 otherwise, while∑
a∈Fp

a0 = 0, so in Fp we have

−δn,p−1 =
∑
a∈Fp

(a + 1)n =
∑
a∈Fp

∑
0�m�n

(
n

m

)
am = −

∑
1�m�n

δm,p−1

(
n

m

)
.

It follows that
∑

1�j�(n−1)/(p−1)

(
n

(p−1)j

) ≡ 0 (mod p), proving the lemma.
��

See Exercise 62 and Proposition 11.4.11 for generalizations.

Theorem 9.5.29 (Almkvist–Meurman). For any n � 0, k ∈ Z�1, and
h ∈ Z we have kn(Bn(h/k)−Bn) ∈ Z.

Proof. If we set B̃n(x) = Bn(x)−Bn then by Proposition 9.1.3 we have

B̃n(x + y) =
n∑

m=0

(
n

m

)
B̃m(x)yn−m + B̃n(y) ,

so by induction on h it is enough to prove the theorem for h = 1. In addition,
it is trivially true by inspection for n � 1, so we may assume that n � 2. Set
bn(k) = knB̃n(1/k). By the basic formula for Bernoulli polynomials we have

bn(k) = 1− nk

2
+

∑
2�m�n−1, m even

(
n

m

)
Bmkm .

Thus, by the Clausen–von Staudt Theorem 9.5.14, with the understanding
that p is prime, we have

bn(k) ≡ −nk

2
−

∑
2�m�n−1, m even

(
n

m

)
km

∑
(p−1)|m

1
p

≡ nk

2
−
∑
p�n

1
p

∑
2�m�n−1

lcm(2,p−1)|m

(
n

m

)
km (mod 1) .
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If p | k then km ≡ 0 (mod p), and if p � k and (p − 1) | m we have km ≡ 1
(mod p) by Fermat’s little theorem. Thus

bn(k) ≡ nk

2
−

∑
p�n, p�k

1
p

∑
2�m�(n−1)
lcm(2,p−1)|m

(
n

m

)
(mod 1) .

Denote by S(n, p) the inner sum. Assume first that p �= 2, so that p − 1 is
even. Setting m = (p− 1)j we thus have

S(n, p) =
∑

1�j�(n−1)/(p−1)

(
n

(p− 1)j

)
≡ 0 (mod p)

by Lemma 9.5.28. It follows that bn(k) ≡ 0 (mod 1) (in other words, bn(k) ∈
Z) when k is even, and otherwise

bn(k) ≡ n

2
− 1

2
S(n, 2) (mod 1) .

But

S(n, 2) =
∑

1�j�(n−1)/2

(
n

2j

)
=

{
2n−1 − 2 if n is even,
2n−1 − 1 if n is odd;

hence S(n, 2) ≡ n (mod 2) since n � 2, proving that bn(k) ≡ 0 (mod 1) in
all cases. ��

9.6 The Real and Complex Gamma Functions

Although the complex gamma function is quite classical, and we have already
mentioned it in Chapter 8, since it occurs in all the functional equations of
functions linked to number theory (and in particular in so-called “motivic”
L-functions), it is essential to have a thorough understanding of this function.
We give here a slightly nonstandard approach that emphasizes the formulas
that we need and is well suited to generalizations. The impatient reader can
jump directly to Section 9.6.2. The main idea of our approach is that most
basic formulas involving the gamma function are in fact specializations of
formulas for the Hurwitz zeta function, which we now study.

9.6.1 The Hurwitz Zeta Function

The Hurwitz zeta function is an important tool, not only for the definition
of the gamma function, but also in the study of L-functions.
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Definition 9.6.1. We define the Hurwitz zeta function for x ∈ R>0 and
s ∈ C with �(s) > 1 by

ζ(s, x) =
∑
n�0

1
(n + x)s

.

We could extend this definition to x ∈ C \ Z�0 by deciding that 1/(n +
x)s = exp(−s log(n+x)), where we choose the principal determination of the
logarithm. However, this would create too many determination problems, so
we restrict to x ∈ R>0. The only exception to this is when s ∈ Z>1, in which
case we can define ζ(s, x) unambiguously (see Exercise 66 for an application
of this).

We will see below that it is very easy to give the analytic continuation
of ζ(s, x) to the whole s-plane. Before that, we prove a number of simple
formulas for which we assume implicitly that �(s) > 1, but which will auto-
matically be valid for all s by analytic continuation.

Proposition 9.6.2. We have the functional equation

ζ(s, x + 1) = ζ(s, x)− x−s ,

the (partial) differential equation

∂ζ(s, x)
∂x

= −sζ(s + 1, x) ,

the asymptotic formula ζ(s, x) ∼ x−s as �(s) →∞, and the special cases

ζ(s, 1) = ζ(s) and ζ(s, 1/2) = (2s − 1)ζ(s) ,

where ζ(s) is the Riemann zeta function.

Proof. The first formula corresponds to changing n into n + 1, and the
next two formulas are immediate by normal convergence of the series and its
derivative. By definition we have ζ(s, 1) = ζ(s). Finally,

ζ(s, 1/2) = 2s
∑
m�0

1
(2m + 1)s

= 2s

⎛⎝ζ(s)−
∑
m�1

1
(2m)s

⎞⎠ = 2sζ(s)
(

1− 1
2s

)
,

proving the last formula. ��

Corollary 9.6.3. We have the following series expansion valid for |y| < x:

ζ(s, x + y) =
∑
k�0

(−1)k

(
s + k − 1

k

)
ykζ(s + k, x) .

In particular, for 0 < x < 1 we have
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ζ(s, x) = x−s +
∑
k�0

(−1)k

(
s + k − 1

k

)
xkζ(s + k) and

ζ(s, x) =
∑
k�0

(−1)k

(
s + k − 1

k

)
(x− 1/2)k(2s+k − 2)ζ(s + k) .

Proof. Denote by RHS the right-hand side of the first formula, so that by
definition of ζ(s, x) and of

(
a
k

)
we have

RHS =
∑
k�0

(−s

k

)
yk

∑
n�0

1
(n + x)s+k

.

Since |y| < x the double sum is absolutely convergent, so we may interchange
the order of summation and obtain

RHS =
∑
n�0

(n + x)−s
∑
k�0

(−s

k

)
(y/(n + x))k

=
∑
n�0

(n + x)−s(1 + y/(n + x))−s =
∑
n�0

(n + x + y)−s = ζ(s, x + y) ,

proving the first formula. The second follows by choosing x = 1 and exchang-
ing x and y, and the last by choosing x = 1/2, exchanging x and y, and using
the formula for ζ(s, 1/2). ��

Lemma 9.6.4. For |y| < x we have the formulas

ζ(s, x) =
ζ(s− 1, x)− ζ(s− 1, x + y)

y(s− 1)
+
∑
k�1

(−1)k−1

(
s + k − 1

k

)
yk ζ(s + k, x)

k + 1
,

ζ(s, x) =
ζ(s− 1, x− y)− ζ(s− 1, x + y)

2y(s− 1)
−
∑
k�1

(
s + 2k − 1

2k

)
y2k ζ(s + 2k, x)

2k + 1
,

ζ(s, x) =
ζ(s− 2, x− y)− 2ζ(s− 2, x) + ζ(s− 2, x + y)

y2(s− 2)(s− 1)

− 2
∑
k�1

(
s + 2k − 1

2k

)
y2k ζ(s + 2k, x)

(2k + 1)(2k + 2)
.

Proof. The first formula is a simple rearrangement of terms of the first
formula of the corollary. The second and third formulas follow by changing y
into −y in the first formula and computing the sum and the difference. ��

Corollary 9.6.5. We have the following formulas, valid for x > 1, except
for the fourth, which is also valid for x > 1/2:
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ζ(s, x) =
x1−s

s− 1
+
∑
k�1

(−1)k−1

(
s + k − 1

k

)
ζ(s + k, x)

k + 1
,

ζ(s, x) =
(x− 1)1−s

s− 1
−
∑
k�1

(
s + k − 1

k

)
ζ(s + k, x)

k + 1
,

ζ(s, x) =
(x− 1)1−s + x1−s

2(s− 1)
−
∑
k�1

(
s + 2k − 1

2k

)
ζ(s + 2k, x)

2k + 1
,

ζ(s, x) =
(x− 1/2)1−s

s− 1
−
∑
k�1

1
22k

(
s + 2k − 1

2k

)
ζ(s + 2k, x)

2k + 1
,

ζ(s, x) =
(x− 1)2−s − x2−s

(s− 1)(s− 2)
− 2

∑
k�1

(
s + 2k − 1

2k

)
ζ(s + 2k, x)

(2k + 1)(2k + 2)
.

Proof. This follows by taking y = 1 and y = −1 in the first formula of
the lemma, y = 1 and y = 1/2 in the second formula, and y = 1 in the third
formula. ��

Remarks. (1) If we want formulas valid for x ∈ R>0, we can apply the
above formulas to x + 1 and use ζ(s, x) = ζ(s, x + 1) + x−s.

(2) We can of course obtain similar formulas for the Riemann zeta function
by choosing for instance x = 2 (not x = 1) and using the formula ζ(s, 2) =
ζ(s)− 1. Only in the fourth formula can we directly set x = 1.

Proposition 9.6.6. The parameter x ∈ R>0 being fixed, the function ζ(s, x)
(hence in particular the function ζ(s)) can be analytically continued to the
whole complex plane to a meromorphic function with a single pole, at s = 1,
which is simple with residue 1.

Proof. To prove this proposition, we can use any of the formulas of the
above corollary. First note that since ζ(s, x + 1) = ζ(s, x)− x−s, it is enough
to prove analytic continuation when x > 1. In that case, since by Proposition
9.6.2 we know that ζ(s + k, x) ∼ x−sx−k as k → ∞, it follows that the first
formula above (for instance) expresses ζ(s, x) as a geometrically convergent
series involving only ζ(s + k, x) for k � 1. We can thus extend analytically
ζ(s, x) by strips of width 1: first to �(s) > 0, then to �(s) > −1, and so on.
The only polar part is obtained with the term x1−s/(s− 1), hence at s = 1,
which gives a pole, which is simple, with residue equal to 1. Note that the pole
at s = 1−k of ζ(s+k, x+1) is canceled by

(
s+k−1

k

)
= s(s−1) · · · (s−k+1)/k!,

which vanishes for s = 1− k when k � 1. ��

Note that Proposition 10.2.2, which we will prove in the next chapter,
also gives an easy proof of analytic continuation of ζ(s, x) and its values at
negative integers, which we shall give in Corollary 9.6.10 below; see Exercise
17 of Chapter 10.
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In Proposition 9.2.13 we have seen how to express ζ(−α) for any α ∈
C\{−1} using the Euler–MacLaurin formula. Now that we know the analytic
continuation of ζ(s, x) to the whole plane, exactly the same reasoning gives
the following more general statements.

Proposition 9.6.7. Let α ∈ C be different from −1, and let x ∈ R>0.

(1) For every k > �(α) + 1 such that k � 1 we have

N∑
m=0

(m + x)α = ζ(−α, x) +
(N + x)α+1

α + 1
+

(N + x)α

2

+
k∑

j=2

(
α

j − 1

)
Bj

j
(N + x)α−j+1 + Rk(α, x,N) ,

where

Rk(α, x,N) = (−1)k

(
α

k

)∫ ∞

N

(t + x)α−kBk({t}) dt .

When k is even we have

|Rk(α, x,N)| �
∣∣∣∣( α

k + 1

)
Bk+2

k + 2
(N + x)α−k−1

∣∣∣∣ ;

in other words, |Rk(α, x,N)| is smaller than the modulus of the first
omitted term, and in particular Rk(α, x,N) tends to 0 as N →∞.

(2) With the same assumptions, we have the formula

ζ(−α, x) = − xα+1

α + 1
−

k∑
j=1

(
α

j − 1

)
Bj

j
xα+1−j

+ (−1)k−1

(
α

k

)∫ ∞

0

(t + x)α−kBk({t}) dt .

Similarly, for α = −1 we have the following:

Proposition 9.6.8. For x /∈ Z�0 define

ψ(x) = − lim
N→∞

(
N∑

m=0

1
m + x

− log(N + x)

)
.

(1) For k � 1 we have

N∑
m=0

1
m + x

= −ψ(x) + log(N + x)−
k∑

j=1

Bj

j(N + x)j
+ Rk(−1, x,N) ,

where

Rk(−1, x,N) =
∫ ∞

N

Bk({t})
(t + x)k+1

dt

and |Rk(−1, x,N)| � |Bk+2/((k + 2)(N + x)k+2)| when k is even.
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(2) For k � 1 we have

ψ(x) = log(x)− 1
2x
−

k∑
j=2

Bj

jxj
+
∫ ∞

0

Bk({t})
(t + x)k+1

dt .

(3) We have lims→1(ζ(s, x)− 1/(s− 1)) = −ψ(x), in other words

ζ(s, x) =
1

s− 1
− ψ(x) + O(s− 1) .

We will study below the properties of the function ψ(x), and in particular
we will see that ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the gamma
function; see Definition 9.6.13. Indeed, since we will define the gamma func-
tion by log(Γ(x)) = ∂ζ

∂s (0, x)− ∂ζ
∂s (0, 1) and since ζ(s, x) is meromorphic in s,

around s = 1 we have

ζ(s− 1, x) = ζ(0, x) + (s− 1) log(Γ(x)) + · · ·
= 1/2− x + (s− 1) log(Γ(x)) + · · ·

(using ζ(0, x) = 1/2−x, which is immediate from Proposition 9.6.7), so that
by Proposition 9.6.2,

−(s− 1)ζ(s, x) =
∂ζ

∂x
(s− 1, x) = −1 + (s− 1)ψ(x) + · · · ,

as claimed in the proposition.

Corollary 9.6.9. As x→∞ we have:

(1) For �(s) � 1 and s �= 1,

ζ(s, x) =
x1−s

s− 1
+ O(x−s) .

(2) For �(s) < 1,

ζ(s, x) = − x1−s

1− s
+

x−s

2
−

p∑
j=1

(−s

2j

)
B2j

2j
x−s+1−2j + O(x−1) ,

where p = 	(3−�(s))/2
.
Proof. Clear by Proposition 9.6.7. ��

Corollary 9.6.10. If k ∈ Z�1 we have

ζ(1− k, x) = −Bk(x)
k

,

and in particular ζ(1− k) = −Bk/k − δk,1.
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Proof. Setting α = k − 1 in Proposition 9.6.7, we find that for n � k,

−kζ(1− k, x) = xk +
n∑

j=1

(
k

j

)
Bjx

k−j = Bk(x) .

��

The statement for ζ(1 − k) will be proved again in the next chapter us-
ing the functional equation of the zeta function. Historically it was the first
indication of the existence of this functional equation, discovered by L. Euler.

Proposition 9.6.11. As x→ 0 we have

ζ(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x−s + ζ(s) + o(1) if �(s) � 0 ,

1/2 + o(1) if s = 0 ,

ζ(s) + o(1) if �(s) < 0, s �= −2k with k ∈ Z�1 ,

−B2kx + O(x3) if s = −2k with k ∈ Z�2 ,

−B2x + x2/3 + O(x3) if s = −2 .

Proof. For s �= −2k with k ∈ Z�1 this immediately follows from

ζ(s, x) = x−s + ζ(s, x + 1) = x−s + ζ(s) + o(1) .

For s = −2k, by the above corollary we have ζ(−2k, x) = −B2k+1(x)/(2k+1),
so the result follows from the explicit formula for Bn(x). ��

Proposition 9.6.12. We have the duplication formula

ζ(s, x) + ζ

(
s, x +

1
2

)
= 2sζ(s, 2x)

and more generally for N ∈ Z�1 the distribution formula

∑
0�j<N

ζ

(
s, x +

j

N

)
= Nsζ(s,Nx) .

Proof. Follows from an easy rearrangement of terms and left to the reader
(Exercise 64). ��

9.6.2 Definition of the Gamma Function

Since we have seen above that ζ(s, x) can be extended to the whole complex
plane with a simple pole at s = 1, the following definition makes sense.
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Definition 9.6.13. (1) We define the real gamma function for x ∈ R>0 by
the formula

log(Γ(x)) = ζ ′(0, x)− ζ ′(0, 1) = ζ ′(0, x)− ζ ′(0) ,

where here and elsewhere the derivative is taken with respect to the first
variable.

(2) We define the real ψ function for x ∈ R>0 as the logarithmic derivative
of Γ(x); in other words, ψ(x) = Γ′(x)/Γ(x).

We will see later that in fact ζ ′(0) = − log(2π)/2, but for the moment we
do not need this result. We will also see how to generalize this definition to
all x ∈ C \ Z�0.

As already mentioned, since the gamma function is very often used in
conjunction with L-series, it is customary to use the variable s and not the
variable x, hence to write Γ(s). The reader should be aware that although
this will be the variable used in zeta and L-functions, it is not the variable
s of the Hurwitz zeta function used to define the gamma function. For the
moment, since we handle simultaneously ζ(s, x) and the gamma function,
we keep the variable x, but we will switch to the variable s later, after the
introduction of the complex gamma function.

We will study later in great detail the properties of the function Γ(x). For
the moment we note the following basic results.

Proposition 9.6.14. For all x ∈ R>0 we have Γ(x + 1) = xΓ(x) and when
n ∈ Z�1 we have Γ(n) = (n− 1)!.

Proof. Since ζ(s, x + 1) = ζ(s, x) − x−s we obtain the first formula
by derivation with respect to x. The second follows by induction since
log(Γ(1)) = ζ ′(0, 1)− ζ ′(0, 1) = 0. ��

Proposition 9.6.15. (1) Let u ∈ R>0. For |x| < u we have

log(Γ(x + u)) = log(Γ(u)) + ψ(u)x +
∑
k�2

(−1)k ζ(k, u)
k

xk .

(2) In particular, for |x| < 1 we have

log(Γ(x + 1)) =
∑
k�1

(−1)k ζ(k)
k

xk ,

where by convention we set ζ(1) = γ, Euler’s constant.

Proof. This follows by differentiating with respect to s the first and second
formulas of Corollary 9.6.3, and using the fact that around s = 1 we have
ζ(s, u) = 1/(s − 1) − ψ(u) + O(s − 1), and in particular ζ(s) = 1/(s − 1) +
γ + O(s− 1). ��
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Proposition 9.6.16. For x > 0 we have for any k � 1,

ζ ′(0, x) =
(

x− 1
2

)
log(x)− x +

k−1∑
j=1

Bj+1

j(j + 1)xj
− 1

k

∫ ∞

0

Bk({t})
(t + x)k

dt ,

and in particular

ζ ′(0, x) =
(

x− 1
2

)
log(x)− x−

∫ ∞

0

{t} − 1/2
t + x

dt

and

log(Γ(x)) =
(

x− 1
2

)
log(x)− x + 1 + (x− 1)

∫ ∞

1

{t} − 1/2
t(t + x− 1)

dt .

Proof. This follows by derivation after a short computation from the for-
mula for ζ(−α, x) given in Proposition 9.6.7. ��

Remark. As already noted in Section 9.2.5, the integral
∫∞
0

B1({t})/(t +
x) dt is convergent, albeit only conditionally. If you are uncomfortable with
this, simply choose k = 2 instead of k = 1.

Proposition 9.6.17. For all x ∈ C \ Z�0 set

uN (x) =
Nx−1N !

x(x + 1) · · · (x + N − 1)
.

Then for all x ∈ R>0 we have

Γ(x) = lim
N→∞

uN (x) .

Proof. By differentiating the first formula of Proposition 9.6.7 a short
computation gives

N−1∑
m=0

log(m + x) = −ζ ′(0, x) +
(

N + x− 1
2

)
log(N + x)

− (N + x)−
∫ ∞

N

{t} − 1/2
t + x

dt ,

hence in particular

log(N !) =
N−1∑
m=0

log(m + 1)

= −ζ ′(0) +
(

N +
1
2

)
log(N + 1)− (N + 1)−

∫ ∞

N

{t} − 1/2
t + 1

dt .
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Since the integrals converge, expanding log(N +x) and log(N +1) we obtain

log(Γ(x)) = log(N !)−
N−1∑
m=0

log(m + x) + (x− 1) log(N) + o(1) ,

proving the proposition. ��

Recall from Definition 9.6.13 that we have denoted by ψ(x) the logarith-
mic derivative of Γ(x). By differentiating the formulas of the above proposi-
tions, it is easy to see that this definition of ψ(x) coincides with the notation
used in Proposition 9.6.8, and also proves (2) and (3) of that proposition. It
is also immediate to give analogous formulas for the derivatives of ψ(x); see
Exercise 77.

Thanks to the above proposition, we can now define the complex gamma
function in a more traditional manner:

Definition 9.6.18. For s ∈ C \ Z�0 we define Γ(s) = limN→∞ uN (s).

Proposition 9.6.19. The above limit exists and defines a meromorphic
function on C that generalizes the real gamma function defined above for
s ∈ R>0. It has no zeros in C, and it has simple poles on Z�0, the residue at
s = −k being equal to (−1)k/k!.

Proof. Since

uN+1(s)/uN (s) = (1 + 1/N)s/(1 + s/N) = 1 + O(1/N2) ,

it is clear that the limit exists and that it converges uniformly on any compact
subset of C\Z�0. It follows that Γ(s) is indeed a meromorphic function on C
with simple poles on Z�0, and by Proposition 9.6.17 that it does generalize
the real gamma function. By the functional equation, as s tends to −k with
k ∈ Z�0 we have

Γ(s) =
Γ(s + k + 1)∏
0�i�k(s + i)

∼ (−1)k

k!
1

s + k
,

giving the residues. Finally, since

Γ(s) = u1(s)
∏
N�1

uN+1(s)
uN (s)

=
1
s

∏
N�1

(1 + 1/N)s

1 + s/N
,

the absolute convergence of this infinite product implies that it does not
vanish anywhere. ��

It follows from this proposition that if we set ψ(s) = Γ′(s)/Γ(s) then ψ is
also a meromorphic function with the same poles, residues equal to −1, and
that it generalizes the real ψ function defined above.



9.6 The Real and Complex Gamma Functions 81

Corollary 9.6.20. There exists a unique holomorphic function LogΓ(s) de-
fined on the simply connected set C\R�0 such that exp(LogΓ(s)) = Γ(s) and
LogΓ(1) = 0. We have LogΓ′(s) = ψ(s) and the formulas

LogΓ(s) = lim
N→∞

(
(s− 1) log(N) + log(N !)−

∑
0�k�N−1

log(s + k)

)
= − log(s) +

∑
N�1

(s log(1 + 1/N)− log(1 + s/N)) .

Proof. Let Ω = C\R�0. Since Γ(s) has no zeros or poles on Ω and since Ω is
simply connected, it follows that there exists a holomorphic function log(Γ(s))
defined on Ω, which is unique if we specify its value at a single point, for
instance at 1, where it can be any integral multiple of 2iπ. Specifically, if Cs is
any contour from 1 to s and lying in Ω, we set LogΓ(s) =

∫
Cs

ψ(z) dz, and this
does not depend on the contour since ψ is holomorphic in Ω. Furthermore, the
two given formulas are clearly equivalent, and since by uniform convergence
the sum

− log(s) +
∑
N�1

(s log(1 + 1/N)− log(1 + s/N))

defines a holomorphic function on Ω, equal to 0 at s = 1 and whose expo-
nential is equal to Γ(s) by the proposition, it follows by uniqueness that it is
equal to LogΓ(s). ��

Remark. If we denote by log the principal determination of the logarithm,
we have evidently LogΓ(s) = log(Γ(s)) + 2iπm(s) for some m(s) ∈ Z, but
m(s) is not equal to 0 in general (and it can be estimated approximately
when �(s) or �(s) is large; see Exercise 35).

9.6.3 Preliminary Results for the Study of Γ(s)

In the sequel we are going to study in some detail the gamma function. For
this we need some classical undergraduate material that we recall here with
proof.

Proposition 9.6.21. ∫ ∞

−∞
e−t2 dt =

√
π ,

and more generally for a > 0 we have∫ ∞

−∞
e−at2 dt =

√
π/a .

Proof. There are several classical proofs of this result, and we give two.
The first is using polar coordinates. Set IN =

∫ N

−N
e−t2 dt. Then I2

N =
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∫
S(N)

e−(t2+u2) dt du, where S(N) is the square [−N,N ]2. If D(R) is the disk

centered at the origin of radius R, we clearly have D(N) ⊂ S(N) ⊂ D(N
√

2).
On the other hand, by passing to polar coordinates we have∫

D(N)

e−(t2+u2) dt du =
∫ 2π

0

dθ

∫ N

0

e−ρ2
ρ dρ = π(−e−ρ2

)
∣∣∣∣N
0

= π(1− e−N2
) .

Since the function e−(t2+u2) is nonnegative, it follows that

π(1− e−N2
) � I2

N � π(1− e−2N2
) ,

proving the first result by letting N → ∞. The second follows by making
the evident change of variable u = a1/2t. A second proof is given in Exercise
72. ��

Note that this result is still true when a is complex with �(a) � 0 and
a �= 0; see Lemma 10.2.9 in the next chapter.

Proposition 9.6.22 (Stirling’s formula). As n →∞ we have

n! ∼ nne−n
√

2πn ,

or equivalently,

log(n!) =
(

n +
1
2

)
log(n)− n +

1
2

log(2π) + o(1) .

Proof. Once again there are several classical proofs. Certainly the most
classical is as follows: if we set un = log(n!/(nne−n

√
n)) then

un+1 − un = 1−
(

n +
1
2

)
log

(
1 +

1
n

)
∼ − 1

12n2
;

hence this is the general term of an absolutely convergent series, so as n →∞,
un tends to some limit log(A), say (we could also apply the Euler–MacLaurin
summation formula). To obtain A we can use Wallis’s formulas. We let Cn =∫ π/2

0
cosn(t) dt. By integrating by parts, it is immediate that for n � 2 we

have Cn = (n−1)(Cn−2−Cn), hence Cn = ((n−1)/n)Cn−2. Since C0 = π/2
and C1 = 1, we deduce that

C2k =
(2k)!

22k(k!)2
π

2
and C2k+1 =

22k(k!)2

(2k + 1)!
.

On the other hand, the sequence Cn is clearly decreasing, so that in par-
ticular C2k+1 � C2k � C2k−1. If we replace Cn by its asymptotic value
nne−nn1/2A (where A is the unknown nonzero constant above) a short com-
putation shows that A2 = 2π, proving Stirling’s formula. Of course the o(1)
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in the expression for log(n!) can be given a complete asymptotic expansion
by the Euler–MacLaurin summation formula; see Section 9.2.5.

A more sophisticated, but easier to generalize, way of finding the value
of the constant A has been explained in Section 9.2.5: by derivation of the
formulas of Proposition 9.2.13, which come from the Euler–MacLaurin sum-
mation formula, we find that

log(n!) = (n + 1/2) log(n)− n− ζ ′(0) + O(1/n) .

The value of ζ ′(0) is immediate to compute from the functional equation for
the zeta function, which itself is a simple application of the Poisson sum-
mation formula; see Section 10.2.4. Once again we urge the reader to study
Exercise 44 for generalizations of this idea. ��

Corollary 9.6.23. For any m � 1 we have

LogΓ(s) =
(

s− 1
2

)
log(s)− s +

log(2π)
2

+
m∑

k=1

B2k

2k(2k − 1)s2k−1

− 1
2m + 1

∫ ∞

0

B2m+1({t})
(t + s)2m+1

dt .

Proof. Clear from Stirling’s formula and Proposition 9.6.16. ��

Proposition 9.6.24. We have the following expansions:

(1)

π cotan(πx) =
1
x

+ 2x
∑
n�1

1
x2 − n2

.

(2) (
π

sin(πx)

)2

=
∑
n∈Z

1
(x− n)2

.

(3)

sin(πx) = πx
∏
n�1

(
1− x2

n2

)
.

Proof. Let a /∈ Z be a parameter, and define f(x) to be the 2π-periodic
function such that f(x) = cos(ax) for −π � x � π. This function is clearly
continuous and piecewise differentiable. It is thus everywhere equal to the
sum of its Fourier series. A short computation gives

f(x) =
sin(πa)

π

⎛⎝1
a

+ 2a
∑
n�1

(−1)n cos(nx)
a2 − n2

⎞⎠ ,
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and taking x = π gives

π cotan(πa) =
1
a

+ 2a
∑
n�1

1
a2 − n2

,

proving (1). Note incidentally that this formula immediately implies the for-
mulas for ζ(2k); see Exercise 74. (2) follows by differentiation, after writ-
ing 2x/(x2 − n2) = 1/(x − n) + 1/(x + n). For (3), consider the function
g(a) = sin(πa)/(πa

∏
n�1(1 − a2/n2)). Clearly the product converges abso-

lutely, so the function is defined for all a /∈ Z. In addition, as a tends to 0 it is
clear that g(a) tends to 1, and since by writing (1−a2/n2) = (1−a/n)(1+a/n)
it is clear that g(a) is a periodic function of period 1, it follows that g(a) tends
to 1 as a tends to any integer. Moreover, it is also clear that g(a) is differen-
tiable (in fact infinitely). If we compute the logarithmic derivative of g(a) we
find using (1) that

g′(a)
g(a)

= π cotan(πa)−
⎛⎝1

a
+ 2a

∑
n�1

1
a2 − n2

⎞⎠ = 0 .

It follows that g(a) is a constant, and since g(0) = 1, that g(a) = 1 for all a,
proving (3). ��

Proposition 9.6.25. For all s such that �(s) > 0 we have

log(s) =
∫ ∞

0

e−t − e−st

t
dt ,

where the left-hand side is the principal determination of the logarithm. More
generally, if �(s1) > 0 and �(s2) > 0 we have

log(s1/s2) =
∫ ∞

0

e−s2t − e−s1t

t
dt .

Proof. Let I(s) be the first integral above. It is clearly absolutely conver-
gent for �(s) > 0, and its (for the moment formal) derivative with respect to
s is

∫∞
0

e−st dt, which is normally convergent in the domain �(s) � ε > 0 for
any fixed ε. It follows that the derivation under the integral sign is justified;
hence I ′(s) = 1/s, so that I(s) = log(s) with the principal determination
of the logarithm, since clearly I(1) = 0. The second formula follows from
log(s1/s2) = log(s1)− log(s2) when �(si) > 0, with the principal determina-
tions. ��

9.6.4 Properties of the Gamma Function

With this out the way, we can now begin our detailed study of the gamma
function. Recall that we have set un(s) = ns−1n!/(s(s + 1) · · · (s + n − 1))
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and that we have defined Γ(s) = limn→∞ un(s) in Definition 9.6.18. Since
R>0 is not a discrete subset of C \ Z�0, an important remark is that all the
identities that we prove on the real gamma function (usually as byproducts
of corresponding results for the Hurwitz zeta function) will be automatically
valid for the complex gamma function by analytic continuation. In particular,
by Proposition 9.6.14 we have Γ(s + 1) = sΓ(s) for all s ∈ C \ Z�0.

Proposition 9.6.26 (Hadamard product). We have

Γ(s + 1) = e−γs
∏
n�1

es/n

1 + s/n
,

where γ = 0.57721 . . . is Euler’s constant.

Note that this is the Hadamard product expansion of the entire function
1/Γ(s + 1); see Theorem 10.7.6.

Proof. If we divide the numerator and the denominator of un(s) by n! =
1 · 2 · · ·n we obtain

un(s + 1) =
ns∏

1�k�n(1 + s/k)
= nse−sHn

∏
1�k�n

es/k

1 + s/k
,

where Hn =
∑

1�k�n 1/k is the harmonic sum. Since

nse−sHn = e−s(Hn −log(n)) ,

by definition of γ this tends to e−γs, proving the proposition. Note that this
implies that the infinite product is convergent, which is clear directly by
noting that the logarithm of its general term is O(1/n2). ��

Proposition 9.6.27 (Complex Stirling formula). For any s ∈ C set
ρ(s) = max(�(s), |�(s)|). Then as ρ(s) →∞ we have

LogΓ(s) =
(

s− 1
2

)
log(s)− s +

1
2

log(2π) + O(1/ρ(s)) .

Proof. First note that the region RN = {s ∈ C/ ρ(s) � N} is a subset of
C \ R�0, hence we can choose the principal determination of the logarithm,
which will be analytic in that region. Furthermore, if s belongs to RN then
so does s+k for k ∈ Z�0. Now an immediate exercise in complex integration
shows that if z ∈ RN we have

∫ z

0
log(u) du = z log(z)−z, where the principal

determination is also chosen on the right-hand side. Note that this equality
is true as such, and not only modulo 2iπ. Thus, using an exact version of the
Euler–MacLaurin summation formula and this remark we obtain
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n−1∑
k=0

log(s + k) =
(

s + n− 1
2

)
log(n + s)− (n + s)−

((
s− 1

2

)
log(s)− s

)
+

1
12

(
1

s + n
− 1

s

)
+

1
2

∫ n

0

B2({t})
(t + s)2

dt ,

where once again I emphasize that this is true not only modulo 2iπ, but as
written. Thus, by Corollary 9.6.20 and the ordinary Stirling formula we have

LogΓ(s) = (s− 1) log(n) + log(n!) + o(1)−
n−1∑
k=0

log(s + k)

=
(

s + n− 1
2

)
log(n)− n +

1
2

log(2π) + o(1)

−
(

s + n− 1
2

)
log(n + s) + (n + s) +

((
s− 1

2

)
log(s)− s

)
− 1

12

(
1

s + n
− 1

s

)
− 1

2

∫ n

0

B2({t})
(t + s)2

dt .

Since s− (s + n− 1/2) log(1 + s/n) = O(1/n), letting n →∞ it follows that
we have the following integral representation for LogΓ(s):

LogΓ(s) =
(

s− 1
2

)
log(s)− s +

1
2

log(2π) +
1

12s
− 1

2

∫ ∞

0

B2({t})
(t + s)2

dt .

Since B2({t}) is bounded in absolute value by B2 = 1/6, it follows that∣∣∣∣∫ ∞

0

B2({t})
(t + s)2

dt

∣∣∣∣ �
∫ ∞

0

1
|t + s|2 dt ,

and an easy computation shows that∫ ∞

0

1
|t + s|2 dt =

1
|�(s)| atan

( |�(s)|
�(s)

)
(or 1/�(s) if �(s) = 0). Since atan(x) � x for x � 0, it follows that this is less
than or equal to (π/2)/|�(s)| and to 1/�(s) � (π/2)/�(s) when �(s) > 0,
hence to (π/2)/ρ(s), proving the proposition. ��

Remark. Once the slightly delicate estimate above is made, we can of course
apply Euler–MacLaurin to any order and deduce that the asymptotic ex-
pansion for log(n!) obtained in Section 9.2.5 is valid more generally for
LogΓ(s + 1). Note also that the expansion of log(Γ(s + 1)) would involve
an additional multiple of 2iπ.

Corollary 9.6.28. (1) As x →∞ in R we have Γ(x) ∼ xx−1/2e−x(2π)1/2.
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(2) Let σ ∈ R be fixed. Then as |t| → ∞ we have

|Γ(σ + it)| ∼ |t|σ−1/2e−π|t|/2(2π)1/2 .

Proof. The first statement is clear. By the above proposition we have

log(|Γ(σ + it)|) = �(log(Γ(σ + it)))
= �((σ + it− 1/2) log(σ + it)− σ − it) + log(2π)/2 + o(1)

= �((σ + it− 1/2)(log(σ2 + t2)/2 + i atan 2(σ, t)))
− σ + log(2π)/2 + o(1)

= (σ − 1/2)(log(|t|) + o(1))− t atan 2(σ, t)
− σ + log(2π)/2 + o(1) ,

where atan 2(x, y) = Arg(x + iy) is the unique angle θ in ]−π, π] such that
cos(θ) = x/

√
x2 + y2 and sin(θ) = y/

√
x2 + y2. Changing t into −t does not

change the above expression, so we may assume t � 0. Clearly atan 2(x, y) =
atan(y/x) + kπ, where k = 0 if x > 0, while k = sign(y) if x < 0. In both
cases σ > 0 and σ < 0, we see that

log(|Γ(σ + it)|) = (σ − 1/2) log(|t|)− t(π/2− atan(σ/t))
− σ + log(2π)/2 + o(1)

= (σ − 1/2) log(|t|)− tπ/2 + log(2π)/2 + o(1) ,

proving the result, and the same proof gives the result when σ = 0. ��

Remark. This result, which shows that the gamma function tends to zero
exponentially fast as |t| → ∞ in bounded vertical strips of the complex plane
(which may seem paradoxical compared to its behavior on R>0), is essential
in all proofs dealing with L-functions with functional equations involving
products of gamma functions, since it easily allows us to shift the contours
of integration.

Proposition 9.6.29. We have the following integral representation, valid
for �(s) > −1:

LogΓ(s + 1) =
∫ ∞

0

(
s
e−t

t
− 1− e−st

t(et − 1)

)
dt .

Proof. By Corollary 9.6.20, as n → ∞ we have LogΓ(s + 1) = s log(n)−∑
1�k�n log((s + k)/k) + o(1), so by Proposition 9.6.25 we have

LogΓ(s + 1) = o(1) +
∫ ∞

0

⎛⎝s
e−t − e−nt

t
−

∑
1�k�n

e−kt − e−(s+k)t

t

⎞⎠ dt

= o(1) +
∫ ∞

0

(
s
e−t

t
− s

e−nt

t
− 1− e−st

t

1− e−nt

et − 1

)
dt



88 9. Bernoulli Polynomials and the Gamma Function

and since ∫ ∞

0

e−nt

t

(
−s +

1− e−st

et − 1

)
dt

converges normally it is clear that it tends to 0 as n → ∞, proving the
proposition. ��

Corollary 9.6.30. We have the following integral representations:

γ =
∫ ∞

0

(
1

et − 1
− e−t

t

)
dt

and for k � 2

ζ(k) =
1

(k − 1)!

∫ ∞

0

tk−1

et − 1
dt .

Proof. This follows by expanding in powers of s the integrand of the
proposition and comparing with Proposition 9.6.15. ��

Note that these formulas can easily be proved directly by writing 1/(et−
1) =

∑
k�1 e−kt (see also Corollary 10.2.3). In particular, we have more

generally for �(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt .

Corollary 9.6.31. We have the integral representation

1
2

log(2π) =
∫ ∞

0

(
1
t
− e−t

2
− 1

et − 1

)
dt

t
.

Proof. Integrating the first formula of Proposition 9.6.25 we obtain

s log(s)− s =
∫ ∞

0

(
s
e−t

t
− 1− e−st

t2

)
dt .

Subtracting this and log(s)/2 given by Proposition 9.6.25 from the integral
representation of LogΓ(s + 1), the result follows from Stirling’s formula by
letting s→∞ in the positive integers for instance. ��

Corollary 9.6.32. For �(s) > 0 we have

LogΓ(s) =
(

s− 1
2

)
log(s)−s+

1
2

log(2π)+
∫ ∞

0

e−st

t

(
1

et − 1
− 1

t
+

1
2

)
dt .

Proof. Immediate from Propositions 9.6.29 and the integral representa-
tions of s log(s)− s, log(s), and log(2π)/2 given above. ��

By expanding into a power series the function 1/(et − 1)− 1/t + 1/2 we
once again recover Stirling’s asymptotic expansion for LogΓ(s + 1).
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Proposition 9.6.33. We have the duplication formula

Γ(s)Γ(s + 1/2) = 21−2sπ1/2Γ(2s)

and more generally for N ∈ Z�1 the distribution formula∏
0�j<N

Γ
(

s +
j

N

)
= N1/2−Ns(2π)(N−1)/2Γ(Ns) .

In particular, we have ∏
1�j�N

Γ
(

j

N

)
=

(2π)(N−1)/2

N1/2
.

Proof. Differentiating with respect to s the formula of Proposition 9.6.12,
setting s = 0, and using Definition 9.6.13 gives∑

0�j<N

log(Γ(x + j/N)) = log(Γ(Nx))− (N − 1)ζ ′(0) + ζ(0, Nx) log(N) ,

and since ζ ′(0) = − log(2π)/2 and ζ(0, Nx) = −B1(Nx) = −(Nx − 1/2)
by Corollary 9.6.10, the result follows for x ∈ R>0, hence for all x ∈ C by
analytic continuation.

Another proof is to use the alternative definition of the gamma function
given by Proposition 9.6.17; see Exercise 85.

The last statement is immediate by setting s = 1/m in the distribution
formula. ��

Proposition 9.6.34. We have the reflection formula

Γ(s)Γ(1− s) =
π

sin(πs)
.

Proof. By Propositions 9.6.26 and 9.6.24 we have

Γ(1 + s)Γ(1− s) =
∏
n�1

(1− s2/n2) = πs/ sin(πs) ,

so the result follows since Γ(1 + s) = sΓ(s). ��

Remarks. At this point, several remarks are in order.

(1) The function sin(πs) is a natural function because it is Z-periodic. The
above reflection formula shows that Γ(s) is in a certain sense “one half”
of the sine function. Another way of saying this is that formulas obtained
by summing (or taking products) over Z, such as the Poisson summation
formula, will be simpler than formulas obtained by summing over Z>0.
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A case in point is the zeta function: the natural definition would be
ζ(s) =

∑
n∈Z 1/ns. This is not defined for n = 0, so we have to exclude

n = 0 from the sum. But this is not the important point: ns is multivalued
when n < 0, so we have to agree on some determination, except if s ∈ Z.
And then ζ(2k + 1) = 0, which removes all difficulties for zeta values at
odd integers!

(2) We have proved all the properties of the gamma function as consequences
of corresponding properties of the Hurwitz zeta function (for s ∈ Z>0, and
then deduced their validity by analytic continuation), with the exception
of the reflection formula. It can also be obtained in this way, but the
proof is much less natural; see Exercise 67.

(3) It is not difficult to prove that the functional equation and the distribu-
tion formulas extend naturally to the function LogΓ(s) (for instance we
have LogΓ(s + 1) = LogΓ(s) + log(s) with the principal determination,
and this would not be true with LogΓ(s) replaced by log(Γ(s))). On the
other hand, the extension of the reflection formula is slightly more subtle;
see Exercise 68.

The reader may be surprised that I have not yet mentioned the most
standard definition of the gamma function. Indeed, we have the following
classical result, which is usually taken as the definition of the gamma function:

Proposition 9.6.35. For �(s) > 0 we have

Γ(s) =
∫ ∞

0

tse−t dt

t
.

Proof. Recall that for any function f ∈ C∞([0, 1]) we have Taylor’s for-
mula (which is trivially proved by integration by parts)

f(1) =
∑

0�k�n

f (k)(0)
k!

+
1
n!

∫ 1

0

(1− t)nf (n+1)(t) dt .

Applying this to f(t) = tn+s, we deduce since �(s) > 0 that

1 =
s(s + 1) · · · (s + n)

n!

∫ 1

0

(1− t)nts−1 dt ,

so that

vn(s) = ns

∫ 1

0

(1− t)nts−1 dt ,

where
vn(s) =

nsn!
s(s + 1) · · · (s + n)

=
n

s + n
un(s)

clearly tends to Γ(s) as n →∞. Changing t into t/n in the integral gives



9.6 The Real and Complex Gamma Functions 91

vn(s) =
∫ n

0

(1− t/n)nts−1 dt .

Since (1 − t/n)n tends to e−t as n → ∞, this starts to look like the desired
result. However, we must justify the limiting process. An easy exercise in real
analysis (Exercise 93) shows that for 0 � t � n we have(

1− t

n

)n

= e−t − φ(t)
n

,

where 0 � φ(t) � t2e−t. It follows that

vn(s) =
∫ n

0

e−tts−1 dt− 1
n

∫ n

0

φ(t)ts−1 dt .

Since |φ(t)| � t2e−t, it follows that as n → ∞ the rightmost integral tends
to some finite limit, and since we divide by n the quotient tends to 0. Thus

Γ(s) = lim
n→∞ vn(s) =

∫ ∞

0

e−tts−1 dt ,

proving the proposition. ��

Corollary 9.6.36. Let a and s be two complex numbers such that �(a) > 0
and �(s) > 0, or �(a) = 0, a �= 0, and 0 < �(s) < 1. Then∫ ∞

0

tse−at dt

t
= a−sΓ(s) ,

where as usual a−s = e−s log(a) with the principal determination of the loga-
rithm, i.e., −π < �(log(a)) < π. In particular, if x ∈ R∗ and 0 < �(s) < 1
we have ∫ ∞

0

ts sin(xt)
dt

t
=

Γ(s)
|x|s sin

(sπ

2

)
sign(x) and∫ ∞

0

ts cos(xt)
dt

t
=

Γ(s)
|x|s cos

(sπ

2

)
.

Proof. The integral converges (absolutely) at t = 0 if and only if �(s) > 0.
When �(a) > 0 it is clear that the integral converges absolutely at infinity.
When �(a) = 0 and a �= 0, then f(t) = e−at is such that

∫ B

A
f(t) dt is

bounded independently of A and B, so by integration by parts we see that
the integral converges at infinity if and only if �(s) < 1.

Setting u = at, we obtain∫ ∞

0

tse−at dt

t
= a−s

∫
La

use−u du

u
,
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where La is the line going from 0 to a∞. If we consider the natural contour
going from ε > 0 to R > ε, then on the circle of radius R to eiθR (where θ
is the argument of a), back on the line La to aε and on the circle of radius
ε back to ε, the above convergence proof shows that the integral over the
two circles will tend to 0 as ε tends to 0 and R tends to infinity. Since the
integrand has no poles inside the contour, it follows that the integral over La

is equal to the integral from 0 to ∞, proving the first formula. The other two
are special cases. ��

Corollary 9.6.37. For 0 < �(s) < 1 we have∫ ∞

0

ts−1 cos(t) dt = cos
(πs

2

)
Γ(s) and

∫ ∞

0

ts−1 sin(t) dt = sin
(πs

2

)
Γ(s) .

Proof. Clear. ��

The following proposition shows that the formula involving sin(xt) is still
valid as a limiting case for s = 0, and that there exists a similar formula for
cos(xt).

Proposition 9.6.38. We have∫ ∞

0

sin(xt)
t

dt =
π

2
sign(x) ,

and for a > 0,∫ a

0

cos(xt)− 1
t

dt +
∫ ∞

a

cos(xt)
t

dt = −(γ + log(|ax|)) .

Proof. By integration by parts we have for s < 1,∫ ∞

1

tseixt dt

t
= −eix

ix
+

1− s

ix

∫ ∞

1

eixt

t2−s
dt .

This last integral is absolutely convergent, so that

lim
s→0

∫ ∞

1

tseixt dt

t
=
∫ ∞

1

eixt dt

t
.

Furthermore, since (eixt − 1)/t is a continuous function on the compact set
[0, 1] we also have

lim
s→0

∫ 1

0

ts(eixt − 1)
dt

t
=
∫ 1

0

(eixt − 1)
dt

t
.

To prove the proposition we may of course assume x > 0. By Corollary 9.6.36
we have for 0 < s < 1,
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∫ ∞

0

tseixt dt

t
=

Γ(s + 1)
sxs

eisπ/2 ,

hence ∫ 1

0

ts(eixt − 1)
dt

t
+
∫ ∞

1

tseixt dt

t
=

Γ(s + 1)
sxs

eisπ/2 − 1
s

.

By what we have proved above we can take the limit as s→ 0+, so that∫ 1

0

eixt − 1
t

dt +
∫ ∞

1

eixt

t
dt = lim

s→0+

(
Γ(s + 1)

sxs
eisπ/2 − 1

s

)
.

Using the expansion Γ(s + 1) = 1 − γs + O(s2) we immediately obtain the
first formula of the proposition and the second for a = 1, and the general
case follows by changing x into ax and t into t/a. ��

A direct classical proof of the first formula is given in Exercise 95.

Proposition 9.6.39. For �(a) > 0 and �(b) > 0 define the beta function
B(a, b) by

B(a, b) =
∫ 1

0

ta−1(1− t)b−1 dt .

Then

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

.

Proof. By Proposition 9.6.35 we have

Γ(a)Γ(b) =
∫ ∞

0

∫ ∞

0

ta−1ub−1e−(t+u) dt du ,

so that setting v = t + u we obtain

Γ(a)Γ(b) =
∫ ∞

0

e−v

(∫ v

0

ta−1(v − t)b−1 dt

)
dv ;

hence making the change of variable t = vz in the inner integral gives

Γ(a)Γ(b) =
∫ ∞

0

va+b−1e−v

(∫ 1

0

za−1(1− z)b−1 dz

)
dv = B(a, b)Γ(a + b) .

��

Corollary 9.6.40. (1) For 0 < �(a) < 2�(b) we have∫ ∞

0

ta−1

(1 + t2)b
dt =

1
2
B(a/2, b− a/2) =

Γ(a/2)Γ(b− a/2)
2Γ(b)

.
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(2) For �(a) > 0 and �(b) > 0 we have∫ 1

0

ta−1(1− t2)b−1 =
1
2
B(a/2, b) =

Γ(a/2)Γ(b)
2Γ(b + a/2)

.

(3) For �(s) > 0 we have∫ 1

0

(1− t2)s−1 dt = 22s−2 Γ(s)2

Γ(2s)
and

∫ 1

0

ts−1

(1 + t2)s
dt =

Γ(s/2)2

4Γ(s)
.

(4) We have ∫ π

0

sin(t)s dt = π1/2 Γ((s + 1)/2)
Γ(s/2 + 1)

,∫ π

0

sin(t)−s dt = π1/2 tan(πs/2)
Γ(s/2)

Γ((s + 1)/2)
,∫ ∞

0

sinh(t)−s dt =
π1/2

2 cos(πs/2)
Γ(s/2)

Γ((s + 1)/2)
,∫ ∞

0

cosh(t)−s dt =
π1/2

2
Γ(s/2)

Γ((s + 1)/2)
,

where the first formula is valid for �(s) > −1, the second for �(s) < 1,
the third for 0 < �(s) < 1, and the fourth for �(s) > 0.

See Exercise 105 (e) for an interesting application of (4).
Proof. If we set u = t2/(1+ t2) then 1+ t2 = 1/(1−u), t = (u/(1−u))1/2,

and dt = du/(2(1− u)3/2u1/2), so∫ ∞

0

ta−1

(1 + t2)b
dt =

1
2

∫ 1

0

ua/2−1(1− u)−a/2−1+b du =
B(a/2, b− a/2)

2
,

proving (1). (2) follows immediately from the proposition by making the
change of variable u = t2. The first formula of (3) is a consequence of (2)
applied to a = 1 and of the duplication formula for the gamma function. For
the second, the change of variable u = 1/t gives∫ ∞

1

ts−1/(t2 + 1)s dt =
∫ 1

0

us−1/(u2 + 1)s du ,

so the result follows from (1). For (4) we set u = tan(t/2), so that sin(t) =
2u/(1 + u2), dt = 2du/(1 + u2); hence by (1) we have∫ π

0

sin(t)s dt = 2s+1

∫ ∞

0

us

(1 + u2)s+1
du = 2s Γ((s + 1)/2)2

Γ(s + 1)
,

and we obtain the first formula using the duplication formula, and the second
using the reflection formula. Note that we could obtain this result directly
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using the composite change of variable u = sin2(t/2). For the third formula
of (4) we set u = sinh(t/2), so that sinh(t) = 2u(1+u2)1/2 and dt = 2du/(1+
u2)1/2; hence we obtain by (1)∫ ∞

0

sinh(t)−s dt = 21−s

∫ ∞

0

u−s

(1 + u2)(s+1)/2
= 2−s Γ((1− s)/2)Γ(s)

Γ((s + 1)/2)
,

giving the third formula after applying the duplication and reflection formu-
las. For the fourth formula we set u = tanh2(t), so that cosh(t) = 1/(1− u),
dt = du/(2u1/2(1− u)), and hence∫ ∞

0

cosh(t)−s dt =
1
2

∫ 1

0

u−1/2(1− u)s/2−1 du

=
1
2
B(s/2, 1/2) =

π1/2

2
Γ(s/2)

Γ((s + 1)/2)
.

��

9.6.5 Specific Properties of the Function ψ(s)

Recall from Definition 9.6.13 that ψ(s) = Γ′(s)/Γ(s). All the formulas that
we have seen up to now can of course be logarithmically differentiated several
times if necessary to give formulas for ψ and its derivatives:

Proposition 9.6.41. Let k ∈ Z�0.

(1) We have

ψ(s) = lim
N→∞

(
log(N)−

N∑
n=0

1
n + s

)

= −γ + (s− 1)
∞∑

n=0

1
(n + 1)(n + s)

= −γ +
∞∑

n=0

(
1

n + 1
− 1

n + s

)
.

(2) For k � 1,

ψ(k)(s) = (−1)k+1k!ζ(k + 1, s) = (−1)k+1k!
∑
n�0

1
(n + s)k+1

.

(3) We have

ψ(k)(s + 1) = ψ(k)(s) +
(−1)kk!

sk+1
,

ψ(k)(n) = (−1)k−1k!

(
ζ(k + 1)−

n−1∑
j=1

1
jk+1

)
,

where we set by convention ζ(1) = γ.
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(4) We have ∑
0�j<m

ψ(s + j/m) = −m log(m) + mψ(ms) ,

and for k � 1, ∑
0�j<m

ψ(k)(s + j/m) = mk+1ψ(k)(ms) .

(5) We have
ψ(s)− ψ(1− s) = −π cotan(πs) .

Proposition 9.6.42. As s → ∞ we have ψ(s) = log(s) + O(1/s) and
ψ(k)(s) = (−1)k−1(k − 1)!/sk−1 + O(1/sk) for k � 1.

Proposition 9.6.43. We have for �(s) > −1,

ψ(s + 1) =
∫ ∞

0

(
e−t

t
− e−st

et − 1

)
dt

= −γ +
∫ ∞

0

1− e−st

et − 1
dt = −γ +

∫ 1

0

1− (1− t)s

t
dt ,

and for k � 1,

ψ(k)(s + 1) = (−1)k−1

∫ ∞

0

tke−st

et − 1
dt .

Proofs. Immediate and left to the reader (Exercise 77). ��

Remarks. (1) In Proposition 9.2.10 we have already given without proof
the integral representations of Proposition 9.6.43, together with integral
representations involving fractional parts.

(2) Thanks to the formulas of Proposition 9.6.41 we can express exactly in
terms of complex values of the function ψ and its derivatives the sum of
any infinite series of rational function values, and similarly for infinite
products. More precisely, we have the following:

Proposition 9.6.44. Let f be a rational function, and let its decomposition
into partial fractions be

f(x) =
∑

α pole

∑
1�k�−v(α)

aα,k

(x− α)k
,

where α runs through the poles of f , −v(α) � 1 denotes the order of the pole
α, and aα,k ∈ C. Assume that x2f(x) is bounded when x → ∞, in other
words that

∑
α aα,1 = 0. Then∑

n�0

f(n) =
∑

α pole

∑
1�k�v(α)

(−1)k aα,k

(k − 1)!
ψ(k−1)(−α) .
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Proposition 9.6.45. Let f be a rational function, and write

f(x) = C
∏

α zero or pole

(x− α)v(α) ,

where α runs through the zeros and poles of f , v(α) ∈ Z is the order of α
(positive for a zero, negative for a pole), and C ∈ C∗. Assume that x2(f(x)−
1) is bounded as x → ∞, in other words that C = 1,

∑
α v(α) = 0, and∑

α αv(α) = 0. Then∏
n�0

f(n) =
∏

α zero or pole

Γ(−α)−v(α) .

Proof. Again immediate and left to the reader (Exercise 78). ��

In addition to the above, the function ψ has specific properties that do not
immediately follow by derivation from corresponding properties of LogΓ(x).
Perhaps the most interesting is the fact that it can be evaluated exactly at
rational arguments in terms of elementary functions:

Proposition 9.6.46. Assume that 0 < r < m are integers, and set as usual
ζm = exp(2iπ/m). We have

ψ
( r

m

)
= −γ − log(m) +

∑
1�k�m−1

ζ−rk
m log(1− ζk

m)

= −γ − log(m)− π

2
cotan

(πr

m

)
+

m−1∑
k=1

cos
(

2πkr

m

)
log

(
2 sin

(
πk

m

))
.

Proof. By Proposition 9.6.41 we have

ψ(r/m) = −γ +
∑
n�0

(
1

n + 1
− m

mn + r

)
.

By Abel’s theorem on the continuity of power series on their circle of con-
vergence, since 1/(n + 1) − m/(mn + r) = O(1/n2) we have ψ(r/m) =
−γ + limt→1− f(t), where

f(t) =
∑
n�0

(
tmn

n + 1
− mtmn

mn + r

)
.

As t → 1− we have∑
n�0

tmn/(n + 1) = −t−m log(1− tm) = − log(1− t)− log(m) + o(1) .

On the other hand, we have
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−
∑

0�k<m

ζ−rk
m log(1− tζk

m) =
∑
n�1

tn

n

∑
0�k<m

ζk(n−r)
m .

The inner sum vanishes unless m | (n − r), in other words n = qm + r for
some q � 0, in which case it is equal to m. Note that we use here the fact
that 0 < r < m. Thus

−
∑

0�k<m

ζ−rk
m log(1− tζk

m) = m
∑
q�0

tqm+r

qm + r
.

It follows that as t → 1− we have

f(t) = − log(1− t)− log(m) + t−r
∑

0�k<m

ζ−rk
m log(1− tζk

m) + o(1)

= − log(m) +
∑

1�k�m−1

ζ−rk
m log(1− ζk

m) + o(1) ,

where once again we use Abel’s theorem mentioned above, proving the first
formula. For the second, we use the following trick: replacing r by m − r,
adding, and dividing by 2, we have

ψ(r/m) + ψ(1− (r/m))
2

= −γ− log(m)+
∑

1�k�m−1

cos(2πrk/m) log(1−ζk
m) .

On the other hand, by the reflection formula for the ψ function (Proposition
9.6.41 (5)) we have ψ(1 − (r/m)) = ψ(r/m) + π cotan(πr/m). Replacing in
the above formula and taking the real part gives the desired result, since
ψ(r/m) ∈ R and �(log(1− ζk

m)) = log(2 sin(πk/m)). ��

Using the functional equation ψ(x+1) = ψ(x)+1/x, the above proposition
gives the value of ψ(α) for any α ∈ Q.

In a similar manner we can prove the following result:

Proposition 9.6.47. We have

∑
1�r�m

ψ
( r

m

)
e2iπar/m =

⎧⎨⎩m log
(∣∣∣2 sin

(πa

m

)∣∣∣) +imπ

({ a

m

}
− 1

2

)
if m � a ,

−m(log(m) + γ) if m | a.

Proof. Left to the reader (Exercise 103). ��

We also have the following results, which we will not prove:
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Theorem 9.6.48. We have the continued fraction expansion

ψ′(s) =
2

1(2s− 1) +
14

3(2s− 1) +
24

5(2s− 1) +
. . .

which converges when s �= 1/2, and

ψ′′(s) = − 2

1(2s2 − 2s + P (1))− 16

3(2s2 − 2s + P (2))− 26

5(2s2 − 2s + P (3)) +
. . .

where P (n) = n2 − n + 1, which converges for all s.

These results come implicitly from the work of Apéry on the irrational-
ity of ζ(2) and ζ(3), and were made explicit by the author, C. Batut, and
M. Olivier (see [Bat-Oli] and [Coh4]). It has also been extended to ζ(4) by
G. Rhin and the author (see [Coh-Rhi] and [Coh4]), so that there also exists
a similar but more complicated continued fraction for ψ′′′, which however is
only an asymptotic expansion. In a different form, some of these continued
fractions can also be found in the work of Stieltjes.

Finally, note also the following continued fractions due to Bender (see
[Bor-Bai-Gir], page 324):

Theorem 9.6.49. We have the continued fraction expansions

2s2ψ′(s) = 1 + 2s +
2

6s +
22(22 − 1)

10s +
32(32 − 1)

14s +
42(42 − 1)

18s +
. . .

= 1 + 2s +
1

2s(1 + 1/2) +
1

2s(1/2 + 1/3) +
1

2s(1/3 + 1/4) +
. . .
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−s3ψ′′(s) = 1 + s +
1

2s +
13 · 2

3s +
1 · 23

4s +
23 · 3

5s +
2 · 33

6s +
. . .

= 1 + s +
1

2s/1 +
1

s(1 + 1/2) +
1

2s/2 +
1

s(1/2 + 1/3) +
1

2s/3 +
. . .

and these continued fractions converge for all s �= 0.

9.6.6 Fourier Expansions of ζ(s, x) and log(Γ(x))

We begin with the following.

Proposition 9.6.50. Let n ∈ Z, x ∈ R>0, s ∈ C, and set

Cn(x) =
∫ x+1

x

e2iπntζ(s, t) dt .

Then C0(x) = x1−s/(s− 1), and when n �= 0 we have

Cn(x) =

⎧⎨⎩−
∫ x

0
e2iπntt−s dt +

Γ(1− s)
(2π|n|)1−s

ei(1−s)π/2 sign(n) for �(s) < 1,∫∞
x

e2iπntt−s dt for �(s) > 0.

Proof. Assume first that 0 < �(s) < 1 and set Fn(x) =
∫ x

0
e2iπntζ(s, t) dt,

which converges since �(s) < 1. We have F ′
n(x) = e2iπnxζ(s, x) and Cn(x) =

Fn(x + 1)− Fn(x), so that

C ′
n(x) = e2iπn(x+1)ζ(s, x + 1)− e2iπnxζ(s, x) = −e2iπnxx−s ,

and hence
Cn(x) = −

∫ x

0

e2iπntt−s dt + Cn

for some constant Cn = Cn(0) to be determined. Setting t = x + u we have

Cn(x) = e2iπnx

∫ 1

0

e2iπnuζ(s, x + u) du .
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By Taylor’s formula to order 2 and the formula (d/dx)ζ(s, x) = −sζ(s+1, x)
there exists θ = θ(u, x) ∈]0, 1[ such that

ζ(s, x + u)) = ζ(s, x)− usζ(s + 1, x) +
u2

2
s(s + 1)ζ(s + 2, x + θ) .

By Corollary 9.6.9, since �(s) > 0 we have ζ(s + 2, x + θ) = O(x−1−s)
uniformly in u, ζ(s, x) = −x1−s/(1−s)+x−s/2+O(x−1−s), and ζ(s+1, x) =
x−s/s + O(x−1−s). Thus

Cn(x) = e2iπnx

((
− x1−s

1− s
+

x−s

2

)∫ 1

0

e2iπnu du− x−s

∫ 1

0

ue2iπnu du

)
+ O(x−1−s) .

For n = 0 this gives Cn(x) = −x1−s/(1− s) + O(x−1−s), and since C0(x) =
− ∫ x

0
t−s dt + Cn = −x1−s/(1 − s) + C0 we deduce that C0 = 0. Assume

now that n �= 0. Since
∫ 1

0
ue2iπnu du = 1/(2iπn), the above estimate gives

Cn(x) = −x−s/(2iπn)+O(x−1−s) = o(1) since �(s) > 0. On the other hand,
In =

∫∞
0

e2iπntt−s dt converges, so Cn(x) = −In + Cn + o(1). Comparing the
two expressions and using Corollary 9.6.36 we deduce that

Cn = In =
∫ ∞

0

e2iπntt−s dt =
Γ(1− s)

(2π|n|)1−s
ei(1−s)π/2 sign(n) ,

proving the proposition for 0 < �(s) < 1. For general s such that �(s) <
1 we note that all the integrals converge absolutely, so both sides of the
formula define analytic functions of s, so the formula is still valid by analytic
continuation. For �(s) > 1 and for n �= 0 we again have C ′

n(x) = −e2iπnxx−s,
and since ζ(s, x) = O(x1−s) tends to zero as x →∞ we deduce that Cn(x) =∫∞

x
e2iπntt−s dt. Once again we conclude by analytic continuation that the

formula is valid for �(s) > 0. ��

Corollary 9.6.51. For x ∈ R \ Z and �(s) < 1 we have

ζ(s, {x}) = 2(2π)s−1Γ(1− s)
∑
n�1

sin(2πnx + sπ/2)
n1−s

.

Proof. The variable s being fixed, the periodic function ζ(s, {x}) is a piece-
wise C∞ function with simple discontinuities at the integers, so the corollary
follows by a simple computation from the proposition and the fundamental
theorem on Fourier series, which implies that outside of the discontinuities
we have ζ(s, {x}) =

∑
n∈Z Cn(0)e−2iπnx. ��

This result has many important consequences, in particular the functional
equation for the Riemann zeta function and for Dirichlet L-functions, which
we will study in the next chapter. For now we give the following.
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Corollary 9.6.52. For x ∈ R \ Z and �(s) > 0 we have∑
n�1

cos(2πnx)
ns

=
(2π)s

4Γ(s) cos(sπ/2)
(ζ(1− s, {x}) + ζ(1− s, {1− x})) ,

∑
n�1

sin(2πnx)
ns

=
(2π)s

4Γ(s) sin(sπ/2)
(ζ(1− s, {x})− ζ(1− s, {1− x})) .

Proof. Immediate and left to the reader. ��

Corollary 9.6.53. For all x ∈ R \ Z the Fourier expansion of log(Γ({x}))
is given by

log(Γ({x})) =
1
2

log(2π) +
1
2

∑
n�1

cos(2πnx)
n

+
1
π

∑
n�1

(log(2πn) + γ)
sin(2πnx)

n

=
1
2

log
(

π

| sin(πx)|
)
− (log(2π) + γ)

(
{x} − 1

2

)
+

1
π

∑
n�1

log(n)
n

sin(2πnx) .

Proof. Using for instance Abel summation, we note that for fixed x /∈
Z, the series

∑
n�1 log(n)e2iπnxn−s is uniformly convergent in any compact

subset of the right half-plane �(s) > 0. It follows that we can differentiate
termwise the series for ζ(s, {x}) for �(s) < 1, so that

ζ ′(s, {x}) = 2(2π)s−1Γ(1− s)

(
(log(2π)− ψ(1− s))

∑
n�1

sin(2πnx + sπ/2)
n1−s

+
∑
n�1

log(n) sin(2πnx + sπ/2) + (π/2) cos(2πnx + sπ/2)
n1−s

)
.

Setting s = 0 and using

log(Γ({x})) = ζ ′(0, {x})− ζ ′(0, 1) = ζ ′(0, {x}) + log(2π)/2

we obtain the corollary. An equivalent proof is to compute directly the Fourier
coefficients of log(Γ({x})) by differentiating with respect to s the formulas of
Proposition 9.6.50. We obtain the following result, whose proof is left to the
reader (Exercise 98).

Corollary 9.6.54. For n ∈ Z and x > 0 set

Cn(x) =
∫ x+1

x

e2iπnt log(Γ(t)) dt .

Then
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Cn(x) =

⎧⎪⎨⎪⎩
x log(x)− x +

1
2

log(2π) for n = 0 ,∫ x

0
e2iπnt log(t) dt +

1
4|n| +

i

2πn
(γ + log(2π|n|)) for n �= 0 .

The case n = 0 of the above formula is called Raabe’s formula.

Example. Setting x = 1/4 in the second formula of Corollary 9.6.53 we
obtain∑

k�0

(−1)k log(2k + 1)
2k + 1

= π

(
log

(
Γ
(

1
4

))
−
(

3
4

log(π) +
log(2)

2
+

γ

4

))
.

We will see in the next chapter (Proposition 10.3.5) that this is a special case
of a more general result giving L′(χ, 1) for an odd primitive character χ.

9.7 Integral Transforms

Before studying integral transforms, we recall three theorems of undergrad-
uate real analysis, which although very classical, are not always sufficiently
well known (see for instance [Rud]):

Theorem 9.7.1 (Monotone convergence theorem). Let X ⊂ R, and
let fn be a sequence of measurable functions on X such that f(x) = limn→∞ fn(x)
exists for every x ∈ X. If for all x ∈ X we have 0 � f0(x) � f1(x) � · · ·
then f(x) is measurable, and

lim
n→∞

∫
X

fn(X) dx =
∫

X

f(x) dx .

Theorem 9.7.2 (Dominated convergence theorem). Let X ⊂ R, and
let fn be a sequence of measurable functions on X such that f(x) = limn→∞ fn(x)
exists for every x ∈ X. If there exists a function g ∈ L1(X) such that
|fn(x)| � g(x) for all x ∈ X, then f ∈ L1(X), and

lim
n→∞

∫
X

|fn(x)− f(x)| dx = 0 and lim
n→∞

∫
X

fn(x) dx =
∫

X

f(x) dx .

Theorem 9.7.3 (Riemann–Lebesgue lemma). Let f ∈ L1(R) be a peri-
odic function of period 1, and let

cn =
∫ 1

0

f(t)e−2iπnt dt

be the nth Fourier coefficient of f . Then as n → ±∞ we have cn → 0.
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9.7.1 Generalities on Integral Transforms

Let C be a contour in the complex plane, and in particular a real interval.
An integral transform is a map that sends a function f belonging to some
reasonable class to another function F defined by

F (x) =
∫

C

K(x, t)f(t) dt ,

where K(x, t), called the kernel function, is also a reasonable function of
two variables (which, however, may have mild singularities, for instance for
x = t).

There are many reasons why integral transforms are important. For in-
stance, they can transform some properties of the function f into some quite
different property of the function F . Furthermore, linear operations on f can
be transformed into the same operations on K, thus giving explicit formulas.
Finally, useful integral transforms can be inverted ; in other words, we can re-
cover the function f from the function F through another integral transform,
evidently called the inverse transform.

The three simplest and most important transforms used in number theory
and elsewhere are the Fourier transform, the Laplace transform, and the
Mellin transform. We will study each one, but we will see that they are
closely related.

Intimately linked to integral transforms are convolutions. If F and G are
the integral transforms of f and g respectively, the convolution of f and g is
the function whose integral transform is FG. It can usually be expressed as
an integral involving f and g, but not involving explicitly the kernel K.

9.7.2 The Fourier Transform

This is probably the most important, and the oldest of all integral transforms,
and should be part of every undergraduate curriculum. We give here the main
results that we need.

Definition 9.7.4. The Fourier transform of a function f is defined by

F(f)(x) =
∫ ∞

−∞
e−2iπxtf(t) dt .

Although the “correct” context in which to study the Fourier transform
is the space L2(R), we will usually assume that our functions are nicer than
simply L2. Since our goal is concreteness and not abstraction we focus on
the formulas and not on the minimal assumptions. The following theorem
summarizes all that we need to know.

Theorem 9.7.5. (1) (Inversion formula.)Assume that both f and F(f) are
in L1(R). Then
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f(x) =
∫ ∞

−∞
e2iπxtF(f)(t) dt

for all x, where f is continuous. In other words, we have the formula
F(F(f))(x) = f(−x).

(2) (Convolution formula.) If we set

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t) dt ,

then F(f ∗ g) = F(f)F(g) and F(fg) = F(f) ∗ F(g).
(3) If f ∈ C1(R) and xf(x) tends to 0 as |x| → ∞ we have F(f ′)(x) =

2iπxF(f)(x) and F(f)′(x) = −2iπF(tf(t))(x) (hence F(tf(t))(x) =
−(1/(2iπ))F(f)′(x)).

(4) Assume that f ∈ Ck(R), that f (j)(x) tends to 0 as |x| → ∞ for 0 � j �
k − 1, and that f (j)(x) ∈ L1(R) for 0 � j � k. Then xkF(f)(x) tends to
0 as x →∞; in other words, F(f)(x) = o(x−k).

(5) Conversely, if f(x) = o(x−k) then F(f) ∈ Ck(R).
(6) The functions f(x) = e−πx2

and 1/ cosh(πx) are invariant under Fourier
transform.

Proof. Set for T > 0,

fT (x) =
∫ T

−T

(
1− |t|

T

)
e2iπxtF(f)(t) dt .

Replacing F(f)(t) by its expression we find after an easy computation that

fT (x) =
∫ T

−T

(
1− |t|

T

)
e2iπxt

∫ ∞

−∞
e−2iπtuf(u) du

=
∫ ∞

−∞
f(u)

(∫ T

−T

(
1− |t|

T

)
e2iπt(x−u) dt

)
du

=
∫ ∞

−∞
f(u)

sin2(πT (u− x))
π2T (u− x)2

du

=
1
π

∫ ∞

−∞

sin2(t)
t2

f

(
x +

t

πT

)
dt .

Using the well-known formula
∫∞
−∞ sin2(t)/t2 dt = π, which can be proved in

a number of ways (see Exercise 97), we thus have

fT (x)− f(x) =
1
π

∫ ∞

−∞

sin2(t)
t2

(
f

(
x +

t

πT

)
− f(x)

)
dt .

Let ε > 0 be given, and set X = T 1/2. Since f is continuous at x there exists
η > 0 such that |h| � η implies |f(x + h) − f(x)| � ε. Since f ∈ L1(R), for
X/(πT ) � η, in other words for T � (πη)−2, we have
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π|fT (x)− f(x)| �
∫
|t|>X

sin2(t)
t2

|f(t)| dt + 2ε

∫ X

0

sin2(t)
t2

dt

�
∫
|t|>T 1/2

|f(t)| dt + επ .

Since f ∈ L1(R), as T → ∞ this upper bound tends to επ, and since ε
is arbitrary we thus have limT→∞ fT (x) = f(x). On the other hand, since
F(f) ∈ L1(R), by the dominated convergence theorem we have

lim
T→∞

fT (x) =
∫ ∞

−∞
e2iπxtF(f)(t) dt ,

proving (1).
(2). We have

F(f ∗ g)(x) =
∫ ∞

−∞
e−2iπxt

(∫ ∞

−∞
f(u)g(t− u) du

)
dt

=
∫ ∞

−∞
e−2iπxuf(u)

(∫ ∞

−∞
e−2iπx(t−u)g(t− u) dt

)
du

= F(f)(x)F(g)(x) ,

proving the first formula of (2), and the second follows from the inversion
formula (1).

(3). Follows immediately by differentiation under the integral sign and by
integration by parts.

(4) and (5). By (3) we have F(f)(x) = F(f (k))(x)/(2iπx)k. We are thus
reduced to proving (4) for k = 0, in other words that if f ∈ L1(R) is continu-
ous, then F(f)(x) tends to 0 as x →∞. But this is exactly the statement of
the Riemann–Lebesgue lemma. The converse follows immediately from this
and the inversion formula, but can be proved directly if desired.

(6). The Fourier-invariance of e−πx2
is very classical and fundamental for

the functional equation of theta and L-functions that we will study in the next
chapter, and it has been proved in Proposition 9.6.21. The Fourier-invariance
of 1/ cosh(πx) is less well known, although it is essentially equivalent to the
functional equation of the square of the usual theta function. See Exercise
101 for the proof. ��

Remarks. (1) The fact that, up to a multiplicative constant, the Fourier
transform converts derivatives into multiplication by x, hence more gen-
erally higher derivatives into multiplication by powers of x, is very useful
in the fields of differential equations and partial differential equations,
since it can transform them into polynomial equations. The same is true
for the Laplace transform (see below), which is closely related.
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(2) Because of (2), in other words of the formula F(F(f))(x) = f(−x), it
is reasonable to consider the Fourier transform as a dualizing operator
(it is indeed self-dual on even functions). Thus, to emphasize this aspect
we can also write f̂(x) instead of F(f)(x), and this is the notation that
we have used in Proposition 2.2.16. A deeper reason for this dualizing
property is given by the Weil representation; see Exercise 108.

9.7.3 The Mellin Transform

Definition 9.7.6. The Mellin transform of f is defined by the formula

M(f)(s) =
∫ ∞

0

ts−1f(t) dt .

As a basic and crucial example for number theory, the Mellin transform
of f(x) = e−x is the gamma function. There of course exist many other
important examples useful for number theory, which we will see mainly in
the next chapter. The Mellin transform is in fact a version of the Fourier
transform, as the following proposition shows. However, its applications are
slightly different.

Proposition 9.7.7. Assume that f is continuous on ]0,∞[, that f(t) =
O(t−α) for some α ∈ R as t → 0, and that f(t) tends to 0 faster than
any power of t as t →∞.

(1) The Mellin transform of f converges absolutely for �(s) > α and defines
a holomorphic function in that right half-plane.

(2) If we let s = σ + iT with σ > α and set

gσ(t) = e−2πσtf(e−2πt)

then
M(f)(σ + iT ) = 2πF(gσ)(T ) .

(3) We have the Mellin inversion formula, valid for all σ > α: for all x > 0,

f(x) =
1

2iπ

∫ σ+i∞

σ−i∞
x−sM(f)(s) ds .

Proof. (1). By our assumptions on f the integral converges absolutely
in a neighborhood of infinity, and in any compact interval not containing
0. Since |ts−1f(t)| = O(t(s)−α−1), the integral converges absolutely also
at 0 when �(s) > α. Furthermore, since |ts−1 log(t)f(t)| = O(t(s)−α−1−ε)
for all ε > 0, the integral of the derivative with respect to s also converges
absolutely and normally on compact intervals for �(s) > α, so by the theorem
on differentiation of improper integrals we deduce that M(f)(s) is complex-
differentiable for �(s) > α, hence is holomorphic.
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(2). Making the change of variable t = e−2πu in the defining integral we
have

M(f)(s) = 2π
∫ ∞

−∞
e−2πsuf(e−2πu) du

= 2π

∫ ∞

−∞
e−2iπTugσ(u) du = 2πF(gσ)(T ) ,

proving (1). For (2) the Fourier inversion formula tells us that for all x ∈ R,

gσ(x) =
∫ ∞

−∞
e2iπxTF(gσ)(T ) dT =

1
2π

∫ ∞

−∞
e2iπxTM(f)(σ + iT ) dT

=
1

2iπ

∫ σ+i∞

σ−i∞
e2πx(s−σ)M(f)(s) ds .

Thus

f(e−2πx) = e2πσxgσ(x) =
1

2iπ

∫ σ+i∞

σ−i∞
e2πxsM(f)(s) ds ,

and the Mellin inversion formula follows by setting X = e−2πx > 0. ��

The Mellin transform evidently also has a convolution formula, which is
immediately deduced from that for the Fourier transform, but we will not
need it.

9.7.4 The Laplace Transform

Definition 9.7.8. The Laplace transform of f is defined by the formula

L(f)(x) =
∫ ∞

0

e−txf(t) dt .

Proposition 9.7.9. Assume that f is piecewise continuous on ]0,∞[, that
f(t) = O(t−α) for some α < 1 as t → 0, and that e−atf(t) tends to 0 for all
a > 0 as t →∞.

(1) The Laplace transform of f converges absolutely for �(x) > 0 and defines
a holomorphic function in that right half-plane.

(2) We have L(f)′(x) = −L(tf)(x) and if f ∈ C1[0,∞[ we have

L(f ′)(x) = xL(f)(x)− f(0) .

(3) If we let g(t) = f(− log(t)) for t ∈ [0, 1] and g(t) = 0 for t > 1 then

L(f)(x) =M(g)(x) .
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(4) We have the Laplace inversion formula: for all σ > 0 and all x > 0,

f(x) =
1

2iπ

∫ σ+i∞

σ−i∞
exsL(f)(s) ds .

In addition, for x < 0 we have

1
2iπ

∫ σ+i∞

σ−i∞
exsL(f)(s) ds = 0 .

(5) If we set f ∗ g(x) =
∫ x

0
f(t)g(x− t) dt we have the convolution formula

L(f ∗ g)(x) = L(f)(x)L(g)(x) .

Proof. Thanks to the assumptions made on f , (1) and the first formula
of (2) are clear, and the second is immediate by integration by parts. For (3)
we make the change of variable u = e−t, which gives for x > 0,

L(f)(x) =
∫ 1

0

ux−1f(− log(u)) du =
∫ ∞

0

ux−1g(u) du =M(g)(x) ,

proving (3). Thus by the Mellin inversion formula we have for all σ > 0 and
x > 0,

g(x) =
1

2iπ

∫ σ+i∞

σ−i∞
x−sL(f)(s) ds .

When x < 1 we replace x by e−t for t > 0, giving the inversion formula,
and when x > 1 we obtain the other result since g(x) = 0. Note that this
latter result can be proved directly by showing that it is legitimate to shift
the path of integration infinitely to the right. Finally, (4) can be proved from
the convolution formula for the Fourier transform, but better directly as we
did for the Fourier transform. ��

Note that we have already met the Laplace transform in the context of
the Euler–MacLaurin summation formula (Section 9.2.4). However, one of its
main uses is in the theory of ordinary differential equations, because of prop-
erty (2), which essentially says that the operator L transforms differentiation
with respect to x into multiplication by x. This is of course nothing else than
the corresponding property of the Fourier transform, which is also used in
the context of differential equations.

9.8 Bessel Functions

9.8.1 Definitions

We refer to [Wats] and [Abr-Ste] for more details on Bessel functions. Al-
though we will not need all the standard Bessel functions, it is convenient
and not longer to define them all.



110 9. Bernoulli Polynomials and the Gamma Function

Proposition 9.8.1. For ν ∈ C, let Eν be the differential equation

y′′ +
y′

x
+
(

1− ν2

x2

)
y = 0 .

(1) When ν /∈ Z, a basis of the space of solutions of Eν is given by the two
linearly independent solutions J±ν such that

J±ν(x) =
(x/2)±ν

Γ(±ν + 1)
S±ν(x) ,

where S±ν(x) is a power series such that S±ν(0) = 1. Explicitly, we have
the series expansion with infinite radius of convergence

J±ν(x) = (x/2)±ν
∑
k�0

(−1)k(x/2)2k

k!Γ(±ν + 1 + k)
.

(2) For ν /∈ Z set

Yν(x) =
Jν(x) cos(πν)− J−ν(x)

sin(πν)
,

and for n ∈ Z set
Yn(x) = lim

ν→n, ν /∈Z
Yν(x) .

For any ν a basis of the space of solutions of Eν is given by the functions
Jν and Yν .

(3) For n = 0 the function Y0(x) − (2/π)(log(x/2) + γ)J0(x) has a power
series expansion around x = 0 with no constant term, where as usual γ
is Euler’s constant. More precisely, we have

Y0(x) = − 2
π

∑
k�0

(−1)k(x/2)2k

k!2
(Hk − γ − log(x/2)) ,

where Hk =
∑

1�j�k 1/j is the harmonic sum.

Proof. This is a classical undergraduate exercise, so we only give a sketch
(see Exercise 110). If ν /∈ Z, we can set y = x±ν

∑
k�0 akxk with a0 �=

0. The differential equation gives a1 = 0 and a simple recurrence for ak+2

in terms of ak, which shows the existence of the power series S±ν(x), the
fact that its radius of convergence is infinite, and the explicit formula for
Jν(x), proving (1). For (2) the above procedure works for n, but not for
−n, which gives the zero solution. On the other hand, the given expression
(Jν(x) cos(πν)−J−ν(x))/ sin(πν) is evidently a solution of Eν for ν /∈ Z, and
it is easily checked on the explicit expansions both that it has a limit when
ν → n and that this limit is indeed a solution of En, clearly independent of
Jn since it is also easily seen that it has a logarithmic singularity at x = 0
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(the fact that the limit exists will also follow from the integral representation
that we give below). The same explicit expansions also give (3). ��

Similarly we have the following:

Proposition 9.8.2. For ν ∈ C, let Fν be the differential equation

y′′ +
y′

x
−
(

1 +
ν2

x2

)
y = 0 .

(1) When ν /∈ Z, a basis of the space of solutions of Fν is given by the two
linearly independent solutions I±ν such that

I±ν(x) =
(x/2)±ν

Γ(±ν + 1)
T±ν(x) ,

where T±ν(x) is a power series such that T±ν(0) = 1. Explicitly, we have
the series expansion with infinite radius of convergence

I±ν(x) = (x/2)±ν
∑
k�0

(x/2)2k

k!Γ(±ν + 1 + k)
.

(2) For ν /∈ Z set

Kν(x) =
π

2
I−ν(x)− Iν(x)

sin(νπ)
,

and for n ∈ Z set
Kn(x) = lim

ν→n, ν /∈Z
Kν(x) .

For any ν a basis of the space of solutions of Fν is given by the functions
Iν and Kν .

(3) For n = 0 the function K0(x) + (log(x/2) + γ)I0(x) has a power series
expansion around x = 0 with no constant term. More precisely, we have

K0(x) =
∑
k�0

(x/2)2k

k!2
(Hk − γ − log(x/2)) .

Proof. Exactly the same proof as the preceding proposition. Note that
T±ν(x) = S±ν(ix). ��

Definition 9.8.3. The functions Jν(x) and Iν(x) are called the Bessel func-
tions of the first and second kind respectively, and the functions Yν(x) and
Kν(x) the modified Bessel functions of the first and second kind.

Remarks. (1) As will become clear from the asymptotic expansions given
below, the reader should think of the functions J(x) and Y (x) as the
functions cos(x) and sin(x) respectively, and of the functions I(x) and
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K(x) as the functions ex and e−x. In particular, the functions J , Y , and
K often occur in expansions, but almost never the function I since it is
exponentially large.

(2) The normalization of the functions J and I is natural. That of the func-
tions K is canonical up to multiplication by a constant, since it is the
only solution to the differential equation that tends exponentially fast to
zero at infinity. On the other hand, the normalization of the function Y
(which is sometimes denoted by N) is less natural, but we have chosen
the one occurring in the literature.

x

Proposition 9.8.4. We have

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x) , Jν−1(x)− Jν+1(x) = 2J ′

ν(x) ,

Yν−1(x) + Yν+1(x) =
2ν

x
Yν(x) , Yν−1(x)− Yν+1(x) = 2Y ′

ν(x) ,

Iν−1(x)− Iν+1(x) =
2ν

x
Iν(x) , Iν−1(x) + Iν+1(x) = 2I ′ν(x) ,

Kν+1(x)−Kν−1(x) =
2ν

x
Kν(x) , Kν−1(x) + Kν+1(x) = −2K ′

ν(x) .

Proof. Immediate from the series expansions and the definitions of Y and
K, using Γ(ν + k + 1) = (ν + k)Γ(ν + k), and left to the reader (Exercise
116). ��

Proposition 9.8.5. When ν ∈ (1/2) + Z the four Bessel functions are ele-
mentary functions. More precisely:

(1) We have

J1/2(x) = Y−1/2(x) =

√
2

πx
sin(x), J−1/2(x) = −Y1/2(x) =

√
2

πx
cos(x) ,

I1/2(x) =

√
2

πx
sinh(x), I−1/2(x) =

√
2

πx
cosh(x) ,

K1/2(x) = K−1/2(x) =
√

π

2x
e−x .

(2) More generally, there exist polynomials Pn(X) and Qn(X) satisfying
deg(Pn) = deg(Qn) = n, Pn(−X) = (−1)nPn(X), Qn(−X) = (−1)nQn(X),
and such that for k ∈ Z�0 we have
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Jk+1/2(x) =

√
2

πx
(Pk(1/x) sin(x)−Qk−1(1/x) cos(x)) ,

J−k−1/2(x) = (−1)k

√
2

πx
(Pk(1/x) cos(x) + Qk−1(1/x) sin(x)) ,

Yk+1/2(x) = (−1)k−1J−k−1/2(x) , Y−k−1/2 = (−1)kJk+1/2(x) ,

Ik+1/2(x) =

√
2

πx
(ikPk(i/x) sinh(x) + ik−1Qk−1(i/x) cosh(x)) ,

I−k−1/2(x) =

√
2

πx
(ikPk(i/x) cosh(x) + ik−1Qk−1(i/x) sinh(x)) ,

Kk+1/2(x) = K−k−1/2(x) =
√

π

2x
(ikPk(1/(ix)) + ik−1Qk−1(1/(ix)))e−x .

Proof. The formulas for J±1/2(x) and I±1/2(x) follow immediately from
the power series expansion, using the formula

Γ(k + 3/2) = (2k + 1)!
√

π/(k!22k+1) ,

which is an immediate consequence of the duplication formula of the gamma
function. The formulas for Y and K then follow from the definition. Finally,
the assertions of (2) follow from (1) and the recurrences of Proposition 9.8.4.
The details are left to the reader (Exercise 117). ��

9.8.2 Integral Representations and Applications

Apart from the power series expansions around x = 0, which are readily
found, the only results that we need are given in the following propositions.

Proposition 9.8.6. We have the integral representations

Jν(x) =
1
π

∫ π

0

cos(x sin(t)− νt) dt− sin(πν)
π

∫ ∞

0

e−x sinh(t)−νt dt ,

Yν(x) =
1
π

∫ π

0

sin(x sin(t)− νt) dt− 1
π

∫ ∞

0

e−x sinh(t)
(
eνt + cos(πν)e−νt

)
dt ,

Iν(x) =
1
π

∫ π

0

ex cos(t) cos(νt) dt− sin(νπ)
π

∫ ∞

0

e−x cosh(t)−νt dt ,

Kν(x) =
∫ ∞

0

e−x cosh(t) cosh(νt) dt .

Proof. We first prove the formula for Jν(x). By Proposition 9.8.1 we have

Jν(x) =
∑
k�0

(−1)k(x/2)ν+2k

k!Γ(ν + 1 + k)
.

On the other hand, by Exercise 99, for all z ∈ C and all ε > 0 we have
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1
Γ(z)

=
1

2iπ

∫
C

t−zet dt ,

where C is any contour coming from −∞, turning in the positive direction
around 0, and going back to −∞. Since the radius of convergence of the series
is infinite, we deduce that

Jν(x) =
(x/2)ν

2iπ

∫
C

∑
k�0

(−1)k(x/2)2kt−ν−k−1

k!
et dt

=
(x/2)ν

2iπ

∫
C

t−ν−1et−x2/(4t) dt ,

so setting t = (x/2)u we obtain

Jν(x) =
1

2iπ

∫
C′

u−ν−1e(x/2)(u−1/u) du

for some other contour C ′ of the same type.
We now make the change of variable u = ew. We choose as contour C1

the rectangular contour with vertices ∞ − iπ, −iπ, iπ, ∞ + iπ. It is clear
that as w goes along this contour, u = ew goes from −∞ to −1, around the
trigonometric circle back to −1, and then returns to −∞, hence is (the limit
of) a suitable contour C. Thus

Jν(x) =
1

2iπ

∫
C1

e−νwex sinh(w) dw ,

which gives the desired integral representations after splitting the contour C1

into its three sides and making the evident necessary changes of variable.
It is now immediate to deduce the integral for Yν(x) from the definition:

we have

sin(νπ)Yν(x) = cos(νπ)Jν(x)− J−ν(x) =
I1

π
− sin(νπ)

π
I2 ,

where

I1 = cos(νπ)
∫ π

0

cos(x sin(t)− νt) dt−
∫ π

0

cos(x sin(t) + νt) dt and

I2 =
∫ ∞

0

e−x sinh(t)(cos(νπ)e−νt + eνt) dt .

Now since

cos(νπ) cos(x sin(t)− νt) = cos(x sin(t)+ ν(π− t))+ sin(νπ) sin(x sin(t)− νt)

and ∫ π

0

cos(x sin(t) + ν(π − t)) dt =
∫ π

0

cos(x sin(t) + νt) dt ,
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we have
I1 = sin(νπ)

∫ π

0

sin(x sin(t)− νt) dt .

Combining this with the formula for I2 we obtain the integral representation
of Yν for ν /∈ Z, hence for all ν by continuity.

For Iν(x) the proof is identical to that of Jν(x) since the series expansion
is obtained by removing the factor (−1)k, so that

Iν(x) =
1

2iπ

∫
C

u−ν−1e(x/2)(u+1/u) du .

Finally, the formula for Kν(x) immediately follows from the definition
Kν(x) = (π/(2 sin(νπ)))(I−ν(x)− Iν(x)), even more simply than for Yν(x).

��

Note that the above integral representations give another proof of the
existence of Yn and Kn when n ∈ Z.

Proposition 9.8.7. As x →∞ in R we have

Jν(x) ∼ (πx/2)−1/2 cos(x− π/4− νπ/2),

Yν(x) ∼ (πx/2)−1/2 sin(x− π/4− νπ/2),

Iν(x) ∼ (2πx)−1/2ex, Kν(x) ∼ (2x/π)−1/2e−x .

Proof. We prove this in the reverse order of the formulas. For Kν we make
the bijective change of variable u = 2x1/2 sinh(t/2). An easy calculation gives

Kν(x) =
e−x

x1/2

∫ ∞

0

e−u2/2 cosh(2ν sinh−1(u/(2x1/2)))
du

(1 + u2/(4x))1/2
.

By normal convergence it is clear that as x → ∞ the integral tends to∫∞
0

e−u2/2 du = (π/2)1/2 by Proposition 9.6.21, proving the result. For Iν

we first note that
∫∞
0

exp(−x cosh(t)−νt) dt tends to 0 exponentially fast, so
we need only consider the first integral. We split it into an integral from 0 to
π/2 and an integral from π/2 to π. Since cos(t) � 0 in this second interval,
the second integral is bounded. Thus, setting u = 2x1/2 sin(t/2) in the first
integral we obtain

Iν(x) = O(1)+
ex

πx1/2

∫ (2x)1/2

0

e−u2/2 cos(2ν sin−1(u/(2x1/2)))
du

(1− u2/4x)1/2
.

Once again we have normal convergence, proving the result for Iν .
As for Iν , the integrals from 0 to ∞ occurring in the integral representa-

tions of Jν and Yν tend to 0 exponentially fast, so they can be ignored. Thus
for any A > 0,
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Jν(x) + iYν(x) = O(x−A) +
1
π

∫ π

0

ei(x sin(t)−νt) dt .

Simple changes of variables give

Jν(x) + iYν(x) = O(x−A) +
2e−iπν/2

π
(I1(x) + I2(x)) ,

where

I1(x) =
∫ π/3

0

eix cos(t) cosh(νt) dt and I2(x) =
∫ π/2

π/3

eix cos(t) cosh(νt) dt .

We first consider I2(x). We make the change of variables cos(t) = u and
obtain

I2(x) =
∫ 1/2

0

eixuφ(u) du ,

where

φ(u) =
cosh(ν cos−1(u))

(1− u2)1/2
.

By integration by parts we have

I2(x) =
eixu

ix
φ(u)

∣∣∣∣1/2

0

− 1
ix

∫ 1/2

0

eixuφ′(u) du = O(x−1)

since u � 1/2 stays away from the singularities at 1 of (1−u2)−1/2 and φ′(u).
For I1(x) we set u = (2x)1/2 sin(t/2) and we obtain

I1(x) =
21/2eix

x1/2

∫ (x/2)1/2

0

e−iu2
cosh(2ν sin−1(u/(2x)1/2))

du

(1− u2/(2x))1/2
.

Once again we have normal convergence, so we obtain that as x→∞,

I1(x) ∼ 21/2eixx1/2

∫ ∞

0

e−it2 dt .

Now it is well known, and we will prove in the next chapter, that∫ ∞

0

e−it2 dt =
π1/2

2
e−iπ/4 .

Thus

Jν(x) + iYν(x) ∼ 21/2ei(x−π/4−πν/2)

π1/2x1/2
,

proving the asymptotic formulas for Jν and Yν . ��
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Remark. For the reader having some knowledge of numerical analysis, the
proof that we have given for Kν and Iν is essentially the method of steepest
descent, while the proof for Jν and Yν is the method of stationary phase.

Proposition 9.8.8. For 0 < �(s) < 1 we have the following Mellin trans-
forms: ∫ ∞

0

ts−1J0(t) dt =
2s−1

π
sin

(πs

2

)
Γ(s/2)2,∫ ∞

0

ts−1Y0(t) dt = −2s−1

π
cos

(πs

2

)
Γ(s/2)2,∫ ∞

0

ts−1K0(t) dt = 2s−2Γ(s/2)2 .

Proof. All of these formulas immediately follow from the corresponding
integral representations, so we simply prove the first. Exchanging the orders
of integration, which is legal since 0 < �(s) < 1, and making the change of
variable y = x sin(t), we have∫ ∞

0

ts−1J0(t) dt =
1
π

∫ π

0

∫ ∞

0

xs−1 cos(x sin(t)) dx dt

=
1
π

∫ π

0

sin(t)−s dt

∫ ∞

0

ys−1 cos(y) dy .

Thus, by Corollaries 9.6.40 and 9.6.37 we have∫ ∞

0

ts−1J0(t) dt = π−1/2 Γ((1− s)/2)
Γ(1− s/2)

cos(πs/2)Γ(s) ,

and the formula for J0 follows by using the reflection and duplication formula
for the gamma function.

The Mellin transforms of Y0 and K0 are obtained in a similar way, using
all the formulas of Corollaries 9.6.40 (4) and 9.6.37, and the details are left
to the reader; see Exercise 113. ��

Finally, we prove an additional result on the function Kν(x) that we will
need in the next chapter. We change on purpose the index from ν to s (in
fact to s− 1/2) since it will become a variable in the next chapter.

Theorem 9.8.9. For x > 0 and �(s) > 1/2 we have∫ ∞

0

cos(xt)
(t2 + 1)s

dt =
π1/2(x/2)s−1/2

Γ(s)
Ks−1/2(x) .
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Proof. Set Is(x) =
∫∞
0

cos(xt)/(t2 + 1)s dt. Using the integral definition
of Γ(s) we have by Fubini’s theorem

Γ(s)Is(x) =
∫ ∞

0

cos(xt)
(∫ ∞

0

us−1e−u(t2+1) du

)
dt

=
∫ ∞

0

us−1e−u

(∫ ∞

0

cos(xt)e−ut2 dt

)
du .

Since cos(xt) = (eixt + e−ixt)/2 we have by Lemma 10.2.9,∫ ∞

0

cos(xt)e−ut2 dt =
1
2

(∫ ∞

−∞
e−ut2+ixt dt

)
=

1
2

(π

u

)1/2

e−x2/(4u) .

Thus, making the change of variable u = (x/2)ev we obtain

Γ(s)Is(x) =
π1/2

2

∫ ∞

0

us−3/2e−(u+x2/(4u)) du

=
π1/2

2

(x

2

)s−1/2
∫ ∞

−∞
e−x cosh(v)e(s−1/2)v dv ,

and since e(s−1/2)v = cosh((s−1/2)v)+sinh((s−1/2)v) and sinh((s−1/2)v)
is an odd function of v, the result follows from Proposition 9.8.6. ��

9.9 Exercises for Chapter 9

1. Prove that the Bernoulli polynomials Bn(x) are characterized by B′
n(x) =

nBn−1(x), B0(x) = 1, and Bn(1) = Bn(0) for n �= 1.

2.

(a) Let Pn = (pi,j )0�i,j�n−1 be the n × n matrix such that pi,j =
(

i
j

)
, in other

words the lower triangular Pascal triangle. Compute P−1
n .

(b) Let Qn = (qi,j)0�i,j�n−1 be such that qi,j =
(

i+1
j+1

)
, in other words Pascal’s

triangle without the left column of 1’s. Compute Q−1
n .

(c) Let Rn = (ri,j )0�i,j�n−1 be such that ri,j =
(

i+1
j

)
for j � i and ri,j = 0

otherwise, in other words Pascal’s triangle without the diagonal of 1’s. Compute
R−1

n in terms of Bernoulli numbers.

3. Prove that

∑
0�k�n

(
6n + 3 + a

6k + a

)
B6k+a =

⎧⎪⎨⎪⎩
2n + 1 when a = 0 ,

2n + 5/3 when a = 2 ,

−n − 7/6 when a = 4 .
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4.

(a) By expressing et(x+y)/(et − 1)2 in terms of the derivative of et(x+y)/(et − 1),
prove that

∑
0�k�n

(
n

k

)
Bk(x)Bn−k(y) = n(x + y − 1)Bn−1(x + y) − (n − 1)Bn(x + y) .

(b) Deduce that for n � 3 the Bernoulli numbers satisfy the quadratic recurrence

Bn = − 1

n + 1

∑
2�k�n−2

(
n

k

)
BkBn−k .

(c) Let m ∈ Z�1. Compute
∑

0�j<m jBn(j/m) for n even, and for n = 1, 3, and
5.

(d) Generalizing (a), show that if for n � 1 we write

tn

(et − 1)n
=
∑
k�0

cn,k
tk

k!
and

t

(et + 1)n
=
∑
k�0

dn,k
tk

k!
,

then cn,k and dn,k can each be expressed as an explicit linear combination of
the Bernoulli numbers Bk−j for 0 � j < n involving Stirling numbers of the
first kind (see the proof of Proposition 4.2.28 for the definition).

5. Prove the following reciprocity formula:

m!
m∑

j=0

Bm−j

(m − j)!

Bn+j+1

(j + 1)!
+ n!

n∑
j=0

Bn−j

(n − j)!

Bm+j+1

(j + 1)!
= −Bm+n .

See Exercise 3 of Chapter 11 for another proof.

6.

(a) Show that two of the identities of Corollary 9.1.18 can be restated as follows:
if m and n are in Z�0 not both zero, then

(−1)m
m∑

j=0

(
m + 1

j

)
(n+j+1)Bn+j +(−1)n

n∑
j=0

(
n + 1

j

)
(m+j+1)Bm+j = 0 ,

and for n ∈ Z�1,
n∑

j=0

(
n + 1

j

)
(n + j + 1)Bn+j = 0 ,

formulas rediscovered by Momiyama and Kaneko respectively.
(b) Generalize the above formulas to Bernoulli polynomials.

7. Using the same method as that for evaluating Ramanujan sums (see Proposition
10.1.6), prove that ∑

0�j<m
gcd(j,m)=1

Bk

(
j

m

)
=

Bk

mk−1

∏
p|m

(1 − pk−1) .
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8. Let Im,n =
∫ 1

0
Bm(x)Bn(x) dx. By integration by parts, show that when m � 1

and n � 1,

Im,n = (−1)m−1 Bn+m(
m+n

m

) ,

and that Im,0 = 0 when m � 1 and I0,0 = 1.

9.

(a) Show that any P (X) ∈ R[X] can be written in the form P (X) =
∑

k�0 akBk(X)

for some unique ak ∈ R, and compute the ak in terms of
∫ 1

0
P (t) dt and the

coefficients of the polynomial P (X + 1) − P (X).
(b) Apply this to the polynomial P (X) =

∑
0�k�n Bk(X)Bn−k(X), and deduce

the identity

∑
0�k�n

Bk(X)Bn−k(X) =
2

n + 2

n−2∑
k=0

(
n + 2

k

)
Bn−kBk(X) + (n + 1)Bn(X) .

(c) Setting as usual Hn =
∑

1�j�n 1/j, find a similar identity for the polynomial

P (X) =
∑

0�k�n Bk(X)Bn−k(X)/(k(n − k)).

10.

(a) Show that

B2k(1/3) = B2k(2/3) = −B2k

2

(
1 − 1

32k−1

)
and

B2k(1/6) = B2k(5/6) =
B2k

2

(
1 − 1

22k−1

)(
1 − 1

32k−1

)
.

.
(b) Compute in terms of B2k+1(1/3) and B2k+1(1/6) the Taylor series expansions

of 1/(2 cosh(t)+1), 1/(2 cosh(t)− 1), and cosh(t/2)/(2 cosh(t)+1) (hence also
the corresponding ones where cosh(t) is replaced by cos(t)).

11. Let p � 5 be a prime number, and assume that k ∈ Z is such that 1 � k < p/2.

(a) Show that for all m ∈ Z�1 we have∑
1�j<p/m

j2k−1 ≡ B2k({p/m}) − B2k

2k
(mod p) .

(b) Assume that m = 4 or 6. Show that∑
1�j<p/m

j2k−1 ≡ B2k(1/m) − B2k

2k
(mod p) .

(c) Using the preceding exercise, deduce that for 1 � k < p/2 we have

−(2p−2k − 1)(3p−2k − 2p−2k − 1)
B2k

4k
≡

∑
p/6<j<p/4

j2k−1 (mod p) .
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Using this we can check whether p is a regular prime approximately six times
faster than the näıve method (we must of course be careful when the factor in
front of B2k/(4k) is divisible by p). There are, however, much faster FFT-based
methods to make tables of irregular primes.

12. Compute explicitly the Taylor expansion of log
((

et − 1
)
/t
)

around t = 0.

13. Find the Taylor expansion of the following functions in terms of Bernoulli and
Euler numbers: f(t) = et/(e2t +1), f(t) = 1/(cos(t)+ sin(t)), f(t) = 1/ cos(t)k ,
and f(t) = 1/ sin(t)k for 2 � k � 4.

14. (I thank V. Arnold for this exercise.) Define the Bernoulli–Euler triangle An,k

as follows. We set A0,0 = 1, and for n � 1 and 0 � k � n we set

An,k =

{∑n−1
j=k An−1,j when n is odd,∑k−1
j=0 An−1,j when n is even.

(a) Compute the evident triangle for n � 6.
(b) Prove that A(n, n) = |En | and that A(n, 0) = |Tn |.
15. By induction show that for x ∈ [0, 1] we have the following:

(a) B2k(x) − B2k = 0 if and only if x = 0 or x = 1.
(b) For k � 1, B2k+1(x) − B2k+1 = 0 if and only if x = 0, x = 1/2, or x = 1.
(c) |B2k(x)| � |B2k | and |B2k(x) − B2k | � 2(1 − 2−2k)|B2k |.

16.

(a) Prove that ∑
0�j�k

(−1)j

(
2k

2j

)
=

{
0 if k is odd,

(−1)k/2 if k is even.

(b) Deduce from Corollary 9.1.10 that the Euler numbers E2k are not only integers,

but odd integers, and more precisely that E2k ≡ (−1)k (mod 4).

17. Let p be a prime number such that (p − 1) | (2k). Show that

E2k ≡ 1 −
(−4

p

)
(mod p) .

18. Define the Euler polynomials Ek(x) by the generating series

2etx

et + 1
=
∑
k�0

Ek(x)

k!
tk ,

so that the Euler numbers are given by Ek = 2kEk(1/2). Express Ek(x) as
a linear combination of two Bernoulli polynomials and show that essentially
all of the formulas given for Bernoulli polynomials have analogues for Euler
polynomials.

19. Generalizing Corollary 9.1.13, prove that with a suitable integral definition of
the left-hand sides, for t > x − 1 (and also formally) we have∑

k�0

Bk+1(x)

(k + 1)tk+1
= −ψ(t − x + 1) + log(|t|) and

∑
k�0

Bk+2(x)

(k + 2)(k + 1)tk+1
= log(Γ(t − x + 1)) −

(
t − x +

1

2

)
log(|t|) + t − log(2π)

2
.
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20. (D. Zagier.) The present exercise is due to D. Zagier. All the power series or
Laurent series are formal. Let

T (u, x) =
∑
k�0

Bk+1(x)

(k + 1)uk+1
,

so that ∂T
∂u

(u, x) = −(S(u, x) − 1/u), with the notation of Proposition 9.1.11
(see also Exercise 19). For n ∈ Z�1 define

f(n, x) =
∑

0�r�n

(
n + r

2r

)
Br(x)

n + r
and g(n, x) =

∑
0�r�n

r �≡n (mod 2)

(
n + r

2r

)
Br(x)

n + r
,

and let F (t, x) =
∑

n�1 f(n, x)tn and G(t, x) =
∑

n�1 g(n, x)tn .

(a) Show that

T (u− 1, x) = T (u, x) + log

(
1 − 1

u

)
+

1

u − x
and T (−u, 1− x) = T (u, x) .

(b) Show that

F (t, x) =
1

2
T

(
(1 − t)2

t
, x

)
− log(1 − t) .

(c) Deduce that

2F (t, x) = T

(
t +

1

t
, x

)
− log(1 + t2) +

t

1 − tx + t2
+

t

1 − (x + 1)t + t2
.

(d) Conclude that

4G(t, x) = 2(F (t, x) − F (−t, 1 − x)) =
∑

−2�j�1

t

1 − (x + j)t + t2
,

in other words that 4g(n, x) is the coefficient of tn in∑
−2�j�1

t/(1 − (x + j)t + t2) .

(e) Deduce for instance that if 0 < x < 1 is fixed then |g(n, x)| is bounded.

We now specialize to x = 0 and write f(n) = f(n, 0).

(f) Prove that for odd n we have

f(n) =
1

4

(−4

n

)
+

1

2

(−3

n

)
,

and in particular that f is periodic of period 12 on odd integers.

(g) From now on we assume that n is even, and we set B̃n = 2nf(n) − Bn . Prove
the following analogue of the Clausen–von Staudt congruence, for n � 2 even:

B̃n ≡
∑

(p+1)|n
p prime

1

p
(mod 1) .
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(h) Still assuming n even, prove that as n → ∞ we have

f(n) ∼ (−1)n/2πYn(4π) ∼ (−1)n/2−1 (n − 1)!

(2π)n
.

(i) More precisely, compute asymptotic estimates as n → ∞ for B̃n , f(n) −
(−1)n/2πYn(4π), and f(n) − (−1)n/2−1(n − 1)!/(2π)n .

21. Prove the convergence of the continued fractions for ψ′(x) and ψ′′(x) in the
domains given by Theorem 9.6.48.

22. Compute explicitly

n−1∑
k=0

(
2n − 1

2k − 1

)
B2k+1(x)

2k + 1
and B2n(x) +

n−1∑
k=1

(
2n − 1

2k − 2

)
B2k(x)

2k
.

23. Compute explicitly
n−1∑
k=0

(
n

k

)
yn−k Bk+2(x)

(k + 1)(k + 2)

and generalize.

24. This exercise is indirectly related to the recurrences of Proposition 9.1.16.

(a) Show that for k ∈ Z�0 we have

∑
k/2�n�k

(
n

2n − k

)
= Fk+1 ,

where Fk is the Fibonacci sequence. In fact, show that this is true for all k ∈ Z
with a suitable interpretation of both sides.

(b) Compute explicitly in its domain of absolute convergence the sum of the power
series ∑

n�0

(−1)nt2n

(2n + 1)
(
2n
n

) .

25. With the notation of Lemma 9.1.17, prove the identities

et(D2 − I)nF − Dn(D − 2I)nF = xn(x − 2)next

and
etDn(D + 2I)nF − (D2 − I)nF = (x2 − 1)next

and deduce from them identities analogous to those of Proposition 9.1.16.

26.

(a) By computing the mth derivative of (1 − e−t)n at t = 0, compute

n∑
k=1

(−1)k

(
n

k

)
km

for 0 � m � n, and compute this quantity also for m = −1.
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(b) By expanding the inner sum in terms of Bm(x), prove that

Bn(x) =

n+1∑
k=1

(−1)k−1

k

(
n + 1

k

)
k−1∑
j=0

(j + x)n .

(c) Similarly, show that

Bn(x) =

n∑
k=1

(−1)k−1

k

(
n

k

)
k−1∑
j=0

(j + x)n +
(−1)n+1n!

n + 1
.

In particular, if x = 0 these formulas give reasonable methods for computing a
single value of Bn , but the method given in Section 9.1.3 is much more efficient
for large n.

27. In the text and in the exercises we have given many methods and recurrences
for Bernoulli numbers. Let N be a large integer, and assume that we want to
compute exactly all the Bernoulli numbers B2k for 2k � N . Implement many
different methods, and compare their efficiency. In particular, implement the
method explained in Section 9.1.3 where each Bernoulli number is computed
separately, and implement the recurrences given in Proposition 9.1.3, Corollary
9.1.19, and Exercise 3.

28. Show that for all t ∈ R,

−2e2iπt = B0({t})+2iπB1({t})+
∑
k�0

(
(2iπ)k+2Bk+2({t})

(k + 2)!
− (2iπ)kBk({t})

k!

)
,

and estimate the speed of convergence of the series.

29. Using the power series for sin(at), Proposition 9.2.10 (2), and Corollary 9.1.21,
show that ∫ ∞

0

sin(at)

e2πt − 1
dt =

1

2

(
1

ea − 1
− 1

a
+

1

2

)
.

30. In connection with Proposition 9.2.8, let m(k) be the maximum on [0,∞[ of
the absolute value of the function (1/(et − 1)−∑

0�j�k(Bj/j!)tj−1)e−t, which

exists since the function is continuous and tends to 0 at infinity. Compute m(k)
for k � 18, but show that m(k) tends to infinity as k → ∞. Give an asymptotic
estimate for the growth of m(k).

31. Prove Proposition 9.2.8.

32. Assume that the hypotheses of Corollary 9.2.6 (1) and (2) are satisfied.

(a) Show that z(f, a + 1) = z(f, a) − f(a) +
∫ a+1

a
f(t) dt.

(b) Deduce that the quantity

z(f) = z(f, a) +
∑

1�m�a−1

f(m) −
∫ m

1

f(t) dt

is independent of a ∈ Z>0.
(c) Give an expression for z(f), both in terms of Bernoulli polynomials and in

terms of the inverse Laplace transform of f .
(d) Compute z(f) for the usual functions f seen in the text.
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33. Assume that f satisfies the assumptions of Proposition 9.2.11. Let C be the
rectangle with vertices ±iT and N ± iT , with a small indentation around z = a
and z = N (including the points a and N), where T is large.

(a) By considering
∫
C cotan(πt)f(t) dt and letting the indentations tend to zero

and T tend to infinity, show that when a ∈ Z>0,

N∑
m=a

f(m) =

∫ N

a

f(t) dt +
f(N) + f(a)

2

+ i

∫ ∞

0

f(a + iy) − f(N + iy) − f(a − iy) + f(N − iy)

e2πy − 1
dy .

(b) Deduce the first formula for z(f, a) given in Proposition 9.2.11 for a > 0, not
necessarily integral.

(c) In a similar manner, prove the second formula.

34.

(a) Using the formula of the preceding exercise, prove that for �(s) > 0 we have
the following integral representation due to Binet:

LogΓ(s) =

(
s − 1

2

)
log(s) − s +

1

2
log(2π) + 2

∫ ∞

0

atan(t/s)

e2πt − 1
dt .

(b) Using the second Abel–Plana formula, prove that we also have

LogΓ

(
s +

1

2

)
= s log(s) − s +

1

2
log(2π) − 2

∫ ∞

0

atan(t/s)

e2πt + 1
dt .

Note that this formula can also be obtained directly from (a) by using the
duplication formula for the gamma function.

(c) By differentiation under the integral sign, compute in the range of convergence
the integral

f(x, y) =

∫ ∞

0

e−xt sin(yt)
dt

t
.

(d) Deduce from this another proof of (a), using Corollary 9.6.32 and the formula
of Exercise 29.

35.

(a) Set f(t) = 1/(et−1)−1/t+1/2. Show that for t ∈ R>0 we have 0 < f(t) < 1/12.
(b) Set s = x + iy with x and y in R. Deduce from Corollary 9.6.32 that for

x = �(s) > 0 we have

	(LogΓ(s)) =

(
x − 1

2

)
atan

( y

x

)
+

y

2
log(x2 + y2) − y + R(s) ,

with |R(s)| < y/(12(x2 + y2)).
(c) Writing 	(LogΓ(s)) = 	(log(Γ(s))) + 2πm(s) for some m(s) ∈ Z, where log is

the principal determination, deduce an approximate formula for m(s) when x
or y is large.

The goal of the following three exercises is to prove the results given in Exercise
38.

36. Define the Stirling numbers of the second kind by the formula

Xn =
∑
k�0

S(n, k)X(X − 1) · · · (X − k + 1) .
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(a) Show that S(n, k) = 0 for k > n, S(n, 0) = 0 for n � 1, S(n, n) = 1, and the
recurrence formula S(n + 1, k) = kS(n, k) + S(n, k − 1) for k � 1, so that in
particular S(n, k) ∈ Z�0 for all n and k. Prove also the explicit formula

S(n, k) =
1

k!

∑
0�j�k

(−1)k−j

(
k

j

)
jn .

(b) Let D = d/dT be the differentiation operator with respect to T . Define the
Eulerian polynomials Pn(X) by

Dn

(
1

eT − 1

)
= (−1)n Pn(eT )

(eT − 1)n+1
.

Show that Pn(X) ∈ Z[X], prove the recurrence formula

Pn+1(X) = (n + 1)XPn(X) − (X − 1)XP ′
n(X) ,

and show that we have the explicit formula

Pn(X + 1) =
∑

0�k�n

S(n + 1, k + 1)k!Xn−k .

(c) Show that if we define the Eulerian numbers A(n, k) (not to be confused with
the Euler numbers of Definition 9.1.8) by Pn(X) =

∑
0�k�n A(n, k)Xk we have

the explicit formula

A(n, k) =

k∑
j=0

(−1)j (k − j)n

(
n + 1

j

)
.

Show also that the A(n, k) for 1 � k � n (A(n, 0) = 0 being excluded) form a
symmetrical array whose first rows are as follows:

1
1 1

1 4 1
1 11 11 1

1 26 66 26 1
1 57 302 302 57 1

37. Let n � 0, let N ∈ Z�1, and set Sn(N) =
∑

0�r<N rn (with the convention

that 00 = 1 for n = 0). Let p be a prime number dividing N (otherwise there is
nothing to prove). Using the Clausen–von Staudt theorem, show that:

(a) If p � 3 we have

vp(Sn(N)) �
{

vp(N) if 2 � n, or n = 0, or (p − 1) � n,

vp(N) − 1 if (p − 1) | n,

and that in the latter case, we have more precisely vp(Sn(N) + N/p) � vp(N).
(b) If p = 2 we have vp(Sp(N)) = vp(N) − 1.
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In particular, show that for all v � 1 we have

vp

( ∑
0�r<pv

rn

)
� v − 1 ,

and that for any prime number p we have vp(pnSn(N)) � vp(N).

38. Let n ∈ Z�0, let N ∈ Z>1, let ζ be an Nth root of unity different from 1, let
o(ζ) be the order of ζ, so that o(ζ) | N and o(ζ) > 1, and set π = ζ − 1 and
Sn(N) =

∑
0�r<N rnζr .

(a) By considering the formal power series
∑

0�r<N rnerT and Exercise 36, show
that

Sn(N) = N
n∑

j=1

(−1)n−jN j−1

(
n

j

) ∑
0�i�n−j

S(n − j + 1, i + 1)
i!

πi+1
.

(b) Deduce that if o(ζ) is not a prime power we have Sn(N) ≡ 0 (mod N gcd(n, N∞)),

where we recall that gcd(n, N∞) =
∏

p|N pvp (n).

(c) Show that if o(ζ) = pk for some prime p and k � 2, then

Sn(N) ≡ 0 (mod (N/(1 − ζ)p) gcd(n, N∞)Z[ζ]) ,

and in particular modulo (N/p) gcd(n, N∞)Z[ζ].
(d) Show that if o(ζ) = p for some prime p then

Sn(N) ≡ 0 (mod (N/(1 − ζ)n mod (p−1)) gcd(n, (N/pvp (N ))∞)Z[ζ]) ,

where n mod (p − 1) is defined as the unique integer congruent to n modulo
p− 1 in the interval [1, p− 1], and in particular the congruence is true modulo

(N/p) gcd(n, (N/pvp (N ))∞)Z[ζ].

39. Deduce from Proposition 9.2.11 that

γ =
1

2
+ 2

∫ ∞

0

t

(1 + t2)(e2πt − 1)
dt ,

and more generally find analogous expressions for the functions and constants
occurring in Proposition 9.2.10.

40. Define Catalan’s constant G by the formula

G =
∑
k�0

(−1)k

(2k + 1)2
= 1 − 1

32
+

1

52
− · · ·

(we have

G = L(χ−4, 2) = 0.91596559417721901505460351493238411 . . . ,

using a notation introduced in the next chapter). Find integral formulas for G
analogous to those given for γ in Proposition 9.2.10 (4) and in Exercise 39.
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41. Let m ∈ Z�1.

(a) Show that we have the convergent series

msζ(s) =
∑
k�1

(
s + k − 2

k − 1

)
ζ(s + k − 1)

k

Bk(m) − Bk

mk−1
.

For instance, if n ∈ Z�2 we have

∑
k�1

(
n + k − 2

k

)
ζ(n + k − 1)

Bk(m) − Bk

mk−1
= (n − 1)mnζ(n) .

(b) Do these series converge for any other value of m?
(c) Show that∑

k�1

ζ(k + 1)
Bk(m) − Bk

mk−1
=

π2

6
m2 ,

∑
k�2

ζ(k)
Bk(m) − Bk

kmk−1
= m log(m) ,

∑
k�3

ζ(k − 1)
Bk(m) − Bk

k(k − 1)mk−1
=

1

2
((m − 1)(log(2π) − γ) − log(m)) ,

∑
k�4

ζ(k − 2)
Bk(m) − Bk

k(k − 1)(k − 2)mk−1
=

1 − γ

6

(
m − 3

2
+

1

2m

)
+

log(m)

12m

+
m − 1

4
(log(2π) − 1) + ζ′(−1)

(
m − 1

m

)
.

(d) Explain why the ζ′(−1) that occurs in this last formula is “the same” as the
ζ′(−1) that occurs in Exercise 44; see also Exercise 71.

42. Using Proposition 9.2.13, compute to 15 decimal digits ζ(−3), ζ(1/2), and
ζ(−1/2).

43. Using the general Euler–MacLaurin formula prove that for α �= −1 and 0 < x <
1 we have

N−1∑
m=0

(m + x)α = xα +
Nα+1 − 1

α + 1
+

∑
1�j�n

(
α

j − 1

)
Bj (x)

j
(Nα−k+1 − 1)

+ (−1)n−1

(
α

n

)∫ N

1

tα−nBn({t − x}) dt .

Deduce from this that for 0 < x < 1,

ζ(−α, x) = xα − 1

α + 1
−

∑
1�j�n

(
α

j − 1

)
Bj(x)

j

+ (−1)n

(
α

n

)∫ ∞

1

tα−nBn({t − x}) dt .
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44.

(a) Using the idea explained in the proof of Stirling’s formula given in Section
9.2.5, prove the following asymptotic estimate as N → ∞:∑

1�m<N

m log(m) =
B2(N)

2
log(N) − N2

4
+

1

12
− ζ′(−1) + o(1) .

(b) Denoting as usual by Hn =
∑

1�j�n 1/j the harmonic sum, show more gener-
ally that when r ∈ Z�0 we have∑

1�m<N

mr−1 log(m) =
Br(N)

r
(log(N) + Hr−1)

− 1

r

r−1∑
k=0

(
r

k

)
Hr−kBkN r−k − ζ′(1 − r) + o(1) .

(c) Using ψ(t) = limN→∞(log(N) −∑
0�n<N 1/(t + n)), the explicit computation

of
∫ 1

0
tk/(t + n) dt, and the preceding question, show that for k ∈ Z�1 we have

∫ 1

0

tkψ(t) dt =

k−1∑
j=0

(−1)j

(
k

j

) (
ζ′(−j) + Hjζ(−j)

)
(note that the sum stops at j = k − 1).

(d) Generalizing Raabe’s formula (Theorem 9.6.54) deduce that for k ∈ Z�0 we
have∫ 1

0

tk log(Γ(t)) dt =
1

k + 1

k∑
j=0

(−1)j+1

(
k + 1

j

) (
ζ′(−j) + Hjζ(−j)

)
.

See Exercise 105 (d) for an interesting consequence of this formula.

45. The aim of this exercise is to give another proof of the last formula of the
preceding exercise, and to give more general results.

(a) Using generating functions, prove the identity

m∑
j=0

(−1)j+1

s − j − 1

(
m

j

)
= B(m + 1, 1 − s) =

m!

(1 − s)(2 − s) · · · (m + 1 − s)

(here B is of course the beta function, not the Bernoulli polynomial).
(b) By integrating by parts, show that for s �= 1 we have∫ 1

0

tkζ(s, x + t) dt =
k∑

m=1

(−1)m+1 k!

(k + 1 − m)!

ζ(s − m, x + 1)

(1 − s)(2 − s) · · · (m − s)

+ (−1)k+1 k!

(1 − s)(2 − s) · · · (k + 1 − s)
xk+1−s .
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(c) Deduce the following formula, which is a generalization both of Raabe’s formula
(for k = 0) and of the formula of the preceding exercise (for x = 0):∫ 1

0

tk log(Γ(x + t)) dt = (−1)k xk+1

k + 1
(log(x) − Hk+1) +

1

k + 1

log(2π)

2

+
1

k + 1

k∑
j=1

(−1)j+1

(
k + 1

j

)(
∂ζ

∂s
(−j, x + 1) + Hjζ(−j, x + 1)

)
.

(d) By integration by parts, compute
∫ 1

0
tkψ(m)(x + t) dt for k � m, and deduce

the value of
∫ 1

0
tkζ(m + 1, x + t) dt for m ∈ Z such that 1 � m � k.

46. If ω1 and ω2 are two nonzero complex numbers we define for p � 0,

Cp(ω1, ω2) =

p∑
k=0

(
p

k

)
BkBp−kωk−1

1 ωp−k−1
2 ,

so that by abuse of notation

Cp(ω1, ω2) =
ωp−1

2

ω1
Cp

(
ω1

ω2

)
,

with for instance

C0(z) = 1, C1(z) = −z + 1

2
, C2(z) =

z2 + 3z + 1

6
, C3(z) = −z2 + z

4
.

(a) Let f be a complex function that is holomorphic in a suitable region of the
complex plane, and let z ∈ C. Prove the following complex generalization of
the Euler–MacLaurin summation formula:∑

0�m1, m2<N

f(z + m1ω1 + m2ω2) =

n∑
p=0

Cp(ω1, ω2)

p!

(
f (p−2)(z + N(ω1 + ω2))

− f (p−2)(z + Nω1) − f (p−2)(z + Nω2) + f (p−2)(z)
)

+ Rn(N) ,

where Rn(N) is a suitable “remainder term,” and by convention f (−1)(z) is an

antiderivative of f(z) and similarly for f (−2)(z).
(b) As an application, assume that �(ω1) > 0, �(ω2) > 0, and �(z) > 0, and that

in what follows we choose the principal determination of the logarithm. Prove
that there exists a function Fω1,ω2(z) such that as N → ∞,∑
0�m1, m2<N

log(z + m1ω1 + m2ω2) = N2 log(N) − 3

2
N2 + Ω2

(
N2 − N

2

)

+
log(ω1ω2)

2
N − ω2

1 + 3ω1ω2 + ω2
2

12ω1ω2
log(N)

+ z

(
Ω1N +

ω1 + ω2

2ω1ω2
log(N)

)
− z2

2ω1ω2
log(N) + Fω1,ω2(z) + o(1) ,

where

Ωk =
(ω1 + ω2)

k log(ω1 + ω2) − ωk
1 log(ω1) − ωk

2 log(ω2)

ω1ω2
.
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(c) Prove that as N → ∞,∑
0�m2<N

log(z + Nω1 + m2ω2) = N log(N) − N

+ N
(ω1 + ω2) log(ω1 + ω2) − ω1 log(ω1)

ω2

+

(
z

ω2
− 1

2

)
log

(
ω1 + ω2

ω1

)
+ o(1) .

(Warning: you cannot use Euler–MacLaurin directly.)
(d) Prove that the function Fω1,ω2(z) defined above satisfies the homogeneity prop-

erty Faω1,aω2(az) = Fω1,ω2(z) and the relation

F (z + ω1) = F (z) + log

(
Γ

(
z

ω2

))
− 1

2
log(2π) +

(
z

ω2
− 1

2

)
log

(
ω1 + ω2

ω1

)
(and of course the symmetrical one obtained by exchanging ω1 and ω2).

(e) Relate this function F to Barnes’s Γ2 function defined in Exercise 71.

47. Compute an upper bound for∣∣∣∣∣
∫ ∞

−∞
g(t) dt − h

∞∑
m=−∞

g(mh)

∣∣∣∣∣
for some standard C∞ functions g(t) satisfying the hypotheses of Section 9.3.2,
for instance for g(t) = 1/(1 + t2) or g(t) = exp(−t2).

48.

(a) Show experimentally that to compute
∫∞
−∞ f(x) dx using the doubly exponen-

tial integration method, one can use x = sinh(sinh(t)) if the function does not
tend to zero exponentially fast as x → ±∞, and x = sinh(t) if it does.

(b) Give two solutions in the case that f(x) tends to zero exponentially fast as
x → −∞, but not as x → +∞. (Hint: consider sinh(t) exp(exp(t)).)

(c) Find an analytic function f satisfying the above assumptions, and compare the
two solutions on f .

49. Assume that we want to compute I =
∫∞
0

f(x) sin(x) dx, where f is a priori a
nonoscillatory function tending sufficiently rapidly to 0 at infinity. Implement
the change of variable x = (2π/h)t/(1−exp(−K sinh(t))) suggested in the text,
and compare the efficiency with that of other methods.

50.

(a) Let φ be a test function in the Schwartz space. Show that∫ (q+1)m−r

qm−r

{x + r

m

}′
φ(x) dx =

1

m

∫ (q+1)m−r

qm−r

φ(x) dx − φ((q + 1)m − r) ,

and deduce that, as claimed in the text, we have{x + r

m

}′
=

1

m
−
∑
q∈Z

δqm−r(x) .

(Warning: you cannot simply replace {(x + r)/m}′ by 1/m.)
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(b) Complete the proof of Proposition 9.4.11.

51. Prove Proposition 9.4.12.

52. Prove Corollaries 9.2.4 and 9.4.18.

53. Let χ be a primitive character of conductor f > 1, and for all k � 0 set

Qk =
(∑

0�r<f/2 χ(r)rk
)

/fk and Rk = (2k − χ(2))Qk .

(a) By splitting in two different ways the formulas for Bk(χ) given in Proposition
9.4.5 and separating the cases f odd and f even, show that if χ(−1) = (−1)k

we have

Bk(χ)

fk−1
= 2

k∑
j=0

(
k

j

)
BjQk−j and

(2k − χ(2))
Bk(χ)

fk−1
= 2k+1

k∑
j=1

(
k

j

)(
1 − 1

2j

)
BjQk−j .

(b) Show that if χ(−1) = (−1)k−1 we have

Rk−1 =
2

k

�k/2	∑
j=1

(
k

2j

)
(22j − 1)B2jRk−2j .

(c) Deduce that when χ is an odd primitive character we have

(2 − χ(2))B1(χ) = −Q0, (8 − χ(2))
B3(χ)

f2
= −12Q2 + 3

1 − χ(2)

2 − χ(2)
Q0 ,

(2 − χ(2))Q1 =
1

2
(1 − χ(2))Q0, (8 − χ(2))Q3 =

3

2
(4 − χ(2))Q2 − 1

4
(1 − χ(2))Q0 ,

and when χ is an even nontrivial primitive character we have Q0 = 0,

(4 − χ(2))
B2(χ)

f
= −4Q1, (16 − χ(2))

B4(χ)

f3
= −32Q3 + 24

2 − χ(2)

4 − χ(2)
Q1 ,

(4 − χ(2))Q2 = (2 − χ(2))Q1, (16 − χ(2))Q4 = 2(8 − χ(2))Q3 − (2 − χ(2))Q1 .

54. Using the χ-Euler–MacLaurin formula, compute
∑

0�m<2N (−1)m−1mk and∑
0�m<2N (−1)m−1(2m + 1)k in completely factored form for 0 � k � 5.

55. Prove Lemma 9.5.2.

56.

(a) Prove Corollaries 9.5.8 and 9.5.9.
(b) Generalize Corollary 9.5.9 to exponents 6 and 8 by showing that, under the

same conditions on D, we have∑
0�r<|D|

(
D

r

)
r6 ≡ 0 (mod 4D) ,

except for D = −4, 5, 8, and 13, and∑
0�r<|D|

(
D

r

)
r8 ≡ 0 (mod 16D) ,

except for D = −4, 8, and 17, and compute the value of the left-hand side for
the excluded values of D.



9.9 Exercises for Chapter 9 133

57. (Balog–Darmon–Ono). Let p � 5 be prime, let N > 0 be such that
(−N

p

)
=

1, assume that D = (−1)(p+1)/2pN is the discriminant of a quadratic field,
and recall that we set Sn(D) =

∑
0�r<|D|

(
D
r

)
rn . Corollary 9.5.8 tells us that

Sn(D) ≡ 0 (mod D). Prove that in fact S(p+1)/2(D) ≡ 0 (mod pD) (for help
and several other results of the same type, see [Bal-Dar-Ono]).

58. Prove that for k ∈ 2Z>0 the numerator of |Bk/k| is equal to 1 if and only if
k = 2, 4, 6, 8, 10, and 14. Note that these are exactly the (strictly positive)
values of k for which there are no modular cusp forms of weight k over SL2(Z).
Indeed, if there are such cusp forms, then one can prove that there exists one
that is congruent to an Eisenstein series modulo a prime factor of the numerator
of |Bk/k|. For instance, τ(n) ≡ σ11(n) (mod 691), where τ(n) is Ramanujan’s
tau function (see Section 10.1.3).

59. Using the Clausen–von Staudt theorem give another proof that the tangent
numbers T2k−1 are integral (see Definition 9.1.6).

60. By Corollary 9.1.10, the Euler numbers E2k = −42k+1B2k+1(1/4)/(2k + 1) are
in Z, which is a slightly stronger statement than what the Almkvist–Meurman
Theorem 9.5.29 asserts. More generally, show that if q = 2m with m � 1, then
for any p ∈ Z we have q2k+1B2k+1(p/q)/(2k + 1) ∈ Z (see Theorem 11.4.12 for
a more general statement). What happens for m = 0?

61. Using the Voronoi congruences (Proposition 9.5.20) prove the following congru-
ence, due to Kummer. Let e � 1, k an even integer such that k � e + 1, and p
a prime such that (p − 1) � k. Then

e∑
j=0

(−1)j

(
e

j

)
Bk+j(p−1)

k + j(p − 1)
≡ 0 (mod pe) .

62. Generalizing Hermite’s Lemma 9.5.28, prove the following congruence due to
Glaisher: for 1 � r � p − 1 and n � 1 we have

∑
1�m�n

m≡r (mod p−1)

(
n

m

)
≡
(

n mod (p − 1)

r

)
(mod p) ,

where n mod p − 1 is the unique integer congruent to n modulo p − 1 in the
interval [1, p − 1] (not [0, p − 2]). (Hint: use a similar proof, but now with
expressions of the form

∑
a∈Fp

ak(a + 1)n for a suitable k.)

63. The aim of this exercise is to give an alternative proof of Theorem 9.5.29. As in
the proof given in the text, we may assume that h = 1 and we must show that

an = bn(k) = knB̃n(1/k) is an integer.

(a) Compute explicitly the exponential generating series
∑

n�0 antn/n!, and by

multiplying by ekt − 1 or by
∑

0�j�k−1 ejt, prove that the an satisfy the fol-
lowing two recurrences:

(n + 1)(1 − an) =

n−1∑
j=1

(
n + 1

j

)
ajk

n−j and − kan =

n−1∑
j=1

(
n

j

)
ajsn−j ,

where sm =
∑

1�j�k−1 jm for m � 1.
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(b) We prove that an ∈ Z by induction, the result being clear for n � 1. Assume
n � 2 and that aj ∈ Z for 1 � j � n − 1. Write k =

∏
1�i�g pvi

i , where the pi

are distinct primes and vi � 1, and n + 1 = q
∏

1�i�g pwi
i with gcd(q, k) = 1

and wi � 0. Using the recurrences, prove that pwi
i | (n + 1)an for all i. (Hint:

for wi = 0 this is trivial, and for wi � 1 prove that vpi (
(

n+1
j

)
kn−j ) � wi for

1 � j � n − 1 by separating the cases j � n − wi and n − wi + 1 � j � n − 1
and using Lemma 4.2.8.)

(c) Keeping the above notation, deduce that (n + 1)an is divisible by (n + 1)/q,
and then that an ∈ Z.

64. Prove the distribution relation for the Hurwitz zeta function (Proposition
9.6.12).

65. Prove that for x /∈ Z we have∑
k�2

(ζ(k, 1 − x) + (−1)kζ(k, x))tk =
πt sin(πt)

sin(πx) sin(π(x + t))
.

66. Prove that for �(s) > 0 we have the convergent series expansion

LogΓ(s) =

(
s − 1

2

)
log(s) − s +

1

2
log(2π) +

1

2

∑
k�2

k − 1

k(k + 1)
ζ(k, s + 1) ,

where ζ(k, s+1) can be defined for complex s by the usual series, since k ∈ Z�2.

67. The attentive reader will have noticed that we have proved all the functional
equations of the gamma function as corollaries of corresponding formulas for the
Hurwitz zeta function, with the exception of the reflection formula (Proposition
9.6.34).

(a) As a consequence of the first formula of Corollary 9.6.52, prove that for x ∈
R�0 \ Z�0 and �(s) > 0 we have

ζ(1 − s, x) + ζ(1 − s, 1 − x) = 4(2π)−sΓ(s) cos(sπ/2)
∑
n�1

cos(2πnx)

ns

+
(
eiπ(s−1) − 1

) ∑
0�j�x−1

(j + {x})s−1 .

(b) Deduce from this the reflection formula for the gamma function.
(c) What can one deduce in the same manner from the second formula of Corollary

9.6.52?

68.

(a) Prove that the function LogΓ(s) satisfies the functional equation LogΓ(s+1) =
LogΓ(s) + log(s) and the distribution formula∑

0�j<n

LogΓ

(
s +

j

n

)
=

(
1

2
− ns

)
log(n) +

n − 1

2
log(2π) + LogΓ(ns) .

(b) Write s = x + iy with x and y in R. Prove that the reflection formula for the
function LogΓ is given for s /∈ R by

LogΓ(s) + LogΓ(1 − s) = log(π) − log(sin(πs)) + 2iπk(s) ,
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where k(s) is an integer given for y �= 0 by

k(s) = sign(y)

⌊
x + 1/2

2

⌋
.

69. For this exercise you will first need to study the elementary properties of
Dirichlet L-functions, in particular Corollary 10.3.2 and Proposition 10.3.5. Let
m ∈ Z�2 and let χ be a nontrivial (but not necessarily primitive) character
modulo m.

(a) For x ∈ R�0 and �(s) > 1 set ζχ(s, x) =
∑

n�1 χ(n)(x + n)−s. Compute

ζχ(s, x) in terms of the ordinary Hurwitz zeta function, and deduce that it
can be extended to a holomorphic function of s ∈ C. Note that in particular
ζχ(s, 0) = L(χ, s).

(b) Show that ζχ(0, x) = L(χ, 0) and ζ′
χ(0, 0) = L′(χ, 0), where here and below

ζ′
χ denotes derivation with respect to the first variable s. For simplicity of

notation, set

C(χ) = L′(χ, 0) + log(m)L(χ, 0) =
∑

1�r<m

χ(r) log
(
Γ
( r

m

))
.

(c) In analogy with the ordinary gamma function, define

Γχ(x) = exp(ζ′
χ(0, x) − ζ′

χ(0, 0)) = exp(ζ′
χ(0, x) − L′(χ, 0)) ,

so that in particular Γχ(0) = 1. Show that

Γχ(x) = exp

(
−C(χ) +

∑
0�r<m

χ(r) log
(
Γ
( r + x

m

)))
.

(d) Deduce the analogues of all the standard formulas for the ordinary gamma
function such as the functional equation, the reflection formula, the distribution
formula, Raabe’s formula, the Hadamard product expansion, the power series
expansion of its logarithm, and Stirling’s formula.

70. Prove that ∫ ∞

0

cosh(t/2) − 1

t(et − 1)
dt =

1

2
log

(π

2

)
.

71. Let r ∈ Z�1. Define Barnes’s multiple gamma function Γr(x) (which has no rela-
tion with the function defined in Chapter 8) by the following formula analogous
to that used to define Γ(x) = Γ1(x):

log(Γr(x)) = ζ′(1 − r, x) − ζ′(1 − r, 0) .

In particular, we have Γr(x + 1) = x(xr−1)Γr(x), so when N ∈ Z>0 we have

Γr(N) =
∏

1�m<N m(mr−1) (see Exercise 44). Prove as many results as you

can that generalize those for Γ(s), such as a distribution formula, a reflection
formula, and so on. You may also want to study the properties of the modified
function

r∑
i=1

(−1)r−i

(
x − 1

r − i

)
log(Γi(x)) .
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72. Set K =
∫∞
0

e−t2 dt and for x � 0 set

f(x) = 2K

∫ x

0

e−t2 dt +

∫ ∞

0

e−x2(1+t2)

1 + t2
dt .

Prove that f ′(x) = 0, then that f(x) = π/2 for all x � 0, and deduce that
K =

√
π/2.

73.

(a) Show that under reasonable assumptions on a function f we have∫ ∞

−∞
f(t − 1/t) dt =

∫ ∞

−∞
f(t) dt

(you must give a sufficient condition on f for this to be valid).
(b) For example, deduce from Proposition 9.6.21 that∫ ∞

−∞
e−t2−1/t2 dt =

√
π

e2
.

74. Using the proof of Proposition 9.6.24, give another proof of the formula

ζ(2k) = (−1)k−1 22k−1π2kB2k

(2k)!
.

75. For k ∈ Z�2 let

P (k) =
∏
n�2

nk + 1

nk − 1
,

which is clearly a convergent product for k � 2.

(a) Using Proposition 9.6.24 show that P (2) = sinh(π)/π.
(b) By decomposing x3±1, compute explicitly by induction

∏
2�n�N (n3+1)/(n3−

1) and deduce that P (3) = 3/2.
(c) Compute P (k) for general k ∈ Z�2 in terms of a finite product of values of the

gamma function at complex arguments.
(d) Compute explicitly P (k) for k even in terms of trigonometric and hyperbolic

functions.

76. Prove that in a suitable domain of the complex plane we have

s =

∫ ∞

0

(
1 − e−st

t2
− s

e−st

t

)
dt .

77. Prove Propositions 9.6.41, 9.6.42, and 9.6.43.

78. Prove Propositions 9.6.44 and 9.6.45.

79.

(a) Show that

ψ′(x) − 1

x
− 1

x2
=

∫ ∞

0

e−xt

(
t + 1 − et

et − 1

)
dt and

ψ′(x) − 1

x
− 1

2x2
=

∫ ∞

0

e−xt

(
t/2 + 1 + (t/2 − 1)et

et − 1

)
dt .
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(b) Deduce that for all x > 0 we have

1

x
+

1

2x2
< ψ′(x) <

1

x
+

1

x2
.

80. This exercise has nothing to do with the topics studied in this book, but serves
as a motivation for the next one, and I thank B. Conrey for it. Its aim is to
prove a weak form of the large sieve inequality, sufficient for most applications.
The optimal form will be given below in Exercise 83.
Let f be a continuously differentiable periodic function of period 1 on R.

(a) Using integration by parts, prove that for all x ∈ [0, 1] we have

f(x) =

∫ 1

0

f(t) dt +

∫ x

0

tf ′(t) dt +

∫ 1

x

(t − 1)f ′(t) dt .

(b) Deduce that

f(1/2) �
∫ 1

0

|f(t)| dt +
1

2

∫ 1

0

|f ′(t)| dt .

(c) Deduce that more generally, for any α ∈ [0, 1] and any δ > 0 we have

|f(α)| � 1

δ

∫ α+δ/2

α−δ/2

|f(t)| dt +
1

2

∫ α+δ/2

α−δ/2

|f ′(t)| dt .

(d) For x ∈ R define ‖x‖ = minn∈Z |x − n|; in other words, ‖x‖ is the distance
from x to the nearest integer, and let x1, . . . , xR be real numbers such that
‖xr − xs‖ � δ for all r �= s (such numbers are said to be δ-spaced), where
0 < δ � 1/2 is given. Deduce from the preceding inequality that

R∑
r=1

|f(xr)| � 1

δ

∫ 1

0

|f(t)| dt +
1

2

∫ 1

0

|f ′(t)| dt .

(e) Let a1, . . . , aN be arbitrary complex numbers and let

S(α) =

N∑
n=1

ane2iπnα .

Applying the above inequality to the function f(α) = e−2iπN αS(α)2, and using
Parseval’s equality and the Cauchy–Schwarz inequality, prove the following
large sieve inequality:

R∑
r=1

|S(xr)|2 �
(

1

δ
+ πN

) N∑
n=1

|an |2 .

We will see in Exercise 83 that π can be replaced by 1.

81. (I thank J. Rivat for the following exercises.) Define the Beurling–Selberg func-
tion H(z) by the formula

H(z) =

(
sin(πz)

π

)2 (
ψ′(−z) − ψ′(z) +

2

z

)
,

set
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HN (z) =

(
sin(πz)

π

)2
(

N∑
n=−N

sign(n)

(z − n)2
+

2

z

)
(with sign(0) = 0), and finally set also

K(z) =

(
sin(πz)

πz

)2

and B(z) = H(z) + K(z) .

(a) Prove that although the function H(z) is a priori defined only for z /∈ Z, it can
be extended to z ∈ Z into a holomorphic function. Compute H(z) for z ∈ Z,
and draw a picture of its graph for real values of z (between −4 and 4 for
instance). You will of course need to be careful around integral values of z.

(b) Show that limN→∞ HN (z) = H(z) and limN→∞ H ′
N (z) = H ′(z) uniformly on

R.
(c) Compute the Fourier transform of the function with compact support f(x) =

max(1 − |x|, 0), and deduce from the Fourier inversion formula the Fourier
transform of the function K(x).

(d) Using the preceding exercise, show that for all x ∈ R we have

|H(x)| � 1, | sign(x) − H(x)| � K(x), and

∫ ∞

−∞
(B(t) − sign(t)) dt = 1 .

82. (Continuation of the preceding exercise.) The aim of this exercise is to compute
the Fourier transform of the function H(x).

(a) Using the preceding exercise, show that

HN (z) =
N∑

n=−N

sign(n)K(z − n) + 2zK(z) ,

and deduce that

HN (z) =

∫ 1

−1

(
(1 − |t|)

(
cotan(πt) − cos((2N + 1)πt)

sin(πt)

)
+

sign(t)

π

)
e2iπzt

i
dt .

(b) We would now like to apply the Riemann–Lebesgue lemma, but this is not
possible because of the singularity of the integrand at t = 0. We can make
this singularity disappear by computing the derivative with respect to z. Thus,
compute H ′(z) as a Fourier integral, and using the Fourier inversion formula
deduce the Fourier transform of H ′(x). In particular, show that it vanishes
outside [−1, 1].

(c) Finally, by a careful integration by parts compute the Fourier transform of the
function H(x)− sign(x), and in particular show that it is equal to i/(πx) when
|x| > 1 and to 0 when x = 0.

(d) Let a, b, and δ be fixed real numbers such that a � b and δ > 0, and set

F (x) =
1

2
(B(δ(x − a)) + B(δ(b − x))) .

Prove that F (x) � 0 for all x ∈ R, that F (x) � 1 for x ∈ [a, b], that F̂ (x) = 0

for |x| � δ, and that F̂ (0) = b− a + 1/δ, where as usual F̂ denotes the Fourier
transform of F .
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83. (Continuation of the preceding exercises.) The aim of this exercise is to show how
the Beurling–Selberg function gives a reasonably simple proof of the optimal
form of the discrete large sieve inequality, improving on Exercise 80, and which
was initially obtained by more complicated means. We keep the notation of that
exercise, we set by convention aj = 0 for j � 0 and j > N , and we let F (x) be
the function defined in the preceding exercise with a = 1 and b = N .

(a) Using the Poisson summation formula and the properties of the function F̂ ,
show that ∑

n∈Z

F (n)e−2iπn(xr −xs ) =

{
F̂ (0) if r = s ,

0 otherwise.

(b) By expanding

∑
n∈Z

∣∣∣∣∣ an√
F (n)

F̂ (0) −
R∑

r=1

√
F (n)S(xr)e

−2iπnxr

∣∣∣∣∣
2

,

deduce the large sieve inequality

R∑
r=1

|S(xr)|2 �
(

1

δ
+ N − 1

) N∑
n=1

|an |2 ,

where as above S(α) =
∑

1�n�N ane2iπnα .

Note that this improves on the inequality obtained in Exercise 80, and it is not
difficult to show that it is optimal. Also see any good book on analytic number
theory such as [Iwa-Kow] for numerous number-theoretic applications of large
sieve inequalities.

84. By expanding 1/(et − 1) in powers of e−t, show directly that

Γ(s)

(
ζ(s) − 1

s − 1

)
=

∫ ∞

0

(
1

et − 1
− e−t

t

)
ts−1 dt

(see also Corollary 10.2.3 (2)). Deduce from this another proof of the formula
lims→1(ζ(s) − 1/(s − 1)) = γ seen in Proposition 9.2.14.

85. Give an alternative proof of Proposition 9.6.33 using Proposition 9.6.17 and
Stirling’s formula.

86.

(a) Using the change of variables (x1, y1) = (x,− log(xy)), compute in terms of
the gamma function ∫ 1

0

∫ 1

0

xky�(− log(xy))s dx dy ,

for k ∈ Z�0, � ∈ Z�0, and s ∈ C, and specify for which s it converges. You may
assume k � �, and should separate the cases k > � and k = �.

(b) Deduce the value of ∫ 1

0

∫ 1

0

xky�(− log(xy))s

1 − xy
dx dy .
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(c) Deduce Sondow’s formula

γ =

∫ 1

0

∫ 1

0

1 − x

(1 − xy)(− log(xy))
dx dy .

87. Compute
∑

n�1

n

24n
ζ(2n + 1) in terms of Catalan’s constant G defined in Ex-

ercise 40.

88. For x ∈ C with �(x) > 0, or for x ∈ Cp with |x| > 1, set

S(x) =
∑
n�0

1

n + 1

[
n

x

]
and T (x) =

∑
n�0

1

n + x

[
n

x

]
,

where
[
n
x

]
= n!/(x(x + 1) · · · (x + n)) is the inverse binomial symbol introduced

in Exercise 37 of Chapter 4.

(a) Show that these series converges absolutely and that

S(x) − S(x + 1) =
1

x2
and T (x) + T (x + 1) =

2

x2

(use Exercise 37 (a) of Chapter 4).
(b) Deduce from Proposition 9.6.41 that for x ∈ C with �(x) > 0 we have S(x) =

ψ′(x) and

T (x) = 2
∑
n�0

(−1)n

(x + n)2
= ψ′(x/2) − 2ψ′(x) ,

in other words that

ψ′(x) =
∑
n�0

1

n + 1

[
n

x

]
and ψ′(x/2) − 2ψ′(x) =

∑
n�0

1

n + x

[
n

x

]

(the analogues of these results in the p-adic case are proved in Exercises 21 and
23 of Chapter 11).

(c) Similarly, show that

∑
n�0

1

n + 2

[
n

x

]
= (1 − x)ψ′(x) + 1 .

(d) Deduce for instance that in R we have the equalities

∑
n�0

1

n + 1

[
n

1/2

]
=

π2

2
,

∑
n�0

1

n + 2

[
n

1/2

]
=

π2

4
+1,

∑
n�0

1

n + 1/2

[
n

1/2

]
= 8G ,

where G is Catalan’s constant.
(e) (Harder.) More generally, show that for k ∈ Z�1 we have

∑
n�0

1

n + k

[
n

x

]
= (−1)k−1

(
x − 1

k − 1

)
(ψ′(x) + hk(x)), where

hk(x) =
∑

1�j�k−1

(
1

(x − k + j)2
+

(−1)j (x − k + 2j)

j2(x − k + j)
(

x−k+j
j

)) .
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Note for experts: hk(x) is essentially the function that occurs in the Padé ap-
proximation table used by Apéry in his proof of the irrationality of ζ(2).

89. (Continuation of the preceding exercise.)

(a) By decomposing
[
n
x

]
into partial fractions and computing its asymptotic ex-

pansion as x → ∞, prove that

Bm =

m∑
n=0

1

n + 1

n∑
j=0

(−1)j

(
n

j

)
jm .

(b) More generally, prove directly that

Bm(z) =
m∑

n=0

1

n + 1

n∑
j=0

(−1)j

(
n

j

)
(j + z)m .

Show also directly that this is equivalent to the identity of Exercise 26 (b).
(c) By decomposing

[
n
x

]
/(n + x) into partial fractions, prove that as x → ∞ we

have the asymptotic expansion

ψ′(x/2) − 2ψ′(x) =
∑
m�0

(−1)m+1

xm+1

m−1∑
n=0

n∑
j=0

(−1)j nm − jm

n − j

(
n

j

)
,

and where (nm − jm)/(n − j) is to be interpreted as mnm−1 if j = n.
(d) Deduce that for all m � 0 we have the following formula for Bernoulli numbers:

−2(2m − 1)Bm =

m−1∑
n=0

n∑
j=0

(−1)j nm − jm

n − j

(
n

j

)
.

(e) More generally, prove directly that

−2(2mBm(z/2) − Bm(z)) =

m−1∑
n=0

n∑
j=0

(−1)j (n + z)m − (j + z)m

n − j

(
n

j

)
,

where ((n + z)m − (j + z)m)/(n − j) is to be interpreted as m(n + z)m−1 if
j = n.

90. Let (bn)n�0 be a sequence. In analogy with Exercise 38 of Chapter 4, define its
2-Stirling transform as the sequence (an)n�0 given by the formal identity

eT /2
∑
n�0

(−1)n n!222n+1

(2n + 1)!
bn(sinh(T/2))2n+1 =

∑
n�0

an
T n

n!
.

(a) Prove that we have the Taylor series expansion

sinh−1(x)√
1 + x2

=
∑
n�0

(−1)nn!222n x2n+1

(2n + 1)!
.

(b) Prove that under suitable conditions on x and the sequence bn , either in C or
in Cp , we have the Laurent series expansion∑

n�0

bn

[
n

x

][
n

1 − x

]
=

∑
n�0

an

xn+1
,

where an is the 2-Stirling transform of bn .
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(c) Deduce from this another proof of the formula for T (x) given in Exercise 88.
(d) Show that for suitable values of x ∈ C we have

∑
n�0

1

n + 1

[
n

x

][
n

1 − x

]
= ψ′′(x)

(the p-adic analogue of this result is proved in Exercise 24 of Chapter 11).
(e) Set f(n, x) =

[
n
x

][
n

1−x

]
. Prove that

f(n, x) − f(n, x + 1) = 2

[
n

1 − x

][
n + 1

x

]
,

and deduce from this a more direct proof of the formula of the preceding
question. (Hint: find a sequence un = un(x) such that (f(n, x) − f(n, x +
1))/(n + 1) = un+1 − un .)

(f) Generalize as much as you can all the results of Exercises 88 and 89. In partic-
ular, the experts should recover the Padé approximation table used by Apéry
for ζ(3).

91.

(a) Using the duplication formula, prove that the Taylor expansion of LogΓ(s)
around s = 1/2 is given by

LogΓ(s) =
log(π)

2
−(2 log(2)+γ)

(
s − 1

2

)
+
∑
k�2

(−1)k(2k −1)
ζ(k)

k

(
s − 1

2

)k

,

with radius of convergence 1/2.

(b) Deduce from this the value of ψ(k)(1/2) and more generally of ψ(k)(n + 1/2)
for n ∈ Z.

92. Recall that the harmonic sum Hm is defined as Hm =
∑

1�r�m 1/r.

(a) Show that∑
1�r�m

ψ(1 + r/m)

r
= −(γHm+Im) with Im =

∫ 1

0

(1 − xm) log(1 − xm)

1 − x
dx .

(b) Show that the asymptotic expansion as m → ∞ of Im is given by

Im = −K +
∑
k�1

Bk

mk

⎛⎝1 − 1

k

∑
2�j�k+1

ζ(j)

⎞⎠ ,

where

K =

∫ 1

0

ψ(1 + x) + γ

x
dx =

∫ 1

0

(1 − x) log(1 − x)

x log(x)
dx

=
∑
n�1

(−1)n−1

n
ζ(n + 1) = −

∑
n�2

ζ′(n) =
∑
k�1

log(k + 1)

k(k + 1)
=
∑
k�1

log(1 + 1/k)

k

= 1.2577468869443696300098998304958815285115408905088848689775 . . . .

I do not know if this constant can be given more “explicitly”, for instance by
a formula similar to that of I in Exercise 104.
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93. Prove that for n ∈ Z�1 and 0 � t � n we have the double inequality

e−t(1 − t2/n) � (1 − t/n)n � e−t .

(Hint: for the inequality on the left, show that the derivative of the auxiliary

function f(t) = n log(1−t/n)+t−log(1−t2/n) is nonnegative for 0 � t < n1/2.)

94.

(a) Using complex exponentials (i.e., de Moivre’s formulas) prove that

sin2k+1(x) =
(−1)k

22k

k∑
j=0

(−1)j

(
2k + 1

j

)
sin(2k + 1 − 2j)(x) .

(b) Using Proposition 9.6.38, deduce that∫ ∞

0

sin2k+1(x)

x
dx =

π

22k+1

(
2k

k

)
.

95. For y � 0, set

f(y) =

∫ ∞

0

e−yt sin(t)

t
dt .

Show that for y > 0 it is legal to differentiate under the integral sign, compute
f ′(y), then f(y) for y > 0. Finally, show that f(y) tends to f(0) as y tends to
0 from above, and deduce the value of

∫∞
0

sin(xt)/t dt.

96. Prove the formulas∫ ∞

0

sin(x)

xs
dx = cos(πs/2)Γ(1 − s) =

π

2 sin(sπ/2)Γ(s)
,∫ ∞

0

1 − cos(x)

xs
dx = − sin(πs/2)Γ(1 − s) = − π

2 cos(sπ/2)Γ(s)
,∫ ∞

0

sin2(x)

xs
dx = −2s−2 sin(πs/2)Γ(1 − s) = −2s−3 π

cos(sπ/2)Γ(s)
,

the first one for 0 < �(s) < 2, and the next two for 1 < �(s) < 3, so that in
particular ∫ ∞

0

sin2(x)

x2
dx =

π

2
.

97. Prove the formula
∫∞
−∞ sin2(t)/t2 dt = π:

(a) By solving Exercise 96.
(b) By using a similar method to that of Exercise 95.
(c) By integrating along a suitable contour in the complex plane.

98. Prove Corollary 9.6.54, both directly and by differentiating the formulas of
Proposition 9.6.50.

99. The following two exercises are taken from [Bor-Bai] and [Bor-Bai-Gir]. Let Cε

be the contour in the complex plane going from −∞−iε to −ε−iε, then around
the circle of radius ε

√
2 to ε + iε and finally to −∞ + iε, where ε > 0. Set
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I(z) =

∫
Cε

t−ze−t dt ,

where t−z = exp(−z log(t)) and we choose the principal determination of the
logarithm −π < 	(log(t)) � π.

(a) Show that for �(z) < 1 the integral I(z) is independent of ε > 0, and by letting
ε tend to 0, show that I(z) = 2i sin(πz)Γ(1 − z).

(b) Deduce that for all z ∈ C and for all ε > 0 we have

1

Γ(z)
=

1

2iπ

∫
Cε

t−zet dt .

(c) Deduce that for all ε > 0,∫ ∞

0

dx

Γ(x)
=

1

2iπ

∫
Cε

et

log(t)
dt .

(d) By choosing ε > 1 (explain why this is necessary), prove finally the formula∫ ∞

0

dx

Γ(x)
= e +

∫ ∞

0

e−t

log2(t) + π2
dt .

(e) In a similar manner, show that∫ ∞

0

x−1

Γ(x)
dx =

∫ ∞

0

dx

Γ(x + 1)
= e −

∫ ∞

0

e−t

t(log2(t) + π2)
dt

and compute
∫∞
0

xk/Γ(x) dx for small positive integral values of k.

100. An alternative way to prove the above results, not using complex integration,
is as follows. Set

I(a, t) =

∫ ∞

−t

ax

Γ(x + 1)
dx +

∫ ∞

0

e−axxt−1

π2 + log2(x)

(
cos(πt) − sin(πt)

π
log(x)

)
dx .

(a) Prove that this integral converges absolutely for a > 0 and t � 0, and that its
derivative with respect to t vanishes, hence that it is a function I(a) of a alone.

(b) Prove that I ′(a) = I(a).
(c) By letting a → 0+ and using the change of variable x = exp(−t), deduce the

value of I(a) = I(a, t).
(d) In particular, prove that for k � 0,∫ ∞

0

x(x − 1) · · · (x − k + 1)ax

Γ(x + 1)
dx = akea + (−1)k−1ak

∫ ∞

0

xk−1e−ax

π2 + log2(x)
dx ,

so that in particular,∫ ∞

0

axx−1

Γ(x)
dx = ea −

∫ ∞

0

e−ax

x(π2 + log2(x))
dx and∫ ∞

0

ax

Γ(x)
dx = aea + a

∫ ∞

0

e−ax

π2 + log2(x)
dx .
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101.

(a) Prove that for x /∈ Z,

∞∑
m=0

(−1)m

m + x
= ψ(x) − ψ(x/2) − log(2) and

∑
m∈Z

(−1)m

m + x
=

π

sin(πx)
.

(b) By splitting the integral at t = 1, show that for all s such that �(s) > 0 we
have ∫ ∞

0

ts−1

t2 + 1
dt =

π

2 sin(πs/2)
.

(c) By making the change of variable u = eπt, deduce from this that the function
1/ cosh(πx) is equal to its Fourier transform.

102.

(a) Prove the following formulas for �(s) > 0:∫ 1

0

ts−1

1 + t
dt = ψ(s) − ψ(s/2) − log(2) ,∫ 1

0

ts−1 log(1 + t) dt =
1

s

(
ψ(s) − ψ(s/2) − 1

s

)
.

(b) Set

F (a) =
∑
j�1

(−1)j−1

j
ψ

(
j

a

)
and G(a) =

∑
i,j�1

(−1)j−1

i(ai + j)
.

Deduce from (a) that

L(a) =

∫ 1

0

log(1 + ta)

1 + t
dt = −a

π2

12
+ F (a) − F (2a) ,

and show that F (a) = −γ log(2)−aπ2/12+G(a), so that L(a) = G(a)−G(2a).
(c) Show that

L(a) =
∑

i,j�1

(−1)i+j

i(ai + j)
and G(a) = −

∫ 1

0

log(1 − ta)

1 + t
dt .

See Exercise 60 of Chapter 10 for the sequel.

103. Prove Proposition 9.6.47.

104. Set

I =

∫ 1

0

(
ψ2(x) − 1

x2
− 2γ

x

)
dx .

Show that I is a convergent integral, and using Proposition 9.6.41 show that

I = 1 − π2

3
+ 2γ1, with γ1 = lim

N→∞

( ∑
1�j�N

log(j)

j
− log2(N)

2

)

(see Section 10.3.5 for γ1). Using Exercise 49 of Chapter 10, deduce that
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I = −2.4354998246638063226660030850418530167133724790822727806691 . . . .

105. For a and b in Z�0 set

I(a, b) =

∫ π

0

ta logb(2 sin(t)) dt .

The aim of this exercise is to compute I(a, b) explicitly for certain values of
a and b in terms of usual quantities, including ζ(k) for k ∈ Z�2. Note that
evidently I(a, 0) = πa+1/(a + 1).

(a) Prove the identity ∏
1�k�m−1

sin

(
πk

m

)
=

m

2m−1
,

and using Riemann sums deduce that I(0, 1) = I(1, 1) = 0.
(b) Using Proposition 9.6.46 or Proposition 9.6.47 show that

∑
1�r�m

ψ2
( r

m

)
=

π2

12
(m − 1)(m − 2)

+ m

(
(γ + log(m))2 +

∑
1�k�m−1

log2

(
2 sin

(
πk

m

)))
.

(c) Using Riemann sums and (a), deduce that

I(0, 2) =
π3

12
and I(1, 2) =

π4

24

(see the proof of Proposition 10.3.17 (3) for help).
(d) Using Exercise 44 (d), the reflection formula, and Exercise 19 of Chapter 10,

show that

I(k, 1) =

�k/2	∑
j=1

(−1)j

22j

k!

(k + 1 − 2j)!
πk+1−2jζ(2j + 1) .

(e) By considering the exponential generating series
∑

k�0(I(0, k)/k!)xk and using

Corollary 9.6.40 (4), show that I(0, k) satisfies the following recurrence for
k � 1:

I(0, k) =

k−2∑
j=0

(k − 1)!

j!
(k − j)ak−jI(0, j), with ak = (−1)k

(
1 − 1

2k−1

)
ζ(k)

k

(recall that I(0, 0) = π and I(0, 1) = 0). Note also that trivially I(1, k) =
(π/2)I(0, k). We thus have for instance

I(0, 3) = −3

2
πζ(3) and I(1, 3) = −3

4
π2ζ(3) .
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(f) Using the LLL algorithm and the numerical integration methods of Section
9.3.2, the author has found the following experimental equalities, but has been
too lazy to prove them. Do it for him:

I(2, 2) =
13

4
πζ(4) =

13

360
π5, I(2, 3) = −

(
3

2
πζ(5) +

5

8
π3ζ(3)

)
,

I(2, 5) = −
(

45

4
πζ(7) +

35

4
π3ζ(5) +

71

96
π5ζ(3)

)
,

I(4, 3) =
45

4
πζ(7) − 21

8
π3ζ(5) − 5

8
π5ζ(3) .

(g) Deduce that

I(3, 2) = 3π2ζ(4) =
π6

30
, I(3, 3) = −

(
9

4
π2ζ(5) +

9

16
π4ζ(3)

)
,

I(3, 5) = −
(

135

8
π2ζ(7) +

15

2
π4ζ(5) +

51

64
π6ζ(3)

)
,

I(5, 3) =
225

8
π2ζ(7) − 45

16
π4ζ(5) − 3

4
π6ζ(3) .

106. For k ∈ Z�1 set

Sk =

∫ ∞

0

(log(2 sinh(t)) − t)k dt and Ck =

∫ ∞

0

(log(2 cosh(t)) − t)k dt .

(a) By a series of successive changes of variable, or using Proposition 9.6.43 in a

manner similar to the previous exercise, show that Sk = (−1)kk!ζ(k + 1)/2.
(b) Show that C1 = ζ(2)/4 = π2/24 and C2 = ζ(3)/8 (note that for k � 3

the expression for Ck involves Lik+1(1/2), which is believed not to have any
“explicit” form).

107. Let k ∈ Z�1. Generalizing Proposition 9.6.46, show that when 0 < r < m we
have

ψ(k)
( r

m

)
= (−1)k−1k!mk

(
ζ(k + 1) +

∑
1�j�m−1

ζ−jr
m Lik+1(ζ

j
m)

)
,

where Lik+1 is the polylogarithm function defined in Exercise 22 of Chapter 4.

108.

(a) For any nice function f defined on R and tending to zero sufficiently rapidly
at ±∞, and for any θ /∈ πZ, set

rθ(f)(x) =
λ(θ)

| sin(θ)|1/2

∫ +∞

−∞
f(t) exp

(
iπ

(
(x2 + t2) cotan(θ) − 2xt

sin(θ)

))
dt ,

where

λ(θ) = exp

(
iπ

2

(
B1

({
θ

π

})))
= exp

(
iπ

2

({
θ

π

}
− 1

2

))
.

Show that rθ′(rθ(f)) = rθ′+θ(f) (it may be useful to use Lemma 10.2.9 proved
in the next chapter; see also the proof of Theorem 9.7.5 (1)).
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(b) Show that limθ→0 rθ(f)(x) and limθ→π rθ(f)(x) exist and are equal to f(x) and
f(−x) respectively. (Hint: one way of doing this is to first show convergence in
the sense of distributions.)

(c) Noting that F(f)(x) = rπ/2(f)(x), deduce the Fourier inversion formula
F(F(f))(x) = f(−x).

(d) If f(t) = e−πt2 , show that rθ(f) = f for all θ.

Remark. The map exp(iθ) �→ rθ(f) is therefore a representation of the group
S1 of complex numbers of modulus 1 to functions, called the Weil representation.
The Fourier transform is thus only a special case. As for the Fourier transform,
it is easily generalized to Rn .

109. Compute (in a suitable range of the variable s) the Mellin transforms of the
functions cos(a(x±1/x)/2) and sin(a(x±1/x)/2), where a is a fixed parameter.

110. Fill in the details of the proof of Propositions 9.8.1 and 9.8.2, and in particular
find explicitly the expansions of all the Bessel functions around x = 0.

111.

(a) Show directly on the power series expansion that for fixed x, as ν → +∞ we
have

Jν (x) ∼ (x/2)ν

Γ(ν + 1)
∼ 1√

2πν

( ex

2ν

)ν

,

hence tends to 0 very fast.
(b) Again using directly the power series expansion, deduce that for all t ∈ C∗

and x ∈ C we have the absolutely convergent Laurent generating series due to
Schlömilch: ∑

n∈Z

tnJn(x) = e(x/2)(t−1/t) .

(c) By multiplying this series with the one in which t is changed into 1/t, prove
the following identities, valid for all x ∈ C. For all N ∈ Z�=0:∑

n∈Z

Jn(x)Jn+N (x) = 0 ,

and
J2

0 (x) + 2
∑
n�1

J2
n(x) = 1 .

This shows in particular that for all x ∈ R we have |J0(x)| � 1 and |Jn(x)| �
1/

√
2 for n ∈ Z �=0.

112.

(a) Similarly to the first question of the preceding exercise, show that for fixed x,
as ν → +∞ we have

Yν (x) ∼ − (x/2)−νΓ(ν)

π
∼ −

√
2

πν

( ex

2ν

)−ν

.

(b) Find the corresponding results for the two other Bessel functions Iν (x) and
Kν (x).
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113. Fill in the details of the proof of Proposition 9.8.8 in the case of Y0 and K0.

114. Compute
∑

k�1 Γ′(k)/Γ3(k) in terms of K-Bessel functions.

115. For c /∈ Z�0 define Gauss’s hypergeometric series F (a, b, c; x) by

F (a, b, c; x) =
∑
n�0

(−a
n

)(−b
n

)(−c
n

) (−x)n

=
∑
n�0

a(a + 1) · · · (a + n − 1)b(b + 1) · · · (b + n − 1)

c(c + 1) · · · (c + n − 1)

xn

n!
.

Note that F (b, a, c; x) = F (a, b, c; x), so in all of the formulas that we will obtain
below we can exchange a and b.

(a) Compute the radius of convergence of this series in C, and determine the set
of triples (a, b, c) ∈ C3 for which the series converges absolutely at x = 1.

(b) Show that in a suitable range of the parameters we have the integral represen-
tation

F (a, b, c; x) =
Γ(c)

Γ(c − a)Γ(a)

∫ 1

0

ta−1(1 − t)c−a−1(1 − xt)−b dt .

(Hint: expand in powers of x and use Proposition 9.6.39.)
(c) Deduce that in a suitable range of the parameters, we have the following eval-

uation, also due to Gauss:

F (a, b, c; 1) =
Γ(c − a − b)Γ(c)

Γ(c − a)Γ(c − b)
.

(d) Using Corollary 9.6.40 (2), prove that in a suitable range of the parameters (in
particular with �(b) < 0), we have

F (a, b, a − b + 1;−1) =
Γ(a − b + 1)Γ(a/2)

2Γ(a)Γ(a/2 − b + 1)
.

(e) Prove the following contiguity relation:

(c − b)F (a, b, c + 1; x) + bF (a, b + 1, c + 1; x) = cF (a, b, c; x) .

See Exercise 19 of Chapter 11 for the p-adic analogue of this exercise.

116. Prove Proposition 9.8.4.

117.

(a) Fill in the details of the proof of Proposition 9.8.5.
(b) Compute explicitly the polynomials Pn and Qn .

118. Prove that K1/2(x) =
√

π/(2x)e−x by making the change of variable u =
sinh(t/2) in the integral representation of Proposition 9.8.6.

119. Prove the following Mellin transform formulas and give their range of validity:
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∫ ∞

0

ts−1

1 + t
dt =

π

sin(πs)
,∫ ∞

0

log(1 + t)ts−1 dt =
π

s sin(πs)
,∫ ∞

0

ei(x/2)(t−1/t)ts−1 dt = 2Ks(x)eiπs/2 ,∫ ∞

0

ei(x/2)(t+1/t)ts−1 dt = πeiπs/2(iJs(x) − Ys(x)) .



10. Dirichlet Series and L-Functions

This chapter deals with the analytic and arithmetic properties of Dirichlet
series and in particular of L-functions, of which the Riemann zeta function
is the prototypical example. In a sense it is analytic number theory, but it
would be inappropriate to use this expression since it now means a part of
number theory that extensively uses tools from real and complex analysis,
while our purpose is slightly different. Perhaps more appropriate would be
“elementary number theory,” which deals with elementary number-theoretic
functions, but which is also a misnomer since in no way should it be un-
derstood as “easy” number theory. In fact, the Riemann hypothesis, one of
the most famous number-theoretical conjectures, can be considered as ele-
mentary number theory since it can be stated in “elementary” terms, for
instance through the use of the Möbius function.

10.1 Arithmetic Functions and Dirichlet Series

An arithmetic function a(n) is simply a complex-valued function defined on
Z>0 (or sometimes only on a subset). By extension, we will also use the term
to denote functions defined on integral ideals of number fields for instance.
Almost all of the definitions and properties given in this section extend to
this more general setting.

To an arithmetic function a(n) is associated a formal Dirichlet series of
a variable s:1

L(a, s) =
∞∑

n=1

a(n)
ns

.

Many manipulations on arithmetic functions need only the formal aspect
of these Dirichlet series, while others need convergence. In that case, s is a
complex number, and L(a, s) is the complex number equal to the sum of the
series, when it converges. We start by studying only the formal aspects.
1 Most authors write L(s, a) instead of L(a, s). I believe, however, that it is better

to put the fixed parameters, here the arithmetic function a, at the beginning,
and the variables after. After all, the usual notation for the L-function associated
with an elliptic curve (or a more general algebro-geometric object) E and to a
modular form f is L(E, s) and L(f, s). Thus, later I will write L(χ, s) instead of
the more usual L(s, χ).
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10.1.1 Operations on Arithmetic Functions

If a(n) and b(n) are two arithmetic functions and α and β are complex
numbers, then c(n) = αa(n) + βb(n) is an arithmetic function, and clearly
L(c, s) = αL(a, s) + βL(b, s). Thus arithmetic functions form naturally a
C-vector space (of infinite dimension).

Much more important is the multiplicative aspect. Although a(n)b(n)
is an arithmetic function in its own right, it is usually uninteresting. The
interesting product is the so-called arithmetic convolution as follows.

Proposition 10.1.1. Let a(n), b(n), and c(n) be three arithmetic functions.
The following two conditions are equivalent:

(1)
L(c, s) = L(a, s)L(b, s) .

(2) For all n � 1,

c(n) =
∑
d|n

a(d)b(n/d) =
∑
d|n

a(n/d)b(d) .

If these conditions are satisfied, we say that the function c is the arithmetic
convolution (or simply the convolution) of the functions a and b, and we some-
times write c = a ∗ b.

Note that when we write d | n, we mean that d is a positive divisor of n.
Proof. We simply write

L(a, s)L(b, s) =
∞∑

n=1

a(n)
ns

∞∑
m=1

b(m)
ms

=
∑

n,m�1

a(n)b(m)
(nm)s

=
∑
N�1

1
Ns

∑
nm=N
n,m�1

a(n)b(m) =
∑
N�1

1
Ns

∑
n|N

a(n)b(N/n) .

The last equality of the proposition comes of course from the symmetry
d �→ n/d among divisors of n. ��

The following proposition is now clear:

Proposition 10.1.2. The set A of (complex-valued) arithmetic functions to-
gether with the natural C-vector space structure and arithmetic convolution
as multiplication forms a commutative algebra with unit, the unit being the
function δ(n) defined by L(δ, s) = 1, in other words δ(1) = 1 and δ(n) = 0 if
n > 1.

We will denote by 1 the arithmetic function defined by 1(n) = 1 for all n
(not to be confused with the function δ), so that by definition
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L(1, s) =
∞∑

n=1

1
ns

= ζ(s) .

This defines the (formal for the moment) Riemann zeta series.
The following proposition is easily proved by induction and left to the

reader.

Proposition 10.1.3. An arithmetic function a(n) is invertible in A if and
only if a(1) �= 0.

Definition 10.1.4. We denote by μ(n) the inverse in A of the function 1,
so that

∑
d|n μ(d) = δ(n), or equivalently, L(μ, s) = 1/ζ(s).

Proposition 10.1.5 (Möbius inversion formula). Let a and b be arith-
metic functions.

(1) (First form.)Assume that b(n) =
∑

d|n a(d). Then

a(n) =
∑
d|n

μ(d)b(n/d) =
∑
d|n

μ(n/d)b(d) .

(2) (Second form.)Assume that b(n) =
∑∞

k=1 a(kn), where all the series are
absolutely convergent. Then

a(n) =
∞∑

k=1

μ(k)b(kn) .

Proof. By definition, b is the arithmetic convolution of a with 1; hence
L(b, s) = L(a, s)ζ(s), so that L(a, s) = L(b, s)/ζ(s) = L(μ, s)L(b, s), and (1)
follows.

For (2), we have∑
k�1

μ(k)b(kn) =
∑
k�1

μ(k)
∑
d�1

a(dkn) =
∑
N�1

a(Nn)
∑
k|N

μ(k) = a(n) ,

where the interchanges of summation are justified by absolute convergence,
proving (2). ��

The Möbius inversion formula is useful in many contexts. One of its
frequent uses is to replace the “rigid” function δ by the more tractable
convolution of μ with 1. For example, a summation of the type S(b) =∑

a, gcd(a,b)=1 f(a, b) is very often advantageously replaced by

S(b) =
∑

a

∑
d|gcd(a,b)

μ(d)f(a, b) =
∑
d|b

μ(d)
∑
a1

f(da1, b) ,

and we see that in the inner sum the GCD condition has disappeared.
The following proposition gives an application of this:
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Proposition 10.1.6 (Evaluation of Ramanujan sums). We have

R(m, a) =
∑

x mod m
gcd(x,m)=1

exp(2iπax/m) =
∑

d|gcd(m,a)

μ(m/d)d .

Proof. Using the above argument, setting x = dy we have

R(m, a) =
∑
d|m

μ(d)
∑

y mod m/d

exp(2iπay/(m/d)) .

The inner sum is now an honest geometric series that vanishes if (m/d) � a
and is equal to m/d otherwise. Thus

R(m, a) =
∑

d|m, (m/d)|a
μ(d)(m/d) =

∑
d|gcd(m,a)

μ(m/d)d

after changing d into m/d, giving the proposition. ��

Remark. The reader should understand in this example what we mean by
“evaluation” or “explicit computation” of an expression. One could argue
that the formula that we have obtained for R(m, a) is barely simpler than the
defining expression. But there is a huge difference, which is perhaps best seen
in algorithmic terms: using the initial definition, we need to sum essentially
m terms, which is extremely long if m > 109, say. On the other hand, using
the result of the proposition, we need to sum only on the divisors of (m, a),
of which there are very few, even if m and a are large. Even the (necessary)
work of factoring m is small compared to the defining expression.

10.1.2 Multiplicative Functions

Most useful arithmetic functions a have a fundamentally number-theoretic
property called multiplicativity :

Definition 10.1.7. A (nonzero) arithmetic function a is said to be multi-
plicative if for all coprime integers n and m we have a(nm) = a(n)a(m). It
is said to be completely multiplicative if this is true for all n and m, not
necessarily coprime.

The crucial point about multiplicative functions is the following easy
proposition.

Proposition 10.1.8. A function a is multiplicative if and only if L(a, s) has
a formal Euler product, i.e., can be written formally as

L(a, s) =
∏
p

Lp(a, s), where Lp(a, s) = 1 +
∞∑

k=1

a(pk)
pks

.
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Here and in the sequel, it is understood that a product such as
∏

p is over all
prime numbers.

In addition, the function a is completely multiplicative if and only if for
all p we have

Lp(a, s) =
(

1− a(p)
ps

)−1

.

(Note that Lp(a, s) has no relation to the p-adic L-functions that we will
study later.)

Proof. If we expand formally the product Lp(a, s), we obtain a formal
Dirichlet series of the form

∑
n�1 b(n)/ns, where

b(n) =
∏

pk ‖n

a(pk) .

The notation pk‖n (read: pk exactly divides n) means that pk | n and pk+1 �
n. More generally, it will be useful to write d‖n if d | n and gcd(d, n/d) = 1.
This is the same as the previous definition when d is a prime power.

Resuming our proof, since a is multiplicative and the pk‖n are pairwise
coprime, we obtain that b(n) = a(n), so

∏
p Lp(a, s) = L(a, s), as claimed.

Furthermore, if a is completely multiplicative, then
∑

k�0 a(pk)/pks = (1 −
a(p)/ps)−1, proving the second statement. It is clear that the converse state-
ments are also true. ��

Corollary 10.1.9. If a and b are multiplicative functions, then so is the
arithmetic convolution of a and b, and if a is invertible, then its inverse is
also multiplicative.

Proof. Clear from the above interpretation of multiplicativity in terms of
formal Euler products. Of course this can also be proved directly. ��

Note the important fact that the arithmetic convolution of two completely
multiplicative functions is almost never a completely multiplicative function.
Indeed, since the Euler factors Lp(a, s) of completely multiplicative functions
are inverses of polynomials of degree at most 1 in p−s, the Euler factor of
the arithmetic convolution of two such functions will be the inverse of a
polynomial of degree at most 2 in p−s, but usually not of degree 1.

On the other hand, the ordinary product (which is rarely used) of two mul-
tiplicative (respectively completely multiplicative) functions is clearly multi-
plicative (respectively completely multiplicative).

10.1.3 Some Classical Arithmetical Functions

We give a list of the most important arithmetic functions, with their Dirichlet
series when appropriate, their multiplicativity properties, and corresponding
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Euler products. We also give some important relations between them. It
should be emphasized that the list given here covers the large majority of
the functions that are used in practice. Furthermore, the proofs of the given
results can always be trivially obtained either from the Dirichlet series or
from the Euler products when they exist, so the proofs are omitted and left
as excellent exercises for the reader. Remember that for now all Dirichlet
series and Euler products are formal, so there are no convergence problems.
We will come to these problems later.

Completely Multiplicative Functions

– The function δ: a(n) = δ(n), L(a, s) = 1, Lp(a, s) = 1 for all p.
– The function 1: a(n) = 1, L(a, s) = ζ(s), Lp(a, s) = (1− 1/ps)−1 for all p.
– More generally, for any complex number t the function nt: a(n) = nt,

L(a, s) = ζ(s− t), Lp(a, s) = (1− pt/ps)−1.
– Dirichlet characters χ modulo m: a(n) = χ(n), L(a, s) = L(χ, s) by defini-

tion, Lp(a, s) = (1− χ(p)/ps)−1.
For any integer n, we will denote by ω(n) the number of distinct prime
factors of n, and by Ω(n) the number of prime factors of n counted with
multiplicity. In other words, if n =

∏
1�i�g pki

i is the decomposition of n
into powers of distinct primes, then we set ω(n) = g and Ω(n) =

∑
1�i�g ki.

– For any complex number z the function a(n) = zΩ(n) is completely multi-
plicative, and Lp(a, s) = (1− z/ps)−1.

Elementary Multiplicative Functions

– The Möbius function μ: L(μ, s) = 1/ζ(s), Lp(μ, s) = 1−1/ps. In particular:

Proposition 10.1.10. The Möbius function is uniquely defined by μ(n) =
0 if n is divisible by p2 for some prime p (we say in this case that n is not
squarefree), and otherwise μ(n) = (−1)ω(n).

– If z is any complex number, then az(n) = zω(n) is a multiplicative function
with

Lp(az, s) = 1 +
z

ps − 1
=

1− (1− z)/ps

1− 1/ps
.

The most important such function that occurs in practice is the function
2ω(n), which is equal to the number of divisors of n when n is squarefree
(see the function d(n) below), and we have L(a2, s) = ζ(s)2/ζ(2s).

– The Euler totient function φ: L(φ, s) = ζ(s − 1)/ζ(s), Lp(φ, s) = (1 −
1/ps)/(1− p/ps). In particular:
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Proposition 10.1.11.(1) We have

φ(n) = n
∏
p|n

(
1− 1

p

)
,

where the product is over primes dividing n.
(2) We have the identity ∑

d|n
φ(d) = n .

(3) We have φ(n) = |(Z/nZ)∗|, the number of invertible elements of the ring
Z/nZ of integers modulo n.

Proof. By expanding the formal power series we have

1− 1/ps

1− p/ps
= 1 +

p− 1
ps

+
p2 − p

p2s
+ · · · = 1 +

∑
k�1

pk(1− 1/p)
pks

;

hence for k � 1 we have φ(pk) = pk(1 − 1/p), so (1) follows by multi-
plicativity. (2) is trivial since it corresponds to the Dirichlet series iden-
tity L(φ, s)ζ(s) = ζ(s− 1). Finally, by the Chinese remainder theorem we
know that |(Z/nZ)∗| is a multiplicative function (in our sense), and clearly
|(Z/pkZ)∗| = pk − pk−1 = pk(1− 1/p), proving (3). ��

Note that we have already proved and used the last two results of this
proposition in Section 2.4.1.

Corollary 10.1.12. We have

φ(n) =
∑
d|n

μ(d)(n/d) =
∑
d|n

μ(n/d)d .

Proof. Simply apply the Möbius inversion formula to (2). ��

– Let t be a fixed complex number. The tth power divisor sum function σt(n)
is defined by σt(n) =

∑
d|n dt. Then L(σt, s) = ζ(s − t)ζ(s), Lp(σt, s) =

((1− pt/ps)(1− 1/ps))−1, so for t �= 0 we have

σt(n) =
∏

pk ‖n

p(k+1)t − 1
pt − 1

,

while for t = 0 we have

σ0(n) =
∏

pk ‖n

(k + 1) =
∏
p|n

(vp(n) + 1) .
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Special cases: the number of divisors function σ0(n) is denoted by d(n)
(analytic number theorists often use the notation τ(n), but this is also
used to denote another multiplicative function, the Ramanujan τ function),
and we have L(d, s) = ζ(s)2. The sum of divisors function σ1(n) is simply
denoted by σ(n) and we have L(σ, s) = ζ(s− 1)ζ(s).

Very precise results are known about the size of the functions φ(n) and
σt(n) which do not concern us here. The main thing to remember in practice
about these functions is the following proposition:

Proposition 10.1.13. (1) There exists a constant c > 0 such that for all n,

c n/ log(log(n)) � φ(n) � n .

(2) There exists a constant c > 0 such that for all n,

n � σ(n) � c n log(log(n)) .

(3) For any t > 1 and for all n we have

nt � σt(n) � ζ(t)nt ,

where ζ(t) > 1 is Riemann’s zeta function at t.
(4) There exists a constant c > 0 such that for all n,

0 � ω(n) � log(n)/ log(log(n)) .

(5) There exists a constant c > 0 such that for all n,

1 � d(n) � exp(c log(n)/ log(log(n))) .

In particular, for any ε > 0 there exists cε > 0 such that for all n,
d(n) � cεn

ε.

Remarks. (1) All these results are easy consequences of very weak forms of
the prime number theorem that can be proved much more simply than
the strong versions that we will prove in Section 10.7: we need to know
only the existence of strictly positive constants C1 and C2 such that
C1x/ log(x) � π(x) � C2x/ log(x), where π(x) is the number of primes
less than or equal to x.

(2) The results of this proposition are all best possible, apart from the de-
termination of the best constants. In particular, for any k there exist
infinitely many n such that d(n) > log(n)k.

(3) The result for ω(n) is evidently false for Ω(n) since Ω(2k) = k.

Since μ(n) = 0 or ±1, there is nothing to say about the size of the Möbius
function. It follows from the prime number theorem (and in fact is equivalent
to it) that μ(n) = ±1 with equal probability, in other words that if we let
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M(x) =
∑

1�n�x μ(n) then M(x) = o(x), or equivalently, M(x)/x → 0 as
x→∞. More precise results are known, corresponding to more precise forms
of the prime number theorem. What is completely conjectural, however, is
the size of M(x) as x→∞. In fact, it is conjectured that for all ε > 0 we have
M(x) = O(x1/2+ε) as x→∞, and it can be shown that this is equivalent to
the Riemann hypothesis.

The von Mangoldt Function
Although not multiplicative, this function deserves a short study. We define
the von Mangoldt function Λ(n) by L(Λ, s) = −ζ ′(s)/ζ(s).

Proposition 10.1.14. (1) We have Λ(n) = 0 if n is not a prime power,
and Λ(n) = log(p) if n = pk is a power of a prime p with k � 1.

(2) We have ∑
d|n

Λ(d) = log(n) and Λ(n) =
∑
d|n

μ(n/d) log(d) .

Proof. (1) is immediate since

−ζ ′(s)
ζ(s)

=
∑

p prime

log(p)
ps(1− 1/ps)

=
∑

p prime

∑
k�1

log(p)
pks

,

and the two formulas of (2) are equivalent to the equality ζ(s)L(Λ, s) =
−ζ ′(s). ��

Nonelementary Multiplicative Functions
There are of course many other interesting multiplicative functions in number
theory. However, a particular class deserves to be mentioned, although it is
outside the scope of this book: functions coming from the theory of modular
forms. The sum of divisors functions σt(n) are in fact of this type when t is
an odd positive integer since they are the Fourier coefficients of holomorphic
Eisenstein series. The most famous of the nonelementary functions is certainly
Ramanujan’s τ function defined by the formal expansion

q

∞∏
m=1

(1− qm)24 =
∞∑

n=1

τ(n)qn .

Of course, for someone not at all familiar with the theory of modular forms,
this looks like a very artificial definition: for instance, why take the exponent
24? In any case, it was proved by Ramanujan and Mordell that τ(n) is indeed
a multiplicative function (the proof is not difficult), and in addition that
τ is equal to the arithmetic convolution of two (noncanonical) completely
multiplicative functions α and β. This means that L(τ, s) =

∏
p Lp(τ, s) and

that Lp(τ, s) is the inverse of a second-degree polynomial in p−s, and in fact
Lp(τ, s) = (1− τ(p)/ps + p11/p2s)−1.
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A deep conjecture of Ramanujan, which was proved by Deligne only in
1970 using all the machinery of modern algebraic geometry, is that the com-
pletely multiplicative functions α and β have modulus exactly equal to n11/2,
or equivalently, that they are conjugate (since their product is equal to n11).

10.1.4 Numerical Dirichlet Series

As we have seen above, in many cases it is sufficient to consider formal Dirich-
let series and formal Euler products. We now consider convergence problems,
so that in this section s is a complex variable. The term Dirichlet series will
thus denote numerical (or functional) Dirichlet series, and no longer formal
ones.

For power series, the domain of convergence is a disk (possibly reduced
to a point or infinite), where the behavior is a priori undetermined on the
boundary. For Dirichlet series, we have a similar result:

Proposition 10.1.15. Let f(s) =
∑

n�1 a(n)/ns be a Dirichlet series.
There exists a σ ∈ [−∞,+∞] (i.e., a real number or ±∞), called the ab-
scissa of absolute convergence of the series, such that f converges absolutely
in the half-plane �(s) > σ, and does not converge absolutely for �(s) < σ.
Furthermore, for any ε > 0, the series f(s) converges normally, hence uni-
formly, in the closed half-plane �(s) � σ + ε.

Before proving this result, we note that σ = +∞ means that the series
never converges absolutely, while σ = −∞ means that it converges absolutely
for all s ∈ C. Contrary to the case of power series, note that in number-
theoretical practice, these situations do not occur, although of course they
are possible (see below).

Proof. Assume that f(s0) converges absolutely for some s0 ∈ C. Then
since |a(n)|

|ns| =
|a(n)|
|ns0 | |n

s0−s| = |a(n)|
|ns0 | n(s0−s) ,

it follows that the series f(s) is dominated in absolute value by the series f(s0)
as soon as �(s) � �(s0). Thus, denote by σ the infimum in [−∞,+∞] of the
real parts of s such that f(s) converges absolutely. It follows that if �(s) > σ
then �(s) � �(s0) > σ for some s0 such that f(s0) converges absolutely,
hence that f(s) converges absolutely. The domination inequality that we
have shown also proves normal hence uniform convergence in �(s) � �(s0).
In addition, by definition if �(s) < σ then f(s) does not converge absolutely,
proving the proposition. ��

It follows in particular from this proposition that the series f(s) defines
an analytic function (which by abuse of notation we will again denote by
f(s)) on the half-plane �(s) > σ.

Another useful result is the following.
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Proposition 10.1.16. Let f(s) =
∑

n�1 an/ns be a Dirichlet series with
nonnegative coefficients, i.e., such that an � 0 for all n, let σ0 be the abscissa
of convergence of f , and assume that σ0 �= ±∞. Then f cannot be analytically
continued into a holomorphic function in the neighborhood of s = σ0; in other
words, s = σ0 is a singularity of f (pole or otherwise).

Proof. Assume the contrary. Then for ε > 0 sufficiently small, f is holo-
morphic in a circle centered at σ0 + 1 of radius 1 + 2ε, so inside this circle it
is equal to the sum of its power series expansion

f(s) =
∑
k�0

(s− σ0 − 1)k

k!
f (k)(σ0+1) with f (k)(σ0+1) =

∑
n�1

an(− log(n))k

nσ0+1
.

Thus for instance we have

f(σ0 − ε) =
∑
k�0

(1 + ε)k

k!

∑
n�1

an(log(n))k

nσ0+1
.

In this convergent double sum all the terms are nonnegative, so we can in-
terchange the order of summation and obtain

f(σ0 − ε) =
∑
n�1

an

nσ0+1

∑
k�0

(1 + ε)k log(n)k

k!
=
∑
n�1

an

nσ0−ε

since ∑
k�0

(1 + ε)k log(n)k

k!
= exp((1 + ε) log(n)) = n1+ε .

Thus the series
∑

n�1 an/ns converges (absolutely of course) for s = σ0−ε <
σ0, a contradiction since σ0 is the abscissa of convergence. ��

Corollary 10.1.17. Let f(s) =
∑

n�1 an/ns be a Dirichlet series with non-
negative coefficients and abscissa of convergence different from +∞. If f(s)
can be holomorphically continued to �(s) > σ then the series f(s) converges
for �(s) > σ.

Proof. Indeed, if σ0 < ∞ is the abscissa of convergence of f(s) then either
σ0 = −∞ and there is nothing to prove, or σ0 �= ±∞ and by the above
proposition we know that f(s) has a singularity at s = σ0. In particular, f(s)
cannot be holomorphically continued at σ0, so by assumption, σ0 � σ, and
hence f(s) converges for �(s) > σ. ��

Examples. – Clearly
∑

n�1 2n/ns does not converge anywhere, so σ = +∞
in this case. In the opposite direction,

∑
n�1 2−n/ns converges for any

value of s, so that σ = −∞ in this case. However, as already mentioned, in
almost all number-theoretic applications of Dirichlet series we have σ ∈ R,
i.e., not equal to ±∞, so there really is a half-plane of convergence.
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– The Riemann zeta function ζ(s) =
∑

n�1 1/ns has abscissa of absolute
convergence σ = 1, for example because of the comparison theorem be-
tween series and integrals. On the line σ = 1, the series diverges (both
absolutely and not; see Exercise 10). The corresponding Euler product
ζ(s) =

∏
p(1− 1/ps)−1 also converges absolutely only for �(s) > 1.

– It follows from the deep result of Deligne mentioned above that the abscissa
of absolute convergence of L(τ, s) =

∑
n�1 τ(n)/ns is equal to σ = 13/2

(one can easily prove that σ � 7, and with a little more difficulty that
σ � 7− 1/4).

The reader will have noticed that we have only mentioned absolute con-
vergence. There are two reasons for this. The first one is that only absolutely
convergent series are safe for computations; others should be avoided when-
ever possible. The second reason is more subtle: in the case of power series,
the radius of absolute convergence and the radius of convergence are the same
(although on the circle of convergence itself there may be differences). For
Dirichlet series, the situation is different: the abscissa of convergence (which
also exists; see Exercise 7) may be smaller than the abscissa of absolute con-
vergence. To give an example, the abscissa of convergence of

∑
n�1(−1)n/ns

is σ = 0, while its abscissa of absolute convergence is that of the Riemann
zeta function, i.e., σ = 1; see Exercise 11. It can (easily) be proved, however,
that the difference between the two abscissas is less than or equal to 1, and
1 is best possible as this example shows; see Exercise 8.

For a much deeper example, the abscissa of absolute convergence of the
Dirichlet series 1/ζ(s) =

∑
n�1 μ(n)/ns is equal to 1 (see Exercise 9), but

nobody knows its abscissa of convergence σ. It is trivial to prove that 1/2 �
σ � 1, but even the proof that σ < 1 would be a major accomplishment
worthy of the Fields medal plus a million US dollar Clay prize. The Riemann
hypothesis is equivalent to the strongest possible statement that σ = 1/2.
An equivalent formulation is that M(x) =

∑
1�n�x μ(n) satisfies M(x) =

O(x1/2+ε) for all ε > 0. The best currently known result in that direction
(using sophisticated techniques of trigonometric sums in analytic number
theory) is M(x) = O(x exp(−c log(x)3/5 log(log(x))−1/5)) for some c > 0, and
this result has not been improved upon for half a century; see the remarks
after Theorem 10.7.8 below.

10.2 The Analytic Theory of L-Series

Let χ be a Dirichlet character modulo m. Recall that for �(s) > 1 we have
the absolutely convergent series and Euler products (see the footnote at the
beginning of Section 10.1)

L(χ, s) =
∞∑

n=1

χ(n)
ns

=
∏
p

(
1− χ(p)

ps

)−1

.
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Lemma 10.2.1. Let χ be a character modulo m, let f | m be the conductor
of χ, and χf the corresponding primitive character modulo f . We have

L(χ, s) = L(χf , s)
∏
p|m

(
1− χf (p)

ps

)
.

In particular, if m = pk is a power of a prime p and χ is a nontrivial character
we have L(χ, s) = L(χf , s).

Proof. Clear. ��

Since a finite Euler product is easy to study, it suffices to limit our study to
primitive characters. Thus, in the rest of this section, we will usually assume
that χ is a primitive character modulo m.

The basic results that we need about Dirichlet L-functions are their an-
alytic continuation, functional equation, and their special values, either at
negative integers, or at positive integers of suitable parity. It is important
to note that Dirichlet L-functions are very simple objects compared to more
complicated L-functions such as Dedekind zeta functions, Artin L-functions,
or L-functions attached to elliptic curves or to modular forms. Thus we can
use tools that are difficult if not impossible to generalize to these more gen-
eral contexts. We will thus first give the simplest possible proofs. We will also
give the more complicated proofs, so that the reader can have an idea of how
to generalize to more complicated L-functions.

To obtain analytic continuation and special values at negative integers, we
are going to see that a very simple approach based on integration by parts is
sufficient, and in that case it is not necessary to assume that χ is a character.
To obtain the functional equation and the special values at positive integers,
we must assume that χ is a Dirichlet character, and the tool that we will use
is the fundamental theorem on Fourier series. To treat more general L-series
we would need a generalization of this tool, when it exists.

10.2.1 Simple Approaches to Analytic Continuation

We begin with the following general result. Recall that a function f tends
rapidly to 0 at infinity if for any k � 0, as x → +∞ the function xkf(x)
tends to 0.

Proposition 10.2.2. Let f be a C∞ function on [0,∞[ tending rapidly to 0
at infinity, and for �(s) > 0 define

L(f, s) =
1

Γ(s)

∫ ∞

0

f(t)ts
dt

t
.

(1) For any k ∈ Z�0 we have for �(s) > −k,
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Γ(s + k)L(f, s) = (−1)k

∫ ∞

0

dkf

dtk
(t)ts+k dt

t
.

(2) The function L(f, s) can be analytically continued to the whole of C into
a holomorphic function.

(3) For any n ∈ Z�0 we have

L(f,−n) = (−1)n dnf

dtn
(0) = (−1)nn!an ,

where
∑

n�0 antn is the formal Taylor expansion of f around 0.

Proof. Assume first that all the derivatives of f also tend rapidly to 0 at
infinity. Integrating by parts the definition of L(f, s) and using the fact that
f tends rapidly to 0 at infinity, we obtain

L(f, s) = − 1
sΓ(s)

∫ ∞

0

f ′(t)ts+1 dt

t
= −L(f ′, s + 1) ,

so (1) follows by induction. Since Γ(s+k) �= 0 for all s and k, and the integral
in (1) defines an analytic function for �(s + k) > 0, it follows that L(f, s)
can be analytically continued into a holomorphic function for �(s) > −k,
hence in the whole of C since k is arbitrary, proving (2). Finally, (1) applied
to s = 1− k gives

L(f, 1− k) = (−1)k

∫ ∞

0

dkf

dtk
(t) dt = (−1)k−1 dk−1f

dtk−1
(0) ,

which is equivalent to the two formulas of (3).
We now assume only that f is a C∞ function that tends rapidly to 0

at infinity. We must show that we can reduce to the case in which all its
derivatives also do. In fact, we are going to show that we can reduce to the
case in which f has compact support, which is stronger than what we need. Let
φ be an auxiliary C∞ function equal to 1 on [0, 1] and to 0 on [2,∞[. We can
evidently write f = φf +(1−φ)f , so that L(f, s) = L(φf, s)+L((1−φ)f, s).
Since (1 − φ)f vanishes in a neighborhood of 0 and tends rapidly to 0 at
infinity, it is clear that the integral defining L((1−φ)f, s) converges absolutely
for all s and hence defines a holomorphic function on C. Furthermore, since
1/Γ(−n) = 0 for n ∈ Z�0 we also have L((1 − φ)f,−n) = 0. It follows that
we may replace f by φf , in other words by a C∞ function with compact
support, as claimed, thus finishing the proof. ��

Applying this to L-functions attached to arithmetic functions, we obtain
the following.

Corollary 10.2.3. Let χ be any arithmetic function of period dividing m,
and recall that B0(χ) = s0(χ)/m = (

∑
0�r<m χ(r))/m.
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(1) For any k ∈ Z�0 and �(s) > −k we have

Γ(s + k)
(

L(χ, s)− B0(χ)
s− 1

)
= (−1)k

∫ ∞

0

dkFχ

dtk
(t)ts+k dt

t
,

where

Fχ(t) =

∑
1�r�m χ(r)e−rt

1− e−mt
−B0(χ)

e−t

t
.

(2) In particular, for any k ∈ Z�0 and �(s) > −k we have

Γ(s + k)
(

ζ(s)− 1
s− 1

)
= (−1)k

∫ ∞

0

dkF

dtk
(t)ts+k dt

t
,

with

F (t) =
1

et − 1
− e−t

t
.

(3) The function L(χ, s) can be analytically continued to the whole complex
plane into a holomorphic function if B0(χ) = 0 (in particular if χ is a
nontrivial character modulo m), and otherwise to a meromorphic func-
tion with a single pole, at s = 1, with residue B0(χ).

(4) If B0(χ) = 0 the series
∑

n�1 χ(n)/n converges and its sum is equal to
L(χ, 1).

(5) For k ∈ Z�1 we have

L(χ, 1− k) = −Bk(χ)
k

− χ(0)δk,1

(see Definition 9.4.1).

Proof. (1), (2), and (3). The integral definition of the gamma function
immediately implies that ∫ ∞

0

e−ntts
dt

t
=

Γ(s)
ns

.

It follows by absolute convergence that for �(s) > 1,

Γ(s)L(χ, s) =
∫ ∞

0

Gχ(t)ts−1 dt ,

where

Gχ(t) =
∞∑

n=1

χ(n)e−nt =
m∑

r=1

χ(r)
∞∑

q=0

e−(r+qm)t =

∑
1�r�m χ(r)e−rt

1− e−mt
.

We cannot yet apply the proposition to f(t) = Gχ(t), since f is not defined
at 0 except if

∑
1�r�m χ(r) = mB0(χ) = 0. However, for �(s) > 1 we have
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∫ ∞

0

ts−1 e−t

t
dt = Γ(s− 1) =

Γ(s)
s− 1

,

hence

Γ(s)
(

L(χ, s)− B0(χ)
s− 1

)
=
∫ ∞

0

Fχ(t)ts−1 dt ,

with Fχ(t) = Gχ(t) − B0(χ)e−t/t. In the above formula, we could replace
B0(χ) by any constant, but the point of choosing specifically B0(χ) is that
now Fχ(t) is defined at t = 0, and is in C∞([0,+∞[), so that the proposition
is applicable, and (1), (2), and (3) immediately follow.

(4). Since s0(χ) = 0 the quantity
∑

n�x χ(n) is bounded, and it follows by
Abel summation that the series S =

∑
n�1 χ(n)/n converges. It also follows

from Abel’s theorem that
∑

n�1 χ(n)/ns tends to S as s tends to 1, �(s) > 1,
uniformly in any sector |Arg(s− 1)| � θ < π/2. ��

(5). Keep the above notation. By Lemma 9.4.3 and Proposition 9.4.9, we
have

Fχ(t) =
∑
k�0

Bk(χ−)− (−1)kB0(χ)
k!

tk−1

= −χ(0) +
∑
k�1

(−1)k Bk(χ)−B0(χ)
k!

tk−1 .

Thus, if we write Fχ(t) =
∑

n�0 antn we have (−1)nn!an = −χ(0)δn,0 −
(Bn+1(χ)−B0(χ))/(n+1), so we deduce from the proposition that for k � 1
we have

L(χ, 1− k) + B0(χ)/k = −χ(0)δk, 1−Bk(χ)/k + B0(χ)/k ,

proving (5). ��

Remarks. (1) The above approach does not give the functional equation of
the L-functions. The essential reason is that we use only the periodicity of
χ(n), and not its multiplicativity, which implies, through the use of Gauss
sums, that its finite Fourier transform is a constant times its conjugate
(see Proposition 2.1.39).

(2) A deeper reason for which the above approach exists is the fact that
Dirichlet characters, or more generally periodic arithmetic functions, are
intimately linked to Abelian extensions of Q via the Kronecker–Weber
theorem asserting that any Abelian extension is a subextension of a cy-
clotomic field. Another way of stating this is that the Dedekind zeta
function of an Abelian extension of Q splits as a product of L-functions
of Dirichlet characters. Thus if we consider L or zeta functions attached to
non-Abelian extensions (such as non-Galois cubic fields), no elementary
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method of the above type is known even to prove analytic continuation.
This is the reason for that Artin’s conjecture, claiming essentially that
all such L-functions are holomorphic, is so difficult to prove. Continuing
with this language, Dirichlet characters are in one-to-one correspondence
with characters of the group GL1(Z/mZ) = (Z/mZ)∗. To be able to work
with more general extensions it is necessary to understand characters of
more general groups such as GLn(Z/mZ) and generalizations: this is the
main thrust of the Langlands program.

Using the Fourier expansion of the χ-Bernoulli functions, we can also
easily give the values of L(χ, s) at positive integers of suitable parity. In
accordance with remark (1) above, here it is necessary to restrict to Dirichlet
characters, and for simplicity we will even restrict to primitive characters.

Proposition 10.2.4. Let χ be a primitive Dirichlet character modulo m, let
W (χ) be the root number given by Definition 2.2.25, let k ∈ Z�1 be such that
χ(−1) = (−1)k, and let e = 0 or 1 be such that k ≡ e (mod 2). We have

L(χ, k) = (−1)k−1+(k+e)/2W (χ)
2k−1πkBk(χ)

mk−1/2k!
.

Proof. Applying Proposition 9.4.14 to χ and x = 0 (with k and n ex-
changed) we obtain

Bk(χ) = −mk−1k!
(2iπ)k

∑
n∈Z, n 
=0

τ(χ, n)
nk

.

This is a priori valid only for k � 2, but for k = 1 the corrective term is
χ(0)/2 = 0 since χ(−1) = −1 in that case, so χ cannot be a trivial character.

Since χ is a primitive character, by Corollary 2.1.42 and Proposition 2.1.45
we have

τ(χ, n) = χ(n)τ(χ) = χ(−n)τ(χ) = (−1)kχ(n)
m

τ(χ)
.

Furthermore, we clearly have Bk(χ) = Bk(χ). Thus

Bk(χ) = (−1)k−12
mkk!

(2iπ)kτ(χ)

∑
n�1

χ(n)
nk

,

proving the proposition after τ(χ) is replaced by iem1/2W (χ). ��

We will see below other proofs of the above proposition. In particular, it
is a special case of the functional equation of L(χ, s).
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10.2.2 The Use of the Hurwitz Zeta Function ζ(s, x)

Another simple approach to the study of L-functions of Dirichlet characters is
based on the use of the Hurwitz zeta function ζ(s, x), which we have studied
in detail in the preceding chapter. We are going to see that this approach,
which again is quite simple and works because we have periodic functions,
gives not only analytic continuation and values at negative integers, but also
the functional equation in a painless way.

Proposition 10.2.5. Let χ be any arithmetic function of period dividing m.

(1) We have

L(χ, s) =
1

ms

∑
1�r�m

χ(r)ζ(s, r/m) .

(2) The function L(χ, s) has an analytic continuation to the whole complex
plane, to a holomorphic function if B0(χ) = 0, and to a meromorphic
function with a single pole at s = 1, simple with residue B0(χ) otherwise.

(3) For any k ∈ Z�1 we have

L(χ, 1− k) = −Bk(χ)
k

− χ(0)δk,1 = −mk−1

k

∑
1�r�m

χ(r)Bk

( r

m

)
.

(4) If B0(χ) = 0 we have

L(χ, 1) = − 1
m

∑
1�r�m

χ(r)ψ
( r

m

)
,

where as usual ψ(x) is the logarithmic derivative of Γ(x).

Proof. Since

L(χ, s) =
∑
n�1

χ(n)
ns

=
∑

1�r�m

χ(r)
∑
q�0

1
(qm + r)s

=
1

ms

∑
1�r�m

χ(r)ζ(s, r/m) ,

the first formula is clear, and analytic continuation, residue, and special values
at negative or zero integers follow from the corresponding properties of ζ(s, x)
seen in Proposition 9.6.6 and Corollary 9.6.10, together with the formula
for Bk(χ) given by Proposition 9.4.5. The formula for L(χ, 1) follows from
Proposition 9.6.8 (3) since B0(χ) = 0. ��

The functional equation for L-functions is in fact an immediate conse-
quence of the Fourier expansion of ζ(s, {x}) that we computed in the previous
chapter (Corollary 9.6.51):

Theorem 10.2.6. For �(s) > 1 set Z(s, x) =
∑

n�1 e2iπnx/ns.
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(1) For �(s) > 1 we have the functional equation

ζ(1− s, {x}) = (2π)−sΓ(s)
(
e−isπ/2Z(s, x) + eisπ/2Z(s, 1− x)

)
.

(2) For all s we have the functional equation

ζ(1− s) = 2(2π)−sΓ(s) cos(sπ/2)ζ(s) .

(3) More generally let χ be any primitive character modulo m. For all s we
have the functional equation

L(χ, 1− s) = 2W (χ)ms−1/2(2π)−sΓ(s) cossin(sπ/2)L(χ, s) ,

where cossin(x) = cos(x) when χ(−1) = 1 and cossin(x) = sin(x) when
χ(−1) = −1, and W (χ) is as in Definition 2.2.25.

Proof. Statement (1) is a simple rephrasing of Corollary 9.6.51 seen in the
previous chapter. For (2), assume first that �(s) > 1. Then by Proposition
9.6.11 the function ζ(1 − s, {x}) is an everywhere continuous function of x,
including at the integers, where it takes the value ζ(1 − s). Thus letting x
tend to 0, we obtain

ζ(1−s) = (2π)−sΓ(s)
(
e−sπ/2ζ(s) + esπ/2ζ(s)

)
= 2(2π)−sΓ(s) cos(sπ/2)ζ(s) .

By analytic continuation this equation is valid for all s (as usual interpreting
suitably the values at the poles). The same proof is valid for (3) except that
we do not have to worry about integers: for �(s) > 1 we have

L(χ, 1− s) =
1

m1−s

m∑
r=1

χ(r)ζ(1− s, r/m)

= ms−1(2π)−sΓ(s)
m∑

r=1

χ(r)
(
e−isπ/2Z

(
s,

r

m

)
+ eisπ/2Z

(
s,− r

m

))
= ms−1(2π)−sΓ(s)

(
e−isπ/2

∑
n�1

τ(χ, n)
ns

+ eisπ/2
∑
n�1

τ(χ,−n)
ns

)

= ms−1(2π)−sΓ(s)τ(χ)L(χ, s)
(
e−isπ/2 + χ(−1)eisπ/2

)
by Corollary 2.1.42, which is applicable since χ is a primitive character, prov-
ing (3) after separating the cases χ(−1) = 1 and χ(−1) = −1 and extending
to all s by analytic continuation. ��

10.2.3 The Functional Equation for the Theta Function

Perhaps the most classical way of proving the functional equation of Dirichlet
L-series is to apply the Poisson summation formula (Proposition 2.2.16) to
closely related series called theta functions. We will prove in fact more than
is necessary.
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Definition 10.2.7. Let z ∈ C∗ be any nonzero complex number.

(1) We define the principal determination of the argument of z, and denote by
Arg(z), with a capital A, the unique θ ∈ ]−π, π] such that z = |z| exp(iθ).

(2) We define the principal determination of the square root of z by the for-
mula z1/2 = |z|1/2 exp(iArg(z)/2), in other words as the unique complex
number w such that w2 = z with Arg(w) ∈ ]−π/2, π/2].

(3) If k ∈ Z, we define zk/2 by the formula zk/2 = (z1/2)k.

Note that in this definition we allow negative real numbers.

Warning. When k is even, we evidently have (z1/2)k = zk/2 in the usual
sense. On the other hand, when k is odd, we do not in general have zk/2 =
(zk)1/2.

The following lemma is very easy and left to the reader.

Lemma 10.2.8. Let x and y be two nonzero complex numbers. Then

(1) Arg(xy) = Arg(x) + Arg(y) − 2kπ, where k = �(Arg(x) + Arg(y) −
π)/(2π)�.

(2) (xy)1/2 = εx1/2y1/2, where ε = ±1, and ε = 1 if and only if Arg(x) +
Arg(y) ∈ ]−π, π].

(3) Arg(1/x) = −Arg(x), except if x ∈ R<0, in which case Arg(1/x) =
Arg(x) = π.

(4) x1/2(1/x)1/2 = 1 except if x ∈ R<0, in which case x1/2(1/x)1/2 = −1.

We also need the following integral evaluation.

Lemma 10.2.9. Assume that �(a) � 0, and that when �(a) = 0 we have
a �= 0 and �(b) = 0. Then∫ +∞

−∞
exp(iπ(at2 + bt + c)) dt =

(
i

a

)1/2

exp
(

iπ
4ac− b2

4a

)
,

where as usual we use the principal determination of the square root.

Proof. Note that when �(a) = 0, we need the condition a �= 0 and �(b) = 0
to ensure the convergence of the integral.

Since a/i is not a negative real number, by Lemma 10.2.8, we have
(a/i)1/2(i/a)1/2 = 1. If we set u = (t + b/(2a))(a/i)1/2, the integral thus
becomes (

i

a

)1/2

exp
(

iπ
4ac− b2

4a

)∫
C

exp(−πu2) du ,

where C is the line (t + b/(2a))(a/i)1/2 as t goes from −∞ to +∞. Since
Arg((a/i)1/2) ∈ [−π/4, π/4], it is easy to show that we can modify the contour
of integration C to the horizontal line R without changing the integral, and
since

∫ +∞
−∞ exp(−πu2) du = 1, the result follows. ��
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Proposition 10.2.10. Let χ be a primitive character modulo m and let e =
0 if χ(−1) = 1 and e = 1 if χ(−1) = −1. For �(τ) > 0 and any z ∈ C, set

Θ(χ, τ, z) =
∑
n∈Z

χ(n) exp
(

iπn2τ + 2iπnz

m

)
.

We have the functional equation

Θ
(

χ,−1
τ

,
z

τ

)
=

W (χ)
ie

(τ

i

)1/2

exp
(

iπz2

mτ

)
Θ(χ, τ, z) ,

where W (χ) = τ(χ)/(iem1/2) is as in Definition 2.2.25.

Proof. We have

Θ(χ, τ, z) =
∑

r mod m

χ(r)
∑
k∈Z

exp
(

iπ(km + r)2τ + 2iπ(km + r)z
m

)
.

Since �(τ) > 0, the function f(x) = exp(iπ((xm + r)2τ + 2(xm + r)z)/m)
tends rapidly to 0 at infinity, so we may apply the Poisson summation formula
(Corollary 2.2.17) to the function f(x). We thus apply Lemma 10.2.9 to
a = mτ , b = 2(rτ + y + z), and c = (r2τ + 2rz)/m, and we obtain∫ +∞

−∞
f(t) exp(2iπyt) dt =

(
i

mτ

)1/2

exp
(
−iπ

(
2ry

m
+

(y + z)2

mτ

))
.

Thus

Θ(χ, τ, z) =
(

i

τ

)1/2

m−1/2
∑

r mod m

χ(r)
∑
n∈Z

exp
(
−iπ

(
2rn

m
+

(n + z)2

mτ

))

=
(

i

τ

)1/2

m−1/2
∑
n∈Z

exp
(
−iπ

n2

mτ

) ∑
r mod m

χ(r) exp
(
−2iπ

rn

m

)
.

By Corollary 2.1.42, since χ is primitive we have∑
r mod m

χ(r) exp
(
−2iπ

rn

m

)
= χ(−n)τ(χ) = χ(−1)χ(n)τ(χ) .

Thus

Θ(χ, τ, z) =
(

i

τ

)1/2

χ(−1)τ(χ)m−1/2
∑
n∈Z

χ(n) exp
(
−iπ

(n + z)2

mτ

)
,

giving the result after changing τ into −1/τ and z into z/τ . ��
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Definition 10.2.11. We say that χ is an even (respectively odd) character
if χ(−1) = 1 (respectively χ(−1) = −1), and as in the proposition we let
e = 0 or 1 such that χ(−1) = (−1)e. Finally, we define

θ(χ, τ) =
∑
n∈Z

neχ(n) exp
(

iπn2τ

m

)
.

Corollary 10.2.12. The function θ(χ, τ) satisfies the functional equation

θ

(
χ,−1

τ

)
= W (χ)

(τ

i

)(2e+1)/2

θ(χ, τ) ,

where (τ/i)(2e+1)/2 is given by Definition 10.2.7.

Proof. If e = 0, i.e., if χ is even, the corollary immediately follows from
the proposition by setting z = 0. Assume now that e = 1. We clearly have

∂Θ
∂z

(χ, τ, 0) =
2iπ

m
θ(χ, τ) .

On the other hand, the above proposition implies that

∂Θ
∂z

(
χ,−1

τ
, 0
)

=
W (χ)

i
τ
(τ

i

)1/2 ∂Θ
∂z

(χ, τ, 0)

and the corollary follows. ��

This corollary shows that the function θ(χ, τ) is a modular form of weight
e + 1/2 on a suitable congruence subgroup of SL2(Z). In fact, we need the
transformation formula only when τ = it with t > 0 real.

Corollary 10.2.13. Let t be a real positive number. As t → +∞, then
θ(χ, it) = χ(0)+O(exp(−πt/m)), and as t → 0+, then θ(χ, it) = t−e−1/2(χ(0)+
O(exp(−π/(tm)))) .

Proof. As t → +∞, this follows immediately from the definition. As t →
0+, we have by the functional equation

θ(χ, it) = W (χ)t−e−1/2θ(χ, i/t) = W (χ)t−e−1/2(χ(0) + O(exp(−π/(tm)))) .

Now χ(0) �= 0 if and only if χ = 1, so that W (χ) = 1, giving the corollary. ��

10.2.4 The Functional Equation for Dirichlet L-Functions

Recall from Definition 8.5.9 that the incomplete gamma function is defined
for x > 0 and s ∈ C by Γ(s, x) =

∫∞
x

tse−t dt/t.
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Theorem 10.2.14 (Functional Equation for Dirichlet L-Functions).
Let χ be a primitive character modulo m, let e = 0 (respectively e = 1) if χ
is an even (respectively odd) character, and set

γ(s) = π−s/2Γ(s/2) and Λ(χ, s) = m(s+e)/2γ(s + e)L(χ, s) .

Then Λ(χ, s) and L(χ, s) can be analytically continued to meromorphic func-
tions in the whole complex plane and satisfy the functional equation

Λ(χ, 1− s) = W (χ)Λ(χ, s) .

In addition, these functions are holomorphic except when χ = 1, in which
case Λ(χ, s) has two poles at s = 0 and s = 1, which are simple with residues
−1 and 1 respectively, and L(χ, s) = ζ(s) has a single pole at s = 1, which is
simple with residue 1.

Furthermore, we have the following rapidly convergent formula valid for
all A > 0:

Γ
(

s + e

2

)
L(χ, s) = χ(0)πs/2

(
A(s−1)/2

s− 1
− As/2

s

)
+
∑
n�1

χ(n)
ns

Γ
(

s + e

2
,
πn2A

m

)

+ W (χ)
( π

m

)s−1/2 ∑
n�1

χ(n)
n1−s

Γ
(

1− s + e

2
,
πn2

Am

)
.

Proof. Set

I(χ, s) =
∫ ∞

0

t(s+e)/2(θ(χ, it)− χ(0))
dt

t
.

By the above corollary, this integral converges (exponentially fast in fact)
when t is large, while when t is close to 0, either we have χ �= 1, in which
case we also have exponential convergence, or we have χ = 1, and then by
the corollary the integrand is asymptotic to t(s−3)/2 as t → 0+. Thus, for
�(s) > 1 the integral is absolutely convergent.

An easy computation gives

I(χ, s) = 2
∑
n�1

neχ(n)
∫ ∞

0

t(s+e)/2e−πn2t/m dt

t

= 2
∑
n�1

neχ(n)
m(s+e)/2

π(s+e)/2ns+e

∫ ∞

0

u(s+e)/2e−u du

u

= 2m(s+e)/2γ(s + e)L(χ, s) = 2Λ(χ, s) .

The exchange of summation is justified by absolute and normal convergence
for �(s) > 1, and it also proves that Λ(χ, s) is holomorphic in that region.
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Let A > 0 be arbitrary. We can write, still for �(s) > 1,

I(χ, s) =
∫ ∞

A

t(s+e)/2(θ(χ, it)− χ(0))
dt

t
+
∫ A

0

t(s+e)/2(θ(χ, it)− χ(0))
dt

t

=
∫ ∞

A

t(s+e)/2(θ(χ, it)− χ(0))
dt

t
+
∫ A

0

t(s+e)/2θ(χ, it)
dt

t
− χ(0)

As/2

s/2
,

since χ(0) �= 0 implies e = 0. In the second integral we change t into 1/t.
Since by Proposition 10.2.10 we have for all real t > 0,

θ(χ, i/t) = W (χ)t1/2+eθ(χ, it) ,

we obtain∫ A

0

t(s+e)/2θ(χ, it)
dt

t
= W (χ)

∫ ∞

1/A

t(1−s+e)/2θ(χ, it)
dt

t

= W (χ)
∫ ∞

1/A

t(1−s+e)/2(θ(χ, it)− χ(0))
dt

t
+ χ(0)

A(s−1)/2

(s− 1)/2
,

since χ(0) �= 0 implies e = 0 and W (χ) = 1. We thus obtain the the prelimi-
nary formula

2Λ(χ, s) = χ(0)
(

A(s−1)/2

(s− 1)/2
− As/2

s/2

)
+
∫ ∞

A

t(s+e)/2(θ(χ, it)− χ(0))
dt

t

+ W (χ)
∫ ∞

1/A

t(1−s+e)/2(θ(χ, it)− χ(0))
dt

t
.

This has three consequences. First of all, since θ(χ, it)−χ(0) and θ(χ, it)−χ(0)
tend to zero exponentially as t → ∞, the integrals converge normally in
any compact subset of C, so Λ(χ, s) has a meromorphic continuation to C.
Furthermore, its only possible poles can occur when χ(0) �= 0, i.e., χ = 1, in
which case they are at s = 0 and s = 1, are simple, with residues −1 and 1
respectively, as claimed. Furthermore, since L(χ, s) = Λ(χ, s)/(m(s+e)/2γ(s+
e)) and since m(s+e)/2γ(s + e) never vanishes, it follows that L(χ, s) is also
holomorphic on the whole of C, except perhaps at s = 0 and s = 1 when
χ = 1. But if χ = 1, then m(s+e)γ(s + e) = π−s/2Γ(s/2) has a simple pole
with residue 2 at s = 0, which cancels the simple pole of Λ(χ, s) at s = 0,
and proves in fact that ζ(0) = L(χ, 0) = −1/2. On the other hand, for s = 1,
π−s/2Γ(s/2) = 1, so that ζ(s) = L(χ, s) has a simple pole with residue 1, as
claimed.

Second, since by definition

τ(χ) = τ(χ,−1) = χ(−1)τ(χ)

and |τ(χ)|2 = m and χ(−1) = (−1)e, it follows that
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W (χ)W (χ) = (−1)e τ(χ)τ(χ)
m

= 1 .

Thus, if we change simultaneously s into 1−s and A into 1/A, our preliminary
formula immediately gives the functional equation Λ(χ, 1−s) = W (χ)Λ(χ, s).

Third, by definition of Γ(s, x), we have∫ ∞

x

tse−πn2t/m dt

t
= (m/π)sn−2sΓ(s, πn2x) .

Thus, replacing explicitly the theta functions in our preliminary formula and
exchanging summation and integration (which is justified since the integrals
converge exponentially fast), we obtain

m(s+e)/2γ(s + e)L(χ, s) = χ(0)
(

A(s−1)/2

s− 1
− As/2

s

)
+
(m

π

)(s+e)/2 ∑
n�1

χ(n)
ns

Γ
(

s + e

2
, πn2A

)

+ W (χ)
(m

π

)(1−s+e)/2 ∑
n�1

χ(n)
n1−s

Γ
(

1− s + e

2
,
πn2

A

)
.

We obtain the final formula of the proposition by multiplying with (π/m)(s+e)/2.
��

Remarks. (1) When χ = 1, in other words L(χ, s) = ζ(s), we will simply
write Λ(s) instead of Λ(1, s).

(2) Although the additional formula of the theorem seems to be a “plus”
compared to the functional equation, this is not so: it is not difficult to
prove (see [Coh1], Appendix A) that the functional equation alone in
turn implies the formula. We have already mentioned this phenomenon
in Proposition 8.5.10 in the context of L-functions attached to elliptic
curves.

(3) The point of the formula given above is not the formula itself, which is
not very pretty, but its use for the algorithmic computation of L(χ, s):
since for fixed s, Γ(s, x) behaves roughly like e−x as x → ∞, we thus
have a formula that converges exponentially fast to L(χ, s). In addition,
it is not difficult to give rapidly convergent methods for the computation
of Γ(s, x); see for instance Sections 8.5.4 and 8.5.5.

(4) The formula converges fastest when A = 1/A, i.e., when A = 1. However,
it is essential to use the formula with a variable value of A for at least
three reasons. First of all, it gives an excellent check on the correctness of
the implementation, since the result must be independent of A. Second,
although W (χ) can be computed directly from the definition of τ(χ), this
takes O(m) operations, hence is very costly when m is large. We can use
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the formula with a given value of s and two slightly different values of A
to compute W (χ), and this will be in only O(m1/2 log(m)) operations.
Third, the formula can be applied to complex values of A (using Definition
8.5.9 to define Γ(s, x)), and gives in this case the so-called approximate
functional equation.

(5) Another even faster way to compute W (χ) that avoids the expensive
computations of Γ(s, x) is to use directly the functional equation of the
theta function: by Proposition 10.2.10, for any t > 0 such that θ(χ, it) �= 0
we have

W (χ) =
θ(χ, i/t)

te+1/2θ(χ, it)
.

The optimal value of t in terms of convergence is t = 1, and it seems that
we always have θ(χ, i) �= 0 for all χ, so this can be applied. If this is not
the case, we can simply use a value of t close to 1 for which θ(χ, it) �= 0.

Corollary 10.2.15. (1) If χ is a primitive character modulo m and e = 0
or 1 such that χ(−1) = (−1)e, the functional equation may be rewritten
in the form

L(χ, s) = (−i)eτ(χ)
(

2π

m

)s
L(χ, 1− s)

cos(π/2(s− e))Γ(s)
.

(2) If χ is any character, primitive or not, the function L(χ, s) does not
vanish for �(s) > 1, and in the domain �(s) < 0 it vanishes if and only
if s = e− 2k for k ∈ Z�1, where it vanishes to order 1.

(3) The function L(χ, s) vanishes at s = 0 if and only if χ is a nontrivial
even character.

Proof. (1) immediately follows from the functional equation and the for-
mulas Γ(s)Γ(1 − s) = π/ sin(sπ) and Γ(s/2)Γ((s + 1)/2) = π1/221−sΓ(s).
For (2) we note that for �(s) > 1 we have the convergent Euler product
L(χ, s) =

∏
p(1−χ(p)/ps)−1, so that L(χ, s) �= 0. Furthermore, if χ is a non-

primitive character of conductor f | m, and if χf is the primitive character
equivalent to χ then

L(χ, s) = L(χf , s)
∏

p|m,p�f

(
1− χf (p)

ps

)
.

Thus L(χ, s) = 0 if and only if either L(χf , s) = 0 or ps = χf (p) for some
p | m, p � f , in other words s = (Log (χf (p)) + 2ikπ)/ log(p) for some k ∈ Z,
where Log denotes the principal determination of the complex logarithm.
Since |χf (p)| = 1, these latter values (infinite in number) are such that �(s) =
0, in other words are on the imaginary axis, so we do not need to deal with
them for now. We can thus restrict to primitive characters. In that case for
�(s) < 0 we have L(χ, 1 − s) �= 0 by what we have just said, so (1) implies
that in that region L(χ, s) = 0 if and only if cos(π/2(s− e))Γ(s) has a pole,
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which evidently occurs if and only if s ∈ Z�0 is such that s ≡ e (mod 2), and
since Γ(s) has only simple poles, these zeros have order 1. Finally, if χ is the
trivial character then L(χ, 1 − s) has a pole at s = 0 that cancels the pole
of Γ(s) (and it is immediate to compute L(χ0, 0); see below), and otherwise
L(χ, 1− s) does not have a pole at s = 0, while cos(π/2(s− e))Γ(s) has one
if and only if e = 0. ��

Note that (1) is equivalent to the form of the functional equation that we
obtained in Theorem 10.2.6 (3) using ζ(s, x).

Definition 10.2.16. Denote by Log the principal determination of the com-
plex logarithm. The zeros s = (Log (χf (p)) + 2ikπ)/ log(p) for k ∈ Z, p | m,
and p � f of the function L(χ, s) for a nonprimitive character χ are called
extraneous zeros. The zeros s = e− 2k for k ∈ Z�1, and in addition s = 0 if
χ is a nontrivial even character, are called trivial zeros. All other zeros are
called nontrivial.

Note that if m = pk with k � 1 is a power of a prime number p and if χ
is a nontrivial character then all primes dividing m also divide the conductor
f = pj for some j such that 1 � j � k, so in that case L(χ, s) = L(χf , s). In
particular, L(χ, s) will have a clean functional equation and no extraneous
zeros.

It follows from the above corollary that the problem of localizing the zeros
of L-functions is reduced to the strip 0 � �(s) � 1, and in fact as we will
see in Section 10.5.7, to the strip 0 < �(s) < 1. Furthermore, thanks to the
functional equation and the elementary property L(s, χ) = L(s, χ) we may
even restrict the study to the smaller strip 1/2 � �(s) < 1 and �(s) � 0.

10.2.5 Generalized Poisson Summation Formulas

We have given several proofs of the functional equation of Dirichlet L-
functions. Although perhaps the longest, the most “natural” such proof is
via the functional equation of the theta function, itself an immediate conse-
quence of the Poisson summation formula (Proposition 2.2.16). In fact, it is
quite easy to see that this summation formula (which of course is quite sim-
ple) can be deduced from the functional equation of Dirichlet L-functions.
We will do this in quite a general context as follows.

Let a(n) be an arithmetic function and f(x) a nice function as occurs for
instance in the Poisson summation formula (we will make this precise later).
We would like to give an exact Poisson-style formula for

∑
n�1 a(n)f(n), the

Poisson formula itself corresponding to the case a(n) = 1 and f(x) even. To
simplify we will first assume that f is in the Schwartz space, in other words
that f ∈ C∞(R) and that f(x) and all its derivatives tend to 0 faster than
any power of |x| as |x| → ∞, and will mention below how to prove the result
under much milder assumptions.
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To obtain the desired formula we recall that the L-function associ-
ated with the arithmetic function a(n) is defined as usual by L(a, s) =∑

n�1 a(n)n−s. We make the following assumptions, which are essential,
contrary to the assumptions on f(x). We assume that L(a, s) converges
for �(s) > 1, that it has an analytic continuation to the whole complex
plane with a possible single pole at 1 of exact order r � 0, say, and that it
has a functional equation of the type Λ(a, s) = wΛ(a∗, 1 − s), where a∗(n)
is some other arithmetic function, |w| = 1, Λ(a, s) = γ(s)L(a, s), where
γ(s) = As

∏
1�i�g Γ(ais + bi), for strictly positive constants A and ai, and

similarly for a∗. Note that this is the form of the functional equation of L-
series of Dirichlet characters, and up to a shift of the variable s it is the form
of essentially all global functional equations occurring in number theory and
algebraic geometry.

The result is as follows.

Theorem 10.2.17. Keep all the above notation and assumptions. For any
σ such that 0 < σ < 1 and x > 0 set

K(x) =
1

2iπ

∫
(s)=σ

γ(s)
γ(1− s)

x−s ds and g(x) =
∫ ∞

0

f(t)K(xt) dt .

(1) We have∫ ∞

0

ts−1K(t) dt =
γ(s)

γ(1− s)
,

∫ ∞

0

g(t)K(xt) dt = f(x), and

∫ ∞

0

K(xt)K(yt)dt = δ(x− y) ,

where δ(x) is the Dirac distribution.
(2) If we set a(0) = −L(a, 0) we have the summation formula∑

n�0

a(n)f(n) = Ress=1

(
L(a, s)

∫ ∞

0

ts−1f(t) dt

)
+ w

∑
n�1

a∗(n)g(n) .

Proof. (1). Recall from Section 9.7.3 that the Mellin transform of f is de-
fined by M(f)(s) =

∫∞
0

f(t)ts−1 dt. Since f is in the Schwartz space, M(f)(s)
converges for �(s) > 0 and can be analytically continued to the whole com-
plex plane with possible poles only in Z�0, since by integration by parts for
�(s) > 0 we have

M(f)(s) = f(t)
ts

s

∣∣∣∣∞
0

−1
s

∫ ∞

0

f ′(t)ts dt = −M(f ′)(s + 1)
s

.

The Mellin inversion formula (Proposition 9.7.7) tells us that for all σ > 0
and x > 0 we have
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f(x) =
1

2iπ

∫
(s)=σ

M(f)(s)x−s ds ,

so the first formula of (1) is clear. For the second we have for 0 < �(s) < 1,∫ ∞

0

x−sg(x) dx =
∫ ∞

0

x−s

∫ ∞

0

f(t)K(xt) dt =
∫ ∞

0

ts−1f(t)
∫ ∞

0

x−sK(x) dx

= M(f)(s)M(K)(1− s) = (γ(1− s)/γ(s))M(f)(s)

by the first formula. Thus for 0 < σ < 1,∫ ∞

0

g(t)K(xt) dt =
1

2iπ

∫
(s)=σ

γ(s)
γ(1− s)

x−s

(∫ ∞

0

t−sg(t) dt

)
ds

=
1

2iπ

∫
(s)=σ

x−sM(f)(s) ds = f(x)

by Mellin inversion, proving the second formula. For the third, let φ(x) be
a function in the Schwartz space, and let ψ(x) =

∫∞
0

φ(t)K(xt) dt, so that
φ(x) =

∫∞
0

ψ(t)K(xt) dt by what we have just proved. We have∫ ∞

0

(∫ ∞

0

K(xt)K(yt) dt

)
φ(y) dy =

∫ ∞

0

K(xt)
(∫ ∞

0

φ(y)K(yt) dy

)
dt

=
∫ ∞

0

K(xt)ψ(t) dt = φ(x) ,

proving the last formula of (1).
(2). For simplicity of notation set F = M(f). By Mellin inversion we have

for all σ > 1,∑
n�1

a(n)f(n) =
1

2iπ

∫
(s)=σ

F (s)
∑
n�1

a(n)n−s ds =
1

2iπ

∫
(s)=σ

F (s)L(a, s) ds ,

where here and elsewhere all the interchanges of summation are justified by
the fact that f is in the Schwartz space. We now shift the line of integration
from �(s) = σ > 1 to �(s) = −1/2, say. By assumption L(a, s) has at most
a pole at s = 1. From the formula F (s) = M(f)(s) = −M(f ′)(s + 1)/s we
deduce that F (s) may have a pole only at s = 0, which is simple with residue
−M(f ′)(1) = − ∫∞

0
f ′(t) dt = f(0) (hence no pole at all if f(0) = 0). Thus,

applying the functional equation for L(a, s) we obtain∑
n�1

a(n)f(n) = Ress=1(L(a, s)F (s)) + f(0)L(a, 0) + I ,

where
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I =
1

2iπ

∫
(s)=−1/2

F (s)L(a, s) ds

=
w

2iπ

∫
(s)=−1/2

F (s)
γ(1− s)

γ(s)
L(a∗, 1− s) ds

=
w

2iπ

∫
(s)=3/2

F (1− s)
γ(s)

γ(1− s)
L(a∗, s) ds .

Thus, if we set G(s) = F (1− s)γ(s)/γ(1− s) then as above we have∑
n�1

a(n)f(n) = Ress=1(L(a, s)F (s)) + f(0)L(a, 0) + w
∑
n�1

a∗(n)g(n) ,

where for σ > 1,

g(x) =
1

2iπ

∫
(s)=σ

G(s)x−s ds =
1

2iπ

∫
(s)=σ

x−s γ(s)
γ(1− s)

F (1− s) ds .

We choose σ = 3/2 so that we can use the convergent formula

F (1− s) = − 1
1− s

M(f ′)(2− s) = − 1
1− s

∫ ∞

0

f ′(t)t1−s dt .

If we set for 0 < σ < 1,

K1(x) =
1

2iπ

∫
(s)=σ

γ(s)
(1− s)γ(1− s)

x−s ds

(no connection with Bessel functions), then

g(x) = − 1
2iπ

∫
(s)=σ

x−s γ(s)
(1− s)γ(1− s)

∫ ∞

0

f ′(t)t1−s dt ds

= −
∫ ∞

0

f ′(t)
K1(xt)

x
dt = −f(t)

K(xt)
x

∣∣∣∣∞
0

+
∫ ∞

0

f(t)K ′
1(xt) dt

=
∫ ∞

0

f(t)K(xt) dt ,

proving the theorem. ��

Remarks. (1) The second formula of (1) means that K(x) is a self-dual in-
tegration kernel, generalizing the same fact for the cosine Fourier trans-
form. This is essentially equivalent to the fact that its Mellin transform
γ(s)/γ(1− s) changes into its inverse when s is changed into 1− s.

(2) Note that if around s = 1 we have L(a, s) =
∑

k�−r λ(k)(s − 1)k, then
since ts−1 = exp((s− 1) log(t)) we have

Ress=1

(
L(a, s)

∫ ∞

0

f(t)ts−1 dt

)
=

r−1∑
k=0

λ(−k − 1)
k!

∫ ∞

0

f(t) log(t)k dt .
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(3) Although we have proved the theorem for a function f belonging to
the Schwartz space, it is not difficult to show by approximation tech-
niques that it is still valid if f is only piecewise C∞ and piecewise mono-
tonic (Exercise 32). In particular, we can multiply f by the characteristic
function of a finite interval [A,B] and obtain a summation formula for∑

A�n�B a(n)f(n), the integrals from 0 to ∞ being replaced by integrals
from A to B (see for instance Proposition 2.2.16).

Examples. (1) As already mentioned at the beginning, the basic example
is a(n) = 1, so that L(a, s) = ζ(s), γ(s) = π−s/2Γ(s/2). By Corollary
9.6.37 we have∫ ∞

0

cos(2πt)ts−1 dt = (2π)−s cos(πs/2)Γ(s) .

On the other hand, the reflection and duplication formulas for the gamma
function give

π−s/2Γ(s/2)
π−(1−s)/2Γ((1− s)/2)

= 2(2π)−s cos(πs/2)Γ(s) .

It follows that K(x) = 2 cos(2πx) and the theorem reads∑
n�1

f(n) +
f(0)

2
=
∫ ∞

0

f(t) dt + 2
∑
n�1

∫ ∞

0

f(t) cos(2πnt) dt ,

which is the Poisson summation formula for an even function f .
(2) We now choose a(n) = r2(n), where r2(n) is the number of decomposi-

tions of n as a sum of two squares. By Corollary 10.5.8 and Proposition
10.5.5, which we will prove below, we have L(a, s) = 4ζQ(i)(s), w = 1,
and γ(s) = (2π)−sΓ(s). From Proposition 9.8.8 we deduce that∫ ∞

0

ts−1J0(4πt1/2) dt =
1
2π

∫ ∞

0

( u

4π

)2s−1

J0(u) du

= (2π)−2s Γ(s)
Γ(1− s)

=
1
2π

γ(s)
γ(1− s)

.

It follows that K(x) = 2πJ0(4πx1/2), and since (for instance by Corollary
10.2.3) we know that L(χ−4, 1) = π/4 and L(χ−4, 0) = 1/2, the theorem
gives the summation formula∑
n�0

r2(n)f(n) = π

∫ ∞

0

f(t) dt + 2π
∑
n�1

r2(n)
∫ ∞

0

f(t)J0(4π(nt)1/2) dt ,

where we set r2(0) = 1.
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(3) Finally, we choose a(n) = d(n), where d(n) is the number of (positive) di-
visors of n. We have seen that L(a, s) = ζ(s)2, so that γ(s) = π−sΓ(s/2)2.
From the computation made for ζ(s) itself we have

γ(s)/γ(1− s) = 4(2π)−2s cos(sπ/2)2Γ(s)2 .

On the other hand, Proposition 9.8.8 gives∫ ∞

0

ts−1Y0(4πt1/2) dt = − 1
π

(2π)−2s cos(sπ)Γ(s)2 ,∫ ∞

0

ts−1K0(4πt1/2) dt =
1
2
(2π)−2sΓ(s)2 .

Since 4 cos(sπ/2)2 = 2(cos(sπ) + 1) we have

K(x) = 4K0(4πx1/2)− 2πY0(4πx1/2) ,

and using the expansion ζ(s) = 1/(s − 1) + γ + O(s − 1) the theorem
gives the summation formula∑

n�1

d(n)f(n) =
∫ ∞

0

f(t)(log(t) + 2γ) dt + f(0)/4

+
∑
n�1

d(n)
∫ ∞

0

f(t)(4K0(4π(nt)1/2)− 2πY0(4π(nt)1/2)) dt .

The above summation formulas are due to Voronoi and are used to give error
estimates in the circle problem (estimate Δ(X) =

∑
1�n�X r2(n)− πX) and

in the divisor problem (estimate Δ(X) =
∑

1�n�X d(n)− (X log(X) + (2γ −
1)X)). In both cases we have the “trivial” estimate Δ(X) = O(X1/2) (see
Exercise 33), and from Voronoi’s formulas it is not difficult to obtain Δ(X) =
O(X1/3), which we will prove below for the circle problem (Theorem 10.2.18).
It is also not too difficult to show that we cannot have Δ(X) = O(Xα) for
α � 1/4. Several mathematicians have succeeded in obtaining values of α
such that α < 1/3, but at the price of considerable additional effort, and it
is an ongoing race. The present record, due to Huxley, is α = 131/416+ ε for
any ε > 0.

10.2.6 Voronoi’s Error Term in the Circle Problem

We are now going to show that Voronoi’s summation formula leads to a
quite simple but powerful estimate for the error term in the circle problem.
Recall that the circle problem consists in computing a precise estimate for
the number of points with integral coordinates in the closed disk of radius
X1/2, in other words in estimating

∑
0�n�X r2(n). A heuristic shows that

this should be close to the area of the disk, in other words to πX, and a
rigorous and easy argument shows that more precisely it is πX + O(X1/2),
see Exercise 33. We will prove the following stronger result.
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Theorem 10.2.18 (Voronoi). As X →∞ we have∑
0�n�X

r2(n) = πX + O(X1/3) .

Proof. By Voronoi’s summation formula that we have seen above we have
for all reasonable functions f (for instance piecewise continuous and tending
to zero sufficiently rapidly at infinity)∑

n�0

r2(n)f(n) = π

∫ ∞

0

f(t) dt + 2π
∑
n�1

r2(n)
∫ ∞

0

f(t)J0(4π(nt)1/2) dt .

If we apply this formula to f(t) = 1 for 0 � t � X and f(t) = 0 for t > X
we obtain ∑

0�n�X

r2(n) = πX + 2π
∑
n�1

r2(n)
∫ X

0

J0(4π(nt)1/2) dt .

Now from Proposition 9.8.4 (2) we have J ′
1(x)+J1(x)/x = J0(x), from which

a short computation shows that

(t1/2J1(4π(at)1/2))′ = 2πa1/2J0(4π(at)1/2) ,

giving the formula∑
0�n�X

r2(n) = πX + X1/2
∑
n�1

r2(n)
n1/2

J1(4π(nX)1/2) .

At first sight this formula seems quite nice since by Proposition 9.8.7 we have

J1(4π(nX)1/2) ∼ X−1/4

π21/2

cos(4π(nX)1/2 − 3π/4)
n1/4

,

and we could even easily strengthen this asymptotic estimate into one with
a negligible remainder term. However, estimating the series∑

n�1

r2(n)
n3/4

cos(4π(nX)1/2 − 3π/4)

is not a trivial task.
Thus we prefer to avoid taking a function f having a brutal cutoff at

X, and the simplest method is to choose the function f defined in the the
following way for t � 0. We set Y = X1/3 (which will be seen in the course
of the proof to give the best results), and define

f(t) =

⎧⎪⎨⎪⎩
1 for 0 � t � X ,
1− (t−X)/Y for X � t � X + Y ,
0 for t � X + Y ,
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in other words f(t) = min(1− (t−X)/Y, 1) for 0 � t � X + Y and f(t) = 0
elsewhere. For this function f , Voronoi’s summation formula given above
reads ∑

0�n�X

r2(n) +
∑

X<n�X+Y

r2(n)(1− (n−X)/Y )

= π(X + Y/2) + 2π
∑
n�1

r2(n)hX(n) ,

where

hX(n) =
∫ X+Y

0

min(1− (t−X)/Y, 1)J0(4π(nt)1/2) dt .

We can thus write∑
0�n�X

r2(n) = πX + πY/2 + 2πS1 + 2πS2 − S3

with

S1 =
∑

1�n�X1/3

r2(n)hX(n), S2 =
∑

n>X1/3

r2(n)hX(n), and

S3 =
∑

X<n�X+Y

r2(n)(1− (n−X)/Y ) .

We first estimate S1 and S2. From Proposition 9.8.4 (2) we easily deduce
that

1
2πn1/2

(
t(ν+1)/2Jν+1(4π(nt)1/2)

)′
= tν/2Jν(4π(nt)1/2) .

Thus if we integrate by parts once, then another time, we obtain

hX(n) =
min(1− (t−X)/Y, 1)

2πn1/2
t1/2J1(4π(nt)1/2)

∣∣∣∣X+Y

0

+
1

2πn1/2Y

∫ X+Y

X

t1/2J1(4π(nt)1/2) dt

=
1

2πn1/2Y

∫ X+Y

X

t1/2J1(4π(nt)1/2) dt =
1

4π2nY
tJ2(4π(nt)1/2)

∣∣∣∣X+Y

X

=
1

4π2nY

(
(X + Y )J2(4π(n(X + Y ))1/2)−XJ2(4π(nX)1/2)

)
.

We are going to use both of these last two formulas.
(S1). We use the last formula involving J1. Using the asymptotic estimate

J1(x) = O(x−1/2) given by Proposition 9.8.7 we obtain

hX(n) = O(X1/2n−1/2X−1/4n−1/4) = O(X1/4n−3/4) .
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Let R(N) =
∑

1�n�N r2(n) be the summatory function of r2(n), so that by
a trivial estimate we know that R(N) = O(N). By Abel summation we thus
have

S1 = O(X1/4)
∑

1�n�X1/3

R(n)−R(n− 1)
n3/4

= O(X1/4)

( ∑
1�n�X1/3

R(n)(n−3/4 − (n + 1)−3/4)

+ O(R(X1/3)X−1/4)

)
= O(X1/4)

∑
1�n�X1/3

R(n)n−7/4 + O(X1/3) = O(X1/3) .

(S2). Here we use the formula involving J2 and the asymptotic estimate
J2(x) = O(x−1/2). Since Y = X1/3 it follows that

hX(n) = O(X−1/3n−1X3/4n−1/4) = O(X5/12n−5/4) ,

so that we obtain similarly∑
n>X1/3

r2(n)hX(n) = O(X5/12)
∑

n>X1/3

R(n)−R(n− 1)
n5/4

= O(X5/12)

( ∑
n>X1/3

R(n)(n−5/4 − (n + 1)−5/4)

+ O(R(X1/3)X−5/12)

)
= O(X5/12)

∑
n>X1/3

R(n)n−9/4 + O(X1/3) = O(X1/3) .

Estimating S3 directly is not so easy, although it follows immediately from
Exercise 18 of Chapter 5 or directly that S3 = Oε(X1/3+ε), which is not quite
sufficient. Thus, we use only the trivial fact that S3 � 0, and deduce that∑

n�X r2(n) � πX + O(X1/3).
To obtain an inequality in the other direction is completely analogous: we

now use the function f(t) defined by f(t) = min((X − t)/Y, 1) for t � X and
f(t) = 0 elsewhere. Here Voronoi’s summation formula gives∑

0�n�X

r2(n) = π(X − Y/2) + 2πS1 + 2πS2 + S3 ,

where S1 and S2 are defined as before (for the new function f(t)), and
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S3 =
∑

X−Y <n�X

r2(n)(1− (X − n)/Y ) .

The computations made above are valid verbatim, so that S1 = O(X1/3),
S2 = O(X1/3), and evidently S3 � 0, so that

∑
n�X r2(n) � πX + O(X1/3),

finishing the proof. ��

As already mentioned above it is much harder but possible to obtain an
error term in O(Xα) with α < 1/3.

10.3 Special Values of Dirichlet L-Functions

10.3.1 Basic Results on Special Values

The aim of this section is to give still another proof of the following theorem.

Theorem 10.3.1. Let χ be any periodic arithmetic function with period di-
viding m and let k � 1 be an integer.

(1) We have

L(χ, 1− k) = −Bk(χ)
k

− χ(0)δk,1 .

(2) If, in addition, χ is a primitive character modulo m, then

L(χ, k) = (−1)e+k+1W (χ)
2k−1πkBk(χ)

mk−1/2k! cos((π/2)(k − e))
,

where we recall that we have set e = 0 or 1 so that χ(−1) = (−1)e. In
other words, when k �≡ e (mod 2), then L(χ, 1− k) = Bk(χ) = 0, except
when k = 1 and m = 1, and when k ≡ e (mod 2) we have

L(χ, k) = (−1)k−1+(k+e)/2W (χ)
2k−1πkBk(χ)

mk−1/2k!
.

Note that of course, this theorem does not tell us anything about L(χ, k)
when k �≡ e (mod 2), k � 2 (otherwise we would know the value of ζ(3)), and
that we have already proved the vanishing of the higher χ-Bernoulli numbers
in that case.

Proof. Thanks to the functional equation (for instance from Corollary
10.2.15) it is clear that (2) follows from (1), so it is enough to prove (1).
We have already given two proofs of (1), one using Corollary 10.2.3, the
other using ζ(s, x) in Proposition 10.2.5. We will give a third proof, which is
complex analytic, and which can be generalized to other contexts. This proof
can be skipped.

Let ρ and ε be real numbers with 0 < ε < ρ, and let Cρ,ε be the contour in
the complex plane starting at +∞+ iε and proceeding to the circle of radius
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ρ centered at the origin, then following this circle in the counterclockwise di-
rection, and then from the circle to +∞−iε. We set zs−1 = exp((s−1) log(z))
(any determination of the logarithm, but continuous on the contour), and

I(s) =
∫

Cρ,ε

ts−1 exp(−t) dt .

Since ts−1 exp(−t) has no pole and is single-valued in the difference of two
contours, it is clear that I(s) is independent of ρ and ε, whence the notation.
If �(s) > 0, then it is clear that the integral around the circle tends to 0 as
ρ→ 0. As ρ and ε tend to 0, the integral from +∞+ iε to the circle tends to
− ∫∞

0
ts−1 exp(−t) dt, and since the argument of the logarithm has increased

by 2π as we go around the circle, the integral from the circle to +∞ − iε
tends to exp(2iπ(s− 1))

∫∞
0

ts−1 exp(−t) . Thus, for �(s) > 0 we have

I(s) = 2i exp(iπs) sin(πs)Γ(s) = 2iπ
exp(iπs)
Γ(1− s)

by the reflection formula for the gamma function.
Let z ∈ C be such that |z| < 1, and consider

J(s, z) =
∫

Cρ,ε

ts−1

∑
1�r�m χ(r)zr exp(−rt)

1− zm exp(−mt)
dt .

Note that this integral converges absolutely for �(s) > 1, and that as above,
it is independent of ρ and ε, at least for ρ sufficiently small. If we choose
ρ < − log(|z|), then |zm exp(mρ)| < 1 so that |zm exp(−mt)| < 1 for all t on
the contour, uniformly in t. We can thus expand 1/(1 − zm exp(−mt)) as a
power series in zm exp(−mt), and the exchange of summation and integration
will be justified. We thus obtain for �(s) > 1,

J(s, z) =
∫

Cρ,ε

ts−1
∑
k�0

∑
1�r�m

χ(r)zr+km exp(−(r + km)t) dt

=
∫

Cρ,ε

ts−1
∞∑

n=1

χ(n)zn exp(−nt) dt

=
∞∑

n=1

χ(n)zn

ns

∫
Cn ρ,n ε

ts−1 exp(−t) dt = 2iπ
exp(iπs)
Γ(1− s)

L(χ, s, z) ,

where we have set

L(χ, s, z) =
∞∑

n=1

χ(n)zn

ns
.

Although this expression is valid only for �(s) > 1, since the integral J(s, z)
converges for all complex s, this in fact gives a meromorphic continuation of
L(χ, s, z) to the whole complex plane. Furthermore, its only possible poles
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are those of Γ(1 − s), i.e., at Z>0. But by absolute convergence, it is clear
that these s are not poles, except perhaps for s = 1 and |z| = 1, and we check
that s = 1 is a pole if and only if z = 1 and χ is a trivial character.

I claim that for �(s) > 1, both sides of the equality that we have proved
are continuous as z tends to 1, z < 1 real, and tend to the expected limits.
Indeed, for J(s, z) on the two straight lines of the contour there is no problem
since | exp(−t)| � exp(−ρ) < 1. On the circle, since �(s) > 1, it is easy to
see that the same result holds. Finally, the result holds also for L(χ, s, z) and
�(s) > 1 by normal convergence. Thus, we have the identity

J(s) =
∫

Cρ,ε

ts−1

∑
1�r�m χ(r) exp(−rt)

1− exp(−mt)
dt = 2iπ

exp(iπs)
Γ(1− s)

L(χ, s) .

A priori this identity is valid only for �(s) > 1, but since both sides have
analytic continuation to C, the identity is valid for all s.

Set

f(t) =

∑
1�r�m χ(r) exp(−rt)

1− exp(−mt)
,

so that by Lemma 9.4.3,

f(t) =
∞∑

k=−1

Bk+1(χ−)
(k + 1)!

tk .

By Cauchy’s formula we deduce that for k � 1 integral we have

Bk(χ−)
k!

=
1

2iπ

∫
Cρ,ε

f(t)
tk

dt =
1

2iπ
J(1− k) =

(−1)k−1

(k − 1)!
L(χ, 1− k) ,

proving (1) thanks to Proposition 9.4.9, and hence the theorem. ��

Corollary 10.3.2. Let χ be a character modulo m. Then

L(χ, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if χ(−1) = 1 and m > 1 ,

−1
2

if m = 1 ,

− 1
m

∑m−1
r=1 χ(r)r if χ(−1) = −1 .

In particular, if χ(−1) = −1 and χ is a primitive character we have

L(χ, 1) = −W (χ)
π

m3/2

m−1∑
r=1

χ(r)r .

Corollary 10.3.3. Let χ be a nontrivial character modulo m.
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(1) If χ is even we have L(χ, 1− k) = 0 for k � 1 odd, and otherwise

L(χ,−1) = − 1
2m

m−1∑
r=1

χ(r)r2 ,

L(χ,−3) = − 1
4m

m−1∑
r=1

χ(r)r2(r2 − 2m2) .

(2) If χ is odd we have L(χ, 1− k) = 0 for k � 2 even, and otherwise

L(χ,−2) = − 1
3m

m−1∑
r=1

χ(r)r(r2 −m2) ,

L(χ,−4) = − 1
15m

m−1∑
r=1

χ(r)r(r2 −m2)(3r2 − 7m2) .

Corollary 10.3.4. We have ζ(0) = −1/2, and for k � 1 we have ζ(−2k) =
0, ζ(1− 2k) = −B2k/(2k), and

ζ(2k) = (−1)k−1 22k−1π2kB2k

(2k)!
.

Proofs. Left to the reader (Exercise 12). ��

Examples.

ζ(2) = 1 +
1
22

+
1
32

+ · · · = π2

6
,

ζ(4) = 1 +
1
24

+
1
34

+ · · · = π4

90
,

L

((−3
.

)
, 1
)

= 1− 1
2

+
1
4
− 1

5
+ · · · = π

33/2
,

L

((−4
.

)
, 1
)

= 1− 1
3

+
1
5
− · · · = π

4
,

L

((−4
.

)
, 3
)

= 1− 1
33

+
1
53
− · · · = π3

32
.

See Exercise 41 for a general formula giving L
((−4

.

)
, 2k + 1

)
.

It is often very useful to know the value of L(χ, 1) in all cases. This is
given by the above theorem when χ is an odd character. However, when χ is
an even character, we can still give an explicit expression.

Proposition 10.3.5. Let χ be a character modulo m. Then



190 10. Dirichlet Series and L-Functions

(1)

L′(χ, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2
∑m−1

r=1 χ(r) log
(
sin

(rπ

m

))
if χ is even and nontrivial ,∑m−1

r=1 χ(r) log
(
Γ
( r

m

))
− log(m)L(χ, 0) if χ is odd ,

−1
2
Λ(m) if χ is trivial and m > 1 ,

−1
2

log(2π) if m = 1 ,

where Λ(m) is the von Mangoldt function (see Proposition 10.1.14).
(2) If χ is an even primitive character and m > 1, we have

L(χ, 1) = −W (χ)
m1/2

m−1∑
r=1

χ(r) log
(
sin

(rπ

m

))
.

(3) If χ is an odd primitive character we have

L′(χ, 1) = −πW (χ)
m1/2

(
m−1∑
r=1

χ(r) log
(
Γ
( r

m

))
− (log(2π) + γ)L(χ, 0)

)
.

The arithmetic function Λ(m) should of course not be confused with the
meromorphic function Λ(χ, s).

Proof. We have seen in Proposition 10.2.5 that we have

L(χ, s) = m−s
∑

1�r�m

χ(r)ζ(s, r/m) ,

where ζ(s, x) is the Hurwitz zeta function. Since by Definition 9.6.13 we
have ζ ′(0, x) = log(Γ(x)) + ζ ′(0) and by the functional equation we find that
ζ ′(0) = −(1/2) log(2π), we thus have

L′(χ, 0) =
∑

1�r�m

χ(r)
d

ds
ζ(s, r/m)

∣∣
s=0

− log(m)L(χ, 0)

= − log(m)L(χ, 0) +
∑

1�r�m

χ(r)
(

log(Γ(r/m))− 1
2

log(2π)
)

.

We consider the four cases of the proposition, using Corollary 10.3.2. If χ is
a nontrivial even character, we have
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L′(χ, 0) =
∑

1�r�m−1

χ(r) log(Γ(r/m))

=
1
2

∑
1�r�m−1

(χ(r) log(Γ(r/m)) + χ(m− r) log(Γ((m− r)/m)))

=
1
2

∑
1�r�m−1

χ(r) log(π/ sin(rπ/m))

= −1
2

∑
1�r�m−1

χ(r) log(sin(rπ/m))

using the reflection formula for the gamma function, giving the first case. If
χ is an odd character, then

L′(χ, 0) =
log(m)

m

∑
1�r�m−1

χ(r)r +
∑

1�r�m−1

χ(r) log(Γ(r/m)) ,

giving the second case.
If χ is a trivial character, we can use the above formula, but it is easier

to work directly. In that case,

L(χ, s) =
∏
p|m

(
1− 1

ps

)
ζ(s) ,

so if m > 1,

L′(χ, 0) = −1
2

∑
p|m

log(p)
∏

q|m, q 
=p

0 .

Thus, if m is not a prime power we have L′(χ, 0) = 0, while if m = pk we
have L′(χ, 0) = − log(p)/2, which gives the third case. The fourth case is the
formula for ζ ′(0).

Finally, consider L(χ, 1) when χ is a nontrivial character (otherwise there
is a pole at s = 1). For χ even, the functional equation is easily seen to give

L(χ, 1) =
2W (χ)
m1/2

L′(χ, 0) ,

and the formula follows. For χ odd, the functional equation gives

−1
2

Γ′(1/2)
Γ(1/2)

− L′(χ, 0)
L(χ, 0)

= log
(m

π

)
+

1
2

Γ′(1)
Γ(1)

+
L′(χ, 1)
L(χ, 1)

,

and using the values Γ′(1) = −γ and Γ′(1/2) = −Γ(1/2)(2 log(2)+γ) coming
from the duplication formula (see Exercise 91 of Chapter 9) the last formula
follows. ��
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Remarks. (1) The reader will have noticed that the formula for L′(χ, 0)
when χ is odd is considerably more complicated than when χ is even. This
is due to the fact that when χ is even we have L(χ, 0) = 0, so that L′(χ, 0),
if nonzero, is the first significant coefficient in the Taylor expansion of
L(χ, s) around s = 0. This is a general philosophy for special values in
number theory: f ′(k) will almost certainly have a nicer expression when
f(k) = 0 than when f(k) �= 0, and similarly for higher derivatives. See
Corollary 8.5.14 and Section 10.6, and see Exercise 39 for an example.

(2) When χ is a nontrivial even character, and if we let ζm = e2iπ/m be this
specific primitive mth root of unity, then

log(1− ζr
m) = log(sin(πr/m)) + iπr/m + log(2)− iπ/2 ,

and since
∑

1�r<m χ(r) = 0 and
∑

1�r<D rχ(r) = 0, it follows that

m−1∑
r=1

χ(r) log
(
sin

(rπ

m

))
=

m−1∑
r=1

χ(r) log(1− ζr
m) .

(3) We can give similar formulas for L′(χ, 1 − k) for any k; see for example
Exercise 40, and remark (1) is still valid if we replace the ordinary loga-
rithm by the polylogarithm of order k, and the ordinary gamma function
by Barnes’s gamma functions of higher order.

Corollary 10.3.6. Let D > 1 be a fundamental discriminant, and set as
usual χD =

(
D
.

)
.

(1) We have

L(χD, 1) =
2 log(εD)

D1/2
,

where

εD =
�D/2�∏
r=1

sin(rπ/D)−χD (r) ,

and εD is the fundamental unit of K = Q(
√

D) such that εD > 1.
(2) If ζ = e2iπu/D is any primitive Dth root of unity we have∏

1�r<D

(1− ζr)χD (r) = ε
−2χD (u)
D .

Proof. The formula of (1) follows immediately from the above proposition
since we know that W (

(
D
.

)
) = 1 and χD, and the fact that εD is the funda-

mental unit of K follows from Dirichlet’s class number formula (Proposition
3.4.5). Note that this formula tells us that L(χD, 1) > 0, so that εD > 1, but
this can be proved directly; see Corollary 10.5.6 below. The formula of (2)
follows from Remark (2) above when u = 1. For general u coprime to D we
have
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∑
1�r<D

(
D

r

)
log(1− ζur

D ) =
(

D

u

) ∑
1�s<D

(
D

s

)
log(1− ζs

D) ,

so the result follows in general. ��

For instance, we have

L(χ5, 1) =
2 log((1 +

√
5)/2)

51/2
,

L(χ8, 1) =
2 log(1 +

√
2)

81/2
.

The fact that L(χD, 1) (or L′(χD, 0)) is equal to a simple factor times the
logarithm of an algebraic unit is a special (proved!) case of an important
conjecture due to H. Stark that essentially states that the same thing will
happen for much more general L-functions.

10.3.2 Special Values of L-Functions and Modular Forms

This section assumes some knowledge of modular forms of integral and half-
integral weight and can be skipped on first reading.

There are several close links between special values of L-functions and
modular forms. We will give without proof two related types of examples,
referring to the literature for more details.

The first type of examples comes from Hilbert modular forms attached to
a totally real number field K. We refer for instance to [Fre] for the (easy)
definition. As usual in the theory of modular forms it is not too difficult to
construct explicitly Eisenstein series, a construction due in this case to Hecke.
Also as usual, the generalized Fourier coefficients of these Eisenstein series
are given by simple formulas generalizing the divisor function in the one-
variable case. Also, we can restrict a Hilbert modular form to the diagonal,
thus obtaining an ordinary modular form whose weight is equal to n times
the weight k of the initial Hilbert modular form. The remarkable fact about
the restrictions of the Hecke–Eisenstein series is that their constant term is
essentially the value of the Dedekind zeta function of the number field K
at the negative integer 1 − k. Finally, a nice argument due to Siegel, which
amounts to the finite dimensionality of spaces of modular forms, shows that
the constant term of a modular form in a given space can be expressed as
a universal linear combination of a small finite number of the nonconstant
terms. Applying this to the restrictions of the Hecke–Eisenstein series, we
thus obtain explicit formulas for ζK(1− k).

In the special case thatn K = Q(
√

D) is a real quadratic field, the formulas
are especially easy to state, and have been given in many places, see [Coh2]
for a comprehensive treatment. The simplest occur when the dimension of
the corresponding space of modular forms is equal to 1, and this happens
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only for k = 2 and 4. Using ζQ(
√

D)(s) = ζ(s)L(
(

D
.

)
, s) and the functional

equations, we obtain the following theorem, which is thus essentially due to
Siegel.

Theorem 10.3.7. Recall that we denote by σk(n) the sum of the kth powers
of the (positive) divisors of n. Let D be the discriminant of a real quadratic
field.

(1)

L

((
D

.

)
,−1

)
= −1

5

∑
s∈Z, s2<D

s≡D (mod 2)

σ1

(
D − s2

4

)
,

and by the functional equation

L

((
D

.

)
, 2
)

= − 2π2

D3/2
L

((
D

.

)
,−1

)
.

(2)

L

((
D

.

)
,−3

)
=

∑
s∈Z, s2<D

s≡D (mod 2)

σ3

(
D − s2

4

)
,

and by the functional equation

L

((
D

.

)
, 4
)

=
4π4

3D7/2
L

((
D

.

)
,−3

)
.

Remarks. (1) As already mentioned, such formulas exist for all even k, not
only k = 2 and 4.

(2) This gives a fast O(D1/2+ε) method for computing special values. Note
that the explicit formulas given in the preceding section are O(D), hence
much slower. The main point was to show that such explicit formulas
exist, but they are not really practical for actual computation, except for
small conductors. The rapidly convergent explicit formula coming from
the functional equation given in Theorem 10.2.14, which is valid for any s,
special or not, also gives a O(D1/2+ε) method, but is nonetheless slower
and more complicated because of the need to compute the incomplete
gamma function. In fact, it is only very recently that algorithms have been
given that compute L(

(
D
.

)
,−1) (or equivalently L(

(
D
.

)
, 2)) to reasonably

high accuracy, using K-theory, see [Bel-Gan].
(3) The above formulas show that L(

(
D
.

)
,−3) ∈ Z, which is not completely

trivial. We prove this directly, and in fact a little more.

Proposition 10.3.8. Let D �= 1 be a fundamental discriminant.

(1) If D �= 5 and D �= 8 then L(
(

D
.

)
,−1) ∈ 2Z, and L(

(
5
.

)
,−1) = −2/5 and

L(
(

8
.

)
,−1) = −1.
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(2) If D �= 8 then L(
(

D
.

)
,−3) ∈ 2Z, and L(

(
8
.

)
,−3) = 11.

Proof. By Corollary 10.3.3, for D < 0 we have L(
(

D
.

)
,−1) = L(

(
D
.

)
,−3) =

0. For D > 0 we have

L

((
D

.

)
,−1

)
= − 1

2D

D−1∑
r=1

(
D

r

)
r2 ,

so by Corollary 9.5.9 we see that L(
(

D
.

)
,−1) ∈ 2Z, except if D = 5 or 8, in

which case it is equal to −2/5 or −1 respectively.
Similarly, for D > 0 we have

L

((
D

.

)
,−3

)
= − 1

4D

D−1∑
r=1

(
D

r

)
r2(r2 − 2D2) ,

and again by Corollary 9.5.9 we see that L(
(

D
.

)
,−3) ∈ 2Z, except perhaps for

D = 5 or 8, but a direct check shows that L(
(

5
.

)
,−3) = 2, while L(

(
8
.

)
,−3) =

11. ��

Note that if we combine this proposition with Theorem 10.3.7 we obtain
the following result.

Corollary 10.3.9. If D �= 5 and D �= 8 are positive fundamental discrimi-
nants, we have ∑

s∈Z, s2<D
s≡D (mod 2)

σ1

(
D − s2

4

)
≡ 0 (mod 10) .

We have an analogous result for D < 0:

Proposition 10.3.10. Let D �= 1 be a fundamental discriminant.

(1) If D �= −3, −4, −7, and −8 then L(
(

D
.

)
,−2) ∈ 2Z, and L(

(−3
.

)
,−2) =

−2/9, L(
(−4

.

)
,−2) = −1/2, L(

(−7
.

)
,−2) = −16/7, and L(

(−8
.

)
,−2) =

−3.
(2) If D �= −3, −4, −8, and −11 then L(

(
D
.

)
,−4) ∈ 2Z, and L(

(−3
.

)
,−4) =

2/3, L(
(−4

.

)
,−4) = 5/2, L(

(−8
.

)
,−4) = 57, and L(

(−11
.

)
,−4) =

2550/11.

Proof. Left as an exercise for the reader (Exercise 13). ��

We will generalize the above two propositions to all negative arguments
in the next chapter (Corollary 11.4.3).

The second link between special values of L-functions and modular forms
is provided by the theory of modular forms of half-integral weight. The theory
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of modular forms of half-integral weight was invented by G. Shimura, and
developed by several people such as Waldspurger, Kohnen–Zagier, and the
author. The link with special values of L-functions was found by Shimura
and systematically explored by the author.

Remarkably enough, the process is very similar to the case of Hilbert
modular forms. One defines in a natural way Eisenstein series of half-integral
weight k + 1/2 for k ∈ Z�2, and as usual one finds that it is possible to
compute their Fourier coefficients explicitly. They happen to be simply ex-
pressible in terms of the special values of L-functions of quadratic characters
at k (or equivalently at 1−k). Thus, contrary to the case of Hecke–Eisenstein
series where the special values occur as constant terms, here they occur all
together (for a given value k) in a single Eisenstein series of half-integral
weight. We refer to [Coh3] for details.

To state the theorem, we first need a definition.

Definition 10.3.11. Let k � 1 be an integer. For any n � 1 such that
(−1)kn ≡ 0 or 1 modulo 4, write (−1)kn = Df2, where f ∈ Z and D is a
fundamental discriminant (including 1). We define the functions Hk(n) by
the formula

Hk(n) = L

((
D

.

)
, 1− k

)∑
d|f

μ(d)
(

D

d

)
dkσ2k−1(f/d) ,

and we also set by convention Hk(0) = ζ(1− 2k).

The theorem is then as follows.

Theorem 10.3.12. For k � 2 the Fourier series

Hk(τ) =
∑
n�0

Hk(n)qn

is a modular form of weight k+1/2 on the congruence subgroup Γ0(4), where
as usual q = exp(2iπτ).

Since the space of modular forms is finite-dimensional, it is then an easy
matter to identify precisely a given form from its first few Fourier coefficients,
given a specific basis.

It is easy to show that the function

θ(τ) =
∑
n∈Z

qn2
= 1 + 2

∑
n�1

qn2

(of weight 1/2) and the function

θ4(τ + 1/2) =

(∑
n∈Z

(−1)nqn2

)4

=

⎛⎝1 + 2
∑
n�1

(−1)nqn2

⎞⎠4
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(of weight 2) generate the algebra of all modular forms of half-integral weight
on Γ0(4). In other words, any modular form of integral or half-integral weight
on Γ0(4) is an isobaric polynomial in these two functions. A little computation
gives the following corollary, which is very useful for the computation of
special values when many of them are needed.

Corollary 10.3.13. We have

H2(τ) =
5θ(τ)θ4(τ + 1/2)− θ5(τ)

480
,

H3(τ) = −7θ3(τ)θ4(τ + 1/2) + θ7(τ)
2016

,

H4(τ) =
θ(τ)θ8(τ + 1/2) + 14θ5(τ)θ4(τ + 1/2) + θ9(τ)

3840
.

Remarks. (1) Since the θ function is lacunary, even applied näıvely these
formulas give a very efficient method for computing large batches of spe-
cial values of L-functions of quadratic characters. However, it is still
O(D1/2+ε) on average. On the other hand, if we use FFT-based tech-
niques for multiplying power series, we can compute large numbers of
coefficients even faster, and go down to O(Dε) on average.

(2) The above formulas are essentially equivalent to those that we have given
in Theorem 5.4.16.

(3) Because Hilbert modular forms exist only for totally real number fields,
the method using Hecke–Eisenstein series is applicable for computing
special values of real quadratic characters only, while the present method
is applicable both to real and to imaginary quadratic characters.

The formulas obtained by the above two methods are in fact closely re-
lated. For instance, if we set classically

E2(τ) = 1− 24
∑
n�1

σ1(n)qn ,

which is not quite a modular form, it is easy to check directly that

−θ′(τ)/(2iπ)
20

+
E2(4τ)θ(τ)

120

is a true modular form of weight 5/2, and the first coefficients show that
it is equal to H2(τ). Similarly it is not difficult to check that H4(τ) =
E4(4τ)θ(τ)/240, where

E4(τ) = 1 + 240
∑
n�1

σ3(n)qn .

This gives the following formulas, which generalize to arbitrary N > 0 (and
not only discriminants of real quadratic fields) Siegel’s formulas coming from
Hecke–Eisenstein series:
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Proposition 10.3.14. By convention set σk(0) = ζ(−k)/2 (so that σ1(0) =
−1/24 and σ3(0) = 1/240). We have

H2(N) = −1
5

∑
s∈Z, s2�N

s≡N (mod 2)

σ1

(
N − s2

4

)
− N

10
δ(
√

N) ,

H4(N) =
∑

s∈Z, s2�N
s≡N (mod 2)

σ3

(
N − s2

4

)
,

where δ(
√

N) = 1 if N is a square and 0 otherwise.

Remarks. (1) There also exist similar formulas for H3(N) and H5(N) in-
volving modified σ2 functions; see Exercise 52.

(2) Since the formulas coming from modular forms of half-integral weight
include those coming from Hilbert modular forms, the reader may won-
der why we have included the latter. The main reason is that they also
give explicit formulas for computing the special values of Dedekind zeta
functions at negative integers of all totally real number fields, not only
quadratic ones, and this is in fact how Siegel’s Theorem 10.5.3 on the
rationality of such values is proved.

(3) The reader will have noticed that we do not mention the function H1(N),
which is essentially a class number, and the corresponding Fourier series
H1(τ). The theory is here complicated by the fact that the latter is not
quite a modular form of weight 3/2 (analogous to but more complicated
than the situation for E2(τ)). However, the theory can be worked out
completely, and it gives beautiful formulas on class numbers, due to Hur-
witz, Eichler, Zagier, and the author. We refer for instance to [Coh2] for
details.

10.3.3 The Pólya–Vinogradov Inequality

In the next subsection we will give some bounds for L(χ, 1). For this, it is
useful, although not essential, to have some good estimates on

∑
1�n�X χ(n).

Such an estimate is the following Pólya–Vinogradov inequality :

Proposition 10.3.15 (Pólya–Vinogradov). Let χ be a nontrivial charac-
ter modulo m of conductor f > 1. For all X � 0 we have the inequality∣∣∣∣∣ ∑

1�a�X

χ(a)

∣∣∣∣∣ � d(m/f)f1/2 log(f) ,

where d(n) denotes the number of positive divisors of n.
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Proof. Assume first that χ is a primitive character and set S(X) =∑
1�a�X χ(a). It is clear that S(X) = S(	X
), so we may assume that

X = N ∈ Z�0. By Corollary 2.1.42 and the fact that χ(x) = 0 when
gcd(x,m) > 1 we have

τ(χ)S(N) =
∑

1�a�N

τ(χ, a) =
∑

1�a�N

∑
x mod m

χ(x)e2iπax/m

=
∑

x mod m

χ(x)
∑

1�a�N

e2iπax/m

=
∑

x mod m, gcd(x,m)=1

χ(x)
e2iπ(N+1)x/m − e2iπx/m

e2iπx/m − 1
.

Note that the denominator does not vanish since gcd(x,m) = 1 and m > 1.
We bound this crudely as follows:

|τ(χ)S(N)| �
∑

1�x�m−1, x 
=m/2

1
sin(πx/m)

� 2
∑

1�x�(m−1)/2

1
sin(πx/m)

� m
∑

1�x�(m−1)/2

1
x

,

using the high-school inequality sin(t) � (2/π)t for t ∈ [0, π/2]. Now since
1/x is a convex function, we have the inequality∫ x+1/2

x−1/2

dt

t
>

1
x

(see Exercise 43). Thus

∑
1�x�(m−1)/2

1
x

<

∫ m/2

1/2

dt

t
= log(m) .

Since |τ(χ)| = m1/2 by Proposition 2.1.45, the result follows for primitive
characters.

Now let χ be any nontrivial character modulo m, let f be the conductor of
χ, and let χf be the character modulo f equivalent to χ. Since gcd(a, f) = 1
and gcd(a,m/f) = 1 implies gcd(a,m) = 1, using the definition of the Möbius
function we have∑

1�a�X

χ(a) =
∑

1�a�X
gcd(a,m/f)=1

χf (a) =
∑

1�a�X

χf (a)
∑

d|gcd(a,m/f)

μ(d)

=
∑

d|m/f

μ(d)χf (d)
∑

1�b�X/d

χf (b) .
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Thus using the bound for primitive characters and the fact that |μ(d)| � 1 and
|χf (d)| � 1 we deduce that |∑1�a�X χ(a)| � d(m/f)f1/2 log(f), proving the
proposition in general. ��

Remark. It is easy to improve the bound to Kd(m/f)f1/2 log(f) for some
K < 1; see Exercise 43. On the other hand, it is much more difficult to im-
prove on the factor log(f). More precisely, assuming the extended Riemann
hypothesis (ERH) for all Dirichlet L-functions, Montgomery and Vaughan
showed in [Mon-Vau] that it can be replaced by O(log(log(f))) for an ex-
plicit O-constant. Very recently, Granville and Soundararajan have shown in
[Gra-Sou] that without the assumption of ERH it is nonetheless possible to
improve on the factor log(f) for characters of odd order. More precisely, they
show that we may replace it by log(f)1−δg for some δg > 0, by log(f)2/3+ε

for g = 3, and by log(log(f))1−δg under the ERH.

10.3.4 Bounds and Averages for L(χ, 1)

Although we have given reasonably explicit formulas for L(χ, 1), these for-
mulas do not lead to any reasonable estimate on the size of L(χ, 1). Finding
lower bounds is quite difficult, and in fact we will prove in Section 10.5.5
the important but very weak result that L(χ, 1) �= 0. On the other hand,
finding upper bounds is quite easy (although the best bounds, which we will
not mention, rely on the extended Riemann hypothesis). Such a result is as
follows.

Proposition 10.3.16. Let χ be a nontrivial character modulo m of conduc-
tor f > 1.

(1) We have

|L(χ, 1)| � 1
2

log(f) + log(log(f)) + log(d(m/f)) + 2.8 .

(2) Let β � 1/2. As m →∞ we have

L(χ, 1) =
mβ∑
n=1

χ(n)
n

+ O(m1/2−β log(m)) .

Proof. This proof is fundamentally based on partial (or Abel) summation.
For X � 0 set S(X) =

∑
1�n�X χ(n). For any integers M and N such that

N � M � 1 we have
N∑

n=M+1

χ(n)
n

=
N∑

n=M+1

S(n)− S(n− 1)
n

=
N∑

n=M+1

S(n)
n

−
N−1∑
n=M

S(n)
n + 1

=
S(N)
N + 1

− S(M)
M + 1

+
N∑

n=M+1

S(n)
(

1
n
− 1

n + 1

)
.
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Since χ is periodic of period m and since S(m) = 0 by orthogonality, S is also
a periodic function on Z�0, and in particular it is bounded by some constant
B, say, which for the moment we do not specify. Letting N →∞ gives∣∣∣∣∣∣

∑
n�M+1

χ(n)
n

∣∣∣∣∣∣ � |S(M)|
M + 1

+ B
∑

n�M+1

(
1
n
− 1

n + 1

)
� 2B

M
.

On the other hand, by Euler–MacLaurin or any other method it is clear that∣∣∣∣∣∣
∑

1�n�M

χ(n)
n

∣∣∣∣∣∣ �
∑

1�n�M

1
n

� log(M) + 1 .

We thus obtain for any M ∈ Z�1,

|L(χ, 1)| � log(M) + 1 +
2B

M
.

By differentiating, we see that the optimal choice of M is M = 2B, but
since this is not necessarily an integer we choose instead M = 2B + θ with
0 � θ < 1. An immediate computation shows that for this choice of M we
obtain

|L(χ, 1)| � log(2B) + 2 +
1

4B2
.

By Proposition 10.3.15, we can choose B = d(m/f)f1/2 log(f), and since
f � 3 (why?), we have 1/(4B2) < 1/12, and replacing proves (1).

For (2), we use the bound obtained above for
∑

n�M+1 χ(n)/n with M =
mβ . By Corollary 10.2.3 (4) we thus have∣∣∣∣∣∣L(χ, 1)−

mβ∑
n=1

χ(n)
n

∣∣∣∣∣∣ � 2d(m/f)f1/2 log(f)
mβ

� 2d(m/f)(f/m)1/2 log(m)
mβ−1/2

.

The result follows since d(n)/nα is bounded for any α > 0, and in particular
for α = 1/2. ��

Remark. Evidently the constant 2.8, and even the term log(log(f)), are
unimportant. On the other hand, the main term log(f)/2 is difficult to im-
prove. As mentioned above, the best results are obtained assuming the ex-
tended Riemann hypothesis, and the main term is then O(log(log(f))).

As usual with analytic techniques, we can obtain much better results if
we want only average (as opposed to individual) estimates for L(χ, 1).

Proposition 10.3.17. By convention set L(χ0, 1) = γφ(m)/m for the triv-
ial character χ0 modulo m, which is the constant term in the expansion of
L(χ0, s) around s = 1, and let A(m) =

∑
p|m log(p)/(p− 1).
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(1) The average of L(χ, 1) over all characters modulo m is equal to

− 1
m

(
ψ

(
1
m

)
+ log(m) + A(m)

)
= 1− log(m) + A(m)− γ

m
+O

(
1

m2

)
.

(2) As m→∞ we have A(m) = O(log(log(m))).
(3) The average of |L(χ, 1)|2 over all characters modulo m is equal to

1
m2

∑
1�r�m

gcd(r,m)=1

ψ2
( r

m

)
− φ(m)

m2
((log(m) + A(m) + γ)2 − γ2)

=
π2

6

∏
p|m

(
1− 1

p2

)
− φ(m)

m2
((log(m) + A(m))2 + C) + O

(
1

m2

)
,

where

C = 1− 2γ2 −
∫ 1

0

(
ψ2(x)− 1

x2
− 2γ

x

)
dx = 2

(
π2

6
− γ2 − γ1

)
= 2.769143977048368974 . . . ,

with

γ1 = lim
N→∞

( ∑
1�j�N

log(j)
j

− log2(N)
2

)
(see Section 10.3.5).

Proof. (1). By Proposition 10.2.5 (4) and orthogonality of characters we
have ∑

χ
=χ0

L(χ, 1) = − 1
m

∑
1�r�m

ψ(r/m)
∑

χ
=χ0

χ(r)

= − 1
m

(
φ(m)ψ(1/m)−

∑
1�r�m

gcd(r,m)=1

ψ(r/m)

)
.

Using the Möbius function as explained after Proposition 10.1.5, we have∑
1�r�m

gcd(r,m)=1

ψ(r/m) =
∑

1�r�m

ψ(r/m)
∑

d|(r,m)

μ(d)

=
∑
d|m

μ(d)
∑

1�k�m/d

ψ(k/(m/d)) .

If we differentiate logarithmically the distribution formula for the gamma
function (Proposition 9.6.33) we obtain

∑
0�j�m−1 ψ(s+ j/m) = mψ(ms)−

m log(m), hence
∑

1�r�m ψ(r/m) = −m(log(m) + γ). Thus
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∑
1�r�m
gcd(r,m)

ψ(r/m) = −m
∑
d|m

(μ(d)/d)(log(m)− log(d) + γ) .

By multiplicativity (Corollary 10.1.12 and Exercise 45) we have the identities∑
d|m

μ(d)/d = φ(m)/m,
∑
d|m

μ(d) log(d)/d = −(φ(m)/m)
∑
p|m

log(p)/(p− 1) ,

so that ∑
1�r�m

gcd(r,m)=1

ψ(r/m) = −φ(m)(log(m) + A(m) + γ) ,

proving the first formula of (1) after adding the contribution γφ(m)/m of
the trivial character to the average. The second formula follows from the
functional equation ψ(x+1) = ψ(x)+1/x and Proposition 9.6.15, which tell
us that ψ(1/m) = −m− γ + O(1/m) as m→∞.

(2). Denote by pj the jth prime number and let m =
∏

1�j�k p
vj

ij
be

the prime-power decomposition of m with vj � 1. We have pij
� pj ,

and since the function log(p)/(p − 1) is decreasing it follows that A(m) �∑
1�j�k log(pj)/(pj − 1). Using the estimate pj = O(j log(j)), which is

much weaker than the prime number theorem and is very easy to prove
(see the remarks following Proposition 10.1.13), we deduce that A(m) =
O(

∑
1�j�k 1/j) = O(log(k)). But k = ω(m) and trivially m � 2k; hence

k = O(log(m)) (in fact the above-mentioned proposition tells us that
k = O(log(m)/ log(log(m))) but we do not need this), so that we obtain
A(m) = O(log(log(m))), proving (2).

(3). For simplicity denote by X2(m) the average of |L(χ, 1)|2 over all
characters modulo m, and set

S2(m) =
∑

χ mod m
χ
=χ0

|L(χ, 1)|2 ,

so that X2(m) = (S2(m) + γ2φ(m)2/m2)/φ(m). As in (1) we find that

S2(m) =
1

m2

∑
1�r,s�m

ψ(r/m)ψ(s/m)
∑

χ
=χ0

χ(r)χ(s) .

Since we restrict to r and s coprime to m, we have χ(r)χ(s) = χ(rs−1);
therefore once again by orthogonality of characters the inner sum is equal to
−1 unless r = s, and otherwise is equal to φ(m)− 1. Thus

S2(m) =
φ(m)
m2

∑
1�r�m

gcd(r,m)=1

ψ2(r/m)− 1
m2

( ∑
1�r�m

gcd(r,m)=1

ψ(r/m)

)2

,
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so that by the formula proved in (1) we obtain

S2(m) = φ(m)B2(m)− φ(m)2

m2
(log(m) + A(m) + γ)2 ,

where B2(m) = (1/m2)
∑

1�r�m, gcd(r,m)=1 ψ2(r/m), proving the first for-
mula of (3). For the second formula, using Möbius inversion we have

B2(m) =
1

m2

∑
1�r�m

ψ2(r/m)
∑

d|gcd(r,m)

μ(d)

=
1

m2

∑
d|m

μ(d)
∑

1�s�m/d

ψ2(s/(m/d)) =
∑
d|m

μ(d)
d2

B
(m

d

)
,

where we set B(m) = (1/m2)
∑

1�r�m ψ2(r/m). It remains to estimate B(m)
(see Exercise 105 (b) of Chapter 9 for an “explicit” formula for B(m)). As
in (1), when x is small we have ψ(x) = −1/x− γ + (π2/6)x + O(x2), so that
ψ(x)2 = 1/x2 + 2γ/x + (γ2 − π2/3) + O(x). Thus if we set f(x) = ψ(x)2 −
1/x2 − 2γ/x then f(x) ∈ C4([0, 1]), say (in fact f(x) ∈ C∞(] − 1,∞[), but
we do not need this). Thus the Riemann sum (1/m)

∑
1�r�m f(r/m) tends

to a limit I =
∫ 1

0
f(t) dt as m → ∞. More precisely, by Euler–MacLaurin it

is easy to see that (1/m)
∑

1�r�m f(r/m) = I + C1/m + C2/m2 + O(1/m3)
as m→∞ for some constants C1 and C2. It follows that∑
1�r�m

ψ2(r/m) =
∑

1�r�m

m2/r2+2γ
∑

1�r�m

m/r+I·m+C1+C2/m+O(1/m2) ,

so using the standard Euler–MacLaurin expansions we obtain

B(m) =
1

m2

∑
1�r�m

ψ2
( r

m

)
=

π2

6
+

2γ log(m)
m

+
C3

m
+

C4

m2
+

C5

m3
+O

(
1

m4

)
,

with C3 = I + 2γ2 − 1 and some other constants C4 and C5. We could of
course push this expansion further if desired, but this is sufficient. Indeed,
note that ∑

d|m

∣∣∣∣μ(d)
d2

d4

m4

∣∣∣∣ � 1
m4

∑
d|m

d2 =
σ2(m)

m4
= O

(
1

m2

)

by Proposition 10.1.13, so the term O(1/m4) in the expansion of B(m) con-
tributes O(1/m2) to the average X2(m) (if we had stopped the expansion
at O(1/m3) we would have obtained a superfluous factor of log(log(m))).
Furthermore, by multiplicativity we have∑

d|m

μ(d)
d2

dk

mk
=

1
mk

∑
d|m

μ(d)dk−2 =
1

mk

∏
p|m

(1− pk−2) .
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Since |∏p|m(1−p)| � ∏
p|m p � m, the term C5/m3 also contributes O(1/m2)

to X2(m). For k = 2 the above expression vanishes (except for m = 1), so
the term C4/m2 does not contribute. For k = 1, the term C3/m contributes
C3φ(m)/m2, and for k = 0, the term π2/6 contributes (π2/6)

∏
p|m(1−1/p2).

Finally, there remains to consider the term 2γ log(m)/m. Using Exercise 45
once again we obtain∑

d|m

μ(d)
d2

log(m/d)
m/d

=
1
m

∑
d|m

μ(d)
d

(log(m)− log(d))

=
1
m

(
log(m)

m
φ(m)−

∑
d|m

μ(d)
d

log(d)

)

=
φ(m)
m2

(
log(m) +

∑
p|m

log(p)
p− 1

)
.

Putting everything together proves the second formula of (3) with C = −C3.
The second expression for the constant C in terms of γ1 is proved in Exercise
104 of Chapter 9. ��

10.3.5 Expansions of ζ(s) Around s = k ∈ Z�1

In this subsection we give for completeness some expansions of ζ(s) around
s = k ∈ Z�1. In practice, only the leading term is really useful, but around
the special points s = 0 and 1 it is sometimes useful to have extra terms or
even the whole expansion.

We begin with the following definitions.

Definition 10.3.18. For m � 0 we define

γm = lim
N→∞

(
N∑

k=1

log(k)m

k
− log(N)m+1

m + 1

)
and constants δm for m � 1 by the recurrence formula

δm+1 = (m + 1)
γm

m!
+

m−1∑
k=0

γkδm−k

k!
.

Note that by the Euler–MacLaurin summation formula the limit defining
γm exists and that in fact we have

N∑
k=1

log(k)m

k
=

log(N)m+1

m + 1
+ γm + O

(
log(N)m

N

)
,

or even more precisely an asymptotic expansion that as usual enables us to
compute γm to any desired number of decimal digits.

For example we have δ1 = γ0 = γ and δ2 = 2γ1 + γ2.
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Proposition 10.3.19. (1) For s around 1 we have

ζ(s) =
1

s− 1
+

∑
m�0

(−1)m γm

m!
(s− 1)m =

1
s− 1

+ γ + O(s− 1) .

(2) For s around 0 we have

log(−2ζ(s)) = log(2π) s +
∑
m�2

am

m
sm ,

where

am = ζ(m)
(

1− 1 + (−1)m

2m

)
− δm .

In particular,

ζ(s) = −1
2
− 1

2
log(2π) s + O(s2) .

(3) For s around −2k with k ∈ Z�1, we have

ζ(s) = (−1)k (2k)!
2 · (2π)2k

ζ(2k + 1)(s + 2k) + O(s + 2k)2 .

Proof. (1). Let us restrict to s ∈ R, and for k � 1 set

uk(s) =
1
ks
−
∫ k

k−1

dt

ts
.

By Taylor’s formula to order 2 it is clear that as s → ∞ we have uk(s) ∼
(s/2)k−s−1, so that the series

∑
k�2 uk(s) converges for s > 0. For s > 1 we

have ∑
k�2

uk(s) =
∑
k�2

1
ks
−
∫ ∞

1

dt

ts
= ζ(s)− 1− 1

s− 1
.

Since the series on the left converges normally for s � ε > 0, it follows by
analytic continuation of ζ(s) that this equality is still valid for s > 0.

On the other hand, expanding around s = 1 it is easy to see that we have
the following power series in s− 1 with infinite radius of convergence:

uk(s) =
∑
m�0

(−1)m

m!

(
log(k)m

k
− log(k)m+1 − log(k − 1)m+1

m + 1

)
(s− 1)m .

Thus by absolute convergence we can reorder the terms in the double sum∑
k�2 uk(s) and obtain

ζ(s)− 1− 1
s− 1

=
∑
m�0

(−1)m

m!
γ′

m(s− 1)m ,
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where

γ′
m =

∑
k�2

(
log(k)m

k
− log(k)m+1 − log(k − 1)m+1

m + 1

)

= lim
N→∞

(
N∑

k=2

log(k)m

k
− log(N)m+1

m + 1

)
,

and by definition we have γ′
m = γm for m � 1, while γ′

0 = γ0 − 1, proving
(1).

(2). By Corollary 10.2.15 we can rewrite the functional equation in
the form −2ζ(s) = (2π)s(−sζ(1 − s))/(cos(πs/2)Γ(s + 1)). Taking for-
mally the logarithm of both sides, we see that we can obtain the expan-
sion of log(−2ζ(s)) around s = 0 as soon as we know the expansions of
the logarithms of the factors occurring on the right-hand side. Evidently
log((2π)s) = s log(2π). We note that the derivative of log(cos(x)) is − tan(x),
whose expansion is given in Proposition 9.1.4 in terms of Bernoulli num-
bers, which can of course be translated in terms of ζ(2k) thanks to Corol-
lary 9.1.21, so by integration we obtain that of log(cos(x)). Finally, the
expansion of log(Γ(s + 1)) is given by Proposition 9.6.15. We thus need
only to compute the expansion of log(−sζ(1 − s)) around 0. By (1) we
know that −sζ(1 − s) = 1 −∑

m�0(γm/m!)sm+1. It follows that if we set
log(−sζ(1 − s)) = −∑

k�1(δk/k)sk we have (−sζ(1 − s))′/(−sζ(1 − s)) =
−∑

k�1 δksk−1; hence∑
m�0

(m + 1)
γm

m!
sm = (1−

∑
m�0

(γm/m!)sm+1)
∑
k�1

δksk−1 ,

and identifying the coefficients of sm on both sides gives

δm+1 = (m + 1)
γm

m!
+

m−1∑
k=0

γkδm−k

k!

as claimed. We leave the detailed computations to the reader (Exercise 47).
(3). This immediately follows from the functional equation. ��

For the reader’s convenience we give a small table of the constants γm;
see Exercise 48 (the constants δm, am and the Taylor expansion of ζ(s) itself
around s = 0 are immediate to compute from the γm). Note that this table
gives the wrong impression that the γm are small. In fact, it can be shown
that the γm are unbounded; for instance

γ50 = 126.823602651322716596725253648657 . . . .
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m γm

0 0.577215664901532860606512090082
1 −0.072815845483676724860586375875
2 −0.009690363192872318484530386035
3 0.002053834420303345866160046543
4 0.002325370065467300057468170178
5 0.000793323817301062701753334877
6 −0.000238769345430199609872421842
7 −0.000527289567057751046074097505
8 −0.000352123353803039509602052165
9 −0.000034394774418088048177914624
10 0.000205332814909064794683722289

Table of γm for 0 � m � 10

10.3.6 Numerical Computation of Euler Products and Sums

Functions such as Dirichlet L-functions (and in particular the Riemann zeta
function) or more general L-functions can be expressed in two quite different
ways, related by the underlying number theory: they are both Dirichlet series
and Euler products. To compute numerically an L-function to reasonably
high accuracy (say 28 decimal digits), we must use the Dirichlet series and
not the Euler product since there are several available methods to accelerate
the convergence of the series, such as for instance methods based on the
Euler–MacLaurin summation formula, or on the functional equation. In this
section we make the important remark that conversely, any reasonable Euler
product or sum (i.e., a product or sum over prime numbers) can be computed
to high accuracy using Dirichlet series. We first give a useful notation.

Definition 10.3.20. Let Z(s) =
∏

p Zp(s) be an Euler product. We denote
by Zp>N the Euler product

Zp>N (s) =
∏

p>N

Zp(s) =
Z(s)∏

p�N Zp(s)
.

The following proposition gives a basic example of the computation of
sums over primes.

Proposition 10.3.21. Let A(x) =
∑

m�1 a(m)xm be a power series with
radius of convergence strictly larger than 1/2 and such that A(0) = A′(0) = 0
(hence with a(1) = 0), and set S(A) =

∑
p A(1/p). Define

c(n) =
∑
d|n

μ(d)
d

a
(n

d

)
.

Then for all N � 1 we have
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S(A) =
∑
p�N

A

(
1
p

)
+
∑
n�2

c(n) log(ζp>N (n)) .

Proof. Using the Euler product for the zeta function we have for n � 2,

log(ζp>N (n)) =
∑
p>N

∑
k�1

1
kpkn

=
∑
k�1

n

kn

∑
p>N

1
pkn

.

By the second form of the Möbius inversion formula (Proposition 10.1.5 (2))
we thus have

1
n

∑
p>N

1
pn

=
∑
k�1

μ(k)
log(ζp>N (kn))

kn
,

so that

S(A) =
∑
p�N

A

(
1
p

)
+

∑
p>N

∑
m�2

a(m)
1

pm

=
∑
p�N

A

(
1
p

)
+

∑
m�2

a(m)
∑
k�1

μ(k)
log(ζp>N (mk))

k

=
∑
p�N

A

(
1
p

)
+
∑
n�1

log(ζp>N (n))
∑
k|n

μ(k)
k

a(n/k) ,

where the interchanges of summations are justified by absolute convergence,
proving the proposition. ��

Example. In milliseconds, we can in this way compute that∑
p

1
p2

= 0.45224742004106549850654336483224793417323134323989 . . . ,

although the sum is over primes, which do not display a regular behavior.

This basic example can be generalized in many different ways; see Exer-
cise 53. A particularly important application is to the computation of Euler
products as follows.

Corollary 10.3.22. Let B(x) = 1 +
∑

m�1 b(m)xm be a power series with
radius of convergence strictly greater than 1/2, and such that B(0) = 1
and B′(0) = 0 (hence with b(1) = 0), and set P (B) =

∏
p B(1/p). Write

log(B(x)) =
∑

m�1 a(m)xm and define

c(n) =
∑
d|n

μ(d)
d

a
(n

d

)
.

Then for all N � 1 we have
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P (B) =
∏

p�N

B

(
1
p

) ∏
n�2

ζp>N (n)cn .

In addition, c(n) satisfies the recurrence

c(n) = b(n)− 1
n

∑
1�k�n−1

kc(k)
∑

1�q�n/k

b(n− qk) .

Proof. If we write A(X) = log(B(x)) we have P (B) = eS(A), so the
first formula follows from the proposition. For the second we note that by
definition nc(n) = μ ∗ na(n), where ∗ is the arithmetic convolution, so that∑

d|n dc(d) = na(n) (we are simply reversing Möbius inversion). The last
formula now follows from

B′(x) =
∑
m�1

mb(m)xm−1 = B(x)
B′(x)
B(x)

= B(x)
∑
m�1

ma(m)xm−1

after computing explicitly the product of the power series. ��

Remarks. (1) The coefficients c(n) are simply the unique integers such that
we have the formal expansions

B(x) = 1 +
∑
m�1

b(m)xm =
∏
n�1

(
1

1− xn

)c(n)

.

(2) It is usually better to use the definition of c(n). However, in some cases
the function a(n) is not easy to compute directly, and it is then necessary
to use the recurrence for c(n).

Example. Again in milliseconds we compute that∏
p

(
1− 1

p(p− 1)

)
= 0.3739558136192022880547280543464164151116 . . . .

I refer to the author’s unpublished and unfinished preprint at the URL
http://www.math.u-bordeaux1.fr/~cohen/hardylw.dvi

for many more examples and details on this subject.

10.4 Epstein Zeta Functions

These are other types of zeta functions that are also useful and quite beautiful.
Before defining and studying them we introduce a nonholomorphic Eisenstein
series that is very useful in many contexts.
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10.4.1 The Nonholomorphic Eisenstein Series G(τ, s)

Although properly speaking the study of this function belongs to the realm
of modular forms, we study it completely independently. However, the most
interesting properties of G(τ, s) are linked to its modularity properties.

Definition 10.4.1. Let τ = x+iy be a complex number such that y = �(τ) >
0. For �(s) > 1 we set

G(τ, s) =
1
2

∑ ′
(m,n)∈Z2

ys

|mτ + n|2s
,

where
∑ ′

means that the term (m,n) = (0, 0) must be omitted.

Recall that SL2(Z) is the group of 2 × 2 integral matrices with determi-
nant 1.

Proposition 10.4.2. The above series converges for �(s) > 1, and for any(
a b
c d

) ∈ SL2(Z) we have

G

(
aτ + b

cτ + d
, s

)
= G(τ, s) ;

in other words, G(τ, s) is a (nonholomorphic)modular form of weight 0 on
SL2(Z).

Proof. Left to the reader (Exercise 55). ��

The main result that we need is the Fourier expansion of G(τ, s).

Theorem 10.4.3. Let τ = x + iy with y > 0. For �(s) > 1 we have

G(τ, s) = ζ(2s)ys +
π1/2Γ(s− 1/2)

Γ(s)
ζ(2s− 1)y1−s

+ 2
πs

Γ(s)

∑
n�1

ns−1σ1−2s(n)Fs−1/2(2πny) cos(2πnx) ,

where σz(n) =
∑

d|n dz is the sum of the zth powers of the divisors of n and
Fs−1/2(z) = (2z/π)1/2Ks−1/2(z), where Ks−1/2(z) is the K-Bessel function.

Proof. First a friendly word to the reader: this result is quite technical;
however, its proof is instructive and completely straightforward. Set

S(τ, s) =
∑
n∈Z

ys

|τ + n|2s
.

By the Poisson summation formula (Corollary 2.2.17) applied to the function
f(t) = |iy + t|2s = (t2 + y2)s we have
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S(τ, s) = ys
∑
k∈Z

ck(y)e2iπkx with ck(y) =
∫ ∞

−∞

e−2iπkt

(t2 + y2)s
dt .

Since (t2 + y2)s is an even function and y > 0, making the change of variable
t = yu we have

ck(y) = y1−2sIs(2π|k|y), with Is(a) =
∫ ∞

−∞

cos(at)
(t2 + 1)s

dt .

By Corollary 9.6.40 we have Is(0) = π1/2Γ(s− 1/2)/Γ(s), while for a > 0 we
have by Theorem 9.8.9,

Is(a) =
2π1/2(a/2)s−1/2

Γ(s)
Ks−1/2(a) .

It follows that

S(τ, s) =
π1/2Γ(s− 1/2)

Γ(s)
y1−s +

4πs

Γ(s)
y1/2

∑
k�1

ks−1/2Ks−1/2(2πky) cos(2πkx)

=
π1/2Γ(s− 1/2)

Γ(s)
y1−s + 2

πs

Γ(s)

∑
k�1

ks−1Fs−1/2(2πky) cos(2πkx) .

The proof of the theorem is now immediate: separating the terms with m = 0,
m < 0, and m > 0 we have

G(τ, s) = ζ(2s)ys +
∑
m�1

S(mτ, s)
ms

= ζ(2s)ys +
π1/2Γ(s− 1/2)

Γ(s)
ζ(2s− 1)y1−s

+ 2
πs

Γ(s)

∑
k,m�1

ks−1

ms
Fs−1/2(2πkmy) cos(2πkmx) .

For a given N = km � 1, we have∑
km=N

ks−1

ms
=

∑
km=N

(km)s−1

m2s−1
= Ns−1σ1−2s(N) ,

and replacing gives the desired expansion of G(τ, s). ��

This technical theorem has a large number of corollaries.

Corollary 10.4.4. The function G(τ, s) has a meromorphic continuation to
the whole complex s-plane, with a single pole, at s = 1, which is simple with
residue π/2 (in particular which is independent of τ). Moreover, if we set

G(τ, s) = π−sΓ(s)G(τ, s)

we have the functional equation G(τ, 1− s) = G(τ, s).
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Proof. Indeed, by Proposition 9.8.6 the function Ks−1/2(z) is a holomor-
phic function of s ∈ C that tends to zero faster than any power of z as z →∞.
It follows from the known analytic continuation of the other functions occur-
ring in the expansion of G(τ, s) that this function can also be analytically
continued to the whole complex plane into a meromorphic function. If as
usual we set Λ(s) = π−s/2Γ(s/2)ζ(s), by the functional equation of the zeta
function we have Λ(1− s) = Λ(s) so the theorem gives

G(τ, s) = π−sΓ(s)G(τ, s) = Λ(2s)ys + Λ(2− 2s)y1−s

+ 2
∑
n�1

ns−1σ1−2s(n)Fs−1/2(2πny) cos(2πnx) .

The possible poles are thus those of the Λ functions, hence at s = 0, 1/2,
and 1. The residue at s = 1/2 is equal to y1/2/2− y1/2/2 = 0, so there is no
pole. At s = 0 the function G(τ, s) clearly has no pole. At s = 1 the function
Λ(2 − 2s) = Λ(2s − 1) has a simple pole with residue 1/2, so G(τ, s) has a
simple pole with residue π/2, as claimed.

Finally, note that by definition Ks(x) is an even function of s, so that
Ks−1/2(x) is invariant under the change s into 1− s, and similarly

ns−1σ1−2s(n) =
∑

d1d2=n

(d1d2)s−1d1−2s
1 =

∑
d1d2=n

d−s
1 ds−1

2

is also invariant under the change s into 1−s, proving the functional equation.
��

Corollary 10.4.5. We have G(τ, 0) = −1/2 and G(τ,−k) = 0 for all k ∈
Z�1.

Proof. Immediate from the preceding corollary and left to the reader. ��

Note that, as for Dirichlet L-series, we may also ask for the value at
positive integers s of G(τ, s). This can be done in the case that τ is imaginary
quadratic, in other words when a, b, c are integers, and is a part of the theory
of complex multiplication, which we will not study in this book for lack of
space, although it is a very beautiful part of number theory.

10.4.2 The Kronecker Limit Formula

By Corollary 10.4.4 we know that when s is close to 1 we have G(τ, s) =
(π/2)(1/(s− 1) + C(τ) + O(s− 1)) for a certain constant C(τ). The goal of
Kronecker’s limit formula is to give an explicit formula for C(τ). The result
is as follows.

Theorem 10.4.6 (Kronecker’s limit formula). Define

q = e2iπτ = e−2πye2iπx and η(τ) = eiπτ/12
∏
n�1

(1− qn) .
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(1) Around s = 1 we have

G(τ, s) =
π

2

(
1

s− 1
+ C(τ) + O(s− 1)

)
,

where
C(τ) = 2

(
γ − log(2)− log

(
�(τ)1/2|η(τ)|2

))
.

(2) We have G(τ, 0) = −1/2 and

G′(τ, 0) = − log(2π)− log
(
�(τ)1/2|η(τ)|2

)
,

where of course G′ denotes the derivative with respect to s.

Proof. We must give the Taylor expansions around s = 1 up to terms
in O(s − 1) of all the terms occurring in the Fourier expansion of G(τ, s).
For notational simplicity set G(s) = π1/2Γ(s − 1/2)ζ(2s − 1)y1−s/Γ(s). By
Proposition 9.6.15 and Exercise 91 of Chapter 9 we have

log(G(s)) =
1
2

log(π) + log(Γ(1/2)) +
Γ′(1/2)
Γ(1/2)

(s− 1) + O(s− 1)2

+ log
(

1
2(s− 1)

+ γ + O(s− 1)
)
− log(y)(s− 1)− Γ′(1)

Γ(1)
(s− 1)

= log(π)− (2 log(2) + γ)(s− 1)− log(2)− log(s− 1)

+ 2γ(s− 1)− log(y)(s− 1) + γ(s− 1) + O(s− 1)2 ,

hence

π1/2Γ(s− 1/2)ζ(2s− 1)y1−s

Γ(s)
=

π

2

(
1

s− 1
+ 2γ − 2 log(2)− log(y)

)
+ O(s− 1) .

It follows from Proposition 9.8.5 (1) that F1/2(z) = e−z, hence that

π

2
C(τ) =

π2

6
y +

π

2
(2γ − 2 log(2)− log(y)) + 2πS(τ) ,

where

S(τ) = �
(∑

n�1

σ−1(n)qn

)
with q = e2iπτ .

Now note that

log

(∏
n�1

(1− qn)

)
= −

∑
n�1

∑
k�1

qnk

k
= −

∑
N�1

qN
∑
k|N

k−1 = −
∑
N�1

σ−1(N)qN .

It follows that
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S(τ) = −�
(

log
(∏

n�1

(1− qn)
))

= − log
(∣∣∣∏

n�1

(1− qn)
∣∣∣)

= −
(
log(|η(τ)|) +

πy

12

)
,

proving (1) after simplifications, and (2) immediately follows from the func-
tional equation. ��

We have seen that G(γ(τ), s) = G(τ, s) for all γ =
(

a b
c d

) ∈ SL2(Z), where
γ(τ) = (aτ+b)/(cτ+d). It follows from the above theorem that �(τ)1/2|η(τ)|2
is invariant under the change τ into γ(τ). Since �(γ(τ))1/2 = �(τ)1/2/|cτ+d|,
this means that |η(γ(τ))| = |cτ + d|1/2|η(τ)|. In fact, the function η(τ) is the
well-known Dedekind eta modular function of weight 1/2, which satisfies
η(−1/τ) = (τ/i)1/2η(τ), and as a consequence η(γ(τ)) = v(γ)(cτ + d)1/2η(τ)
for an explicit 24th root of unity v(γ).

Definition 10.4.7. Let Q(x, y) = ax2 + bxy + cy2 be a positive definite
quadratic form with real coefficients (in other words a > 0, c > 0, and
b2−4ac < 0). The Epstein zeta function attached to Q is the function defined
for �(s) > 1 by

ζQ(s) =
1
2

∑ ′
(m,n)∈Z2

1
Q(m,n)s

,

where here and elsewhere
∑′ means that we omit the term (m,n) = (0, 0).

If for any n � 1 we write rQ(n) for the number of representations of n
by the form Q, in other words the number of pairs (x, y) ∈ Z2 such that
Q(x, y) = n, then we clearly have

ζQ(s) =
1
2

∑
n�1

rQ(n)
ns

.

Corollary 10.4.8. Let Q be as above and set τ = (−b + i
√

4ac− b2)/(2a),
so that �(τ) > 0, and let D = b2 − 4ac be the discriminant of Q. Then

(1) ζQ(s) = (|D|/4)−s/2G(τ, s).
(2) ζQ(s) can be analytically continued to the whole complex plane with a

simple pole, at s = 1, with residue π/|D|1/2, and satisfies the functional
equation ΛQ(1− s) = ΛQ(s), where

ΛQ(s) =
(

2π

|D|1/2

)−s

Γ(s)ζQ(s) .

(3) Around s = 1 we have the expansion

ζQ(s) =
π

|D|1/2

(
1

s− 1
+ C(Q) + O(s− 1)

)
,
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where

C(Q) = 2γ − 2 log(2)− log(|D|/4)
2

− 2 log
(
�(τ)1/2|η(τ)|2

)
.

(4) We have ζQ(0) = −1/2 and

ζ ′Q(0) =
log(|D|/4)

4
− log(2π)− log

(
�(τ)1/2|η(τ)|2

)
.

Proof. By definition we have

ζQ(s) =
a−s

2

∑ ′
(m,n)∈Z2

1
|m− nτ |2s

= (a�(τ))−sG(τ, s) = (|D|/4)−s/2G(τ, s) ,

proving both (1) and (2) because of the corresponding properties of G(τ, s).
Around s = 1 we have

(|D|/4)−s/2 = (|D|/4)−1/2(1− (s− 1) log(|D|/4)/2 + O(s− 1)2) ;

hence Kronecker’s limit formula gives

ζQ(s) =
π√|D|

(
1

s− 1
+ C(Q) + O(s− 1)

)
,

with C(Q) = C(τ) − log(|D|/4)/2, proving (3), and (4) follows from the
functional equation or directly from Theorem 10.4.6 (2). ��

10.5 Dirichlet Series Linked to Number Fields

10.5.1 The Dedekind Zeta Function ζK(s)

As we have seen above, the exact analytic translation of the existence and
uniqueness of prime decomposition in Z is the fact that the Dirichlet series
associated with a completely multiplicative function has an Euler product,
and in particular the Riemann zeta function ζ(s) =

∏
p(1− p−s)−1. If K is a

general number field and ZK its ring of integers, the existence and uniqueness
of prime decomposition are valid for ideals, as is the case for every Dedekind
domain. Thus, it is natural to define the Dedekind zeta function

ζK(s) =
∑

a⊂ZK

1
N (a)s

=
∏
p

1
1−N (p)−s

,

where a runs through all integral ideals of ZK and p through all prime ideals
of ZK , and N denotes the absolute norm. The (formal) equality of the two
definitions is the exact translation of existence and uniqueness of prime ideal
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decomposition. We of course have ζQ(s) = ζ(s), the ordinary Riemann zeta
function.

Set n = [K : Q]. Denoting as usual by p ordinary prime numbers, if s is
a real number such that s > 1 we can write∏

p

(1−N (p)−s)−1 =
∏
p

∏
p|pZK

(1− p−f(p/p)s)−1 �
∏
p

(1− p−s)−n = ζ(s)n ,

since there are at most n prime ideals above p, so that ζK(s) � ζ(s)n. In
particular, this shows that ζK(s) converges for s > 1 real, hence converges
absolutely (since it has nonnegative coefficients) for �(s) > 1. It follows that
ζK(s) is a holomorphic function for �(s) > 1. This proof is only to show
convergence, but we will soon see that ζK(s) has only a simple pole at s = 1,
not a pole of order n.

The basic analytic properties of ζK(s) are summarized in the following
theorem.

Theorem 10.5.1. Let K be a number field of degree n and signature (r1, r2).
Denote by d(K), h(K), R(K), and w(K) (standard notation) the discrimi-
nant, class number, regulator, and number of roots of unity in K. Then

(1) The function ζK(s) extends analytically to the whole complex plane to a
meromorphic function having a single pole at s = 1, which is simple.

(2) It satisfies the functional equation ΛK(1− s) = ΛK(s), where

ΛK(s) = |d(K)|s/2γ(s)r1+r2γ(s + 1)r2ζK(s) ,

and γ(s) = π−s/2Γ(s/2) is as in Theorem 10.2.14.
(3) If we set r = r1 + r2 − 1, which is the rank of the unit group of K, then

ζK(s) has a zero at s = 0 of order r (no zero if r = 0 of course) and we
have

lim
s→0

s−rζK(s) = −h(K)R(K)
w(K)

.

(4) Equivalently, by the functional equation, the residue of the pole at s = 1
is given by

lim
s→1

(s− 1)ζK(s) = 2r1(2π)r2
h(K)R(K)

w(K)|d(K)|1/2
.

Proof. We will not prove this theorem, but we will make a number of
remarks on the proof. There are two ways to prove the analytic continuation
and functional equation of ζK(s) to the whole plane. One is Hecke’s initial
proof: he essentially copies the proof that we have given for the ordinary
zeta function and Dirichlet L-series using the Poisson summation formula.
For this, one must introduce theta functions in n variables, use a generalized
Poisson summation formula, and so on. A large part of the difficulty, which
does not occur for K = Q, is the existence of an infinite unit group, which
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makes the domains of integration noncompact, so suitable regularization pro-
cedures have to be applied. The proof gives at the same time the residue at
s = 1, hence the leading term at s = 0.

The other more recent proof is due to J. Tate. He gives an adelic proof,
explaining each factor (1 − N (p)−s)−1 as a p-adic integral, and the factors
γ(s) and γ(s + 1) as the factors corresponding to the places at infinity of K.
This proof is more elegant, and more amenable to generalizations, but not
really much shorter.

Finally, it is not difficult to prove the analytic continuation of ζK(s) to
�(s) > 1−1/n using quite simple means, and from that a volume computation
gives the residue at s = 1. This is done for example in [Marc]. This is sufficient
for many purposes, but does not give the functional equation. ��

Corollary 10.5.2. For k ∈ Z�0, the order of the (possible) zero at s = k of
ζK(s) is given by⎧⎪⎨⎪⎩

r1 + r2 − 1 if k = 0 ,

r1 + r2 if k < 0, k ≡ 0 (mod 2) ,

r2 if k < 0, k ≡ 1 (mod 2) .

Proof. Follows immediately from the fact that γ(s) has simple poles for
all s ∈ Z�0, and left to the reader. ��

In particular, we see that ζK(−2k) = 0 for all number fields K when
k � 1. Furthermore, if the field K is not totally real (r2 > 0), we also have
ζK(1−2k) = 0 for all k � 1. Thus the only fields for which some of the values
of ζK(−k) can be nonzero are totally real fields, whose complex embeddings
are in fact all real. The field K = Q is of course the simplest example. We have
seen that in that case the values ζ(1− 2k) are in fact rational numbers, more
precisely that ζ(1 − 2k) = −B2k/(2k) (Corollary 10.3.4). For the Dedekind
zeta function, there is a similar result, but the proof is more difficult and
uses the Fourier expansion of the Hecke–Eisenstein series (see the discussion
at the beginning of Section 10.3.2):

Theorem 10.5.3 (Siegel). Let K be a totally real number field. For all k �
1 we have ζK(1− 2k) ∈ Q∗.

Corollary 10.5.4. Let K be a totally real number field of degree n. For every
k � 1 there exists rk ∈ Q∗ such that

ζK(2k) = rk
π2kn

|d(K)|1/2
.

Proof. Clear by using the functional equation. ��
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10.5.2 The Dedekind Zeta Function of Quadratic Fields

Another very important property of Dedekind zeta functions is that they can
be factored into L-functions having a simpler functional equation. This is in
fact linked to one of the most famous conjectures in number theory, Artin’s
conjecture on the analytic continuation of L-series. We will speak a little
about this below, but note for now that everything is well understood for
number fields that are Abelian extensions of Q. We begin with the simplest
nontrivial extensions of Q: quadratic fields.

Proposition 10.5.5. Let K = Q(
√

D) be a quadratic field of discriminant
D. We have

ζK(s) = ζ(s)L(χD, s) ,

where as usual χD(n) =
(

D
n

)
is the Legendre–Kronecker character.

Proof. Indeed, if p is a prime number, then we know that p is inert, splits,
or ramifies in K/Q according to whether

(
D
p

)
= −1, 1, or 0. Thus

ζK(s) =
∏
p

∏
p|pZK

(1−N (p)−s)−1

=
∏(

D
p

)
=−1

(1− p−2s)−1
∏(
D
p

)
=1

(1− p−s)−2
∏(
D
p

)
=0

(1− p−s)−1

= ζ(s)
∏
p

(
1−

(
D

p

)
p−s

)−1

= ζ(s)L(χD, s) ,

proving the proposition. ��

Since we have proved the functional equation of L-functions of Dirichlet
characters, this proposition implies Theorem 10.5.1 for quadratic fields.

Corollary 10.5.6. Let D be a nonsquare integer congruent to 0 or 1 modulo
4, and let χD =

(
D
.

)
be the corresponding Legendre–Kronecker symbol. Then

L(χD, 1) > 0.

Proof. Write D = D0f
2, where D0 is a fundamental discriminant. Since

L(χD, 1) =
∏

p|f (1 − χD0(p)/p)L(χD0 , 1) and 1 − χD0(p)/p > 0, we may
assume that D is a fundamental discriminant. In that case we note that by
the above proposition we have L(χD, s) = ζK(s)/ζ(s), and that by definition
ζK(s) > 1 and ζ(s) > 1 for s ∈ R>1. The result follows by letting s tend
to 1. ��

In the special case of imaginary quadratic fields K, i.e., when D < 0, the
function ζK(s) is closely related to the Epstein zeta functions that we have
studied in Section 10.4. Indeed, for every ideal class A ∈ Cl(K) define the
partial zeta function by the formula
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ζK(A, s) =
∑

a⊂ZK , a∈A

1
N (a)s

.

We then have the following:

Proposition 10.5.7. Let K be an imaginary quadratic field of discriminant
D, and denote by w(D) the number of roots of unity of K (so that w(D) = 2
if D < −4, w(−4) = 4, w(−3) = 6).

(1) We have the finite sum decomposition

ζK(s) =
∑

A∈Cl(K)

ζK(A, s) .

(2) Let b be an ideal of K such that b ∈ A−1 and 1 ∈ b, and let (1, τ) be a
Z-basis of b. We have

ζK(A, s) =
|D|−s/2

w(D)/2
ζQA(s) ,

where
QA(m,n) =

1
2�(τ)

(m2 − 2mn�(τ) + n2|τ |2)

and ζQA(s) is the Epstein zeta function attached to the positive definite
quadratic form QA.

Proof. (1) is a trivial consequence of the definition of the class group
Cl(K). For (2), let b ∈ A−1 be an ideal belonging to the inverse class. Multi-
plying b by a suitable principal ideal we may assume that 1 ∈ b. Then a ∈ A
if and only if ab = λZK is a principal ideal, and in addition a ⊂ ZK if and
only if λ ∈ b, and by multiplicativity N (a) = N (b)−1| N (λ)| = N (b)−1N (λ)
since D < 0. Finally, again since D < 0, there is a finite number w(D) of
possibilities for λ, so that

ζK(A, s) =
N (b)s

w(D)

∑
λ∈b, λ 
=0

1
N (λ)s

.

Since 1 ∈ b we have ZK ⊂ b. I claim that N (b) = [b : ZK ]−1: indeed, if m is
any integer such that mb ⊂ ZK , then multiplication by m gives the equality
[b : ZK ] = [mb : mZK ], and

m2 = [ZK : mZK ] = [ZK : mb][mb : mZK ] = N (mb)[b : ZK ]

= m2N (b)[b : ZK ] ,

proving my claim. Since 1 ∈ b we have b = Z + τZ for some τ ∈ K, where
by changing if necessary τ into −τ we may assume �(τ) > 0. On the other
hand, ZK = Z+ωZ, where ω = (δ+

√
D)/2 for any integer δ such that δ ≡ D
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(mod 2). Writing Vol(I) for the covolume in C � R2 of any fractional ideal
I it follows that

N (b) = [b : ZK ]−1 =
Vol(b)

Vol(ZK)
=
�(τ)
�(ω)

=
2�(τ)√|D| .

Finally, we can write λ = m − nτ with (m,n) ∈ Z2, and N (λ) = m2 −
2mn�(τ) + n2|τ |2. We thus obtain

ζK(A, s) =
|D|−s/2

w(D)

∑ ′
(m,n)∈Z2

1
QA(m,n)s

=
|D|−s/2

w(D)/2
ζQA(s) ,

where
QA(m,n) =

1
2�(τ)

(m2 − 2mn�(τ) + n2|τ |2)

is a positive definite quadratic form, proving the proposition. ��

Corollary 10.5.8. Let K be an imaginary quadratic field of discriminant
D, let δ be any integer such that D ≡ δ (mod 2), and assume that the class
number of K is equal to 1. Then

ζK(s) =
1

w(D)

∑ ′
(m,n)∈Z2

1
(m2 + mnδ + ((δ2 −D)/4)n2)s

.

Proof. Clear. ��

Example. As in Theorem 5.4.15 denote by r2(n) the number of decomposi-
tions of n as a sum of two squares. Then

ζQ(i)(s) =
1
4

∑ ′
(m,n)∈Z2

1
(m2 + n2)s

=
1
4

∑
n�1

r2(n)
ns

,

and the formula for r2(n) given in Theorem 5.4.15 is equivalent to the formula
ζQ(i)(s) = ζ(s)L(χ−4, s).

Corollary 10.5.9. Let K be an imaginary quadratic field of discriminant
D. The statements of Corollary 10.4.8 (2), (3), and (4) are valid verbatim if
we replace ζQ(s) by (ω(D)/2)ζK(A, s); in other words:

(1) ζK(A, s) can be analytically continued to the whole complex plane with
a simple pole, at s = 1, with residue 2π/(ω(D)|D|1/2), and satisfies the
functional equation ΛK(A, 1− s) = ΛK(A, s), where

ΛK(A, s) =
(

2π

|D|1/2

)−s

Γ(s)ζK(A, s) .



222 10. Dirichlet Series and L-Functions

(2) Around s = 1 we have the expansion

ζ(A, s) =
2π

ω(D)|D|1/2

(
1

s− 1
+ CK(A) + O(s− 1)

)
,

where

CK(A) = 2γ − 2 log(2)− log(|D|/4)
2

− 2 log
(
�(τ)1/2|η(τ)|2

)
.

(3) We have ζK(A, 0) = −1/ω(D) and

ζ ′K(A, 0) =
1

ω(D)/2

(
log(|D|/4)

4
− log(2π)− log

(
�(τ)1/2|η(τ)|2

))
.

Proof. This is an immediate consequence of the proposition and of
Corollary 10.4.8: we note that the quadratic form QA(x, y) has determi-
nant (4�(τ)2 − 4|τ |2)/(4�(τ)2) = −1, and we write a usual |D|−s/2 =
|D|−1/2(1− (s− 1) log(|D|)/2) around s = 1 and |D|−s/2 = 1− s log(|D|)/2
around s = 0. ��

We can now combine this corollary with the decomposition ζK(s) =
ζ(s)L(χD, s):

Proposition 10.5.10. Let D < 0 be a fundamental discriminant, and de-
note by h(D) the class number of K = Q(

√
D). Denote by Q(D) the set of

equivalence classes of quadratic numbers τ = (−b +
√

D)/(2a) of discrimi-
nant D, modulo the natural action of SL2(Z), which has cardinality h(D).
We have the following formulas:

L(χD, 1) =
2πh(D)

w(D)|D|1/2
, L(χD, 0) =

2h(D)
w(D)

,

L′(χD, 1)
L(χD, 1)

= γ − log(2)− log(|D|)
2

− 2
h(D)

∑
τ∈Q(D)

log
(
�(τ)1/2|η(τ)|2

)
,

L′(χD, 0)
L(χD, 0)

= log(4π)− log(|D|)
2

+
2

h(D)

∑
τ∈Q(D)

log
(
�(τ)1/2|η(τ)|2

)
.

Proof. First note that if (1, τ ′) is another Z-basis of an ideal b with �(τ ′) >
0 we have τ ′ = γ(τ) = (aτ + b)/(cτ + d) for some

(
a b
c d

) ∈ SL2(Z) (and
conversely), and that if we replace b by another ideal αb in the same class
the corresponding τ is unchanged. Thus the map b �→ τ induces a natural
map from the ideal class group Cl(K) to the set of τ = (−b +

√
D)/(2a)

of discriminant D, up to the action of SL2(Z), in other words to the set
Q(D). The above formulas are thus obtained by summing on ideal classes
the corresponding formulas for ζK(A, s) and using the factorization ζK(s) =
ζ(s)L(χD, s). The details are left to the reader (Exercise 57). ��

Note that thanks to the above results we have proved Theorem 10.5.1 in
the special case of imaginary quadratic fields.
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10.5.3 Applications of the Kronecker Limit Formula

We can combine the above proposition, which is an immediate consequence of
Kronecker’s limit formula, with the formula for the same quantities obtained
in Proposition 10.3.5 in terms of the gamma function.

Proposition 10.5.11 (Lerch, Chowla–Selberg). For any negative fun-
damental discriminant D we have the identity

∏
τ∈Q(D)

�(τ)|η(τ)|4 = (4π|D|1/2)−h(D)

( |D|∏
r=1

Γ(r/|D|)
(

D
r

))w (D )
2

.

Proof. Since D < 0 we have L(χD, 0) = 2h(D)/w(D), so Proposition
10.3.5 gives

L′(χD, 0)
L(χD, 0)

=
w(D)
2h(D)

|D|∑
r=1

(
D

r

)
log

(
Γ
(

r

|D|
))

− log(|D|) ;

hence comparing with Proposition 10.5.10 above we obtain the identity

∑
τ∈Q

log
(
�(τ)1/2|η(τ)|2

)
=

w(D)
4

|D|∑
r=1

(
D

r

)
log

(
Γ
(

r

|D|
))

− h(D)
2

log(4π|D|1/2) ,

which gives the desired formula after doubling and exponentiation. ��

The above formula was obtained at the end of the nineteenth century by
Lerch, and rediscovered by Chowla and Selberg in 1947.

It is also possible to generalize the Chowla–Selberg formula to nonfunda-
mental discriminants, but with some difficulty; see [Nak-Tag]. We give the
result without proof, but first need the following definition.

Definition 10.5.12. Let D < 0 be congruent to 0 or 1 modulo 4. We denote
by Q(D) the set of quadratic numbers (−b +

√
D)/(2a) with b2 − 4ac = D

and gcd(a, b, c) = 1, modulo the natural action of SL2(Z). We write h(D) for
the cardinality of Q(D).

Theorem 10.5.13. Let D < 0 be congruent to 0 or 1 modulo 4, and write
D = D0f

2, where D0 is a fundamental discriminant, in other words the
discriminant of the quadratic field Q(

√
D). Then

∏
τ∈Q(D)

�(τ)|η(τ)|4 =

(∏
p|f pe(p)

4π|D|1/2

)h(D) (|D0|∏
r=1

Γ(r/|D0|)
(

D0
r

)) h(D )
h(D0)

w (D0)
2

,
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where

e(p) =
(1− p−vp (f))

(
1− (

D0
p

))
(1− 1/p)

(
p− (

D0
p

)
/p
) .

Note that we have the following well-known formula, coming directly from
Dirichlet’s class number formula:

h(D)
h(D0)

w(D0)
2

=
w(D)

2
f
∏
p|f

(
1− (

D
p

)
/p
)

.

Examples. When h(D) = 1 there is a single term on the left-hand side,
and we can always choose τ = (−δ +

√
D)/2, where δ ≡ D (mod 2). It

follows from the definition of η(τ) that η(τ) = |η(τ)| if D ≡ 0 (mod 4) and
η(τ) = e−iπ/24|η(τ)| if D ≡ 1 (mod 4). Using the reflection formula for the
gamma function we obtain for instance the following formulas:

η

(−1 +
√−3

2

)
= e−iπ/242−131/8π−1Γ(1/3)3/2 ,

η(
√−1) = 2−1π−3/4Γ(1/4) ,

η

(−1 +
√−7

2

)
= e−iπ/242−17−1/8π−1 (Γ(1/7)Γ(2/7)Γ(4/7))1/2

,

η(
√−2) = 2−11/8π−3/4 (Γ(1/8)Γ(3/8))1/2

η(
√−1/2) = 2−7/8π−3/4Γ(1/4) ,

the last formula coming from the theorem for nonfundamental discriminants.
As an example with h(D) = 2 we have for instance

η(
√−6)η(

√−6/2) = 2−11/43−1/2π−3/2 (Γ(1/24)Γ(5/24)Γ(7/24)Γ(11/24))1/2

(we will see below that these two eta values can be computed individually).

Corollary 10.5.14. We have the formulas∏
n�1

(
1 + e−πn

)
= 2−1/8eπ/24 ,

∏
n�1

tanh(πn/2) = (2π)−3/4Γ(1/4) ,

∏
n�1

tanh(πn/
√

2) = 2−7/8π−3/4(Γ(1/8)Γ(3/8))1/2 .

Proof. These formulas are simply obtained by replacing the eta function
by its infinite product expansion and using the special values. The details are
left to the reader (Exercise 59). ��

When h(D) > 1 we can ask whether it is possible to compute all the η(τ)
individually. The answer is yes, as follows.
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Theorem 10.5.15. For each τ ∈ Q(D) there exists an algebraic number
α(τ) that can be given explicitly such that

�(τ)|η(τ)|4 =
α(τ)

4π|D|1/2

( |D|∏
r=1

Γ(r/|D|)
(

D
r

)) w (D )
2h(D )

.

Proof. This proof requires a basic knowledge of modular forms and com-
plex multiplication. If τ1 and τ2 are in Q(D) there exists some integral matrix
γ =

(
a b
c d

)
with nonzero determinant N such that τ2 = (aτ1+b)/(cτ1+d). If as

usual we set Δ(τ) = η(τ)24, it follows that (η(τ2)/η(τ1))24 = Δ(γ(τ1))/Δ(τ1)
is the value at the quadratic number τ1 of the function Δ(γ(τ))/Δ(τ). This is
a modular function of weight 0 on a congruence subgroup of level N , so there
is an algebraic relation with algebraic coefficients between this function and
the modular invariant function j(τ). By the basic theorem of complex mul-
tiplication we know that j(τ1) is algebraic, so we conclude that η(τ2)/η(τ1)
is algebraic. It follows that all the terms on the LHS of the Chowla–Selberg
formula are equal to an algebraic number times one of them, proving the
theorem. ��

One can in fact give an explicit formula for α(τ); see [Poo-Wil]. We will
give a special case below, and the reader can easily work out himself many
other examples (Exercise 58).

The Kronecker limit formula for imaginary quadratic fields also has ap-
plications to real quadratic fields. We begin with the following lemma.

Lemma 10.5.16. Let D1 and D2 be two coprime fundamental discrimi-
nants, and set D = D1D2 and K = Q(

√
D). Then:

(1) D is a fundamental discriminant.
(2) For any λ ∈ ZK such that N (λ) is coprime to D1 we have

(
D1

N (λ)

)
= 1.

(3) For any integral ideal a of ZK such that N (a) is coprime to D we have(
D

N (a)

)
= 1.

Proof. (1). If D1 and D2 are squarefree, hence congruent to 1 modulo 4,
then D1D2 is squarefree and congruent to 1 modulo 4, so is fundamental.
Otherwise, by symmetry we may assume that D1 = 4d1 with d1 ≡ 2 or 3
modulo 4 and squarefree. It follows that D2 is squarefree and is congruent to
1 modulo 4; hence D1D2 = 4d1D2 with d1D2 squarefree and congruent to 2
or 3 modulo 4, so D1D2 is fundamental.

(2). We can write λ = (a+b
√

D)/2 with a and b integers such that a ≡ bD
(mod 2), so N (λ) = (a2 − b2D)/4. Assume first that 4 � D1. Then(

D1

N (λ)

)
=
(

D1

a2 − b2D

)
=
(

D1

a2

)
= 1
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as claimed, since D1 | D and the Kronecker symbol
(

D1
n

)
is periodic of period

dividing D1 when D1 ≡ 0 or 1 modulo 4. Assume now that D1 = 4d1, hence
that D2 ≡ 1 (mod 4). Then D = 4d with d = d1D2, and λ = a1 + b1

√
d for

integers a1 = a/2 and b1 = b. Since we assume N (λ) coprime to D1 we have(
D1

N (λ)

)
=
(

4d1

a2
1 − b2

1d

)
=
(

d1

a2
1 − b2

1d

)
=
(

d1

a2
1

)
= 1 ,

again because d1 | d and by the periodicity property of the Kronecker symbol.
(3). Since a is a product of prime ideals it is sufficient to prove this for

prime ideals p above p with p � D. If p is inert then p = pZK and N (p) = p2,
so that

(
D

N (p)

)
=

(
D
p2

)
= 1. If p is split then

(
D
p

)
= 1, while N (p) = p, so

that
(

D
N (p)

)
=
(

D
p

)
= 1. ��

Corollary 10.5.17. Let D1 and D2 be two coprime fundamental discrimi-
nants, and set D = D1D2 and K = Q(

√
D).

(1) For any ideal class A ∈ Cl(K) there exists an integral ideal a ∈ A such
that gcd(N (a), D1) = 1.

(2) The quantity

χD1(N (a)) =
(

D1

N (a)

)
does not depend on the choice of the integral ideal a ∈ A, as long as
gcd(N (a), D1) = 1, and by abuse of notation it will be written χD1(A).

(3) The map A �→ χD1(A) defines a nontrivial character of the finite abelian
group Cl(K).

(4) We have χD1(A) = χD2(A).

Proof. (1). Let b ∈ A be any integral ideal. By the approximation theorem
for Dedekind domains there exists α ∈ K such that vp(α) = −vp(b) for every
prime ideal p above a prime number dividing p, and vp(α) � 0 for all other
p. It is clear that a = αb is an integral ideal in A whose norm is coprime to
D1, proving (1). Note for future reference that we can in fact ask for N (a)
to be coprime to any fixed integer, not only to D1.

(2). Let a and b be ideals in A such that N (a) and N (b) are coprime to
D1, so that a = λb for some λ ∈ K such that vp(λ) = 0 for all p above a
prime dividing D1. Once again by the approximation theorem we can find α
and β in ZK such that λ = β/α with N (α) and N (β) coprime to D1, so that
aα = bβ. It follows from the lemma that(

D1

N (aα)

)
=
(

D1

N (a)

)(
D1

N (α)

)
=
(

D1

N (a)

)
and similarly

(
D1

N (bβ)

)
=
(

D1
N (b)

)
, proving (2).
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(3). Since the Kronecker symbol is multiplicative it follows from (2) that
χD1 is a character of Cl(K). Let us show that it is nontrivial. For i = 1 and
i = 2 let pi be an inert prime in Q(

√
Di), in other words

(
D1
p1

)
=

(
D2
p2

)
=

−1. Since D1 and D2 are coprime, by the Chinese remainder theorem there
exists b such that b ≡ p1 (mod D1) and b ≡ p2 (mod D2). By Dirichlet’s
theorem on primes in arithmetic progression (which we will prove below; see
Theorem 10.5.30) we can find a prime number p such that p ≡ b (mod D).
By periodicity of the Kronecker symbol we have(

D1

p

)
=
(

D1

b

)
=
(

D1

p1

)
= −1

and similarly for D2, and(
D

p

)
=
(

D1

p

)(
D2

p

)
= 1 .

It follows from this last equation that p is split in K = Q(
√

D), and if p is
an ideal above p then N (p) is coprime to D, so that

χD1([p]) =
(

D1

N (p)

)
=
(

D1

p

)
= −1 ,

proving that the character χD1 is nontrivial.
(4). Choose as representative of A any integral ideal a such that N (a) is

coprime to D, which is possible by (1), so that N (a) is coprime to D1 and
D2. Then by (2) we have

χD1(A)χD2(A) =
(

D1

N (a)

)(
D2

N (a)

)
=
(

D

N (a)

)
= 1

by Lemma 10.5.16 (4). ��

Definition 10.5.18. Let K be a number field and χ a character of the class
group of K. For any ideal a of K denote by [a] its ideal class. We define the
L-function LK(χ, s) associated with χ by the formula

LK(χ, s) =
∑

a⊂ZK

χ([a])
N (a)s

=
∏
p

1
1− χ([p])N (p)−s

,

where as usual a runs through all integral ideals of ZK and p through all
prime ideals of ZK .

It is clear that

LK(χ, s) =
∑

A∈Cl(K)

χ(A)ζK(A, s) .
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Proposition 10.5.19. As above, let D1 and D2 be two coprime fundamental
discriminants, D = D1D2, K = Q(

√
D), and let χD1 be the character of

Cl(K) defined in the above corollary. Then

LK(χD1 , s) = L(χD1 , s)L(χD2 , s) ,

where the L-functions on the right-hand side are the ordinary Dirichlet L-
functions associated with the Dirichlet characters χDi

.

Proof. It is sufficient to show that the corresponding Euler factors are the
same on both sides. Let p be a prime number. As usual we consider three
cases. If p is inert in K there is a single prime ideal p = pZK above p that is
a principal ideal, so that χD1([p]) = 1, and in fact

χD1([p]) =
(

D1

N (p)

)
=
(

D1

p2

)
= 1 .

The Euler factor on the LHS is thus equal to (1 − p−2s)−1. On the other
hand, since p is inert we have

(
D
p

)
= −1, hence

(
D1
p

)
= −(D2

p

)
, so the Euler

factor on the RHS is equal to (1− p−s)−1(1 + p−s)−1 = (1− p−2s)−1. If p is
split in K we have two ideals p and p above p, and

χD1([p]) = χD1([p]) =
(

D1

N (p)

)
=
(

D1

p

)
,

so the Euler factor on the LHS is equal to
(
1− (

D1
p

)
p−s

)−2

. On the other

hand, since p is split we have
(

D
p

)
= 1 hence

(
D1
p

)
=

(
D2
p

)
, so the Euler

factor on the RHS is equal to
(
1− (

D1
p

)
p−s

)−2

. Finally, if p is ramified in K

we have a single ideal p above p, and p | D. Since D = D1D2 with D1 and D2

coprime, p divides exactly one of the Di. We consider both cases. If p | D2

then N (p) = p is coprime to D1; hence χD1([p]) =
(

D1
p

)
, so the Euler factor

on the LHS is equal to
(
1− (

D1
p

)
p−s

)−1

, which is equal to the Euler factor

on the RHS since
(

D2
p

)
= 0. If p | D1 then p � D2, and by Corollary 10.5.16

(4) we have χD1([p]) = χD2([p]) =
(

D2
p

)
, and since

(
D1
p

)
= 0 we conclude

again that the Euler factors are equal. ��

We can now obtain the desired result on real quadratic fields.

Corollary 10.5.20. Let D1 and D2 be two coprime fundamental discrimi-
nants, D = D1D2, K = Q(

√
D), and assume that D1 > 0, D2 < 0 hence

D < 0. Then

L(χD1 , 1) = − ω(D2)

h(D2)D
1/2
1

∑
A∈Cl(K)

χD1(A) log
(
�(τA)1/2|η(τA)|2

)
,
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where τA is the complex number corresponding to the ideal class A as above.
Equivalently, if we denote by εD1 the fundamental unit greater than 1 of the
real quadratic field Q(

√
D1) we have

εD1 =

⎛⎝ ∏
A∈Cl(K)

(�(τA)1/4|η(τA)|)χD1 (A)

⎞⎠−ω(D2)/(h(D1)h(D2))

.

Proof. By the proposition we have

LK(χD1 , s) =
∑

A∈Cl(K)

χD1(A)ζK(A, s) = L(χD1 , s)L(χD2 , s) .

Note the trivial fact that D1 � 5 and |D2| � 3, so that |D| � 15 and
ω(D) = 2. By Kronecker’s limit formula (here Corollary 10.5.9), around s = 1
we have

ζ(A, s) =
π

|D|1/2

(
1

s− 1
+ CK(A) + O(s− 1)

)
,

where

CK(A) = 2γ − 2 log(2)− log(|D|/4)
2

− 2 log
(
�(τ)1/2|η(τ)|2

)
.

Since χD1 is a nontrivial character on Cl(K) we have
∑

A∈Cl(K) χD1(A) = 0,
so LK(χD1 , s) does not have a pole at s = 1 and we have

LK(χD1 , 1) = − 2π

|D|1/2

∑
A∈Cl(K)

χD1(A) log
(
�(τA)1/2|η(τA)|2

)
.

On the other hand, by Proposition 10.5.10 (which is the simplest nontrivial
case of Dirichlet’s class number formula) we have

L(χD2 , 1) =
2πh(D2)

ω(D2)|D2|1/2
.

Thus we obtain the formula

L(χD1 , 1) = − ω(D2)

h(D2)D
1/2
1

∑
A∈Cl(K)

χD1(A) log
(
�(τA)1/2|η(τA)|2

)
,

proving the first formula of the corollary. The second immediately follows
from Dirichlet’s class number formula for real quadratic fields L(χD1 , 1) =
2h(D1) log(εD1)/D

1/2
1 . ��

Since εD1 is the fundamental solution of Pell’s equation, this is called
Kronecker’s solution to Pell’s equation, expressing an algebraic number as a
combination of values of a transcendental function, which was part of Kro-
necker’s Jugendtraum.
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Example. Consider the case D1 = 8, D2 = −3, so that D = −24, K =
Q(
√−6). There are two ideal classes in ZK , the corresponding τA are

√−6
and

√−6/2, and the corresponding values of χD1(A) are 1 (for the trivial
class) and −1 (since otherwise χD1 would be a trivial character). Since ε8 =
1 +

√
2 we obtain the formula

2 log(1 +
√

2)√
8

= − 6√
8

(
log

(
(
√

6)1/2|η(
√−6)|2

)
− log

(
(
√

6/2)1/2
∣∣η(
√−6/2)

∣∣2)) ,

hence

log(1 +
√

2) = −3
(

log(2)
2

+ log
( |η(

√−6)|2
|η(
√−6/2)|2

))
.

Since by definition η(
√−6) and η(

√−6/2) are positive real, this can also
be written

η(
√−6)

η(
√−6/2)

= 2−1/4(1 +
√

2)−1/6 .

Combining with the formula given above for η(
√−6)η(

√−6/2) coming from
the Chowla–Selberg formula we obtain

η(
√−6) = 2−3/23−1/4(1 +

√
2)−1/12π−3/4 (Γ(1/24)Γ(5/24)Γ(7/24)Γ(11/24))1/4

η(
√−6/2) = 2−5/43−1/4(1 +

√
2)1/12π−3/4 (Γ(1/24)Γ(5/24)Γ(7/24)Γ(11/24))1/4 .

These are special cases of Theorem 10.5.15. The reader is advised to work
out for himself a few more examples (Exercise 58).

10.5.4 The Dedekind Zeta Function of Cyclotomic Fields

We now study the Dedekind zeta function of cyclotomic fields. We begin with
the following.

Proposition 10.5.21. Let m be an integer, and for all primes p � m denote
by fp the order of p modulo m (i.e., of the class of p in (Z/mZ)∗), and set
gp = φ(m)/fp. Then ∏

χ mod m

L(χ, s) =
∏
p�m

(1− p−fp s)−gp ,

where the product on the left is over all φ(m) Dirichlet characters modulo m.

Proof. Let G be the group of Dirichlet characters modulo m and Hp the
group of fpth roots of unity. If χ ∈ G, then χ(p) ∈ Hp. The map χ �→ χ(p)
is a group homomorphism from G to Hp. I claim that this homomorphism
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is surjective. Indeed, if ζ ∈ Hp, define φ(pk) = ζk for k modulo fp, where pk

denotes the class of pk in (Z/mZ)∗. Since p has order fp in this group, this is
well defined and gives a character on the subgroup H of (Z/mZ)∗ generated
by p. By Corollary 2.1.17, φ can be extended to a character of (Z/mZ)∗, and
the corresponding Dirichlet character χ will thus satisfy χ(p) = ζ, proving
my claim.

It follows from this that the kernel and all the cosets of the map χ �→ χ(p)
have cardinality gp = φ(m)/fp; in other words, for any ζ ∈ Hp there exist
exactly gp characters such that χ(p) = ζ. Thus∏

χ mod m

(1− χ(p)T ) =
∏

ζ∈Hp

(1− ζT )gp = (1− T f
p )gp .

Replacing T by p−s and taking the product over p proves the result. ��

Theorem 10.5.22. Let Qm = Q(ζm) be the mth cyclotomic field. We have

ζQm
(s) =

∏
χ mod m

L(χf , s) ,

where χf is the primitive character associated with χ. In particular, if m is
a prime power we have ζQm

(s) =
∏

χ mod m L(χ, s). Furthermore, |d(Qm)| =∏
χ mod m f(χ), where f(χ) is the conductor of χ.

Proof. We know from Proposition 2.1.29 that if m ≡ 2 (mod 4) the
conductor of any character modulo m also divides m/2, and we also have
Q(ζm) = Q(ζm/2), so we may assume that m �≡ 2 (mod 4). Furthermore, the
theorem is trivial for m = 1, so we may also assume that m > 1. In that case,
Qm is a totally complex field of degree φ(m); in other words, its signature is
(r1, r2) = (0, φ(m)/2).

Recall that if p � m, then the decomposition of pZQm
into prime ideals is

pZQm
=

∏
1�i�gp

pi, where e(pi/p) = fp, and fp and gp are as in the above
proposition. Thus

ζQm
(s) =

∏
p|m

∏
p|p

(1−N (p)−s)−1
∏
p�m

(1− p−fp s)−gp

= a(s)
∏

χ mod m

L(χ, s) = b(s)
∏

χ mod m

L(χf , s) ,

where a(s) and b(s) are finite products and quotients of expressions of the
form 1− wp−fs, where |w| = 1 and f � 1 is an integer, and p | m. Now the
point is that ζQm

(s) and all the L(χf , s) have functional equations when s
goes to 1−s, so that b(s) does also. More precisely, from above we know that

ΛQm
(s) = |d(Qm)|s/2γ(s)φ(m)/2γ(s + 1)φ(m)/2ζQm

(s)
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is invariant by s �→ 1−s, and that if we set e(χ) = 0 if χ is even and e(χ) = 1
if χ is odd, we know from Theorem 10.2.14 that if we let

Λ1(χf , s) = Λ(χf , s)f−e(χ)/2 = fs/2γ(s + e(χ))L(χf , s) ,

then Λ1(χf , 1 − s) = W (χf )Λ(χf , s) for some complex number W (χf ) of
modulus 1. Furthermore, by orthogonality of characters, if −1 �≡ 1 (mod m),
i.e., if m > 2, which we have assumed, we have

∑
χ mod m χ(−1) = 0; in other

words, there are exactly as many even as odd characters modulo m. Thus, if
we set g(s) = ΛQm

(s)/
∏

χ mod m Λ1(χf , s), we find that

g(s) =
ζQm

(s)∏
χ mod m L(χf , s)

(
|d(Qm)|∏

χ mod m f(χ)

)s/2

= b(s)c(Qm)s/2 ,

where c(Qm) = |d(Qm)|/∏χ mod m f(χ). On the other hand, since χ �→ χ is
an involution on the group of characters modulo m, the functional equations
imply that g(1 − s) = Wg(s) for some W ∈ C with |W | = 1. Now the
possible zeros and poles of b(s), hence of g(s), satisfy p−fs = 1/w = exp(−it)
for some real t, hence have the form s = (t + 2kπ)i/(f log(p)) for k ∈ Z,
in any case are purely imaginary (or 0). By the functional equation, these
must also be zeros or poles of g(1− s), which is impossible since those satisfy
�(s) = 1 instead. It follows that b(s) cannot have zeros or poles, hence since
it is equal to products or quotients of quantities of the form 1−wp−fs, that
b(s) = 1. This is nothing else than the first equality of the theorem. Thus
g(s) = c(Qm)s/2, but once more since g(1 − s) = Wg(s), this implies that
g(s) = c(Qm) = 1, so that we obtain the second equality of the theorem.
We also obtain that W = 1, but this is a trivial consequence of the fact that
χ �→ χ is an involution of characters modulo m and the fact that W (χ) = 1
for real characters as we have seen above because of Proposition 2.2.24. ��

Corollary 10.5.23. If p is a prime then

d(Qpk ) = εpkpk −(k+1)pk−1
,

where ε = −1 if pk = 4 or p ≡ 3 (mod 4) and ε = 1 otherwise.

Proof. The above result is trivially true for pk = 2, so assume pk > 2. By
the above theorem and Proposition 2.1.29, whose notation we keep, we have

|d(K)| =
∏

χ mod pk

f(χ) =
∏
f |pk

fq(f) = pS ,

where

S =
∑

1�j�k

jq(pj) = −1
p

+
(

1− 1
p

)2 ∑
1�j�k

jpj = kpk − (k + 1)pk−1
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after a short computation, proving the corollary up to sign. Furthermore,
we know that the sign of the discriminant of a number field is (−1)r2 =
(−1)φ(m)/2 for m � 3. Since φ(2k)/2 = 2k−2 is odd if and only if k = 2 and
for an odd prime p, φ(pk)/2 = pk−1(p − 1)/2 is odd if and only if p ≡ 3
(mod 4), the corollary follows. ��

An important theorem of Kronecker–Weber says that a number field K
is an Abelian extension of Q if and only if it is a subfield of a cyclotomic
field. Theorem 10.5.22 is in fact valid for such fields. More precisely, set the
following definition:

Definition 10.5.24. Let L be a subfield of Q(ζm) and H the subgroup of
(Z/mZ)∗ corresponding to L by Galois theory and the canonical isomor-
phism with Gal(Q(ζm)/Q). The group of characters associated with L is
the group of characters of (Z/mZ)∗ (or equivalently, of Dirichlet characters
modulo m) that are trivial on H, in other words the group of characters of
(Z/mZ)∗/H.

We then have the following analogous theorem, which we give without
proof, but is proved in the same way:

Theorem 10.5.25. Let L ⊂ Q(ζm) and let X be the group of characters
associated with L. We have

ζL(s) =
∏

χ∈X

L(χf , s) ,

and |d(L)| = ∏
χ∈X f(χ).

For instance, for a quadratic field this gives the easy decomposition
ζQ(

√
D)(s) = ζ(s)L(χ, s), where χ(n) =

(
D
n

)
.

Recall that we have defined hpk and h+
pk to be the class numbers of Q(ζpk )

and Q(ζpk )+ respectively, and that we have shown that h+
pk | hpk (see Section

3.5.4), so that h−
pk = hpk /h+

pk ∈ Z. Thanks to the above theorem and Dirich-
let’s class number formula, it is easy to give a reasonably efficient explicit
formula for h−

pk .

Proposition 10.5.26. Let p � 3 be a prime number, let k ∈ Z�1, and set
N = φ(pk) = pk−1(p− 1). We have

h−
pk =

pk

2N/2−1

∏
χ odd

L(χ, 0) = (−1)N/2 pk

2N/2−1

∏
χ odd

B1(χ) .

Proof. By Lemma 10.2.1, for all nontrivial characters χ we have L(χf , s) =
L(χ, s), so it follows from Theorem 10.5.22 that ζQ(ζ

pk )(s) = ζ(s)
∏

χ
=χ0
L(χ, s).

The characters associated with Q(ζpk )+ correspond to those that are trivial
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on ι, in other words to the even characters, so Theorem 10.5.25 implies that
ζQ(ζ

pk )+(s) = ζ(s)
∏

χ
=χ0, χ even L(χ, s). It follows that

ζQ(ζ
pk )(s)/ζQ(ζ

pk )+(s) =
∏

χ odd

L(χ, s) .

Now recall that Dirichlet’s class number formula stated at s = 0 (which is
much nicer than at s = 1) states that for any number field L we have

ζL(s) ∼ −h(L)R(L)
w(L)

sr1(L)+r2(L)−1 ,

where h(L), R(L), and w(L) denote the class number, regulator, and number
of roots of unity of L, and (r1(L), r2(L)) is the signature of L. Setting as
usual K = Q(ζpk ), by Theorem 3.5.20 we know that U(K) = 〈ζpk 〉U(K+).
The N/2 real embeddings of K+ lift to N/2 pairs of complex embeddings
of K. Since the elements of U(K+) are totally real and since the regulator
matrix has order N/2 − 1, the regulator matrix of U(K+) considered in K
will be equal to twice the regulator matrix of U(K+) considered in K+,
so that R(K) = 2N/2−1R(K+). Finally, it is clear that r1(K) + r2(K) =
r1(K+) + r2(K+) = N/2, w(K) = 2pk, and w(K+) = 2. Thus taking the
limit as s → 0 in the above quotient of Dedekind zeta functions we obtain

2N/2−1hpk

pkh+
pk

=
∏

χ odd

L(χ, 0) ,

proving the first formula, and the second follows from Corollary 10.2.3 and
the fact that there are N/2 odd characters. ��

Corollary 10.5.27. Let p � 3 be a prime number, let g ∈ Z be a primitive
root modulo pk, set N = φ(pk) = pk−1(p− 1), and let ζN ∈ C be a primitive
N th root of unity. Denote by P the polynomial

P (X) =
∑

0�j<N

(gj mod pk)Xj ,

where (gj mod pk) denotes the unique integer congruent to gj modulo pk in
the interval

[
1, pk

[
. Then

h−
pk = − 1

(−2pk)N/2−1

∏
1�m�N/2

P (ζ2m−1
N )

= − 1
(−2pk)N/2−1

Res(P (X), XN/2 + 1) ,

where Res denotes the resultant of the two polynomials.
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Proof. Indeed, note that it is easy to describe all characters modulo pk:
such a character is uniquely determined by its value on g; hence χ1(gj) = ζj

N

defines a character modulo p that generates the group of characters modulo
pk, so that any character is thus equal to some χn = χn

1 for a unique n such
that 0 � n < N . The character χn is odd if and only if

−1 = χn(−1) = χn(gN/2) = ζ
nN/2
N ,

hence if and only if n is odd. Finally, recall that since χn is nontrivial for
n �= 0 we have

B1(χn) =
1
pk

∑
1�r�pk −1

p�r

rχn(r) =
∑

0�j<N

(gj mod pk)ζnj
N ,

proving the first formula, and the second is the definition of the resultant. ��

Corollary 10.5.28. With the same notation we have

h−
pk = − 1

(−2pk)N/2−1

∏
d|N, d�N/2

Res(P (X),Φd(X)) ,

where Φd(X) denotes the dth cyclotomic polynomial.

Proof. This immediately follows from the equality

XN/2 + 1 =
XN − 1

XN/2 − 1
=

∏
d|N, d�N/2

Φd(X)

together with the multiplicativity of the resultant. ��

10.5.5 The Nonvanishing of L(χ, 1)

One of the main easy results on L(χ, s), which will immediately imply a
weak form of Dirichlet’s theorem on primes in arithmetic progression, is that
L(χ, 1) �= 0 for all nontrivial characters χ (otherwise L(χ, s) has a pole at
s = 1). Considering the importance of this result we give three proofs, of
which only two are really different.

Theorem 10.5.29. For any nontrivial Dirichlet character χ we have L(χ, 1) �=
0.

First Proof. By what we have seen in the preceding section, we have

ζQm
(s) = ζ(s)

∏
χ mod m

χ
=χ0

L(χf , s) ,
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and since both ζ(s) and ζQm
(s) have simple poles at s = 1 and the L(χf , s)

do not have poles for χ �= χ0, it follows that L(χf , 1) �= 0, so that L(χ, 1) �= 0
since both functions differ only by a finite nonvanishing Euler product.

The problem with this proof is that it assumes that we have proved that
ζQm

(s) has a pole at s = 1, which is not difficult but still not completely triv-
ial. It seems therefore appropriate to give another proof, which is in essence
identical, but avoids assuming any results on ζQm

(s).
Second proof. Set Fm(s) =

∏
χ mod m L(χ, s) (which is of course equal to

ζQm
(s) up to a finite number of Euler factors, but the whole point is that we

forget this). By Proposition 10.5.21 we have

Fm(s) =
∏
p�m

(1− p−fp s)−gp ,

where fp | φ(m) and gp = φ(m)/fp. Since

(1− p−fp s)−gp =
∑
k�0

(
gp + k − 1

k

)
1

pkfp s
,

it follows that Fm(s) is a Dirichlet series with nonnegative coefficients. Fur-
thermore, since the L(χ, s) can all be analytically continued to C (with a
simple pole at s = 1 for χ = χ0), so can the function Fm(s).

Assume by contradiction that there exists a character χ �= χ0 such that
L(χ, 1) = 0. Since L(χ0, s) has a simple pole at s = 1 it follows that
L(χ, s)L(χ0, s), hence also Fm(s), is holomorphic in the whole of C. By Corol-
lary 10.1.17 this implies in particular that the series Fm(s) converges for all
real s > 0, hence also the corresponding Euler product, which is a simple re-
arrangement of a series with positive terms (this would perhaps not be true if
s /∈ R or if s � 0). However, it is easy to see that this leads to a contradiction.
Indeed, since fp | φ(m) and gp � 1, for s > 1/φ(m) we have

Fm(s) =
∏
p�m

(1−p−fp s)−gp �
∏
p�m

(1−p−φ(m)s)−1 = ζ(φ(m)s)
∏
p|m

(1−p−φ(m)s) ,

and this is unbounded when s tends to 1/φ(m) from above, contradicting the
convergence of Fm(s) for s > 0.

It is clear that this proof is a rephrasing of the preceding one that avoids
any assumption about ζQm

, and in fact that proves that ζQm
(s) has a simple

pole at s = 1.
Third proof. This proof is a little different. We start again from the ubiq-
uitous function Fm(s) above (although it now seems natural to us, it was
Dirichlet’s important intuition to understand that it is simpler to treat L-
functions modulo m all at once than individually). From its Euler product,
or the fact that it is a Dirichlet series with nonnegative coefficients, the first
one being equal to 1, it follows that for s > 1 real we have Fm(s) � 1.
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Assume first that there exists a nonreal character χ such that L(χ, 1) = 0.
Then χ �= χ and χ is also a character modulo m. It follows that L(χ, s)L(χ, s)
has at least a double zero at s = 1. Since L(χ0, s) has only a simple pole, this
implies that Fm(s) would tend to 0 as s tends to 1 from above, contradicting
Fm(s) � 1. This part of the proof shows that nonreal characters are easy
to handle, and in fact it is immediate to deduce from this proof an explicit
lower bound for |L(χ, 1)|; see Exercise 30. All the difficulty comes from the
real characters.

Thus it remains to show that L(χ, 1) �= 0 when χ is a real character
modulo m. We could “cheat,” and appeal to Dirichlet’s results on such char-
acters: we may of course assume that χ is primitive, since L(χ, 1) is equal to
a finite nonvanishing Euler product times L(χf , 1), where χf is the primitive
character equivalent to χ. By Theorem 2.2.15 such characters have the form(

D
n

)
for D = χ(−1)m a fundamental discriminant. Furthermore, Dirichlet’s

theorem gives explicitly the value of L
((

D
n

)
, 1
)

in terms of a class number
and a regulator, and implies immediately that it is nonzero.

But this cheat proof is not in the spirit of the proofs that we want to
give, since Dirichlet’s theorem, while not very difficult, is not trivial. A more
proper proof is as follows. Let χ be a real character. Consider the function

g(s) =
ζ(s)L(χ, s)

ζ(2s)
.

Although we will not need it, note that ζ(s)L(χ, s) is equal to the Dedekind
zeta function of the quadratic field Q(

√
D).

It is immediately checked that

g(s) =
∏
p

⎛⎝1 +
∑
k�1

χ(p)k + χ(p)k−1

pks

⎞⎠ ,

and since χ(n) = 0 or ±1 we have χ(p)k + χ(p)k−1 � 0, so that g(s) is a
Dirichlet series with nonnegative coefficients and first coefficient equal to 1.
As usual we apply Corollary 10.1.17. If L(χ, 1) = 0 then g(s) is holomorphic in
the half-plane �(s) > 1/2, hence converges in that half-plane, so that g(s) � 1
for s > 1/2. On the other hand, when s tends to 1/2 from above, ζ(s)L(χ, s)
stays bounded and ζ(2s) tends to ∞, so g(s) tends to 0, a contradiction. ��

10.5.6 Application to Primes in Arithmetic Progression

Theorem 10.5.30 (Dirichlet). Let a and m be coprime integers. There ex-
ist infinitely many primes p that are congruent to a modulo m. More precisely,
the set of such primes has an analytic density 1/φ(m), where the analytic
density d(P ) of a set P of primes is defined, when it exists, by

d(P ) = lim
s→1+

∑
p∈P p−s∑

p p−s
.
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Proof. First note that for s > 1 real,

log(L(χ, s)) = −
∑

p

log(1− χ(p)p−s) =
∑

p

χ(p)
ps

− S(s) ,

where S(s) =
∑

p(log(1−χ(p)p−s)+χ(p)p−s) converges absolutely for �(s) >

1/2. It follows that the analytic behavior at s = 1 of
∑

p χ(p)p−s is the same
as that of log(L(χ, s)). Thus, since we know by Theorem 10.5.29 that L(χ, s)
can be analytically continued to C and that L(χ, 1) �= 0 (and of course
L(χ, s) �= 0 for �(s) > 1 by the Euler product), it follows that

∑
p

χ(p)
ps

=

{
O(1) if χ �= χ0 ,

− log(s− 1) + O(1) if χ = χ0 .

Now by orthogonality of characters, we know that

∑
χ mod m

χ(a)−1χ(n) =

{
0 if n �≡ a (mod m) ,

φ(m) if n ≡ a (mod m) .

Therefore∑
p≡a (mod m)

1
ps

=
1

φ(m)

∑
χ mod m

χ(a)−1
∑

p

χ(p)
ps

= − log(s− 1)
φ(m)

+ O(1)

by what we have seen above, and the result follows by taking quotients. ��

Remark. It has been a long-standing conjecture that there exist arbitrarily
long arithmetic progressions of prime numbers. In other words, for any N
there should exist coprime integers a and b such that ak + b is prime for each
k such that 0 � k < N (note that this does not at all follow from Dirichlet’s
theorem). This was proved in 2004 by Green and Tao [Gre-Tao].

10.5.7 Conjectures on Dirichlet L-Functions

We have already seen, and will see again below, that there are many other
types of L-functions than Dirichlet L-functions, and for those L-functions
even basic questions such as analytic continuation are still conjectural. I
would like to point out that even for Dirichlet L-functions some outstanding
conjectures remain. Evidently the most famous one is the extended Riemann
hypothesis (ERH), a generalization of the Riemann hypothesis for ζ(s): it
states that the nontrivial zeros of L(χ, s) in the sense of Definition 10.2.16
are such that �(s) = 1/2. Since we know from Exercise 67 that L(χ, s) �= 0
for �(s) = 1, it follows that the nontrivial zeros are exactly those s such that
0 < �(s) < 1.
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The ERH can in fact be split into two parts, the first part stating that
all nonreal zeros s such that 0 < �(s) < 1 are such that �(s) = 1/2, and
the second part stating that L(χ, s) does not vanish for 0 < s < 1, except
perhaps at s = 1/2. In fact a slightly stronger conjecture asserts that L(χ, s)
does not vanish for 0 < s < 1, including at s = 1/2. Note that this stronger
conjecture is perhaps more rash since there do exist Artin L-series that vanish
at s = 1/2.

On the first part, which exactly generalizes the RH for ζ(s), although a
huge amount of work has been done on this conjecture, which is one of the
most important of all mathematics, nothing much can be said (there are many
reasons to believe that the conjecture is true, although some people believe
the contrary). The second part, stating that L(χ, s) �= 0 for 0 < s < 1, is
of a different kind, although probably just as difficult. Such a real value of s
(which probably does not exist) is called a Siegel zero.

First of all, for a given χ it is not difficult to check: indeed, it has been
checked for odd real characters up to conductor 3 · 108 (see [Watk]), for even
real characters up to conductor 106, and for all characters up to conductor
103 at least; see Exercise 31 for a simple approach.

Second, it has been shown by Conrey and Soundararajan in [Con-Sou]
that a positive proportion of real characters χ are such that L(χ, s) �= 0 for
0 < s < 1.

10.6 Science Fiction on L-Functions

I thank D. Zagier for considerable help in writing this section, but of course
I am solely responsible for remaining errors or inaccuracies.

In my opinion, conjectures about special points and special values of L-
functions are the most beautiful in all of mathematics. In this section, I
would briefly like to describe the landscape, in very imprecise terms. Thus
the reader is warned that nothing is defined, and even that what is defined
is imprecise and/or misleading. The theory is however too beautiful to be
overlooked, even in a graduate-level book such as this one.

First of all, we have to give some idea of what an L-function is. It is
important to understand that there are (at least) two levels of L-functions,
each with their own difficulties, although the second level is almost totally
out of reach at present (but it is the most fascinating and important one).

10.6.1 Local L-Functions

To simplify, let us say that the first-level (or local) L-functions correspond
to finite fields, or to a p-adic field whose residue field is the finite field in
question. The typical example of such an L-function is the Hasse–Weil zeta
function that we have described in Theorem 2.5.26. A more general example
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is the local zeta function of an arbitrary algebraic variety, which is defined in
the same way as for curves. A special case is the Euler factor of the Dedekind
zeta function of a number field, where p−s is replaced by T . Indeed, let us
keep the notation of Theorem 2.5.26, where ζC is defined in the same way for
any algebraic variety.

Lemma 10.6.1. Let P (X) ∈ Z[X] be an irreducible monic polynomial, and
K = Q(θ), where θ is a root of P (X). If p is a prime number such that
p2 � disc(P ), then the Hasse–Weil zeta function of the 0-dimensional variety
defined by P (X) = 0 over Fp is the Euler factor at p of ζK(s), where p−s is
replaced by T .

Proof. If p2 � disc(P ), then a fortiori p does not divide the index [ZK :
Z[θ]], so the factorization of pZK into prime ideals mimics that of the poly-
nomial P (X) modulo p, i.e., if P (X) =

∏
1�j�g Pj(X)ej with deg(Pj) = fj

and the Pj monic, then pZK =
∏

1�j�g p
ej

j with f(pj/p) = fj . It follows that
the local factor at p of ζK(s) is equal to

∏
1�j�g(1− p−fj s)−1, and replacing

p−s by T gives
∏

1�j�g(1− T fj )−1.
On the other hand, we must compute the number N(pn) of solutions of

P (X) = 0 in Fpn . Since P (X) =
∏

1�j�g Pj(X)ej and the Pj(X) are pairwise
coprime, we have N(pn) =

∑
1�j�g Nj(pn), where Nj(pn) is the number of

roots of Pj(X) in Fpn . Since Pj(X) is irreducible, the theory of finite fields
tells us that Nj(pn) = 0 if fj � n, and Nj(pn) = fj if fj | n. Therefore

N(pn) =
∑

1�j�g
fj |n

fj .

It follows that∑
n�1

N(pn)
n

Tn =
∑
n�1

∑
1�j�g

fj |n

fjT
n

n
=

∑
1�j�g

∑
k�1

T kfj

k
= −

∑
1�j�g

log(1− T fj ) ,

so that ζC(T ) =
∏

1�j�g(1− T fj )−1, proving the lemma. ��

Thus, to summarize, first-level zeta functions correspond to the local sit-
uation, where only one prime is involved (the characteristic of the finite field
or of the residue field).

In this case, the definitive result is the extraordinary work of Deligne
that proves the generalization of Theorem 2.5.26 to arbitrary nonsingular
projective varieties. Thus, the first result, initially proved by Dwork, is that
the local zeta function is always a rational function of T . The second result
concerns the degree of its numerator and denominator, and the local func-
tional equation that it satisfies when T is changed into 1/(qdT ) (note that if
T = q−s then 1/(qdT ) = q−(d−s), so the local functional equation relates s
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and d−s). But by far the most difficult result to prove is the third, saying that
the complex modulus of the reciprocal roots of the zeta function is exactly
equal to qki /2 for specific integers ki. As we have seen with the Weil bounds,
this is also the essential ingredient that we need to estimate the number of
solutions of Diophantine equations over finite fields.

Deligne proved this by showing that, in accordance with the predictions
made by Weil, these reciprocal roots have an interpretation as the eigenvalues
of the “Frobenius map” x �→ xq acting on an appropriate cohomology group
of the variety over Fq.

The refinements of Deligne’s result have mainly dealt with finding corre-
sponding estimates for singular varieties (which are unfortunately unavoid-
able in actual practice), and also applications to other problems such as the
proof of the Ramanujan conjecture, also by Deligne: he shows that it can be
related to local L-functions of certain varieties.

In any case, even though many problems remain to be solved, the local
theory for a given variety is well understood.

10.6.2 Global L-Functions

In rough terms, a global L-function is obtained by taking the product of
local L-functions corresponding to all prime numbers p, with the variable T
replaced by p−s in the factor corresponding to p. The prototypical example
is the Riemann zeta function ζ(s) =

∏
p(1 − p−s)−1 and more generally the

Dedekind zeta function of a number field by the lemma that we have proved
above.

Thus, we can also define the global L-function of a variety. However, many
other L-functions of global type exist, not always “visibly” coming from a
variety: for instance L-functions associated with modular forms as already
mentioned above, Artin L-functions, etc. In the past decade, all this has
been included in a vast theory of objects called “mixed motives” on which
cohomology theories are defined, hence corresponding local and global L-
functions.

In any case, just as there were three important conjectures concerning
local L-functions (now all proved), there are now four conjectures concerning
global L-functions, but except for some of these conjectures for specific classes
of global L-functions, essentially nothing has been proved, as we shall see.

The first conjecture is the existence of analytic continuation to the whole
complex plane of the L-series, with a possible finite number of poles at specific
points. Indeed, all the L-series occurring in nature, say all motivic L-series,
whatever this means, converge absolutely for �(s) sufficiently large. The con-
jecture is that they can be meromorphically continued to the whole complex
plane with a finite number of poles.

The second conjecture is that this continued L-function should satisfy a
functional equation of a similar type to the ones that we have already seen:
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after multiplication by a finite number of exponential functions and gamma
factors of the form Γ(as + b) with positive rational a (in fact almost always
integral or half-integral) and complex b, one obtains a Λ-function that should
satisfy an equation of the type Λ(X, d−s) = WΛ(X∗, s), where X∗ is “dual”
to X in a certain sense, d is an integer, and W is a complex number of
modulus 1 (see Theorem 10.2.14 for a typical example).

We have already proved these two simplest conjectures for the Riemann
zeta function and for Dirichlet L-series, as easy consequences of the Poisson
summation formula. But already for the Dedekind zeta function the proof
is not at all easy, and in fact we have not given it in this book. As we have
mentioned, there are two, related, proofs. The original one, due to Hecke, uses
generalized theta functions and Poisson summation formulas, and is quite
painful, although completely explicit. A more recent one due to Tate involves
slightly simpler computations, and has the great advantage of explaining each
of the local factors including the gamma factors individually as part of the
global function, hence is considerably more elegant, although not that much
shorter. In any case, the proof is not easy.

For Artin L-functions, the situation becomes already much more con-
jectural. A beautiful (and not too difficult) result of R. Brauer says that
these L-functions can be analytically continued to the whole complex plane
to meromorphic functions (with possibly an infinite number of poles) with
the expected functional equation. On the other hand, apart from very special
classes (including of course the Dirichlet L-functions, which are special cases),
the fact that they can be holomorphically continued (with a finite number
of known poles) is completely conjectural. A large body of theory called the
Langlands program is intimately related to the Artin conjecture. In the past
30 years, only two (almost three) highly nontrivial cases of the Artin con-
jecture have been proved, using the complex machinery of the Langlands
program: recall that a finite subgroup of PSL2(C) is either cyclic, dihedral,
or isomorphic to A4, S4, or A5 (corresponding to the platonic solids); if the
projective image of an odd irreducible 2-dimensional representation is cyclic
or dihedral the Artin conjecture is easy to prove using the theory of induced
characters. On the other hand, the A4 and S4 cases are considerably more
difficult, and were solved only in the 1980s by Langlands and Tunnell. In
addition, considerable progress was made in 2000 on the A5 case by Buzzard
et al., explaining the “almost three” above. This incredibly small number of
solved cases shows the difficulty of the problem.

For global zeta functions of varieties of strictly positive dimension, the very
simplest case is that of elliptic curves over Q (i.e., genus 1). The analytic
continuation and functional equation of their L-series is one of the major
achievements of the second half of the twentieth century: it is the remarkable
work of Wiles, completed by Taylor–Wiles and proved in complete generality
by Breuil, Conrad, Diamond, and Taylor in [BCDT].
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Considering the difficulty of the above problem in the simplest case of
elliptic curves, it goes without saying that for more general L-functions of
varieties the problem is completely open.

On the other hand, some L-functions can naturally be extended analyti-
cally to the complex plane with a functional equation. This is for example the
case of L-functions attached to modular forms. In that case the two above
problems are easy. In fact, it is by showing that the L-function of an elliptic
curve over Q is equal to the L-function of a modular form that Wiles et al.
prove their result.

We come now to the third conjecture about global L-functions: the
(global) Riemann hypothesis. It says the following. Define a Λ-function to
be an L-function of one of the above types multiplied by its exponential
and gamma factors so that it satisfies a functional equation when s goes to
1 − s. The Riemann hypothesis states that the only zeros of a Λ-function
are on the line �(s) = 1/2 (Λ-functions do not have any trivial zeros since
they are canceled by the gamma factors; note also that the normalization
of the functional equation to be s �→ 1 − s is not natural. For example, the
Λ-function of an elliptic curve satisfies a natural functional equation when
s �→ 2 − s, and it is only by setting Λ1(s) = Λ(s + 1/2) that one recovers a
functional equation when s �→ 1−s.) Another way to say this is the following:
if Λ(ρ, d − s) = WΛ(ρ, s), the interval [0, d] is called the critical strip. Then
the conjecture is that the zeros of Λ should be exactly in the middle of the
critical strip, i.e., such that �(s) = d/2.

This is perhaps the most famous conjecture in mathematics, and you can
earn 1 million US dollars by proving it. In my personal opinion, however,
it is not as nice as the next one (which, by the way, can also earn you 1
million dollars, since these are two of the seven Clay prize problems). In any
case, this global Riemann hypothesis is not known for even the simplest L-
function, i.e., the Riemann zeta function. Note, however, that some other
L-functions having an Euler product and a functional equation, the Selberg
zeta functions, are known to satisfy the corresponding Riemann hypothesis,
but unfortunately they do not shed any light on our Riemann hypothesis since
there seems to be no relation between the two types of zeta function. One
of the reasons is that Selberg zeta functions are complex functions of order
2, while usual L- and ζ-functions have order 1 (see definitions and examples
preceding Lemma 10.7.5).

The fourth conjecture concerns special values of L-functions. Following
Deligne we define a special point of an L- or Λ-function as follows. If X is
some algebro-geometric object, for instance a representation, an algebraic
variety, or more generally a motive, we assume that we have a natural global
functional equation Λ(X, d− s) = WΛ(X∗, s), where Λ(X, s) = g(s)L(X, s),
|W | = 1, X∗ is another object “dual” to X, and g(s) is equal to a product
of exponential and gamma factors. A special point is then an integer k ∈ Z
such that g(k) and g(d − k) (which are the gamma factors of Λ(X, k) and
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Λ(X∗, d − k) respectively) do not have poles. In other words, they are the
integers such that both L(X, k) and L(X∗, d− k) can be computed from the
corresponding value of Λ by division by the gamma factor. For instance, for
the Riemann zeta function the special points are the strictly positive even
integers 2, 4, 6,. . . , and the negative odd integers −1, −3, −5,. . . . The strictly
negative even integers are not special points.

For any such X and each special point k Deligne associates a number
ωX,k �= 0, which is a period, in other words the integral of some algebraic
differential form over some cycle, and he conjectures that Λ(X, k)/ωX,k is an
algebraic number. For instance, in the case of the Riemann zeta function we
can choose ωX,k = πk if k is positive even, and ωX,k = 1 if k is negative and
odd.

Deligne’s conjecture has been proved in many cases, and has been verified
numerically in many others, for instance for higher symmetric powers of L-
functions associated with modular forms.

In some cases it is also possible to state precise conjectures giving ex-
plicitly the algebraic number occurring in Deligne’s conjecture. This is for
instance given by the Lichtenbaum conjectures; see more on this below.

An important generalization of the above is to compute the order of van-
ishing and the leading term of a “motivic” L-function at an integer s ∈ Z,
this time not necessarily special. A very general “conjecture” is as follows:
if an L-function vanishes to order r, say, at some s ∈ Z, there should ex-
ist a natural finitely generated abelian group of rank r closely related to
the L-function, and the leading term in the expansion around s should also
have some explanation in terms of this group and others. To understand this
general philosophy, the best approach is to give three examples.

The first and most classical one is the behavior of the Dedekind zeta
function ζF (s) of a number field F at s = 0. We have computed the order of
the zeros at integers in Corollary 10.5.2, and we have seen that at s = 0 there
is a zero of order r1 + r2 − 1, which is exactly the rank of the unit group of
F , so that is the group in question. We have also given the leading term in
Theorem 10.5.1.

A second example, which generalizes this, deals with the behavior of ζF (s)
at negative integers: one can define so-called higher K-groups Kn(F ) for
n � 0 such that in particular, K0(F ) � Z ⊕ Cl(F ) and K1(F ) � U(F ).
A theorem of Borel tells us that for k � 1, the group K2k(F ) is a finite
abelian group, that K2k−1(F ) is a finitely generated abelian group, and that
the rank r of K2k−1(F ) is exactly equal to the order of vanishing of ζF (s)
at s = 1 − k, in other words r1 + r2 when k � 3 is odd, and r2 when
k is even. In addition, K2k−1(F ) ⊗ Q is naturally a lattice in Rr, and its
covolume is equal to ζF (k). Finally, the Lichtenbaum conjectures state that
if F is totally real, for k ∈ Z�1 the rational number |ζF (1 − 2k)| is equal
to |K2k(F )|/|K2k+1,tors(F )|, where we denote by K2k+1,tors(F ) the torsion
subgroup of K2k+1(F ).
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A third example is that of the global L-function attached to an elliptic
curve over Q. In that case we have Λ(s) = (2π)−sΓ(s)L(s), and the functional
equation is Λ(2 − s) = ±Λ(s) for some sign ±. At s = 1, which is the
center of the critical strip, there may be a zero (there is always one if the
sign of the functional equation is −), of order r, say. The beautiful Birch–
Swinnerton-Dyer conjecture (see Conjecture 8.1.7), also a 1 million dollar
problem, says that r should be equal to the rank of the group of rational
points of the curve. As for the preceding examples, the BSD conjecture also
gives a conjectural value for the leading term. After remarkable work by
Coates–Wiles, Gross–Zagier, Kolyvagin, Rubin, and others, it can reasonably
be said that we understand quite well what happens for r = 0 and r = 1 (see
Theorem 8.1.8 and Corollary 8.1.9). On the other hand, for r � 2 not a
single example has been proved, although the numerical evidence (which is
very easy to compute; see Section 8.5) is absolutely overwhelming.

Work of Beilinson and Scholl made the above vague conjecture completely
precise by defining an actual group and regulator map of which one can
conjecture (and in some cases numerically check) that the rank is finite and
equal to the order of vanishing of the L-function, and that the covolume
corresponds to the leading term.

The conjectures mentioned above concerning special values, orders of van-
ishing, and leading terms, hence including the conjectures of Beilinson, Bloch–
Kato, Birch–Swinnerton-Dyer, Stark, Zagier, and others, form in my opinion
the most beautiful (and important) set of conjectures in the whole of math-
ematics.

For complete details on the material of this section, I refer to [Hul] and
[Rap-Sch-Sch].

10.7 The Prime Number Theorem

The prime number theorem (PNT for short) states that the number π(x)
of prime numbers less than or equal to x is asymptotic to x/ log x. This
was observed experimentally by Gauss and Legendre in the eighteenth and
early nineteenth centuries, and a program to prove the result was put for-
ward in a famous paper by Riemann on the zeta function in 1859. However,
it was not before 1896 that the result was finally proved independently by
Hadamard and de la Vallée Poussin, based on Riemann’s remarkable insights,
using similar methods of complex analysis. Since then many other proofs
have been found, including a so-called “elementary” proof by P. Erdős and
A. Selberg, i.e., one not using complex analysis, but it is much less natural
than the complex-analytic ones. Furthermore, the PNT can be stated with
an error term that can be reasonably estimated only with complex-analytic
techniques. In this section we will present two proofs. The first one is essen-
tially due to D. Newman [New], as rewritten by D. Zagier. It uses an original
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“Tauberian theorem,” and as with most proofs of this type, it cannot give
an error term. The second proof is due to H. Iwaniec [Iwa-Kow], and gives
a weak but nontrivial error term, and I thank E. Kowalski for showing it to
me.

10.7.1 Estimates for ζ(s)

All results on the PNT come from the knowledge of zero-free regions of ζ(s).
In this subsection we give some elementary but useful estimates for ζ(s) in
some regions of the complex plane, which are much more than we need for
the versions of the PNT that we will prove. As always for s ∈ C we use the
notation s = σ + it, where σ is the real part and t the imaginary part. Since
all the meromorphic functions f(s) that we use satisfy f(s) = f(s) we may
always assume t � 0, and to avoid trivial problems we will in fact implicitly
always assume that t is sufficiently large.

Proposition 10.7.1. For any fixed k � 0 we have ζ(k)(s) = O(log(t)k+1)
uniformly in the region 1−C/ log(t) � σ � 2, and in particular for s = 1+ it
(recall that we also assume t � t0 > 0).

Proof. By the Euler–MacLaurin formula for n = 1 we have for σ > 0,

ζ(s) =
N∑

m=1

1
ms

+
N1−s

s− 1
− N−s

2
− s

∫ ∞

N

B1({t})
ts+1

dt .

Differentiating k times (or applying Euler–MacLaurin directly to (log(m))k/ms)
we obtain

(−1)kζ(k)(s) =
N∑

m=1

(log(m))k

ms
− log(N)k

2Ns
+ k!N1−s

k∑
j=0

log(N)j

j!(s− 1)k−j+1

+
∫ ∞

N

log(t)k−1B1({t})
ts+1

(k − s log(t)) dt .

In the given region an easy estimate gives

(−1)kζ(k)(s) =
N∑

m=1

(log(m))k

ms
+ O

(
N1−σ(t log(N))k

tk+1

)
+ O

(
log(N)k−1(k/σ + log(N))

Nσ

)
.

Finally, if m � t we have |m−s| = m−σ � m−(1−C/ log(t)) � K/m for some
constant K. By choosing N = 	t
, it is immediate that we obtain the desired
estimate. ��

The basis of the initial proofs of the PNT is the first statement of the
following lemma.
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Lemma 10.7.2. For all σ > 1 and t ∈ R we have

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| � 1

and

−�
(

3
ζ ′(σ)
ζ(σ)

+ 4
ζ ′(σ + it)
ζ(σ + it)

+
ζ ′(σ + 2it)
ζ(σ + 2it)

)
� 0 .

Proof. By expanding the logarithm of the Euler product defining ζ(s) it
is clear that ζ(s) = exp(

∑
p

∑
k�1 p−ks/k), hence that

log(|ζ(s)|) =
∑

p

∑
k�1

cos(kt log(p))
kpkσ

.

The trick is to note that we have the positivity condition

3 + 4 cos(θ) + cos(2θ) = 2(1 + cos(θ))2 � 0 ,

so the logarithm of the first expression of the lemma is equal to∑
p

∑
k�1

3 + 4 cos(kt log(p)) + cos(2kt log(p))
kpkσ

� 0 ,

proving the first inequality. The second follows in the same way since the
logarithmic derivative of log |ζ(s)| is equal to �(ζ ′(s)/ζ(s)) and the derivative
of p−ks is (−k log(p))p−ks. ��

Corollary 10.7.3. For σ > 1 we have

1
ζ(σ + it)

= O

(
log(t)1/4

(σ − 1)3/4

)
.

Proof. Since ζ(σ) = 1/(σ−1)+O(1), by the lemma and Proposition 10.7.1
we have |ζ(σ + it)−4| = O(ζ(σ)3 log(t)) = O((σ − 1)−3 log(t)). ��

Corollary 10.7.4. The function ζ(s) does not vanish in the closed half-
plane �(s) � 1, and in particular on the line �(s) = 1.

Proof. Since the Euler product is convergent for �(s) > 1 and none of
its terms vanish, we know that ζ(s) �= 0 for �(s) > 1. Now assume by
contradiction that ζ(1 + it0) = 0 for some t0 ∈ R. The function ζ(s + it0)4

thus has a zero of order greater than or equal to 4 at s = 1. Since the function
ζ(s)3 has a pole of order exactly equal to 3 and ζ(s+2it) has no pole at s = 1,
it follows that ζ(s)3ζ(s + it0)4ζ(s + 2it0) tends to 0 as s tends to 1, and this
contradicts the first inequality of the lemma. ��

In fact, using the same method it is easy to show that ζ(s) has no zeros
in a region of the form σ > 1 − C/ log(t)9 and to give a uniform upper
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bound for 1/ζ(s) in that region; see Exercise 64. However, for our purposes
the above corollary is sufficient. In addition, it is easy to obtain much better
estimates for 1/ζ(s) (which we will not need for the versions of the PNT that
we prove here), but for this we need to appeal to some additional complex
analysis. Recall that an analytic function f(s) is said to be of order k (where
k ∈ Z�0) if it is an entire function (i.e., holomorphic in the whole of C,
although it is trivial to allow a finite number of poles) such that for all
ε > 0 we have log(|f(s)|) = O(|s|k+ε). The vast majority of functions in
current use have order 0 or 1 (polynomials being of order 0), for instance
the gamma function. Barnes’s multiple gamma functions (see Exercise 71
of Chapter 9) and Selberg’s zeta function mentioned above are examples of
functions of higher order. For L-series with functional equation it is a general
principle that they have the same order as the corresponding gamma factor.
For instance:

Lemma 10.7.5. The functions (s−1)ζ(s) and s(1−s)π−s/2Γ(s/2)ζ(s) have
order 1.

Proof. Indeed, for σ > 0 by the integral representation we have for a
suitable constant A, |Γ(s/2)| � |Γ(σ/2)| = O(eAσ log(σ)), and on the other
hand, Euler–MacLaurin immediately gives for σ � 1/2, |s − 1| > A, ζ(s) =
O
(|s| ∫∞

1
t−3/2 dt

)
+O(1) = O(|s|). It follows that s(1−s)π−s/2Γ(s/2)ζ(s) =

O(eA|s| log |s|) for σ � 1/2, |s − 1| > A, and since by the functional equation
it is invariant under s �→ 1 − s and has no poles, it is an entire function of
order 1. The result for (s− 1)ζ(s) follows. ��

The result from complex function theory that we need is Hadamard’s
factorization theorem:

Theorem 10.7.6. Let f(s) be an entire function of order at most equal to
k ∈ Z�0. For all s ∈ C we have the absolutely convergent product

f(s) = srePk (s)
∏
ρ

(
1− s

ρ

)
exp

⎛⎝ ∑
1�j�k

(s/ρ)j

j

⎞⎠ ,

where r is the order of f at s = 0 (r = 0 if f(0) �= 0), Pk(s) is a polynomial
of degree less than or equal to k, and the product is over all zeros of f(s)/sr

repeated with multiplicity.

Applying this to ζ(s) gives the following.

Corollary 10.7.7. Set b = log(2π) − 1 − γ/2. Then for all s ∈ C we have
the convergent product

ζ(s) =
ebs

s(s− 1)Γ(s/2)

∏
ρ

(
1− s

ρ

)
es/ρ ,
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the product being over all nontrivial zeros of ζ(s) (i.e., such that 0 � �(ρ) �
1).

Proof. We apply Hadamard’s theorem to the function

f(s) = s(1− s)π−s/2Γ(s/2)ζ(s) = 2(1− s)π−s/2Γ(s/2 + 1)ζ(s) .

Since the zeros of ζ(s) for s = −2k, k ∈ Z�1, are killed by the poles of
Γ(s/2 + 1) and the pole of ζ(s) is killed by 1− s, it follows that the zeros of
f(s) are the nontrivial zeros of ζ(s). Thus for suitable constants a0 and a1

we have

f(s) = a0e
a1s

∏
ρ

(
1− s

ρ

)
es/ρ ,

so that

ζ(s) =
a0e

bs

2(1− s)Γ(s/2 + 1)

∏
ρ

(
1− s

ρ

)
es/ρ

for b = a1 + log(π)/2. We deduce that a0 = 2ζ(0) = −1, and by logarithmic
differentiation that

ζ ′(s)
ζ(s)

= b− 1
s− 1

− Γ′(s/2 + 1)
2Γ(s/2 + 1)

+
∑

ρ

(
1

s− ρ
+

1
ρ

)
,

so that
ζ ′(0)
ζ(0)

= b + 1− Γ′(1)
Γ(1)

.

Using ζ ′(0) = − log(2π)/2 and Γ′(1) = −γ we obtain b = log(2π)− 1− γ/2.
��

We are now in a position to give a much better zero-free region than that
given by Exercise 64.

Theorem 10.7.8. There exists a constant C > 0 such that ζ(s) �= 0 for
t � t0 in the region

�(s) > 1− C

log(t)
.

Proof. Here we will use the second inequality of Lemma 10.7.2. Fix some
σ > 1 (we will see at the end of the proof how to choose it appropriately).
Since ζ(σ) = 1/(σ − 1) + O(1) and ζ ′(σ) = −1/(σ − 1)2 + O(1), we have
−ζ ′(σ)/ζ(σ) < 1/(σ−1)+O(1). From the above corollary and trivial bounds
on Γ′(s)/Γ(s) we also have

−ζ ′(s)
ζ(s)

= O(log(t))−
∑

ρ

(
1

s− ρ
+

1
ρ

)
,

so if we write ρ = β + iγ with 0 � β � 1 and γ ∈ R we have
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−�
(

ζ ′(s)
ζ(s)

)
= O(log(t))−

∑
ρ

(
σ − β

(σ − β)2 + (t− γ)2
+

β

β2 + γ2

)
.

Since σ > 1 � β � 0, we deduce that for all s ∈ C, −�(ζ ′(s)/ζ(s)) <
O(log(t)) with t = �(s). Now fix some nontrivial zero ρ0 = β0 + iγ0. Then
if s = σ + iγ0 (same imaginary part but real part σ > 1) we evidently have
the stronger inequality −�(ζ ′(s)/ζ(s)) < O(log(γ0)) − 1/(σ − β0). Putting
all this together in the second inequality of Lemma 10.7.2 applied to t = γ0

we obtain
3

σ − 1
− 4

σ − β0
+ O(log(γ0)) � 0 ,

in other words 3/(σ− 1)− 4/(σ−β0) > −A log(γ0) for some constant A that
we may choose strictly positive (since increasing A gives a worse estimate).
Solving for 1− β0 gives

1− β0 � 1− (σ − 1)A log(γ0)
3/(σ − 1) + A log(γ0)

.

Choosing for instance σ − 1 = 1/(2A log(γ0)) (this is why we must have
A > 0), we obtain 1− β0 � 1/(14A log(γ0)), proving the theorem. ��

Important Remarks. (1) Using a slight refinement of this proof, it is not
difficult to show that in the given region we have 1/ζ(s) = O(log(t)), and
this zero-free region can be shown to lead to the PNT in the form

π(x) = Li(x) + O(x exp(−c log(x)1/2))

for some c > 0, where Li(x) is as defined before Corollary 10.7.20 below.
(2) With much more difficulty one can still improve the zero-free region

hence the error term in the PNT. The best-known result is as fol-
lows. Set g(t) = log(t)2/3 log(log(t))1/3. There exists C > 0 such that
ζ(s) = O(g(t)) and 1/ζ(s) = O(g(t)) uniformly for σ > 1 − C/g(t), and
in particular ζ(s) �= 0 in that domain. This result is due to N. M. Korobov
and I. M. Vinogradov, and is described for instance in [Ell]. It leads to
the best known error term for the PNT:

π(x) = Li(x) + O(x exp(−c log(x)3/5 log(log(x))−1/5))

for some strictly positive constant c. This result has remained unchanged
for almost half a century, and even the tiny log(log(x))−1/5 factor has
not been improved.

10.7.2 Newman’s Proof

For s ∈ C and x ∈ R we set
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Φ(s) =
∑

p

log p

ps
and θ(x) =

∑
p�x

log p .

The proof proceeds through a series of lemmas.

Lemma 10.7.9. The function Φ(s)− 1/(s− 1) is holomorphic in the closed
half-plane �(s) � 1.

Proof. It is clear that the series for Φ(s) converges absolutely for �(s) > 1
and normally for �(s) � 1 + ε for any fixed ε > 0, hence defines an analytic
function in �(s) > 1. For �(s) > 1 the absolutely convergent Euler product
representation for ζ(s) implies that

−ζ ′(s)
ζ(s)

=
∑

p

log p

ps − 1
= Φ(s) +

∑
p

log p

ps(ps − 1)
.

The rightmost sum converges absolutely for �(s) > 1/2, proving that Φ(s)
extends meromorphically to �(s) > 1/2 with poles only at the pole s = 1 of
ζ(s) and at the zeros of ζ(s). At s = 1 we have a simple pole with residue
1. Furthermore, by Corollary 10.7.4 we know that ζ(s) does not vanish for
�(s) � 1, so that Φ(s)− 1/(s− 1) is holomorphic for �(s) � 1. ��

Lemma 10.7.10. We have θ(x) = O(x).

Proof. For a positive integer n we have

22n =
∑

0�k�2n

(
2n

k

)
�
(

2n

n

)
�

∏
n<p�2n

p = eθ(2n)−θ(n) .

Since θ(x) changes by O(log(x)) when x changes by a bounded amount, we
deduce that θ(x) − θ(x/2) � Cx for any C > log 2 and x � x0 = x0(C).
Summing this inequality for x, x/2, . . . , x/2r, where x/2r � x0 > x/2r+1, we
obtain θ(x) � 2Cx + O(1), proving the lemma. ��

Lemma 10.7.11. The integral∫ ∞

1

θ(x)− x

x2
dx

converges.

Proof. For �(s) > 1 we have by Stieltjes integration

Φ(s) =
∑

p

log p

ps
=
∫ ∞

1

dθ(x)
xs

= s

∫ ∞

1

θ(x)
xs+1

dx = s

∫ ∞

0

e−stθ(et) dt .

A reader not familiar with Stieltjes integration can prove directly (but slightly
more painfully) using Abel summation the equality Φ(s) = s

∫∞
1

θ(x)/xs+1 dx.
The last equality above of course follows from the change of variable x = et.

Assume for the moment the following analytic theorem.
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Theorem 10.7.12. Let f(t) be a bounded and locally integrable function for
t � 0, and assume that the function g(z) =

∫∞
0

f(t)e−zt dt (defined for �(z) >

0) extends to a holomorphic function for �(z) � 0. Then
∫∞
0

f(t) dt converges
and is equal to g(0).

Consider the function f(t) = θ(et)e−t − 1. By Lemma 10.7.10, f(t) is
bounded, and it is clearly locally integrable. Furthermore, the corresponding
function g(z) is equal to Φ(z +1)/(z +1)−1/z by the above formula. Lemma
10.7.9 tells us that g(z) extends into a holomorphic function for �(z) � 0.
Thus the hypotheses of the theorem are satisfied, so we deduce that

∫∞
0

f(t) dt
converges. Making the change of variable x = et proves Lemma 10.7.11. ��

We will prove the above theorem later. We now have essentially all the
ingredients to finish the proof.

Lemma 10.7.13. θ(x) ∼ x.

Proof. Assume that for some λ > 1 there exist arbitrary large x such that
θ(x) � λx. Since θ(x) is nondecreasing, we have∫ λx

x

θ(t)− t

t2
dt �

∫ λx

x

λx− t

t2
dt =

∫ λ

1

λ− u

u2
du > 0

for such x, contradicting the convergence of the integral from 1 to ∞. Similar
reasoning shows that the existence of λ < 1 such that there exist arbitrarily
large x such that θ(x) � λx leads to a contradiction. ��

Theorem 10.7.14 (Prime number theorem). If π(x) denotes the num-
ber of prime numbers less than or equal to x we have

π(x) ∼ x

log x
.

Proof. We have

θ(x) =
∑
p�x

log p �
∑
p�x

log x = π(x) log x .

On the other hand, for any ε > 0,

θ(x) �
∑

x1−ε �p�x

log p �
∑

x1−ε �p�x

(1−ε) log x = (1−ε) log x
(
π(x) + O(x1−ε)

)
.

It follows from the first inequality that

lim inf π(x)
log x

x
� lim inf

θ(x)
x

= lim
θ(x)
x

= 1

and from the second that
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lim sup π(x)
log x

x
� 1

1− ε
,

and since ε > 0 is arbitrary, that

lim sup π(x)
log x

x
� 1 ,

so that lim π(x) log x/x exists and is equal to 1. ��

It remains to prove the purely analytic Theorem 10.7.12, which is called
a Tauberian theorem.

Proof of Theorem 10.7.12. For T > 0 set gT (z) =
∫ T

0
f(t)e−zt dt. This

defines a holomorphic function for all z. We must show that limT→∞ gT (0) =
g(0).

Let R be large and let C be the boundary of the region

{z ∈ C/ |z| � R,�(z) � −δ} ,

where δ is chosen small enough (depending on R) so that g(z) is holomorphic
in and on C (δ exists since analyticity on �(z) � 0 implies analyticity on an
open set containing �(z) � 0). Thus by the residue theorem

g(0)− gT (0) =
1

2iπ

∫
C

(g(z)− gT (z))ezT (1 + z2/R2)
dz

z
.

Set B = supt�0 |f(t)|, which exists since f is bounded. On the semicircle
C+ = C ∩ {z/ �(z) > 0} we have

|g(z)− gT (z)| =
∣∣∣∣∫ ∞

T

f(t)e−zt dt

∣∣∣∣ � B

∫ ∞

T

|e−zt| dt =
Be−(z)T

�(z)

and

|ezT (1 + z2/R2)/z| = e(z)T 2�(z)
R2

,

since |1 + z2/R2| = 2 cos(θ) = 2�(z)/R for z = Reiθ. Thus on C+ the
integrand is bounded (in absolute value) by 2B/R2, so the contribution to
g(0)− gT (0) from the integral over C+ is bounded by B/R. For the integral
over C− = C∩{z/ �(z) < 0} we consider g(z) and gT (z) separately. Since gT

is entire, the path of integration for the integral involving gT can be replaced
by the semicircle C ′

− = {z ∈ C/ |z| = R, �(z) < 0}, so the contribution
coming from the integral involving gT over C ′

− is bounded in absolute value
by B/R exactly as before, since for �(z) < 0,

|gT (z)| =
∣∣∣∣∣
∫ T

0

f(t)e−zt dt

∣∣∣∣∣ � B

∫ T

−∞
|e−zt| dt =

Be−(z)T

|�(z)| .
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Finally, the remaining integral involving g(z) over C− tends to 0 as T →∞
since the integrand is the product of the function g(z)(1 + z2/R2)/z, which
is independent of T , by the function ezT , which tends to zero rapidly and
uniformly as T → ∞ on compact subsets of the half-plane �(z) < 0. Hence
lim supT→∞ |g(0) − gT (0)| � 2B/R. Since R is arbitrary, this finishes the
proof of the theorem. ��

Remark. The above proof can be extended to Dirichlet L-functions: using
exactly the same method as above and combining all L-functions correspond-
ing to a given modulus, it is easy to prove that L(χ, s) does not vanish for
all s ∈ C such that �(s) = 1. From this result, as above one can show
the stronger statement that primes congruent to a modulo m have density
1/φ(m) among all primes in the ordinary sense, i.e., when counting up to x;
see Exercise 67.

10.7.3 Iwaniec’s Proof

This proof has a different style from the above proof in that it does not use
a Tauberian theorem, and as a consequence has the advantage of giving a
nontrivial error term.

We begin by noting the following formula from elementary complex anal-
ysis:

Lemma 10.7.15. For all y > 0 we have for any σ > 1,

max(log(y), 0) =
1

2iπ

∫
(s)=σ

ys

s2
ds ,

the integral being on the vertical line �(s) = σ.

Proof. Indeed, the given integral is trivially less than O(yσ). Thus, if y < 1
it is immediate to check that we can shift the line of integration to the right
without changing the value of the integral, and as σ tends to +∞, yσ tends to
0. On the other hand, if y > 1 we shift the line of integration to some σ < 0,
catching a double pole at s = 0 with residue log(y). We now let σ tend to
−∞, and the residue formula tells us that the integral is equal to log(y). ��

We now introduce the following two functions, where k ∈ Z�0 and x � 0:

Gk(s) =
∑
m�1

μ(m)
ms

(log(m))k and

Fk(x) =
∑

1�m�x

μ(m)(log(m))k log(x/m)

=
∑
m�1

μ(m)(log(m))k max(log(x/m), 0) .
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The factor max(log(x/m), 0) is a smoothing factor, and is a very common
tool in analytic number theory (we have already used a similar ideal in the
definition of the function f(t) used to prove Voronoi’s error term in the circle
problem, see Section 10.2.6). We will remove it below.

Lemma 10.7.16. Let σ > 1 be fixed. There exists s with �(s) = σ such that

|Fk(x)| � xσ|Gk(s)||s|−1/2 .

Proof. From the above lemma we have

Fk(x) =
1

2iπ

∫
(s)=σ

xsGk(s)
s2

ds ,

and since |Gk(s)| is bounded by the convergent series
∑

m�1(log(m))k/mσ,
we have

|Fk(x)| � 1
2π

xσ sup
(s)=σ

|Gk(s)s−1/2|
∫
(s)=σ

|ds|
|s|3/2

.

Since |Gk(s)||s|−1/2 is a continuous and bounded function, the sup is attained.
Furthermore,∫

(s)=σ

|ds|
|s|3/2

= 2
∫ ∞

0

dt

(σ2 + t2)3/4
� 2

(
σ−3/2

∫ 1

0

dt +
∫ ∞

1

dt

t3/2

)
� 6 ,

proving the lemma. ��

Lemma 10.7.17. For σ > 1 and �(s) = σ we have

Gk(s) = O
(
(σ − 1)−(3/4)(k+1) log(2|s|)(9k+1)/4

)
,

where the implied constant depends only on k.

Proof. By definition we have Gk(s) = (−1)k(1/ζ(s))(k). If s is close to
1, say |s| � 2 (still with �(s) = σ > 1), then (1/ζ(s))(k) is bounded, so
the result is trivial, so we may assume that |s| > 2. By explicitly expanding
(1/ζ(s))(k), we see that ζ(s)k+1Gk(s) is a linear combination with coefficients
depending only on k of monomials of the form

∏k
j=0(ζ

(j)(s))aj with
∑

j aj =∑
j jaj = k. Since we assume |s| > 2, by Proposition 10.7.1 we have ζ(j)(s) =

O(log(t)j+1) = O(log(|s|)j+1), so that ζ(s)k+1Gk(s) = O(log(|s|)m), with

m = max
(aj )

∑
j

(j + 1)aj = max
(aj )

⎛⎝∑
j

jaj +
∑

j

aj

⎞⎠ = 2k .

Finally, by Corollary 10.7.3 we have |1/ζ(s)| = O((σ−1)−3/4 log(|s|)1/4) and
the lemma follows. ��
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Corollary 10.7.18. For x � 1 we have

Fk(x) = O
(
x log(x)(3/4)(k+1)

)
.

Proof. Combining Lemmas 10.7.16 and 10.7.17, and using the fact that
any power of log(|s|) is negligible compared to |s|1/2, we deduce that for
all σ > 1 we have Fk(x) = O(xσ(σ − 1)−(3/4)(k+1)), so that choosing σ =
1 + 1/ log(x) we obtain the desired conclusion. ��

Remark. If we estimated Fk(x) crudely by bounding μ(m) by 1, we would
obtain Fk(x) = O(x log(x)k). The above bound is thus better as soon as
k > 3.

We can now obtain the PNT in the following form.

Theorem 10.7.19. For any A > 0 we have

M(x) =
∑

1�m�x

μ(m) = O

(
x

log(x)A

)
.

Proof. We introduce the function

Hk(x) =
∑

1�m�x

μ(m)(log(m))k ,

which is the function Fk(x) from which we have removed the smoothing factor
log(x/m). It is easily related to Fk(x) as follows:

Fk(x + y)− Fk(x) = Hk(x) log
(

x + y

x

)
+

∑
x<m�x+y

μ(m)(log(m))k log
(

x + y

m

)

=
(
Hk(x) + O(y log(x)k)

)
log

(
x + y

x

)
,

as soon as y = o(x), say. It follows from the above corollary that

Hk(x) = O(y log(x)k) + O
(
(x2/y) log(x)(3/4)(k+1)

)
.

The optimal choice of y makes the two terms of approximately equal size,
and is thus y = x log(x)−Ak with Ak = (k − 3)/8, so that Hk(x) =
O(x log(x)k−Ak ).

Using partial (i.e., Abel) summation, we see that in the expression

M(x) =
∑

1�m�x

μ(m) =
∑

1�m�x

Hk(m)−Hk(m− 1)
(log(m))k
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we may up to a multiplicative constant replace Hk(x) by x log(x)k−Ak , hence
Hk(m)−Hk(m− 1) by log(x)k−Ak , so that

|M(x)| = O

⎛⎝ ∑
1�m�x

(log(m))−Ak

⎞⎠ = O(x log(x)−Ak ) .

Since Ak = (k− 3)/8 tends to infinity with k and k is arbitrary, the theorem
follows. ��

For the final result, we define a slight variation of the function θ(x) as
follows:

ψ(x) =
∑

1<pa �x

log(p) ,

where the sum is over all nontrivial prime powers up to x (no relation to
the logarithmic derivative of the gamma function). It is easy to see that
ψ(x) = θ(x) + O(x1/2), so that estimating ψ and θ is essentially the same.
Finally, we define

Li(x) =
∫ x

0

dt

log(t)
,

where the divergent integral is to be understood in the sense of the Cauchy
principal value, in other words

Li(x) = lim
ε→0+

∫ 1−ε

0

+
∫ x

1+ε

dt

log(t)

(see Exercise 68). Note that this is completely unrelated to the polylogarithm
functions Lik(x) defined in Exercise 22 of Chapter 4. By successive integration
by parts, we have

Li(x) =
x

log(x)

⎛⎝ ∑
0�j�m

j!
log(x)j

+ O

(
1

log(x)m+1

)⎞⎠ .

Corollary 10.7.20. For all A > 0 we have

ψ(x)− x = O

(
x

log(x)A

)
,

θ(x)− x = O

(
x

log(x)A

)
, and

π(x)− Li(x) = O

(
x

log(x)A

)
.
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Proof. (Sketch). Since this is very standard (in contrast to the above proof
due to Iwaniec), we give only a sketch. Let d(n) be the number of divisors of
n and

Δ(x) =
∑

1�n�x

(log(n)− d(n) + 2γ) .

The standard application of the method of the hyperbola (
∑

1�n�N d(n) is
equal to twice the number of integral points under the hyperbola xy = N
with x � N1/2 minus the number of integral points in the square [0, N1/2]2)
shows that Δ(x) = O(x1/2). In addition, Abel summation gives

ψ(x)− x + 2γ =
∑

dk�x

μ(d)(log(k)− d(k) + 2γ)

=
∑

k�x1/2

(log(k)− d(k) + 2γ)M(x/k) +
∑

d�x1/2

μ(d)(Δ(x/d)−Δ(x1/2)) ,

and applying the estimate for Δ(x) as well as the estimate for M(x) given by
the theorem gives the estimate for ψ(x)− x. As mentioned, the estimate for
θ(x) follows, and the estimate for π(x) is obtained in a way similar to that
used to obtain the PNT in the first proof. ��

10.8 Exercises for Chapter 10

1. Let a ∈ Z and n � 1.

(a) Assume that n � 2 and let p be a prime divisor of n. By writing n = pvn1

for p � n1, and similarly d = pwd1, prove that
∑

d|n μ(n/d)ad ≡ 0 (mod pv).

Deduce that for all n � 1 we have
∑

d|n μ(n/d)ad ≡ 0 (mod n) (note that this

is a consequence of Corollary 2.4.14, but only when a is a prime power).
(b) Deduce that

∑
d|n φ(n/d)ad ≡ 0 (mod n).

2. This exercise is a sequel to Exercise 32 of Chapter 2. Let K be a commutative
field. For any P ∈ K[X] different from 0, define the Möbius function as follows,
analogously to Proposition 10.1.10: if P is not squarefree, set μ(P ) = 0; oth-

erwise, set μ(P ) = (−1)ω(P ), where ω(P ) is the number of irreducible monic
divisors of P .

(a) Prove that μ is multiplicative, in other words that μ(PQ) = μ(P )μ(Q) when
gcd(P, Q) = 1.

(b) Let N ∈ K[X], N �= 0. Show that

∑
P |N

P monic

μ(P ) =

{
1 if deg(N) = 0,

0 if deg(N) > 0,

so that this is a perfect analogue of the Möbius function.
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(c) (Stickelberger, Swan.) From now on, assume that K = Fq , where q is odd.
Denote by �(P ) the leading coefficient of P . Using Exercise 32 of Chapter 2,
show that

μ(P ) =

⎧⎪⎪⎨⎪⎪⎩
(−1)deg(P )

(
disc(P )

q

)
if

(
�(P )

q

)
= 1,

(−1)deg(P ′)+1

(
disc(P )

q

)
if

(
�(P )

q

)
= −1.

For this, recall that disc(PQ) = disc(P ) disc(Q)R(P, Q)2, where R(P, Q) is the

resultant of P and Q, and that disc(P ) = (−1)deg(P )(deg(P )−1)/2R(P, P ′)/�(P ),

so that disc(�P ) = �deg(P )+deg(P ′)−1 disc(P ). Note also that we do not neces-
sarily have deg(P ′) + 1 = deg(P ).

(d) (Conrad.) As an example, let H ∈ F5[X]. Show that either H(0) = 0, in which
case X3 | (H(X)5 + X3), or

μ(H(X)5 + X3) =

(
�(H)

5

)deg(H)

.

In particular, if H is monic or has even degree, the polynomial H(X)5 + X3 is
never irreducible in F5[X].

(e) Find a polynomial H of degree 3 such that H(X)5 + X3 is irreducible.

3. Show that σ−t(n) = n−tσt(n) directly, and using formal Dirichlet series.

4.

(a) Find the formal Dirichlet series corresponding to a(n) = d(n)2. What is the
order of the pole at s = 1 of the corresponding numerical Dirichlet series?

(b) More generally, find the order of the pole of the numerical Dirichlet series
corresponding to a(n) = d(n)k for k ∈ Z�1.

(c) Same questions for a(n) = d(nk), and in addition prove the formula d(nz) =∑
m|n zω(m).

5.

(a) If k � 1 is a constant, find the formal Dirichlet series corresponding to d(kn)
in terms of ζ(s) and a finite Euler product depending on k.

(b) Same question for R(k, n)d(n), where R(k, n) is Ramanujan’s sum defined in
Proposition 10.1.6.

6. Similarly to the above exercise, using the definition and properties of the Ra-
manujan τ function given in the text, find the formal Dirichlet series corre-
sponding to τ(n)2 in terms of the formal Dirichlet series corresponding to the
convolution of the completely multiplicative functions α2 and β2.

7. Using similar reasoning to that of Proposition 10.1.15, show the existence of an
abscissa of convergence for a Dirichlet series.

8. Assume that
∑

n�1 a(n)/ns converges (not necessarily absolutely). Show that∑
n�1 a(n)/ns′ converges absolutely when �(s′) > �(s) + 1. (Hint: as in the

power series case, use only the fact that a(n)/ns is bounded.) Deduce from this
that the difference between the abscissas of absolute and ordinary convergence
is less than or equal to 1.

9. Let f1 and f2 be two Dirichlet series with respective abscissas of absolute conver-
gence σ1 and σ2. Show that when σ1 �= σ2, the abscissa of absolute convergence
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of f1f2 is equal to min(σ1, σ2), while when σ1 = σ2, the abscissa of absolute con-
vergence of f1f2 is greater than or equal to this common value. In particular, if
a Dirichlet series f is invertible, show that the abscissa of absolute convergence
of its inverse is equal to that of f .

10. Show that the series defining ζ(s) diverges (absolutely and in the ordinary sense)
for any s such that �(s) = 1.

11. Show that the series
∑

n�1(−1)n/ns converges for �(s) > 0, hence that its
abscissa of convergence is σ = 0.

12. Prove Corollaries 10.3.2, 10.3.3, and 10.3.4.

13. Prove Proposition 10.3.10.

14. Generalize Propositions 10.3.8, 10.3.10, and Corollary 10.3.9, to the case that
D is congruent to 0 or 1 modulo 4, not necessarily fundamental.

15.

(a) Prove that for all primes p > 3 we have L
((

.
p

)
,−(p + 1)/2

)
∈ Z, where

(
n
p

)
is the Legendre symbol.

(b) Generalize to L
((

.
p

)
,−(p + 4k + 1)/2

)
for k ∈ Z \ {−1}.

16. (J. Sondow.) Prove that for all s ∈ C \ {1} we have the convergent series

(1 − 21−s)ζ(s) =
∞∑

n=0

1

2n+1

n∑
k=0

(−1)k

(
n

k

)
1

(k + 1)s
,

and estimate the speed of convergence of this series.

17. Find an integral representation for Γ(s)ζ(s, x) and deduce from it and Proposi-
tion 10.2.2 another proof of analytic continuation and special values at negative
integers of ζ(s, x).

18. Using the Euler–MacLaurin summation formula, or directly, show that for −1 <
�(s) < 0 we have

ζ(s) = −s

∫ ∞

0

B1({t})
ts+1

dt .

Using Theorem 9.1.20 and Corollary 9.6.36, give another proof of the functional
equation of ζ(s) (in fact this is a hidden way of using the Poisson summation
formula).

19. Using the functional equation of ζ(s), show that for k ∈ Z�1 we have

ζ′(−2k) = (−1)k (2k)!

2

ζ(2k + 1)

(2π)2k
.

20. Let ε = ±1. Show that∑
D fundamental

sign(D)=ε

1

|D|s =
1

2ζ(2s)

(
εL(χ−4, s) +

(
1 − 1

2s
+

2

22s

)
ζ(s)

)
,

where the sum is over fundamental discriminants (including 1) whose sign is
equal to ε. For instance, ∑

D fundamental

1

D2
=

105

8π2
.
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21. For τ ∈ H set

R(τ) =
∑
n∈Z

1

cos(πnτ)
.

(a) Using Exercise 101 of Chapter 9, prove that R(−1/τ) = τR(τ). Since clearly
R(τ + 2) = R(τ) this shows that R is a modular form of weight 1 on the same
group as the function

θ(τ) = θ(1, τ) =
∑
n∈Z

eiπn2τ .

(b) Show that in fact R(τ) = θ(1, τ)2.

22. (D. Zagier.) Let χD =
(

D
.

)
be the Kronecker symbol. Assume that D is odd

and squarefree, and set ZD(n) = 0, 1,
(

D
2

)
, −1, 0, 1, −(D

2

)
, −1 for n ≡ 0, 1, 2,

3, 4, 5, 6, 7 modulo 8. Prove that

L(χD , s) =
ζ(2s)

L(χ−4, s)

∑
n�1

ZD (n)

ns

∑
b mod n

b2≡−D (mod n)

1

(note that the congruence is b2 ≡ −D (mod n), not b2 ≡ D (mod n)).

23. Define χ(n) = (1 +
√

5)/2, 1, 0, 0, 1 when n ≡ 0, 1, 2, 3, 4 modulo 5. Note that
χ is not a character. Prove that L(χ, s) satisfies the same functional equation
as L(χ5, s). In fact, show that χ and χ5 form a basis for functions modulo 5
satisfying that functional equation.

24. Let χ be a nontrivial character modulo m. Prove that

L(χ, 1) =
∑
n�1

χ(n)

n
=
∏
p

(
1 − χ(p)

p

)−1

;

in other words, prove that the sum and product converge, and that they both
converge to L(χ, 1).

25. Let χ(n) =
(−12

n

)
. Find all real numbers t such that L(χ, it) = 0.

26. For a sufficiently nice function f define D(f) by the formula

D(f)(x) =
1

2

(
xf(x) − 1

2π
f ′(x)

)
.

(a) If, as usual, F(f) denotes the Fourier transform of f , show that for all n � 0
we have F(Dn(f)) = inDn(F(f)).

(b) Set f0(x) = e−πx2
, fn = Dn(f0), and Λn(s) = M(fn)(s), where M(f) denotes

the Mellin transform of f . Show that Λ0(s) = (1/2)π−s/2Γ(s/2) and that

Λn+1 =
1

2

(
Λn(s + 1) +

s − 1

2π
Λn(s − 1)

)
.

(c) Deduce that there exist polynomials Pn and Qn in R[X] such that

Λ2n(s) =
1

2
π−s/2Γ(s/2)Pn(s) and Λ2n+1(s) = π−(s+1)/2Γ((s+1)/2)Qn(s) .
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(d) Compute Pn and Qn for 0 � n � 2, and show that they satisfy the recurrences

Pn+1(s) =
1

8π
(sPn(s + 2) + (2s − 1)Pn(s) + (s − 1)Pn(s − 2)) and

Qn+1(s) =
1

8π
((s + 1)Qn(s + 2) + (2s − 1)Qn(s) + (s − 2)Qn(s − 2)) .

27. The goal of this exercise is to prove the Riemann hypothesis. . . for the functions
Λn of the preceding exercise, which bear some resemblance to the functions
Λ(χ, s) attached to a Dirichlet character.

(a) Let α ∈ C be such that �(α) > 0. Prove that if �(z) > 0 we have |z − α| <
|z + α|, while if �(z) < 0 we have |z − α| > |z + α|.

(b) Let P ∈ C[X] be a nonconstant polynomial whose roots all have strictly positive

real part. Deduce from (a) that all the roots of the polynomials P (X)±P (−X)

are purely imaginary, where P denotes the polynomial obtained from P by
complex conjugating all the coefficients.

(c) Let P ∈ R[X] be a nonconstant polynomial that is either odd or even and whose
roots are purely imaginary. Prove that the same is true for the polynomials
P (X − u) ± P (X + u), where u ∈ R.

(d) Let P ∈ R[X] be a nonconstant polynomial that is either odd or even and whose
roots are purely imaginary. Prove that the same is true for the polynomials
Qu(X) = (X −u)P (X − 2) + 2XP (X) + (X + u)P (X + 2) for all u > 0. (Hint:
apply (b) to the polynomial (X −u)(P (X)+P (X −2)) and a suitable sign ±.)

(e) Deduce that for n � 1 all the zeros of the functions Λn of the preceding exercise
are on the line �(s) = 1/2 (I thank D. Bump for asking this question).

28. Assume the Riemann hypothesis. Using similar methods to that of the preced-
ing two exercises, but using also Hadamard’s factorization theorem (Corollary
10.7.7), prove that the only nontrivial zeros of the functions

(s − 1)ζ(s + 1) ± 2πζ(s − 1) and

s(s + 1)ζ(s + 1) ± 2π(s − 2)ζ(s − 1)

(as well as an infinite number of examples of the same type) are on the line
�(s) = 1/2 (the trivial zeros being s = −1 − 2n with n � 1 for the first two
functions, and n � 0 for the last two). Surprisingly enough, one can show using
the methods of [Tay] that these results are true unconditionally, in other words
without assuming the Riemann hypothesis.

29. Let χ be a periodic function of period m, not necessarily a character, and assume
that

∑
0�r<m χ(r) = 0. Prove that as t tends to 0 from above, then for all N � 1

we have ∑
n�1

χ(n)e−n2t =

N−1∑
n=0

(−1)nL(χ,−2n)
tn

n!
+ O(tN ) and

∑
n�1

χ(n)ne−n2t =

N−1∑
n=0

(−1)nL(χ,−2n − 1)
tn

n!
+ O(tN ) .

30.

(a) Show that the upper bound for |L(χ, 1)| given in Proposition 10.3.16 (1) is still
valid for |L(χ, s)| if s ∈ R>1 (better bounds are possible, but we need one that
is uniform in s).
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(b) Using a completely similar method, find a uniform upper bound for |L′(χ, s)|
for s ∈ R>1.

(c) Deduce from the third proof of the nonvanishing of L(χ, 1) given in the
text that for any nonreal character χ modulo m and any s ∈ R>1 we have
|L(χ, s)|2ζ(s)| � C(m) for an explicit constant C(m) not depending on s.

(d) Using (b), deduce an explicit lower bound for |L(χ, 1)| when χ is nonreal.

31. Let χ be a nontrivial character modulo m, as usual let e = 0 or 1 such that
χ(−1) = (−1)e , and for all k � 0 set Sk(χ) =

∑
1�r�m χ(r)(m − 2r)k .

(a) Show that Sk(χ) = 0 if k �≡ e (mod 2) and if k = 0.
(b) Using Corollary 9.6.3, show that

L(χ, s) = 2
∑

k�1−e

(
s + 2k + e − 1

2k + e

)
(2s+2k+e − 2)ζ(s + 2k + e)

22k+ems+2k+e
S2k+e(χ) ,

and give the speed of convergence of this series.
(c) Assume now that χ is a nontrivial real character. Show that if k � (m −

2) log(2)/2 and k ≡ e (mod 2) then Sk(χ) > 0.
(d) Deduce from this that if χ is a nontrivial real character and Sk(χ) � 0 for all

k ≡ e (mod 2) such that k < (m − 2) log(2)/2 then L(s, χ) > 0 for 0 < s � 1,
and in particular L(s, χ) does not vanish in that interval.

(e) Using a small computer program, show that the only real character modulo m
with m � 100 that does not satisfy the above condition occurs for m = 68,
but show nonetheless that the corresponding L-function is strictly positive for
0 < s � 1.

(f) Adapt the above method to characters that may be nonreal, by considering
suitable expressions of the form �(Sk(χ)) + λ	(Sk(χ)), and show in this way
that all L-functions of Dirichlet characters of conductor m � 30 do not vanish
for 0 < s � 1, except perhaps for a single character modulo 19 and its conju-
gate, and show by a specific argument that the result is also true for these two
characters.

32. Using approximation techniques, prove that the results of Theorem 10.2.17
are still valid if we assume for instance that f has a finite number of simple
discontinuities, that it is piecewise C∞, piecewise monotonic, and that f and
all its derivatives tend to 0 faster than any power of |x| as |x| → ∞.

33. With the notation of the examples following Theorem 10.2.17, prove the trivial
bounds Δ(X) = O(X1/2).

34. Imitating the proof of Voronoi’s Theorem 10.2.18, prove the estimate Δ(X) =

O(X1/3) in the divisor problem explained in the examples given after Theorem
10.2.17.

35. Give an alternative proof of Theorem 10.3.1 using Theorem 9.1.20.

36. Fix τ ∈ C such that 	(τ) > 0, and let Λ = Z + Zτ be the lattice generated by
1 and τ . For z /∈ Λ set

℘(z) = ℘(z, τ) =
1

z2
+
∑ ′
ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
,

where the sum is over all nonzero elements of Λ (this is of course the Weierstrass
℘-function for Λ), and for all k ∈ Z�3 set
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Gk(τ) =
∑ ′
ω∈Λ

1

ωk
=

∑ ′
(m,n)∈Z2

1

(m + nτ)k

(these are the ordinary Eisenstein series of weight k).

(a) Prove that all the above series converge absolutely, that Gk(τ) = 0 if 2 � k, and
that around z = 0 we have the expansion

℘(z) =
1

z2
+
∑
k�1

(2k + 1)G2k+2(τ)z2k .

(b) Show that for all z /∈ Λ and all α ∈ Λ we have ℘(z + α) = ℘(z).
(c) Set g2 = 60G4 and g3 = 140G6 and

f(z) = (℘′(z))2 − 4℘(z)3 − g2℘(z) − g3 ,

so that f(z + α) = f(z) for all α ∈ Λ. Show that f(z) is an entire bounded
function in the whole complex plane that vanishes at z = 0, and deduce from
Liouville’s theorem that f is identically zero.

(d) Deduce that ℘′′(z) = 6℘(z)2 − 30G4, and for k � 4 the recurrence

G2k(τ) =
3

(k − 3)(4k2 − 1)

k−2∑
j=2

(2j − 1)(2k − 2j − 1)G2j(τ)G2k−2j(τ) .

37. (Sequel to the preceding exercise.) In this exercise we specialize to the cases

τ = i and τ = ρ = (−1+
√

3i)/2, a primitive cube root of unity, which we treat
together. We let w be the number of roots of unity in Q(τ), so that w = 4 when
τ = i and w = 6 when τ = ρ.

(a) Show that Gk(τ) = 0 if w � k, and that Gw(τ) > 0.

(b) Define Ωw > 0 by the formula Ωw = (dwGw(τ))1/w , with d4 = 15 and d6 = 945.

Show that if we define the Bernoulli–Hurwitz numbers H
(w)
wk by the formula

Gwk(τ) = (−1)k−1 H
(w)
wk

(wk)!
(2Ωw)wk ,

the Hwk are rational numbers of alternating signs satisfying the recurrence

H
(w)
wk = − 6

(wk − 6)(w2k2 − 1)

k−1∑
j=1

(wj − 1)(wk − wj − 1)

(
wk

wj

)
H

(w)
wj H

(w)
wk−wj

for k � 2.
(c) Show that

H
(4)
4 =

1

10
, H

(4)
8 = − 3

10
, H

(4)
12 =

567

130
, H

(4)
16 = −43659

170
, H

(4)
20 =

392931

10
,

H
(6)
6 =

1

84
, H

(6)
12 = − 25

1092
, H

(6)
18 =

1375

1596
, H

(6)
24 = −257125

1092
,

and H
(6)
30 =

739234375

2604
.

(d) (Hard; for help, see [Kat2] and [Bar].) Find arithmetic properties of the H
(w)
wk

analogous to those of Bernoulli numbers (you may need to use results of Chap-
ter 11 for this). More precisely:
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– Prove that the denominator of H
(w)
wk is equal to ew times the product of

primes p ≡ 1 (mod w) such that (p − 1) | wk, where e4 = 2 and e6 = 12.

In particular, the denominator of H
(4)
4k is always divisible by 10 and that of

H
(6)
6k is always divisible by 84.

– More precisely, prove the following analogue of the Clausen–von Staudt con-

gruence: if (p − 1) � wk then H
(w)
wk is p-integral, while if (p − 1) | wk then

H
(w)
wk + a

wk/(p−1)
p is p-integral, where p + 1 − ap is the number of points on

the elliptic curve y2 = x3 −4x for w = 4, or on the elliptic curve y2 = x3 −1
for w = 6 (see Corollary 8.5.2 and Proposition 8.5.3 for the explicit formulas
for the ap).

– Prove the analogue of the Kummer congruences, which will also involve ap .
(e) Show that the numerator also has interesting arithmetic properties, contrary

to the numerator of Bernoulli numbers; in particular, give a precise statement
implying that it is highly divisible by primes p ≡ −1 (mod w). (Hint: its
valuation at such primes is very close to wkp/(p2 − 1).)

(f) By computing ℘(2/w), show that

Ω4 = 2

∫ 1

0

1√
1 − t4

dt =

∫ 1

0

1√
t − t3

dt =

∫ ∞

1

1√
t3 − t

dt

and Ω6 = 3

∫ 1

0

1√
1 − t3

dt =
√

3

∫ ∞

1

1√
t3 − 1

dt =

∫ 1

−∞

1√
1 − t3

dt

(see Section 7.3.2), and by using either the numerical integration methods given
in Section 9.3.2 or, better, the formula given in Exercise 38 (b), show that

Ω4 = 2.622057554292119810464839589891119413682754951431623 · · ·
and Ω6 = 4.206546315976362783525057237150882406389066616271958 · · ·

Remark. The fact that G2k is equal to a rational number times the 2kth power
of a fixed “period” 2Ω is valid more generally when τ is a root of a quadratic
polynomial with integral coefficients, in other words when τ is a CM point. This
follows from the basic properties of complex multiplication, that we have already
mentioned. However, even more generally we can also define Bernoulli–Hurwitz
numbers as soon as g2 and g3 are rational, and they also satisfy Clausen–von
Staudt and Kummer type congruences; see [Kat2] and [Bar].

38. Recall from Exercise 36 that for k ∈ Z�3, 	(τ) > 0, and Λ = Z + Zτ we define

Gk(τ) =
∑ ′
ω∈Λ

1

ωk
=

∑ ′
(m,n)∈Z2

1

(m + nτ)k
,

and as usual set q = e2iπτ , so that |q| < 1.

(a) By comparing the formula for π cotan(πx) given in Proposition 9.6.24 and its
Taylor expansion, prove that for k ∈ Z�3 we have

∑
n∈Z

1

(n + τ)k
= (−1)k (2iπ)k

(k − 1)!

∑
m�1

mk−1qm .

(b) Deduce that for k ∈ Z�2 we have
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G2k(τ) = (−1)k−1 (2π)2k

(2k)!
B2k

(
1 − 4k

B2k

∑
n�1

σ2k−1(n)qn

)

= (−1)k−1 (2π)2k

(2k)!
B2k

(
1 − 4k

B2k

∑
n�1

n2k−1qn

1 − qn

)
.

(c) Deduce from this and Exercise 36 that for k ∈ Z�1 we have the identity

∞∑
n=1

n4k+1

e2πn − 1
=

B4k+2

8k + 4
.

(d) (More difficult.) Using the function G2(τ) defined as the right-hand side of the
formula of (b), prove that

∞∑
n=1

n

e2πn − 1
=

B2

4
− 1

8π
=

1

24
− 1

8π
,

so that the identity of (c) is still valid for k = 0 with the corrective term 1/(8π).
(e) Show that for �(s) > 0 we have∫ ∞

0

xs−1

e2πx − 1
dx = (2π)−sΓ(s)ζ(s) .

(f) Deduce that for k ∈ Z�0 we have∫ ∞

0

x4k+1

e2πx − 1
dx =

B4k+2

8k + 4
.

Note that the equality of the expressions in (c) and (f) is in the same vein as
the well-known identity ∫ 1

0

x−x dx =
∑
n�1

n−n .

39. Show that for D = −3 and D = −4, we have

L′(χD , 0) = 2 log(Γ(1/|D|)) − log(2π) + cD log(|D|)
with c−3 = 1/6 and c−4 = −1/4.

40. Let χ be a nontrivial character modulo m such that χ(−1) = −1.

(a) Generalizing the technique used in the text for L′(χ, 0), compute L′(χ,−1) in
terms of the function

S(z) =

∫ z

0

log(sin(t)) dt .

See also Exercise 71 of Chapter 9.
(b) If in addition χ is primitive, find a formula for L(χ, 2).
(c) Compute explicitly S(π/2) and S(π).
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41. Compute L(
(−4

.

)
,−2k) and

L

((−4

.

)
, 2k + 1

)
=

∑
n�0

(−1)n

(2n + 1)2k+1

in terms of the Euler numbers En (see Definition 9.1.8).

42.

(a) Using Corollary 9.1.21, show that∏
p≡1 (mod 4)

p3 + 1

p3 − 1
=

105

4

ζ(3)

π3
and

∏
p≡3 (mod 4)

p3 + 1

p3 − 1
= 28

ζ(3)

π3
.

(b) Similarly, if G = L(χ−4, 2) denotes Catalan’s constant introduced in Exercise
40 of Chapter 9, show that∏

p≡1 (mod 4)

p2 + 1

p2 − 1
= 12

G

π2
and

∏
p≡3 (mod 4)

p2 + 1

p2 − 1
=

1

8

π2

G
.

43.

(a) Let f(t) be a C2 convex function. Prove the inequality

f(x) �
∫ x+1/2

x−1/2

f(t) dt .

(b) Using this for the function f(x) = 1/ sin(πx/m) with x ∈ ]0, π/2[, prove that
the upper bound in the Pólya–Vinogradov inequality can be improved to

2

π
d(m/f)f1/2(log(f) + log(4e/(3π)))

(note that using Euler–MacLaurin instead of (a) would only very slightly im-
prove the constant log(4e/(3π))).

44. Let χ be a nontrivial character modulo m, not necessarily primitive, and let
f > 1 be its conductor.

(a) Prove that

L(χ, 1) =
m∑

n=1

χ(n)

n
+ R with |R| � d(m/f)f1/2 log(f)

m
.

Note that this is a slightly more precise statement than Proposition 10.3.16 (2)
for β = 1, and that there is no factor 2 in the bound for R.

(b) Deduce from this and Proposition 10.2.5 that∣∣∣∣∣
m∑

r=1

χ(r)ψ(1 + r/m)

∣∣∣∣∣ � d(m/f)f1/2 log(f) .

Note that the right-hand side is exactly the one given by the Pólya–Vinogradov
inequality.

45. Set S(m) =
∑

d|m μ(d) log(d)/d.



268 10. Dirichlet Series and L-Functions

(a) Show that ∑
m�1

S(m)

ms
=

ζ′(s + 1)ζ(s)

ζ(s + 1)
.

(b) Show that

S(m) = − 1

m

∑
d|m

φ(d)Λ(m/d) ,

where as usual Λ(n) is the von Mangoldt function (see Proposition 10.1.14).
(c) Show that

S(m) = −φ(m)

m

∑
p|m

log(p)

p − 1
= −

∏
p|m

(
1 − 1

p

)∑
p|m

log(p)

p − 1
,

hence that S(m) < 0 for m > 1 and S(m) = O(log(log(m))) by Proposition
10.3.17 (1).

(d) Using Mertens’s theorem
∏

p�x(1− 1/p) ∼ e−γ/ log(x) prove that there exists

a strictly positive constant C such that |S(m)| > C log(log(m)) for infinitely
many m, and in particular that it is not bounded. (Hint: choose m equal to
the product of all prime numbers between x and x2 for large x.)

46. (I thank A. Granville for help on this exercise.)

(a) Prove that for all ε > 0 we have

∑
1�a,b,c,d�m

gcd(abcd,m)=1
ab≡cd (mod m)

1

abcd
= ζ(2)4ζ(4)

∏
p|m

(
1 − 1

p2

)4 (
1 − 1

p4

)−1

+ O

(
1

m1/2−ε

)
.

(Hint: prove that the main contribution is due to the terms where ab = cd.)
(b) Deduce an asymptotic estimate for∑

χ mod m
χ �=χ0

|L(χ, 1)|4

analogous to those of Proposition 10.3.17.

47. Fill in the details of the proof of Proposition 10.3.19 (2) and (3).

48. Recall that the Stirling numbers of the first kind are defined by

X(X − 1) · · · (X − r + 1) =
r∑

k=0

(−1)r−ks(r, k)Xk

(see the proof of Proposition 4.2.28 for another occurrence).

(a) Show that the rth derivative of log(t)m/t is given by the formula(
log(t)m

t

)(r)

=
m!

tr+1

∑
0�k�min(r,m)

s(r + 1, k + 1)
log(t)m−k

(m − k)!
.

(b) Deduce an explicit Euler–MacLaurin-type formula for computing to a given
accuracy the constants γm occurring in the expansion of ζ(s) around s = 1.
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(c) Using this formula, compute the γm to 28 decimal digits for 0 � m � 10 and
for m = 50 (the values are given in the text).

49. Set Am =
∑

k�1(−1)k−1 log(k)m/k.

(a) Compute Am as a linear combination of the γj for 0 � j � m − 1.
(b) Deduce the following recurrence for the γm :

γm =
log(2)m+1

(m + 1)(m + 2)
− Am+1

(m + 1) log(2)
− 1

m + 1

m−1∑
j=0

(
m + 1

j

)
log(2)m−jγj .

(c) Using the built-in sumalt function of Pari/GP, which can compute efficiently
sums of alternating series, compute values of γm and compare the efficiency of
this computation with that of the preceding exercise.

50. By Proposition 10.3.19 and Cauchy’s formula (or Fourier analysis), for any ρ > 0
we have

γm =
(−1)mm!

2πρm

∫ 2π

0

ζ
(
1 + ρeiθ

)
e−imθ dθ ,

and this integral can be computed efficiently to high accuracy using Algorithm
9.3.2. Compare the efficiency of this method to that of the preceding two exer-
cises.

51. Define γm(x) by the formula

γm(x) = lim
N→∞

(
N∑

k=1

log(k + x − 1)m

k + x − 1
− log(N + x − 1)m+1

m + 1

)
.

(a) Show that this limit exists for x /∈ Z�0.
(b) Prove that γ0(x) = −ψ(x), where ψ(x) = Γ′(x)/Γ(x) is the logarithmic deriva-

tive of the gamma function.
(c) Generalizing Proposition 10.3.19 (1), show that

ζ(s, x) =
1

s − 1
+

∑
m�0

(−1)m γm(x)

m!
(s − 1)m .

(d) Deduce a formula for the mth derivative L(k)(χ, 1) at s = 1 of the L-function
of a Dirichlet character.

(e) Let K be a quadratic field of discriminant D, and denote by ζ∗
K (1) the residue at

s = 1 of the Dedekind zeta function of K. Deduce a formula for lims→1(ζK (s)−
ζ∗

K (1)/(s − 1)).

52. Set

σ
(1)
k (n) =

∑
d|n

(−4

d

)
dk and σ

(2)
k (n) =

∑
d|n

( −4

n/d

)
dk .

Give formulas for H3(N) and H5(N) analogous to those of Proposition 10.3.14,

but involving the functions σ
(i)
2 and σ

(i)
4 respectively.

53.

(a) Using the methods of Section 10.3.6, compute to 28 decimal digits of accu-
racy the following sums and products over primes:

∑
p 1/pk for k = 2 and 3,∑

p 1/(p(p−1)),
∑

p 1/(p−1)2,
∏

p>2 p(p−2)/(p−1)2, and
∏

p(1−1/(p(p−1))).
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(b) Generalizing the above methods, compute to the same accuracy
∑

p log(p)/p2,∑
p 1/(p log(p)),

∑
p 1/(p2 log(p)), and lims→1+(

∑
p 1/ps − log(ζ(s))).

(c) Generalizing in a different direction, compute to the same accuracy

∏
p>2

(
1 −

(
D
p

)
p − 1

)

for D = −3, −4, −7, 5, and 8.
(d) Compute Landau’s constant (see Proposition 5.4.10)

C =
1√
2

∏
p≡3 (mod 4)

(
1 − 1

p2

)−1/2

.

For help see the URL
http://www.math.u-bordeaux1.fr/~cohen/hardylw.dvi

54. For �(s) > 1, set P (s) =
∑

p p−s, where the sum is over all primes.

(a) Prove that P (s) has a meromorphic continuation to �(s) > 0 with simple poles
at the points s = 1/n for n ∈ Z�1.

(b) Using the method of Section 10.3.6, compute P (2/3) to 28 decimal digits.

55. This exercise assumes knowledge of the theory of modular forms. Define

E(τ, s) =
1

2

∑
(c,d)∈Z2, gcd(c,d)=1

ys

|cτ + d|2s
.

Let H = {τ ∈ C, 	(τ) > 0} be the upper half-plane, and let f(τ) =∑
n�1 a(n)qn and g(τ) =

∑
n�1 b(n)qn be two modular cusp forms of weight k

on SL2(Z), and set

L(f, g, s) =

∫
H/ SL2(Z)

E(τ, s)f(τ)g(τ)yk dx dy

y2
.

(a) Show that the defining series for E(τ, s) converges for �(s) > 1 and that

E((aτ + b)/(cτ + d), s) = E(τ, s) for any

(
a b
c d

)
∈ SL2(Z).

(b) Show that G(τ, s) = ζ(2s)E(τ, s) (which gives another proof of (a)).
(c) Show that for �(s) > 1 the formula for L(f, g, s) makes sense and that

L(f, g, s) = (4π)−(k+s−1)Γ(k + s − 1)
∑
n�1

a(n)b(n)

nk+s−1
.

(Hint: use the fact that an element ( a b
c d ) ∈ SL2(Z) can be written uniquely as

( 1 n
0 1 ) ( u v

c d ), where u and v are fixed integers such that ud − vc = 1.)
(d) Deduce that L(f, g, s) has an analytic continuation to the whole complex plane

into a meromorphic function satisfying a functional equation, and give the poles
of ζ(2s)L(f, g, s). Note that a much more difficult result due independently to
Shimura and Zagier shows that L(f, g, s) is holomorphic in C.
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56.

(a) Show that

∑ ′
(m,n)∈Z2

1

(m2 + n2)3
=

π3ζ(3)

8
and

∑ ′
(m,n)∈Z2

1

(m2 + mn + n2)3
=

8π3ζ(3)

27
√

3
.

(b) Generalize to higher powers, both odd and even.

57. Perform the detailed computations giving the formulas of Proposition 10.5.10.

58.

(a) Compute η((−b +
√

D)/(2a)) for all equivalence classes of quadratic numbers
of negative discriminant D corresponding to those D such that h(D) = 1 or 2.

(b) Compute η((−1+
√−23)/2) and η((−1+

√−31)/2), the first two cases of class
number 3.

59. Fill in the details of the proof of Corollary 10.5.14 and compute
∫ 1

0
(1− t2)1/4 dt

and
∫ 1

0
(1 − t2)1/8 dt in terms of

∏
m�1 tanh(πm/2) and

∏
m�1 tanh(πm/

√
2)

respectively.

60. (This is a research problem, and the author does not know the complete solu-
tion.) For a > 0 set

L(a) =

∫ 1

0

log(1 + ta)

1 + t
dt and T (a) =

∫ 1

0

atan(ta)

1 + t2
dt .

Using a modification of a partial Epstein zeta function associated with real
quadratic fields, H. Muzzafar (unpublished) claims to have obtained a Chowla–
Selberg-type formula that implies that when a is a unit in a real quadratic field
certain values of L(a) and T (a) can be evaluated explicitly as rational linear
combinations of log(2)2, log(2) log(a), π2, π2a, and similar quantities.

(a) Using numerical integration methods or expansions in terms of the derivatives
of the gamma function (see for instance Exercise 102 of Chapter 9), compute

L(a) for a = 1 +
√

2, 3 + 2
√

2, 2 +
√

3, 2 +
√

5, and 4 +
√

17, compute T (a)

for a = 3 + 2
√

2 and 2 +
√

5, and show using a suitable linear dependence
relation algorithm such as LLL that Muzzafar’s claim is indeed correct, at
least numerically. Show that L((1+

√
5)/2)+L((3+

√
5)/2) is also of the same

form.
(b) Read the paper of Herglotz [Her] on the Kronecker limit formula for real

quadratic fields, and prove a result that is as general as possible and includes
the relations that you have found experimentally, as well as for instance

L(4+
√

15) = −π2

12
(
√

15−2)+log(2) log(
√

3+
√

5)+log((1+
√

5)/2) log(2+
√

3)

(I am indebted to C. Meyer for this reference).

61. Let p � 3 be prime and let M = (mi,j )1�i,j�(p−1)/2 be the ((p−1)/2)×((p−1)/2)
matrix such that mi,j = �(i + 1)(j + 1)/p�. Prove that the determinant of M
is equal to

(−8
p

)
h−

p (see Corollary 10.5.27 and the remarks after the proof of

Lemma 3.6.22).

62. Combine the proofs of Proposition 10.5.21 and of Theorem 10.5.22 to prove the
following. Let m be an integer and p a prime number not necessarily prime to
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m. Write m = pvm0 with p � m0 and v = vp(m), denote by fp,0 the order of p
modulo m0, and set gp,0 = φ(m0)/fp,0. Then we have

pZQm =
∏

1�j�gp ,0

p
ep

j with f(pj/p) = fp0 ,

where ep = φ(pv) = pv−1(p − 1).

63. Imitate the proof of Theorem 10.5.30 and use the quadratic reciprocity law to
prove the following: if a ∈ Z is not a perfect square, the analytic density of
primes p such that a is a square modulo p is equal to 1/2.

64.

(a) Using Corollary 10.7.3 and the bound for ζ′(s) given by Proposition 10.7.1,
show that

1

ζ(1 + it)
= O(log(t)7) .

(b) Deduce that for a suitable strictly positive constant C we have 1/ζ(s) =
O(log(t)7) uniformly for σ > 1 − C/ log(t)9, and in particular that ζ(s) has
no zeros in this region (this is of course much weaker than Theorem 10.7.8,
obtained using Hadamard’s factorization theorem).

65. As in Corollary 10.7.7, let ρ be the nontrivial zeros of ζ(s).

(a) Compute
∏

ρ(1 − s2/ρ2) in terms of ζ(s) and ζ(s + 1). In particular, compute∏
ρ(1 − 1/ρ2) and

∏
ρ(1 − 4/ρ2).

(b) Set

bk = ζ(k)

(
1 − 1

2k

)
− 1 − δk ,

where δk is given by Definition 10.3.18. Prove that for k � 2 we have∑
ρ

1

ρk
= −bk .

(c) Deduce from Proposition 10.3.19 that for |s| < 1 we have∑
k�2

bksk−1 =
ζ′(s)
ζ(s)

+
1

s − 1
+

ψ(s/2 + 1)

2
+ 1 +

γ

2
− log(2π) .

(d) Show that we can make s tend to 1 from below in the above formula, and
deduce that for k = 1 we have∑

ρ

1

ρ
= 1 +

γ

2
− log(π)

2
− log(2) ,

where nontrivial zeros ρ and 1− ρ are grouped together to make the left-hand
side converge.

(e) Conclude that if we group zeros in the same way we have the very simple
Hadamard product

s(s − 1)Λ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s) =
∏
ρ

(1 − s/ρ) ,

so that the term ebs disappears in this form. Note that it has been shown by
H. Stark in [Sta1] that this is in fact the case for all Dedekind zeta functions.
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66. Let χ be a nontrivial primitive character modulo m > 1, and as usual set e = 0
or 1 such that χ(−1) = (−1)e . Generalizing Corollary 10.7.7, show that

L(χ, s) = b0(χ)
eb1(χ)s

Γ((s + e)/2)

∏
ρ

(
1 − s

ρ

)
es/ρ ,

where
b0(χ) = W (χ)m1/2π−e/2L(χ, 1) and

b1(χ) = log(2π) − e log(2) − log(m)

2
+

γ

2
− L′(χ, 1)

L(χ, 1)
.

67. As in the second proof of Theorem 10.5.29 set Fm(s) =
∏

χ mod m L(χ, s).

(a) Similarly to Lemma 10.7.2, prove that

Fm(σ)3|Fm(σ + it)|4|Fm(σ + 2it)| � 1 .

(b) Deduce from this that L(χ, 1+it) �= 0 for all t ∈ R and every Dirichlet character
χ (strictly speaking, set L(χ0, 1) = ∞).

(c) Using a similar method to that given in the text for the PNT, deduce the
stronger following form of Dirichlet’s theorem for primes in arithmetic progres-
sion:

π(x; m, a) ∼ 1

φ(m)

x

log(x)
,

where gcd(a, m) = 1 and π(x; m, a) is the number of primes up to x congruent
to a modulo m.

68.

(a) Using Corollary 9.6.30, prove that for x > 1 we have the two formulas

Li(x) =

∫ x

1

(
1 − 1

t

)
dt

log(t)
+ log(log(x)) + γ

=

∫ x

0

(
1

1 − t
+

1

log(t)

)
dt + log(x − 1) .

(b) Deduce from this the following two convergent series representations:

Li(x) = γ + log(log(x)) +
∑
n�1

log(x)n

n · n!

= γ + log(log(x)) +
∑
n�1

(n − 1)!
x − Pn(log(x))

(log(x))n
,

where Pn(u) =
∑

0�j�n uj/j! is the nth partial sum of the exponential series. In
particular, estimate the speed of convergence of the second series. Comments?



11. p-adic Gamma and L-Functions

Independently of its intrinsic interest, one of the most fascinating aspects of
the theory presented in this chapter is that, although completely “elemen-
tary” in the sense that it does not use any highbrow mathematical notions or
results, it implies in quite a straightforward manner many results of classical
(as opposed to p-adic) number theory, for instance strengthenings of almost
all the arithmetic results on Bernoulli numbers seen in Section 9.5, of the
Jacobstahl–Kazandzidis congruences (Corollary 11.6.22), of the Davenport–
Hasse product relation (Theorem 3.7.3, which will be improved in Theorem
11.7.16), and a simpler proof of the Stickelberger congruence (Theorem 3.6.6).
I would like to thank F. Rodriguez-Villegas for making me interested in the
whole subject thanks to a GP script for computing Morita’s p-adic gamma
function, to F. Beukers and E. Friedman for very interesting discussions, and
especially to P. Colmez for his help on proving the results of Section 11.5.3.

11.1 Generalities on p-adic Functions

11.1.1 Methods for Constructing p-adic Functions

There are many ways in which to define p-adic functions with nice properties
(at least continuous, but usually analytic), and we have already seen a few
in Chapter 4. These methods are of course interrelated. In this short section,
we survey a little more systematically these methods, and in the rest of this
chapter we will use them to define some p-adic analogues of the gamma, zeta,
and L-functions seen in the previous chapters.

– Perhaps the most natural method is as follows. Let (an)n�0 be a sequence
of integers. Since Z�0 is dense in Zp we can define a function f on Zp

thanks to the formula

f(x) = lim
n→x, n∈Z�0

an ,

where of course n → x in the p-adic topology. It is clear that f(x) exists if
and only if (an) is p-adically continuous, in other words if for all k ∈ Z�0

there exists j ∈ Z�0 such that
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n ≡ m (mod pj) =⇒ an ≡ am (mod pk) .

By definition, f(x) will then be a continuous function on Zp. This is of
course the primary motivation for p-adic numbers: a sequence can be p-
adically interpolated if and only if it satisfies congruences modulo arbitrar-
ily high powers of p. In this chapter, we will see a prominent example of
this in the definition of Morita’s p-adic gamma function.

– An equivalent method of p-adic interpolation is the use of Mahler expan-
sions seen in Section 4.2.4. Recall from Mahler’s Theorem 4.2.26 that if we
set (with different notation)

f(x) =
∑
k�0

ck

(
x

k

)
, with ck =

∑
0�m�k

(−1)k−m

(
k

m

)
am ,

then f(k) = ak, and f is p-adically continuous if and only if ck tends to 0
as k →∞. By Corollary 4.2.27, this method is equivalent to the preceding
one, but usually has some advantages.
We will see that Morita’s p-adic gamma function has a very simple Mahler
expansion that can serve as an alternative definition, and is, as far as I
know, the most efficient method for computing it.

– A third method, familiar from complex analysis, is to define p-adic func-
tions as sums of power series. The examples of the p-adic logarithm and
exponential studied in Chapter 4 are certainly the most important. In the
p-adic setting, however, power series are not as important as in the complex
setting, mainly because of the impossibility of doing analytic continuation
(because of the ultrametric topology), at least in a näıve manner. Also, as
we have seen in Chapter 4 (see Proposition 4.2.28 and Exercise 17) it is
not difficult to go back and forth between Mahler expansions and power
series. We will see that all the p-adic functions that we will introduce in
this chapter have rather simple power series expansions.

– A fourth method is the use of p-adic measures, in particular the Amice
transform. This is explained in detail in Colmez’s lectures; see [Colm] and
a course on his web site. However, it needs some analytic preparation, so
we will not use it, although it can quite easily prove the two main results
that we will give in Section 11.5.3. Thus we will almost always use a more
näıve method that is specific to the p-adic setting: the use of Volkenborn
integrals, which we briefly study in the next section.

11.1.2 A Brief Study of Volkenborn Integrals

A detailed study of the Volkenborn integral is completely elementary but
quite long, and will not be needed in this book, so we refer instead to the
exposition of A. Robert in [Rob1]. We will simply give some definitions and
results.
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The simplest class of functions for which we can study classical Riemann
integration is the class of continuous functions on a compact interval. In
the p-adic case, we have to assume a much stronger property, that of strict
differentiability.

Definition 11.1.1. (1) We say that a function f is strictly differentiable
at a point a ∈ Zp if the function of two variables Φf(x, y) = (f(x) −
f(y))/(x− y) has a limit � = f ′(a) as (x, y) → (a, a), x �= y.

(2) We say that f is strictly differentiable on some subset X of Zp, and write
f ∈ S1(X), if f is strictly differentiable for all a ∈ X.

It is easy to show that f ∈ S1(X) if and only if Φf can be extended
to a continuous function on X ×X, if and only if there exists a continuous
function ε defined on X × X such that ε(x, x) = 0 and satisfying f(y) =
f(x) + (y − x)f ′(x) + (y − x)ε(x, y) for all (x, y) ∈ X ×X.

Theorem 11.1.2. Let f(x) =
∑

k�0 ak

(
x
k

)
be the Mahler expansion of a

continuous function f on Zp (see Theorem 4.2.26).

(1) f is Lipschitz-continuous (in other words Φf is bounded) if and only if
k|ak| is bounded. In that case,

‖Φf‖ = sup
x
=y

|Φf(x, y)| = sup
k�1

p�log(k)/ log(p)�|ak| .

(2) f ∈ S1(Zp) if and only if k|ak| → 0 as k →∞.

Definition 11.1.3. If f is Lipschitz-continuous we define the L1-norm of f
by the formula

‖f‖1 = max(|f(0)|, ‖Φf‖) ,

which is indeed a norm.

We can now give the definition of the Volkenborn integral:

Definition 11.1.4. Let g be a function from Zp to Cp. We define the Volken-
born integral of g on Zp, if it exists, by the formula∫

Zp

g(t) dt = lim
r→∞

1
pr

∑
0�n<pr

g(n) .

If g is a function from Up = Z∗
p to Cp, we define similarly∫

Z∗
p

g(t) dt = lim
r→∞

1
pr

∑
0�n<pr , p�n

g(n) .
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Note that if g is a function on Z∗
p and if we define g0 to be the function on

Zp equal to g on Z∗
p and to 0 on pZp then evidently

∫
Z∗

p
g(t) dt =

∫
Zp

g0(t) dt.

On the other hand, because of the p-adic topology it is clear that g ∈ S1(Z∗
p)

if and only if g0 ∈ S1(Zp), so that we can always reduce an integral over
Z∗

p to an integral over Zp if desired. The following result, which we will not
prove, ensures the existence of the Volkenborn integral of sufficiently regular
functions; see [Rob1].

Proposition 11.1.5. If g ∈ S1(Zp) then
∫

Zp
g(t) dt exists, and similarly for

Z∗
p.

We will thus be able to define p-adic functions by integrating functions of
two variables, in other words by setting

f(x) =
∫

Zp

g(x, t) dt or f(x) =
∫

Z∗
p

g(x, t) dt .

We will see that all the functions that we will introduce in this chapter (the
logarithm of Morita’s p-adic gamma function, Diamond’s p-adic log gamma
function, and p-adic zeta and L-functions) have a simple definition in terms
of Volkenborn integrals.

To avoid excessive technicalities, we will be a little sloppy, and often
assume without any justification that we can differentiate under the integral
sign. This is done in [Rob1] for integrals of the form

∫
Zp

g(x + t) dt, and
otherwise it can be checked directly on the specific integral without appealing
to general theorems.

Here are some basic properties of these integrals, which we will not need.
We always assume that the functions f that occur are in S1(Zp).

Proposition 11.1.6. (1) ∣∣∣∣∣
∫

Zp

f(t) dt

∣∣∣∣∣ � p‖f‖1 .

(2) If ‖fn − f‖1 → 0 (in other words if fn → f in S1(Zp)) then∫
Zp

fn(t) dt →
∫

Zp

f(t) dt .

(3) ∫
Zp

(f(t + 1)− f(t)) dt = f ′(0) .

In particular, if g(x) =
∫

Zp
f(x + t) dt, then g(x + 1)− g(x) = f ′(x).
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(4) If f(x) =
∑

k�0 ak

(
x
k

)
then∫
Zp

f(t) dt =
∑
k�0

(−1)k ak

k + 1
.

(5) If f is an odd function (f(−x) = −f(x)), then∫
Zp

f(t) dt = −f ′(0)
2

.

Examples. (1) For x ∈ Cp such that |x| < 1, we have∫
Zp

(1 + x)t dt =
logp(1 + x)

x
.

(2) For all x ∈ Qp and k ∈ Z�0 we have∫
Zp

(x + t)k dt = Bk(x) .

We invite the reader to prove these formulas (Exercise 1). Since the second
example above is essential, we give the proof of a more general result.

Lemma 11.1.7. Let χ be a periodic function defined on Z of period a power
of p, and let k ∈ Z�0. For all x ∈ Cp we have∫

Zp

χ(t)(x + t)k dt = Bk(χ, x) .

In particular,∫
Zp

(x + t)k dt = Bk(x) and
∫

Zp

χ(t)tk dt = Bk(χ) .

Proof. By definition and Corollary 9.4.17 we have∫
Zp

χ(t)(x + t)k dt = lim
r→∞

1
pr

∑
0�n<pr

χ(n)(n + x)k

= lim
r→∞

Bk+1(χ, pr + x)−Bk+1(χ, x)
pr(k + 1)

=
B′

k+1(χ, x)
k + 1

= Bk(χ, x)

as soon as pr is a multiple of the period of χ, by definition of the derivative
and the fact that B′

k+1(χ, x) = (k + 1)Bk(χ, x). ��
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11.2 The p-adic Hurwitz Zeta Functions

11.2.1 Teichmüller Extensions and Characters on Zp

Introduction.
Recall that in the complex case, our fundamental building block was the
Hurwitz zeta function ζ(s, x), which enabled us first to motivate the defini-
tion of the gamma function and prove most of its properties as immediate
consequences of the corresponding ones for ζ(s, x), and second to define the
Dirichlet L-functions as a finite linear combination of ζ(s, x) for suitable ra-
tional values of x. We will proceed in exactly the same way in the p-adic case.
We are going to see, however, that it is essential to distinguish between the
cases vp(x) < 0 and vp(x) � 0.
Definition of qp.
The prime number p = 2 is always annoying in number theory, and especially
in p-adic theory: over a general p-adic field the annoying primes are those for
which e/(p− 1) � 1, in other words e � p− 1. In the case of Qp, which is the
main object of consideration in this chapter (although some variables will be
in Cp), the only annoying prime is p = 2 (the “oddest prime” as a famous
saying goes). It is thus convenient to set the following notation, which we
have met briefly in Proposition 4.4.47:

Definition 11.2.1. We set qp = p when p � 3, and q2 = 4. In addition, we
define

CZp = {x ∈ Qp, vp(x) � −vp(qp)} ,

so that when p � 3 we have CZp = Qp \ Zp.

Extensions of the Teichmüller character.
Recall from Definition 4.3.10 that if a ∈ Z∗

p is a p-adic unit we let ω(a)
be the Teichmüller representative of a. With the above notation it is the
unique φ(qp)th root of unity such that 〈a〉 = a/ω(a) ≡ 1 (mod qpZp). In par-
ticular, thanks to Corollary 4.2.18 we know that 〈a〉s = expp(s logp(〈a〉)) =
expp(s logp(a)) is well defined by a power series that converges for |s| < Rp =
qp/p1/(p−1). Note the crucial fact that Rp > 1. It is essential to extend these
functions to Qp, as follows.

Definition 11.2.2. (1) We extend the notation 〈 〉 to Q∗
p by setting 〈a〉 =

〈a/pvp (a)〉.
(2) We extend the notation ω to Zp as a Dirichlet character modulo p; in

other words, we set ω(a) = 0 for a ∈ Zp \ Z∗
p = pZp. More generally, for

any k ∈ Z we let ωk be the kth power of ω in the sense of characters, so
that ωk(a) = 0 for a ∈ pZp, even when k � 0.

(3) In particular, we set χ0 = ω0, which is the trivial character modulo p on
Zp, equal to the characteristic function of Z∗

p.
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(4) If a ∈ Q∗
p, we define ωv(a) by the equivalent formulas

ωv(a) = a/〈a〉 = pvp (a)ω(a/pvp (a))

(the subscript v is simply to recall that the valuation is involved).

Remarks. (1) The use of the same notation 〈a〉 for a ∈ Q∗
p cannot lead to

any confusion. On the other hand, it is essential to distinguish the two
possible extensions of ω(a). It is reasonable to keep the same notation
for the extension as a Dirichlet character, but the other extension must
be given another notation, which I have chosen to be ωv.

(2) In particular, if a ∈ Zp we have ω(a) = χ0(a)ωv(a) with the notation
χ0 introduced above, and more generally for any v ∈ Z we have ω(a) =
pvχ0(a)ωv(a/pv).

(3) It is clear that 〈a〉, ω(a), and ωv(a) are still multiplicative functions, that
by definition ωv(a)〈a〉 = a, and that logp(ωv(a)) = 0 since by definition
of the Iwasawa p-adic logarithm we have set logp(p) = 0.

(4) By Proposition 4.4.44, the functions ω(a) and 〈a〉 can be canonically
defined on the p-adic units of Cp. However, we cannot naturally extend
these symbols to a ∈ C∗

p since pvp (a) is not uniquely defined (see the
remarks preceding Proposition 4.4.44).

For future reference, we note the following formula:

Lemma 11.2.3. We have

∂

∂x
〈x〉1−s = (1− s)

〈x〉1−s

x
= (1− s)

〈x〉−s

ωv(x)
.

Proof. Trivial and left to the reader. ��

Dirichlet characters on Zp.

Let χ be a Dirichlet character modulo pv for some v. If a ∈ Zp and an is a
sequence of integers tending to a p-adically, we have vp(an−am) � v for n and
m sufficiently large, so χ(an) is an ultimately constant sequence, and we of
course set χ(a) = χ(an) for vp(a−an) � v. This is called a Dirichlet character
on Zp, and it is clear that it has all the usual properties. In particular, it
is multiplicative, and χ(a) = 0 if and only if a ∈ pZp. The characters ωr

that we have defined above are examples of such Dirichlet characters (with
v = vp(qp)). Note that when the conductor of χ is not a power of p we cannot
define an extension of χ to Zp.

11.2.2 The p-adic Hurwitz Zeta Function for x ∈ CZp

Recall that CZp is the set of x ∈ Qp such that vp(x) � −vp(qp).
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Proposition 11.2.4. Let x ∈ CZp, and let s ∈ Cp be such that |s| < Rp =
qp/p1/(p−1) (in other words, vp(s) > 1/(p− 1)− vp(qp)).

(1) The Volkenborn integral
∫

Zp
〈x + t〉1−s dt exists, and more precisely we

have ∫
Zp

〈x + t〉1−s dt =
1
pr

∑
0�n<pr

〈n + x〉1−s + O(pr−2) ,

where we recall that A = O(pk) means that vp(A) � k.
(2) We have the convergent Laurent series expansion∫

Zp

〈x + t〉1−s dt = 〈x〉1−s
∑
j�0

(
1− s

j

)
Bjx

−j .

Proof. Since Rp > 1, note first that |s| < Rp is equivalent to |1− s| < Rp,
and furthermore by Proposition 4.4.47 we know that the series defining 〈x〉1−s

converges for |s| < Rp, for all x ∈ Qp with the extended definition of 〈x〉 that
we have given. We can therefore write

〈n + x〉1−s = 〈x〉1−s(1 + n/x)1−s = 〈x〉1−s
∑
j�0

(
1− s

j

)
njx−j ,

so that

1
pr

∑
0�n<pr

〈n + x〉1−s = 〈x〉1−s
∑
j�0

(
1− s

j

)
x−j Bj+1(pr)−Bj+1(0)

(j + 1)pr

by Euler–MacLaurin. In the proof of Lemma 11.1.7 we used the formula

lim
r→∞

Bj+1(pr)−Bj+1(0)
(j + 1)pr

= Bj .

Here we of course use this same formula, but since we have an infinite series
of limits we must show that we can take the limit term by term. This can be
done in great generality, but in this special case it is very easy: we have

Bj+1(pr)−Bj+1(0)
(j + 1)pr

= Bj +
∑

2�i�j+1

(
j

i− 1

)
Bj+1−i

pr(i−1)

i
.

We have trivially vp(i) � i−1 and by Clausen–von Staudt vp(Bj+1−i) � −1,
so that for i � 2,

vp(Bj+1−ip
r(i−1)/i) � (r − 1)(i− 1)− 1 � r − 2 .

It follows that there exist p-adic integers Aj(r) such that

Bj+1(pr)−Bj+1(0)
(j + 1)pr

= Bj + pr−2Aj(r) ,
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so that∑
j�0

(
1− s

j

)
x−j Bj+1(pr)−Bj+1(0)

(j + 1)pr

=
∑
j�0

(
1− s

j

)
x−jBj + pr−2

∑
j�0

(
1− s

j

)
x−jAj(r) .

Since |Aj(r)| � 1 it follows that∣∣∣∣∣∑
j�0

(
1− s

j

)
x−jAj(r)

∣∣∣∣∣ �
∑
j�0

∣∣∣∣(1− s

j

)
x−j

∣∣∣∣ .

The series on the right-hand side is the (absolute value of the) power series ex-
pansion of (1+1/x)1−s, which converges by Corollary 4.2.16 since vp(1/x) �
vp(qp) > 1/(p− 1) and vp(1− s) > 1/(p− 1)− vp(qp) � 1/(p− 1)− vp(1/x),
and in fact its absolute value is equal to 1. Thus the left-hand side is bounded
independently of r, so we may indeed deduce that

lim
r→∞

1
pr

∑
0�n<pr

〈n + x〉1−s = 〈x〉1−s
∑
j�0

(
1− s

j

)
x−jBj ,

as well as the last statement. ��

By Proposition 9.6.6 and Lemma 11.1.7 we have for x ∈ Q and k ∈ Z�1,

−1
k

∫
Zp

(x + t)k dt = −Bk(x)
k

= ζ(1− k, x) .

Since Z�1 is dense in Zp, this motivates the following definition, which makes
sense thanks to the above proposition:

Definition 11.2.5. For s ∈ Cp \ {1} such that |s| < Rp and x ∈ CZp we
define ζp(s, x) by the equivalent formulas

ζp(s, x) =
1

s− 1

∫
Zp

〈x + t〉1−s dt =
〈x〉1−s

s− 1

∑
j�0

(
1− s

j

)
Bjx

−j .

Remarks. (1) In the case p = 2 and vp(x) = −1, which is not included in
the above definition, we can still define ζp(s, x), but it is then necessary to
restrict to s ∈ Zp \ {1} and to slightly modify the formulas; see Exercise
5.

(2) We will see in the next section that there is an analogous definition for
vp(x) � 0, but this deserves a separate study.

(3) The first formula for ζp(s, x) is the most natural one, but for many pur-
poses it will be simpler to use the second.
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(4) As already mentioned we cannot extend 〈 〉 to Cp, so we must restrict to
x ∈ Qp.

(5) Here and elsewhere, note that the p-adic analogue of a complex infinite
series (here of

∑
n�0(n + x)−s) is, up to sign, the Volkenborn integral

of the integral of the sum with respect to s, and not of the derivative as
could be expected.

Proposition 11.2.6. Assume that x ∈ CZp.

(1) For any k ∈ Z \ {0} we have

ζp(1 + k, x) =
ωv(x)k

k

∫
Zp

dt

(x + t)k
.

(2) For k ∈ Z�1 we have

ζp(1− k, x) = −ωv(x)−k Bk(x)
k

,

and if in addition x ∈ Q, then ζp(1− k, x) = ωv(x)−kζ(1− k, x).

Proof. By definition of ωv, if x ∈ CZp we have ωv(1 + n/x) = 1, so that
ωv(n+x) = ωv(x) for all n ∈ Z. It follows that 〈n+x〉−k = (n+x)−kωv(x)k,
hence

ζp(1 + k, x) =
ωv(x)k

k

∫
Zp

(x + t)−k dt ,

proving (1). For (2) we deduce from Lemma 11.1.7 that if k ∈ Z�1 we have

ζp(1− k, x) = −ωv(x)−k

k

∫
Zp

(x + t)k dt = −ωv(x)−k Bk(x)
k

,

and this is equal to ωv(x)−kζ(1− k, x) when x ∈ Q by Corollary 9.6.10. ��

Corollary 11.2.7. We have

∂ζp

∂x
(s, x) = − s

ωv(x)
ζp(s + 1, x) .

Proof. Formally, this follows from the integral definition and Lemma
11.2.3, but we would need to justify the derivation under the integral sign.
Instead, we use the series given by the proposition, since it is normally con-
vergent for x ∈ CZp. In that region we can therefore differentiate termwise.
Since

ζp(s, x) =
1

s− 1

∑
j�0

(
1− s

j

)
Bj〈x〉1−s−jωv(x)1−j

and since ωv(y) = ωv(x) if y is sufficiently close to x, it follows from Lemma
11.2.3 and the formula (1− s− j)

(
1−s

j

)
= (1− s)

(−s
j

)
that
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∂ζp

∂x
(s, x) =

1
s− 1

∑
j�0

(1− s− j)
(

1− s

j

)
Bj
〈x〉−s−j

ωv(x)j

= −〈x〉
−s−1

ωv(x)

∑
j�0

(−s

j

)
Bjx

1−j = − s

ωv(x)
ζp(s + 1, x) ,

proving the corollary. ��

Proposition 11.2.8. For fixed x ∈ CZp the function ζp(s, x) is a p-adic
meromorphic function on |s| < Rp = qp/p1/(p−1), which in addition is ana-
lytic, except for a simple pole at s = 1 with residue 1.

Proof. Since by definition 〈x〉 ≡ 1 (mod qpZp), we know that 〈x〉1−s is an
analytic function on |1 − s| < Rp, or equivalently, on |s| < 1 since Rp > 1,
and in particular is defined and continuous on Zp, so that we need to consider
only the infinite series.

By the Clausen–von Staudt Theorem 9.5.14 we have vp(Bj) � −1, hence
vp(x−jBj) � jvp(qp)− 1. Applying Proposition 4.2.28 with α = vp(qp), α′ =
0, and α′′ = −1 we deduce that the series

∑
j�0

(
s
j

)
x−jBj has a radius of

convergence greater than or equal to Rp, so that it defines an analytic function
for |s| < Rp, with value 1 at s = 0, proving the proposition after changing s
into 1− s and noting again that |1− s| < Rp is equivalent to |s| < Rp. ��

Remarks. (1) We do not need any fancy definition of meromorphic p-adic
functions: the analyticity and meromorphy statements simply mean that
the function f(s) = (s − 1)ζp(s, x) has a power series expansion that
converges for |s| < Rp and that f(1) = 1.

(2) As in the complex case (see the statements following Proposition 9.6.8),
since we will define LogΓp(x) to be ωv(x)∂ζp

∂s (0, x), it follows from Corol-
lary 11.2.7 that around s = 1 we have more precisely

ζp(s, x) =
1

s− 1
− ψp(x) + O(s− 1) ,

where ψp(x) = (d/dx)(LogΓp(x)) (see Proposition 11.5.6).

Theorem 11.2.9. Keep the above notation, and let x ∈ CZp.

(1) For k ∈ Z�1 we have

ζp(1− k, x) = −ωv(x)−k Bk(x)
k

,

which is also equal to ωv(x)−kζ(1− k, x) if x ∈ Q.
(2) If x/u ∈ CZp (and in particular if u ∈ Zp), we have the Laurent expansion

ζp(s, x + u) =
〈x〉1−s

s− 1

∑
j�0

(
1− s

j

)
Bj(u)x−j .
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(3) We have the functional equation

ζp(s, x + 1)− ζp(s, x) = −〈x〉
1−s

x
= −ωv(x)−1〈x〉−s .

(4) We have the reflection formula

ζp(s, 1− x) = ζp(s, x) .

(5) If N ∈ Z�1 is such that Nx ∈ CZp we have the distribution formula∑
0�j<N

ζp

(
s, x +

j

N

)
= ωv(N)〈N〉sζp(s,Nx) .

Proof. (1) Although we have already seen this in Proposition 11.2.6, which
was in fact the motivation of our definition of ζp(s, x), we prove this from
the series expansion. Indeed, by definition of the Bernoulli polynomials, for
k � 1 we have

ζp(1− k, x) = −〈x〉
k

k

∑
j�0

(
k

j

)
Bjx

−j = −〈x〉
k

k
x−kBk(x) = −ωv(x)−k Bk(x)

k
.

(2). Since x/u ∈ CZp we have vp(x + u) = vp(x), hence

(x + u)/pvp (x+u) ≡ x/pvp (x) (mod qpZp) .

Thanks to our extended definition of ωv and 〈 〉 we have ωv(x + u) = ωv(x)
and 〈x + u〉 = (1 + u/x)〈x〉, hence

ζp(s, x + u) =
〈x + u〉1−s

s− 1

∑
j�0

(
1− s

j

)
(x + u)−jBj

=
〈x〉1−s

s− 1

∑
j�0

(
1− s

j

)
x−j(1 + u/x)1−s−jBj

=
〈x〉1−s

s− 1

∑
j�0

(
1− s

j

)
x−jBj

∑
k�0

(
1− s− j

k

)
ukx−k

=
〈x〉1−s

s− 1

∑
n�0

(
1− s

n

)
x−n

n∑
j=0

(
n

j

)
un−jBj

=
〈x〉1−s

s− 1

∑
n�0

(
1− s

n

)
x−nBn(u) ,

proving (2).
(3) and (4). Since Bj(1) − Bj(0) = 0 for j �= 1, B1(1) − B1(0) = 1, and

Bj(1) = (−1)jBj , (3) and (4) immediately follow from (2). Note that they
clearly also follow from the definition of ζp as a Volkenborn integral.
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(5). By Proposition 9.1.3 and (2) we have∑
0�j<N

ζp(s, x + j/N) =
〈x〉1−s

s− 1

∑
n�0

(
1− s

n

)
x−n

∑
0�j<N

Bn(j/N)

=
〈x〉1−s

s− 1

∑
n�0

(
1− s

n

)
x−n Bn

Nn−1
=

N〈x〉1−s

〈Nx〉1−s
ζp(s,Nx)

= N〈N〉s−1ζp(s,Nx) = ωv(N)〈N〉sζp(s,Nx)

since 〈 〉 is multiplicative, proving (5). ��

Formulas (3) and (5) should be compared with the complex case (Propo-
sitions 9.6.2 and 9.6.12).

Statement (5) does not make sense when vp(Nx) � 0, since ζp(s,Nx) is
not defined, but since we will define ζp(s, x) (and more general functions)
when vp(x) � 0 below, there does exist a suitable generalization (Corollary
11.2.15).

We end this section with the following formula, which is a p-adic gen-
eralization of Raabe’s formula (Proposition 9.6.50 and Corollary 9.6.54). I
thank E. Friedman for having suggested that such a formula might exist; see
[Coh-Fri].

Proposition 11.2.10. For |s| < Rp and x ∈ CZp we have∫
Zp

ζp(s, x + t) dt = sζp(s, x) + (x− 1)
∂ζp

∂x
(s, x)

= s (ζp(s, x)− 〈x− 1〉ζp(s + 1, x)) .

Proof. The series given by Theorem 11.2.9 (2) being normally convergent
for u ∈ Zp can thus be integrated term by term, so that using Exercise 3 (a)
we obtain∫

Zp

ζp(s, x + t) dt =
〈x〉1−s

s− 1

∑
j�0

(
1− s

j

)
x−j

∫
Zp

Bj(t) dt

= −〈x〉
1−s

s− 1

∑
j�0

(
1− s

j

)
(jBj−1 + (j − 1)Bj)x−j .

Now by Corollary 11.2.7 we have∑
j�0

(
1− s

j

)
jBj−1x

−j = (1− s)
∑
j�0

(−s

j

)
Bjx

−j−1

=
1− s

x
s〈x〉sζp(s + 1, x) = (s− 1)〈x〉s−1 ∂ζp

∂x
(s, x) .

Furthermore, by a direct computation using Lemma 11.2.3 we have
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x
∂ζp

∂x
(s, x) = −〈x〉

1−s

s− 1

∑
j�0

(
1− s

j

)
jBjx

−j − (s− 1)ζp(s, x) ,

hence

〈x〉1−s

s− 1

∑
j�0

(
1− s

j

)
(j − 1)Bjx

−j = −x
∂ζp

∂x
(s, x)− sζp(s, x) .

Replacing in the above formula for
∫

Zp
ζp(s, x + t) dt gives the first formula,

and the second follows from Corollary 11.2.7. ��

Using Exercise 2 it is immediate to give a much simpler proof of this
proposition, which generalizes; see Exercise 3.

11.2.3 The Function ζp(s, x) Around s = 1

To finish the study of the function ζp(s, x) for x ∈ CZp we need more infor-
mation on the coefficients of the power series expansion around s = 1. We
will see that this has important arithmetic applications. The main result is
as follows.

Theorem 11.2.11. Let x ∈ CZp.

(1) We have 1/(s− 1)
∑

j�0

(
1−s

j

)
Bjx

−j = 1/(s− 1) +
∑

j�0 cj(s− 1)j with

c0 ≡ 1
2x

+
1

12x2
(mod (qp/x)Zp) , c1 ≡ 1

12x2
(mod (qp/x)Zp) , and

cj ≡ 0 (mod (qp/x)Zp) for j � 2.

(2) We have ζp(s, x) = 1/(s− 1) +
∑

j�0 aj(s− 1)j with

a0 ≡ 1
2x

+
1

12x2
− logp(〈x〉) (mod (qp/x)Zp) ,

a1 ≡
logp(〈x〉)2

2
− logp(〈x〉)

2x
+

1
12x2

(mod (qp/x)Zp) , and

aj ≡ (−1)j+1
logp(〈x〉)j+1

(j + 1)!
(mod (qp/x)Zp) for j � 2.

(3) If qp | m and p � a, we have (m1−s/m)ζp(s, a/m) = 1/(m(s − 1)) +∑
j�0 bj(s− 1)j with

b0 ≡ 1
2a

+
m

12a2
− logp(〈a〉)

m
(mod qpZp) ,

b1 ≡
logp(〈a〉)2

2m
− logp(〈a〉)

2a
+

m

12a2
(mod qpZp) , and

bj ≡ (−1)j+1
logp(〈a〉)j+1

(j + 1)!m
(mod qpZp) for j � 2.
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Remark. For p � 5 we have 1/(12x2) ≡ 0 (mod (qp/x)Zp), and for p � 3
we have logp(〈x〉)/(2x) ≡ 0 (mod (qp/x)Zp).

Proof. For simplicity of notation, set v = |vp(x)| = −vp(x) � vp(qp). By
the Clausen–von Staudt theorem and Lemma 4.2.8, for j � 1 we have

vp(Bjx
−j/j!) � −jvp(x)− vp(j!)− 1 � j(v − 1/(p− 1))− 1 + 1/(p− 1) .

Since v � vp(qp), this is an increasing function of j, so for j � 6 we have
vp(Bjx

−j/j!) � 6(v−1/(p−1))− (p−2)/(p−1). We have B3 = B5 = 0, and
vp(B4x

−4/4!) = 4v−vp(720). Using v � vp(qp), a case-by-case examination of
p = 2, 3, 5 and p � 7 shows that 4v−vp(720) < 6(v−1/(p−1))−(p−2)/(p−1).
Since Rp > 1 we can transform the Mahler-type expansion of (1) into a power
series in (s − 1) with radius of convergence greater than or equal to Rp, so
that∑
j�0

(
1− s

j

)
Bjx

−j = 1 +
s− 1
2x

+
s(s− 1)

12x2
+ p4v−vp (720)F (s− 1)

= 1 + (s− 1)
(

1
2x

+
1

12x2

)
+

(s− 1)2

12x2
+ p4v−vp (720)F (s− 1) ,

for some power series F ∈ Zp[[X]] with p-integral coefficients such that
F (0) = 0. We check again on a case-by-case basis that 4v − vp(720) �
v + vp(qp) = vp(qp/x), proving (1).

For (2), since by definition vp(〈x〉) � vp(qp), the series logp(〈x〉) converges,
and by Proposition 4.2.14 we have vp(logp(〈x〉)) = vp(〈x〉) � vp(qp), so we
can write

〈x〉1−s = expp((1− s) logp(〈x〉)) =
∑
j�0

(1− s)j

j!
logp(〈x〉)j .

For simplicity of notation set L = logp(〈x〉). Since ζp(s, x) = (〈x〉1−s/(s −
1))

∑
j�0

(
1−s

j

)
Bjx

−j , it follows that

an = (−1)n+1 Ln+1

(n + 1)!
+

∑
0�j�n

(−1)n−jLn−j

(n− j)!
cj .

Note first that by Lemma 4.2.8 we have for u � 1,

vp(Lu/u!) > uvp(qp)− u/(p− 1) � u(vp(qp)− 1/(p− 1)) .

In particular, we deduce that for u � 2 we have vp(Lu/u!) � vp(qp)+1, hence
vp((Lu/u!)/(2x)) � vp(qp/x), and for u � 1 we have

vp((Lu/u!)/(12x2)) � vp(qp/x) + vp(1/(12x)) � vp(qp/x) ,
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since vp(1/x) � vp(qp) � vp(12).
Since cj ≡ 0 (mod (qp/x)Zp) for j � 2, we have

an ≡ (−1)n+1 Ln+1

(n + 1)!
+

∑
0�j�min(n,1)

(−1)n−jLn−j

(n− j)!
cj (mod (qp/x)Zp) .

By (1), this gives

a0 ≡ −L +
1
2x

+
1

12x2
(mod (qp/x)Zp) ,

proving the first formula of (2), and for n � 1,

an ≡ (−1)n+1 Ln+1

(n + 1)!
+

(−1)nLn

n!

(
1
2x

+
1

12x2

)
+

(−1)n−1Ln−1

(n− 1)!
1

12x2
(mod (qp/x)Zp) .

For n � 2, the inequalities proved above imply that an ≡ (−1)n+1Ln+1/(n+
1)!, and for n = 1 they give

a1 ≡ L2

2
− L

2x
+

1
12x2

(mod (qp/x)Zp) ,

proving (2).
(3). We have

〈m〉1−s

m
ζp

(
s,

a

m

)
=

〈a〉1−s

m(s− 1)

∑
j�0

(
1− s

j

)
Bj(a/m)−j .

Since the only property of L = logp(〈x〉) that we used in the proof of (2) was
that vp(L) � vp(qp), which is true for all x, it follows that we may replace 〈x〉
by 〈a〉 and x by a/m, thus obtaining a congruence modulo qpmZp, so that
after division by m we obtain the given congruences modulo qpZp. ��

11.2.4 The p-adic Hurwitz Zeta Function for x ∈ Zp

The literature does not sufficiently emphasize that one can define ζp(s, x) also
for x ∈ Zp, and that the corresponding function has important properties that
nicely complement those for x ∈ CZp (see [Morit2]). We can in fact define
more general functions depending on a Dirichlet character χ whose conductor
is a power of p (see above). Note the important fact that if χ is defined modulo
pv for v � 1, and if χ′ is the corresponding character modulo pv′

for some
v′ � v, then in fact χ′(n) = χ(n) for all n; in other words, the values of the
characters χ and χ′ are the same, so it is not necessary to specify the value
of v, as long as v � 1.
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Definition 11.2.12. Let χ be a character modulo pv with v � 1. If x ∈ Zp

and s ∈ Cp such that |s| < Rp and s �= 1 we define

ζp(χ, s, x) =
1

s− 1

∫
Zp

χ(x + t)〈x + t〉1−s dt ,

and by abuse of notation we will simply write ζp(s, x) instead of ζp(χ0, s, x),
where χ0 is the trivial character modulo pv (where we recall that χ0(a) = 0
when a ∈ pZp).

Even before showing that this definition makes sense, note the following:

Remarks. (1) As mentioned above it is clear that the definition of ζp(χ, s, x)
(and in particular of ζp(s, x)) does not depend on the choice of v � 1 for
which χ is defined modulo pv.

(2) The only reason for which we restrict to characters modulo a power of
p is that otherwise χ(x) does not make sense for x ∈ Zp \ Z. However,
if we restrict to x ∈ Z, and in particular to x = 0, the above definition
does make sense, and leads to p-adic L-functions, which we will study in
great detail in Section 11.3.2 (the case x ∈ Z follows from the case x = 0
and Proposition 11.2.20 (1)).

(3) The function ζp(χ, s, x) is the p-adic analogue of the function
∑

n�0 χ(n+
x)(n + x)−s (which has no specific name), as can be seen for instance in
Proposition 11.2.20 (1).

To show that this definition makes sense, and in fact to relate it to the
Hurwitz zeta function for x ∈ CZp, we first prove the following “change of
variable” lemma in Volkenborn integrals.

Lemma 11.2.13. Let χ be a character modulo pv, let f be a function defined
for vp(x) < −v such that for fixed x the function f(x + t) is in S1(Zp), and
set

g(x) =
∫

Zp

f(x + t) dt .

Then for x ∈ Zp we have

1
pv

∑
0�j<pv

χ(x + j)g
(

x + j

pv

)
=
∫

Zp

χ(x + t)f
(

x + t

pv

)
dt .

Proof. By definition, we have∑
0�j<pv

χ(x + j)g
(

x + j

pv

)
= lim

r→∞
1
pr

∑
0�j<pv

χ(x + j)
∑

0�a<pr

f(a + (x + j)/pv)

= lim
r→∞

1
pr

∑
0�m<pv+r

χ(x + m)f((x + m)/pv)

= pv

∫
Zp

χ(x + t)f((x + t)/pv) dt ,
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proving the lemma. ��

Corollary 11.2.14. Definition 11.2.12 makes sense for x ∈ Zp and |s| <
Rp. More precisely, for any M ∈ Z�1 such that pv | M we have

ζp(χ, s, x) =
〈M〉1−s

M

∑
0�j<M

χ(x + j)ζp

(
s,

x + j

M

)
.

Proof. Applying the lemma to f(x) = 〈x〉1−s we obtain the given formula
for M = pv, which also shows the existence of ζp(χ, s, x). For a general M ,
we write M = Npv and j = pva + b with 0 � b < pv and 0 � a < N , so that∑

0�j<M

χ(x + j)ζp

(
s,

x + j

M

)
=

∑
0�b<pv

χ(x + b)
∑

0�a<N

ζp

(
s,

x + b

Npv
+

a

N

)

= N〈N〉s−1
∑

0�b<pv

χ(x + b)ζp

(
s,

x + b

pv

)
,

using the distribution formula for ζp (Theorem 11.2.9 (5)), so the corollary
follows in general since 〈M〉1−s/M = 〈N〉1−s/(Npv). ��

Thanks to this corollary, we can deduce most properties of ζp(χ, s, x) for
x ∈ Zp from those of ζp(s, x) for x ∈ CZp, and we will usually, although not
always, choose M = pv.

This corollary has many important consequences. For instance, we can
now give a more general distribution formula that applies to the case Nx ∈ Zp

and pv | N (the case p � N will be considered in Proposition 11.2.20 below):

Corollary 11.2.15. Let χ be a character modulo pv. Then for any x ∈ Qp

and N ∈ Z�1 such that pv | N and Nx ∈ Zp we have∑
0�j<N

χ(Nx + j)ζp

(
s, x +

j

N

)
= ωv(N)〈N〉sζp(χ, s,Nx) .

In particular, ∑
0�j<N, p�(Nx+j)

ζp

(
s, x +

j

N

)
= ωv(N)〈N〉sζp(s,Nx) ,

where we recall that we have defined ζp(s, x) = ζp(χ0, s, x) when x ∈ Zp.

Proof. Follows from Corollary 11.2.14 applied to M = N and x replaced
by Nx. ��

We see that this is a perfect generalization of Theorem 11.2.9 to the case
Nx ∈ Zp, and justifies the use of the same notation ζp(s, x) also when x ∈ Zp.
We now study the functions ζp(χ, s, x) for x ∈ Zp in complete analogy with
x ∈ CZp.
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Proposition 11.2.16. If x ∈ Zp We have

∂ζp

∂x
(χ, s, x) = −sζp(χω−1, s + 1, x) .

Note that in the above proposition χω−1 is taken in the sense of charac-
ters, so that for instance χω−1(a) = 0 if a ∈ pZp.

Proof. By Corollary 11.2.7 we have

∂ζp

∂x
(χ, s, x) = − s

pv

∑
0�j<pv

χ(x + j)
pvωv((x + j)/pv)

ζp(s + 1, (x + j)/pv)

= − s

pv

∑
0�j<pv

χω−1(x + j)ζp(s + 1, (x + j)/pv) ,

proving the result. ��

Proposition 11.2.17. For fixed x ∈ Zp the function ζp(χ, s, x) is a p-adic
meromorphic function on |s| < Rp, which is analytic, except when χ = χ0,
in which case it has a simple pole at s = 1 with residue 1− 1/p.

Proof. By Corollary 11.2.14 and Proposition 11.2.8, around s = 1 we have
ζp(χ, s, x) = a−1/(s− 1) + O(1), where

a−1 =
1
pv

∑
0�j<pv

χ(x + j) .

The result follows since the sum giving a−1 vanishes if χ �= χ0, and otherwise
is equal to pv(1− 1/p). ��

Corollary 11.2.18. We have

∂ζp

∂x
(χω, 0, x) = −

(
1− 1

p

)
δ(χ) ,

where here and elsewhere δ(χ) = 0 if χ �= χ0 and δ(χ) = 1 if χ = χ0.

Proof. By analyticity and Proposition 11.2.16 we have

∂ζp

∂x
(χω, 0, x) = lim

s→0

∂ζp

∂x
(χω, s, x) = lim

s→0
(−sζp(χ, s+1, x)) = −

(
1− 1

p

)
δ(χ)

by the above proposition. ��

Once again, as in the complex case and as for ζp(s, x) (see the remarks
following Proposition 11.2.8), it follows from this corollary that around s = 1
we have more precisely
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ζp(χ, s, x) =
(1− 1/p)δ(χ)

s− 1
− ψp(χ, x) + O(s− 1) ,

where ψp(χ, x) = (d/dx)(LogΓp(χ, x)) and LogΓp(χ, x) = ∂ζp

∂s (χω, 0, x); see
Proposition 11.5.15.

Proposition 11.2.19. (1) For any k ∈ Z�1 and x ∈ Z�0 we have

ζp(χωk, 1− k, x) = −Bk(χ)
k

−
∑

0�r<x

χ(r)rk−1 .

(2) In particular, if χ �= χ0 and x ∈ Z�0 we have

ζp(χω, 0, x) = − 1
pv

∑
0�r<pv

χ(r)r −
∑

0�r<x

χ(r) ,

and if, in addition, χ �= χ0 is even we have

ζp(χω, 0, x) = −
∑

0�r<x

χ(r) .

(3) For all x ∈ Zp we have

ζp(ω, 0, x) = −
(

x−
⌈

x

p

⌉)
,

where �x/p� is defined as the p-adic limit of �xn/p� as xn → x in Z�0.

Proof. (1) and (2). By Corollary 11.2.14 and Proposition 11.2.6 we have

ζp(χωk, 1− k, x) =
1
pv

∑
0�j<pv

χωk(x + j)ζp(1− k, (x + j)/pv)

= − 1
kpv

∑
0�j<pv

χωk(x + j)ωv((x + j)/pv)−kBk((x + j)/pv)

= −pv(k−1)

k

∑
0�j<pv

χ(x + j)Bk((x + j)/pv) .

Thus, by Corollary 9.4.6 we have

ζp(χωk, 1− k, x) = −Bk(χ)
k

−
∑

0�r<x

χ(r)rk−1 ,

proving (1). Statement (2) is an immediate consequence of (1), of the explicit
formula for B1(χ), of the formula

∑
0�r<pv χ(r) = 0 since χ is a nontrivial

character, and of the formula B1(χ) = −χ(0)/2 = 0 when χ is even. Note
that we can also use Proposition 11.2.20 (1) below.
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(3). By (1), for x ∈ Z�0 we have

ζp(ω, 0, x) = −B1(χ0)−
∑

0�r<x

χ0(r) .

By Proposition 9.4.9 we have B1(χ0) = −χ0(0)/2 = 0 (recall that χ0 is the
trivial character modulo pv for some v � 1). Furthermore, we have∑

0�r<x

χ0(r) =
∑

0�r<x, p�r

1 =
∑

0�r<x

1−
∑

0�s<x/p

1 = x− �x/p� ,

so (3) follows for x ∈ Z�0, hence for x ∈ Zp by continuity. ��

Note that by continuity, if k ∈ Z�1 and x ∈ Zp we have more generally

ζp(χωk, 1− k, x) = −Bk(χ)
k

− lim
n→x

n∈Z�0

∑
0�r<x

χ(r)rk−1 .

Proposition 11.2.20. Let x ∈ Zp and |s| < Rp.

(1) We have the functional equation

ζp(χ, s, x + 1)− ζp(χ, s, x) = −χω−1(x)〈x〉−s ,

where the right-hand side is interpreted to be equal to 0 for x = 0.
(2) We have the reflection formula

ζp(χ, s, 1− x) = χ(−1)ζp(χ, s, x) .

(3) Set Lp(χ, s) = ζp(χ, s, 0). If χ is an odd character we have Lp(χ, s) = 0,
and more generally if n ∈ Z�0 we have

ζp(χ, s, n) = χ(−1)ζp(χ, s, 1− n) = Lp(χ, s)−
∑

0�a<n

χω−1(a)〈a〉−s .

(4) If p � N we have the distribution formula∑
0�i<N

ζp

(
χ, s, x +

i

N

)
= ωχ−1(N)〈N〉sζp(χ, s,Nx) .

Note that Lp(χ, s) is a p-adic L-function, whose properties we will study
in Section 11.3.2 in more detail, and for general Dirichlet characters χ.

Proof. (1). By definition we have

ζp(χ, s, x + 1) =
1

s− 1
lim

r→∞
1
pr

∑
0�j<pr

χ(x + 1 + j)〈x + 1 + j〉1−s

=
1

s− 1
lim

r→∞
1
pr

∑
1�j�pr

χ(x + j)〈x + j〉1−s ,
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so that for x �= 0 we have

ζp(χ, s, x + 1)− ζp(χ, s, x) =
χ(x)
s− 1

lim
r→∞

1
pr

(〈x + pr〉1−s − 〈x〉1−s)

=
χ(x)
s− 1

d

dx
〈x〉1−s = −χω−1(x)〈x〉−s

by Lemma 11.2.3. We could of course also have deduced this result from the
corresponding one for x ∈ CZp thanks to Corollary 11.2.14. On the other
hand, since χ(0) = χ(pr) = 0, we evidently have ζp(χ, s, 1)− ζp(χ, s, 0) = 0.

(2). Here, it is slightly preferable to use Corollary 11.2.14. Setting i =
pv − 1− j we have

ζp(χ, s, 1− x) = p−v
∑

0�j<pv

χ(1− x + j)ζp(s, (1− x + j)/pv)

= p−v
∑

0�i<pv

χ(pv − i− x)ζp(s, 1− (x + i)/pv)

= χ(−1)p−v
∑

0�i<pv

χ(x + i)ζp(s, (x + i)/pv) = χ(−1)ζp(χ, s, x) ,

using Theorem 11.2.9 (4).
(3). By definition of Dirichlet characters we have χω−1(0) = 0. It follows

from (1) that ζp(χ, s, 1) = ζp(χ, s, 0) for any character χ, and from (2) that
ζp(χ, s, 1) = −ζp(χ, s, 0) if χ(−1) = −1, whence Lp(χ, s) = ζp(χ, s, 0) = 0 in
that case. The formula for ζp(χ, s, n) then follows by induction from (1), and
that for ζp(χ, s, 1− n) follows from (2).

(4). By Corollary 11.2.14 we have∑
0�i<N

ζp(χ, s, x+i/N) = p−v
∑

0�i<N

∑
0�j<pv

χ(x+j+i/N)ζp(s, (x+j+i/N)/pv) .

Setting a = Nj + i, and using the fact that p � N we thus have∑
0�i<N

ζp(χ, s, x+i/N) = p−vχ−1(N)
∑

0�a<Npv

χ(Nx+a)ζp(s, (Nx+a)/(Npv)) .

Applying once again Corollary 11.2.14, but now with M = Npv instead of
M = pv, we obtain∑

0�i<N

ζp(χ, s, x + i/N) = p−vχ−1(N)(Npv)〈Npv〉s−1ζp(χ, s,Nx)

= ωχ−1〈N〉sζp(χ, s,Nx) ,

since 〈Npv〉 = 〈N〉. ��
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Note that in the proof of (4), the use of Corollary 11.2.14 with M = Npv

means that we have implicitly used the distribution formula for ζp(s, x) with
x ∈ CZp.

It is perhaps useful to summarize the three distribution formulas that we
have obtained, since they are valid in different ranges:

Proposition 11.2.21. Let χ be a character modulo pv, let N ∈ Z�1 and
x ∈ Qp.

(1) If Nx ∈ CZp we have

∑
0�j<N

ζp

(
s, x +

j

N

)
= ωv(N)〈N〉sζp(s,Nx) .

(2) If Nx ∈ Zp and pv | N we have

∑
0�j<N

χ(Nx + j)ζp

(
s, x +

j

N

)
= ωv(N)〈N〉sζp(χ, s,Nx) .

(3) If x ∈ Zp and p � N we have

∑
0�j<N

ζp

(
χ, s, x +

j

N

)
= ωχ−1(N)〈N〉sζp(χ, s,Nx) .

The p-adic Raabe formula (Proposition 11.2.10) is also valid for x ∈ Zp,
without change:

Proposition 11.2.22. Let χ be a character modulo pv. For |s| < Rp and
x ∈ Zp we have∫

Zp

ζp(χ, s, x + t) dt = sζp(χ, s, x) + (x− 1)
∂ζp

∂x
(χ, s, x)

= s
(
ζp(χ, s, x)− (x− 1)ζp(χω−1, s + 1, x)

)
.

In particular,∫
Zp

ζp(χ, s, t) dt = s(Lp(χ, s) + Lp(χω−1, s + 1)) .

Proof. By definition we have∫
Zp

ζp(χ, s, x + t) dt = lim
r→∞

S(r)
pr

with S(r) =
∑

0�i<pr

ζp(χ, s, x + i) .

Let r � v. Applying Corollary 11.2.14 with M = pr we obtain
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S(r) = p−r
∑

0�i<pr

∑
0�j<pr

χ(x + i + j)ζp(s, (x + i + j)/pr) .

Set n = i+ j mod pr, in other words the unique n ≡ i+ j (mod pr) such that
0 � n < pr. We can have only i + j = n or i + j = n + pr, and the number
of pairs (i, j) such that i + j = n is equal to n + 1, while the number of pairs
such that i + j = n + pr is equal to pr − (n + 1). It follows that

S(r) = p−r
∑

0�n<pr

χ(x + n)
(

(n + 1)ζp(s, (x + n)/pr)

+ (pr − (n + 1))ζp(s, (x + n)/pr + 1)
)

= p−r
∑

0�n<pr

χ(x + n)
(

prζp(s, (x + n)/pr)

− (pr − (n + 1))ωv((x + n)/pr)−1〈x + n〉−s

)
= prζp(χ, s, x)−

∑
0�n<pr

(pr − (n + 1))χω−1(x + n)〈x + n〉−s ,

using the functional equation of ζ(s, x) (Theorem 11.2.9 (3)). Now it is clear
that

(pr − (n + 1))χω−1(x + n)〈x + n〉−s

= (pr + x− 1)χω−1(x + n)〈x + n〉−s − χ(x + n)〈x + n〉1−s ,

so that by definition

lim
r→∞ p−r(pr − (n + 1))χω−1(x + n)〈x + n〉−s

= (x− 1)sζp(χω−1, s + 1, x)− (s− 1)ζp(χ, s, x) .

It follows that∫
Zp

ζp(χ, s, x+ t) dt = lim
r→∞

S(r)
pr

= −(x−1)sζp(χω−1, s+1, x)+sζp(χ, s, x) ,

and we conclude by Proposition 11.2.16 and the definition of Lp(χ, s) given
in Proposition 11.2.20. ��

As mentioned, the first formula of the present proposition is identical to
the corresponding one for x ∈ CZp, and note that we have not used Raabe’s
formula in that range to prove it.

We also have the following power series expansion in x of ζp(χ, s, x), which
should be compared with Corollary 9.6.3.
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Proposition 11.2.23. Let χ be a character modulo pv for some v � 1. For
x ∈ pvZp we have the power series expansion

ζp(χ, s, x) =
∑
k�0

(
1− s

k

)
Lp(χω−k, s + k)xk ,

where Lp(χ, s) = ζp(χ, s, 0) is the p-adic L-function.

Proof. Although this result involves p-adic L-functions which we will study
in much more detail below, taking simply Lp(χ, s) = ζp(χ, s, 0) as a definition
is enough for the proof. Indeed, since x ∈ pvZp and χ is defined modulo pv,
we have by definition

ζp(χ, s, x) =
1

s− 1

∫
Zp

χ(x + t)〈x + t〉1−s dt

=
1

s− 1

∫
Z∗

p

χ(t)〈t〉1−s(1 + x/t)1−s dt

=
1

s− 1

∫
Z∗

p

∑
k�0

(
1− s

k

)
χω−k(t)〈t〉1−s−kxk dt .

Since x ∈ pZp the series is normally convergent, so that we can integrate
term by term and obtain

ζp(χ, s, x) =
∑
k�0

(
1− s

k

)
xk 1

s− 1

∫
Zp

χω−k(t)〈t〉1−s−k dt ,

proving the result since

Lp(χω−k, s + k) = ζp(χω−k, s + k, 0) =
1

s− 1

∫
Zp

χω−k(t)〈t〉1−s−k dt .

��

Remark. In effect, we have shown that for all x ∈ pZp the power series on
the right-hand side is equal to

1
s− 1

∫
Zp

χ(t)〈x + t〉1−s dt ,

and this is equal to ζp(χ, s, x) only when x ∈ pvZp. Because of this, one could
think of using the latter integral as the definition of ζp, but it is easily seen
that this would lead to a function with very few interesting properties.
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11.3 p-adic L-Functions

11.3.1 Dirichlet Characters in the p-adic Context

Before introducing p-adic L-functions, we need some simple but essential
preliminaries. First of all, since we will be handling Dirichlet characters χ
that have values equal to 0 or roots of unity, we must give them p-adic
values. For this, we choose an arbitrary but fixed embedding of the algebraic
closure Q of Q into Cp. We can thus consider χ(a) as an element of Cp. Thus,
in the p-adic context, when we say that an algebraic number α is p-integral,
it means that |α| � 1 (or vp(α) � 0, or again α ∈ Zp, where Zp is the ring
of p-adic integers of Cp; see Definition 9.5.1) with respect to this embedding.
Recall also that we write α ≡ β (mod γZp) or simply (mod γ) to mean that
(α− β)/γ ∈ Zp.

The following definition and lemma emphasizes this:

Definition 11.3.1. Let p be a prime number and α an algebraic number. We
will say that α is p-integral if for every prime ideal p above p in the number
field Q(α) we have vp(α) � 0.

Lemma 11.3.2. Let p be a prime number and α an algebraic number. The
following conditions are equivalent:

(1) α is p-integral.
(2) For any embedding σ of Q into Cp we have |σ(α)| � 1; in other words,

σ(α) is p-integral as a p-adic number.
(3) If we fix an embedding of Q into Cp, then all the conjugates of α are

p-integral as p-adic numbers.

Proof. Clear and left to the reader (Exercise 7). ��

Next, let χ1 and χ2 be two primitive Dirichlet characters, hence with
values in Q (considered as a subfield of C or of Cp; it does not matter here).
We define the character χ1χ2 to be the primitive character equivalent to the
character χ1(a)χ2(a). It is clear that the conductor of χ1χ2 divides the LCM
of the conductors of χ1 and χ2. In addition, we have the following:

Lemma 11.3.3. If either χ1(a) �= 0 or χ2(a) �= 0 we have χ1χ2(a) =
χ1(a)χ2(a).

Proof. If χ1(a) �= 0 and χ2(a) �= 0 we have by definition (χ1χ2)(a) =
χ1(a)χ2(a). If exactly one of them is nonzero, say χ1(a) �= 0 and χ2(a) = 0,
then since χ2 is primitive we have

0 = χ2(a) = ((χ1χ2)χ−1
1 )(a) = (χ1χ2)(a)χ−1

1 (a) ,

so that (χ1χ2)(a) = 0 = χ1(a)χ2(a), as claimed. ��
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11.3.2 Definition and Basic Properties of p-adic L-Functions

Since the Hurwitz zeta function is the building block of Dirichlet L-functions
it is now easy to define p-adic L-functions. This is essentially due to Kubota–
Leopoldt, and I loosely follow the presentation given in Washington’s book
[Was]. Note, however, that the modern way of giving the definitions and
proofs is through the use of p-adic measures, but to stay in the spirit of this
book (and of the author!) I have avoided doing so. See for instance the paper
of Colmez [Colm] for an introduction to the subject using p-adic measures.

By Proposition 10.2.5 we know that if χ is a (not necessarily primitive)
character modulo f then as a complex function we have

L(χ, s) = f−s
∑

1�a�f

χ(a)ζ(s, a/f) .

This leads to the following.

Definition 11.3.4. Let χ be a primitive character of conductor f . For s ∈
Cp such that |s| < Rp and s �= 1, we define

Lp(χ, s) =
〈f〉1−s

f

∑
0�a<f

χ(a)ζp

(
s,

a

f

)
.

We define Lp(χ, 1) = lims→1 Lp(χ, s) when the limit exists. In particular, if
χ is the trivial character χ0 we set ζp(s) = Lp(χ0, s) = ζp(s, 0), and call this
function the Kubota–Leopoldt p-adic zeta function.

Remarks. (1) It is important to note that this definition uses the function
ζp(s, x) both for x ∈ CZp and for x ∈ Zp: indeed, when p � f then
a/f ∈ Zp, so the function that occurs is the function ζp(χ0, s, x) defined
in Definition 11.2.12. On the other hand, when p | f then qp | f (since
the conductor of a character cannot be congruent to 2 modulo 4). Fur-
thermore, χ(a) �= 0 only when p � a, so in that case a/f ∈ CZp and the
function that occurs is the initial function ζp(s, x). The above uniform
formula is an additional reason to use the same notation for ζp(s, x) when
x ∈ Zp and x ∈ CZp.

(2) Note that we sum from a = 0 to f − 1 instead of from 1 to f in the
complex case, where it is essential since ζ(s, 0) is not defined. Here it
makes no difference since we can have χ(0) = χ(f) �= 0 only for χ = χ0,
and by Proposition 11.2.20 we have

ζp(χ, s, 1) = ζp(χ, s, 0)− χω−1(0) = ζp(χ, s, 0)

when χ �= ω, and in particular when χ = χ0. It makes the computations
slightly more elegant.
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(3) When f = pv with v � vp(qp), it is clear from Corollary 11.2.14 applied
to M = f that Lp(χ, s) = ζp(χ, s, 0), so that the above definition indeed
generalizes to arbitrary characters the definition that we have already
given in Proposition 11.2.20. Since ζp(χ, s, x) has a Volkenborn integral
definition, for future reference we note the following result.

Proposition 11.3.5. If χ is defined modulo pv for some v � 1 we have

Lp(χ, s) =
1

s− 1

∫
Zp

χ(t)〈t〉1−s dt .

To state the next proposition, it is useful to introduce the following no-
tation.

Definition 11.3.6. (1) Let m ∈ Z>0. We define χ0,m to be the trivial char-
acter modulo 1 when p � m, and to be the trivial character modulo p when
p | m. In other words, χ0,m(a) = 1 when p � a or when p | a but p � m,
and χ0,m(a) = 0 when p | a and p | m.

(2) If I ⊂ Z, we set∑(p)

a∈I

g(a) =
∑
a∈I
p�a

g(a) and similarly
∏(p)

a∈I

g(a) =
∏
a∈I
p�a

g(a) .

In particular, if p | m we have∑(p)

0�a<m

g(a) =
∑

0�a<m

χ0,m(a)g(a) .

Note that the condition in (2) is p � a, and not p � g(a). In certain
circumstances it will be essential to have the condition p � g(a) instead, and
in that case it will be written explicitly. Note also the following.

Lemma 11.3.7. Let χ be a nontrivial primitive character of conductor f ,
and let m be a common multiple of f and p. Then∑(p)

0�a<m

χ(a) = 0 .

Proof. By multiplicativity we have∑(p)

0�a<m

χ(a) =
∑

0�a<m

χ(a)− χ(p)
∑

0�b<m/p

χ(b) .

Since χ is nontrivial and f | m the first sum is zero. If p | f we have χ(p) = 0.
On the other hand, if p � f we have fp | m, in other words f | m/p, so the
second sum is zero. ��
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Proposition 11.3.8. Let χ be a primitive character of conductor f , let m ∈
Z>0 be a multiple of f , and let s ∈ Cp be such that |s| < Rp and s �= 1.

(1) We have

Lp(χ, s) =
〈m〉1−s

m

∑
0�a<m

χ0,m(a)χ(a)ζp

(
s,

a

m

)
.

(2) If, in addition, qp | m we have

Lp(χ, s) =
1

s− 1

∑(p)

0�a<m

χ(a)〈a〉1−s
∑
j�0

(
1− s

j

)
mj−1

aj
Bj .

(3) If χ �= χ0 then Lp(χ, 1) does indeed exist and is given by the formula

Lp(χ, 1) =
∑(p)

0�a<m

χ(a)

⎛⎝− logp(〈a〉)
m

+
∑
j�1

(−1)j mj−1

aj

Bj

j

⎞⎠ ,

where m ∈ Z>0 is any common multiple of f and qp.

Proof. (1). Writing a = kf + r we have

〈m〉1−s

m

∑
0�a<m

χ0,m(a)χ(a)ζp

(
s,

a

m

)
=
〈m〉1−s

m

∑
0�r<f

χ(r)
∑

0�k<m/f

χ0,m(kf + r)ζp

(
s,

r

m
+

k

m/f

)

=
〈m〉−s

ωv(m)

∑
0�r<f

χ(r)ωv(m/f)〈m/f〉sζp

(
s,

r

f

)

=
〈f〉−s

ωv(f)
ζp

(
s,

r

f

)
= Lp(χ, s) ,

using all three distribution formulas for ζp(s, x) (Proposition 11.2.21), proving
(1). Statement (2) then follows from Definition 11.2.5, and the proof of (3)
is immediate by letting s → 1 and is left to the reader (Exercise 10). ��

Remarks. (1) If m is a common multiple of f and qp we thus have

Lp(χ, s) =
〈m〉1−s

m

∑(p)

0�a<m

χ(a)ζp

(
s,

a

m

)
,

and the function ζp that occurs is now only the one defined on CZp,
which has the simplest properties. This is usually the definition given in
the literature, and we will of course also use it to study Lp(χ, s).
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(2) The formula of (3) gives a convergent series for Lp(χ, 1). We will see in
Theorem 11.5.37 that in fact there exists a “closed” formula for Lp(χ, 1)
completely analogous to the one in the complex case (Proposition 10.3.5),
but it is not clear whether it is better for computation.

Proposition 11.3.9. Keep the above assumptions.

(1) The function Lp(χ, s) is a p-adic analytic function for |s| < Rp, except
when χ = χ0, in which case the function ζp(s) = Lp(χ0, s) has a simple
pole at s = 1 with residue 1− 1/p.

(2) For k ∈ Z�1 we have

Lp(χ, 1− k) = −(1− (χω−k)(p)pk−1)
Bk(χω−k)

k

= (1− (χω−k)(p)pk−1)L(χω−k, 1− k) ,

where χω−k is defined as above.
(3) If χ is an odd character the function Lp(χ, s) is identically equal to zero.

Proof. (1). By definition Lp(χ, s) is a p-adic meromorphic function with
a possible simple pole at s = 1 with residue

∑
0�a<f χ(a)Ress=1 ζp(s, a/f),

and by Propositions 11.2.8 and 11.2.17, the quantity Ress=1 ζp(a/f) is inde-
pendent of a, so that the residue vanishes unless χ is the trivial character, in
which case f = 1 and the result follows from Proposition 11.2.17.

(2). For ease of notation write χk instead of χω−k. Let m be a common
multiple of f and qp. By Proposition 11.3.8 and Lemma 11.3.3, for k � 1 we
have

−kLp(χ, 1− k) = mk−1
∑(p)

0�a<m

χ(a)ω(a)−kBk(a/m)

= mk−1
∑(p)

0�a<m

χk(a)Bk(a/m)

= mk−1
∑

0�a<m

χk(a)Bk(a/m)− χk(p)mk−1
∑

0�b<m/p

χk(b)Bk(b/(m/p)) .

Since χk is defined modulo a divisor of the LCM of qp and f that divides m,
by Lemma 9.4.7 the first sum is equal to Bk(χk). For the second term, let
Fk be the conductor of χk, so that in particular Fk | lcm(f, qp) | m. If p | Fk

then χk(p) = 0, so the second term is equal to 0. Otherwise, p � Fk, so that
Fk | m/p, and once again by Lemma 9.4.7 we have

(m/p)k−1
∑

0�b<m/p

χk(b)Bk(b/(m/p)) = Bk(χk) .

Thus in both cases the second term is equal to χk(p)pk−1Bk(χk), so that
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−kLp(χ, 1− k) = (1− χk(p)pk−1)Bk(χk) ,

proving the first equality of (2). From Corollary 10.2.3 we deduce that

Lp(χ, 1− k) = (1− (χω−k)(p)pk−1)L(χω−k, 1− k) + S ,

with S = χω−k(0)δk,1(1− χω−k(p)pk−1). But χω−k(0)δk,1 �= 0 only if k = 1
and χ = ω, and in that case 1−χω−k(p)pk−1 = 1− 1 = 0, so that we always
have S = 0, proving the second equality of (2).

Finally, (3) follows immediately from ζp(s, 1 − x) = ζp(s, x), valid for all
x ∈ Qp. ��

Remarks. (1) The factor 1 − (χω−k)(p)pk−1 occurring in the formula for
Lp(χ, 1−k) is the inverse of the formal Euler factor at p for the complex
function L(χω−k, s) at s = 1−k. Thus Lp(χ, s) is a p-adic interpolation of
the values at negative integers of (1−χωs−1(p)p−s)L(χ, s). Note that the
values at negative integers of the function (1−χ(p)p−s)L(χ, s) (which is
exactly the function L(χ, s) with the Euler p-factor omitted) cannot be p-
adically interpolated, in other words that the presence of the Teichmüller
character ω is essential.

(2) The Kubota–Leopoldt p-adic zeta function ζp(s) = Lp(χ0, s) has a simple
pole at s = 1 with residue 1 − 1/p. Furthermore, since ω−k(p) is equal
to 0 if φ(qp) � k and to 1 otherwise, we have ζp(1− k) = −Bk(ω−k)/k if
φ(qp) � k and ζp(1− k) = −(1− pk−1)Bk/k otherwise.

11.3.3 p-adic L-Functions at Positive Integers

The definition of the p-adic L-function is essentially based on its values at
negative integers. We now study what happens for positive integers. Recall
that we have already seen in Proposition 11.2.6 that for x ∈ CZp and k ∈ Z�1

we have

ζp(k + 1, x) =
ωv(x)k

k

∫
Zp

dt

(x + t)k
.

Proposition 11.3.10. Let χ be a primitive character modulo f .

(1) For k ∈ Z \ {0} we have

Lp(χ, k + 1) =
1
k

lim
r→∞

1
fpr

∑(p)

0�n<fpr

χωk(n)
nk

.

(2) We have

lim
s→1

(
Lp(χ, s)− (1− 1/p)δ(χ)

s− 1

)
= − lim

r→∞
1

fpr

∑(p)

0�n<fpr

χ(n) logp(n) .
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Of course by continuity the limit on the left-hand side of (2) is equal to
Lp(χ, 1) when χ �= χ0.

Proof. (1). Indeed, by what we have just recalled, for p � a we have

ζp

(
k + 1,

a

m

)
=

ω(a)k〈m〉k
k

lim
r→∞

1
pr

∑
0�j<pr

1
(mj + a)k

.

Thus, if we set n = mj + a, as j ranges from 0 to pr − 1 and a from 0 to
m − 1 not divisible by p, n ranges from 0 to mpr − 1 not divisible by p, so
that

Lp(χ, k + 1) =
1

mk
lim

r→∞
1
pr

∑(p)

0�n<mpr

χωk(n)
nk

.

(1) follows by choosing for instance m = fp2 and replacing r by r − 2.
(2). By the uniformity estimate given in Proposition 11.2.4 and the proof

that we have just given, it is clear that the result of (1) can be strengthened
to

Lp(χ, k + 1) =
1
k

1
fpr

∑(p)

0�n<fpr

χωk(n)
nk

+ O(pr−4) .

Since Lp(χ, s) is analytic, hence continuous at s = 1 when χ �= χ0, we thus
have

lim
s→1

(
Lp(χ, s)− (1− 1/p)δ(χ)

s− 1

)
= lim

t→∞Lp(χ, 1 + φ(pt+1))− δ(χ)
pt+1

= lim
t→∞−

δ(χ)
pt+1

+
1

(p− 1)pt
lim

r→∞
1

fpr

∑(p)

0�n<fpr

χ(n)n−(p−1)pt

.

By the uniformity estimates given above and in Corollary 4.2.13 we can in-
terchange the two limits. Furthermore, since∑(p)

0�n<fpr

χ(n) = f(p− 1)pr−1δ(χ) ,

this quantity divided by fpr(p− 1)pt is equal to δ(χ)/pt+1, so that

lim
s→1

(
Lp(χ, s)− (1− 1/p)δ(χ)

s− 1

)
= lim

r→∞
1

fpr

∑(p)

0�n<fpr

χ(n) lim
t→∞

n−(p−1)pt − 1
(p− 1)pt

= lim
r→∞

1
fpr

∑(p)

0�n<fpr

χ(n)
logp(n−(p−1))

p− 1
,

proving (2). ��

Note that to prove (2) for χ �= χ0, we could also have used the formula
for Lp(χ, 1) in terms of Bj given in Proposition 11.3.9 and the Volkenborn
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integral representation of the Bj given by Lemma 11.1.7. In that case, we
would have to justify the interchange of integration and summation, which
can easily be done.

The above result shows that there is indeed some relation between the
values of p-adic and ordinary L-functions also at positive integers.

Corollary 11.3.11. Let k ∈ Z \ {0}. If χ is a primitive character modulo a
power of p we have

Lp(χ, k + 1) =
1
k

∫
Z∗

p

χωk(t)
tk

dt

and

lim
s→1

(
Lp(χ, s)− (1− 1/p)δ(χ)

s− 1

)
= −

∫
Z∗

p

χ(t) logp(t) dt .

In particular,

Lp(ω−k, k + 1) =
1
k

∫
Z∗

p

1
tk

dt .

Proof. Clear. Note that the integrals are over Z∗
p. ��

A more useful result is the following.

Proposition 11.3.12. Let χ be a primitive character modulo f .

(1) For all k ∈ Z \ {0} we have

Lp(χ, k + 1) = lim
r→∞

Bφ(pr )−k(χωk)
k

.

In particular,
lim

r→∞Bφ(pr )−k = kLp(ω−k, k + 1) .

(2) We have

lim
s→1

(
Lp(χ, s)− (1− 1/p)δ(χ)

s− 1

)
= − lim

r→∞
Bφ(pr )(χ)− (1− 1/p)δ(χ)

φ(pr)
.

Proof. Since Lp(χ, s) is a continuous function of s �= 1, for all k ∈ Z we
have

Lp(χ, k + 1) = lim
r→∞Lp(χ, k + 1− φ(pr)) .

Since ωφ(qp ) is the trivial character and φ(pr) is even for r � 2, for r large
enough we have by definition

Lp(χ, k + 1− φ(pr)) = −(1− (χωk)(p)pφ(pr )−k)
Bφ(pr )−k(χωk)

φ(pr)− k
.

Taking the limit as r →∞ and distinguishing cases gives the result. ��
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Definition 11.3.13. For k ∈ Z \ {0} we define the p-adic χ-Bernoulli num-
bers and χ-Euler constant by

Bk,p(χ) = lim
r→∞Bφ(pr )+k(χ) = −kLp(χωk, 1− k) , and

γp(χ) = − lim
r→∞

Bφ(pr )(χ)− (1− 1/p)δ(χ)
φ(pr)

= lim
s→1

(
Lp(χ, s)− (1− 1/p)δ(χ)

s− 1

)
.

In addition, we set Bk,p = Bk,p(χ0) and γp = γp(χ0).

Note that γp is the p-adic analogue of Euler’s constant, and that when
χ �= χ0 we evidently have γp(χ) = Lp(χ, 1), so that the notation γp is really
useful only for χ = χ0.

Proposition 11.3.14. Assume that the conductor of χ is a power of p
(which is true in particular when χ = χ0). Then for k ∈ Z \ {0} we have

Bk,p(χ) = lim
r→∞

1
pr

∑(p)

0�n<pr

χ(n)nk =
∫

Z∗
p

χ(t)tk dt and

γp(χ) = − lim
r→∞

1
pr

∑(p)

0�n<pr

χ(n) logp(n) = −
∫

Z∗
p

χ(t) logp(t) dt .

Proof. This is a restatement of Corollary 11.3.11. ��

From the definition it is immediate to deduce the following results.

Proposition 11.3.15. (1) If χ(−1) = (−1)k−1 we have Bk,p(χ) = 0, and if
χ(−1) = −1 we have γp(χ) = 0.

(2) If k � 1 we have Bk,p(χ) = (1− χ(p)pk−1)Bk(χ).
(3) As usual let m be a common multiple of f and qp, and set Hn(χ) =∑(p)

1�a�m χ(a)/an. If k � 1 and χ(−1) = (−1)k we have

B−k,p(χ) = kLp(χω−k, k + 1) =
∑
j�0

(−1)j

(
k + j − 1

k − 1

)
mj−1BjHk+j(χ) ,

and

γp(χ) = lim
s→1

(
Lp(χ, s)− (1− 1/p)δ(χ)

s− 1

)
= − 1

m

∑(p)

0�a<m

χ(a) logp(〈a〉) +
∑
j�1

(−1)j

j
mj−1BjHj(χ) .

(4) For all k �= 0 we have vp(Bk,p(χ)) � −1.
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(5) If χ is p-adically tame (see Definition 11.3.17 below) then γp(χ) is p-
integral, and in all cases vp(γp(χ)) � −1.

Note that we will give stronger integrality statements later in Corollary
11.4.8.

Proof. All the statements except the last two are clear from the definitions
and Proposition 11.3.9. By Lemma 9.5.11 we know that vp(Bk(χ)) � −1,
and since Bk,p(χ) = limr→∞ Bφ(pr )+k(χ) we also have vp(Bk,p(χ)) � −1.
This also follows from (1), (2), and (3). For (4), since γp(χ) = 0 if χ is odd,
we may assume that χ is even. Since qp | m we have vp(mj−1/j) � 1 for all
j � 2, so by the ordinary Clausen–von Staudt theorem vp(mj−1Bj/j) � 0
for j � 2, and for j = 1 we have mj−1Bj = −1/2, which has nonnegative
valuation if p �= 2. Since χ is an even character, for p = 2 we have

H1(χ) =
∑(p)

1�a�m

χ(a)
a

=
∑(p)

1�a�m/2

χ(a)
(

1
a

+
1

m− a

)
= m

∑(p)

1�a�m/2

χ(a)
a(m− a)

,

so vp(H1(χ)) � vp(m) � vp(qp) = 2, proving that the valuation of the sum is

nonnegative in all cases. Finally, the first sum (1/m)
∑(p)

0�a<m χ(a) logp(〈a〉)
will be studied in Theorem 11.3.19 below, which tells us that its valuation is
also nonnegative if χ is p-adically tame, and that otherwise it is greater than
or equal to −1. ��

For future reference, note the following corollary.

Corollary 11.3.16. Let k � 2 be an even integer.

(1) We have

B−k,p ≡ 1
p

∑
1�a�p−1

1
ak

(mod pvZp) ,

where v = 1 if 5 � p � k + 3, and v = 2 for p � k + 5.
(2) If p � k + 3 we have

B−k,p ≡ k

k + 1
Bp−1−k (mod pZp) .

Proof. Immediate consequence of the proposition and of the Kummer
congruences, and left to the reader; see Exercise 50. ��

For example for p � 7 we have B−2,p ≡ (1/p)
∑

1�a�p−1 1/a2 (mod p2Zp),
and for p � 5 we have B−2,p ≡ (2/3)Bp−3 (mod pZp). The corresponding
congruences for p � 5 can be read off from the table that we give below.

Proposition 11.3.15 gives a practical way of computing the constants
B−k,p(χ) and γp(χ), since the definition as a limit of Bernoulli numbers is
much slower. For the convenience of the reader, we give a small table for
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χ = χ0, where as usual the p-adic digits are written from right to left, and
the digits from 10 to 18 are coded with the letters A to H.

p γp B−2,p B−4,p

2 · · · 110110001100111 · · · 00000101000110.1 · · · 00111101111100.1
3 · · · 112010222121220 · · · 01001000002212.2 · · · 11210011021012.2
5 · · · 321122143203010 · · · 214004103314334 · · · 00341201131120.4
7 · · · 025121026026425 · · · 113431404032362 · · · 362564350404462
11 · · · 9317447545512A1 · · · 8682761505A028A · · · 4349913A6604674
13 · · · 1893BC946787040 · · · 087B14A2BC94ACC · · · 78C4809C3055B95
17 · · · 132AE449B942425 · · · 60294D387222D3E · · · 539496A1G54488A
19 · · · 90489H87B72FHD2 · · · G7GIF9767A0HGDA · · · F47AB7GDEB7E956
p B−6,p B−8,p B−10,p

2 · · · 10111110100010.1 · · · 00101010111000.1 · · · 10110110111110.1
3 · · · 00010112021000.2 · · · 22111112220122.2 · · · 01101110202202.2
5 · · · 241123000012322 · · · 20240200211300.4 · · · 330344030340240
7 · · · 54261355252232.6 · · · 033431442506531 · · · 506040436364625
11 · · · 8A7A967A8664645 · · · 625244199481503 · · · 17A273A506351A.A
13 · · · 0578730584B3284 · · · B4AC3B114A10797 · · · A3C140B38800A3A
17 · · · AE16BFA8D998D2A · · · 2G0ABEGEC44B3E4 · · · EC1E4BCEE3E3G49
19 · · · 6EB027DEB2099B1 · · · 12ED0C4C01GE318 · · · D958H1DE7004BG4

A Small Table of γp and B−2k,p

11.3.4 χ-Power Sums Involving p-adic Logarithms

In the rest of this chapter, we will usually consider only primitive characters,
although it is not difficult to generalize.

The aim of this subsection is to prove a technical result that will be
seen to have several interesting arithmetic applications, essentially in the
next subsection. Recall once again that we denote by Zp the ring of p-adic
integers of Cp. We begin with the following definition.

Definition 11.3.17. Let χ be a primitive character modulo f , and denote
by o(χ) the order of χ, which divides φ(f). We say that χ is p-adically wild
if χ is nontrivial, p is odd, and if both f and o(χ) are powers of p, and that
χ is p-adically tame otherwise.

Remarks. (1) This terminology is not completely standard. Properly speak-
ing, we should speak of totally wild and nontotally wild characters, but
the above is simpler. In the literature these are sometimes called char-
acters of the second and first kind, respectively, a terminology that is
probably even worse.

(2) By Corollary 2.1.35, we know that if χ is p-adically wild then f = pv and
o(χ) = pv−1 for some v � 2.
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Lemma 11.3.18. Let χ be a primitive character modulo pv for some odd
prime p and some v � vp(qp), let g be a primitive root modulo pv, and let
n ∈ Z�0. Then ∑

0�k<φ(pv )

χ(g)kkn ≡ 0 (mod pv−1−δZp) ,

where δ = 0 if χ is p-adically tame, and δ = 1 if χ is p-adically wild.

Proof. The result being trivial if v = 1, we may assume that v � 2. To
simplify notation set ζ = χ(g), which is a root of unity of order o(χ), and
write k = pv−1a + b with 0 � a < p − 1 and 0 � b < pv−1. If S denotes our
sum, we have

S ≡
∑

0�a<p−1

ζpv−1a
∑

0�b<pv−1

ζbbn (mod pv−1Zp) .

If ζpv−1 �= 1, or equivalently, if o(χ) �= pv−1, the first sum vanishes, so that
S ≡ 0 (mod pv−1Zp) when χ is tame, as claimed. Thus, assume that ζpv−1

=
1, in other words that χ is wild, so that

S ≡ (p− 1)
∑

0�b<pv−1

ζbbn (mod pv−1Zp) .

Here we write b = pv−2c + d with 0 � c < p and 0 � d < pv−2, so that

S ≡ (p− 1)
∑

0�c<p

ζpv−2c
∑

0�d<pv−2

ζddn ≡ 0 (mod pv−2Zp) ,

since ζpv−2
is a primitive pth root of unity, so that the first sum vanishes,

proving the lemma. ��

Theorem 11.3.19. Let χ be a primitive character of conductor f , and let
m be the least common multiple of f and qp.

(1) If χ is p-adically tame then for any n � 1 we have

∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
≡ 0 (mod (qn−1

p /n!)mZp)

(note that qn−1
p /n! ∈ pZp for n � 2).

(2) If χ is p-adically wild then

∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
≡ 0 (mod (qn−1

p /n!)(m/p)Zp) .
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Proof. If χ is the trivial character we have m = qp and logp(〈a〉) ≡ 0
(mod qp); hence the result is trivial in that case, so we may assume that χ is
nontrivial.

Assume first that f is not a power of p, and write f = pvf2 and m = pwm2

with p � f2m2, w � max(v, vp(qp)), and f2 | m2. By Proposition 2.1.34 there
exist two primitive characters χ1 modulo pv and χ2 modulo f2 such that
χ = χ1χ2. Writing a = pwr2 + r1 with 0 � r1 < pw, p � r1, and 0 � r2 < m2,
we have ∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
=

∑(p)

0�r1<pw

χ1(r1)T (r1) ,

where

T (r1) =
∑

0�r2<m2

χ2(pwr2 + r1)
(logp(〈r1〉) + logp(1 + pwr2/r1))n

n!

=
∑

0�j�n

logp(〈r1〉)j

j!

∑
0�r2<m2

χ2(pwr2 + r1)
logp(1 + pwr2/r1)n−j

(n− j)!
.

Since w � vp(qp), it follows that vp(logp(1 + pwr2/r1)) � w, so vp(logp(1 +
pwr2/r1)n−j/(n− j)!) � w(n− j)− vp((n− j)!). Since vp(〈r1〉) � vp(qp), for
j < n we thus have

logp(〈r1〉)j

j!

∑
0�r2<m2

χ2(pwr2 + r1)
logp(1 + pwr2/r1)n−j

(n− j)!
≡ 0 (mod pvjZp) ,

where

vj � jvp(qp)− vp(j!) + w(n− j)− vp((n− j)!)

� w + (n− 1)w − j(w − vp(qp))− vp(n!) + vp

((
n

j

))
� w + (n− 1)w − (n− 1)(w − vp(qp))− vp(n!)
� w + (n− 1)vp(qp)− vp(n!) ,

giving the desired congruence for the terms with j < n. For j = n, since
p � m2 the map r2 �→ pwr2 + r1 is a bijection of Z/m2Z onto itself, hence∑

0�r2<m2

χ2(pwr2 + r1) =
∑

0�r2<m2

χ2(r2) = 0

since by assumption χ2 is nontrivial, else f would be equal to a power of p,
so the terms with j = n do not contribute, proving the result when f is not
a power of p.

Assume now that f = pv for some v � 1 with p � 3. In that case m = f ,
and the group (Z/fZ)∗ is cyclic. Let g be a primitive root modulo pv, so that
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the class of g modulo f generates (Z/fZ)∗. If p � a we have a ≡ gk (mod f)
for some k defined uniquely modulo φ(f) = (p− 1)pv−1, hence ω(a) = ω(g)k,
so that

〈a〉 =
a

ω(a)
=

gk(1 + pvuk)
ω(g)k

= 〈g〉k(1 + pvuk)

for some p-adic integer uk. It follows that

logp(〈a〉) ≡ k logp(〈g〉) (mod pv) .

Since vp(logp(〈x〉)) � 1 for all x, an immediate p-adic argument (see Exercise
3 of Chapter 4) shows that for all n � 0 we have

logp(〈a〉)n

n!
≡ kn logp(〈g〉)n

n!
(mod (pn−1/n!)pv) .

Thus∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
≡ logp(〈g〉)n

n!

∑
0�k<φ(f)

χ(g)kkn (mod (pn−1/n!)m) .

Note that since g is a primitive root, the order of χ as a character is equal
to that of χ(g) as a root of unity, and since χ is nontrivial, that χ(g) �= 1.
Applying Lemma 11.3.18, we see that if o(χ) �= pv−1 we have∑

0�k<φ(f)

χ(g)kkn ≡ 0 (mod pv−1Zp) ,

otherwise the congruence is only modulo pv−2Zp. Since vp(logp(〈g〉)n/n!) �
vp(pn/n!), this proves the theorem for f = pv with p � 3.

Assume finally that f = 2v with v � 2, and set p = 2. For v = 2 the
result is immediate since the only primitive character modulo f is

(−4
.

)
, so

assume that v � 3. We again have m = f , and if p � a we can write in a
unique way a ≡ (−4

a

)
5k (mod f) for some k defined uniquely modulo 2v−2.

Since by definition of ω, for p = 2 we have ω(a) =
(−4

a

)
, it follows that

〈a〉 = a/ω(a) ≡ 5k (mod f). The same reasoning as in the case p > 2 shows
that∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
≡ (1 + χ(−1))

logp(5)n

n!
Un (mod (qn−1

p /n!)m) , with

Un =
∑

0�k<2v−2

χ(5)kkn ,

the factor 1+χ(−1) coming from the two possible values of
(−4

a

)
. By Lemma

2.1.35 the order of χ is equal to 2v−2. Furthermore, we clearly have

Un ≡
∑

0�k<2v−3

χ(5)kkn(1 + χ(5)2
v−3

) (mod 2v−3) ,
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and since χ(5) is a primitive 2v−2th root of unity we have χ(5)2
v−3

= −1, so
that Un ≡ 0 (mod 2v−3). Since qp = 4 and logp(5) ≡ 0 (mod qp), it follows
that ∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
≡ 0 (mod (qn−1

p /n!)m) ,

as claimed. ��

Corollary 11.3.20. Let χ be a primitive character of conductor f , let m be
the least common multiple of f and qp, and for simplicity of notation set

Tn(χ) =
∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
.

(1) For n � 2 we have Tn(χ) ≡ 0 (mod pmZp), except when n = 3, p = 3,
and χ is 3-adically wild, or when n = 2 and χ is p-adically wild, in which
case the congruence is only modulo mZp.

(2) For n = 1 we have

T1(χ) ≡
⎧⎨⎩0 (mod mZp) if χ is p-adically tame,

m

1− χ(1 + p)
(mod mZp) if χ is p-adically wild.

(3) In the special case n = 1 and p = 2, if χ is odd we have T1(χ) ≡ 0
(mod 2mZp) except if f = 4, in which case T1(χ) ≡ m (mod 2mZp),
while if χ is even we have

T1(χ) ≡

⎧⎪⎪⎨⎪⎪⎩
0 (mod 2mZp) if f is not a power of 2 ,

2m

1− χ(5)
(mod 2mZp) if f = 2v with v � 3 ,

m (mod 2mZp) if f = 1 .

Proof. (1). As already remarked in the theorem, we have qn−1
p /n! ∈ pZp

for n � 2, so (1) follows when χ is p-adically tame. If on the contrary χ
is wild, hence p odd, the theorem says that the congruence is true modulo
(pn−2/n!)mZp. For n = 2 we have vp(pn−2/n!) = 0 since p �= 2, while for
n � 3 we have vp(pn−2/n!) � 1, with the exception of p = 3 and n = 3, in
which case vp(pn−2/n!) = 0, proving (1).

(2). When χ is tame the result is a special case of the theorem, so we
may assume that χ is wild, so that p is odd, m = pv, and χ has order pv−1.
We use the same reasoning as for Theorem 9.5.5 (3). We can write a ≡ a1a2

(mod m), with a1 = apv−1
and a2 ≡ 1 (mod p), and since χ has order pv−1

we have χ(a) = χ(a2). Note that when p � a we have logp(〈a〉) ≡ logp(〈a1a2〉)
(mod pv). Since a2 ≡ (1 + p)x (mod pv) for a unique x modulo pv and since
χ is a nontrivial character we have
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∑(p)

0�a<m

χ(a) logp(〈a〉) ≡
∑(p)

a1 mod p
x mod pv−1

χ((1 + p)x)(logp(〈a1〉) + x logp(〈1 + p〉))

≡
∑(p)

a1 mod p

logp(〈a1〉)
∑

x mod pv−1

χ(1 + p)x

+ logp(1 + p)
∑(p)

a1 mod p

∑
x mod pv−1

xχ(1 + p)x (mod pvZp) ,

using the fact that 〈1 + p〉 = 1 + p. Since χ has exact order pv−1 and v � 2,
it follows that χ(1 + p) is a primitive pv−1th root of unity, and in particu-
lar is different from 1, so that

∑
x mod pv−1 χ(1 + p)x = 0. Furthermore, by

computing the derivative of a geometric series, we immediately find that∑
0�x<pv−1

xχ(1 + p)x =
pv−1

χ(1 + p)− 1
.

Since there are p−1 terms in the sum over a1 mod p, and since logp(1+p) ≡ p
(mod p2Zp) and vp(χ(1 + p)− 1) < 1, (2) follows.

(3). If f = 1 or f = 4, we have m = 4, 〈1〉 = 1, and 〈3〉 = −3, so our
sum is equal to χ(−1) log2(−3), which is easily seen to be congruent to 4
modulo 8Z2. We may therefore assume that f �= 1 and f �= 4, in other words
χ nontrivial and χ �= (−4

.

)
. Since 4 | m, we can write

∑(p)

0�a<m

χ(a) logp(a) =
∑

0�a<m
a≡1 (mod 4)

(χ(a) logp(a) + χ(m− a) logp(m− a))

= (1 + χ(−1))
∑

0�a<m
a≡1 (mod 4)

χ(a) logp(a)

+ χ(−1)
∑

0�a<m
a≡1 (mod 4)

χ(a) logp(1−m/a) .

Since 4 | m and 2 � a, by expanding the logarithm we see that logp(1−m/a) ≡
−m/a ≡ m (mod 2mZp), so that∑

0�a<m
a≡1 (mod 4)

χ(a) logp(1−m/a) ≡ m
∑

0�a<m
a≡1 (mod 4)

χ(a) (mod 2mZp) .

However, we can write
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∑
0�a<m

a≡1 (mod 4)

χ(a) =
1
2

∑(p)

0�a<m

(
1 +

(−4
a

))
χ(a)

=
1
2

⎛⎝ ∑(p)

0�a<m

χ(a) +
∑(p)

0�a<m

χ1(a)

⎞⎠ ,

where χ1(a) =
(−4

a

)
χ(a). Since m is a common multiple of 4 and the conduc-

tors of χ and χ1, and since by assumption χ is both nontrivial and different
from

(−4
.

)
, it follows from Lemma 11.3.7 that both sums above vanish. We

thus have∑(p)

0�a<m

χ(a) logp(a) ≡ (1 + χ(−1))
∑

0�a<m
a≡1 (mod 4)

χ(a) logp(a) (mod 2mZp) .

This proves the theorem when χ is an odd character, and also when 8 � m (in
other words, 8 � f), since 1 + χ(−1) ≡ 0 (mod 2) and logp(a) ≡ 0 (mod 4).

Thus, assume now that 8 | f , so that m = f , and that χ is an even
character. Since f/2 ≡ 0 (mod 4), by Corollary 2.1.30 we have∑

0�a<f
a≡1 (mod 4)

χ(a) logp(a) =
∑

0�a<f/2
a≡1 (mod 4)

χ(a)(logp(a)− logp(a + f/2))

= −
∑

0�a<f/2
a≡1 (mod 4)

χ(a) logp(1 + f/(2a)) .

Since 8 | f we check that logp(1 + f/(2a)) ≡ f/(2a) ≡ f/2 (mod f) (note
that we only need the congruence modulo f and not 2f here), so that∑

0�a<f
a≡1 (mod 4)

χ(a) logp(a) ≡ (f/2)
∑

0�a<f/2
a≡1 (mod 4)

χ(a) (mod fZp) .

Using once again the characters
(−4

.

)
and χ1 =

(−4
.

)
χ, and since we have∑

0�a<f/2 χ(a) = 0 for an even nontrivial character χ, we obtain∑(p)

0�a<m

χ(a) logp(a) ≡ (f/2)
∑

0�a<f/2

χ1(a) (mod 2fZp) .

When f is not a power of 2, by Corollary 9.5.10 this last sum is divisible by
4, proving the theorem in that case. On the other hand, when f = 2v with
v � 3, by the same corollary we have∑

0�a<f/2

χ1(a) ≡ 4/(1− χ(5)) (mod 4Zp) ,

finishing the proof of the theorem. ��
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11.3.5 The Function Lp(χ, s) Around s = 1

Since Lp(χ, s) is a p-adic holomorphic function in the disk of radius Rp > 1
when χ �= 1, we can look at its expansion around 1. It happens that the simple
p-adic properties of its coefficients gives important arithmetic information on
Bernoulli numbers and other quantities, which are more precise than those
obtained in Chapter 9. The result, which easily follows from Theorem 11.2.11
and Corollary 11.3.20, is the following (we may of course assume that χ is an
even character, otherwise Lp(χ, s) is identically zero).

Theorem 11.3.21. Let χ be an even primitive character of conductor f .
The Taylor series expansion of Lp(χ, s) around s = 1 has the form

Lp(χ, s) =
a−1

s− 1
+ a0 + a1(s− 1) + a2(s− 1)2 + · · · ,

where a−1 = 0 if χ is not the trivial character and a−1 = 1− 1/p if χ is the
trivial character, and where the coefficients aj satisfy the following:

(1) For j � 2 we have p | aj (in other words |aj/p| � 1), except if j = 2,
p = 3, and χ is 3-adically wild, in which case we have only |a2| � 1.

(2) For j = 1 we have p | a1, except if p is odd and either χ is p-adically
wild, or if χ is the trivial character and p = 3, in which cases we have
only |a1| � 1 (and more precisely a1 ≡ 2 (mod 3Z3) when χ is the trivial
character and p = 3).

(3) For j = 0 we have |a0| � 1, except if p is odd and χ is p-adically wild, in
which case |pa0| � 1, and more precisely

a0 ≡ 1
χ(1 + p)− 1

(mod Zp) .

(4) In addition, if p = 2 then

a0 ≡

⎧⎪⎪⎨⎪⎪⎩
0 (mod 2Zp) if f is not a power of 2 ,

2
χ(5)− 1

(mod 2Zp) if f = 2v with v � 3 ,

1 (mod 2Zp) if f = 1 .

Note that if χ is nontrivial we have a0 = Lp(χ, 1) (hence a0 = γp(χ) when
the conductor of χ is a power of p), which we will compute in Section 11.5.6,
while if χ is trivial, so that Lp(χ, s) = ζp(s) is the Kubota–Leopoldt p-adic
zeta function, we have by definition a0 = γp, the p-adic Euler constant.

Proof. Choose m = lcm(f, qp), and for simplicity of notation, set

S−n(χ) =
∑(p)

0�a<m

χ(a)
an

and Tn(χ) =
∑(p)

0�a<m

χ(a)
logp(〈a〉)n

n!
.

By Proposition 11.3.8 we have
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Lp(χ, s) =
∑(p)

0�a<m

χ(a)
〈m〉1−s

m
ζp

(
s,

a

m

)
,

so Theorem 11.2.11 (3) tells us that

Lp(χ, s) =
a−1

s− 1
+ a0 + a1(s− 1) + a2(s− 1)2 + · · · ,

with

a−1 =
1
m

∑(p)

0�a<m

χ(a) =
S0(χ)

m
,

a0 ≡ S−1(χ)
2

+
m

12
S−2(χ)− T1(χ)

m
(mod qpZp) ,

a1 ≡ T2(χ)
m

− 1
2

∑(p)

0�a<m

χ(a)
logp(〈a〉)

a
+

m

12
S−2(χ) (mod qpZp) ,

aj ≡ (−1)j+1 Tj+1(χ)
m

(mod qpZp) for j � 2 .

We have already shown that a−1 = 1 − 1/p if χ is trivial, and a−1 = 0
otherwise.

(1). By Corollary 11.3.20, for j � 2 we have Tj+1(χ) ≡ 0 (mod pmZp),
except if j = 2, p = 3, and χ is 3-adically wild, in which case we have only
Tj+1(χ) ≡ 0 (mod mZp), so (1) follows.

(2). We have similarly T2(χ) ≡ 0 (mod pmZp), except if χ is p-adically
wild, in which case we have only T2(χ) ≡ 0 (mod mZp). Furthermore, m/12 ∈
pZp for p � 5, while for p = 2 and p = 3 we have m/12 ∈ Zp, and a2 ≡ 1

(mod p) when p � a, so that S−2(χ) ≡∑(p)

0�a<m χ(a) (mod p), and this last
sum is equal to 0, except when χ is the trivial character, in which case it is
equal to m(1 − 1/p). This is even for p = 2 since 4 | m, but is congruent
to 2 (mod 3) for p = 3 and m = lcm(f, qp) = lcm(1, 3) = 3. Finally, since
logp(〈a〉) ≡ 0 (mod qp), it follows trivially that

1
2

∑(p)

0�a<m

χ(a)
logp(〈a〉)

a
≡ 0 (mod pZp) ,

proving (2).
(3). We have seen in the proof of (2) that (m/12)S−2(χ) ∈ pZp, except

when p = 3 and χ is the trivial character, in which case (m/12)S−2(χ) ∈ Zp.
Furthermore, using the symmetry a �→ m− a and the fact that χ is an even
character, it is clear that S−1(χ) ≡ 0 (mod mZp), and since qp | m, we have
S−1(χ)/2 ≡ 0 (mod pZp), so that S−1(χ)/2 + (m/12)S−2(χ) ∈ pZp except
in the special case mentioned above. Furthermore, by Corollary 11.3.20 we
have T1(χ) ≡ 0 (mod mZp) except if χ is p-adically wild, in which case the
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congruence is modulo (m/p)Zp, and the more precise congruence follows from
Corollary 11.3.20.

(4). By the proof of (3), we already know that for p = 2 we have
S−1(χ)/2+(m/12)S−2(χ) ∈ pZp, so the result follows from Corollary 11.3.20
(3). ��

Corollary 11.3.22. Let χ be an even primitive character modulo f , and
assume that χ is p-adically tame. Define

Mp(χ, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lp(χ, s) if χ is nontrivial ,

Lp(χ, s)− 1− 1/p

s− 1
if χ is trivial and p �= 3 ,

Lp(χ, s)− 1− 1/p

s− 1
+ (s− 1) if χ is trivial and p = 3 .

The Taylor series expansion of Mp(χ, s) around s = 1 has the form
∑

j�0 bj(s−
1)j with p | bj for all j � 1, and |b0| = |a0| � 1.

Proof. Clear. ��

11.4 Applications of p-adic L-Functions

11.4.1 Integrality and Parity of L-Function Values

The existence and basic properties seen above for Lp(χ, s) (not including the
value at s = 1), especially Theorem 11.3.21, imply in a simple way several
integrality results on values of ordinary L-functions, congruences on Bernoulli
numbers and additional nontrivial and important results. Here are a few
examples.

Proposition 11.4.1. Let χ be an even primitive character of conductor f
and let k ∈ Z be arbitrary, not necessarily positive.

(1) If χ is nontrivial and p-adically tame then Lp(χ, 1− k) is p-integral and

Lp(χ, 1− k) ≡ Lp(χ, 1) (mod pZp) .

(2) If χ is nontrivial and p-adically wild then vp(Lp(χ, 1 − k)) = −1/φ(f),
and more precisely

Lp(χ, 1− k) ≡ 1
χ(1 + p)− 1

(mod Zp) .

(3) If k �= 0 then ζp(1 − k) + (1 − 1/p)/k is p-integral and all these quan-
tities are congruent modulo pZp, except for p = 3, where the congruent
quantities are the ζp(1− k) + (1− 1/p)/k − k.
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(4) For p = 2 we have

L2(χ, 1− k) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (mod 2Z2) if f is not a power of 2 ,

2
χ(5)− 1

(mod 2Z2) if f = 2v with v � 3 ,

1− 1
2k

(mod 2Z2) if f = 1 and k �= 0 .

Proof. Since Lp(χ, s) is an analytic function for |s| < Rp and Rp > 1, it
follows that the radius of convergence of its Taylor series around s = 1 is
greater than or equal to Rp. Thus, by Theorem 11.3.21, if s is p-integral (and
in particular if s ∈ Z) we have Lp(χ, s) ≡ a0 (mod p), therefore (1) and (2)
follow from the same theorem, (3) is proved similarly, and (4) follows in the
same way from Theorem 11.3.21 (4). ��

An important consequence of this proposition is that, apart from some
well-understood exceptions, the values at negative integers of L-functions of
Dirichlet characters are twice algebraic integers.

Corollary 11.4.2. Let k ∈ Z�1, let χ be a nontrivial primitive character
such that χ(−1) = (−1)k, and denote by f its conductor and by u = o(χ) |
φ(f) its order.

(1) Let p be a prime. The algebraic number L(χ, 1 − k) is p-integral (see
Definition 11.3.1), except possibly when p is odd, f = pv for some v � 1,
and u = pv−1(p− 1)/ gcd(p− 1, k).

(2) If f is not a power of 2 the algebraic number L(χ, 1− k)/2 is 2-integral,
except possibly if k = 1 and f is an odd prime power, in which case, in
general, only L(χ, 1− k) is 2-integral.

(3) In particular, assume that f is not a power of 2. Then L(χ, 1 − k)/2 is
an algebraic integer (hence is in Z[ζu]), except possibly when f = pv for
some odd prime p with v � 1, and either u = pv−1(p − 1)/ gcd(p − 1, k)
or k = 1.

(4) If f = pv and u = pv−1(p − 1)/ gcd(p − 1, k) for some odd prime p and
some v � 1, there exists a unique prime ideal p of Q(χ) = Q(ζu) above p
such that vq(L(χ, 1− k)) � 0 for all prime ideals q �= p, and such that

vp

(
L(χ, 1− k) +

1− 1/p

k

)
� 0 if v = 1,

vp

(
L(χ, 1− k)− 1

χ(1 + p)− 1

)
� 0 if v � 2.

(5) If f = 2v with v � 3, we have

L(χ, 1− k)− 2
χ(5)− 1

∈ 2Z[ζu] .
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(6) If χ =
(−4

.

)
, for all odd k we have L(χ, 1− k) + k/2− 1 ∈ 4Z.

(7) If χ =
(−8

.

)
, for all odd k we have L(χ, 1− k)− 1 ∈ 4Z.

(8) If χ =
(

8
.

)
, for all even k we have L(χ, 1− k) + 1 ∈ 4Z.

Remarks. (1) It is absolutely necessary to assume k � 1, since for k � 0
the value of L(χ, 1− k) is usually not algebraic.

(2) If χ(−1) = (−1)k−1 we have L(χ, 1 − k) = 0, so we may indeed assume
that χ(−1) = (−1)k.

(3) Let χ be a not necessarily primitive character modulo m. Then if we
denote by f is its conductor and by χf the primitive character modulo
f equivalent to χ we have

L(χ, 1− k) =
∏

p|m, p�f

(1− χf (p)pk−1)L(χf , 1− k) .

It follows that the integrality and parity results given in the corollary are
still valid for χ, the restrictions being on the conductor f and not on m.

(4) Since L(χ, 1−k) = −Bk(χ)/k for a nontrivial character, the above results
can be restated as results on Bk(χ)/k. The reader is invited to compare
with the corresponding results for Bk(χ) itself given in Theorem 9.5.13,
which are weaker.

(5) The corresponding statements for the trivial character χ will be given,
in a slightly stronger form, as Proposition 11.4.4 below.

Proof. Since this corollary is a result on ordinary and not p-adic L-
functions, the notion of p-integrality is a little different (see Definition 11.3.1).
More precisely, by Corollary 10.2.3 we know that L(χ, 1− k) = −Bk(χ)/k is
an algebraic number (belonging to Q(ζu)), and since Bk(χ) is a rational linear
combination of values of χ, it follows that the conjugates of L(χ, 1− k) in Q
are the L(χj , 1− k) for j modulo u and coprime to u. Note that χj has the
same conductor and the same order as χ itself. By Lemma 11.3.2 it follows
that if q is any prime number then L(χ, 1 − k) is q-integral as an algebraic
number if and only if L(χj , 1 − k) is q-integral in Cq for all j coprime to u.
This being said, we can now give the (straightforward) proof proper.

(1), (2), and (3). Let p be any prime number. By Proposition 11.3.9 (2),
for k ∈ Z�1 we have

Lp(χωk, 1− k) = (1− χ(p)pk−1)L(χ, 1− k) .

Assume first that k � 2. Since χ(p) is either 0 or a root of unity it is p-
integral, so that 1− χ(p)pk−1 is a p-adic unit, congruent to 1 modulo p, and
hence L(χ, 1− k) ≡ Lp(χωk, 1− k) (mod pZp) as elements of Cp.

Assume first that p is odd. Since the conductor of ωk divides p, writing
χ = (χωk)ω−k it follows that f divides the LCM of the conductor of χωk

and of p, so that if f is not a power of p, the conductor of χωk is also not
a power of p (and χωk is nontrivial), so it is p-adically tame. Thus, assume
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that f is a power of p, and write f = pv for some v � 1. Note that the order
of ω−k is equal to (p− 1)/ gcd(p− 1, k). Thus, if the order of χωk is a power
of p, the order of χ = (χωk)ω−k will be equal to pw(p−1)/ gcd(p−1, k) for a
certain integer w � v−1, and since by Corollary 2.1.35 this must be divisible
by pv−1, we must have w = v − 1, hence u = pv−1(p − 1)/ gcd(p − 1, k). It
follows that if this equality does not hold, then χωk is p-adically tame.

If p = 2 then by definition χωk is p-adically tame unless it is the trivial
character, in other words if χ = ω−k. However, for p = 2 we have ω =

(−4
.

)
,

and k is odd, else χ is trivial, so χωk is p-adically tame when χ �= (−4
.

)
.

Statement (1) thus follows from Proposition 11.4.1 (1), since the order and
conductor of χj for j coprime to u are the same as those of χ. For (2) the
same reasoning holds using Proposition 11.4.1 (3), since the condition χω−k

nontrivial and different from
(

8
.

)
means that χ is (nontrivial and) different

from
(−4

.

)
,
(

8
.

)
, and

(−8
.

)
.

For k = 1, we must reason differently since the local Euler factor 1 −
χ(p)pk−1 = 1 − χ(p) may vanish. In this case, by Corollary 10.3.2 we have
L(χ, 0) = −B1(χ)/f = −S1(χ)/f . It follows from Corollary 9.5.7 (1) that
L(χ, 0) is an algebraic integer, except possibly if f = qv with q an odd prime
such that u = qv−1(q − 1), or if f = 22 = 4. In these cases L(χ, 0) =
−S1(χ)/qv is evidently p-integral for p �= q, proving (1) for k = 1. Applying
Corollary 9.5.7 (2) proves (2) when f is not an odd prime power, since the
only additional condition is that f is not a power of 2. When f is an odd
prime power the formula L(χ, 0) = −S1(χ)/f shows that L(χ, 0) is 2-integral,
proving (2) in all cases.

Assume now that f = p. If q is a prime ideal that is above a prime q �= p
then vq(L(χ, 1 − k)) � 0 since L(χ, 1 − k) is q-integral by what we have
already shown. Since χ(p) = 0 we have Lp(χωk, 1 − k) = L(χ, 1 − k) for all
k ∈ Z�1, so it is not necessary to consider separately the case k = 1. By
Proposition 11.4.1 (1), if χ �= ω−k then Lp(χ, 1 − k) is p-integral. It follows
from Lemma 11.3.2 that L(χ, 1 − k) is p-integral as an algebraic number as
soon as χj �= ω−k for all j coprime to u. It is clear that the set of such χj

is equal to the set of characters of exact order u. On the other hand, ω−k is
of order (p − 1)/ gcd(p − 1, k). It follows that L(χ, 1 − k) will be p-integral,
hence an algebraic integer, as soon as gcd(p− 1, k) �= (p− 1)/u, proving (1)
in all cases.

It is clear that (3) follows immediately from (1) and (2) since an algebraic
number is an algebraic integer if and only if it is p-integral for all primes p.

(4). Assume first that v = 1, so that f = p and gcd(p− 1, k) = (p− 1)/u.
There exists a unique a modulo u and coprime to u such that χa = ω−k.
If follows that, as elements of Cp, the L(χj , 1 − k) are p-integral, except for
j = a, in which case L(χj , 1 − k) + (1 − 1/p)/k is p-integral by Proposition
11.4.1 (2), and since the L(χj , 1 − k) are the conjugates of L(χ, 1 − k), this
is exactly the statement given in (4).
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Assume now that f = pv for v � 2. Once again we have χ(p) = 0, so
that for all j coprime to u = o(χ) we have L(χj , 1 − k) = Lp(χjωk, 1 − k).
Write χ = χ1χ2 with χ1 = χpv−1

. It is clear that χ1 is defined modulo p, and
that χ2 is a primitive character of order pv−1. As in the case f = p, since
u = pv−1(p− 1)/ gcd(p− 1, k) we have o(χ1) = u1, say, where u1 = u/pv−1 =
(p− 1)/ gcd(p− 1, k). It follows that there exists a unique a modulo u1 and
coprime to u1 such that χa

1 = ω−k. Since v � 2, the character χjωk is never
trivial, and χjωk = χj

1ω
kχj

2 is p-adically wild if and only if χj
1 = ω−k = χa

1 ,
hence if and only if j ≡ a (mod u1). It follows from Proposition 11.4.1 that,
as an element of Cp, L(χj , 1− k) = Lp(ωkχj

1χ
j
2, 1− k) is p-integral for j �≡ a

(mod u1), and that for j ≡ a (mod u1),

L(χj , 1− k) ≡ 1
χ2(1 + p)j − 1

≡ 1
χ(1 + p)j − 1

(mod Zp) .

Since the L(χj , 1−k) are the conjugates of L(χ, 1−k) and the 1/(χ(1+p)j−1)
are the corresponding conjugates of 1/(χ(1 + p) − 1), this proves (4). Note
that we use here implicitly the fact that the prime ideals above p are totally
ramified in the extension Q(ζu)/Q(ζu1).

(5). If f = 2v with v � 3 the proof is similar, now using Proposition
11.4.1 (4). In this case we have necessarily u = 2v−1, so the prime 2 is totally
ramified in Q(ζu)/Q, and in particular, the prime p above 2 is unique. The
details are left to the reader, as are the proofs of statements (6), (7), and (8)
(Exercise 11). ��

Corollary 11.4.3. Let k ∈ Z�1, let D be the discriminant of a quadratic
field, and assume that sign(D) = (−1)k.

(1) Assume that D �= −4, D �= ±8, and that either D �= (−1)(p−1)/2p for
some odd prime p, or that D = (−1)(p−1)/2p, k �≡ (p− 1)/2 (mod p− 1),
and k > 1. Then L(

(
D
.

)
, 1− k) ∈ 2Z.

(2) If D = (−1)(p−1)/2p for some odd prime p and if k ≡ (p−1)/2 (mod p−1)
and k > 1, then L(

(
D
.

)
, 1−k)/2 is q-integral for all q �= p and L(

(
D
.

)
, 1−

k) + (1− 1/p)/k is p-integral.
(3) If D = −p with p an odd prime and k = 1, then L(

(
D
.

)
, 1− k)− 1 ∈ 2Z,

except that L(
(−3

.

)
, 1− k) = 1/3.

(4) We have L(
(−4

.

)
, 1 − k) + k/2 − 1 ∈ 4Z, L(

(−8
.

)
, 1 − k) − 1 ∈ 4Z, and

L(
(

8
.

)
, 1− k) + 1 ∈ 4Z.

Proof. Immediate from the preceding corollary since the absolute value of
the discriminant of a quadratic field is not divisible by the square of an odd
prime and is a power of 2 only for |D| = 4 and |D| = 8; see Exercise 12. ��

Note that by Exercise 41 of Chapter 10 we have L(
(−4

.

)
,−2k) = E2k/2,

where the E2k are the Euler numbers (see Definition 9.1.8); hence for instance
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the above corollary says that E2k is an odd integer such that E2k ≡ (−1)k

(mod 4); see Exercise 16 of Chapter 9 for a direct proof.

Remark. As we have mentioned above, the results of Corollary 11.4.2 are
stronger than those obtained in Chapter 9 using more “elementary” methods,
such as the general Clausen–von Staudt congruence (Theorem 9.5.13) and
also the Kummer congruences (Theorem 9.5.24), which we will give below in
a stronger form. The reader can check that the only p-adic result that we
needed to prove is that the power series expansion of Lp(χ, s) around s = 1
has a radius of convergence Rp that is strictly greater than 1.

11.4.2 Bernoulli Numbers and Regular Primes

In Corollary 11.4.2 we could have included the case χ = 1, which corresponds
to the Kummer congruences (Theorem 9.5.24), but in view of its importance
we treat it separately, since it gives a stronger statement that includes the
case (p− 1) | k.

Proposition 11.4.4. For any k � 2 even, set

zp(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(pk−1 − 1)

Bk

k
if (p− 1) � k ,

(pk−1 − 1)
Bk

k
+

1− 1/p

k
if (p− 1) | k and p �= 3 ,

(pk−1 − 1)
Bk

k
+

1− 1/p

k
− k if p = 3 .

Then zp(k) is p-integral, and if k′ ≡ k (mod φ(pe)) we have zp(k′) ≡ zp(k)
(mod pe).

Proof. Since k′ ≡ k (mod p−1) we have ωk′
= ωk, so by Corollary 11.3.22,

since p | bi for i � 1 we have

Mp(ωk, 1− k) =
∑
j�0

bj(−k)j ≡
∑
j�0

bj(−k′)j = Mp(ωk′
, 1− k′) (mod pe) .

On the other hand, since k is even, by Proposition 11.3.9 (2) we have
Lp(ωk, 1 − k) = (pk−1 − 1)Bk/k, hence Mp(ωk, 1 − k) = zp(k), proving the
proposition. ��

The following corollary generalizes Corollary 9.5.25 (essentially the Kum-
mer congruences) to the case (p− 1) | k.

Corollary 11.4.5. Let k and k′ be even and such that (p−1) | k and (p−1) |
k′, and assume that min(k − 2 − vp(k), k′ − 2 − vp(k′)) � e. Then if k′ ≡ k
(mod φ(pe)) we have
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Bk′ − (1− 1/p)
k′ ≡ Bk − (1− 1/p)

k
(mod pe) for p �= 3 and

Bk′ − (1− 1/p)
k′ + k′ ≡ Bk − (1− 1/p)

k
+ k (mod pe) for p = 3 .

Proof. Left to the reader (Exercise 25). ��

Corollary 11.4.6. Let k � 2 be even.

(1) If (k, p) �= (2, 2), (2, 3), and (4, 2) we have

Bk

k
≡ B1(ωk−1) (mod p) if (p− 1) � k ,

Bk − (1− 1/p)
k

≡ B1(ωk−1)− (1− 1/p) (mod p) if (p− 1) | k and p �= 3 ,

Bk − (1− 1/p)
k

≡ B1(ωk−1)− k + 1/p (mod p) if p = 3 .

(2) The right-hand side of each of the above expressions is always p-integral,
and the left-hand side is p-integral except if (k, p) = (2, 2).

Proof. By Proposition 11.3.9 (2) we have

Lp(ωk, 0) = −(1− ωk−1(p))B1(ωk−1) = −B1(ωk−1)

since k − 1 is odd, so ωk−1 is a nontrivial character (recall that ω has order
exactly equal to φ(qp), which is even). It follows that

Mp(ωk, 0) =

⎧⎪⎨⎪⎩
−B1(ωk−1) if (p− 1) � k ,
−B1(ωk−1) + 1− 1/p if (p− 1) | k and p �= 3 ,
−B1(ωk−1)− 1/p if p = 3 .

By Corollary 11.3.22 we have Mp(ωk, s) ≡ a0 (mod p) for all s ∈ Zp, hence

zp(k) = Mp(ωk, 1− k) ≡ a0 ≡ Mp(ωk, 0) (mod p) .

This is immediately seen to imply the congruences given in the corollary for
pairs (k, p) such that pk−2Bk/k is p-integral. If (p − 1) � k this is true by
Adams’s Proposition 9.5.23. On the other hand, if (p− 1) | k then vp(Bk) =
−1 hence vp(pk−2Bk/k) = k − 3 − vp(k), and it is immediate that when
(p−1) | k this is greater than or equal to 0 if and only if (k, p) �= (2, 2), (4, 2),
and (2, 3), proving (1), and (2) is immediate since a0 is p-integral. ��

Note that the integrality statement includes the result of Adams (Propo-
sition 9.5.23) and is stronger than the Clausen–von Staudt Theorem 9.5.14.
In fact, as examples of Proposition 11.4.4 and Corollary 11.4.5, we give the
following additional congruences:
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Corollary 11.4.7. Let k � 2 be an even integer.

(1) We have Bk ≡ k + 1/2 (mod 22+v2(k)), so in particular Bk ≡ k + 1/2
(mod 4) and Bk ≡ 1/2 (mod 2).

(2) If 3 � k we have Bk ≡ −1/3 (mod 3), and if 3 | k we have Bk ≡ 2/3
(mod 9).

(3) If 4 | k we have Bk ≡ 4/5 (mod 5).
(4) If 12 | k we have Bk ≡ 12/13 (mod 13).

Proof. Left to the reader (Exercise 25). ��

Corollary 11.4.8. If k �= 0 is even then Bk,p/k is p-integral if (p − 1) � k,
and (Bk,p − (1− 1/p))/k is p-integral if (p− 1) | k (including for p = 3 and
for (k, p) = (2, 2)). In addition, γp is always p-integral.

Proof. Immediate from the above results and the definitions of Bk,p and
γp, and left to the reader (Exercise 35). ��

Corollary 11.4.9. Assume that p � 5. Then p | h−
p if and only if vp(Bk) � 1

for some even k such that 2 � k � p− 3.

Proof. Indeed, since the odd characters of (Z/pZ)∗ � Gal(Q(ζp)/Q) are
the ωk−1 for k even with 2 � k � p− 1, by Proposition 10.5.26 we have

vp(h−
p ) = 1 + vp(B1(ωp−2)) +

∑
2�k�p−3, k even

vp(B1(ωk−1)) .

By Corollary 11.4.6, B1(ωp−2)+1/p is p-integral (so that 1+vp(B1(ωp−2)) =
0) and B1(ωk−1) is p-integral for 2 � k � p − 3. Thus p | h−

p if and only if
vp(B1(ωk−1)) � 1 for some even k � p−3, hence by the corollary if and only
if vp(Bk/k) � 1, so if and only if vp(Bk) � 1 since 0 < k < p. ��

Since it can be shown that p | h+
p implies that p | h−

p (see for instance
[Was]), this implies the following theorem due to Kummer:

Theorem 11.4.10. A prime p � 3 is irregular if and only if it divides the
numerator of some Bk for an even k such that 2 � k � p− 3.

11.4.3 Strengthening of the Almkvist–Meurman Theorem

Thanks to Corollary 11.4.6 we can give a refinement of the Almkvist–
Meurman Theorem 9.5.29. We essentially follow the same method as the
one used in Section 9.5.5, so we begin by proving the following generalization
of Hermite’s Lemma 9.5.28, due to Carlitz.
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Proposition 11.4.11 (Carlitz). Let p be a prime number and let n � 1 be
an integer. We have the congruence

p + (p− 1)
∑

1�j�(n−1)/(p−1)

(
n

(p− 1)j

)
≡ 0 (mod pvp (n)+1) ,

or equivalently,(
1− 1

p

) ∑
1�m�n−1
(p−1)|m

(
n

m

)
≡ −1 (mod pvp (n)Zp) .

Proof. For p = 2 the left-hand side is equal to 2n, and since n− 1 � v2(n)
for all n � 1 the result is clear, so we may assume that p � 3. By the
recurrence formula for Bernoulli numbers (Proposition 9.1.3) we have

1− n

2
+ n

∑
2�k�n−1

(
n− 1
k − 1

)
Bk

k
= 0 .

By Adams’s Proposition 9.5.23, Bk/k is p-integral if (p − 1) � k, and by
Corollary 11.4.6, since p � 3 we have Bk/k ≡ (1 − 1/p)/k (mod Zp) when
(p− 1) | k. It follows that

0 ≡ 1 + n

(
1− 1

p

) ∑
2�k�n−1
(p−1)|k

1
k

(
n− 1
k − 1

)

≡ 1 +
(

1− 1
p

) ∑
2�k�n−1
(p−1)|k

(
n

k

)
(mod pvp (n)Zp) ,

proving the proposition after multiplying by p. ��

Theorem 11.4.12. For n � 0, k ∈ Z \ {0}, and h ∈ Z set bn(h, k) =
kn(Bn(h/k) − Bn). We have b0(h, k) = 0, b1(h, k) = h, b2(h, k) = h(h − k),
and for n > 2,

bn(h, k) ≡

⎧⎪⎪⎨⎪⎪⎩
0 (mod n/d(n, k)) ,

hn (mod kd(n, k)/2v2(kd(n,k))) ,

hn − nhn−1k

2
+

n(n− 1)hn−2k2

12
(mod 2v2(kd(n,k))) ,

where for simplicity we set d(n, k) = gcd(n, k∞) (recall that gcd(n, k∞) =∏
p|k pvp (n)).
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Proof. As in the proof of Theorem 9.5.29, for n > 2 we have

bn(h, k)
nk

=
hn

nk
− hn−1

2
+

∑
2�m�n−1

(
n− 1
m− 1

)
Bm

m
hn−mkm−1 .

Fix some prime number p, and assume first that p | k. By the Clausen–von
Staudt Theorem 9.5.14 we have vp(Bmkm−1/m) � m − 2 − vp(m) � 0 if
either p � 3 and m � 2, or if p = 2 and m � 3. It follows that for p � 3 we
have

bn(h, k)
nk

− hn

nk
∈ Zp ,

while for p = 2 we have

bn(h, k)
nk

− hn

nk
+

hn−1

2
− (n− 1)hn−2k

12
∈ Z2 ,

proving the last two congruences.
Assume now that p � k and p | h. We can then write instead(
n− 1
m− 1

)
Bm

m
hn−m =

1
n

(
n

n−m

)
Bmhn−m =

(
n− 1

n−m− 1

)
Bm

hn−m

n−m
,

and once again by the Clausen–von Staudt theorem we have vp(Bmhn−m/(n−
m)) � n−m− 1− vp(n−m) � 0 when m � n− 1, so the sum is p-integral,
and since hn−1/2 and hn/(nk) are also p-integral (since n � vp(n) and p � k),
it follows that bn(h, k) ∈ pvp (n)Z as claimed. Finally, assume that p � k and
p � h, hence that p | n, since otherwise there is nothing to prove. Consider
first the case p > 2. As in the proof of Carlitz’s result we have

bn(h, k)
n

≡ hn

n
− khn−1

2
+hn

(
1− 1

p

) ∑
2�m�n−1

lcm(2,p−1)|m

(
n− 1
m− 1

)
1
m

km

hm
(mod Zp) .

Since (p− 1) | m we may apply Lemma 2.1.22 to s = kp−1 ≡ 1 (mod p) and
deduce that km ≡ 1 (mod pvp (m)+1), hence that km/m ≡ 1/m (mod pZp),
and similarly for h. Since p > 2, it follows from Carlitz’s result that

bn(h, k)
n

≡ hn

n
+

hn

n

(
1− 1

p

) ∑
1�m�n−1
(p−1)|m

(
n

m

)
≡ 0 (mod Zp) ,

so bn(h, k) ∈ nZp as claimed, and since p � k this is equivalent to bn(h, k) ∈
pvp (nk)Z. Consider now the case p = 2, so that n is even and k and h are
odd. Using Corollary 11.4.6 and taking into account the given exception for
(m, p) = (2, 2), since n � 4 we obtain
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bn(h, k)
n

≡ hn

n
− khn−1

2
+

(n− 1)k2hn−2

12
+

1
2

∑
3�m�n−1

2|m

(
n− 1
m− 1

)
1
m

hn−mkm

≡ hn

n
− khn−1

2
− (n− 1)k2hn−2

6

+
hn

2

∑
1�m�n−1

2|m

(
n− 1
m− 1

)
1
m

km

hm
(mod Z2) .

Since 2 | m we may apply Lemma 2.1.22 to s = k2 ≡ 1 (mod 4); hence
km = (k2)m/2 ≡ 1 (mod pvp (m)+1), and similarly hm ≡ 1 (mod pvp (m)+1),
so that h−mkm/m ≡ 1/m (mod 2Z2). Replacing in the above formula and
using the fact that k and h are odd and n is even gives

bn(h, k)
n

≡ hn

n
+

hn

2n

∑
1�m�n−1

2|m

(
n

m

)
(mod Z2) .

Since n is even this last sum is equal to 2n−1 − 2, so that

bn(h, k)
n

≡ hn2n−2

n
≡ 0 (mod Z2)

since n− 2− v2(n) � 0 for n � 4, finishing the proof of the theorem. ��

Remark. From the proof, it is immediate to see that in the last two con-
gruences (but not in the first) we can replace gcd(n, k∞) by gcd(nh, k∞).

11.5 p-adic Log Gamma Functions

In Section 11.2 we have defined and studied the main properties of the func-
tions ζp(s, x) and ζp(χ, s, x) which are the basic building blocks of all the
functions that we study in this chapter. As first and essential application,
we then studied p-adic L-functions, which are finite linear combinations of
the functions ζp(s, x). Now that we have these tools, we can study p-adic log
gamma functions, which are constructed in a way very similar to the complex
case. Most of their properties are immediate consequences of the correspond-
ing ones for ζp, with two notable exceptions: the value of the ψ functions at
rational numbers, and the Gross–Koblitz formula.

We have seen that the p-adic Hurwitz zeta function ζp(s, x) has two closely
related but distinct definitions: one for x ∈ CZp, and one for x ∈ Zp, and
in the latter case we can even introduce a character χ of conductor a power
of p. Correspondingly, we have two closely related but distinct log gamma
functions: one for x ∈ CZp, introduced by J. Diamond, the other for x ∈ Zp,
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basically introduced by Y. Morita. One of the remarkable facts is that one
can take the exponential of Morita’s log gamma function, thus leading to a
p-adic gamma function, but only for x ∈ Zp. As we have done for ζp, we
study these functions in turn, starting with Diamond’s.

11.5.1 Diamond’s p-adic Log Gamma Function

For more details on this function, see [Dia1] and [Dia2].
Recall that in the complex case we defined log(Γ(x)/

√
2π) = ζ ′(0, x). We

thus give a similar definition in the p-adic case.

Definition 11.5.1. For x ∈ CZp we define Diamond’s log gamma function
LogΓp(x) by the formula

LogΓp(x) = ωv(x)
∂ζp

∂s
(0, x) .

Since x ∈ CZp the function ζp(s, x) is analytic for |s| < Rp except for a
simple pole at s = 1, so the definition makes sense. The notation LogΓp is
due to the author, and is simply suggestive of log gamma. The normalization
factor ωv(x) will be seen to be essential.

Although the function LogΓp(x) is a priori defined only for x ∈ CZp, we
are going to see that it can be extended to all x ∈ Cp such that |x| > 1.

Proposition 11.5.2. Assume as above that x ∈ CZp.

(1) We have the functional equation

LogΓp(x + 1) = LogΓp(x) + logp(x) .

(2) We have the Laurent series expansion

LogΓp(x) =
(

x− 1
2

)
logp(x)− x +

∑
k�1

B2k

2k(2k − 1)
x1−2k ,

where the right-hand side converges for |x| > 1, and more generally if
|u| < |x| (and x ∈ CZp), we have

LogΓp(x + u) =
(

x + u− 1
2

)
logp(x)− x +

∑
j�2

(−1)j

j(j − 1)
Bj(u)x1−j .

(3) We have the reflection formula

LogΓp(1− x) + LogΓp(x) = 0 .



11.5 p-adic Log Gamma Functions 331

(4) If N ∈ Z>0 is such that Nx ∈ CZp (in particular if p � N)we have the
distribution formula∑

0�j<N

LogΓp

(
x +

j

N

)
= LogΓp(Nx)−

(
Nx− 1

2

)
logp(N) .

Corollary 11.5.3. For x ∈ CZp define ψp(x) = (d/dx)(LogΓp(x)). We have
ψp(x + 1) = ψp(x) + 1/x, ψp(1− x) = ψp(x), the expansion

ψp(x) = logp(x) +
∑
j�1

(−1)j−1 Bj

j
x−j ,

and for Nx ∈ CZp the distribution formula∑
0�j<N

ψp

(
x +

j

N

)
= N ψp(Nx)−N logp(N) .

Proof. The proofs of the proposition and its corollary follow immediately
from the corresponding properties of ζp(s, x) and are left to the reader (Ex-
ercise 20). ��

In the complex case, we have set x = 1/N in the distribution formula for
the ordinary gamma function and deduced the formula∑

1�k�N

LogΓ
(

k

N

)
= −1

2
log(N) +

N − 1
2

log(2π)

(see Proposition 9.6.33). Here this is not possible since we must have Nx ∈
CZp. The corresponding results are the following:

Proposition 11.5.4. Let χ be a primitive character of conductor f , and let
N ∈ Z�1 be a common multiple of f and qp. Recall from Proposition 11.3.9
that Lp(χω, 0) = −(1− χ(p))B1(χ).

(1) We have∑(p)

0�k<N

χ(k) LogΓp

(
k

N

)
= L′

p(χω, 0) + Lp(χω, 0) logp(〈N〉) .

(2) We have∑(p)

0�k<N

χ(k)ψp

(
k

N

)
= −

(
1− 1

p

)
N logp(〈N〉)δ(χ)−Nγp(χ) ,

where as usual δ(χ) = 0 if χ �= χ0 and δ(χ0) = 1, and where we recall
that γp(χ) = Lp(χ, 1) if χ �= χ0, and γp(χ0) = γp.
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Proof. Recall that by definition of the p-adic L-function, for any N divis-
ible by qp and by f we have

Lp(χ, s) =
∑(p)

0�k<N

χ(k)ζp(s, k,N) = ωv(N)−1〈N〉−s
∑(p)

0�k<N

χ(k)ζp(s, k/N) .

The important point, which follows from Proposition 11.3.8, is that this is
independent of the choice of N ≡ 0 (mod qp).

If we differentiate this formula with respect to s, set s = 0, and replace
ζ ′p(0, k/N) by ω−1

v (k/N) LogΓp(k/N), we obtain (1) after replacing χ by χω.
The proof of (2) is similar, but around s = 1. By Proposition 11.5.6,

which we will prove presently, around s = 1 we have ζp(s, x) = 1/(s − 1) −
ψp(x)+O(s− 1). When χ is a nontrivial character, the formula follows since∑(p)

1�k<N χ(k) = 0, and when χ = χ0 is the trivial character then

Lp(χ, s) =
1− 1/p

s− 1
+ γp + O(s− 1) ,

so the result again follows since

ωv(N)−1〈N〉−s =
1
N

(1− (s− 1) logp(〈N〉) + O(s− 1)2)

and since
∑(p)

1�k<N χ0(k) = N(1− 1/p). ��

Remarks. (1) By the reflection formula LogΓp(1 − x) + LogΓp(x) = 0 (or
by the above result applied to χ = χ0, so that χω is an odd character),
we have ∑(p)

1�k�N

LogΓp(k/N) = 0 .

(2) In Proposition 11.5.17 below we will give a more general result.

Corollary 11.5.5. Let χ be a primitive character of conductor f , and let
N ∈ Z�1 be a common multiple of f and qp. We have

L′
p(χ, 0) = (1− χω−1(p))B1(χω−1) logp(N) +

∑(p)

0�k<N

χω−1(k) LogΓp

(
k

N

)
.

In particular,

ζ ′p(0) =
∑(p)

0�k<qp

ω−1(k) LogΓp

(
k

qp

)
,

where we recall that ζp(s) = Lp(χ0, s) is the Kubota–Leopoldt zeta function.
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Proof. Clear. ��

I do not know whether there is a more explicit expression for ζ ′p(0) (recall
that in the complex case ζ ′(0) = − log(2π)/2). However, when χω−1(p) = 1
we will prove that L′

p(χ, 0) is a Q-linear combination of p-adic logarithms of
algebraic numbers; see Proposition 11.7.10.

Proposition 11.5.6. (1) For all k ∈ Z�1 we have

ζp(k + 1, x) = (−1)k−1ωv(x)k ψ
(k)
p (x)
k!

.

(2) Around s = 1 we have

ζp(s, x) =
1

s− 1
− ψp(x) + O(s− 1) .

Proof. (1) immediately follows by comparing the expansions

ζp(k + 1, x) =
〈x〉−k

k

∑
j�0

(−1)j

(
k + j − 1

k − 1

)
Bjx

−j and

(−1)k−1xk ψ
(k)
p (x)

(k − 1)!
=
∑
j�0

(−1)j

(
k + j − 1

k − 1

)
Bjx

−j .

For (2) we note that for j � 1, in the neighborhood of s = 0 we have(
s
j

)
= ((−1)j−1/j)s + O(s2), hence by definition

∑
j�0

(
s

j

)
Bjx

−j = 1 + s
∑
j�1

(−1)j−1 Bj

j
x−j + O(s2)

= 1 + s(ψp(x)− logp(x)) + O(s2) .

Since 〈x〉s = 1 + s logp(〈x〉) + O(s2)) and logp(〈x〉) = logp(x), (2) follows
by changing s into 1 − s and dividing by s − 1, and (3) is an immediate
consequence of the definitions. ��

See also Exercise 21.

Remarks. The following remarks show that LogΓp(x) shares very similar
properties with log(Γ(x)/

√
2π).

(1) The Laurent series expansion of LogΓp(x) for x ∈ CZp is identical to the
Euler–MacLaurin asymptotic expansion of log(Γ(x)/

√
2π) as x→∞; see

Section 9.2.5. In addition, since it converges for |x| > 1, it can be taken
as a new definition of the function LogΓp(x), now valid for all x ∈ Cp

such that |x| > 1, while the initial one was valid only for x ∈ CZp.
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(2) The functional equation is identical to that of log(Γ(x)/
√

2π), while the
reflection formula is similar (the function π/ sin(πx) does not occur).

(3) The distribution formula is identical to that of the function log(Γ(s)/
√

2π),
as can be seen from Proposition 9.6.33.

(4) We would like to define an exponential of LogΓp(x) so as to have a p-adic
gamma function defined for x ∈ CZp. This is not possible in general since
LogΓp(x) is not the domain of convergence of expp (we will in fact see
in Proposition 11.5.10 that we usually have vp(LogΓp(x)) < 0), and the
possible extensions of expp to Cp are not canonical. However, see Exercise
18 for a partial answer.

Recall that we have defined ζp(s, x) using a Volkenborn integral, although
afterward we have worked only with the infinite series. We can of course
recover the Volkenborn integrals for the functions LogΓp and ψp as follows.

Proposition 11.5.7. For |x| > 1 we have

LogΓp(x) =
∫

Zp

((x + t) logp(x + t)− (x + t)) dt ,

ψp(x) =
∫

Zp

logp(x + t) dt ,

ψ(k)
p (x) = (−1)k−1(k − 1)!

∫
Zp

dt

(x + t)k

for k � 1.

Proof. From the formal power series expansion for log(1 + T ) we deduce
that (1 + T ) log(1 + T ) − T =

∑
j�1(−1)j−1T j+1/(j(j + 1)). Thus, since

|x| > 1 we have for n ∈ Z,

(n + x) logp(n + x) = (n + x) logp(x) + x(1 + n/x) logp(1 + n/x)

= (n + x) logp(x) + n +
∑
j�1

(−1)j−1 nj+1

j(j + 1)xj
.

It follows from the Euler–MacLaurin formula that

1
pr

∑
0�n<pr

(n + x) logp(n + x) = x logp(x) +
pr − 1

2
(logp(x) + 1)

+
∑
j�1

(−1)j−1 Bj+2(pr)−Bj+2(0)
pr(j + 2)

1
j(j + 1)xj

.

By absolute and uniform convergence it is immediate to see that we can
take the limit term by term in this expression. Since limr→∞(Bj+2(pr) −
Bj+2(0))/pr = B′

j+2(0) = (j + 2)Bj+1, we obtain
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lim
r→∞

1
pr

∑
0�n<pr

(n + x) logp(n + x)

= (x− 1/2) logp(x)− 1/2 +
∑
j�1

(−1)j−1 Bj+1

j(j + 1)xj

= x− 1/2 + LogΓp(x)

by Proposition 11.5.2 (2). The first formula then follows from Lemma 11.1.7.
The formulas for ψp and its derivatives are proved similarly, or by differen-
tiating the formula for LogΓp(x), although in that case one must justify the
exchange of limit and differentiation. ��

Proposition 11.5.8. For |x| > 1 we have

lim
n→0

Bn(x)− xn

nxn
= ψp(x)− logp(x) ,

where n tends p-adically to 0 in Z>0.

Proof. By definition

Bn(x)− xn

nxn
=

1
n

∑
1�j�n

(
n

j

)
Bjx

−j =
∑

1�j�n

(
n− 1
j − 1

)
Bj

j
x−j .

If we let n tend p-adically to 0, n ∈ Z>0, then
(
n−1
j−1

)
tends to

(−1
j−1

)
= (−1)j−1,

and since |x| > 1, by normal convergence we have

lim
n→0

Bn(x)− xn

nxn
=
∑
j�1

(−1)j−1 Bj

j
x−j ,

so we conclude by the expansion of ψp(x) given by Corollary 11.5.3. ��

Raabe’s formula for the function LogΓp is as follows.

Proposition 11.5.9. If x ∈ CZp we have∫
Zp

LogΓp(x + t) dt = (x− 1)ψp(x)− x +
1
2

.

Proof. It is not difficult to show that we can differentiate with respect to
s under the integral sign in Proposition 11.2.10; hence after setting s = 0 we
obtain∫

Zp

ω−1
v (x + t) LogΓp(x + t) = (x− 1)ωv(x)−1 ψp(x) + ζp(0, x) .

Since x ∈ CZp and t ∈ Zp we have ωv(x + t) = ωv(x), and by Proposition
11.2.6 we have ζp(0, x) = −ωv(x)−1(x− 1/2), so the result follows. ��
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Proposition 11.5.10. For all a ∈ Z∗
p we have

LogΓp

(
a

qp

)
≡

⎧⎪⎨⎪⎩
−ω(a)/p (mod pZp) if p � 5,

2ω(a)/3 (mod pZp) if p = 3,
−ω(a)/4 + a/2 (mod qpZp) if p = 2.

In particular, we have vp(LogΓp(a/qp)) = −vp(qp).

Proof. Assume first that p � 3. By Proposition 11.5.2 we have

LogΓp

(
a

p

)
=

1
p
(a logp(a)− a)− 1

2
logp(a) +

∑
k�1

B2k

2k(2k − 1)
p2k−1

a2k−1
.

By Proposition 4.4.46 we have a logp(a) − a ≡ −ω(a) (mod p2Zp), and
logp(a) = logp(〈a〉) ≡ 0 (mod pZp). Furthermore, since vp(B2k) � −1, it
is immediate to check that vp(B2kp2k−1/(2k(2k − 1))) � 1 for k � 2. Thus

LogΓp

(
a

p

)
≡ −ω(a)

p
+

p

12a
(mod pZp) .

Since vp(a) = 0, this gives the result for p � 5, and for p = 3 we have
p/(12a) = 1/(4a) ≡ a ≡ ω(a) (mod 3Z3).

Assume now that p = 2. A similar computation to the proof of Proposition
4.4.46 shows that (a/4− 1/2) logp(a)− a/4 ≡ −ω(a)/4 (mod 4Z2) (Exercise
8). Furthermore, it is easy to check that v2(B2kp2k−1/(2k(2k − 1))) � 3 for
k � 3. Thus

LogΓp

(a

4

)
≡ −ω(a)

4
+

p

12a
− p3

360a3
(mod 4Z2) .

Since a ∈ 1 + 2Z2 we have

p

12a
− p3

360a3
≡ 1

6a
− 1

45a3
≡ a

6
− a ≡ −5a

6
≡ 3a

6
≡ a

2
(mod 4Z2) ,

finishing the proof. ��

11.5.2 Morita’s p-adic Log Gamma Function

In complete similarity with Definition 11.5.1 we set the following (see [Morit1]
and [Morit2]).

Definition 11.5.11. Let χ be a character modulo pv for some v � vp(qp).
For x ∈ Zp we define Morita’s log gamma function LogΓp(χ, x) by the formula

LogΓp(χ, x) =
∂ζp

∂s
(χω, 0, x) ,
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where ζp(χ, s, x) is given by Definition 11.2.12, and we write for simplic-
ity LogΓp(x) instead of LogΓp(χ0, x), where we recall that χ0 is the triv-
ial character modulo pv for any v � 1 (and not for v = 0). We de-
fine the p-adic ψ function by ψp(χ, x) = (d/dx)(LogΓp(χ, x)) and write
ψp(x) = ψp(χ0, x) = (d/dx)(LogΓp(x)).

Note that we ask that qp | pv, so that even if we want to take for χ a
trivial character χ0, it must be the trivial character modulo a multiple of qp,
so in particular we ask that χ0(p) = 0. By the remarks made before and after
Definition 11.2.12, it is clear that the definition then does not depend on the
value of v such that pv is a multiple of the conductor of χ and of qp.

Once again, since ζp(χ, s, x) is analytic for |s| < Rp this definition makes
sense. Furthermore, Corollary 11.2.14 gives us an immediate link between
this function and Diamond’s log gamma function:

Proposition 11.5.12. Let M be such that pv | M . For x ∈ Zp we have

LogΓp(χ, x) =
∑

0�j<M

χ(x + j) LogΓp

(
x + j

M

)

+ logp(M)
∑

0�j<M

χ(x + j)
(

x + j

M
− 1

2

)
.

In particular, we have

LogΓp(χ, x) =
∑

0�j<pv

χ(x + j) LogΓp

(
x + j

pv

)
.

Proof. Immediate from the definition and Corollary 11.2.14, since by
Proposition 11.2.6 we have ζp(0, x) = −ωv(x)−1(x− 1/2) when x ∈ CZp. ��

Thus, as for the function ζp(χ, s, x) for x ∈ Zp we can find properties of
LogΓp(χ, x) either directly from the definition or from the above proposition.
For instance, the analogue of Proposition 11.5.2 is the following.

Proposition 11.5.13. Let χ be a character modulo pv and let x ∈ Zp.

(1) We have the functional equation

LogΓp(χ, x + 1) = LogΓp(χ, x) + χ(x) logp(x) ,

where χ(x) logp(x) is to be interpreted as 0 for x = 0.
(2) We have the reflection formula

LogΓp(χ, 1− x) + χ(−1) LogΓp(χ, x) = 0 .
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(3) We have

LogΓp(χ, x) = L′
p(χω, 0) + lim

n→x
n∈Z�0

∑
0�a<n

χ(a) logp(a) ,

and in particular if n ∈ Z�0 we have

LogΓp(χ, n) = −χ(−1) LogΓp(χ, 1−n) = L′
p(χω, 0)+

∑
0�a<n

χ(a) logp(a) .

(4) If N ∈ Z>0 is such that p � N we have the distribution formula∑
0�j<N

LogΓp

(
χ, x +

j

N

)
= χ−1(N)

(
LogΓp(χ,Nx) + logp(N)ζp(χω, 0, Nx)

)
,

where ζp(χω, 0, Nx) is given in Proposition 11.2.19.

Corollary 11.5.14. Let χ be a character modulo pv and let x ∈ Zp.

(1) We have the functional equation

ψp(χ, x + 1) = ψp(χ, x) +
χ(x)

x
.

(2) We have the reflection formula

ψp(χ, 1− x) = χ(−1)ψp(χ, x) .

(3) We have

ψp(χ, x) = −γp(χ) + lim
n→x

n∈Z�0

∑
0�a<n

χ(a)
a

,

and in particular if n ∈ Z�0 we have

ψp(χ, n) = χ(−1)ψp(χ, 1− n) = −γp(χ) +
∑

0�a<n

χ(a)
a

.

(4) If N ∈ Z>0 is such that p � N we have the distribution formula∑
0�j<N

ψp

(
χ, x +

j

N

)
= Nχ−1(N)ψp(χ,Nx)−

(
1− 1

p

)
N logp(N)δ(χ) .

In particular,∑
0�j<N

ψp

(
χ,

j

N

)
= −Nχ−1(N)γp(χ)−

(
1− 1

p

)
N logp(N)δ(χ) .
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Proposition 11.5.15. Let χ be a character modulo pv.

(1) For all k ∈ Z�1 we have

ζp(χ, k + 1, x) = (−1)k−1 ψ
(k)
p (χωk, x)

k!
.

(2) Around s = 1 we have

ζp(χ, s, x) =
(1− 1/p)δ(χ)

s− 1
− ψp(χ, x) + O(s− 1) .

Proof. The proofs of these results are immediate from Proposition 11.2.20,
Corollary 11.2.15, and Proposition 11.5.6, and left to the reader (Exercise 15).

��

Corollary 11.5.16. For all k ∈ Z�1 we have

ψ(k)
p (χ, 0) = (−1)k−1k!Lp(χω−k, k + 1) = (−1)k−1(k − 1)!B−k,p(χ) ,

and for k = 0 we have ψp(χ, 0) = −γp(χ), in other words ψp(χ, 0) =
−Lp(χ, 1) when χ �= χ0 and ψp(0) = −γp.

Proof. Clear from the above proposition since Lp(χ, s) = ζp(χ, s, 0) if χ
has p-power conductor. ��

Proposition 11.5.17. Let χ be a character modulo pv, let x ∈ Zp, and let
N ∈ Z�1 be such that pv | N .

(1) We have the distribution formula∑
0�k<N

χ(x + k) LogΓp

(
x + k

N

)
= LogΓp(χ, x) + logp(N)ζp(χω, 0, x) ,

where ζp(χω, 0, x) is given in Proposition 11.2.19 (note that the log
gamma function on the left-hand side is Diamond’s).

(2) We have the distribution formula∑
0�k<N

χ(x + k)ψp

(
x + k

N

)
= Nψp(χ, x)−

(
1− 1

p

)
N logp(〈N〉)δ(χ) .

(3) In particular, if χ is an even character then for x ∈ Zp we have∑
0�k<N

χ(x + k) LogΓp

(
x + k

N

)
=

∑
0�r<x

χ(r) logp(〈r/N〉) ,

where the right-hand side is interpreted to be extended by continuity to
x ∈ Zp if x /∈ Z�0.
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(4) In particular, for x ∈ Zp we have∑
0�k<N
p�(x+k)

LogΓp

(
x + k

N

)
= LogΓp(x)−

(
x−

⌈
x

p

⌉)
logp(〈N〉) ,

where as above on the left-hand side LogΓp((x + k)/N) is Diamond’s
p-adic log gamma function.

Note that this proposition is a generalization of Proposition 11.5.4.
Proof. By Corollary 11.2.14 we have

ζp(χ, s, x) =
〈N〉1−s

N

∑
0�k<N

χ(x + k)ζp

(
x + k

N

)
.

Differentiating this equality with respect to s, setting s = 0, replacing
χ by χω, and using the definitions proves (1), and (2) follows by differ-
entiating with respect to x and using Corollary 11.2.18. If χ is an even
character, we know by Proposition 11.2.19 that when x ∈ Z�0 we have
ζp(χω, 0, x) = −∑

0�r<x χ(r). On the other hand, since χω is an odd char-
acter, by Proposition 11.5.13 we have LogΓp(χ, x) =

∑
0�r<x χ(r) logp(r), so

(3) follows by continuity, and (4) is also a special case of (1) using the value
of ζp(ω, 0, x) given by Proposition 11.2.19. ��

Proposition 11.5.18. For all x ∈ Zp we have the Volkenborn integral rep-
resentations

LogΓp(χ, x) =
∫

Zp

χ(x + t)((x + t) logp(x + t)− (x + t)) dt ,

ψp(χ, x) =
∫

Zp

χ(x + t) logp(x + t) dt ,

ψ(k)
p (χ, x) = (−1)k−1(k − 1)!

∫
Zp

χ(x + t)
(x + t)k

dt

for k � 1.

Proof. Recall that by definition we have

ζp(χ, s, x) =
1

s− 1

∫
Zp

χ(x + t)〈x + t〉1−s dt .

Using the uniformity estimate given in Proposition 11.2.4 it is easy to show
that we can differentiate with respect to s or to x under the integral sign.
Differentiating with respect to s, setting s = 0, and replacing χ by χω gives
the formula for LogΓp(χ, x), and the others are obtained from that one by
differentiating with respect to x. The details are left to the reader (Exercise
15). ��
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Remark. The reader should compare the above Volkenborn integrals with
those for LogΓp and ψp for x ∈ CZp (Proposition 11.5.7).

Proposition 11.5.19. For x ∈ pvZp we have the convergent power series
expansion

LogΓp(χ, x) = L′
p(χω, 0)− γp(χ)x +

∑
k�2

(−1)k B1−k,p(χ)
k(k − 1)

xk

= L′
p(χω, 0)− γp(χ)x +

∑
k�2

(−1)k Lp(χω1−k, k)
k

xk .

Furthermore, the radius of convergence of this power series in Cp is equal
to 1.

Remarks. (1) If χ is an even character, and in particular if χ = χ0, we have
Lp(χω, s) = 0 hence in particular LogΓ(χ, x) = L′

p(χω, 0) = 0.
(2) If χ �= χ0 the second formula can be written as

LogΓp(χ, x) = L′
p(χω, 0) +

∑
k�1

(−1)k Lp(χω1−k, k)
k

xk .

(3) By Corollary 11.5.16, since by Proposition 11.5.13 we have LogΓp(χ, 0) =
L′

p(χω, 0), the right-hand side of the above formulas is the Taylor expan-
sion of the left-hand side. We must show, however, that the left-hand side
is indeed equal to the sum of its Taylor expansion for x ∈ pvZp, and for
this we will reason directly without using Corollary 11.5.16. Indeed, we
will prove it only for x ∈ pvZp as stated in the proposition, and in fact
it is false in general for x ∈ pZp \ pvZp.

Proof. The proof is essentially the same as that of Proposition 11.2.23,
and in fact the result can be deduced from that proposition. Nonetheless, I
prefer to redo it here. By Proposition 11.5.18 we have

LogΓp(χ, x) =
∫

Zp

χ(x + t)((x + t) logp(x + t)− (x + t)) dt .

Since we assume that x ∈ pvZp we have χ(x + t) = χ(t) (this is the only
but essential place where we use the assumption that x ∈ pvZp, and not only
x ∈ pZp), and since χ(t) = 0 if t /∈ Z∗

p we have

LogΓp(χ, x) =
∫

Z∗
p

χ(t)f(x, t) dt

with

f(x, t) = (x + t) logp(t) dt + (x + t) logp(1 + x/t)− (x + t) =
∑
k�0

ak(t)xk ,
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where, after a small computation we find that

a0(t) = t logp(t)− t, a1(t) = logp(t), and ak(t) =
(−1)k

k(k − 1)
t1−k for k � 2 .

Since |x| < 1 and |t| = 1 the series is normally convergent; hence as in the
complex case we can integrate term by term, in other words exchange the
sum and the integral, so we obtain LogΓp(χ, x) =

∑
k�0 bkxk, where

bk =
∫

Zp

χ(t)ak(t) dt ,

and where we have replaced the integral over Z∗
p by the integral over Zp since

once again χ(t) = 0 if t /∈ Z∗
p.

By Proposition 11.3.5 (or Proposition 11.3.14) we have∫
Zp

χ(t)t1−k , dt = (k − 1)Lp(χω1−k, k) ,

so for k � 2 we have bk = (−1)kLp(χω1−k, k)/k, and by Proposition 11.3.14
we have

b1 =
∫

Zp

χ(t) logp(t) dt = −γp(χ) .

Finally, we have

b0 =
∫

Zp

χ(t)(t logp(t)− t) dt ,

but we note simply that b0 = LogΓp(χ, 0), hence that b0 = L′
p(χω, 0) by

Proposition 11.5.13. The statement concerning the radius of convergence fol-
lows from the fact that we always have vp(Bk,p(χ)) � −1 (see Proposition
11.3.15). ��

Remark. Since the radius of convergence of the power series for LogΓp(χ, x)
is equal to 1, it is reasonable to ask whether its sum is equal to LogΓp(χ, x)
for all x ∈ pZp, and not only for x ∈ pvZp. As mentioned above, it is easy
to check on numerical examples that in fact the result is false in general;
see Exercise 16. In fact, similarly to what we have already remarked after
Proposition 11.2.23, we have shown that for x ∈ pZp the power series sums
to ∫

Zp

χ(t)((x + t) logp(x + t)− (x + t)) dt ,

which is equal to LogΓp(χ, x) only for x ∈ pvZp.

To use the power series given in Proposition 11.5.19, we need lower bounds
for the p-adic valuations of the coefficients. A sufficient result is as follows,
which for simplicity we give only in the case χ = χ0, for which we only need
the coefficients of x2k+1.
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Lemma 11.5.20. Set

v(k, p) = vp(B−2k,pp
2k+1/(2k(2k + 1))) .

Then v(k, p) � 4 except for the following values: v(1, 2) = 1, v(1, 3) = 1,
v(1, p) = 3 for p � 5, v(2, 2) = 2, and v(2, 5) = 3.

Proof. Assume first that (p− 1) � 2k. By Corollary 11.4.8, B−2k,p/(2k) is
p-integral, so that v(k, p) � 2k +1−vp(2k +1). It is immediate to check that
for k � 2 we have 2k + 1− vp(2k + 1) � 4. On the other hand, for k = 1 we
have v(k, p) � 3 − vp(3) = 3 if p � 5, and in fact it is clear that v(k, p) = 3
for p � 5. Assume now that (p− 1) | 2k. Again by Corollary 11.4.8 we have
vp(B−2k,p) = −1, hence v(k, p) = 2k −max(vp(2k), vp(2k + 1)). Once again
we check that for k � 3 this is always greater than or equal to 5, that for
k = 2 it is greater or equal to 4 unless p = 2 or p = 5, and on the other
hand, for k = 1 the only possible values of p are p = 2 and p = 3. The lemma
follows by an explicit computation of the special cases. ��

Analogously to Proposition 11.5.8, we have the following.

Proposition 11.5.21. For x ∈ pvZp we have

lim
r→∞

Bφ(pr )(χ, x)− (1− 1/p)δ(χ)
φ(pr)

= ψp(χ, x) .

If, in addition, χ = χ0 is the trivial character modulo 1, the above is true for
all x ∈ Zp.

Note that in all the other results of this chapter, the trivial character is
always assumed to be defined modulo pv for v � 1. Here, exceptionally, we
accept the trivial character modulo 1.

Proof. As mentioned after the proof of Proposition 11.3.10 (2), there are
two ways to prove this kind of formula: the most natural one is to use Volken-
born integrals, the second being to use power series expansions. In both cases
one must justify an exchange of limits. In the proof of Proposition 11.3.10
(2) we used Volkenborn integrals, so for a change we use here power series
expansions. By definition we have

Bn(χ, x)−B0(χ)xn − (1− 1/p)δ(χ)
n

=
Bn(χ)− (1− 1/p)δ(χ)

n
+ S, with

S =
1
n

n−1∑
j=1

(
n

n− j

)
Bn−j(χ)xj =

n−1∑
j=1

(
n− 1

j

)
Bn−j(χ)

n− j
xj .

If we replace n by φ(pr) and make r →∞, by Definition 11.3.13 we have

(Bn(χ)− (1− 1/p)δ(χ))/n → −γp(χ) ,
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and for j � 1 we have Bn−j(χ)/(n−j) → B−j,p(χ)/(−j). Furthermore,
(
n−1

j

)
tends to

(−1
j

)
= (−1)j . Since x ∈ pvZp ⊂ pZp, by normal convergence we can

take the limit inside the sum, and since xn/n → 0 we deduce that

lim
r→∞

Bφ(pr )(χ, x)− (1− 1/p)δ(χ)
φ(pr)

= −γp(χ) +
∑
j�1

(−1)j−1 B−j,p(χ)
j

xj

= ψp(χ, x)

by Proposition 11.5.19, proving the result when x ∈ pvZp.
Now assume that χ = χ0, where χ0 is the trivial character modulo 1.

Thus we know that the result is true for x ∈ pZp, so now let x ∈ Zp \ pZp.
There exists a unique r ∈ [1, p−1] such that y = x−r ∈ pZp. By Proposition
9.1.3 we have Bn(x) = Bn(y) + n

∑
y�m<x mn−1, so that

Bn(x)− (1− 1/p)
n

=
Bn(y)− (1− 1/p)

n
+

∑
y�m<x

mn−1 .

If we replace n by φ(pr) and make r →∞, we have mn−1 = m−1mn → m−1

when p � m, and mn−1 → 0 when p | m. Since by definition of r the only
m ∈ [y, x[ such that p | m is m = y, it follows from the first part of the proof
that

lim
r→∞

Bφ(pr )(x)− (1− 1/p)
φ(pr)

= ψp(y) +
∑

y<m<x

1
m

= ψp(x)

by the functional equation given in Corollary 11.5.14, finishing the proof. ��

Note that since ψp(χ, 0) = −γp(χ), this proposition can be considered as
a generalization of Definition 11.3.13, which we used in the proof.

Raabe’s formula is the following.

Proposition 11.5.22. Let χ be a character modulo pv. If x ∈ Zp we have∫
Zp

LogΓp(χ, x + t) dt = (x− 1)ψp(χ, x) + ζp(χω, 0, x) ,

where ζp(χω, 0, x) is given in Proposition 11.2.19. In particular, we have∫
Zp

LogΓp(x + t) dt = (x− 1)ψp(x)− x +
⌈

x

p

⌉
.

Proof. As for Proposition 11.5.9, this follows immediately by differen-
tiation with respect to s of Raabe’s formula for ζp(χω, s, x) (Proposition
11.2.22), and is left to the reader. The special case χ = χ0 then follows from
Proposition 11.2.19. ��

It is of course immediate to deduce properties of ψp(χ, x) from the above
properties of LogΓp(χ, x).

The analogue of Proposition 11.5.10 is the following.
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Proposition 11.5.23. Let χ be a character modulo qp and let x ∈ Zp. We
have

LogΓp(χ, x) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 (mod pZp) if χ �= ω−1 and p � 3,
1 + (−1)x(x−1)/2 (mod qpZp) if χ �= ω−1 and p = 2,

−(1− 1/p) (mod pZp) if χ = ω−1 and p � 5,
4/3 (mod pZp) if χ = ω−1 and p = 3,

−(1/2 + (−1)x(x−1)/2) (mod qpZp) if χ = ω−1 and p = 2.

Proof. Assume first that p � 3. By Propositions 11.5.12 and 11.5.10 we
have

LogΓp(χ, x) ≡ c(p)
∑

0�j<p

χω(x + j) (mod pZp) ,

with c(p) = −1/p for p � 5 and c(p) = 2/3 for p = 3. Note that the fact
that vp(c(p)) < 0 is irrelevant for the validity of this congruence. Since χω
is defined modulo p we have

∑
0�j<p χω(x + j) =

∑
0�j<p χω(j), and this is

equal to 0 if χω �= χ0, and otherwise is equal to p− 1, proving the lemma for
p � 3. Assume now that p = 2. By the same propositions we now have

LogΓp(χ, x) ≡ −1
4

∑
0�j<4

χω(x + j) +
1
2

∑
0�j<4

χ(x + j)(x + j) (mod 4Z2) .

Here we can have only χ = χ0 or χ = ω = ω−1. If χ = χ0 the first sum van-
ishes as usual, while if χ = ω−1 it is equal to 2. We find by inspection that the
second sum is equal to 2(1 + (−1)x(x−1)/2) if χ = χ0, and to −2(−1)x(x−1)/2

if χ = ω−1, proving the proposition. ��

The remarkable fact about this proposition is the first statement, in other
words, the fact that LogΓp(χ, x) ≡ 0 (mod pZp) if χ �= ω−1 and p � 3.
Indeed, this implies that the exponential of this function makes sense, and
will have analogous functional properties. There are, however, two related
obstructions to this construction. First, although we could set Γp(χ, x) =
expp(LogΓp(χ, x)) (when χ �= ω−1 and p � 3), this is not really canonical

since we could just as well set Γp(χ, x) = ζ
f(x)
p−1 expp(LogΓp(χ, x)) for any

reasonable integral-valued function f , since logp(ζp−1) = 0. Second, consider
for instance the functional equation for LogΓp(χ, x+1). Taking exponentials
gives Γp(χ, x+1) = expp(χ(x) logp(x))Γp(χ, x), and once again we would like
to say that expp(χ(x) logp(x)) = xχ(x), but this does not make much sense,
except when χ(x) = ±1. Thus, it is preferable to define the gamma function
from scratch and study its properties directly. This will be done later, in
Section 11.6.

By Proposition 11.5.19, we know that when the conductor of χ is a power
of p we have L′

p(χ, 0) = LogΓp(χω−1, 0). It is easy to generalize this to a
character of arbitrary conductor.
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Proposition 11.5.24. Let χ be a primitive character of conductor f , and
denote by f1 the conductor of the character χ1 = χω−1.

(1) If p � f then f1 = qpf and

L′
p(χ, 0) = B1(χ1) logp(f) + ω−1(f)

∑
0�k<f

χ(k) LogΓp

(
ω−1,

k

f

)
.

(2) If p � f1 then f = qpf1 and

L′
p(χ, 0) = (1− χ1(p))B1(χ1) logp(f) +

∑
0�k<f1

χ1(k) LogΓp

(
χ0,

k

f1

)
.

(3) If p | f and p | f1 then f1 = f and L′
p(χ, 0) is given by Corollary 11.5.5

with N = f .

Proof. Immediate consequence of Corollary 11.5.5 and Proposition 11.5.12
and left to the reader (Exercise 17). ��

11.5.3 Computation of some p-adic Logarithms

In view of applications to special values of the p-adic ψ functions at rational
numbers, we need to prove some formulas involving expressions of the form
logp(1− ζm) for an mth root of unity ζm, which are interesting in their own
right. I heartily thank P. Colmez for the alternative proofs that are briefly
indicated as exercises, which use formal power series, well known in p-adic
analysis at least since Serre and Iwasawa. I refer to Washington’s book [Was]
and to the course notes of Colmez available on his web site for much more
on this.

Recall from Definition 4.5.9 that we have defined

D = {z ∈ Cp, |z − 1| � 1} = {z ∈ Cp, vp(z − 1) � 0} ,

and that Lemma 4.5.11 tells us that the condition |z − 1| � 1 is equivalent
either to |z/(1− z)| � 1 or to |zpN

/(1− zpN

)| � 1 for all N � 0.

Theorem 11.5.25. For all z ∈ D we have

lim
N→∞

1
zpN − 1

∑(p)

0�a<pN

za

a
= logp(1− z)− 1

p
logp(1− zp) .

Proof. Set

SN (z) =
1

zpN − 1

∑(p)

0�a<pN

za

a
.

It is clear that this is a rational function all of whose poles ζ are pN th roots
of unity, hence satisfy |ζ − 1| < 1 by Proposition 3.5.5. Thus, if we show that
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SN (z) converges, and uniformly on D, by definition this will show that the
limit exists and is Krasner analytic on D (see Definition 4.5.9). Thanks to
the ultrametric property, this is equivalent to showing that SN+1(z)−SN (z)
tends uniformly to 0, which is easily done: setting a = pNq+r with 0 � q < p
and 0 � r < pN we have∑(p)

0�a<pN +1

za

a
=

∑
0�q<p

zpN q
∑(p)

0�r<pN

zr

r + pNq
.

Now∑(p)

0�r<pN

zr

r + pNq
=

∑(p)

0�r<pN

zr

r
(1 + pNq/r)−1 = (zpN − 1)(SN (z) + O(pN )) ,

where f(N) = O(pN ) means that |f(N)/pN | remains bounded, and here
uniformly in z. Since

∑
0�q<p zpN q = (zpN +1 − 1)/(zpN − 1), we deduce that

SN+1(z) = SN (z) + O(pN ), with a uniform O constant, so that SN+1(z) −
SN (z) tends uniformly to 0 on D, as claimed. Note that in this computation
we have implicitly used Lemma 4.5.11, which tells us that |zpN −1| � 1 when
z ∈ D.

We have thus shown that the left-hand side exists and is a Krasner analytic
function on D. Let us now consider the right-hand side. Set

U(z) =
(1− z)p − 1 + zp

1− zp
.

For p > 2 we have

(1− z)p − 1 + zp =
∑

1�n�p−1

(
p

n

)
(−z)n ,

while for p = 2 we have (1− z)p− 1 + zp = −2z + 2z2. Since all the binomial
coefficients have a p-adic valuation equal to 1 (or directly for p = 2), an easy
computation using Lemma 4.5.11 shows that vp(U(z)) � 1 (see Exercise 26).
We thus have

p logp(1− z)− logp(1− zp) = logp

(
(1− z)p

1− zp

)
= logp(1 + U(z)) =

∑
k�1

(−1)k−1 U(z)k

k
,

and since vp(U(z)) � 1 for all z ∈ D, this series converges uniformly in D.
Since U(z) is a rational function with poles at the pth roots of unity, hence
outside D, it follows that the right-hand side of the formula of the theorem
is also a Krasner analytic function on D.
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Thanks to the crucial Lemma 4.5.10, to prove the theorem it is sufficient
to prove that the two sides are equal on a nonempty open subset S of D.
We choose S to be the “open” unit ball S = {z ∈ Cp, |z| < 1}, which is
clearly a nonempty open subset of D. In the set S the formula is trivial since∑

a�1 za/a converges to − logp(1− z), so that
∑(p)

a�1 za/a converges to the
right-hand side, proving the theorem. ��

For an important alternative proof of this theorem, see Exercise 29.
As an example, we give the following:

Corollary 11.5.26. We have

lim
N→∞

∑(p)

0�a<pN

(−1)a−1

a
= 2

(
1− 1

p

)
logp(2) .

Proof. Clear from the above theorem for p � 3, and immediate for p = 2
by grouping terms for a and pN − a. ��

See also Exercise 27.
We now want to generalize Theorem 11.5.25 to the case |z − 1| < 1, in

other words, vp(z−1) > 0. The formulas are here slightly different. We begin
with the following auxiliary result.

Theorem 11.5.27. Let r ∈ Z�0 be coprime to p, and let z ∈ Cp be such
that vp(z − 1) > 0.

(1) We have

lim
N→∞

∑
1�a�pN

zra − 1
a

⌈
ra

pN

⌉
= r logp

(
zr − 1

r(z − 1)

)
,

where of course (zr − 1)/(z − 1) =
∑

0�i<r zi = r for z = 1.
(2) We have

lim
N→∞

∑(p)

0�a<pN

zra

a

⌈
ra

pN

⌉
= r logp

(
zr − 1
z − 1

)
− r

p
logp

(
zpr − 1
zp − 1

)
,

and in particular

lim
N→∞

∑(p)

0�a<pN

1
a

⌈
ra

pN

⌉
=
(

1− 1
p

)
r logp(r) .

Proof. (1). For any positive real number u it is clear that �u� =
∑

0�m<u 1.
It follows that
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∑
1�a�pN

zra

a

⌈
ra

pN

⌉
=

∑
1�a�pN

zra

a

∑
0�m<ra/pN

1

=
∑

0�m<r

∑
pN m/r<a�pN

zra

a
=

∑
0�m<r

(S(pN )− S(pNm/r)) ,

where for any positive real number M we set

S(M) =
∑

1�a�M

zra

a
.

Note that in the above we do not exclude indexes divisible by p. Set π = zr−1,
so that vp(π) > 0, since vp(z − 1) > 0, and hence vp(z) = vp(1 + (z − 1)) = 0
by assumption. Thus

S(M) =
∑

1�a�M

zra

a
=

∑
1�a�M

(π + 1)a

a
=

∑
1�a�M

1
a

∑
0�k�a

(
a

k

)
πk

=
∑

1�a�M

1
a

+
∑

1�k�M

πk

k

∑
1�a�M

(
a− 1
k − 1

)
.

By the recurrence formula for binomial coefficients and the fact that a � M
is equivalent to a � 	M
, we have∑

1�a�M

(
a− 1
k − 1

)
=
(	M


k

)
,

so that, since we do not need to include the condition k � M ,

S(M) =
∑

1�a�M

1
a

+
∑
k�1

πk

k

(	M

k

)
,

so that

S(pN )− S(pNm/r) =
∑

pN m/r<a�pN

1
a

+
∑
k�1

πk

k

((
pN

k

)
−
(	pNm/r


k

))
.

By Lemma 4.2.8 we have vp(
(
pN

k

)
) � N − vp(k), so that

vp((πk/k)
(

pN

k

)
) � N + kvp(π)− 2vp(k) .

Set
B = max

k�1
(2 log(k)/ log(p)− kvp(π)) ,

which exists since vp(π) > 0. Thus mink�1(kvp(π) − 2vp(k)) � −B, so that
vp((πk/k)

(
pN

k

)
) � N −B. Furthermore, we have the following lemma.
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Lemma 11.5.28. Let a and b in Zp, and for k ∈ Z�0 set

dk =
(

pNa + b

k

)
−
(

b

k

)
.

Then vp(dk) � N − log(k)/ log(p).

Proof. Recall the binomial identity

∑
0�j�k

(
pNa

j

)(
b

k − j

)
=
(

pNa + b

k

)
,

which is proved by expanding the product of the binomial expansions of
(1 + X)b with (1 + X)pN a. It follows that

dk =
∑

1�j�k

(
pNa

j

)(
b

k − j

)
,

so by Lemma 4.2.8

vp(dk) � N − max
1�j�k

vp(j) � N − max
1�j�k

log(j)/ log(p) � N − log(k)/ log(p) ,

as claimed. ��

Resuming the proof of the theorem, we thus have

vp((πk/k)dk) � N + kvp(π)− vp(k)− log(k)/ log(p) � N −B ,

with the same B as above. Putting everything together, it follows that if we
set ⌊

pNm

r

⌋
=

pNm− am

r

with 0 � am < r, then noting that m/r and am/r are in Zp, we have

S(pN )− S(pNm/r) =
∑

pN m/r<a�pN

1
a
−
∑
k�1

πk

k

(−am/r

k

)
+ O(pN−B) ,

where B depends on z, but not on N . Thus∑
1�a�pN

zra

a

⌈
ra

pN

⌉
=

∑
0�m<r

(S(pN )− S(pNm/r))

=
∑

0�m<r

∑
pN m/r<a�pN

1
a
−
∑
k�1

πk

k

∑
0�m<r

(−am/r

k

)
+ O(pN−B) .



11.5 p-adic Log Gamma Functions 351

It is clear that the am form a permutation of [0, r − 1]: indeed, am is the
representative in [0, r − 1] of pNm mod r, and since pN is coprime to r the
map m �→ pNm mod r is a bijection from Z/rZ onto itself. Thus, if X is a
formal variable, we have∑
k�1

Xk
∑

0�m<r

(−am/r

k

)
=

∑
0�j<r

∑
k�1

(−j/r

k

)
Xk =

∑
0�j<r

((1 + X)−j/r − 1)

=
(1 + X)−1 − 1

(1 + X)−1/r − 1
− r = −r −X

(
1

(1 + X)((1 + X)−1/r − 1)

)
= −r + X

(
1

1 + X
− (1 + X)−1/r−1

(1 + X)−1/r − 1

)
.

Dividing by X and integrating formally, it follows after a small computation
that ∑

k�1

Xk

k

∑
0�m<r

(−am/r

k

)
= r log

(
r((1 + X)1/r − 1)

X

)
.

Since vp(π) > 0 and p � r we may replace X by π = zr − 1 in the above
formula. Note that (1 + π)1/r ≡ 1 (mod π). Since p � r, by Proposition 4.3.2
we know that if η is an rth root of unity different from 1 then vp(η− 1) = 0,
and in particular η �= 1 (mod π), so that (1 + π)1/r = z. Thus∑

1�a�pN

zra

a

⌈
ra

pN

⌉
= S0 + r logp

(
zr − 1

r(z − 1)

)
+ O(pN−B) ,

with

S0 =
∑

0�m<r

∑
pN m/r<a�pN

1
a

=
∑

1�a�pN

1
a

⌈
ra

pN

⌉
,

proving (1).
(2). We have∑

1�a�pN

p|a

zra − 1
a

⌈
ra

pN

⌉
=

∑
1�b�pN −1

zrpb − 1
pb

⌈
rb

pN−1

⌉
,

and by (1), as N → ∞ this tends to (r/p) logp((zpr − 1)/(r(zp − 1))), so it
follows that

lim
N→∞

∑(p)

0�a<pN

zra − 1
a

⌈
ra

pN

⌉
= r logp

(
zr − 1

r(z − 1)

)
− r

p
logp

(
zpr − 1

r(zp − 1)

)
.

As in the proof of (1), we have∑
1�a�pN

1
a

⌈
ra

pN

⌉
=

∑
0�m<r

(H(pN )−H(mpN/r)) ,
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where H(M) =
∑

1�n�M 1/n is the harmonic sum, so that

∑(p)

1�a�pN

1
a

⌈
ra

pN

⌉
=

∑
0�m<r

(Hp(pN )−Hp(mpN/r)) ,

where Hp(M) =
∑(p)

1�n�M 1/n is the harmonic sum with the indexes divisi-
ble by p removed. To compute the limit as N →∞, we note that by definition
of ψp we have

Hp(pN )−Hp(mpN/r) = ψp(pN + 1)− ψp(	mpN/r
+ 1) .

Since ψp is continuous at 0, by Corollary 11.5.14 we have limN→∞ ψp(pN +
1) = ψp(1) = −γp. Furthermore, as above we have 	mpN/r
 = (mpN−am)/r,
so that limN→∞ ψp(	mpN/r
 + 1) = ψp(−am/r + 1). Since the am form a
permutation of [0, r − 1] it follows that

lim
N→∞

∑
0�m<r

(Hp(pN )−Hp(mpN/r)) = −rγp −
∑

0�j<r

ψp(1− j/r)

= −rγp −
∑

1�k�r

ψp(k/r) .

Applying the distribution formula for the function ψp (Corollary 11.5.14 once
again) we obtain the formula

lim
N→∞

∑(p)

0�a<pN

1
a

⌈
ra

pN

⌉
=
(

1− 1
p

)
r logp(r) ,

proving (2) after adding to the formula obtained above for
∑(p)

0�a<pN ((zra−
1)/a)�ra/pN�. ��

Before proving the main theorem, we also need the following easy result.

Lemma 11.5.29. Let z ∈ Cp be such that vp(z − 1) > 0. There exists a
constant B depending on z, but not on N , such that∑(p)

0�a<pN

za

a
= O(pN−B) .

Proof. As in the computation of S(M) made above, we have∑
1�a�pN

za

a
=

∑
1�a�pN

1
a

+
∑
k�1

(z − 1)k

k

(
pN

k

)
,

and using this formula with z replaced by zp and N by N − 1, and dividing
by p and subtracting gives
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∑(p)

0�a<pN

za

a
=

∑(p)

0�a<pN

1
a

+
∑
k�1

(z − 1)k

k

(
pN

k

)
− 1

p

∑
k�1

(zp − 1)k

k

(
pN−1

k

)
.

As in the proof above, since vp(
(
pN

k

)
) = N − vp(k) and vp(z − 1) > 0, both

infinite sums on k are O(pN−B) for a suitable constant B independent of N ,
but dependent on z, so that to prove the lemma we must simply show that∑(p)

0�a<pN 1/a tends to 0. But this is easily done directly since

∑(p)

0�a<pN

1
a

=
∑(p)

0�a<pN /2

(
1
a

+
1

pN − a

)
= pN

∑(p)

0�a<pN /2

1
a(pN − a)

= O(pN ) ,

proving the lemma. ��

See Exercise 31 for a precise result.
We can now prove the theorem that we are after, which generalizes The-

orem 11.5.25 to the case vp(z − 1) > 0:

Theorem 11.5.30. Let r ∈ Z�0 be such that p � r, let z ∈ Cp be such that
vp(z − 1) > 0, and set

SN (z) =
1

pN

∑(p)

0�a<pN

za logp(a) .

(1) As N → ∞ the sequence SN (z) tends to a limit, which we denote by
S(z).

(2) If zp �= 1 we have

S(zr)− S(z) = logp

(
zr − 1
z − 1

)
− 1

p
logp

(
zpr − 1
zp − 1

)
− r logp(z) logp(r)

zpr − zr

(zr − 1)(zpr − 1)
,

and if zp = 1 but z �= 1 we have

S(zr)− S(z) = logp

(
zr − 1
z − 1

)
.

(3) We have S(1) = −γp, and if as usual ζpv denotes a primitive pvth root
of unity with v � 1, we have

S(ζr
pv ) =

⎧⎪⎨⎪⎩
logp(1− ζr

pv )− 1
p

logp(1− ζrp
pv ) for v � 2 ,

logp(1− ζr
p) +

γp

p− 1
for v = 1 .
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Proof. (1). By the ultrametric property it is enough to show that SN+1(z)−
SN (z) tends to 0. Writing a = pNq + b with 0 � q < p and 0 � b < pN we
have

SN+1(z) =
1

pN+1

∑
0�q<p

zpN q
∑(p)

0�b<pN

zb logp(b + pNq)

= SN (z)
1
p

∑
0�q<p

zpN q +
1
p

∑
0�q<p

∑(p)

0�b<pN

q
zb

b
+ O(pN−2)

= SN (z)
1
p

∑
0�q<p

(1 + O(pN−B)) + O(pN−B) + O(pN−2)

by Lemma 11.5.29 and the fact that zpN

= (1 + (z − 1))pN

= 1 + O(pN−B)
as we have shown and used above, proving (1).

(2). Consider the expression

EN = −
∑(p)

0�a<pN

zra logp

(
pN

ra

⌈
ra

pN

⌉
− 1

)
.

On the one hand, we have

EN = −
∑(p)

0�a<pN

zra logp

(
pN

⌈
ra

pN

⌉
− ra

)

+ logp(r)
∑(p)

0�a<pN

zra +
∑(p)

0�a<pN

zra logp(a) .

If we set b = pN�ra/pN� − ra then 0 � b < pN and p � b, since p � r, so the
map a �→ b is a bijection from the integers in

[
0, pN

[
coprime to p to itself.

Thus

EN = pN (SN (zr)− SN (z)) + logp(r)(z
rpN − 1)

zpr − zr

(zr − 1)(zpr − 1)
,

and with an evident interpretation when some denominator vanishes. More
precisely, since p � r and v(z − 1) > 0, by Proposition 3.5.5 we cannot have
zr = 1, except if z = 1, which is excluded. Thus we have zpr = 1 if and
only if z = ζp is a primitive pth root of unity. In that case zpr − zr =
−(zr − 1), and (zrpN − 1)/(zpr − 1) =

∑
0�j<pN −1 zprj = pN−1, so that

EN = pN (SN (zr)− SN (z))− pN−1 logp(r).
If zp �= 1, then since vp(z − 1) > 0 the p-adic logarithm of z is defined by

the usual power series in z−1, and by the property of the p-adic exponential,
for N sufficiently large (but in general not for all N) we have

zrpN

= expp(rp
N logp(z)) = 1 + rpN logp(z) + O(p2N−1) ,
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and since we have shown above that SN (z) tends to a limit S(z) we thus have

lim
N→∞

EN

pN
=

⎧⎪⎪⎨⎪⎪⎩
S(zr)− S(z) + r logp(z) logp(r)

zpr − zr

(zr − 1)(zpr − 1)
if zp �= 1,

S(zr)− S(z)− logp(r)
p

if zp = 1.

On the other hand, again since p � r we can write

EN =
∑(p)

0�a<pN

zra pN

ra

⌈
ra

pN

⌉
+ O(p2N−1) ,

so by Theorem 11.5.27 we have

lim
N→∞

EN

pN
= logp

(
zr − 1
z − 1

)
− 1

p
logp

(
zpr − 1
zp − 1

)
.

Comparing the two expressions that we have obtained proves (2).
(3). By definition we have S(1) =

∫
Z∗

p
logp(t) dt, so that S(1) = −γp by

Proposition 11.3.14. This also follows from the fact that, also by definition,
S(1) = ψp(0) = −γp.

Assume v � 1 and set ζ = ζpv , so that vp(ζ−1) > 0 by Proposition 3.5.5.
We have logp(ζ) = 0, hence L(ζ, r) = δv,1 logp(r)/p, where we set δv,1 = 1
for v = 1 and δv,1 = 0 for v � 2. We are going to sum the formula for
S(ζr)− S(ζ) over all values of r coprime to p such that 0 � r < pv. For p � a
we have ∑(p)

0�r<pv

ζra =
∑

0�r<pv

ζra −
∑

0�s<pv−1

ζpsa = −δv,1 .

Thus, by Proposition 11.3.14 we have∑(p)

0�r<pv

S(ζr) = −δv,1 lim
N→∞

1
pN

∑(p)

0�a<pN

logp(a) = −δv,1

∫
Z∗

p

logp(t) dt = δv,1γp .

Equivalently, we can write∑(p)

0�r<pv

S(ζr) = −δv,1 lim
N→∞

1
pN

∑(p)

0�a<pN

logp(a)

= −δv,1 lim
N→∞

LogΓp(pN )
pN

= −δv,1ψp(0) = δv,1γp .

Note that by Proposition 3.5.4 we have∑(p)

0�r<pv

logp(1− ζr) = logp(Φpv (1)) = logp(p) = 0 ,



356 11. p-adic Gamma and L-Functions

and similarly with ζ replaced by ζp when v � 2. We thus obtain

δv,1γp − φ(pv)S(ζ) = −φ(pv) logp(1− ζ) + φ(pv)
1− δv,1

p
logp(1− ζp) ,

since when v = 1 the term (−1/p) logp((ζpr − 1)/(ζp − 1)) = (−1/p) logp(r)
cancels with L(ζ, r). It follows that

S(ζ) = logp(1− ζ)− 1− δv,1

p
logp(1− ζp) +

δv,1

φ(pv)
γp ,

proving (3). ��

Remark. I do not know whether S(z) can be evaluated in closed form for
other values of z than those given in (3).

11.5.4 Computation of Limits of some Logarithmic Sums

The goal of this section is the proof of the technical Corollary 11.5.32, which
will be needed to compute the values at rational numbers both for the func-
tion ψp and for the function ψp(χ), but apart from that it is essentially
independent of p-adic gamma and L-functions.

Theorem 11.5.31. Let m � 1, and denote as usual by ζm a primitive mth
root of unity. For r and u in Z we set

FN (u) =
1

pNm

∑(p)

r�a<pN m+r

ζua
m logp(a) .

Assume that 0 � r < m. Then F (u) = limN→∞ FN (u) exists and is given by
the following formulas:

F (u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(0)− γp when m | u ,

L(u) + logp(1− ζu
m) +

γp

p− 1
when m | up and m � u ,

L(u) + logp(1− ζu
m)− 1

p
logp(1− ζup

m ) when m � up ,

where we have set

L(u) =
∑(p)

0�a<r

ζua
m

a
.

Note that for simplicity of notation, we have not indicated the dependence
in r and m.

Proof. Since r � 0, setting a = pNm + b and using the fact that ζm
m = 1,

we have
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∑(p)

pN m�a<pN m+r

ζua
m logp(a) =

∑(p)

0�b<r

ζub
m (logp(b) + pNm/b + O(p2N )) ,

in other words∑(p)

pN m�a<pN m+r

ζua
m logp(a) =

∑(p)

0�b<r

ζub
m logp(b) + pNmL(u) + O(p2N ) ,

using the notation L(u) of the theorem. Thus

FN (u) = L(u) +
1

pNm

∑(p)

0�b<pN m

ζub
m logp(b) .

As in the proof of Theorem 11.5.30, it is easily checked, either from the
Volkenborn integral representation of γp (Proposition 11.3.14) or from the
elementary properties of Morita’s p-adic log gamma function, that

lim
N→∞

1
pNm

∑(p)

0�b<pN m

logp(b) = −γp ,

so that F (0) = L(0) − γp. By the functional equation for ψp we know that
L(0) = ψp(r) − ψp(0), so that F (0) = ψp(r), but it is better to leave the
expression as it is.

We may thus assume that m � u. In the sum occurring in the above
expression for FN (u) we set b = pNc + d, so that 0 � c < m, 0 � d < pN ,
and p � d. We consider two cases.
Case 1. (m/pvp (m)) � u. We have∑(p)

0�b<pN m

ζub
m logp(b) =

∑(p)

0�d<pN

ζud
m

∑
0�c<m

ζupN c
m (logp(d) + pNc/d + O(p2N ))

=
∑(p)

0�d<pN

ζud
m logp(d)

∑
0�c<m

ζupN c
m

+ pN
∑(p)

0�d<pN

ζud
m

d

∑
0�c<m

cζupN c
m + O(p2N ) .

Since (m/pvp (m)) � u, for all N we have m � upN , in other words ζupN

m �= 1,
so that

∑
0�c<m ζupN c

m = 0, and an immediate calculation gives∑
0�c<m

cζupN c
m =

m

ζupN

m − 1
.

Thus

FN (u) = L(u) +
1

ζupN

m − 1

∑(p)

0�d<pN

ζud
m

d
.
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Since ζu
m is not a pnth root of unity for any n it follows from Proposition

3.5.5 that |1− ζu
m| = 1, so by Theorem 11.5.25, F (u) exists and we have

F (u) = L(u) + logp(1− ζu
m)− 1

p
logp(1− ζup

m ) .

Case 2. (m/pvp (m)) | u. Note that this case can occur only when p | m, since
otherwise m | u, which has been excluded. The condition implies that for
N sufficiently large (more precisely for N � vp(m)) we have ζupN

m = 1. For
simplicity, write v = vp(m)− vp(u) and

a =
u

m/pv
=

u

pvp (u)(m/pvp (m))
,

so that p � a. Note that v > 0, since otherwise m | u. For N � vp(m) we thus
have∑(p)

0�b<pN m

ζub
m logp(b)

= m
∑(p)

0�d<pN

ζud
m logp(d) + pN m(m− 1)

2

∑(p)

0�d<pN

ζud
m

d
+ O(p2N )

= m
∑(p)

0�d<pN

ζad
pv logp(d) + pN m(m− 1)

2

∑(p)

0�d<pN

ζad
pv

d
+ O(p2N ) .

Now by Lemma 11.5.29 we have∑(p)

0�d<pN

ζad
pv

d
= O(pN−B)

for some constant B (which can in fact be taken equal to 0 here, but we do
not need this), and by Theorem 11.5.30, since ζa

pv = ζu
m we have

lim
N→∞

1
pN

∑(p)

0�d<pN

ζad
pv logp(d) = logp(1− ζu

m)− 1
p

logp(1− ζup
m )

for v � 2, and

lim
N→∞

1
pN

∑(p)

0�d<pN

ζad
pv logp(d) = logp(1− ζu

m) +
γp

p− 1

for v = 1. It follows that F (u) exists, and since v = 1 is equivalent to m | up
we have

F (u) = L(u) +

⎧⎪⎨⎪⎩
logp(1− ζu

m)− 1
p

logp(1− ζup
m ) if m � up ,

logp(1− ζu
m) +

γp

p− 1
if m | up ,

proving the theorem. ��
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Corollary 11.5.32. Keep the same notation and assumptions, in particular
that 0 � r < m, and assume in addition that p � gcd(r,m). Then∑

u mod m

ζ−ur
m F (u) = −

(
1 +

δm,p

p− 1

)
γp

+
∑

1�u�m−1

ζ−ur
m logp(1− ζu

m)− 1
p

∑
1�u�m−1

m�up

ζ−ur
m logp(1− ζup

m ) ,

where δm,p = 1 when p | m, and δm,p = 0 when p � m.

Note that when p � m the condition m � up is unnecessary.
Proof. First we have∑

u mod m

ζ−ur
m L(u) =

∑(p)

0�a<r

1
a

∑
u mod m

ζ−u(r−a)
m .

Since 1 � r − a � r < m we have m � (r − a), so that the inner sum is equal
to 0 and the whole sum vanishes.

If p � m the case m | up and m � u cannot occur, so we directly obtain
the result. Thus assume that p | m. The condition m | up is equivalent to
u = k(m/p), where k is defined modulo p, so by Theorem 11.5.31, since the
terms involving L(u) cancel we have

∑
u mod m

ζ−ur
m F (u) = γp

(
−1 +

1
p− 1

∑
k mod p

p�k

ζ−kr
p

)

+
∑

1�u�m−1

ζ−ur
m logp(1− ζu

m)− 1
p

∑
1�u�m−1

m�up

ζ−ur
m logp(1− ζup

m ) ,

giving the desired result since
∑

k mod p, p�k ζ−kr
p = −1, because we have

assumed that p � gcd(r,m), so that p � r in the present case. ��

11.5.5 Explicit Formulas for ψp(r/m) and ψp(χ, r/m)

Theorem 11.5.33. Let m ∈ Z�1 be such that qp | m, denote as usual by ζm

a primitive mth root of unity in Q ⊂ Cp, and let r ∈ Z be such that p � r and
0 � r < m. We have the explicit formula

ψp

( r

m

)
= − logp(m)− p

p− 1
γp

+
∑

1�a�m−1

ζ−ar
m logp(1− ζa

m)− 1
p

∑
1�a�m−1

m�ap

ζ−ar
m logp(1− ζap

m ) .
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Proof. By Proposition 11.5.7 we have

ψp(r/m) = lim
N→∞

1
pN

∑
0�a<pN

logp(a + r/m)

= − logp(m) + lim
N→∞

1
pN

∑
r�b<pN m+r
b≡r (mod m)

logp(b) .

Since p | m and p � r we have p � b, so in this last sum we may replace the

symbol
∑

by
∑(p)

. In addition, since
∑

u mod m ζ
u(b−r)
m is equal to 0 if b �≡ r

(mod m) and to m otherwise, we have

ψp(r/m) = − logp(m) + lim
N→∞

1
pNm

∑(p)

r�b<pN m+r

∑
u mod m

ζu(b−r)
m logp(b)

= − logp(m) +
∑

u mod m

ζ−ur
m F (u) ,

where F (u) is as in Theorem 11.5.31. The result now follows from Corollary
11.5.32. ��

Note that by using the functional equation ψp(x + 1) = ψp(x) + 1/x
(Corollary 11.5.3), the theorem also gives an explicit formula for ψp(r/m) for
any r ∈ Z.

We now prove the analogous result for Morita’s ψ function ψp(χ, x). Recall
that we write again ψp(x) instead of ψ(χ0, x), but now with x ∈ Zp. It is now
preferable to separate the cases χ = χ0 and χ �= χ0. The result for χ = χ0 is
the following.

Theorem 11.5.34. Let m ∈ Z�1 be such that p � m, denote as usual by ζm a
primitive mth root of unity in Q ⊂ Cp, and let r ∈ Z be such that 0 � r < m.
We have the explicit formula

ψp

( r

m

)
= −

(
1− 1

p

)
logp(m)− γp

+
∑

1�a�m−1

ζ−ar
m

(
logp(1− ζa

m)− 1
p

logp(1− ζap
m )

)
.

Proof. By Proposition 11.5.18 we have

ψp(r/m) = lim
N→∞

1
pN

∑
0�a<pN

vp (a+r/m)=0

logp(a + r/m) .

Since p � m, the condition vp(a + r/m) = 0 means that p � am + r, and also
that a �≡ −rm−1 (mod p). The number of such a satisfying 0 � a < pN is
equal to pN (1− 1/p), so
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ψp(r/m) = −(1− 1/p) logp(m) + lim
N→∞

1
pN

∑
r�b<pN m+r

p�b, b≡r (mod m)

logp(b) .

Since
∑

u mod m ζ
u(b−r)
m is equal to 0 if b �≡ r (mod m) and to m otherwise,

we have

ψp(r/m) = −(1− 1/p) logp(m) + lim
N→∞

1
pNm

∑(p)

r�b<pN m+r

∑
u mod m

ζu(b−r)
m logp(b)

= −(1− 1/p) logp(m) +
∑

u mod m

ζ−ur
m F (u) ,

where F (u) is as in Theorem 11.5.31; in other words,

F (u) = lim
N→∞

1
pNm

∑(p)

r�b<pN m+r

ζub
m logp(b) .

Note that the use of the notation
∑(p)

is justified since the remaining condition
is p � b. The result now follows from Corollary 11.5.32. ��

The result for χ �= χ0 is the following.

Theorem 11.5.35. Let χ be a primitive character modulo pv for some v � 1,
let m ∈ Z�1 be such that p � m, and let r ∈ Z be such that 0 � r < m. We
have the explicit formula

ψp

(
χ,

r

m

)
=

χ−1(−m)τ(χ)
pv

∑
x mod pv

u mod m

χ−1(x)ζ−ur
m logp

(
1− ζx

pv ζu
m

)
.

Proof. Since the proof is very similar, but using simple properties of Gauss
sums, we leave it as an excellent but long exercise for the reader (Exercise
28). ��

Remarks. (1) As for the function ψp(x), using the functional equation for
the function ψp(χ, x) (Corollary 11.5.14 (1)), these theorems also give
explicit formulas for ψp(χ, r/m) for any r ∈ Z.

(2) These theorems can also be proved directly from the corresponding the-
orem for ψp (Theorem 11.5.33) together with Proposition 11.5.12, but
since all these theorems rely on Corollary 11.5.32 there is not much point
in doing so, except to check the correctness of the formulas.

11.5.6 Application to the Value of Lp(χ, 1)

We have seen in Proposition 10.3.5 that when χ is an even character there
exists an explicit expression for the complex value L(χ, 1) in terms of the
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values of χ and logarithms. By analogy, it seems reasonable to expect that
there is a similar formula for Lp(χ, 1) in the p-adic case. This is indeed the
case, and it is an easy consequence of the theorems proved in the preceding
section. First note the following.

Proposition 11.5.36. Let χ be a nontrivial primitive character of conductor
f . We have

Lp(χ, 1) = − 1
f

∑
0�r<f

χ(r)ψp

(
r

f

)
.

Proof. Clear from the definition and Propositions 11.5.6 and 11.5.15. Note
that, as in the definition of Lp(χ, s), we use here the function ψp(x) for
x ∈ CZp when qp | f , and for x ∈ Zp when p � f . ��

Theorem 11.5.37. Let χ be a nontrivial even primitive character of con-
ductor f , let ζ = ζf be a primitive f th root of unity, and as usual let
τ(χ) =

∑
1�a<f χ(a)ζa ∈ Cp be the Gauss sum. Then

Lp(χ, 1) = −
(

1− χ(p)
p

)
τ(χ)

f

∑
1�r<f

χ−1(r) logp(1− ζr) .

Note that as usual χ−1 is taken in the sense of the group of characters,
so that χ(r) = χ−1(r) = 0 if gcd(r, f) > 1.

Note also that if χ �= χ0 and if χ is defined modulo a power of p then
ψp(χ, 0) = −γp(χ) = −Lp(χ, 1), and since χ is even, Theorem 11.5.35 applied
to r = 0 and m = 1 exactly gives the desired formula. The proof that we now
give is essentially the same, generalized to characters of arbitrary conductor.

Proof. We separate the cases qp | f and p � f . Assume first that qp | f . By
the above proposition and Theorem 11.5.33, and since

∑
0�r<f χ(r) = 0, we

have Lp(χ, 1) = −(S1 − Sp/p)/f , where

S1 =
∑

0�r<f

χ(r)
∑

1�a<f

ζ−ar
f logp(1− ζa

f ) and

Sp =
∑

0�r<f

χ(r)
∑

1�a<f
(f/p)�a

ζ−ar
f logp(1− ζap

f ) .

By Corollary 2.1.42, since χ is an even primitive character we have

S1 =
∑

1�a<f

logp(1− ζa
f )

∑
0�r<f

χ(r)ζ−ar
f = τ(χ)

∑
1�a<f

χ−1(a) logp(1− ζa
f ) .

Similarly, we have

Sp = τ(χ)
∑

1�a<f
(f/p)�a

χ−1(a) logp(1− ζap
f ) .
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If f = p we cannot have (f/p) � a, so Sp = 0. On the other hand, if f/p > 1
then gcd(f, f/p) > 1, so that χ−1(f/p) = 0. It follows that

Sp = τ(χ)
∑

1�a<f

χ−1(a) logp(1− ζap
f ) .

Since the function logp(1 − ζap
f ) is periodic of period f/p and since χ−1 is

primitive, it follows from Corollary 2.1.33 that Sp = 0 in all cases, proving
the theorem when qp | f , since χ(p) = 0 in that case.

Assume now that p � f . By the above proposition, Theorem 11.5.34, and
since

∑
0�r<f χ(r) = 0, we again have Lp(χ, 1) = −(S1 − Sp/p)/f , where S1

is as before, and

Sp =
∑

0�r<f

χ(r)
∑

1�a<f

ζ−ar
f logp(1− ζap

f ) .

As above, we have

Sp = τ(χ)
∑

1�a<f

χ−1(a) logp(1− ζap
f ) ,

so that by setting b = ap and noting that multiplication by p is a bijection
of (Z/fZ)∗ onto itself, we have

Sp = τ(χ)
∑

1�b<f

χ−1(bp−1) logp(1−ζb
f ) = χ(p)τ(χ)

∑
1�a<f

χ−1(a) logp(1−ζa
f ) ,

proving the result in this case. ��

As already mentioned, although the formula of the above theorem ex-
presses Lp(χ, 1) as a finite linear combination of values of logp(1 − ζr), it is
not clear that this last formula is better in practice for computing Lp(χ, 1)
than the convergent series given by Proposition 11.3.8 (3).

In Section 10.5.5 we have also seen the fundamental result that L(χ, 1) �=
0. This is also true in the p-adic context; in other words, we have Lp(χ, 1) �= 0
when χ is a nontrivial even character. However, the proof involves much
deeper arguments: as in the complex case we consider the product of the
Lp(χ, 1) over all nontrivial even characters χ of given conductor, which is a
sort of p-adic Dedekind zeta function. However, the crucial part of the proof
appeals to the deep theorem à la Baker on linear forms in p-adic logarithms;
see [Was], Section 5.5, for details.

Corollary 11.5.38. Let D > 1 be a fundamental discriminant, let εD be
a fundamental unit of Q(

√
D), and denote by χD the Legendre–Kronecker

symbol χD(n) =
(

D
n

)
. We have

Lp(χD, 1) = 2
(

1− χD(p)
p

)
logp(εD)√

D
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for a suitable choice of the p-adic square root
√

D corresponding to the choice
of the embedding of εD in Qp(

√
D).

Note that by Exercise 34 of Chapter 4, we know that logp(εD)/
√

D ∈ Zp.
Proof. By the above theorem and the basic property of the p-adic loga-

rithm we have

Lp(χD, 1) = −
(

1− χD(p)
p

)
τ(χD)

D

∑
1�r<D

(
D

r

)
logp(1− ζr

D)

= −
(

1− χD(p)
p

)
τ(χD)

D
logp(ED) ,

where
ED =

∏
1�r<D

(1− ζr
D)χD (r) .

Thus ED ∈ Q and has nothing more to do with p-adic numbers. By Corollary
10.3.6 we have ED = ε−2

D for some fundamental unit εD of K = Q(
√

D),
depending on the choice of primitive Dth root of unity ζD. Changing εD into
−εD does not change logp(εD), but changing εD into ε−1

D changes logp(εD)
into its opposite. Since χD is an even primitive character such that χ−1

D = χD,
by Corollary 2.1.47 we have τ(χD)2 = D, so the corollary follows. ��

11.6 Morita’s p-adic Gamma Function

11.6.1 Introduction

As we have seen in Section 11.5 we can naturally define two log gamma
functions, one defined for x ∈ CZp, and one defined for x ∈ Zp. In the latter
case, we can even introduce a character χ, and we have seen that when for
instance χ �= ω and p � 3, we can in fact take the p-adic exponential of
this log gamma function. However, although this exponential is well defined,
it is not canonical since we could multiply it by any root of unity without
changing its logarithm. It is thus preferable to give a new definition from
scratch. Three comments about this:

(1) When taking the logarithm of the formulas involving products, we will
evidently recover the formulas that we have already given for the function
LogΓp(x). What will be new in the formulas is the precise root of unity
that occurs, which is not always easy to compute.

(2) It is not completely clear how to define the gamma function for a general
character χ, but only, for instance, for a real character. Thus we will in
fact restrict to the case that χ is the trivial character χ0 modulo qp. This
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means in practice that χ will not appear in the formulas, but instead we
will have to exclude arguments divisible by p, which we denote as usual

by
∑(p)

(see Definition 11.3.6).
(3) We will prove a very important formula for products of p-adic gamma

functions, the Gross–Koblitz formula, from which therefore we can also
deduce a formula for the function LogΓp(x), but it seems that it is im-
possible to prove it directly at the level of LogΓp(x).

11.6.2 Definitions and Basic Results

As we have seen in Section 9.6, there are many possible definitions of Γ(s).
Among those, we are going to adapt to the p-adic case the formula

Γ(s) = lim
n→∞

ns−1n!
s(s + 1) · · · (s + n− 1)

,

which will lead to Morita’s gamma function.

Recall that in Definition 11.3.6 we have introduced the notation
∑(p)

and∏(p)

to indicate that we exclude indexes that are divisible by p. In addition,
we set the following:

Definition 11.6.1. (1) For s ∈ Zp we write s =
∑

j�0 aj(s)pj, where the
aj(s) are uniquely defined by the inequality 0 � aj(s) < p.

(2) For s ∈ Zp we write s\p instead of (s − a0(s))/p =
∑

j�1 aj(s)pj−1, so
that s\p ∈ Zp and

s− s\p = a0(s) + (p− 1)
∑
j�1

aj(s)pj−1 =
∑
j�0

(aj(s)− aj+1(s))pj .

To show the usefulness of these definitions, we begin with the following
easy result.

Proposition 11.6.2. Let u be a p-adic unit.

(1) For all s ∈ Zp the quantity u[s−s\p] defined by

u[s−s\p] = lim
m→s

∏(p)

1�k�m

u = lim
m→s

um−m\p

is well defined, where m tends p-adically to s in Z�0.
(2) More precisely, we have

u[s−s\p] =

{
ua0(s) expp((s\p) logp(up−1)) when p > 2 ,
ua0(s)+a1(s) expp(((s\p)\p) logp(u2)) when p = 2 ,

so that
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u[s−s\p] ≡
{

ua0(s) (mod pZp) when p > 2 ,
ua0(s)+a1(s) (mod 8Z2) when p = 2 .

(3) The function u[s−s\p] is differentiable on Zp and we have

d

ds

(
u[s−s\p]

)
=
(

1− 1
p

)
logp(u)u[s−s\p] .

Proof. The equality of the last two quantities is clear. Let mi be a sequence
of elements of Z�0 tending to s. For i sufficiently large we will have mi ≡ a0(s)
(mod p), so that mi\p = (mi − a0(s))/p and

mi −mi\p = a0(s) +
mi − a0(s)

p
(p− 1) .

Define ni = (mi−a0(s))/p ∈ Z. Since u is a p-adic unit, up−1 ≡ 1 (mod pZp),
so by Corollary 4.2.18, for p > 2 we have

u(p−1)ni = expp(ni logp(u
p−1)) .

Since expp and logp are p-adically continuous inside their domains of con-
vergence and since ni tends to (s − a0(s))/p ∈ Zp, it follows that u(p−1)ni

converges to expp(((s − a0(s))/p) logp(up−1)), so that finally umi−mi\p con-
verges to

ua0(s) expp(((s− a0(s))/p) logp(u
p−1)) .

Once again, since p > 2 we have vp(logp(up−1)) > 0 and expp(((s −
a0(s))/p) logp(up−1)) ≡ 1 (mod pZp), proving the proposition for p > 2.

For p = 2, for i sufficiently large we will have mi ≡ a0(s)+2a1(s) (mod 4).
Set ni = (mi − a0(s)− 2a1(s))/4 ∈ Z, so that mi = a0(s) + 2a1(s) + 4ni and
mi\p = a1(s) + 2ni. Thus

mi −mi\p = a0(s) + a1(s) + 2ni ,

and since u is a 2-adic unit, u2 ≡ 1 (mod 8Z2), so that by Corollary 4.2.18
we have

u2ni = exp2(ni log2(u
2)) .

The rest of the reasoning is exactly as in the case p > 2.
To compute the derivative of u[s−s\p] we note that a0(t) and a1(t) are

ultimately constant as t → s, and equal to a0(s) and a1(s) respectively. Thus
ua0(t) is ultimately constant, and also t\p = (t − a0(t))/p = (t − a0(s))/p.
The formula immediately follows. ��

Warning. The notation u[s−s\p] should not be taken too literally, and in
fact this is why we write it in this way and not simply as us−s\p, since
it is not true in general that u[s−s\p] = usu−s\p, except when s ∈ Z. For
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instance, if s = −a/(p − 1) with 0 � a � p − 1, then s = a
∑

j�0 pj and
s\p = a

∑
j�0 pj = s, so that literally we should have us−s\p = u0 = 1, while

in fact as we shall see in the following corollary, u[s−s\p] = ω(u)a, where ω(u)
is the Teichmüller character of u. As a special case, note for instance that by
Proposition 11.6.2, in Q5 we have

3[1/2−(1/2)\5] = 33 exp5(−(1/2) log5(3
4)) = 33(−32) = −3 ,

although 1/2 − (1/2)\5 = 1. The discrepancy comes from the fact that
exp5(−(1/2) log5(34)) = (34)−1/2 is congruent to 1 modulo 5, hence is equal
to −9 and not to 9.

As an example, note the following corollary.

Corollary 11.6.3. Assume that p > 2, let s = a/(p− 1) with a ∈ Z, and let
u be a p-adic unit. Then

u[s−1−(s−1)\p] = ua\pω(u)−a and u[(−s)−(−s)\p] = u−a\pω(u)a ,

where ω(u) is the Teichmüller character of u.

Proof. Since p > 2, the proposition shows that u[s−1−(s−1)\p] = ua0(s−1)E
with

E = expp(((s− 1− a0(s− 1))/p) logp(u
p−1)) .

If s = a/(p− 1) then it is easily checked that a0(s− 1) = p− 1− a− p((p−
1− a)\p), so that (s− 1− a0(s− 1))/p = (a + 1− p)/(p− 1) + (p− 1− a)\p.
Thus

E = u(p−1)((p−1−a)\p) expp(−(p− 1− a) logp(u
p−1)/(p− 1))

= u(p−1)((p−1−a)\p)(ω(u)/u)p−1−a

by Proposition 4.3.4, and since ω(u)p−1 = 1 we obtain

u[s−1−(s−1)\p] = u−(p−1−a)\pω(u)−a .

Since it is easily checked that −(p − 1 − a)\p = a\p, the first formula of
the corollary follows, as does the second since it is immediately checked that
((s− 1)− (s− 1)\p) + ((−s)− (−s)\p) = 0; see Exercise 37. ��

We are now ready to define Morita’s p-adic gamma function. The following
proposition gives the congruences necessary to use p-adic interpolation.

Proposition 11.6.4. For any a and N in Z�1 and m ∈ Z we have∏(p)

m�k<m+pN a

k ≡ (−1)pN a (mod pN ) ,

except for (p,N) = (2, 2), in which case the left-hand side is congruent to
(−1)a modulo pN .
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Proof. Note that the special case a = 1, N = 1, and m = 0 is Wilson’s
theorem. We prove this proposition in the same way. Assume first that a = 1.
Let G = (Z/(pNZ))∗. The integers k such that m � k < m + pN and p � k
form a complete set of representatives of G in Z. Thus the left-hand side is
congruent modulo pN to

∏
g∈G g. When g2 �= 1, we pair g with g−1 in the

product. Thus ∏
g∈G

g =
∏
g∈G
g2=1

g .

However, if g = k modulo pN , then g2 = 1 in G means that k2 ≡ 1 (mod pN ).
If p �= 2, p cannot divide both k−1 and k+1; hence we have k ≡ ±1 (mod pN ),
so that ∏

g∈G

g ≡ −1 ≡ (−1)pN

(mod pN ) .

Assume now that p = 2, and consider three cases. When N = 1 the result is
trivial since the proposition says that both sides are odd. When N = 2 the
congruence k2 ≡ 1 (mod 4) means that k ≡ ±1 (mod 4), so as in the case
p > 2 we have

∏
g∈G g ≡ −1 (mod 4). Finally, when N � 3 then 4 cannot

divide both k−1 and k +1, so the congruence k2 ≡ 1 (mod 2N ) is equivalent
to k ≡ ±1 (mod 2N−1); in other words, k ≡ 1, 1 + 2N−1, −1, or −1 + 2N−1

modulo 2N , which are distinct since N � 3. Thus in that case∏
g∈G

g ≡ 1− 22N−2 ≡ 1 ≡ (−1)pN

(mod pN ) ,

proving the result in the case a = 1. The case of general a is immediate by
induction on a. ��

Definition 11.6.5. Let s ∈ Zp. We define

Γp(s) = lim
m→s

(−1)m
∏(p)

0�k<m

k = lim
m→s−1

(−1)m+1 m!
pm\p(m\p)!

,

where as above, the limits are for m tending to s and s − 1 respectively,
p-adically in Z�0.

We are going to see that the limit does exist, and that in a suitable sense
this definition generalizes the usual gamma function.

Proposition 11.6.6. The above definition makes sense (in other words the
limit always exists) for all s ∈ Zp, and Γp(s) is a p-adic unit. Furthermore,
for all s and t in Zp we have Γp(s) ≡ Γp(t) (mod pvp (s−t)Zp), except when
p = 2 and vp(s− t) = 2, in which case Γp(s) ≡ −Γp(t) (mod pvp (s−t)Zp).

Proof. Set um = (−1)m
∏(p)

0�k<m k, and let mi be any sequence of positive
integers tending to s as i → ∞. This means that mi is a Cauchy sequence,
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in other words because of the ultrametric inequality, that mi+1 −mi tends
to 0 p-adically as i→∞. We must show that umi

is also a Cauchy sequence.
Since um is a p-adic unit, this is clearly equivalent again by the ultrametric
inequality to the fact that umi+1/umi

tends to 1 p-adically. Let N � 3 (to
avoid the special case (p,N) = (2, 2)). Since mi+1 − mi tends to 0, there
exists i0 such that for i � i0 we have vp(mi+1 − mi) � N , in other words
mi+1 −mi = pNa for some a ∈ Z. Assume for instance a � 0 (otherwise we
compute umi

/umi+1 instead). Then

umi+1

umi

= (−1)pN a
∏(p)

mi �k<mi +pN a

k ≡ 1 (mod pN )

by the above proposition, so that umi
is indeed a Cauchy sequence. Since

by definition um is a p-adic unit, it follows that so is Γp(s). For the last
statement, let mi and ni be sequences of nonnegative integers tending to s
and t respectively. In particular, vp(mi − ni) = vp(s − t) for i sufficiently
large. Thus for such i, by the above proposition if (p, vp(s − t)) �= (2, 2) we
have umi

≡ uni
(mod pvp (s−t)), so by definition of Γp we have Γp(s) ≡ Γp(t)

(mod pvp (s−t)), while if (p, vp(s− t)) = (2, 2) the above proposition says that
we must include a minus sign. ��

11.6.3 Main Properties of the p-adic Gamma Function

Lemma 11.6.7. Let ni and mi be two sequences of elements of Z such that
ni � mi, converging p-adically respectively to s and t. Then

lim
i→∞

(−1)mi−ni

∏(p)

ni �k<mi

k =
Γp(t)
Γp(s)

.

Proof. If we had ni � 0 for all i, the result would be immediate from the
definition. Thus, we must handle this difficulty. For this, choose a sequence of
exponents Ni such that Ni →∞ and ni +pNi � 0 for all i, and for simplicity
of notation set Pi = pNi . We may of course assume that Ni � 3 when p = 2.
By Proposition 11.6.4 we have∏(p)

ni �k<ni +Pi

k ≡ (−1)Pi (mod Pi) ,

and similarly with ni replaced by mi since ni � mi. It follows that∏(p)

ni +Pi �k<mi +Pi
k∏(p)

ni �k<mi
k

=

∏(p)

ni �k<mi +Pi
k∏(p)

ni �k<ni +Pi
k
∏(p)

ni �k<mi
k

=

∏(p)

mi �k<mi +Pi
k∏(p)

ni �k<ni +Pi
k

≡ 1 (mod Pi) ,
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so that ∏(p)

ni �k<mi

k ≡
∏(p)

ni +Pi �k<mi +Pi

k (mod Pi) .

We can now directly apply the definition and deduce that (−1)ni−mi times
the right-hand side tends to Γp(t)/Γp(s), proving the lemma. ��

The main advantage of this lemma is the possibility of choosing sequences
mi and ni in Z, not necessarily in Z�0.

Corollary 11.6.8. (1) The function Γp(s) is continuous on Zp; more pre-
cisely, it satisfies

|Γp(s)− Γp(t)| � |s− t| ,
except for p = 2, for which this inequality is valid only for vp(s− t) � 3.

(2) We have Γp(s + 1) = −sΓp(s) if vp(s) = 0, and Γp(s + 1) = −Γp(s) if
vp(s) > 0.

(3) More generally, if m ∈ Z�0 we have

Γp(s + m)
Γp(s)

= (−1)m
∏

0�k<m
vp (s+k)=0

(s + k) .

(4) When m ∈ Z�0 we have

Γp(m + 1) = (−1)m+1 m!
pm\p(m\p)!

and Γp(−m) = (−p)(m\p) (m\p)!
m!

.

In particular, Γp(0) = 1, Γp(1) = −1, Γp(2) = 1, and Γp(−1) = 1.

Proof. (1) is a restatement of the second part of Proposition 11.6.6. For
(2), let ni → s, ni ∈ Z�0, so that mi = ni + 1 → s + 1. Applying the lemma
to ni and mi we deduce that

Γp(s + 1)
Γp(s)

= − lim
i→∞

{
ni if p � ni ,
1 if p | ni ,

proving (2), and (3) follows from (2) by induction on m or directly from the

lemma. Note that in (3) we cannot use the expression
∏(p)

1�k�m(s + k) since
this would mean p � k and not p � (s + k).

Since from the definition it is clear that Γp(0) = 1 and Γp(1) = −1, the
formulas of (4) follow from (3) by choosing s = 1 and s = −m respectively.

��

Corollary 11.6.9. If n and m are in Z with n � m and s ∈ Zp, we have∏
n�k<m

vp (s+k)=0

(s + k) = (−1)m−n Γp(s + m)
Γp(s + n)

.
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Proof. Clear from (3) of the above corollary. ��

The following lemma generalizes Lemma 11.6.7:

Lemma 11.6.10. Let ni and mi be two sequences of elements of Z such that
ni � mi, converging p-adically respectively to s and t, and let a ∈ Zp. Then

lim
i→∞

(−1)mi−ni

∏
ni �k<mi

vp (k+a)=0

(k + a) =
Γp(t + a)
Γp(s + a)

.

Proof. By the above corollary we have∏
ni �k<mi

vp (k+a)=0

(k + a) = (−1)mi−ni
Γp(a + mi)
Γp(a + ni)

,

so the result follows by the continuity of the function Γp proved above. ��

For future reference we also give the following result.

Corollary 11.6.11. Let f � 1, set q = pf , and for all k ∈ Z�0 write k =
qm + r with 0 � r < q. Then∏

0�i<f

Γp(−	k/pi
) = (−p)m(q−1)/(p−1)+vp (r!) m!
k!

= (−p)vp (k!)−vp (m!) m!
k!

.

Proof. Set ki = 	k/pi
. By Corollary 11.6.8 (4), we have Γp(−ki) =

(−p)ki+1
ki+1!
ki!

. The factorials give a telescoping product, so that

∏
0�i<f

Γp(−ki) = (−p)
∑

1�i�f ki
kf !
k0!

.

Since k = qm + r = pfm + r we have ki = pf−im + 	r/pi
; hence using
Lemma 4.2.8 and summing a geometric series we have

∑
1�i�f ki = m(q −

1)/(p−1)+ vp(r!). Since kf = m and k0 = k we obtain the first formula, and
the second follows from an immediate computation using Lemma 4.2.8. ��

The second formula of Corollary 11.6.8 (4) is a special case of the following
reflection formula.

Proposition 11.6.12. For all s ∈ Zp we have

Γp(s)Γp(1− s) = (−1)[s−1−(s−1)\p]+1 =

{
(−1)a0(s−1)+1 if p > 2 ,

(−1)a0(s−1)+a1(s−1)+1 if p = 2 .
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Proof. Let mi → s as i→∞ with mi � 0. Then 1−mi → 1−s. It follows
from Lemma 11.6.7 that

Γp(0)
Γp(1− s)

= lim
i→∞

(−1)mi +1
∏(p)

1−mi �k<0

k = (−1)mi−(mi−1)\p(−1)mi

∏(p)

0�k�mi−1

k ,

and this converges to (−1)[s−1−(s−1)\p]+1Γp(s), proving the first formula. The
others follow from Proposition 11.6.2, since both sides are equal to ±1 and
congruent modulo p for p > 2, hence equal, and congruent modulo 8 for
p = 2, hence equal. ��

Corollary 11.6.13. (1) For p �= 2 we have Γp(1/2)2 = (−1)(p+1)/2, so that
Γp(1/2) = ±1 when p ≡ 3 (mod 4), and Γp(1/2) = ±i when p ≡ 1
(mod 4), where i is one of the square roots of −1 in Zp.

(2) For p �= 2 we have

Γp(1/2) ≡ (−1)(p+1)/2((p− 1)/2)! (mod pZp) .

Proof. Note that when p is odd we have −1/2 =
∑

j�0((p − 1)/2)pj .
It follows that a0(−1/2) = (p − 1)/2, so that by the above proposition
Γp(1/2)2 = (−1)(p+1)/2, proving (1). For (2) we have

Γp(1/2) ≡ Γp((p + 1)/2) ≡ ((p− 1)/2)! (mod pZp)

by Proposition 11.6.6 and Corollary 11.6.8. ��

Remarks. (1) Statement (1) determines Γp(1/2) up to sign, and statement
(2) makes the sign unambiguous.

(2) When p ≡ 1 (mod 4) it is reasonable to define Γp(1/2) as a canonical
square root i of −1, in other words the square root such that i ≡ −((p−
1)/2)! (mod pZp). On the other hand, when p ≡ 3 (mod 4) we have
Γp(1/2) = ±1 ≡ ((p− 1)/2)! (mod pZp), and the sign can be given by a
number of equivalent formulas; see Exercise 43.

We also have a duplication formula, and more generally a distribution
formula.

Theorem 11.6.14. Let p be a prime number and n � 1 such that p � n.
Then for all s ∈ Zp we have the distribution formula∏

0�j<N

Γp

(
s +

j

N

)
= cp,N

Γp(Ns)
N [Ns−1−(Ns−1)\p]

,

where

cp,N =

⎧⎪⎪⎨⎪⎪⎩
(−p

N

)
if N is odd,

(−1)N/2+1

(
(−1)N/2+1N/2

p

)
Γp(1/2) if N is even (hence p �= 2) ,
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where we recall that Γp(1/2)2 = (−1)(p+1)/2. In particular, for p �= 2 we have

Γp(s)Γp(s + 1/2) = Γp(1/2)
Γp(2s)

2[2s−1−(2s−1)\p]
.

Note that N [Ns−1−(Ns−1)\p] must be computed as explained in Definition
11.6.1 and Proposition 11.6.2, and not in a näıve manner.

Proof. Let mi be a sequence of positive integers tending to s. By Lemma
11.6.10 applied to ni = 0, mi, and a = j/N ∈ Zp, we have

lim
i→∞

(−1)mi

∏
0�k<mi

vp (k+j/N)=0

(k + j/N) =
Γp(s + j/N)

Γp(j/N)
.

Thus ∏
0�j<N

Γp(s + j/N) = cp,N lim
i→∞

ui ,

where
cp,N =

∏
0�j<N

Γp(j/N) =
∏

1�j�N−1

Γp(j/N)

and

ui = (−1)Nmi

∏
0�j<N

∏
0�k<mi

vp (k+j/N)=0

(k + j/N)

= (−1)Nmi

∏
0�r<Nmi

vp (r/N)=0

(r/N) = (−1)Nmi

∏(p)

0�r<Nmi

(r/N)

= (1/N)Nmi−1−(Nmi−1)\p(−1)Nmi

∏(p)

0�r<Nmi

r ,

and since Nmi − 1 tends to Ns− 1, ui clearly converges to

Γp(Ns)
N [Ns−1−(Ns−1)\p]

.

It remains to compute cp,N . We consider two cases.
Case p > 2.
Let m be an inverse of −N modulo p. Changing m into m + p if necessary,
we can assume that m is even. Then −j/N ≡ jm (mod p), so a0(−j/N) =
jm− p((jm)\p). Applying the reflection formula to s = 1− j/N , we deduce
that

Γp(1− j/N)Γp(j/N) = (−1)jm+1−p((jm)\p) = −(−1)(jm)\p

since m is even and p is odd. Letting as usual (N − 1) mod 2 equal 0 if N − 1
is even and 1 if N − 1 is odd, it follows that
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cp,N = (−1)d1Γp(1/2)(N−1) mod 2 ,

where

d1 =
⌊

N − 1
2

⌋
+

∑
1�j�(N−1)/2

⌊
jm

p

⌋
.

Write mN + 1 = rp, so that r is odd. From the equality

jm

p
+

j

Np
=

jr

N
,

we deduce that for 1 � j < N/2 we have

jm

p
<

jr

N
<

jm + 1/2
p

.

Clearly the open interval ]jm/p, (jm+1/2)/p[ does not contain any integers,
so that 	jm/p
 = 	jr/N
. It follows that

d1 =
⌊

N − 1
2

⌋
+

∑
1�j�(N−1)/2

⌊
jr

N

⌋
,

and since m is even, r is such that rp ≡ 1 (mod 2N).
Since Γp(1/2)2 = (−1)(p+1)/2, it follows that cp,N = Γp(1/2)N−1c1, with

c1 = (−1)�(N−1)/2�(p−1)/2(−1)S(r,N) ,

and S(r,N) =
∑

1�j�(N−1)/2	jr/N
. In Corollary 2.2.14 we have shown that

(−1)S(r,N) =

⎧⎪⎪⎨⎪⎪⎩
(−1)(N−1)(r−1)/4

(
N

r

)
if N is odd,

(−1)(N−2)(r−1)/4

(
2N

r

)
if N is even.

Since rp ≡ 1 (mod 2N), the properties of the Kronecker–Jacobi symbol thus
imply that we can replace r by p in the above formulas (this would not be
true if we only had rp ≡ 1 (mod N)). It is easily seen that for p > 2 the
formulas of the theorem follow from this and the quadratic reciprocity law.
Case p = 2.
This case is simpler. We can choose m = −N as the inverse of −N modulo
4. Thus if we write jm− 4(jms) = rj , we have

a0(−j/N)+a1(−j/N) ≡ rj(rj+1)/2 ≡ jm(jm+1)/2 ≡ j(jm+1)/2 (mod 2) .

Here N is odd, so applying the reflection formula, we obtain in a manner
similar to the preceding case cp,N = (−1)d1 with
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d1 = (N − 1)/2 +
∑

1�j�(N−1)/2

j(jm + 1)/2 .

Since we may choose m = −N , we compute explicitly that

d1 = (N − 1)/2 + ((N2 − 1)/8)(−N2/3 + 1)/2 .

Now in Z2 we have (−N2/3 + 1)/2 ≡ 1/3 ≡ 1 (mod 2Z2), hence d1 ≡
(N − 1)/2 + (N2 − 1)/8 (mod 2). It follows that cp,N =

(−4
N

)(
N
2

)
=

(−2
N

)
,

finishing the proof. ��

11.6.4 Mahler–Dwork Expansions Linked to Γp(x)

The definition of the p-adic gamma function as given is totally unsuitable
for practical computation. In this section we give the Mahler expansions of
functions closely related to Γp(x), which in particular will allow us to compute
Γp(x) numerically much more efficiently. It also allows the extension of Γp(x)
to a nonempty ball of Cp. I am indebted to F. Rodriguez-Villegas for making
available a GP script implementing part of this.

Proposition 11.6.15. As in Section 4.2.3, let uk be the sequence of rational
numbers defined formally by exp(X + Xp/p) =

∑
k�0 ukXk. Then we have

the following convergent expansions for x ∈ Zp:

(1) ∑
k�0

(−1)kk!uk

(
x

k

)
=

{
Γp(x) if |x| < 1 ,
0 if |x| = 1 .

(2) More generally, if 0 � r � p− 1 then

∑
k�r

(−1)k+1k!uk−r

(
x

k

)
=

{
Γp(x + 1) if x− r ∈ pZp ,
0 if x− r /∈ pZp .

(3) If 0 � r � p− 1 then

Γp(px− r) =
∑
k�0

(
x + k − 1

k

)
k!upk+rp

k .

(4)

Γp(x) =
∑
k�0

(−1)k−1k!tk

(
x− 1

k

)
, where tk =

∑
max(0,k−p+1)�j�k

uj .

Proof. (1). Let f(x) be the function defined as f(x) = Γp(x) for |x| < 1
and f(x) = 0 for |x| = 1. Since by Corollary 11.6.8 the function Γp(x) is
continuous and since the p-adic topology is totally discontinuous, the function
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f(x) is continuous on |x| � 1 (this would of course be trivially false over the
complex numbers). We may thus apply Mahler’s Theorem 4.2.26, which tells
us that f(x) =

∑
k�0 ak

(
x
k

)
with

ak =
k∑

m=0

(−1)k−m

(
k

m

)
f(m)

tending to 0 as k tends to infinity. By Corollary 11.6.8 we thus have

ak =
∑

0�m�k, p|m
(−1)k−m

(
k

m

)
Γp(m)

=
∑

0�n�k/p

(−1)k−pn k!
(pn)!(k − pn)!

(−1)pn (pn)!
pnn!

= (−1)kk!
∑

0�n�k/p

1
pn(k − pn)!n!

= (−1)kk!uk

by Corollary 4.2.23, proving (1). (2) follows by applying (1) to x − r and
using Corollary 11.6.8 (note that Γp(x + 1) = −Γp(x) when x ∈ pZp, so (1)
is indeed the special case r = 0 of (2)). Formulas (3) and (4) are proved in a
manner similar to (1) and are left to the reader (Exercise 46). ��

Remarks. (1) In all of the above formulas we can of course replace k!
(
a
k

)
by a(a− 1) · · · (a− k + 1).

(2) The fact that the expansions converge follows from Mahler’s Theorem
4.2.26 and the continuity of the function Γp. However, by Corollary 4.2.23
we know in fact that for example vp(k!uk) grows to infinity with k ap-
proximately like (k/p)(1 − 1/p), so the convergence of all of the above
series is quite fast and completely controlled.

(3) In particular, the above proposition gives efficient methods to compute
Γp(x) for all x ∈ Zp.

(4) We will see below that these Mahler expansions imply that Γp(x) has a
power series expansion that converges for |x| < p−(2p−1)/(p(p−1)), so that
this allows us to extend the definition of Γp(x) to such x. We can then use
the formulas that we have seen, such as functional equation, reflection
formula, and distribution formula, to extend to other elements of Cp. It
is not clear whether this is useful.

Corollary 11.6.16. (1) We have

∑
k�0

kmk!uk =

{
0 if 0 � m � p− 2 ,
−1 if m = p− 1 .

(2) For p �= 2 we have
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Γp

(
1
2

)
=

∑
k�(p−1)/2

(2k)!
22kk!

uk−(p−1)/2 .

Proof. Left to the reader (Exercise 47). ��

For the proof of the Gross–Koblitz formula below we need a more general
statement than Proposition 11.6.15 (3). Recall from Chapter 4 that there
exists π ∈ Qp(ζp) such that πp−1 = −p, and that for all f � 1 we define
coefficients dk,f ∈ Qp(ζp) by the formal power series expansion exp(π(X −
Xq)) =

∑
k�0 dk,fXk, where q = pf .

Proposition 11.6.17. Let r be fixed such that 0 � r < q. We have the
Mahler expansion∏

0�i<f

Γp(−(	r/pi
+ pf−ix)) = π−sp (r)
∑
k�0

dqk+r,f

πk
k!
(

x

k

)
,

where sp(r) is the sum of the digits of r in base p.

Proof. As usual, if we set

g(x) =
∏

0�i<f

Γp(−(	r/pi
+ pf−ix)) ,

then g is continuous on Zp, so by Mahler’s theorem g(x) =
∑

k�0 ck

(
x
k

)
with ck =

∑
0�m�k(−1)k−mg(m)

(
k
m

)
. By Corollary 11.6.11 we have g(m) =

(−p)m(q−1)/(p−1)+vp (r!)m!/(qm + r)!, so that

ck = (−1)k(−p)vp (r!)k!
∑

0�m�k

(−1)m(−p)m(q−1)/(p−1)

(k −m)!(qm + r)!

= (−p)k(q−1)/(p−1)+vp (r!)k!
∑

0�m�k

(−1)m(−p)−m(q−1)/(p−1)

m!(qk + r − qm)!

after changing m into k −m. Now changing X into X/π in the definition of
dk,f and using πp−1 = −p we obtain

exp
(

X − Xq

(−p)(q−1)/(p−1)

)
=
∑
k�0

dk,f

πk
Xk .

Using the power series expansion of exp(X) we thus obtain

dk,f

πk
=

∑
0�m�k/q

(−1)m(−p)−m(q−1)/(p−1)

m!
1

(k − qm)!
,

so thanks to the expression obtained above for ck we have
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ck =
(−p)k(q−1)/(p−1)+vp (r!)k!dqk+r,f

πqk+r

= π−k−r(−p)vp (r!)k!dqk+r,f = π−sp (r)−kk!dqk+r,f

using once again πp−1 = −p and the formula for vp(r!), proving the result.
��

11.6.5 Power Series Expansions Linked to Γp(x)

In this subsection we study the power series expansion of Γp(x) and some con-
sequences. There are essentially two methods to compute this power series.
The first one is to transform the explicit Mahler series expansion (Proposi-
tion 11.6.15) into a power series, using Proposition 4.2.28. The second is to
compute the exponential of the explicit power series of LogΓ(x) (Proposition
11.5.19). We will see that this second method gives stronger results than the
first, but it is still interesting to see what can be obtained from the first.

Theorem 11.6.18. (1) For p > 2 the function Γp(x) has a power series
expansion around x = 0 with a radius of convergence at least equal to
p−(2p−1)/(p(p−1)).

(2) More precisely, if we write Γp(x) =
∑

k�0 gkxk with g0 = 1 then

vp(gk) � − 2p− 1
p(p− 1)

k .

(3) For n � 1 we have the identity
∑

0�k�n(−1)kgkgn−k = 0, and in partic-
ular g2 = g2

1/2, or equivalently, Γ′′
p(0) = (Γ′

p(0))2.

Proof. (1) and (2). In the proof of Proposition 11.6.15 we have seen that

Γp(−px) =
∑
k�0

a0,k

(
x

k

)
,

where by Corollary 4.2.23 we have vp(a0,k) � (1− 1/p)(k− sp(k)/p). Apply-
ing Proposition 4.2.28 with α = (1 − 1/p), α′ = −(1 − 1/p)/p, and α′′ = 0
(which can be applied only when (1− 1/p) > 1/(p− 1), hence when p � 3),
we deduce that Γp(−px) is equal to the sum of a power series with radius of
convergence greater than or equal to R = pα−1/(p−1) = p(p2−3p+1)/(p(p−1)),
hence the radius of convergence of Γp(x) itself is greater than or equal
to R/p = p−(2p−1)/(p(p−1)), proving (1). Now note that α′ + 1/(p − 1) =
(2p − 1)/(p2(p − 1)) � 0. Since by definition Γp(−px) =

∑
k�0(−p)kgkxk,

Proposition 4.2.28 tells us also that vp((−p)kgk) � ((p2−3p+1)/(p(p−1)))k,
proving (2).

(3). Let x ∈ pZp when p � 3, x ∈ 4Z2 when p = 2. Using the reflection
formula (Proposition 11.6.12) we check that whether p � 3 or not we have
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Γp(x)Γp(1−x) = −1 since a0(x−1) = p−1 if p � 3 and a0(x−1)+a1(x−1) = 2
if p = 2. Since x ∈ pZp we have Γp(1−x) = −Γp(−x) by Corollary 11.6.8, so
we deduce that Γp(x)Γp(−x) = 1. Expanding the product of the two power
series gives

∑
n�0 Gnxn = 1 with Gn =

∑
0�k�n(−1)kgkgn−k = 0. Since the

radius of convergence is not zero we deduce from Corollary 4.2.4 that Gn = 0
for n � 1. ��

It is not difficult to show that for p > 2, computing the exponential of
the power series for LogΓp(x) essentially gives the same result as Theorem
11.6.18, which uses Mahler expansions. On the other hand, for p = 2 we could
not use Mahler expansions, but using the power series for LogΓp(x) we can
give (a lower bound for) the radius of convergence.

Proposition 11.6.19. (1) Let x ∈ 2Z2. We have with evident notation

exp2(log2(Γ2(x))) = (−1)x(x−2)/8Γ2(x) .

(2) The function Γ2(x) has a power series expansion around x = 0 with a
radius of convergence greater than or equal to 1/2. More precisely, if we
write Γ2(x) =

∑
k�0 gkxk with g0 = 1 then v2(gk) � −k.

(3) For f � 3 the function Γ2(2fx) has a Mahler expansion Γ2(2fx) =∑
k�0 af,k

(
x
k

)
with v2(af,k) � fk − s2(k), and the same is true for the

function Γ2(−2fx).

Note that if p > 2 and x ∈ pZp, it immediately follows from Proposition
11.6.6 that expp(logp(Γp(x))) = Γp(x).

Proof. (1). By the easy Exercise 41, we know that Γ2(2n) ≡ (−1)n(n−1)/2

(mod 4). Taking n → x/2 ∈ Z2 implies that Γ2(x) ≡ (−1)x(x−2)/8 (mod 4).
Setting y = (−1)x(x−2)/8Γ2(x) ≡ 1 (mod 4), it follows from Proposition
4.2.10 (5) that exp2(log2(y)) = y, proving (1).

(2) and (3). Recall from Proposition 11.5.19 that if we set dk,p =
B−2k,pp

2k+1/(2k(2k + 1)) (see Definition 11.3.13) then

logp(Γp(px)) = LogΓp(px) = −pγpx−
∑
k�1

dk,px
2k+1 ,

and that Lemma 11.5.20 gives us information on vp(dk,p) = v(k, p). We
easily compute that γ2 ≡ 1 (mod 2), so that v2(2γ2) � 1, and vp(dk,2) =
v(k, 2) � 1 for all k � 1. Thus all the coefficients of the formal power se-
ries exp(log(Γp(pX))) (which is the formal product of exp(−pγpX) and the
expp(−dk,pX

2k+1) for k � 1) are p-integral, and (2) follows. For (3) we note
that by (1), if f � 3 we have exp2(log2(Γ2(2fx))) = Γ2(2fx), so that state-
ment (3) follows from (2) and Exercise 17 of Chapter 4. ��

Note that (3) is not true for f = 1 or f = 2, and in fact one can show
that v2(a1,k) ∼ k/2 and v2(a2,k) = k, and similarly for the coefficients of
Γ2(−2fx); see Exercise 36.
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Corollary 11.6.20. For f � 1 set

af,k =
k∑

m=0

(−1)k−m

(
k

m

)
1 · 3 · · · (2fm− 1) and

bf,k =
k∑

m=0

(−1)k−m+2f −1m

(
k

m

)
1

1 · 3 · · · (2fm− 1)
,

which are the Mahler coefficients of Γ2(2fx) and Γ2(−2fx), respectively. For
f � 3 we have v2(af,k) � fk − s2(k) and v2(bf,k) � fk − s2(k).

Proof. Follows immediately from the above corollary, the explicit formula
for the Mahler coefficients (Theorem 4.2.26), and the values on Z of the
function Γ2(s) (Corollary 11.6.8). ��

Note that I do not know of a direct combinatorial proof of the above
corollary, and that numerically it seems that we have the slightly stronger
inequality v2(af,k) � fk − s2(k)/2 (and similarly for bf,k).

11.6.6 The Jacobstahl–Kazandzidis Congruence

Proposition 11.6.21. Set

Dp(x, y) =
logp(Γp(x + y))− logp(Γp(x))− logp(Γp(y))

xy(x + y)
.

If x and y are in pZp we have the following congruences:

(1) For p � 5,

Dp(x, y) ≡ − 1
2p

∑
1�a�p−1

1
a2
≡ −Bp−3

3
(mod pZp) .

(2) For p = 3,

Dp(x, y) ≡ 5
3

(mod pZp) .

(3) For p = 2,

Dp(x, y) ≡ 3
4

+
7
8
(x2 + xy + y2) (mod pZp) .

Proof. By Proposition 11.5.19 we have

Dp(x, y) = −
∑
k�1

dk,p

p3

(x + y)2k+1 − x2k+1 − y2k+1

p2k−2xy(x + y)

with dk,p as above. Since the numerator of
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A2k−2(x, y) =
(x + y)2k+1 − x2k+1 − y2k+1

xy(x + y)

vanishes for x = 0, y = 0, and y = −x, it follows that A2k−2(x, y)
is a polynomial, which is clearly homogeneous of degree 2k − 2, so that
A2k−2(x, y) ∈ p2k−2Zp when x and y are in pZp. By Lemma 11.5.20 we
thus have

Dp(x, y) ≡ −3
d1,p

p3
− 5

d2,p

p3

x2 + xy + y2

p2

≡ −B−2,p

2
− (x2 + xy + y2)

B−4,p

4
(mod pZp) .

Since x and y are in pZp and vp(B−4,p) � −1, it is clear that for p �= 2 the
term involving B−4,p is congruent to 0 modulo p hence may be ignored (this
of course follows from Lemma 11.5.20 for p �= 5, but not for p = 5). Assume
first that p � 5. By Corollary 11.3.16 we have

B−2,p ≡ 1
p

∑
1�a�p−1

1
a2

(mod pZp) ,

proving the first congruence. Furthermore, by the same corollary for p � 5
we have B−2,p ≡ (2/3)Bp−3 (mod p), which proves (1), and for p = 3 we
have B−2,p ≡ 2/3 + 2 (mod 3Z3), which proves (2). For p = 2 we must use
the formula involving B−4,p. We have B−2,2 ≡ 1/2 + 2 (mod 22Z2) and we
easily compute that B−4,2 ≡ 1/2 + 22 (mod 23Z2), proving (3). ��

This proposition allows us to prove the following congruences, due in a
weaker form to Jacobstahl and Kazandzidis.

Corollary 11.6.22 (Jacobstahl, Kazandzidis). Let m and n be two in-
tegers such that 0 � m � n and let p be a prime number. We have the
congruence(

pn

pm

)
≡ Kp(n,m)

(
n

m

)
(mod p4nm(n−m)

(
n

m

)
Zp) ,

where

Kp(n,m) =

⎧⎪⎨⎪⎩
1− (Bp−3/3)p3mn(n−m) if p � 5,
1 + 45nm(n−m) if p = 3,
(−1)m(n−m)P (n,m) if p = 2,

with P (n,m) = 1+6nm(n−m)−4nm(n−m)(n2−nm+m2)+2(nm(n−m))2.

Proof. By Corollary 11.6.8 (4), we know that for n ∈ Z�0 we have
Γp(pn) = (−1)n(pn)!/(pnn!), hence
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Γp(pn)
Γp(pm)Γp(p(n−m))

=
(pn)!m!(n−m)!

(pm)!(p(n−m))!n!
=

(
pn
pm

)(
n
m

) .

Assume first that p � 3. By Corollary 11.6.8 (1), if x ∈ pZp we have Γp(x) ≡
1 (mod pZp), hence |Γp(x) − 1| � 1/p < rp = |p|1/(p−1) since p � 3. It
follows from Proposition 4.2.10 (5) and (4) that for all x ∈ pZp we have
expp(logp(Γp(x))) = Γp(x), hence that if x and y are in pZp we have

expp(xy(x + y)Dp(x, y)) =
Γp(x + y)
Γp(x)Γp(y)

,

so in particular(
pn
pm

)(
n
m

) = expp(p
3nm(n−m)Dp(pm, p(n−m))) .

On the other hand, since we are inside the disk of convergence of the p-adic
exponential it follows from the above proposition that if p � 5 and x and y
are in pZp we have

expp(xy(x + y)Dp(x, y)) ≡ 1− Bp−3

3
xy(x + y) (mod pxy(x + y)Zp) ,

proving the result in that case. Similarly, for p = 3 we have

expp(xy(x + y)Dp(x, y)) ≡ 1 +
5
3
xy(x + y)

≡ 1 + 45
xy(x + y)

27
(mod pxy(x + y)Zp) ,

and the result again follows.
Assume now that p = 2. By Proposition 11.6.19, if x and y are in 2Z2 we

have

expp(xy(x + y)Dp(x, y)) = (−1)xy/4 Γp(x + y)
Γp(x)Γp(y)

.

Furthermore, since v2(xy(x + y)) � 4 when x and y are in 2Z2, a similar
computation to that above gives

expp(xy(x + y)Dp(x, y)) ≡ Q(x, y) (mod pxy(x + y)Zp) ,

where

Q(x, y) = 1 + 6
xy(x + y)

8
+ 28

xy(x + y)(x2 + xy + y2)
32

+ 18
(xy(x + y))2

64
.

Since P (n,m) ≡ Q(2m, 2(n−m)) (mod p4nm(n−m)) it follows that(
2n
2m

)(
n
m

) = (−1)m(n−m) expp(p
3nm(n−m)Dp(pm, p(n−m)))

≡ (−1)m(n−m)P (n,m) (mod p4nm(n−m)Zp) ,

as claimed. ��
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Remarks. (1) In the same way we could find more complicated congruences
modulo higher powers of p, but there is no point in doing so.

(2) If p � 5 we have in particular(
pn

pm

)
≡
(

n

m

)
(mod p3nm(n−m)

(
n

m

)
Zp) ,

and this congruence is valid modulo p4nm(n − m)
(

n
m

)
Zp if and only if

p divides the numerator of Bp−3. Such a prime is sometimes called a
Wolstenholme prime; see Exercise 30 of Chapter 2. By Exercise 50, p is
such a prime if and only if p3 divides the numerator of

∑
1�a�p−1 1/a, if

and only if p2 divides the numerator of
∑

1�a�p−1 1/a2. The only known
Wolstenholme primes are p = 16843 and p = 2124679, and there are
no others up to 109. As usual, however, on probabilistic grounds there
should exist infinitely many; see also Exercise 51.

(3) The congruences are of course valid only in Zp and not in Z, since for
instance

(
pn
pm

)
/
(

n
m

)
is not necessarily an integer.

11.7 The Gross–Koblitz Formula and Applications

We have seen that Morita’s p-adic gamma function (as well as Diamond’s log
gamma function) satisfies essentially all the usual properties of the complex
gamma function. A remarkable fact is that it satisfies additional beautiful
finite identities due to B. Gross and N. Koblitz, whose equivalent for the clas-
sical gamma function is the Chowla–Selberg formula (Proposition 10.5.11).
The Gross–Koblitz formula was proved initially using results of N. Katz deal-
ing with crystalline cohomology, but it has recently been proved using much
more elementary methods by A. Robert in [Rob2], and we reproduce his
proof.

11.7.1 Statement and Proof of the Gross–Koblitz Formula

Let q = pf be a prime power, and as in Section 4.4.8 let π ∈ K = Qp(ζp) be
such that πp−1 = −p. We let p be the prime ideal above p in Q(ζp), so that π is
a generator of pZK and vp(p) = p−1. Recall from Proposition 4.4.40 that we
have defined coefficients dk,f by the formal power series expansion exp(π(X−
Xq)) =

∑
k�0 dk,fXk, and we have seen their relation to the function Γp

in Proposition 11.6.17. There are two crucial ingredients in Robert’s proof.
The first is an identity involving the dk,f , and the other is the lower bound
for vp(dk,f ) which we have given in Proposition 4.4.40. Since f is fixed, for
notational simplicity we write dk instead of dk,f .

For r ∈ Z�0 we define Gr(x) by the Mahler expansion
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Gr(x) =
∑
k�0

dqk+r

πk
k!
(

x

k

)
=
∑
k�0

dqk+r

πk
(x)k

with the usual notation (x)k = k!
(
x
k

)
= x(x − 1) · · · (x − k + 1). Robert’s

crucial identity is the following:

Proposition 11.7.1. For all r and N in Z�0 we have

(1− q)
∑

0�k<N

d(q−1)k+r = Gr

(
r

1− q

)
−G(q−1)N+r

(
r

1− q
−N

)
.

Proof. We first prove the proposition for N = 1. For this, we transform the
term Gq−1+r(x−1) (where we will set x = r/(1−q) later) as follows. First note
that by differentiating the defining formula exp(π(X − Xq)) =

∑
k�0 dkXk

we get
π(1− qXq−1)

∑
k�0

dkXk =
∑
k�0

(k + 1)dk+1X
k ,

whence the recurrence (k +1)dk+1 = π(dk− qdk−(q−1)) for k � q− 1, so that

dk−1 =
k

π
dk + qdk−q for k � q .

We thus have

Gq−1+r(x− 1) =
∑
k�0

dq(k+1)−1+r

πk
(x− 1)k

=
∑
k�0

(
q(k + 1) + r

π
dq(k+1)+r + qdqk+r

)
(x− 1)k

πk

=
∑
k�1

qk + r

π
dqk+r

(x− 1)k−1

πk−1
+ q

∑
k�0

dqk+r
(x− 1)k

πk
.

Since for k � 1 we have (x)k = x(x−1)k−1 and (x−1)k = (x−k)(x−1)k−1,
it follows that Gr(x)−Gq−1+r(x− 1) is equal to

(1− q)dr +
∑
k�1

dqk+r
(x− 1)k−1

πk
(x− (qk + r)− q(x− k))

=(1− q)dr +
∑
k�1

dqk+r
(x− 1)k−1

πk
(x(1− q)− r) ,

so that

Gr

(
r

1− q

)
−Gq−1+r

(
r

1− q
− 1

)
= (1− q)dr ,

proving the proposition for N = 1.
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Applying the case N = 1 with r replaced by (q − 1)k + r we deduce that

G(q−1)k+r

(
r

1− q
− k

)
−G(q−1)(k+1)+r

(
r

1− q
− k − 1

)
= (1−q)d(q−1)k+r ,

and summing this from k = 0 to N − 1 proves the proposition in general. ��

Corollary 11.7.2. For r ∈ Z�0 we have

(1− q)
∑
k�0

d(q−1)k+r = Gr

(
r

1− q

)
.

Proof. Note that since by Proposition 4.4.40 the valuation of dk tends
to infinity with k, we already know that the series on the left-hand side
converges. In any case, thanks to the proposition, to prove that it converges
and that its sum is as given is equivalent to showing that G(q−1)N+r(r/(1−
q) − N) tends to 0 as N → ∞. Now if x ∈ Zp we have

(
x
k

) ∈ Zp, so by
definition of Gr(x), since vp(π) = 1/(p− 1) we have

vp(Gr(x)) � min
k�0

(vp(dqk+r)− k/(p− 1) + vp(k!)) .

By Proposition 4.4.40 and Lemma 4.2.8 we have

vp(dqk+r)− k/(p− 1) + vp(k!) � (qk + r)(p− 1)
pf+1

− sp(k)/(p− 1) ,

where as usual sp(k) is the sum of the base-p digits of k. Since sp(k) grows
only logarithmically with k it follows that qk(p − 1)/pf+1 − sp(k)/(p − 1)
tends to infinity with k, hence that there exists a constant cp depending only
on p such that qk(p− 1)/pf+1− sp(k)/(p− 1) � cp for all k � 0. Thus for all
x ∈ Zp we have vp(Gr(x)) � cp +r(p−1)/pf+1, and since r/(1− q)−N ∈ Zp

it follows that

vp(G(q−1)N+r(r/(1− q)−N)) � cp + ((q − 1)N + r)(p− 1)/pf+1 ,

which tends to infinity with N , proving the corollary. ��

Now recall from Section 4.4.8 that since the power series Dπ,f (X) =
exp(π(X −Xq)) has a radius of convergence strictly greater than 1, we can
define Dπ,f (a) for all a ∈ Cp such that |a| � 1, and in particular if aq = a we
have seen that Dπ,f (a) is a pth root of unity given by the formula Dπ,f (a) =
ζ
TrL/K(a)
π , where L = K(ζq−1) is the unique unramified extension of degree f

of K (see Corollary 4.4.27), and ζπ is the unique pth root of unity congruent
to 1 + π modulo p2.
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Definition 11.7.3. For any r ∈ Z�0 we define the Gauss sum

τq(r) =
∑

a∈L, aq−1=1

a−rζ
TrL/K(a)
π .

Note that there are q− 1 terms in the sum, and that evidently τq(r) ∈ L.

Proposition 11.7.4. For any r ∈ Z such that 0 � r < q − 1 we have

τq(r) = (q − 1)
∑
m�0

d(q−1)m+r = −Gr

(
r

1− q

)
.

Proof. Indeed

τq(r) =
∑

aq−1=1

a−rDπ,f (a) =
∑

aq−1=1

a−r
∑
k�0

dkak

=
∑
k�0

dk

∑
aq−1=1

ak−r .

Since L contains all (q−1)st roots of unity the inner sum is a geometric series
whose sum is equal to 0 if (q − 1) � (k − r) and is equal to q − 1 otherwise,
so writing k = (q− 1)m + r we obtain τq(r) = (q− 1)

∑
m�0 d(q−1)m+r. Note

that this is where we need 0 � r < q− 1, since otherwise this last sum would
not begin at m = 0. The second formula follows from this combined with the
crucial Corollary 11.7.2. ��

The Gross–Koblitz formula is now immediate.

Theorem 11.7.5 (Gross–Koblitz). If 0 � r < q − 1 then

τq(r) = −πsp (r)
∏

0�i<f

Γp

(
r(i)

q − 1

)
,

where 0 � r(i) < q−1 have base-p expansions obtained by a cyclic permutation
from that of the f base-p digits of r.

Proof. By definition of Gr(x), Proposition 11.6.17 tells us that∏
0�i<f

Γp(−(	r/pi
+ pf−ix)) = π−sp (r)Gr(x) .

Setting x = r/(1− q), it follows that τq(r) = −πsp (r)
∏

0�i<f Γp(xi/(q − 1)),
where xi = −(q − 1)	r/pi
+ pf−ir. If we let r =

∑
0�j<f rjp

j be the p-adic
expansion of r with 0 � rj � p− 1, we have

pf−ir =
∑

0�j<i

rjp
f−(i−j) + q

∑
i�j<f

rjp
j−i =

∑
0�j<i

rjp
f−(i−j) + q	r/pi
 ,
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hence
xi =

∑
0�j<i

rjp
f−(i−j) +

∑
i�j<f

rjp
j−i = r(i) ,

proving the theorem. ��

Note that it is essential to take the f coefficients in the base-p expansion
of r, including the possible leading zeros. For instance, if f = 2 and r = 1 then
r(0) = 1 and r(1) = p. The following corollary makes this totally unambiguous.

Corollary 11.7.6. Recall that we define s(r) = sp(r mod (q − 1)) and that
{x} denotes the fractional part of x. For all r ∈ Z we have

τq(r) = −πs(r)
∏

0�i<f

Γp

({
pf−ir

q − 1

})
.

Proof. Since both sides are now periodic in r of period q−1, it is sufficient
to prove the result when 0 � r < q− 1. In that case we have pf−ir/(q− 1) =
(r+r/(q−1))/pi and since 0 � r/(q−1) < 1 we deduce that 	pf−ir/(q−1)
 =
	r/pi
. Since r(i) = (1− q)	r/pi
+ pf−ir the corollary follows. ��

Note that since the fractional part of pfr/(q − 1) is equal to that of
r/(q − 1), the product can be indifferently from 0 to f − 1 as above, or from
1 to f , and we may also replace pf−i by pi if desired.

The case f = 1, hence q = p, is especially interesting (the proof would
have been only slightly simpler if we had restricted to this case).

Corollary 11.7.7. Let m/n ∈ Q be such that n | (p− 1).

(1) If 0 � m/n < 1 we have the formula

Γp(m/n) = −π−rτp(r) ,

where r = m(p− 1)/n.
(2) Γp(m/n) is an algebraic number, more precisely

Γp(m/n) ∈ Q(ζnp, (−p)1/n) ,

where as usual ζN denotes a primitive N th root of unity.

Proof. (1) is evidently the special case f = 1 of the theorem. Since π =
(−p)1/(p−1) we have π−r = (−p)−m/n ∈ Q((−p)1/n). Furthermore, ζπ is a pth
root of unity; in other words, ζπ can be considered as an element of Q(ζp).
Finally, if a ∈ Zp is such that ap−1 = 1, then once again a can be considered
as an element of Q(ζp−1), hence ar as an element of Q(ζn), proving (2) for
0 � m/n < 1, and the general case follows from the functional equation
giving Γp(x + 1) in terms of Γp(x). ��
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Note that this theorem is in marked contrast to the complex case, where
the values of the complex gamma function at nonintegral rational arguments
are believed to be transcendental.

Recall from Proposition 4.3.4 and Exercise 19 of Chapter 4 that the set
Gp of a ∈ Zp such that ap = a can be given a natural finite field structure
thanks to the Teichmüller map ω extended by 0 outside p-adic units, which is
canonically isomorphic to Fp. Thus if we set χ(a) = a−r and ψ(a) = ζa

π then
χ is a multiplicative character and ψ is a nontrivial additive character on
Gp, hence τp(r) = τ(χ, ψ) in the sense of Gauss sums associated with finite
fields, which we have studied in Section 2.5.2. A character such as ψ (which
depends on the choice of π) is called a Dwork character. For instance, the
translation of Corollary 2.5.17 (1) in our context is the following:

Proposition 11.7.8. If r + s �≡ 0 (mod p− 1) then

τp(r)τp(s)
τp(r + s)

=
∑

ap−1=1
a
=1

a−rω(1− a)−s .

Examples. We have already seen in Corollary 11.6.13 as a consequence of
the reflection formula that Γp(1/2) = ±1 when p ≡ 3 (mod 4) and Γp(1/2) =
±i when p ≡ 1 (mod 4), and in particular is algebraic. Let us consider a less
immediate example.

Proposition 11.7.9. We have

Γ5(1/4) =
√−2 + i ,

where i is the square root of −1 congruent to 3 modulo 5, and the outer square
root is chosen congruent to 1 modulo 5.

Proof. By the theorem and the above proposition, we have

(Γ5(1/4))2 = (−π−1τp(1))2 = π−2τp(2)
∑

ap−1=1
a
=1

a−1ω(1− a)−1 .

The Jacobi sum on the right is equal to

−ω(2)−1 − iω(1− i)−1 + iω(1 + i)−1 = −ω(3)− iω(2) + iω(−1)
= −i− i(−i)− i = −1− 2i

(look at Proposition 4.3.4 to see how easy it is to compute Teichmüller values).
On the other hand, since χ(a) = a−2 is a character of order 2 it follows from
Corollary 2.5.17 that τp(2) = ±√5 for some sign ± depending on the choice
of π, and since π2 =

√−5 = ±i
√

5, it follows that Γ5(1/4)2 = ±(−2+ i), and
the signs are immediately determined by looking modulo 5. ��

See Exercise 48 for other examples.
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11.7.2 Application to L′
p(χ, 0)

As a first immediate application of the Gross–Koblitz formula, we have the
following result; see [Fer-Gre].

Proposition 11.7.10 (Ferrero–Greenberg). Let χ be a primitive even
character, let χ1 = χω−1, and denote by f1 the conductor of χ1. Assume that
χ1(p) = 1, so that in particular p � f1, let u be the order of p in (Z/f1Z)∗,
let q = pu, and finally let c1, . . . , cg be a system of representatives in Z of
(Z/f1Z)∗/〈p〉, where 〈p〉 is as usual the subgroup of (Z/f1Z)∗ generated by p.
We have Lp(χ, 0) = 0 and the formula

L′
p(χ, 0) =

g∑
i=1

χ1(ci) logp(τq(ci(q − 1)/f1)) .

In particular, L′
p(χ, 0) is a Q(χ1)-linear combination of p-adic logarithms of

algebraic numbers.

Proof. Since χ1(p) = 1, by Propositions 11.3.9 and 11.5.24 we have
Lp(χ, 0) = 0 and

L′
p(χ, 0) =

∑
0�k<f1

χ1(k) LogΓp

(
χ0,

k

f1

)
.

For k ∈ Z we have k ≡ cip
j (mod f1) for a unique i and j modulo u, and for

0 � k < f1 we thus have k/f1 = {cip
j/f1}. Once again, since χ1(p) = 1 we

have χ1(k) = χ1(ci); hence, using LogΓp(χ0, x) = logp(Γp(x)) we have

L′
p(χ, 0) =

g∑
i=1

χ1(ci)
∑

j mod u

logp

(
Γp

({
cip

j

f1

}))
=

g∑
i=1

χ1(ci) logp(Pi) ,

where

Pi =
∏

j mod u

logp

(
Γp

({
(ci(q − 1)/f1)pj

q − 1

}))
= logp

(
−τq(ci(q − 1)/f1)π−s(ci (q−1)/f1)

)
using the Gross–Koblitz formula (Corollary 11.7.6). The result follows since
πp−1 = −p, so that logp(π) = 0. ��

Remark. Since Lp(χ, 0) = (1 − χ1(p))L(χ1, 0) and since χ1 = χω−1 is an
odd character, it follows from the functional equation in the complex case
and the nonvanishing of L(χ1, 1) (Theorem 10.5.29) that we always have
L(χ1, 0) �= 0. Thus we have Lp(χ, 0) = 0 if and only if χ1(p) = 1, which is
exactly the condition of the proposition. Thanks to the above result and the
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deep results of Baker already mentioned in the context of the nonvanishing
of Lp(χ, 1), Ferrero–Greenberg then prove that in the present situation we
have L′

p(χ, 0) �= 0, so that Lp(χ, s) cannot have a multiple zero at s = 0. This
has important arithmetic consequences mentioned in their paper.

11.7.3 Application to the Stickelberger Congruence

It is interesting to note that the Gross–Koblitz formula gives an immediate
proof of Stickelberger’s Theorem 3.6.6.

Proposition 11.7.11. If r ∈ Z is such that 0 � r < q − 1 then

τq(r) ≡ −πsp (r) (−p)vp (r!)

r!
≡ −πr

r!
(mod psp (r)+p−1ZK) .

Proof. We have seen that

r(i) = (1− q)
⌊

r

pi

⌋
+ pf−ir ≡

⌊
r

pi

⌋
(mod p)

since 0 � i < f and p | q. Since q−1 ≡ −1 (mod p) it follows from Proposition
11.6.6 that

Γp(r(i)/(q − 1)) ≡ Γp(−	r/pi
) (mod pZp)

(note that the special case (p, f) = (2, 2) does not need to be treated sep-
arately since −1 ≡ 1 (mod 2)). Since 0 � r < q − 1 it follows from the
Gross–Koblitz formula and Corollary 11.6.11 that

π−sp (r)τq(r) ≡ −
∏

0�i<f

Γp(−	r/pi
) ≡ − (−p)vp (r!)

r!
(mod pZp) ,

and the result follows since πp−1 = −p and vp(r!) = (r − sp(r))/(p− 1). On
the other hand, if (p, f) = (2, 2) a direct computation immediately shows that
−τq(r)/πsp (r) = 1 for 0 � r < q − 1 = 3, which agrees with the congruence
except for r = 2, where the sign must be changed. ��

The above result is stated in a p-adic context. It is easy to see that it
implies the usual form of Stickelberger’s theorem. Indeed, we have the fol-
lowing:

Lemma 11.7.12. If π is the unique element of Qp(ζp) such that πp−1 = −p
and π/(ζp − 1) ≡ 1 (mod pZK), then with the notation of Section 3.6.2 we
have τ(ω−r

P , ψ1) = τq(r).

Proof. By definition ωP(x) is the unique (q− 1)st root of unity congruent
to x modulo P. Furthermore, Tr(ZL /P)/(ZK /p)(x) depends only on the class
of x modulo P. It follows that we can write
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τ(ω−r
P , ψ1) =

∑
a∈L, aq−1=1

a−rζ
Tr(ZL /P)/(ZK /p)(a)
p .

Since both sides are algebraic numbers, we can replace the sum by a sum in
the completion L of L. If we choose the unique π ∈ K such that πp−1 = −p
and π/(ζp−1) ≡ 1 (mod pZK) then since ζp = 1+(ζp−1), by definition we will
have the equality ζp = ζπ in K. Finally, note that since L/K is an unramified
extension of p-adic fields and since aq−1 = 1, it follows from Corollary 4.4.29
that Tr(ZL /P)/(ZK /p)(a) = TrL/K(a), proving the lemma. ��

Remark. In the above proof we have in fact considered Fq as ZL/PZL. In
that context the character ωP is essentially the Teichmüller character studied
in Chapter 4.

We can now give an alternative proof of Stickelberger’s Theorem 3.6.6,
which we restate here in a slightly different form, using Lemma 3.6.7.

Theorem 11.7.13. With the above notation we have

τ(ω−r
P , ψ1)

(ζp − 1)s(r)
≡ − (−p)vp (r!)

r!
(mod P) .

Proof. As usual by periodicity we may assume that 0 � r < q− 1. By the
above lemma and Proposition 11.7.11 we have (in the p-adic context)

τ(ω−r
P , ψ1)

(ζp − 1)sp (r)
=

τq(r)
πsp (r)

(
ζp − 1

π

)sp (r)

≡ − (−p)vp (r!)

r!

(
ζp − 1

π

)sp (r)

(mod pp−1ZK) .

Since by definition of π we have (ζp − 1)/π ≡ 1 (mod pZK) we deduce that

τ(ω−r
P , ψ1)

(ζp − 1)sp (r)
≡ − (−p)vp (r!)

r!
(mod pZK) .

Since τ(ω−r
P , ψ1) ∈ L and P/p is unramified, the result follows. ��

Remark. Note that since by Exercise 35 we have vπ((ζp− 1)/π− 1) = 1 for
p � 3, the exponent p−1 reduces to 1, so we lose on the power of p. However,
by the same exercise, for p � 3 we can deduce the more precise congruence

τ(ω−r
P , ψ1)

(ζp − 1)s(r)
≡ − (−p)vp (r!)

r!

(
1 +

π

2
sp(r)

)
(mod P2) .
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11.7.4 Application to the Hasse–Davenport Product Relation

We have seen in Section 3.7.2 that (at least for p � 3) the Hasse–Davenport
(HD) product relation is a rather easy consequence of Stickelberger’s theo-
rem together with the distribution relations for the functions s(r) and t(r)
proved in Section 3.7.1. In this section we are going to see that it can be
proved directly and painlessly from the Gross–Koblitz formula together with
the distribution formula for the p-adic gamma function without using any
algebraic number theory. We will in fact obtain some additional information.
We begin with the following.

Lemma 11.7.14. As usual let q = pf , m | q − 1, and d = (q − 1)/m. For
integers r and i such that 0 � r < q − 1 and 0 � i < f set

e(r, i) =
{

pf−ir

q − 1

}
=

r(i)

q − 1
,

and for general integers r and i set e(r, i) = e(r mod (q−1), i mod f). Finally,
for b ∈ Z set

g(m, b, i) =

{
mri expp(−e(mb, i + 1) logp(mp−1)) if p > 2 ,
mri +ri+1 expp(−e(mb, i + 2) logp(m2)) if p = 2 ,

where mb mod (q−1) =
∑

0�i<f rip
i is the usual base-p expansion of mb mod

(q − 1). Then for all b ∈ Z we have∏
0�a<m

Γp(e(ad + b, i)) = cp,mg(m, b, i)Γp(e(mb, i)) ,

where cp,m is given by Theorem 11.6.14.

Proof. Denote the left-hand side by P (b). It is clear that P (b) is periodic
in b of period dividing d, hence we may assume that 0 � b < d. Writing
pf−i(ad + b)/(q − 1) = pf−ia/m + x with x = pf−ib/(q − 1) it is clear that
the argument of the gamma function depends only on the value of a modulo
m and not on a itself, so we may replace the product from 0 to m − 1 by
the product for a modulo m. Since p is coprime to q − 1 = pf − 1 hence to
m, the map z �→ pf−iz is a bijection of Z/mZ onto itself, so we can remove
the factor pf−i. Similarly the map a �→ a + k is also a bijection, so we may
replace x by y = x − k/m, where k = 	mx
. Since 0 � x − k/m < 1/m we
have

P (b) =
∏

0�a<m

Γp(a/m + y) = cp,mm−(my−1−(my−1)\p)Γp(my) ,

using the distribution formula for the p-adic gamma function (Theorem
11.6.14). By definition if we set r = mb we have 0 � r < q − 1, so that
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my = mx− k = {mx} = {pf−imb/(q − 1)} = (mb)(i)/(q − 1) = e(mb, i) .

An immediate calculation then shows that

(my − 1)\p = (mb)(i+1)/(q − 1)− 1 = e(mb, i + 1)− 1 ,

and the lemma follows from this and Proposition 11.6.2. ��

Corollary 11.7.15. (1) With the same notation, for all b ∈ Z we have∏
0�a<m

τq(ad + b) = −ω(m)s(mb)τq(mb)
∏

0�a<m

τq(ad) ,

where ω(m) is the Teichmüller character (see Proposition 4.3.4), here by
convention taken equal to 1 if p = 2.

(2) For all n ∈ Z, with n even if p = 2, define (−p)n/2 = πn(p−1)/2. Then∏
0�a<m

τq(ad) = (−1)mcf
p,m(−p)(m−1)f/2 .

(3) We have

∏
0�a<m, a
=m/2

τq(ad) =

⎧⎪⎪⎨⎪⎪⎩
−
( p

m

)f

q(m−1)/2 if m is odd,

−
(

(−1)m/2+1m/2
p

)f

q(m−2)/2 if m is even.

Proof. (1). Either directly or by Lemma 3.6.7 it is clear that we have∑
0�i<f e(mb, i) = s(mb)/(p − 1). Thus, if we denote by LHS the left hand

side of (1), then by the above lemma and the Gross–Koblitz formula (more
precisely Corollary 11.7.6) we have

LHS = (−1)mcf
p,mπS(b)h(m, b)

∏
0�i<f

Γp(e(mb, i)) ,

with S(b) =
∑

0�a<m s(ad + b) and

h(m, b) =

{
ms(mb) expp(−s(mb) logp(mp−1)/(p− 1)) if p � 3 ,
m2s(mb) expp(−s(mb) logp(m2)) = 1 if p = 2 .

Thus using again Corollary 11.7.6 together with the basic formula for the
Teichmüller character ω(x) (Proposition 4.3.4, except that we set ω(m) = 1
for p = 2), we deduce that for all p we have

LHS = (−1)m−1cf
p,mω(m)s(mb)πS(b)−s(mb)τq(mb)

= (−1)m−1cf
p,mω(m)s(mb)πS(0)τq(mb) ,
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using the distribution formula for the function s (Proposition 3.7.1). In par-
ticular, since τq(0) = −1 we have∏

0�a<m

τq(ad) = (−1)mcf
p,mπS(0) ,

proving (1), and (2) also follows by using the value S(0) = (p − 1)(m −
1)f/2 given by Proposition 3.7.1 and the formula πp−1 = −p. Applying (2)
with m = 2 we obtain −τq((q − 1)/2) = cf

p,2(−p)f/2, so (3) follows after a
short calculation by considering separately m odd and m even and using the
formula for cp,m given by Theorem 11.6.14. ��

Remark. Since ω(m) is a (p − 1)st root of unity and since mb ≡ s(mb)
(mod (p− 1)), we may replace ω(m)s(mb) by ω(m)mb. Indeed, thanks to this
remark it is clear that we immediately deduce the HD product relation (The-
orem 3.7.3), together with an additional result:

Theorem 11.7.16. Let ρ be a multiplicative character of exact order m di-
viding (q − 1), and let ψ be any nontrivial additive character on Fq.

(1) For any multiplicative character χ on Fq we have∏
0�a<m

τ(χρa, ψ) = −χ−m(m)τ(χm, ψ)
∏

0�a<m

τ(ρa, ψ) .

(2) In addition, if ψ = ψ1 in the notation of Proposition 2.5.4, the product
on the right-hand side is given by∏

0�a<m

τ(ρa, ψ1) = k(p, f,m)q(m−1)/2 ,

where k(p, f,m) is a fourth root of unity given by

k(p, f,m) =

⎧⎪⎪⎨⎪⎪⎩
−
( p

m

)f

if m is odd,

(−1)f

(
(−1)m/2+1m/2

p

)f(−1
p

)f/2

if m is even,

where (−1)f/2 is to be understood as if when f is odd.
(3) Equivalently, we have

Jm−2(ρ, . . . , ρm−2) =
( p

m

)f

q(m−3)/2 if m is odd,

Jm−1(ρ, . . . , ρm−1) =
(

(−1)m/2+1m/2
p

)f

q(m−2)/2 if m is even.
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Proof. (1) clearly follows from the above corollary, Lemma 11.7.12, and
the fact that ωP(m) can be identified with the Teichmüller character ω(m)
in Qp, since they are both (p− 1)st roots of unity congruent to m modulo P.
(2) is also immediate by inspection when m is odd. When m is even, by (3)
of the above corollary we have

∏
0�a<m, a
=m/2

τ(ρa, ψ1) = −
(

(−1)m/2+1m/2
p

)f

q(m−2)/2 ,

and on the other hand, by Corollary 3.7.6 we have

τ(ρm/2, ψ1) = (−1)f−1

(−1
p

)f/2

q1/2 ,

with the interpretation of (−1)f/2 given in the theorem. Finally, (3) follows
immediately from (2) and Proposition 2.5.14. ��

Remarks. (1) When m is even it is necessary to remove the term a = m/2
in the p-adic product, and then put it back in the complex product.
Indeed, to take the specific example of p = 5, f = 1, and m = 2, the
identification of the p-adic and complex products gives the “identity”

Γ5(1/2)π2 = −51/2 ,

where π is the fourth root of −5 in Q5(ζ5) such that π ≡ ζ5−1 (mod π2),
and 51/2 is the positive square root in R. Although the square of this
identity gives the correct equality 5 = 5 (since Γ5(1/2)2 = −1), the
identity does not seem to mean much in itself.

(2) If we want the product for ψ = ψb with b ∈ F∗
q in the notation introduced

in Proposition 2.5.4, it is clear from Lemma 2.5.6 that the right-hand
side of the formula stays the same when m is odd, and is multiplied by
ρm/2(b) = χq(b) when m is even, hence is unchanged if b is a square in
Fq and multiplied by −1 otherwise.

(3) See also Exercise 55 for another result.

11.8 Exercises for Chapter 11

1. Prove Proposition 11.1.6 and the formulas in the examples following it.

2. (E. Friedman.) Let D be a subset of Cp closed under translation by Zp , for
instance D = Zp or D = CZp . Let f be a function from D to Cp , and assume
that Δ(f)(x) = f(x + 1) − f(x) is strongly differentiable on D. Finally, let
h be a strongly differentiable function from D to Cp , and for x ∈ Z�0 set
H(x) =

∑
0�a<x h(a).

(a) Show that H(x) is a continuous p-adic function on Z�0, so that we can define
H(x) for any x ∈ Zp by H(x) = limn→x, n∈Z�0 H(n), and show that the
resulting function H is strictly differentiable on Zp .
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(b) Show that for any x ∈ D the Volkenborn integral
∫

Zp
h(t)f(x + t) dt exists and

that we have∫
Zp

h(t)f(x + t) dt = f(x)

∫
Zp

h(t) dt −
∫

Zp

H(t + 1)Δ(f)(x + t) dt .

(c) Assume that f(x) =
∫

Zp
g(x + t) dt. Deduce that under suitable sufficient con-

ditions on g we have∫
Zp

h(t)f(x + t) dt = f(x)

∫
Zp

h(t) dt −
∫

Zp

H(t + 1)g′(x + t) dt

(this is essentially “integration by parts” for Volkenborn integrals).
(d) In particular, show that under these conditions we have∫

Zp

f(x + t) dt = f(x) + (x − 1)f ′(x) −
∫

Zp

(x + t)g′(x + t) dt .

(e) Deduce from this alternate proofs of the Raabe formulas seen in the text.

3. (Applications of the preceding exercise.)

(a) Set bj =
∫

Zp
Bj (t) dt, and let F (T ) be the formal power series F (T ) =∑

j�0 bjT
j/j!. Show that F (T ) = (T/(exp(T ) − 1))2, and by computing the

derivative of T/(exp(T ) − 1), deduce that bj = −(jBj−1 + (j − 1)Bj ).
(b) Using the preceding exercise, show that∫

Zp

tkBn(x + t) dt =
Bk+1

k + 1
nBn−1(x) + BkBn(x)

− n

k + 1

k∑
j=−1

(−1)k−j

(
k + 1

j + 1

)
Bk−j(x)Bn+j (x) .

In particular, generalizing (a) we have∫
Zp

Bj (x + t) dt = −(j(1 − x)Bj−1(x) + (j − 1)Bj (x)) .

(c) Deduce the following reciprocity formula for Bernoulli numbers:

m!

m∑
j=0

Bm−j

(m − j)!

Bn+j+1

(j + 1)!
+ n!

n∑
j=0

Bn−j

(n − j)!

Bm+j+1

(j + 1)!
= −Bm+n .

See Exercise 5 of Chapter 9 for another proof.
(d) Using once again the preceding exercise, show that for x ∈ CZp we have∫

Zp

tkζp(s, x + t) dt = −Bk+1

k + 1
ω−1

v (x)sζp(s + 1, x) + Bkζp(s, x)

+
1

k + 1

k∑
j=−1

(−1)k−j

(
k + 1

j + 1

)
(s − j − 1)Bk−j(x)ωv(x)jζp(s − j, x) .

Note that this is the p-adic analogue of the formula proved in Exercise 45 (b)
of Chapter 9.
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(e) Deduce that for x ∈ CZp we have∫
Zp

tk LogΓp(x + t) dt =
(−1)kBk+1(x) + Bk+1

k + 1
ψp(x) + Bk LogΓp(x)

+
1

k + 1

k∑
j=0

(−1)k−j

(
k + 1

j + 1

)
Bk−j(x)ωv(x)j+1

(
ζp(−j, x) − (j + 1)

∂ζp

∂s
(−j, x)

)
(recall that ζp(0, x) = −ω−1

v (x)(x − 1/2) and
∂ζp

∂s
(0, x) = ω−1

v (x) LogΓp(x)).
This is the analogue of the formula of Exercise 45 (c) of Chapter 9.

4. Show that under suitable sufficient conditions on the function f , we have the
following general Volkenborn integral evaluations, which are p-adic forms of the
Euler–MacLaurin summation formula:∫

Zp

f(x + t) dt =
∑
j�0

Bj

j!
f (j)(x)

and

∫
Z∗

p

f(x + t) dt =
∑
j�0

(1 − pj−1)
Bj

j!
f (j)(x) .

5. The aim of this exercise is to give a definition and properties of ζp(s, x) for p = 2
and vp(x) = −1. All the proofs will need to use continuity and the fact that Z
is dense in Zp , and not analyticity and power series. Thus, assuming that p = 2
we set

ζp(s, x) =
1

s − 1

∫
Zp

ε(t/x, s)〈x + t〉1−s dt ,

where for simplicity of notation, for y /∈ Z2 we have set ε(y, s) = ω(1 + y)1−s ,
so that ε(y, s) = 1 unless vp(y) = −1 and s ∈ 2Z2.

(a) Prove that ζp(s, x) is a continuous function of s on Zp \ {1}, and that the
Laurent series expansion of Definition 11.2.5 is still valid for s ∈ Zp \ {1}.

(b) Prove that the results of Theorem 11.2.9 are still valid with the following
modifications: in (2), the right-hand side must be multiplied by ε(u/x, s), (3)
must be replaced by

ε(1/x, s)ζp(s, x + 1) − ζp(s, x) = −〈x〉1−s

x
= −ωv(x)−1〈x〉−s

and ζp(s, 1 − x) = ε(1/x, s)ζp(s, x) ,

and (4) by ∑
0�j<m

ε

(
j

mx
, s

)
ζp

(
s, x +

j

m

)
= m〈m〉s−1ζp(s, mx)

= ωv(m)〈m〉sζp(s, mx) .

6. Continuing the preceding exercise, assume that p = 2, vp(x) = −1, and let now
s ∈ Cp . Using in particular Lemma 4.2.8, show that the series of Proposition
11.2.4 for ζp(s, x) converges if |1 − s| � 1/2, and that there exist values of s
such that |1 − s| = 1 for which it does not converge. Does it converge for any
value of s such that 1/2 < |1 − s| < 1?

7. Prove Lemma 11.3.2.

8. Show that if a ∈ Z∗
2 we have (a/4 − 1/2) logp(a) − a/4 ≡ −ω(a)/4 (mod 4Z2).
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9.

(a) By introducing a primitive pN th root of unity for p odd and proceeding similarly
for p = 2, prove directly that if χ is a primitive character of conductor a power
of p then ∑(p)

0�n<pN

χ(n)〈n〉−s

tends to 0 p-adically as N → ∞, and in fact give an upper bound for its p-adic
absolute value.

(b) Deduce directly that ζp(χ, s, x) is a continuous function of x ∈ Zp .

10. Prove Proposition 11.3.8 (3).

11. Prove Corollary 11.4.2 (6), (7), and (8).

12. Prove Corollary 11.4.3.

13.

(a) Prove that if |u| < |x| and x ∈ CZp we have

LogΓp(x + u) = LogΓp(x) + ψp(x)u +
∑
k�2

(−1)kωv(x)1−kζp(k, x)
uk

k
.

(b) Let ζp(s) be the Kubota–Leopoldt p-adic zeta function. For a ∈ 2Z, compute∑
k�1 ζ2(k + 1)ak in terms of the function ψp(x).

14. Prove that if k ∈ Z�0 we have

∑(p)

0�a<p

ψp

(
k +

a

p

)
= −pγp +

∑(p)

0�m<pk

1

m
.

15. Prove Proposition 11.5.13, Corollary 11.5.14, and Proposition 11.5.15, and fill
in the details of the proof of Proposition 11.5.18.

16. As mentioned in the text, the power series for LogΓp(χ, x) given by Proposition
11.5.19 is in general not valid for x ∈ pZp \ pvZp . Show this on a numerical
example as follows. Let χ be one of the two even primitive characters modulo
9. Prove that LogΓp(χ, 3) ∈ ρZ3, where ρ is a suitable primitive cube root of
unity. On the other hand, evaluate the power series expansion at x = 3 and
show that it definitely is not in ρZ3 by computing it for instance modulo 32.

17. Let χ be a primitive character of conductor f , let χ1 = χω−1, and let f1 be the
conductor of χ1.

(a) Show that if p � f then f1 = qpf , that if p � f1 then f = qpf1, and that if p | f
and p | f1 then f1 = f .

(b) Using Corollary 11.5.5 and Proposition 11.5.12, prove Proposition 11.5.24.

18. Although we cannot define a canonical exponential of the function LogΓp(x) for
x ∈ CZp , in particular having nice properties, show the following.

(a) For a ∈ Cp such that |a| � 1, prove that there exists a canonical exponential
ΓL,p(x, a) of the function LogΓp(x + a) − LogΓp(x), defined for x ∈ CZp .
Note that if b ∈ Zp , we have the trivial cocycle relation ΓL,p(x, a + b) =
ΓL,p(x + b, a)ΓL,p(x, b).
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(b) Prove that under suitable conditions we have the following relations:

ΓL,p(x, a + 1) = 〈x + a〉ΓL,p(x, a) ,

ΓL,p(x + 1, a) = (1 + a/x)ΓL,p(x, a) ,

ΓL,p(1 − x,−a) = 1/ΓL,p(x, a) ,∏
0�j<m

ΓL,p(x + j/m, a) = ΓL,p(mx, ma)〈m〉−ma .

19. Consider Gauss’s hypergeometric series

F (a, b, c; x) =
∑
n�0

a(a + 1) · · · (a + n − 1)b(b + 1) · · · (b + n − 1)

c(c + 1) · · · (c + n − 1)

xn

n!

introduced in Exercise 115 of Chapter 9, but now in the p-adic domain. We
Assume that all the variables are in Qp , that a and b are in Zp , and that
vp(c) < 0.

(a) Compute the radius of convergence of the series. Deduce in particular that
f(a, b, c) = F (a, b, c; 1) is well defined, and that the contiguity relation proved in
the above-mentioned exercise is still valid in the p-adic domain of convergence.

(b) Set φn(a, c) =
(−a

n

)
/
(−c

n

)
. Prove that for n � 1,

φn(a, c) =
a

a + 1 − c
(φn(a + 1, c) − φn−1(a + 1, c)) ,

and deduce that f(a, 1, c) = (c− 1)/(c− a− 1) (this is of course a special case
of Gauss’s evaluation, but now in the p-adic domain).

(c) Compute f(a, b, c) when a or b is in Z, inside the domain of convergence.
(d) Deduce that we have the following analogue of Gauss’s evaluation in the p-adic

domain, for a and b in Zp and c ∈ Qp with vp(c) < 0:

logp(f(a, b, c)) = LogΓp(c) + LogΓp(c − a − b) − LogΓp(c − a) − LogΓp(c − b) ,

where LogΓp is Diamond’s log gamma function.
(e) Under the same assumptions on a, b, and c, let (an)n�0 be a sequence of positive

integers tending p-adically to a as n → ∞. Show that in fact

f(a, b, c) = lim
n→∞

(c − 1)(c − 2) · · · (c − an)

(c − b − 1)(c − b − 2) · · · (c − b − an)
.

(Hint: you will first have to prove that the right-hand side is a Cauchy sequence,
which is not completely trivial, which can be done for instance using Exercise
37 of Chapter 9.)

(f) Under the same assumptions, prove that we also have

f(a, b, c) = ω(1 + ab/c)
ΓL,p(c − a, a)

ΓL,p(c − a − b, a)
= ω(1 + ab/c)

ΓL,p(c − b, b)

ΓL,p(c − a − b, b)
,

where ΓL,p(x, a) is the function introduced in Exercise 18. By what should this
formula be replaced if a, b, or c is in Cp instead? (I do not know the answer.)
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(g) Let c be a parameter and let k ∈ Z�0. Using the above results, prove that the
following identity is valid in the complex domain for �(c) > k + 1, and in the
p-adic domain for vp(c) < 0:

∑
n�0

(
n

k

)
n!

c(c + 1) · · · (c + n)
=

k!

(c − 1)(c − 2) · · · (c − k − 1)
.

(Hint: apply (c) of Exercise 115 of Chapter 9 and (c) of the present exercise to
a = b = k + 1, with c replaced by k + 1 + c.) Note that we have already proved
this result differently in Exercise 39 of Chapter 4.

(h) Set

g(c; x) =
∑
n�0

n!

c(c + 1) · · · (c + n)
xn .

Deduce that if vp(c) < 0 and if x ∈ Cp with |x| � 1 then g(1 − c, x) =
−g(c, 1 − x). For which values of (c, x) is this formula true in the complex
domain? (Warning: it is not what you may expect.)

20. Prove Proposition 11.5.2, and Corollary 11.5.3.

21. The following exercises are sequels to Exercises 88 and 89 of Chapter 9. Their
goal is to prove in the p-adic case the results of the above-mentioned exercises,
of which we keep the notation. I thank F. Beukers for telling me of the problems.

(a) Using Corollary 11.5.3 and Exercise 38 of Chapter 4, prove that for |x| > 1 in
Cp we have

ψ′
p(x) =

∑
n�0

1

n + 1

[
n

x

]
.

(b) For instance, deduce that in Q2 we have

∑
n�0

1

n + 1

[
n

1/2

]
= 0 .

(c) Deduce from Proposition 11.5.6 that

ζp(2, x) = ωv(x)
∑
n�0

1

n + 1

[
n

x

]
.

(d) Similarly, show that

ζp(3, x) = ωv(x)2
∑
n�0

Hn

n + 1

[
n

x

]
,

where as usual Hn =
∑

1�j�n 1/j is the harmonic sum.

(e) It is clear that if we set p = 1 and x = 1 in the formula for ζp(2, x) we obtain∑
n�0 1/(n + 1)2, which is the usual real sum giving ζ(2). Show that the same

is true for ζp(3, x); in other words, prove that in R we have the identity∑
n�0

Hn

(n + 1)2
= ζ(3) .

(Hint: by expanding in powers of t, prove that the left-hand side is equal to∫ 1

0
log2(1 − t)/(2t) dt, and then change t into 1 − t and expand again.)
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The reader will note that many p-adic formulas reduce to real formulas in this
way. For instance, it is easy to see that the convergent expansion of the p-adic
Hurwitz zeta function (Proposition 11.2.4) reduces to the nonconvergent but
asymptotic expansion of the ordinary Hurwitz zeta function ζ(s, x) for x ∈ Z�1

if we set p = 1.

22. Show that the formula of Exercise 88 (e) of Chapter 9 is still valid in the p-adic
case, as usual with |x| > 1 and with ψ′(x) replaced by ψ′

p(x).

23.

(a) Using Exercise 89 (d) of Chapter 9, show that for x ∈ Cp with |x| > 1 we have
the absolutely convergent series

Tp(x) =
∑
n�0

1

n + x

[
n

x

]
= −

∑
j�0

2(2j − 1)Bj

xj+1
.

(b) Deduce from Corollary 11.5.3 that for |x| > 1 in Cp we have

ψ′
p(x/2) − 2 ψ′

p(x) =
∑
n�0

1

n + x

[
n

x

]
= Tp(x) ,

which is the exact analogue of the formula in the complex case.
(c) Assume x ∈ Qp is such that vp(x) < 0. By Exercise 39 of Chapter 4, we know

that

Tp(x) = −
∑
n�0

[
n

x

][
n

1 − x

]
=

∑
n�0

1

n + x

[
n

x

]
.

Using Proposition 11.5.6, prove the following formulas:
(i) We have

Tp(x) = ωv(x)−1(ωv(2)ζp(2, x/2) − 2ζp(2, x)) .

(ii) If vp(x) � −vp(qp) we also have

Tp(x) = ωv(x)−1(2ζp(2, x) − ωv(2)ζp(2, (x + 1)/2))

=
ωv(x/2)−1

2
(ζp(2, x/2) − ζp(2, (x + 1)/2)) .

(iii) If p = 2 and vp(x) = −1, using the extended definition of ζp(s, x) given in
Exercise 5, we also have

Tp(x) =
ωv(x/2)−1

2
(ζp(2, x/2) + ζp(2, (x + 1)/2)) .

(d) In particular, prove that

T2(1/2) = 8ζ2(2), T2(1/4) = 16L2(χ8, 2), T2(1/6) = 40ζ2(2) ,

T3(1/3) = (27/2)ζ3(2), T3(1/6) = 36L3(χ12, 2) ,

T2(1/12) = 8(8L2(χ8, 2) + 9L2(χ24, 2)), T3(1/12) = 72(L3(χ8, 2) + L3(χ24, 2)) ,

where χD (n) =
(

D
n

)
.



402 11. p-adic Gamma and L-Functions

24.

(a) Using similar methods to those of the preceding exercises, prove that, in perfect
analogy with Exercise 90 of Chapter 9, we have

∑
n�0

1

n + 1

[
n

x

][
n

1 − x

]
= ψ′′

p (x) .

(b) Deduce for instance that for all k ∈ Z such that −k/2 /∈ Z�0 we have

∑
n�0

1

n + k/2

[
n

m + 1/2

]2

= ak,mζ2(3) + bk,m

for some rational numbers ak,m and bk,m (for instance a1,0 = 32, a2,0 = −16,
and b1,0 = b2,0 = 0). You may also want to compute these numbers explicitly,
in analogy with Exercise 88 (e) of Chapter 9.

25. Prove Corollaries 11.4.5 and 11.4.7 (a similar congruence exists modulo 563; see
Exercise 39).

26. With the notation of Theorem 11.5.25, show that when z ∈ D we have
vp(U(z)) � 1.

27. Prove the following formula, analogous to Corollary 11.5.26:

lim
N→∞

(−1)p(p−1)N/2
∑(p)

0�a<pN

2�a

(−1)(a−1)/2

a
=

1

2

(
1 − 1

p

)
logp(2) .

28. Let χ be a nontrivial character modulo pv with v � 1, and assume that χ is
primitive.

(a) Let f be any function from Z \ pZ to Cp , and let χ be a character modulo pv

for some v � 1, let I ⊂ Z, and set

S(χ, z) =
∑
a∈I

χ(a)zaf(a) .

For χ �= χ0 show that

S(χ, z) =
χ(−1)τ(χ)

pv

∑
x mod pv

χ−1(x)S(χ0, ζ
x
pv z) .

(b) In addition, show that |z−1| � 1 (in other words z ∈ D) implies that ζx
pv z ∈ D

and that |z − 1| < 1 implies that |ζx
pv z − 1| < 1.

(c) Using (1) and Proposition 2.1.44, deduce from Theorem 11.5.25 that if z ∈ D
we have

lim
N→∞

1

zpN − 1

∑
0�a<pN

χ(a)
za

a
=

χ(−1)τ(χ)

pv

∑
r mod pv

χ−1(r) logp(1 − ζr
pv z) .

(d) Using a similar method, prove a corresponding result with the character χ for
Theorem 11.5.27 (2), Lemma 11.5.29, and Theorem 11.5.30.
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(e) Show that the corresponding result for Theorem 11.5.31 is the following.
Assume that p � m and the same assumptions as the theorem, and let
FN (χ, u) be the corresponding sum with a character. Prove that F (χ, u) =
limN→∞ FN (χ, u) exists and that

F (χ, u) = L(χ, u) +
χ(−1)τ(χ)

pv

∑
r mod pv

χ−1(x) logp

(
1 − ζx

pv ζu
m

)
,

where

L(χ, u) =
∑

0�a<r

χ(a)
ζua

m

a
.

(Note: although the result is uniform, it is necessary to distinguish several cases
here.)

(f) Deduce finally a proof of Theorem 11.5.35, giving the value of ψp(χ, r/m) for
p � m and 0 � r < m.

29. The aim of this long exercise and the next is to give alternative proofs of
Theorems 11.5.25 and 11.5.27 using formal power series, which is an important
tool in p-adic analysis. For any c ∈ Cp , denote by Ic the formal integration
operator from Zp [[T ]] to Cp [[T ]] sending

∑
n�0 anT n to c +

∑
n�1(an−1/n)T n ,

by U the linear form defined on Cp [T ] by U(G) = G(0)− (1/p)
∑

ηp =1 G(η−1),

and let V = U ◦ Ic as a linear form on Cp [T ], which does not depend on c.

(a) Show that U((1 + T )n) = 0 if p | n, U((1 + T )n) = 1 if p � n, V ((1 + T )n) = 0
if p | (n + 1), and V ((1 + T )n) = 1/(n + 1) if p � (n + 1).

(b) Show that vp(V (T n)) � (n + 1)/(p − 1) − 1 − vp(n + 1), and that V can be
naturally extended to a continuous linear form on Zp [[T ]].

(c) Show that vp(V (((1 + T )pN − 1)f(T ))) � N for any f ∈ Zp [[T ]].
(d) Set f(T ) = z/(z(1 + T ) − 1) − 1/(1 + T ). Show that f ∈ Zp [[T ]] and compute

V (f) in terms of p-adic logarithms. (Warning: you must justify the switch from
formal power series to p-adic power series.)

(e) Show that

1

zpN − 1

∑
0�a<pN

za(1 + T )a−1 =

(
1 +

zpN

zpN − 1

(
(1 + T )pN − 1

))
f(T ) ,

and assuming that z ∈ D and applying the form V to both sides, deduce
Theorem 11.5.25.

30. Denote by P the ideal of Zp [[T ]] generated by T and p, so that
∑

n�0 anT n ∈ PN

if and only if vp(an) � N − n for 0 � n � N , and in addition vp(an) � 0 for
n > N .

(a) Let H ∈ Zp [[T ]] be such that for some u ∈ Cp such that vp(u) � −1 and some
k ∈ Z�0 we have (1 + uT )kH(T ) ∈ PN for some N � ((p − 1)/ log(p)) − 1.
Show that vp(V (H)) � (N + 1)/(p − 1) − 1 − log(N + 1)/ log(p).

(b) Let r ∈ Z�0 be such that p � r be fixed, let ζ = ζpv , and set

SN (T ) =
∑

0�a<pN

ζa

⌈
ar

pN

⌋
(1 + T )a−1 .

By imitating the proof given in the preceding exercise, but using (a) and SN (T )
instead, prove Theorem 11.5.27 (2) for z = ζpv .
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31.

(a) Prove that

lim
N→∞

1

p2N

∑(p)

0�a<pN

1

a
= −B−2,p

2
.

(b) Let Li2(x) =
∑

n�1 xn/n2 be the dilogarithm function, defined for |x| < 1 (see

Exercise 22 of Chapter 4 for another occurrence of this function). Let z be such
that vp(z − 1) > 0. By expanding in powers of z − 1 and using (a), prove that

lim
N→∞

1

pN

∑(p)

0�a<pN

za

a
= −Li2(1 − z) +

1

p2
Li2(1 − zp) .

32. Let m � 1 be such that qp | m, and let r ∈ Z be such that p � r. Using Theorem
11.5.33, show that∫

Zp

logp(r + mt) dt = lim
N→∞

1

pN

∑
0�a<pN

logp(r + ma) = − p

p − 1
γp

+
∑

1�a�m−1

ζ−ar
m logp(1 − ζa

m) − 1

p

∑
1�a�m−1

m�ap

ζ−ar
m logp(1 − ζap

m ) .

33. Show that for k ∈ Z�1 we have

lim
N→∞

1

pN

∑(p)

0�a<pN

ak logp(a) = kL′
p(ωk , 1 − k) − Lp(ωk , 1 − k) .

Note that Lp(ωk , 1− k) = −(1− pk−1)Bk/k, and that for k = 0 the above limit
is equal to −γp .

34. Show that Theorem 11.5.33 implies the formula of Proposition 11.5.4 (2). Simi-
larly, show that Theorem 11.5.34 implies the special case s = 0 of the distribu-
tion formula for the function ψp given in Corollary 11.5.14.

35. Prove Corollary 11.4.8.

36. With the notation of Corollary 11.6.20, prove directly the following results, valid
for all k � 0:

v2(a1,k) = �(k + 1)/2� + v2(k − 1) ,

v2(b1,k) = �(k + 1)/2� ,

v2(a2,k) = v2(b2,k) = k .

37.

(a) Prove the second formula of Corollary 11.6.3 by showing that ((s − 1) − (s −
1)\p) + ((−s) − (−s)\p) = 0.

(b) Let a ∈ Zp . Show that

−(−a)\p =

{
1 + (a\p) if vp(a) = 0 ,

(a\p) if vp(a) > 0 .
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38. Prove directly (i.e., without using L-functions) that Γ′
p(0) ≡ −((p − 1)! + 1)/p

(mod pZp).

39. Prove that vp(γp) � 1 if and only if p = 3 or (p− 1)! ≡ −1 (mod p2) if and only
if vp(Bp−1− (1−1/p)) � 1. Such primes are called Wilson primes, and the only
known primes satisfying this congruence are p = 5, 13, and 563, and there are
no others up to 5 · 108, but as usual there should be infinitely many.

40. Assume that p � 5.

(a) Show that

(p − 1)! ≡ −1 + pγp − p2

2
γ2

p (mod p3Zp) .

(b) Show that

γp ≡ −Bp−1 − (1 − 1/p)

p − 1
(mod pZp) .

(c) Deduce that

(p − 1)! ≡ p(Bp−1 − 1) (mod p2Zp) .

(d) Show directly or from the preceding congruence that

(p − 1)! ≡ p − 2 −
∑

1�r�p−1

〈r〉 ≡ −p +
∑

1�r�p−1

rp−1 (mod p2Zp) .

(e) Find similar congruences modulo p3Zp , this time involving Bp(p−1).

41. Prove that

Γ2(2n) =
(2n)!

2nn!
= 1 · 3 · · · (2n − 1) ≡ (−1)n(n−1)/2 (mod 4) .

42. Using a method similar to that of the proof of Corollary 11.6.22 and the du-
plication formula for Morita’s p-adic gamma function, prove that for p � 5 we
have the congruence(

p − 1

(p − 1)/2

)
≡ (−1)(p−1)/24p−1

(
1 +

p3

12
Bp−3

)
(mod p4) .

43. Let p ≡ 3 (mod 4), so that by Corollary 11.6.13 we have Γp(1/2) = ±1. Prove
the following results:

(a) If k is the number of integers a such that 1 � a � (p − 1)/2 and
(

a
p

)
= −1,

then Γp(1/2) = (−1)k .
(b) If h(−p) denotes the class number of the imaginary quadratic field Q(

√−p),

which is always odd, then for p > 3 we have Γp(1/2) = (−1)(h(−p)+1)/2.

44.

(a) Using Proposition 11.6.6, compute a lower bound for vp(ar,k) tending to infinity
with k, where ar,k = (−p)kk!upk+r as in Corollary 4.2.23 is the sequence that
enters in Proposition 11.6.15 (2).

(b) Show that Γp(x) is an infinitely differentiable function of x.
(c) (Hard.) Deduce the much better lower bound for vp(ar,k) given in Corollary

4.2.23.
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45. Write Γp(x) = 1 +
∑

k�1 gkxk . Using the Mahler expansion of Γp(px) given in
Proposition 11.6.15, prove that we have the following values, where the numbers
are written in base p (hence with infinitely many digits on the left):

(a) For p = 3, g1 = . . . 2000101010, g2 = . . . 0101121200, g3 = . . . 2121122200.12,
g4 = . . . 0100221121.2, g5 = . . . 2220221002.2, g6 = . . . 2222110111.1222, g7 =
. . . 122200201.012, g8 = . . . 1111111222.201, g9 = 201202021.0010211, g10 =
. . . 2200011012.111111, g11 = . . . 212210120.1212, g12 = . . . 122122100.102022112.

(b) For p = 5, g1 = . . . 22301241440, g2 = . . . 2041302300, g3 = . . . 3341243101.

Check these computations using Proposition 11.3.15 and the table following it,
which is a more efficient way of computing these numbers.

46. By considering the Mahler expansions of the functions Γp(−px−r) and Γp(x+1)
respectively, prove Proposition 11.6.15 (3) and (4).

47. Prove Corollary 11.6.16, and compute the result of (1) also for m = p and
m = p + 1 (in this last case it is a fourth-degree polynomial in p for p � 3).

48.

(a) Using a method similar to that of Proposition 11.7.9, prove that Γ7(1/3)3 =
1 + 3j, where j is the cube root of 1 congruent to 4 modulo 7.

(b) Using the general Gross–Koblitz formula, show that

Γ3(1/8)Γ3(3/8) = −(1 +
√−2) ,

where
√−2 is the square root of −2 in Q3 congruent to 1 modulo 3.

49. Prove that ∑
1�a�9

gcd(a,20)=1

(
20

a

)
LogΓ5

( a

20

)
=

1

2
log5(2 − i) ,

where i2 = −1 is such that i ≡ 3 (mod 5Z5). Note that this is a formula for
Diamond’s log gamma function, not Morita’s.

50.

(a) Using Proposition 11.3.15 (3) and Exercise 30 of Chapter 2 prove Corollary
11.3.16 (1), and give the corresponding congruences for p = 2 and p = 3.

(b) Using the Kummer congruences (Corollary 9.5.25) prove Corollary 11.3.16 (2).
(c) Strengthening Wolstenholme’s congruence given in the above-mentioned exer-

cise, show that if p � 5 is prime we have

1

p2

∑
1�a�p−1

1

a
≡ −1

3
Bp−3 (mod pZp) and

1

p

∑
1�a�p−1

1

a2
≡ 2

3
Bp−3 (mod pZp) .

(d) Show directly that∑
1�a�p−1

1

a2k−1
≡ −kp

∑
1�a�p−1

1

a2k
(mod p2Zp) .

(e) Generalizing (c), show that if k � 1 and p � 2k + 3 is prime we have

1

p2

∑
1�a�p−1

1

a2k−1
≡ −k(2k − 1)

(2k + 1)
Bp−1−2k (mod pZp)

and
1

p

∑
1�a�p−1

1

a2k
≡ 2k

2k + 1
Bp−1−2k (mod pZp) .
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(f) Prove similar results modulo p2Zp .

51. Recall from the remarks following Corollary 11.6.22 that a prime p is called a
Wolstenholme prime if it divides the numerator of Bp−3, or equivalently by the
preceding exercise, if p3 divides the numerator of

∑
1�a�p−1 1/a, or if p2 divides

the numerator of
∑

1�a�p−1 1/a2. Prove that p > 7 is a Wolstenholme prime

if and only if it divides the numerator of
∑

p/6<a<p/4 1/a3 (see Exercise 11 of

Chapter 9).

52. Prove Lemma 3.6.7 by using Morita’s p-adic gamma function.

53. In the proof of Theorem 11.7.16 (2) for m even it was necessary to use Corollary

3.7.6 for the character ρm/2, which itself is a consequence of the HD lifting
relation. Prove directly the necessary identity.

54. Recall that in Section 3.7.2 we proved the HD product relation for p � 3
using algebraic number theory, essentially the Stickelberger congruence, while
in Section 11.7.4 we proved it directly from the distribution formula for Morita’s
p-adic gamma function together with the Gross–Koblitz formula. The goal of
this exercise is to prove it for p = 2 using the methods of Section 3.7.2. Thus,
we let q = 2f and use the notation of Section 3.7.2. For 0 � r < q − 1 define
w(r) = r!/(−2)vp (r!), u(r) = (−1)r(r−1)/2 if 0 � r < q/2, u(r) = (−1)r(r+1)/2 if
q/2 � r < q − 1, and extend u(r) and w(r) by periodicity of period q − 1.

(a) Using Lemma 11.7.12, the Gross–Koblitz formula, and Proposition 11.6.6,
prove that

τ(ω−r
P , ψ1)/(−2)s(r) ≡ −u(r)/w(r) (mod P2) .

Also, try to prove this directly without appealing to the Gross–Koblitz formula.
(b) Let m | (q−1), d = (q−1)/m, and b ∈ Z. Prove that the functions f(r) = u(r)

and f(r) = w(r) both satisfy the distribution relation∏
0�a<m f(da + b)

f(mb)
∏

0�a<m f(da)
≡ (−1)(�2b/d	+(b mod d))(m−1)/2 (mod 4) ,

where b mod d is the least nonnegative residue of b modulo d.
(c) Using the same proof as for Theorem 3.7.3, prove the HD product relation for

p = 2.

55. Let L(x) = exp(Λ(x)) be the multiplicative arithmetic function defined by
L(x) = � if x = �k with k � 1 for some prime �, and L(x) = 1 otherwise. With
the same notation as in Theorem 11.7.16, compute∏

1�a�m−1, gcd(a,m)=1

τ(ρa , ψ1)

in terms of the function L(x).
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12. Applications of Linear Forms in
Logarithms

By Yann Bugeaud, Guillaume Hanrot,

and Maurice Mignotte

12.1 Introduction

A linear form in logarithms of algebraic numbers is an expression of the form

β1 log α1 + · · ·+ βn log αn,

where the α’s and the β’s denote complex algebraic numbers, and log denotes
any determination of the logarithm.

12.1.1 Lower Bounds

The first lower bound for such a sum was obtained in 1935 by Gel’fond [Gel]
for the case n = 2 of two logarithms. A giant step was made in 1966 by
A. Baker [Bak1], who was able to deal with such a form for arbitrary n. Sub-
sequently, many papers were published on this problem, by Baker, Fel′dman,
etc., and this field is often called Baker’s theory. We give only some refer-
ences of works after 1990, see [Bak-Wus, BBGMS, BMS2, Lau, Lau-Mig-Nes,
Mat, Wald1], and much more information can be found in the book by Wald-
schmidt [Wald2]. It is important to note that there are essentially two kinds
of results: general estimates valid for any n as in [Bak-Wus, Mat, Wald1], and
specific results for two logarithms as in [Lau, Lau-Mig-Nes], or for three log-
arithms as in [BBGMS, BMS2], which are crucial for the complete resolution
of Diophantine equations.

Here we will consider only the case in which the β’s are in Z, and they
will be denoted by b1, . . . , bn. This is the only case which has applications
to Diophantine equations. Also, in this chapter log will always denote the
principal determination of the complex logarithm.

It will be sufficient for us to give the general lower bound for linear forms
in logarithms due to Matveev [Mat]. Let L be a number field of degree D, let
α1, . . . , αn be nonzero elements of L, and let b1, . . . , bn be integers. Set
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B = max{|b1|, . . . , |bn|},
and

Λ∗ = αb1
1 · · ·αbn

n − 1.

We wish to bound |Λ∗| from below, assuming that it is nonzero. Since log(1+
x) is asymptotic to x as |x| tends to 0, our problem consists in bounding from
below the “linear form in logarithms”

Λ = b1 log α1 + · · ·+ bn log αn + bn+1 log(−1) ,

where bn+1 = 0 if L is real, and |bn+1| � nB otherwise. Although Λ and Λ∗

are closely linked (in particular one vanishes if and only if the other does),
it is useful to keep both, and this dual notation will be used in the sequel
without further explanation.

Recall that we define the absolute logarithmic height of an algebraic num-
ber α as follows.

Definition 12.1.1. Let L be a number field of degree D, let α ∈ L∗ be of
degree d | D, and let

∑
0�k�d akXk be its minimal primitive polynomial in

Z[X] with ad �= 0. We define the absolute logarithmic height h(α) of α by one
of the two equivalent formulas

h(α) =
1
d

(
log(|ad|) +

∑
1�i�d

max(log(|αi|), 0)

)

=
1
D

∑
v∈P(L)

max(log(|α|v), 0) ,

where the αi are the conjugates of α and P(L) denotes the set of places of L
(see Definition 4.1.12).

It is immediate to check that these formulas are equivalent, hence do
not depend on the number field L containing α, and that if α = n/d ∈ Q
with gcd(n, d) = 1 then h(α) = max(log(|n|), log(|d|)), so this generalizes to
algebraic numbers the usual notion of height that we have already used in
Section 8.1.5.

Let A1, . . . , An be real numbers such that

Aj � h ′(αj) := max{D h(αj), | log αj |, 0.16}, 1 � j � n.

We call h ′ the modified height (with respect to the field L). With this nota-
tion, the main result of Matveev [Mat] implies the following estimate.

Theorem 12.1.2. Assume that Λ∗ (defined above) is nonzero. We then have

log |Λ∗| > −3 · 30n+4 (n + 1)5.5 D2 A1 · · ·An (1 + log D) (1 + log nB).

Furthermore, if L is real, we have

log |Λ∗| > −1.4 · 30n+3 n4.5 D2 A1 · · ·An (1 + log D) (1 + log B).
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Remark. In several applications to Diophantine equations we need a better
estimate in terms of B, as in the following result ([Wald1], [Wald2] Theo-
rem. 9.1): with the above notation and assuming that the algebraic numbers
α1, . . . , αn are multiplicatively independent and that bn �= 0, there exists a
positive effective constant C(n), which depends only on n, such that

log |Λ| > −C(n) ·D2 (log D)A1 · · ·An log B′,

where

B′ = max
1�j<n

{ |bn|
Aj

+
|bj |
An

}
.

Compared to Theorem 12.1.2, this gives an improvement especially when αn

has a large height and |bn| is small (see Section 12.10 for the application to
Thue equations).

It is important to compare the above lower bound for |Λ| with the ele-
mentary lower bound obtained by a Liouville-type argument, which gives

log |Λ| > −D
(
1 + |b1|h(α1) + |b2|h(α2) + · · ·+ |bn|h(αn)

)
.

In this estimate the dependence with respect to D and to each h(αj) is better
than in the theorem, but in the theorem the dependence on B is logarithmic,
while it is linear in this elementary estimate. This makes all the difference,
and this elementary estimate has no applications to Diophantine equations.
Actually, for applications we do not need a lower bound that is logarithmic
in terms of B: in many cases (but not in all; see Catalan’s equation in Section
12.9) a result like the following would be sufficient: for any ε > 0 there exists
a positive constant Cε such that

log |Λ| > −εB for B > Cε ,

where Cε does not depend of B, but on α1, . . . , αn and their logarithms. In
practice, the best results for two or three logarithms depend on a term in
log2 B.

12.1.2 Applications to Diophantine Equations and Problems

For applications to Diophantine problems, the strategy is the following. In
a first step, various and often ad hoc algebraic manipulations associate to
a “large” solution of the equation a “very small” value of a certain linear
form in logarithms, which means that we have an upper bound for the values
of this linear form corresponding to a solution of the equation. Comparing
this upper bound with the lower bound provided by Theorem 12.1.2, we get
an absolute upper bound M for the absolute values of the unknowns of our
equation.
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At this point, there are two main cases in which we can go from a bound
for the unknowns to a complete solution of the equation.

The first case is that M is not too large. Then, using various methods
including sieves, we find the complete list of solutions below M . For this to
be possible, it is crucial to get a “reasonably small” value for M . Actually, its
size is directly related to the size of the “numerical constant” that appears
in Theorem 12.1.2, in other words the factor 1.4 · 30n+3n4.5 occurring in the
second estimate.

Many celebrated Diophantine equations lead to estimates of linear forms
in two or three logarithms. In these cases, Theorem 12.1.2 gives numerical
constants around 1012 and 1014, respectively. Both are usually too large for
practical applications. Fortunately, an alternative approach, developed by
Waldschmidt, Laurent, and Mignotte, among others, yields much better nu-
merical constants with, however, a worse dependence on B (or in B′), namely
with the factor log B replaced by its square. Despite this worse dependence
on B, the results from [Lau, Lau-Mig-Nes, BBGMS, BMS2] are, for many
practical applications, better than Theorem 12.1.2.

A second very important special case is that the linear form constructed
above has the following property: only the coefficients bi are unknown. From
the bound |bi| � M obtained using the type of argument outlined above, one
can derive a much smaller bound. Indeed, effective Diophantine approxima-
tion techniques (continued fractions, LLL algorithm) can be used to obtain
a good lower bound for

min
|bi |�M

(bi )1�i�n �=0

∣∣∣∣∣
n∑

i=1

bixi

∣∣∣∣∣ ,

which can be used in place of the Baker-type estimate. Comparing this new
bound with the upper bound, we get a value M ′ with |bi| � M ′; we can
repeat this process until no new improvement is obtained. The technicalities
of this method have already been worked out in Section 2.3.5, and the method
applied in Section 8.7.

12.1.3 A List of Applications

The list of applications given in this chapter may look unusual to experts.
We want to begin with results for which the reduction

Diophantine problem −→ linear form in logarithms

is almost obvious. The chosen examples correspond to such reductions in
increasing order of difficulty. This is the reason why the most important
example of Thue equations is near the end of our list. A more classical pre-
sentation can be found in the book by Baker [Bak2], but our presentation has
some similarities with that in the book by Shorey and Tijdeman [Sho-Tij].
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12.2 A Lower Bound for |2m − 3n|
One of the simplest applications of linear forms in logarithms is to prove that
|2m − 3n| tends to infinity with m + n, and, in addition, to give an explicit
lower bound for this quantity.

Let n � 2 be an integer and define m and m′ by the conditions

2m′
< 3n < 2m′+1 and |3n − 2m| = min{3n − 2m′

, 2m′+1 − 3n}.

Then

|2m − 3n| < 2m, (m− 1) log 2 < n log 3 < (m + 1) log 2,

and the problem of finding a lower bound for |2m−3n| clearly reduces to this
special case.

Thus, consider the “obvious” linear form

Λ∗ = 3n2−m − 1.

Applying Matveev’s theorem we get

log |Λ∗| > −c0 (1 + log m),

where it is easy to verify that we can take c0 = 5.87× 108.
This implies the following estimate.

Theorem 12.2.1. Let m and n be any strictly positive integers, then

|2m − 3n| > 2m (em)−5.87×108
.

More generally, if S denotes a finite set of prime numbers and if (xj)j�1

is the increasing sequence of all integers whose prime divisors belong to S,
then it follows from Theorem 12.1.2 that

|xj+1 − xj | � xj (log xj)−c,

where the constant c can be explicitly computed in terms of the prime num-
bers in S (see [Sho-Tij]).

Theorem 12.2.1 enables us to find the list of all powers of 3 that increased
by 5 give a power of 2.

Corollary 12.2.2. The only integer solutions to the Diophantine equation

2m − 3n = 5

are (m,n) = (3, 1) and (m,n) = (5, 3), which correspond respectively to 8 −
5 = 3 and to 32− 27 = 5.
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Proof. Applying the above theorem to this equation we get

5 > 2m · (em)−5.87×108
,

which implies
log 5 > m log 2− 5.87× 108 (1 + log m),

so that m < 2.1× 1010 and n < m log 2/ log 3 < 1.4× 1010.
Moreover, the relation 2m − 3n = 5 implies∣∣∣∣m− n

log 3
log 2

∣∣∣∣ <
5

log 2
3−n.

This identity has a first consequence: since (5/ log 2) 3−n < 1
2n for n � 4,

we see that if (m,n) is a solution to our problem with n � 4 then m/n is a
convergent of the continued fraction expansion of ξ := log 3/ log 2.

But we can also notice the following: for n < N = 1.4×1010, the smallest
value of |m − nξ| is obtained for the largest convergent of the continued
fraction expansion of ξ with denominator less than N . The computation of
this expansion shows that

5
log 2

3−n >

∣∣∣∣m− n
log 3
log 2

∣∣∣∣ > 10−11, for 0 < n < 1.4× 1010.

Comparing those two estimates, we see that if (m,n) is a solution of our
problem then n � 24. A trivial verification in the range 1 � n � 24 (or a less
trivial verification using the fact that for n � 4, m/n must be a convergent
of ξ, hence either 19/12 or 8/5) completes the proof. ��

Notice that we are in effect solving the Diophantine inequality 0 � 2m −
3n � 5 in all steps except the final verification.

More generally, we have the following result (see [Ben3]):

Theorem 12.2.3 (Bennett). For given nonzero integers a, b, and c the
equation am − bn = c has at most two integer solutions.

To conclude this section, we indicate how a similar, generalized strategy
can be used to solve the equation 0 � u− v � X, where u and v are integers
with all their prime factors in a given set {p1, . . . , pr}. Write u =

∏r
i=1 pui

i ,
v =

∏r
i=1 pvi

i . If we restrict to primitive solutions, i.e., with (u, v) = 1 (non-
primitive solutions can be easily enumerated as multiples of primitive ones),
we can assume that for all i, at least one of ui, vi is zero.

We have

Λ∗ :=
r∏

i=1

pui−vi
i − 1 � Xv−1 ,

which implies that
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0 � Λ :=
r∑

i=1

(ui − vi) log pi � Xv−1 .

Put mi = ui − vi, and M = maxi |mi|. Assume further that the pi are
sorted in increasing order, i.e., p1 < p2 < · · · < pr.

We need to rewrite these upper bounds in terms of M rather than v.
Either M = maxi |vi|, in which case we have v � pM

1 , or M = maxi |ui|, in
which case we have v � u − X � u/2 � pM

1 /2 if u � 2X; hence Xv−1 �
2X exp(−M log p1).

Comparing this upper bound with the lower bound coming from Matveev’s
theorem, we deduce

M log p1 � log(2X) + 1.4 · 30r+3r4.5

(
r∏

i=1

log pi

)
(1 + log M).

We obtain an upper bound on M by using, for instance, the following
easy lemma, due in this form to Pethő and de Weger:

Lemma 12.2.4. Let B be a nonnegative integer such that

α log B + β � γB .

If α � eγ, we have

B � 2
γ

(
α log

α

γ
+ β

)
.

Proof. Exercise for the reader. ��

Once combined with the reduction technique described in Section 2.3, this
leads to the following:

Algorithm 12.2.5 (Find all 0 � u− v � X with given prime factors)
Let p1 < · · · < pr be primes and X a nonnegative real number. This algorithm
outputs all the solutions of the Diophantine equation 0 � u− v � X, with u, v
integers having all their prime factors in the set {p1, . . . , pr}.
1. [Compute constants for Baker’s bound] Compute the constants involved in

the upper and lower bounds above:

λ1 = log p1, λ3 = 1.4 · 30r+3r4.5

(
r∏

i=1

log pi

)
, λ2 = λ3 + log(2X) .

2. [Derive a large upper bound on M ] Compute the bound

M =
2
λ3

(
λ1 log

λ1

λ3
+ λ2

)
.
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3. [Reduction step, initialization] Let C be a nonnegative real number somewhat
larger than (rM)r, say 100(rM)r.

4. [Reduction step] Apply the LLL algorithm to the lattice generated by the
columns of the following matrix:⎛⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
	C log p1� 	C log p2� . . . 	C log pr−1� 	C log pr�

⎞⎟⎟⎟⎟⎟⎠
Let l0 be the L2-norm of the first vector of the reduced basis.

5. [Reduction step, new upper bound] If l0 < 2(r−1)/2
√

(r2/4 + (r − 1))M , put
C ← 100C and go to Step 4. Otherwise, set

M ′ = − 1
log p1

log

(√
21−rl20 − (r − 1)M − rM/2

2CX

)
.

If 	M ′
 < M , set M ← 	M ′
 and go to Step 3.

6. [Final enumeration] Set S0 = ∅. For all 2r-tuples ((ui)1�i�r, (vi)1�i�r) with
uivi = 0 and ui, vi � M , set u =

∏r
i=1 ui, v =

∏r
i=1 vi, check whether

0 � u − v � X, and if this is the case, add (u, v) to the set S0 of the
solutions.

7. [Small solutions] Look for solutions with u � 2C and add them to S0.

8. [Nonprimitive solutions] Set S = ∅. For all solutions (u, v) in S0 and all primes
p of {p1, . . . , pr}, do the following: (u0, v0) ← (u, v); while |u0 − v0| � C,
add (u0, v0) to S and do (u0, v0) ← (pu0, pv0).

9. [Terminate] Return S.

Remarks. (1) The constant 100 involved in the choice of C is somewhat
arbitrary and should be tuned somehow.

(2) The algorithm given above is somewhat näıve, especially regarding the
final enumeration.

(3) This method can again be generalized to solve the equation A + B = C
when A,B,C have all their prime factors in the set {p1, . . . , pr}, using
non-Archimedean arguments (see Section 12.12). This approach has been
used, in particular, to obtain “worst cases” for the abc conjecture (Con-
jecture 14.6.4). See [DeW1] for extensive computations on this problem.

12.3 Lower Bounds for the Trace of αn

Let α be a nonzero algebraic integer of degree d > 1 that is not a root of
unity. Assume that its conjugates α = α1, . . . , αd (in the field C) satisfy
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|α1| � |α2| > |α3| � · · · � |αd| .
Note that Kronecker’s theorem (Corollary 3.3.10) implies that |α| > 1, and
that the trace of αn is by definition

Trace(αn) = αn
1 + αn

2 + · · ·+ αn
d .

The purpose of this section is to show how one derives from Theorem 12.1.2
a lower bound for Trace(αn).

In the (trivial) case |α1| > |α2| we have

|α1|n − (d− 1)|α2|n � |Trace(αn)| � |α1|n + (d− 1)|α2|n ,

so |Trace(αn)| ≈ |α1|n. But suppose now that |α1| = |α2| and that we are
not in the “degenerate” case α2 = −α1. Then α2 is the complex conjugate of
α1. Set α = ρeiϕ, with ρ > 0, and observe that

αn
1 + αn

2 = ρn(einϕ + e−inϕ) = 2ρn cos(nϕ).

This elementary formula shows that obtaining a lower bound for |αn
1 +αn

2 | is
exactly equivalent to obtaining a lower bound for

Λ1 := niϕ− kiπ ,

where i =
√−1 and k is an integer. Our problem thus becomes a Diophantine

approximation problem. More precisely, Λ1 is a linear form in the logarithms
of algebraic numbers with integer coefficients. Indeed,

iϕ = log(α/|α|), iπ = log(−1) ,

where α/|α| and −1 are algebraic numbers. Applying Theorem 12.1.2, it is
easy to see that

log |Λ1| � −c1 log n ,

where c1 is a positive real number that depends only on α. We immediately
conclude that in the present situation,

|Trace(αn)| � 0.5 |α|nn−c1 , for n > c2 ,

for some positive constants c1 and c2 that depend only on α. Here and in the
sequel all the constants ci are positive, effective, and indeed easy to compute
explicitly, and we will indicate their dependence in terms of the parameters.

More generally, we can prove the following result.

Theorem 12.3.1. Assume that a and α are nonzero algebraic numbers with
α nonreal. Then

|aαn + āᾱn| > |α|nn−c3 ,

for n > c4, where c3 and c4 depend only on a and α.

It is clear that such a result has applications to linear recurrent sequences;
for this question, see [Sho-Tij] for more details.
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12.4 Pure Powers in Binary Recurrent Sequences

Consider first the example of Fibonacci and Lucas numbers. Recall that these
two sequences (Fn) and (Ln) are defined respectively by

Fn =
αn − βn

√
5

, Ln = αn + βn, where α =
1 +

√
5

2
and β =

1−√5
2

,

so that for n � 0,

(Fn) = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . and
(Ln) = 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . .

Suppose that Fn = yp is a pure power. Then, we have

αn −
√

5yp = O(α−n) ,

so that

Λ2 := n log α− p log y − log
√

5 = O(α−2n) = O(y−2p) .

There exist integers k and r such that n = kp + r with |r| � p/2, so that we
have

Λ2 = p log
(

αk

y

)
+ r log α− log

√
5 ,

which is a linear form in three logarithms. If we apply the above theorem of
Matveev, we get

log |Λ2| � −c5 log y log p.

Comparing both estimates of |Λ2|, we see that the exponent p is bounded.
More precisely, Matveev’s theorem above implies p < 3× 1013, but a special
estimate for linear forms in three logarithms proved in [BMS1] implies the
sharper upper bound p < 2 × 108, a range that is suitable for computer
calculations. For Lucas numbers, a similar study leads to a linear form in two
logarithms—a much better situation—and an application of [Lau-Mig-Nes]
leads to p < 300 if Ln = yp. In the case of Fibonacci numbers, the application
of the “modular method” (see Chapter 15) allows us to prove that r = ±1,
for any prime p in the above range. Thus

Λ2 = p log
(

αk

log y

)
+ log

(
α±1

√
5

)
is a linear form in two logarithms (!), and an application of [Lau-Mig-Nes]
now leads to p < 733.

Coming back to a more general situation we have the following result.
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Theorem 12.4.1. Suppose that (un) is a sequence of integers of the form

un = aαn + O(|α|θn) , with 0 < θ < 1 ,

where a and α are nonzero algebraic numbers, with |α| > 1 and θ fixed, and
that un − aαn �= 0 for all n. The equation

un = yp, un /∈ {0,±1} ,

implies that p < c6, where the upper bound c6 depends only on a, α, θ, and
on the implicit constant in the above O.

This result evidently applies in particular to nondegenerate linear binary
recurrent sequences with real “roots” and, more generally, to linear recurrent
sequences with exactly one “dominant root,” and moreover for which this
dominant root is simple. See again [Sho-Tij] for more details.

Note that it has been recently proved in [BMS1] that the only perfect
powers in the Fibonacci and Lucas sequences are exactly the powers that
appear in the previous list, in other words 0, 1, 8, and 144 for the Fibonacci
numbers, and 1 and 4 for the Lucas numbers.

12.5 Greatest Prime Factors of Terms of Some
Recurrent Sequences

As in the previous section consider a sequence of nonzero integers un such
that

un = aαn + O(|α|θn), 0 < θ < 1 , un �= aαn ,

where a and α are nonzero algebraic numbers with |α| > 1, and where θ is
fixed. Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of prime numbers in
increasing order. Assume that the largest prime factor of un is equal to pk,
in other words that

un = pr1
1 · · · prk

k ,

with rk > 0. Set

Λ3 = n log α + log a− r1 log p1 − · · · − rk log pk .

The definition of un implies that

log |Λ3| � −c7 n ,

where c7 is a positive constant that depends only on a, α, θ, and on the
implicit constant in the above O.

In the other direction, Theorem 12.1.2 implies that

log |Λ3| � −c8(log pk)k log n ,
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where c8 is a constant depending only on a and α. Comparing both estimates
and using the estimate pk ∼ k log k, which is equivalent to the prime number
theorem, we obtain the following result.

Theorem 12.5.1. Let (un) be a sequence of nonzero integers of the form

un = aαn + O(|α|θn), 0 < θ < 1 ,

where a and α are nonzero algebraic numbers, with |α| > 1 and θ fixed, and
assume that un − aαn �= 0 for all n. Let p1 = 2, p2 = 3, p3 = 5, . . . be the
sequence of prime numbers, and suppose that the largest prime factor of un

is equal to pk. Then
k � c9 log n/ log log log n ,

where c9 is a positive constant that depends only on a, α, θ, and on the
implicit constant in the above O.

12.6 Greatest Prime Factors of Values of Integer
Polynomials

Let f(X) be an irreducible polynomial in Z[X] of degree greater than or
equal to 2, and let x be a strictly positive integer. Using Baker’s theory, it is
possible to give a lower bound for the greatest prime factor of f(x). Take for
instance f(X) = X(X − 1) and, with the same notation as in the previous
section, write

x(x− 1) = pr1
1 · · · prk

k ,

with rk > 0. Then, for suitable εi in {±1}, we get

|pε1r1
1 · · · pεk rk

k − 1| � 1
x− 1

.

Since pj ∼ j log j we deduce from Theorem 12.1.2 that there exists an abso-
lute positive constant c10 such that

log x � ck log log k
10 log log x .

This implies that

pk ∼ k log k ! log log x
log log log x

log log log log x
.

A similar result holds for any irreducible polynomial in Z[X] of degree greater
than or equal to 2.
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12.7 The Diophantine Equation axn − byn = c

In this section we consider the exponential Diophantine equation

axn − byn = c,

where a, b, and c are nonzero fixed integers, with a and b strictly positive,
and where x, y, and n are unknowns. If for some exponent n there exists a
solution (x, y) with |y| > 1 then

Λ4 = log |a/b| − n log |x/y| = O(|y|−n) .

In the other direction, Theorem 12.1.2 above implies that

log |Λ4| � −c11 log |y| · log n .

Comparing both estimates we see that

n < c12 ,

where c12 depends on a, b, and c.

We give an explicit version of this result, established in [Mig]. Its proof
does not depend on Theorem 12.1.2, but on [Lau-Mig-Nes]. Actually, The-
orem 12.1.2 does not include all known refinements. In particular, as first
noticed by Shorey, it can be considerably improved when α1, . . . , αn are real
numbers all very close to 1: roughly speaking, the product of the Ai’s can
then be replaced by their sum. This is precisely what is used in the proof of
the next result.

Theorem 12.7.1. Assume that the exponential Diophantine inequality

|axn − byn| � c, with a, b, c ∈ Z>0 and a �= b,

has a solution in strictly positive integers x and y with max{x, y} > 1. Then

n � max

{
3 log(1.5 |c/b|), 7400

log A

log
(
1 + (log A)/ log |a/b|)

}
,

where A = max{a, b, 3}.
It is remarkable that when |c| is very small and the ratio |a/b| is very close

to 1, the upper bound given by Theorem 12.7.1 is absolute; in other words,
it does not depend on a, b, and c. For instance, if there exist strictly positive
integers n � 3, b, c, x, and y with max{x, y} > 1 and b � c2, satisfying

|(b + c)xn − byn| � c ,

then n is less than some absolute constant.
Using Padé approximations, Bennett and de Weger [Ben-deW] improved

the previous result, and ultimately Bennett [Ben1] obtained the following
definitive result for c = ±1 (the case n = 3 is essentially Skolem’s Theorem
6.4.30).
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Theorem 12.7.2 (Bennett). If n � 3 the equation

|axn − byn| = 1, with a, b ∈ Z>0 ,

has at most one solution in strictly positive integers x and y.

For instance, we thus know the complete list of solutions to the parametric
family of equations (b + 1)xn − byn = ±1.

Note that such equations are called Thue equations, and will be considered
in more detail below.

12.8 Simultaneous Pell Equations

Consider the so-called simultaneous Pell equations

x2 − ay2 = 1, x2 − bz2 = 1,

where a � 2 and b � 2 are distinct squarefree integers, in the integer un-
knowns x, y, and z.

12.8.1 General Strategy

Let ε and η be the fundamental units of norm 1 of the real quadratic orders
Z[
√

a] and Z[
√

b], respectively. Changing if necessary x, y, and z into their
opposites we then have the relations

x + y
√

a = εm and x + z
√

b = ηn ,

for suitable nonnegative integers m and n. In particular,

2x = εm + ε−m = ηn + η−n .

Consider the linear form

Λ5 = m log ε− n log η ,

which satisfies
Λ5 = O(ε−m + η−n).

It follows from Theorem 12.1.2 that m and n are bounded (we leave the
proof as an exercise for the reader). Consequently, the above system of two
simultaneous Pell equations has only a finite number of solutions (x, y, z).

As an example of a problem that leads to a system of simultaneous Pell
equations consider the following. A Diophantine m-tuple is a set of m integers
such that the product of any two of them, increased by 1, is a perfect square.
A famous example is the quadruple {1, 3, 8, 120} found by Fermat. In 1969,
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Baker and Davenport [Bak-Dav] proved that the set {1, 3, 8, 120} cannot be
extended to a Diophantine quintuple. Actually, they established a stronger
result: the only strictly positive integer t such that {1, 3, 8, t} is a Diophantine
quadruple is 120. It is an easy exercise to see that this problem reduces to
the study of the simultaneous equations

3x2 − 2 = y2 and 8x2 − 7 = z2 .

They have only the “trivial” solution (x, y, z) = (±1,±1,±1) and the solution
(x, y, z) = (±11,±19,±31), which corresponds to t = 120. This was the first
Diophantine problem completely solved by Baker’s theory and it involved
computations with 1000 decimal digits, something very new at that time.

Another problem that can be reduced to a system of two simultaneous Pell
equations is the so-called cannonball equation 6y2 = x(x+1)(2x+1). Indeed,
by studying the factors of x, x + 1, 2x + 1 modulo squares and elementary
congruence arguments, we find that either x = u2, x+1 = 2v2, 2x+1 = 3w2

or x = 6u2, x + 1 = v2, 2x + 1 = w2 for some integers (u, v, w). Both cases
lead to a system of simultaneous Pell equations. Note that we have already
solved this problem by completely elementary methods in Section 6.8.2, and
that it can also be solved using the methods of Section 8.7, which also rely on
Baker-type arguments, involving linear forms in elliptic logarithms instead of
ordinary logarithms.

12.8.2 An Example in Detail

We now study a particular example in detail. Consider the simultaneous Pell
equations

x2 − 2y2 = x2 − 3z2 = 1.

It is easy to see that if x > 1 is a solution then there exist strictly positive
integers m (with m even) and n such that

um = vn, where uj = (αj + (−α)−j)/2 and vk = (βk + β−k)/2 ,

with
α = 1 +

√
2, β = 2 +

√
3 .

If we assume m,n �= 0, we obtain

|αm − βn| = |α−m − β−n| � 1 ,

so that in fact
|α−m − β−n| � α−mβ−n .

From this, we deduce that

|αmβ−n − 1| � α−mβ−2n .
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If n �= 0, we have |αm − βn| � αm/2, so that the upper bound can be
replaced by 4α−3m, and we can see that m � n. Theorem 12.1.2 (with D = 4)
shows that

log |αmβ−n − 1| � −1.37× 1012(1 + log m) .

Comparing this with the upper bound, we obtain m < 1.63× 1013.
To obtain a more practical bound on m, we need to work with Λ =

m log α−n log β rather than with Λ∗. An upper bound for Λ can be obtained,
for instance, by means of the following elementary lemma whose proof is left
to the reader:

Lemma 12.8.1. If x ∈ C is such that |x − 1| � 1/2, then | log x| � 2|x −
1| log 2.

We obtain
|m log α− n log β| � 8α−3m log 2

as soon as 4α−3m < 1/2, i.e., m � 1.
Thus, as in the case of the equation 2n − 3m = 5, we have to consider

the continued fraction expansion of some quotient of two logarithms, here of
ξ = log α/ log β. The computation of this continued fraction expansion shows
that ∣∣∣∣n−m

log α

log β

∣∣∣∣ > 3.91× 10−14 when m � 1.63× 1013.

We thus deduce that 1 � m � 12. Finally, a trivial computation shows that
the only solution for um = vn is (m,n) = (3, 2). However, this does not
correspond to a solution to our problem since m is odd.

To conclude, we have thus proved that the only strictly positive solution
to the equations

|x2 − 2y2| = x2 − 3z2 = 1

is (x, y, z) = (7, 5, 4).

12.8.3 A General Algorithm

We can formalize this procedure as an algorithm. First, we need a technical
lemma, which will give us both a bound on Λ∗ = γεnδ−1η−m, to which we
want to apply Matveev’s theorem, and on Λ = log γδ−1 + n log ε −m log η,
which we shall use in the reduction process.

Lemma 12.8.2. Let ε > 1, η > 1, γ, and δ be real numbers. Under the as-
sumptions

|γεn − δηm| � C ·max(ε−n, η−m) , n �= 0 , and

m > M0 :=
1

log η
max

(
log

C|γ|
|δ| ,

1
2

log
{

C max
(

1
2|δ| ,

1
|γ|

)})
,

we have

| log γδ−1 + n log ε−m log η| � 2C(log 2)max(δ−1, 2γ−1)η−2m .
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Proof. Since n,m > 0, we have |γεn − δηm| � C, hence |εn| � C +
|δγ−1ηm| � 2|δγ−1ηm| for m > log(C|γδ−1|)/ log η. As a consequence, we
have ∣∣∣∣ γεn

δηm
− 1

∣∣∣∣ � C max(δ−1, 2γ−1)η−2m .

Since m > M0, the left-hand side is at most 1/2 and we can apply Lemma
12.8.1. ��

Two cases can occur in the reduction step: either we are in the homo-
geneous case (as above), and we can use elementary properties of continued
fractions; or we are in the inhomogeneous case (the general case in which the
right-hand side is nontrivial) and we can also use continued fractions as in
the following lemma.

Lemma 12.8.3 (Baker–Davenport). Let x0, x1, x2 be real numbers, b1 an
integer with |b1| � B, and Q a nonnegative integer. Then

d(x0 + b1x1, Z) � 1
Q
{d(Qx0, Z)−Bd(Qx1, Z)} .

Proof. This follows from the chain of inequalities

Qd(x0 + b1x1, Z) � d(Qx0 + Qb1x1, Z)
� d(Qx0, Z)− d(Qb1x1, Z)
� d(Qx0, Z)−Bd(Qx1, Z) .

��

This lemma should be applied with Q the denominator of a convergent
of the continued fraction expansion of x1, with Q ≈ κB, since in that case,
we expect Bd(Qx1, Z) ≈ κ−1. We obtain the following general algorithm:

Algorithm 12.8.4 (Simultaneous Pell equations) Let a0, a1, b0, b1 be in-
tegers such that

√
a0/b0 is not a rational number. This algorithm gives the list

of solutions of the system x2 − a0y
2 = a1, x

2 − b0z
2 = b1.

1. [Algebraic precomputations] Compute fundamental units ε of Q(
√

a0) and η
of Q(

√
b0); we shall assume that they are chosen such that ε, η > 1. Compute

two sets S0 and S1 of inequivalent solutions in algebraic integers of the norm
equations NQ(

√
a0)/Q(γ) = a1, NQ(

√
b0)/Q(δ) = b1. The following steps should

be executed for all (γ, δ) ∈ S0 × S1.

2. [Compute Baker’s bound] Compute the constants M0,
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λ0 = a1|γ|−1 + b1|δ−1|, λ1 = 2.94× 1010h′(ε)h′(η)h′(δ/γ) ,

λ′
2 = C max(δ−1, 2γ−1), λ2 = λ′

2 + λ1, λ3 = 2 log η , and

M =
2
λ3

(
λ1 log

λ1

λ3
+ λ2

)
.

3. [Reduction, choice of the parameter] If δ = γ, go to Step 5. Otherwise, choose
C somewhat larger than M , say C = 100M .

4. [Reduction, inhomogeneous case] Compute the largest convergent p/q of the
real number log η/ log ε for which q � C. If

D := d(q log γδ−1/ log ε, Z)−Md(q log η/ log ε, Z) < 0 ,

set M ← 100M and go to Step 4. Otherwise, compute

M ′ = − log(D/2qλ′
2 log 2)

2 log η
.

If 	M ′
 < M , set M ← 	M ′
 and go to Step 3; otherwise, go to Step 6.

5. [Reduction, homogeneous case] Compute the largest convergent p/q of the
real number log η/ log ε with q � M ,

D = |q log η − p log ε|, and M ′ = − log {D/(2qλ′
2 log 2)}

2 log η
.

If M ′ < M , set M ← M ′ and go to Step 5.

6. [Enumeration] Initialize S to ∅. For each m < max(M0,M), compute x =
(δηm + a1δ

−1η−m)/2 ; put y =
√

(x2 − a1)/a0, z =
√

(x2 − b1)/b0. If y
and z are rational integers, add (x, y, z) to S.

7. [Terminate] Return S.

Remarks. (1) In practice, the case δ = γ should be treated via forms in 2
logarithms rather than via Matveev’s bound.

(2) The enumeration step should be optimized, especially if max(M0,M) is
large. For instance, one could use congruence conditions on m.

12.9 Catalan’s Equation

Catalan’s problem [Cat] posed in 1844 is the following: do there exist consec-
utive positive integers other than 8 and 9 that are both pure powers? This
corresponds to the exponential Diophantine equation

xm − yn = 1 .

Although this problem was solved completely in the negative by Mihăilescu in
2002 (see Chapter 16), it is still interesting to study the application of Baker’s
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theory to this problem (even if Baker’s theory is not used in Mihăilescu’s
latest proof, which we give in Chapter 16). In 1976, Tijdeman [Tij] proved
that Catalan’s problem is a “finite” problem, and we will sketch his proof.

Theorem 12.9.1 (Tijdeman). Let x, y, m � 2, and n � 2 be strictly
positive integers such that xm−yn = 1. There exists an effectively computable,
absolute constant C such that max{x, y,m, n} < C.

Proof. By the results of Lebesgue and Ko Chao (Proposition 6.7.12 and
Theorem 6.11.8) we may assume that m and n are odd. We consider the
equation

xm − yn = ε ,

where ε = ±1 and x, y, m, n are strictly positive integers with n > m > 2.
Since

(cn − 1)/(c− 1) = n + (c− 1)
∑

1�k�n−1

(
n

k + 1

)
(c− 1)k−1

it follows that gcd((cn − 1)/(c− 1), c− 1) | n. We thus have the relations

x− ε = un/m∗ and y + ε = vm/n∗ ,

where u and v are integers, |u|, |v| > 1, and where m∗ (respectively n∗) is a
divisor of m (respectively of n).

It follows from the assumption n > m that x > y. Throughout the proof,
the constants implied by " and ! are absolute.

Consider now the following two linear forms in logarithms:

Λ6 := n log(yu−m) + m log m∗

and
Λ7 := mn log(u/v)−m log m∗ + n log n∗ .

Since ∣∣∣∣ yn

umn (m∗)−m
− 1

∣∣∣∣ =
∣∣∣∣ xm − ε

(x− ε)m
− 1

∣∣∣∣" m

x
,

we note that |Λ6| " m/x, so that using Theorem 12.1.2 and the upper bound
y � 2um, we obtain

log x" m(log m) (log n) (log u) ,

hence,
n " m(log m) (log n). (9.1)

Furthermore, it follows from∣∣∣∣ umn

(m∗)m

(n∗)n

vmn
− 1

∣∣∣∣ =
∣∣∣∣ (x− ε)m

(y + ε)n
− 1

∣∣∣∣" n

y
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that |Λ7| " n/y. Thus, we deduce from u � 3v and Theorem 12.1.2 that

log y " (log mn) (log m) (log n) (log v) ,

hence that
m " (log m) (log n)2 . (9.2)

Combining equations (9.1) and (9.2) we find that n is bounded by an absolute
constant. It then follows from (9.2) that m is also bounded by an absolute
constant. The fact that x and y are also bounded follows from general results
on superelliptic Diophantine equations given below in Section 12.11. ��

12.10 Thue Equations

12.10.1 The Main Theorem

Let K be an algebraic number field of degree d, let α1, . . . , αn be n � 3
distinct algebraic integers in K, and let a and m be nonzero integers. We
have the following result (we refer to [Bug-Gyo] for a general totally explicit
statement, and to [Bug-Gyo, Sho-Tij] for an extensive list of bibliographic
references).

Theorem 12.10.1. With the above notation, the equation

a(x− α1y) · · · (x− αny) = m

has only finitely many solutions in integers x and y, and all of these can be
effectively determined. Moreover, the bound for max{|x|, |y|} is polynomial in
|m|.

Proof. Let x and y be integers satisfying the above equation. For the sake
of simplicity assume that a = 1. Without loss of generality, we may assume
that x and y are very large, and that x/y is very close to α1. More precisely,
setting X := max{|x|, |y|}, we assume that

|x− α1y| " X−n+1 and |x− αiy| ! X, for i = 2, . . . , n. (10.1)

Here and throughout the proof, the constants implied by " and ! are
effectively computable, and depend only on α1, . . . , αn and K. Some of them
will be made explicit in the section devoted to algorithmic aspects. Set

βi = x− αiy (1 � i � 3) ,

and note that

(α1 − α2)β3 + (α2 − α3)β1 + (α3 − α1)β2 = 0 .
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Consider now the very small “linear form”

Λ∗
8 :=

α2 − α3

α3 − α1
· x− α1y

x− α2y
=

x− α3y

x− α2y
· α2 − α1

α3 − α1
− 1 .

Let r be the rank of the group of units of K := Q(α1) and let ε1,1, . . . , ε1,r

be a system of fundamental units of K. Denote by ε2,1, . . . , ε2,r and ε3,1, . . . , ε3,r

the conjugates of ε1,1, . . . , ε1,r in Q(α2) and Q(α3), respectively, which all be-
long to the Galois closure L of K.

There exist an algebraic integer γ1 in K of norm at most |m|, and integers
b1, . . . , br such that x− α1y = γ1ε

b1
1,1 · · · εbr

1,r. We thus have

Λ∗
8 =

(
ε3,1

ε2,1

)b1

· · ·
(

ε3,r

ε2,r

)br γ3(α2 − α1)
γ2(α3 − α1)

− 1 ,

where γj denotes the conjugate of γ1 in Q(αj), for j = 2, 3. We then note
that

B := max{|b1|, . . . , |br|} " h(x− α1y)" log X . (10.2)

Write ν := γ3(α2 − α1)/(γ2(α3 − α1)) and note that h′(ν) " log M , where
M := |m|. Theorem 12.1.2 gives

log Λ∗
8 ! −(log M) (log B) ,

while our assumptions (10.1) imply that

log Λ∗
8 " − log X .

Combining (10.2) with both estimates, we obtain

log X " (log M) (log log X) .

We conclude that X is bounded, but this is not sufficient to obtain a bound
that is polynomial in M .

For establishing the last statement of the theorem it is crucial to apply
the improvement quoted just after Theorem 12.1.2, in other words to replace
B by B′. This gives

log Λ∗
8 ! −h ′(ν) log

(
B

h ′(ν)

)
,

so that we obtain (
log X

h ′(ν)

)
" log

(
log X

h ′(ν)

)
.

From this, we deduce that

log X " h ′(ν) " log M ,
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and that there exists a (very small) numerical constant τ such that

max{|x|, |y|} � M1/τ . (10.3)

Thus we have proved not only that |x| and |y| are effectively bounded, but
also that the bound is polynomial in M . ��

As a by-product of an explicit version of Theorem 12.10.1, we obtain an
effective improvement of Liouville’s inequality. Let α be an algebraic number
of degree n � 3. As proved by Liouville, there exists a positive constant
c13(α) such that ∣∣∣∣α− p

q

∣∣∣∣ � c13(α)
qn

, (10.4)

for any rational number p/q. More than one century afterward, Roth estab-
lished that for any ε > 0, there exists a positive constant c14(α, ε) such that∣∣∣∣α− p

q

∣∣∣∣ � c14(α, ε)
q2+ε

,

for any rational number p/q. However, Roth’s proof does not yield an explicit
value for the constant c14(α, ε). A challenging open problem in Diophan-
tine approximation is to establish an effective version of Roth’s theorem. At
present, the best that we can do, thanks to (10.3), is to improve only slightly
on Liouville’s statement, as we now explain.

Let us apply Theorem 12.10.1 with the αi’s equal to the complex conju-
gates of α, with α1 = α. Let x and y be integers such that x �= αiy for any
i = 1, . . . , n, and again set X := max{|x|, |y|}. We then obtain from (10.3)
that

|x− αy| = |m|
|x− α2y| · · · |x− αny| ! X−(n−1)+τ .

We thus obtain an estimate of the shape (10.4), with the exponent n replaced
by n−τ , where τ is strictly positive, but very small. Notice that an alternative
proof of this result, independent of Baker’s theory, has been given by Bombieri
[Bom].

12.10.2 Algorithmic Aspects

We are in a situation where obtaining an algorithm is possible, since in the
linear form log Λ8, only the coefficients bi are unknown. We need, however,
to make explicit the constants in the estimate

log Λ∗
8 " −B, log Λ8 " −B ,

in order to be able to compute an explicit upper bound for B, and use the
reduction process. This is the purpose of the following lemma. We also derive
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an explicit version of (10.1), which may be needed for efficient final enumer-
ation.

In this subsection we restrict to the irreducible case that the left-hand
side of the equation is a monic irreducible polynomial in Z[X,Y ].

Before stating the lemma, note that the constants derived depend on two
choices, the choice of a conjugate α1 of a root of P (X, 1) (in practice, a real
conjugate; see the end of the lemma) and of an algebraic integer γ1 ∈ Q(α1)
of norm m. From an algorithmic point of view, we will have to loop over all
possible choices.

Lemma 12.10.2. Let (x, y) be a solution of the Thue equation of Theo-
rem 12.10.1, and assume that (x − α1y)/γ1 is a unit of Q(α1) and |x −
α1y| = min1�i�n |x − αiy|. Let M = (mij) be the inverse of the matrix
(log |εi+1,j)|) 1�i�r

1�j �r
, and define

λ0 =
2n−1|m|
|g′(α1)| , λ1 = 2

∣∣∣∣ α2 − α3

(α3 − α1)(α1 − α2)

∣∣∣∣ , λ2 = min
1�i�r

n∣∣∣∑r
j=1 mij

∣∣∣ ,

λ3 = log λ1 + λ2 max
1�i�r

(
log(3/2)

r∑
j=1

|mij |+
∣∣∣∣∣

r∑
j=1

mij log
∣∣∣∣α1 − αj+1

γj+1

∣∣∣∣
∣∣∣∣∣
)

,

Y0 = max
1�i�n−1

(
2λ0

|α1 − αi+1|
)1/n

.

Then, if |y| > Y0, we have

|x− α1y| � λ0|y|1−n

and
log |Λ∗

8| � −n log |y|+ log λ1 � −λ2B + λ3 .

Proof. For j �= 1 we have

2|x− αjy| � |x− αjy|+ |x− α1y| � |y||α1 − αj | . (10.5)

Thus,

|x− α1y| = |m|∏
2�i�n |x− αiy|

� |m||y|−n+1 2n−1∏
2�i�n |αi − α1| = |m||y|−n+1 2n−1

|g′(α1)| ,

which proves the first assertion.
Further, (10.5) shows that for |y| � Y0,

|Λ∗
8| =

∣∣∣∣α2 − α3

α3 − α1
· x− α1y

x− α2y

∣∣∣∣ � 2
∣∣∣∣ α2 − α3

(α3 − α1)(α1 − α2)

∣∣∣∣ |y|−n .
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We now need to compare B and log |y|. For this, write

log
∣∣∣∣x− αi+1y

γi+1

∣∣∣∣ =
r∑

j=1

bj log |εi+1,j |, 1 � i � r .

From this and the definition of M , we deduce that

bi =
r∑

j=1

mij log
∣∣∣∣x− αj+1y

γj+1

∣∣∣∣ .

Hence,

|bj | �
∣∣∣∣∣

r∑
j=1

mij

∣∣∣∣∣ log |y|+
∣∣∣∣∣

r∑
j=1

mij log
∣∣∣∣α1 − αi+1

γi+1

∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
r∑

j=1

mij log
∣∣∣∣ x− αi+1y

y(α1 − αi+1)

∣∣∣∣
∣∣∣∣∣ .

Finally, note that∣∣∣∣ x− αi+1y

y(α1 − αi+1)

∣∣∣∣ =
∣∣∣∣1− x− α1y

y(α1 − αi+1)

∣∣∣∣ � 3/2, for |y| � Y0 ,

finishing the proof. ��

A comparison with Matveev’s bound (note that Λ∗
8 is nonzero under our

assumptions) then yields an explicit upper bound for B, which can then be
used to initiate the reduction process.

Finally, note the following additional consequences of the lemma:

– For

|y| > Y1 := max

⎛⎜⎝Y0,

⎛⎝ λ0

min
s+1�k�s+t

|Im (αk)|

⎞⎠1/n
⎞⎟⎠ ,

we have α1 ∈ R. This can be used to solve very efficiently totally imaginary
Thue equations, and otherwise to restrict the set of roots over which one
has to loop. Hence, we can assume that the field K has at least one real
embedding, so that the only roots of unity are ±1.

– For |y| > Y2 := (2λ0)1/(n−2), x/y is a convergent of the continued fraction
expansion of x/y; this can be used for an efficient final enumeration of
“medium-sized” solutions, as in the case of simultaneous Pell equations.

This leads to the following algorithm:

Algorithm 12.10.3 (Solve a Thue equation) Let P be an irreducible monic
polynomial with rational integer coefficients, of degree d � 3. This algorithm
computes all the solutions of the Thue equation Y nP (X/Y ) = m.
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1. [Algebraic precomputations] Compute the roots α1, . . . , αn of P (ordered so
that the first s are real, and αs+t+i = αs+i, 1 � i � t), a system of funda-
mental units ε1,1, . . . , ε1,r of Q(α1), and a set Γ of nonassociate solutions of
the norm equation NQ(α1)/Q(u) = m. Set Y = 0.

The following Steps 2–7 should be done for all values of (α, γ) ∈ {α1, . . . , αs}×
Γ. In the following, the roots should be reordered so that the root under con-
sideration is α1.

2. [Computation of various constants] Compute λ0, λ1, λ2, λ3, Y0, Y1, Y2, Y =
max(Y, Y0, Y1, Y2).

3. [Computation of Baker’s bound] Compute the corresponding Matveev’s con-
stant

κ = 3·30r+4(r+1)5.5(n(n−1))2h′(ε1) · · ·h′(εr)·log(2π)(1+log(n(n−1))) ,

and deduce Baker’s bound

B =
2
λ2

(
κ log

κ

λ2
+ λ3 + κ(1 + log(r + 1))

)
.

4. [Reduction, preparation] Let � = max(2, r). Compute with sufficient precision
approximations of the vector (δi)1�i�� defined by

δi =

⎧⎪⎨⎪⎩
log |ε2,i/ε3,i| when r > 1 ,

Arg(ε2,1/ε3,1) when r = 1 and i = 1 ,

2π when r = 1 and i = 2 ,

and θ defined by

θ =

{
log |γ3(α2 − α1)/(γ2(α3 − α1))| when r > 1 ,

Arg(γ3(α2 − α1)/(γ2(α3 − α1))) when r = 1 .

5. [Reduction, choice of the parameter] Set C somewhat larger than Br, say
C = 100Br. If δi and θ are not computed with enough precision to determine
exactly 	Cδi�, increase the working precision and go back to Step 4.

6. [Reduction step] Define

G0 =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
	Cδ1� 	Cδ2� . . . 	Cδ�−1� 	Cδ��

⎞⎟⎟⎟⎟⎟⎠ , v0 =

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0

	Bθ�

⎞⎟⎟⎟⎟⎟⎠ .

Let G be the matrix of the LLL reduced basis of the lattice generated by the
columns of G0, and v = G−1v0.
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Let i be the smallest index such that vi �∈ Z. Set d0 = 2(1−r)/2d(vi, Z)‖g1‖2,
where g1 is the first column vector of G. If d0 <

√
(r2/4 + (r − 1))B, set

C ← 100C and go to Step 5. Otherwise, set

d′0 =
√

d2
0 − (r − 1)B − rB/2 and B′ =

1
λ2

(
λ3 + log

2C log 2
d′0

)
.

If 	B′
 < B, let B ← 	B′
 and go to Step 5; otherwise, set

Y ′ ← max

(
Y ′,

(
2λ1C log 2

d′0

)1/n
)

.

7. [Medium solutions] Compute the convergents p/q of α1, . . . , αs with Y � q �
Y ′; if F (p, q) = m, add (p, q) to S. If F (−p,−q) = m, add (−p,−q) to S.

8. [Small solutions] For all y with |y| � Y , find the integer roots of the polynomial
F (X, y)−m (e.g., by computing roots modulo p and Hensel lifting), and add
the corresponding solutions (x, y) to S.

9. [Terminate] Return S.

Remarks. (1) This algorithm follows rather closely the presentation by
Tzanakis and de Weger [Tza-Weg]. It can be optimized in many ways,
but should perform quite well as it stands for equations of small degree. A
few phenomena can be encountered in small degree (especially in degree
3) that induce a failure of the algorithm: there can be a relation between
the δi (in which case this relation should be taken into account to elim-
inate one of the variables); or similarly log |γ3(α2 − α1)/(γ2(α3 − α1))|
is 0, in which case the homogeneous version of the reduction should be
used.

(2) As in the other algorithms, for the solution to be rigorous, the value of
the integers 	Bδi� should be known exactly. This implies either a careful
error analysis in the computations or the use of an interval arithmetic
package.

(3) Various ideas can be used to take into account the fact that the choice
of the second and third conjugates to build the linear form is somewhat
arbitrary. For instance, Bilu and Hanrot [Bil-Han] have shown how one
can use all the conjugates to build a set of r − 1 simultaneously small
linear forms in r indeterminates, which, by linear algebra, can be used
to build a linear form (the coefficients of which are no longer a priori
logarithms of algebraic numbers) in two variables that is very small. The
last two parts (reduction, enumeration) become then very similar to the
case of simultaneous Pell equations.

12.11 Other Classical Diophantine Equations

We begin by stating a special case of Theorem 12.10.1.
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Theorem 12.11.1. Let F (X,Y ) be an irreducible, homogeneous, binary in-
tegral form of degree n � 3, and let b be a nonzero integer. The equation

F (x, y) = b, with x, y in Z , (11.1)

has only finitely many solutions, and all of them can be effectively determined.

An ineffective version of this result goes back to Thue, and equation (11.1)
is commonly called a Thue equation. Baker’s theory also yields an effective
version of a result of Siegel from the 1930s (we refer to [Sho-Tij, Bug] for
bibliographical references and for a more general statement; see also Theorem
8.1.2):

Theorem 12.11.2. Let f(X) be an irreducible polynomial in Z[X] of degree
n � 3 (respectively � 2), and let m � 2 (respectively m � 3) be an integer.
The equation

f(x) = ym, with x, y in Z ,

has only finitely many solutions, and all of them can be effectively determined.

As already shown by Tijdeman’s theorem, the theory of linear forms in log-
arithms is sufficiently powerful to deal with Diophantine equations in which
the exponents are unknown. A general result, due to Schinzel and Tijdeman,
is the following.

Theorem 12.11.3. Let f(X) be an irreducible polynomial in Z[X] of degree
n � 3. The equation

f(x) = yz, with x, y, z in Z, where z � 2 and |y| � 2 , (11.2)

has only finitely many solutions, and all of them can be effectively determined.

Proof. We prove this theorem, following Brindza, Evertse, and Győry
[Bri-Eve-Gyo]. For the sake of simplicity, we will assume that f(X) is monic.
Our goal is to bound z in terms of f(X), and then to conclude by applying
Theorem 12.11.2.

Let D be the discriminant of f(X), and H the maximum of the abso-
lute values of its coefficients. Throughout the proof, the numerical constants
implied by " depend only on f(X).

Let (x, y, z) be a solution of (11.2). First note that if |x| � H + 2 then
we have 2z � (2H + 3)n since the roots α1, . . . , αn of f(X) are bounded in
absolute value by H + 1. We can therefore assume that |x| > H + 2, which
implies that |x− αj | � 1 and |x− αj | � |y|z for any j = 1, . . . , n.

In the number field K = Q(α1) the greatest common divisor of the ideals
(x − α1)ZK and (x − α2) · · · (x − αn)ZK divides the ideal f ′(α1)ZK. Since
NK/Q

(
f ′(α1)

)
= ±D there exist integral ideals a, b, and c of K such that

NK/Q(a) � |D|, NK/Q(b) � |D|, and a (x− α1)ZK = b cm.
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Let h be the class number of K. The last equation implies that

α (x− α1)h = ε β γz , (11.3)

where α, β, and γ are, respectively, generators of the principal ideals ah, bh,
ch, and ε is a unit of K. In particular, we may assume that

max
{
h(α),h(β)

}" 1 ,

where h(ξ) denotes the absolute logarithmic height of the algebraic number
ξ as given by Definition 12.1.1.

For i = 1, . . . , n, let φi be the Q-automorphism defined on K by φi(α1) =
αi, and let {η1, . . . , ηr} be a system of fundamental units in K. Equation
(11.3) gives

(x− αi)h =
(
φi(η1)

)ki,1 · · · (φi(ηr)
)ki,r

φi(β/α)φi(γ)z, i = 1, . . . , n ,

where the ki,j are integers such that |ki,j | < z. Since max1�i�t |x − αi|h �
|y|zh, we obtain

h(γ) " log |y| .
If necessary after reordering the roots of f(X), we may assume that

min1�i
=j�n

∣∣∣αi − αj

x− αi

∣∣∣ =
∣∣∣α1 − α2

x− α1

∣∣∣ .

Recalling that ∏
1�i
=j�n

∣∣∣αi − αj

x− αi

∣∣∣ =
|D|

|y|z(n−1)
,

we obtain ∣∣∣α1 − α2

x− α1

∣∣∣ � |D|
|y|z/n

.

In addition, we may assume that |y|z/(2n) > h |D|, since otherwise our theo-
rem is proved. Since |x− α2| � |x− α1|, we obtain

Λ∗
9 :=

∣∣∣(x− α2

x− α1

)h

− 1
∣∣∣ �

∣∣∣x− α2

x− α1
− 1

∣∣∣ · h � |D|h
|y|z/n

< |y|−z/(2n) . (11.4)

If Λ∗
9 = 0, then (α1−α2)/(x−α1) is an algebraic integer and (11.2) gives

the upper bound z � n2 log2 |D|.
If Λ∗

9 �= 0, we apply Theorem 12.1.2, and we obtain

log Λ∗
9 ! − log |y| log z . (11.5)

Comparing (11.4) and (11.5), we deduce that

z " log z.

This proves that z is bounded. It then remains only to apply Theorem 12.11.2
to conclude the proof of our theorem. ��
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12.12 A Few Words on the Non-Archimedean Case

Shortly after the publication of the first papers by Baker on the theory of
linear forms in logarithms, a few papers on non-Archimedean analogues ap-
peared. The problem becomes the following. Let p be a given prime number.
Let α1, . . . , αn be algebraic numbers whose norms are not divisible by p, and
let b1, . . . , bn be integers. We wish to bound from above the p-adic valuation
of

αb1
1 · · ·αbn

n − 1.

It turns out that the presently available estimates are of comparable quality
to those provided in the Archimedean case by Theorem 12.1.2, apart from a
single point: the dependence on the prime p. Namely, a supplementary factor
pD appears, which is essentially due to the fact that the p-adic exponential
function has a bounded disk of convergence (Proposition 4.2.10).

An important application of linear forms in p-adic logarithms concerns the
families of Diophantine equations discussed in the previous section. Instead
of looking only for integer solutions, we can now deal with rational solutions
whose denominators are divisible only by prime numbers from a given finite
set.

We end this section with a concrete Diophantine equation solved in
[Bug-Mig]. It shows that, sometimes, the use of p-adic logarithmic forms
yields better results than the use of Archimedean ones. Consider the equa-
tion

10n − 1
10− 1

= yq , (12.1)

corresponding to the search for perfect powers written in base ten with only
the digit 1. Rewriting this equation in the form

9yq10−n − 1 = −10−n,

we obtain an upper bound for q by using estimates for linear forms in three
logarithms. However, we can also consider this equation as

10n = 9yq + 1 ,

and consider the 5-adic valuation v5 of both sides. On the one hand, it
is trivially equal to n. On the other hand, the 5-adic analogue of Baker’s
theory allows us to bound v5(9yq + 1) from above: this is not greater
than c(log y)(log q), with a reasonably small constant c, since it is de-
rived from a linear form in only two logarithms. Observing further that
n � q (log y)/(log 10), we immediately obtain that

q log y � c (log 10)(log y)(log q) ,

and hence an upper bound for q. This upper bound is much smaller than the
one that can be derived from estimates for three Archimedean logarithms. In
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practice, we get q � 2063: since q may obviously be assumed to be prime, we
have replaced our equation (12.1) in three unknowns by about three hundred
equations in two unknowns. Various methods are then used to prove that
(12.1) has no solution with n � 2 and q � 2.

Remark. Linear forms in non-Archimedean logarithms can be used to ex-
tend some of the algorithms presented above to obtain not only integral solu-
tions, but also S-integral solutions, i.e., solutions with denominators having
prime factors in a prescribed finite set.



13. Rational Points on Higher-Genus Curves

By Sylvain Duquesne

13.1 Introduction

In Chapter 8 we have seen that elliptic curves and associated tools allow us
to solve many Diophantine problems, essentially those coming from cubic or
hyperelliptic quartic equations. The goal of the present chapter is to give some
idea of the methods that are used for more general equations. For instance,
Diophantus himself poses a problem (Problem 17 of book VI of the Arabic
manuscript of Arithmetica [Ses]) that is equivalent to finding a nontrivial
rational point on the curve defined by the equation

y2 = x6 + x2 + 1 .

This is a curve of genus 2, whereas elliptic curves are curves of genus 1, and it
is the only example of a curve of genus greater than or equal to 2 considered
by Diophantus. In this chapter we will be interested in curves of genus greater
than or equal to 2.

Even if curves of higher genus appear to be simply a generalization of ellip-
tic curves, the Diophantine problems and the necessary tools to solve them
are quite different. Indeed, the two main Diophantine questions on elliptic
curves are the structure of the set of rational solutions and the determina-
tion of the set of integral points, and the crucial tool to solve both of these
problems is the group structure on elliptic curves, a tool that is not available
in the higher-genus case. In higher genus, a deep theorem of Faltings proves
Mordell’s conjecture stating that the set of rational points is finite, so that
the set of integral points is also finite and can be easily deduced from the set
of rational points. Thus the main Diophantine problem in higher genus is the
determination of the set of rational points. This question is far from being
solved in all generality, however, so that it may be interesting to be able to
find the set of integral points even if we are unable to find the set of rational
points. For this purpose it is sometimes possible to use a Diophantine ap-
proximation method due to de Weger (see [DeW2]), but we will not consider
this subject here.

We will restrict to smooth projective algebraic curves over some field K
(in other words, a projective algebraic variety of dimension 1 with no singular
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points), together with a point defined over K. As in the case of genus 1, i.e.,
elliptic curves, this rational point will be denoted by O.

In genus 2, but not in higher genus, the situation is similar to the situation
in genus 1: thanks to the Riemann–Roch theorem it can be shown that there
exists a plane model of the curve with affine part described by an equation
of the form

y2 + h(x)y = f(x) , (13.1)

where h and f are polynomials defined over K, with deg(f) = 5 or 6 and
deg(h) � 3. Since this curve must be smooth, the partial derivatives 2y+h(x)
and h′(x)y − f ′(x) must not vanish simultaneously on the curve defined by
equation 13.1. Such a curve is called a hyperelliptic curve (of genus 2).

In the case of higher genus we can consider similar hyperelliptic equations,
the only change being that deg(g) = 2g +1 or 2g +2 and deg(h) � g +1, but
not all curves are hyperelliptic if g � 3.

Remarks. (1) When the characteristic of K is different from 2 we can
choose h equal to zero by completing the square. Since we are mainly
interested in curves defined over number fields, we will always make this
assumption. Most of the definitions and basic algorithms can be gener-
alized to fields of characteristic 2.

(2) If there is a K-rational point on the curve with y = 0 (assuming h(x) = 0)
we may assume that deg(f) = 2g + 1 by sending this point to infinity.
In this case we may also assume that f is monic by a suitable change
of variables, and the homogenized equation has exactly one singularity
at infinity. Without loss of generality, we can assume that this point at
infinity is O.

For simplicity, in the following we will consider only hyperelliptic equa-
tions, although most theoretical results (but usually not practical results)
remain true for nonhyperelliptic ones. There are two reasons for this restric-
tion. The first one is that most Diophantine problems that have been solved
by the methods that we will explain are genus-2 curves. The second reason
is that nonhyperelliptic curves are more complicated to use in practice and
very few tools have been developed for such curves.

13.2 The Jacobian

Recall that the main tool that we used for solving Diophantine problems on
elliptic curves was the group law, and that it is not available for higher-genus
curves, so that the situation seems to be considerably more difficult. As a
first step it is thus natural to define a new algebraic object having a group
structure and related to such curves, and this is the Jacobian variety.

In the following we let C be a hyperelliptic curve of genus g defined over
K by an equation of the form
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y2 = f(x) with deg(f) = 2g + 1 or 2g + 2 .

13.2.1 Functions on Curves

Definition 13.2.1. The function field K (C) is the field of fractions of

K[C] = K[x, y]/(y2 − f(x)) .

It is clear that any element of this field can be written in the form (a(x) +
b(x)y)/(c(x) + d(x)y), where a, b, c, and d are polynomials in x defined over
K. We will use this description of K (C) in the following.

Definition 13.2.2. Let n ∈ K[C]∗ be a nonzero polynomial function and let
P be a point in C (K)

. We say that n has a zero at P if n(P ) = 0.

Let n(x, y) = a(x) + b(x)y be a polynomial function in K(C) and let
P = (x0, y0) be a zero of n. Let r be the largest integer such that (x− x0)r

divides n(x, y), so that we can write

n(x, y) = (x− x0)r(α(x) + β(x)y) .

Let s be the largest integer such that (x− x0)s divides α2(x)− β2(x)f(x).

(1) If y0 �= 0 we define the order ordP (n) of P to be r + s, and we say that
P is a zero of n of order ordP (n).

(2) If y0 = 0, we define the order of P to be 2r + s.
(3) If the degree of f is odd and P is the point at infinity, we define the order

of P to be −max(2 deg(a),deg(f) + 2 deg(b)).
(4) If the degree of f is even and P is one of the two points on the nonsingular

curve that lie over the point at infinity, we define the order of P to be
−max (deg(a),deg(f)/2 + deg(b)).

Example 13.2.3. Let C be the hyperelliptic curve of genus 2 defined over
Q by the equation

y2 = x5 + 4 .

Let n1 be the function n1(x, y) = x − 2. This function has a zero if the x-
coordinate of the point is 2, so that the points (2, 6) and (2,−6) are zeros of
n1, and their order is 1. The coefficient of y in n1 is equal to zero, so that its
degree is −∞; hence the order of the point at infinity O is −2.

Example 13.2.4. Let C be the hyperelliptic curve of genus 1 (in other words
the elliptic curve) defined over Q by the equation

y2 = x3 + 1 .

Let n2 be the function n2(x, y) = x + 1− y (which is the equation of a line).
The zeros of this function are the points (2, 3), (0, 1), and (−1, 0), each with
order 1. Here the degree of f is equal to 3 and the degree of the coefficient
of y is equal to 0, so that the point at infinity has order −3. This of course
corresponds to the group law on the elliptic curve.
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We can now define the order of a zero or a pole of a function of K(C).
Definition 13.2.5. Let m ∈ K (C)∗ be a nonzero function and let P be a
point on C (K)

. Write m = n/d, where n and d are polynomial functions, and
set ordP (m) = ordP (n)−ordP (d). If ordP (m) is strictly positive (respectively
strictly negative), we say that m has a zero (respectively a pole) at P of order
| ordP (m)|.
Theorem 13.2.6. Let m be a function in K (C)∗. Counting orders, m has
as many zeros as poles; in other words,∑

P∈C(K)
ordP (m) = 0 .

13.2.2 Divisors

We have seen that the group structure on the set of points of an elliptic curve
is a powerful tool for solving many problems concerning elliptic curves, and
in particular Diophantine problems that can be reduced to elliptic curves.
The set of points of a curve of higher genus does not have a natural group
structure, so we are going to embed this set into a larger one that does have
a natural group structure by introducing the free abelian group generated by
these points.

Definition 13.2.7. Let C be a smooth projective algebraic curve defined over
K. The divisor group DivK of C is the free abelian group over the points of
C (K)

.

An element D of DivK(C) is called a divisor and is thus of the form

D =
∑

P∈C(K)
nP P ,

where the integer nP is called the order of D at P and is zero for almost all
points P on the curve.

Definition 13.2.8. (1) Let D =
∑

P∈C(K) nP P ∈ DivK(C). We define
deg(D) =

∑
P∈C(K) nP .

(2) We say that D is effective if nP � 0 for all P .
(3) Let m be a function on C. We define the divisor of m by

div(m) =
∑

P∈C(K)
ordP (m)P ∈ DivK(C) .

Such divisors are called principal divisors, and the set of principal divi-
sors is denoted by PrK(C).
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Example 13.2.9. Let us come back to Examples 13.2.3 and 13.2.4. The
divisors of the functions n1 and n2 are

div(n1) = (2, 6) + (2,−6)− 2O ,

div(n2) = (2, 3) + (0, 1) + (−1, 0)− 3O .

Denote by Div0
K

(C) the group of all divisors of degree 0. It follows from
Theorem 13.2.6 that the set of principal divisors is a subgroup of Div0

K
(C).

We can thus set the following.

Definition 13.2.10. The quotient group Div0
K

(C)/PrK(C) is called the Pi-
card group of C.

We will not define the Jacobian variety J(C) of C, which is an Abelian
variety functorially associated with C, but simply note that the group JK(C)
of K-rational points on this variety, which is the only structure that we will
use, is naturally isomorphic to the Picard group defined above.

13.2.3 Rational Divisors

Definition 13.2.11. The set of K-rational divisors, denoted by DivK(C), is
defined by

DivK(C) = (DivK(C))Gal(K/K) .

This definition means that a divisor D is rational over K if it is invariant
under the Galois action of Gal

(
K/K

)
. In other words, if P is a point such

that the order of D at P is nonzero, then D has the same order at all the
conjugates of P .

Example 13.2.12. Let C be the curve of genus 2 defined over Q by the
equation

y2 = x5 + x− 3 .

The point (1, i) is of course not a Q-rational point, but the divisor D =
(1, i) + (1,−i) is a Q-rational divisor of degree 2.

The group of K-rational elements on the Jacobian, JK(C), is the group
of classes of K-rational divisors modulo functions of K(C) or, equivalently,

JK(C) = (JK(C))Gal(K/K) .

All these definitions are of course also valid for elliptic curves and in this
case the curve is isomorphic to its Jacobian. This indicates that the Jaco-
bian is the correct generalization of elliptic curves if we are interested in the
group structure. In fact we have the following theorem, which generalizes the
Mordell–Weil theorem for elliptic curves.
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Theorem 13.2.13 (Weil). If K is a number field, JK(C) is a finitely gen-
erated abelian group.

In the following we will assume that K is a number field. The structure of
JK(C) can be computed analogously to the computation of the Mordell–Weil
group for elliptic curves that we have studied in Chapter 8, in other words by
using descent methods. It is evidently more difficult, and we will not explain
this computation here. The interested reader is referred to [Sch] or to [Sto].

We have already mentioned that in genus 1, the Jacobian is isomorphic to
the curve. This isomorphism is given by the map P �→ P −O from C(K) to
JK(C); in other words, an element of the Jacobian is represented by a point on
the curve. In higher genus g, the following theorem states that the situation
is analogous since a rational element of the Jacobian can be represented by
a g-tuple of points on the curve stable by Gal

(
K/K

)
.

Theorem 13.2.14. Fix a K-rational divisor D0 of degree g in Div(C) (for
instance gO if the degree of f is 2g + 1). Every K-rational element of the
Jacobian can be represented by a divisor of degree 0 of the form D − D0,
where D is an effective K-rational divisor of degree g.

Such a D is not unique. In some cases, additional conditions can make it
unique. For instance, if deg(f) = 2g +1 a K-rational element of the Jacobian
can be uniquely represented by a divisor of degree 0 of the form

P1 + · · ·+ Pr − rO
with r � g and such that Pi �= O and a point and its image under the
hyperelliptic involution (the map that sends a point (x, y) to (x,−y) in our
case) do not both occur in this divisor. Such a representative is called a
reduced divisor. If the condition on r is omitted, it is called a semireduced
divisor. We will now describe the group law explicitly and explain how to
compute on Jacobians of curves of higher genus.

13.2.4 The Group Law: Cantor’s Algorithm

The construction of the Jacobian that we presented in Section 13.2.2 is anal-
ogous to the definition of the class group of an algebraic number field as the
quotient of the group of fractional ideals modulo principal ideals. In [Can],
Cantor uses this analogy to provide an efficient algorithm to compute on the
Jacobian of a hyperelliptic curve given by an equation of the form

y2 = f(x) , with deg(f) = 2g + 1 . (13.2)

The first point is to represent divisors as polynomials.

Theorem 13.2.15 (Mumford’s Representation). Let C be a hyperellip-
tic curve of genus g defined over K as in (13.2). Any semireduced K-rational
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divisor D can be represented by a pair of polynomials a and b in K[x]. If
D = P1 + · · ·+ Pr − rO with Pi = (xi, yi) ∈ C(K), a and b are defined by the
following conditions:

(1) a(x) =
∏r

i=1(x− xi),
(2) deg(b) < deg(a),
(3) a divides b2 − f .

This means that for each point Pi = (xi, yi), xi is a root of a with multi-
plicity ordPi

(D). The last conditions ensure that b(xi) = yi with the correct
multiplicity. In this representation, the neutral element of the Jacobian is
represented by a = 1 and b = 0. For reduced divisors, we have the additional
condition that the degree of a must be less than or equal to g, and such a
representation becomes unique.

This representation of divisors is more natural than the representation
with a g-tuple of points. In fact, a K-rational element is now represented
by polynomials with coefficients in K, whereas the points of the previous
description were defined over K. Moreover, Cantor noticed that this repre-
sentation together with c = (b2 − f)/a is analogous to the representation of
the quadratic forms aX2 + bXY + cY 2 with discriminant f . Thus, to add
two elements of the Jacobian represented by pairs of polynomials (a1, b1) and
(a2, b2), he proceeds as for the classical composition of quadratic forms (see
Chapter 5 of [Coh0]). In this way, he obtains a semireduced representative
for the sum that can then be reduced. We now describe these two steps.
Composition. Let d denote the GCD of a1, a2, and b1 + b2, and let s1, s2,
and s3 ∈ K[x] obtained by Euclid’s extended algorithm be such that

d = s1a1 + s2a2 + s3(b1 + b2) .

The sum of the elements represented by (a1, b1) and (a2, b2) is the class of a
semireduced divisor represented by the polynomials

a =
a1a2

d2
,

b =
s1a1b2 + s2a2b1 + s3(b1b2 + f)

d
mod a .

Reduction. If deg(a) > g we can decrease it by replacing a by (f − b2)/a,
and then replacing b by −b mod a. These operations must be repeated until
deg(a) � g, so that after dividing a by its leading coefficient to make it
monic, the pair of polynomials (a, b) represents the unique reduced divisor in
the class of the sum of the two initial divisors. Note that all computations
take place in K, and this would not necessarily be the case if the elements of
the Jacobian were represented by g-tuples of points in C (K)

.
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13.2.5 The Group Law: The Geometric Point of View

Here we want to generalize to the higher-genus case the definition of the
group law given for elliptic curves, where we used lines to define the group
law. For simplicity, we restrict our study to the genus-2 case and mention the
general case at the end.

In genus 2 we have seen in Theorem 13.2.14 that K-rational elements on
the Jacobian can be represented by pairs of conjugate or K-rational points.
Thus, to add two such pairs of points {P1, Q1} and {P2, Q2}, we must find
a polynomial going through these four points. We of course choose a degree-
three polynomial m in K[x], so that the line used for elliptic curves is now
replaced by a cubic. This cubic generically meets the hyperelliptic curve in
two new points R3 and S3 whose opposites are denoted by P3 and Q3. The
function y−m(x) vanishes at P1, Q1, P2, Q2, R3, and S3, so that the divisor
P1 + Q1 + P2 + Q2 + R3 + S3 − 3D0 is the divisor of the function y −m(x).
This means that this divisor is the neutral element of the Jacobian. Thus in
the Jacobian we have

P3 + Q3 −D0 = P1 + Q1 −D0 + P2 + Q2 −D0 .

This can be seen in the following picture.

57.6

-63.525
-5.5 4

P1

Q1 P2

Q2

R3Q3

S 3
P 3

{P1, Q1} + {P2, Q2} = {P3, Q3}

Remark. This picture does not really correspond to the general situation
over R since points occurring in R-rational divisors are not necessary defined
over R but usually only over C, so that they cannot be represented in our
picture. Nonetheless, the method is still valid, and moreover it is also valid
for other base fields.
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In practice, after computing m, we must simply solve the equation
m(x)2 = f(x). The degree of this equation is equal to 6, and four roots
are already known, so that the last two are easy to find. Since m and f are
defined over K and since the four known roots are either rational or pairwise
conjugate, the two new roots are also rational or conjugate, so they represent
a K-rational divisor.

Even if this method for computing the group law is slower than Cantor’s
algorithm, it has the advantage of working for every curve of genus 2 and
of helping to compute in the formal group. Thus, in [Fly] Flynn used it to
compute rational points on hyperelliptic curves, which is the goal of this
chapter.

Remark. In higher genus the situation is quite similar. We must find two
polynomials p and q such that the function yq(x)− p(x) passes through the
2g points defining the two elements of the Jacobian that we want to add,
and we must ensure that the intersection of yq(x)− p(x) = 0 with the curve
gives exactly 3g points generically. It is an easy exercise to show that we must
have deg(q) = 	(g − 1)/2
 and deg(p) = 	3g/2
, except when g is odd and
deg(f) = 2g + 2, in which case we must take deg(p) = (3g + 1)/2 and the
quotient of the leading coefficients of p and q must be equal to a square root
of the leading coefficient of f . The principle is then the same as in genus 2.

13.3 Rational Points on Hyperelliptic Curves

We now focus on Diophantine problems, and particularly on the determina-
tion of the rational points on the curve.

Mordell’s conjecture, proved in 1983 by Faltings [Fal], states that a curve
of genus greater than or equal to 2 defined over a number field K has only
finitely many K-rational points. Unfortunately, Faltings’s proof is not effec-
tive, in that it does not provide a bound for the heights of the K-rational
points, and it does not give a bound on the number of such points. However,
before Faltings’s proof, several papers had appeared that proved effective
versions of Mordell’s conjecture, but under some restrictive conditions. The
best known is the Chabauty–Coleman proof of Mordell’s conjecture under
a condition on the rank of the Jacobian, but there is also a method due to
Dem′yanenko [Dem2], and generalized by Manin [Man]. We begin withn the
latter.

13.3.1 The Method of Dem′yanenko–Manin

The idea of this method is to study the decomposition, up to isogeny, of the
Jacobian as an Abelian variety. Assume for instance that the Jacobian of a
curve C splits as a product of elliptic curves such that one of these elliptic
curves has rank 0 (so that it has finitely many rational points that are easy
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to compute, see Section 8.1.3). In that case, it is clear that there are finitely
many rational points on C itself, which can be found in the preimage of the
rational points of the elliptic curve of rank 0. More generally we have the
following.

Theorem 13.3.1 (Dem′yanenko-Manin). Let C be a curve defined over
a number field K. Assume that A is a K-simple Abelian variety such that
Am occurs in the decomposition of the Jacobian of C up to isogeny over K
and that

m >
rk(A(K))

rk(EndK(A))
,

where as usual rk denotes the rank. Then C(K) is finite and can be determined
explicitly.

In practice, we will often use the following corollary.

Corollary 13.3.2. Let C be a nonsingular projective curve defined over Q.
Let E be an elliptic curve defined over Q such that there exist l independent
morphisms from C to E defined over Q. If l > rk(E(Q)) then C(Q) is finite
and can be determined explicitly.

This method is used in [Dem2], [Sil4], and [Kul] to solve some examples or
families of examples of curves. We now describe in detail how this corollary
can be made explicit in the first nontrivial case, namely when the elliptic
curve E has rank 1 and l = 2.

Thus, assume that E has rank 1 over Q and that we have determined
both a generator G of the free part of E(Q) and the torsion subgroup E(Q)t.
Assume also we have two independent morphisms φ1 and φ2 from C to E of
the same degree d. For each point P in C(Q), there exist two integers n1 and
n2 and two points T1 and T2 in E(Q)t such that φi(P ) = ni ·G+Ti for i = 1,
2, so that ĥ(φi(P )) = n2

i ĥ(G) for i = 1, 2, hence

n2
2 − n2

1 =
ĥ(φ2(P ))− ĥ(φ1(P ))

ĥ(G)
, (13.3)

where as usual ĥ denotes the canonical height (see Theorem 8.1.17).
We now bound n2

2 − n2
1. We have seen in Theorem 8.1.18 that there exist

two explicit bounds B1 and B2 such that for all P in E(Q), we have

−B1 � ĥ(P )− h(P ) � B2 .

Moreover, h(φi(P )) = dh(P ) + O(1), so that there exists a constant B3 such
that for all P in E(Q), we have

|h(φ2(P ))− h(φ1(P ))| � B3 .

We deduce from (13.3) that
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|n2
2 − n2

1| �
B1 + B2 + B3

ĥ(G)
.

Thus, if n1 �= ±n2, it is immediate to obtain a bound for n1 and n2, namely

max(|n1|, |n2|) � 1
2

(
B1 + B2 + B3

ĥ(G)
+ 1

)
.

If n1 = ±n2 then φ1(P ) ± φ2(P ) is a torsion point and it is easy to find all
the possibilities for such a P . We thus obtain a bound on the cardinality of
C(Q), and if, in addition, φ−1

i can be computed, we can find exactly all the
rational points on C.
Example 13.3.3. Let C be the Fermat quartic curve defined over Q by

C : x4 + y4 = 2 ,

and let E be the elliptic curve defined over Q by

E : y2 = x3 − 2x .

The point T = (0, 0) is the only nontrivial torsion point on E(Q), E(Q) has
rank 1, and its free part is generated by G = (−1, 1). Let φ1 and φ2 be the
morphisms

φ1 : C(Q) → E(Q) ,
(x, y) �→ (−x2, xy2) ,

φ2 : C(Q) → E(Q) ,
(x, y) �→ (−y2, x2y) .

These two morphisms have degree 2, and Silverman proves in a more general
context in [Sil4] that they are independent. The bounds B1 and B2 are easy
to compute. Moreover, we have trivially that h(φ1(P )) = 2h(P ) for all P ∈
C(Q), and using the equation defining C we can prove that

2h(P )− log(2)
2

� h(φ2(P )) � 2h(P ) +
log(2)

2
,

so that

B3 =
log(2)

2
� 0.35, B1 � 4.85, and B2 � 4.43 .

We deduce that if n1 �= ±n2 then

max(|n1|, |n2|) � 1
2

(
B1 + B2 + B3

ĥ(G)
+ 1

)
� 8.42 .

If n1 = ±n2 we have φ1(P )± φ2(P ) = (0, 0), so that x = y, and we find the
trivial rational points on C(Q). The map φ−1

1 is given by
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φ−1
1 : E(Q) → C(Q) ,

(x, y) �→
(√−x,

√
y√−x

)
,

if the square roots that occur are defined over Q. Thus, we must simply check,
for n less than or equal to 8, whether the points ±nG and ±nG + T have
a rational preimage under φ1. This happens only for the point G, and we
again find the trivial solutions. Finally, we have thus shown in this way that
the only rational solutions to the equation x4 + y4 = 2 are the trivial ones.
This can also be proved using descent methods; see Exercise 24 of Chapter
6. See Section 6.6.3 and in particular Theorem 6.6.13 for the general case of
the equation x4 + y4 = c.

13.3.2 The Method of Chabauty–Coleman

Chabauty-like methods are the best-nknown methods for solving Mordell’s
conjecture in an effective way. They are based on a theorem due to Chabauty
[Cha] preceding Faltings’s work by more than 40 years.

Theorem 13.3.4 (Chabauty). Let C be an algebraic curve defined over a
number field K, and let JK(C) be the group of K-rational points on the Ja-
cobian of C. If the rank of JK(C) is strictly less than the genus of C there are
only finitely many K-rational points on this curve.

To prove this, Chabauty used p-adic integration, and Coleman noticed
in 1985 [Col] that it is possible to deduce from Chabauty’s proof a bound
on the number of K-rational points on the curve. For this, he obtained an
upper bound on the number of zeros of an integral of the first kind on C(Kν),
where ν is a place of K above a prime p of good reduction for C, and Kν is
the completion of K at ν. We will give Coleman’s theorem only for curves
defined over Q since this is the most common case.

Theorem 13.3.5 (Coleman). Let C be a curve of genus g defined over Q
such that the rank of its Jacobian is less than or equal to g − 1. Let p be a
prime number such that p > 2g and such that C has good reduction at p. Then

|C(Q)| � |C (Fp) |+ 2g − 2 .

In [McC] McCallum has generalized Coleman’s proof of the above result
to prove the second case of Fermat’s last theorem for regular primes. Of
course this is superseded by the work of Wiles, but it shows the power of the
method.

Example 13.3.6. Grant gave the first nontrivial example of a Diophantine
equation solved by this method [Gran]. Let C be the curve of genus 2 defined
over Q by the equation
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y2 = x(x− 1)(x− 2)(x− 5)(x− 6) .

It can be shown that the Jacobian of C has rank 1, so that Chabauty’s
condition is satisfied. The curve has good reduction at 7, so that |C(Q)| �
|C (F7) |+ 2. We check that |C (F7) | = 8, so that there are at most 10 points
on C(Q). Since it is easy to find 10 points on C(Q) this bound is sharp, so we
have shown that

C(Q) = {O, (0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120)} .

Grant also proves that C does not cover an elliptic curve of rank 0 over Q,
so that this example is not trivial (in fact, J(C) is absolutely simple; in other
words, C does not cover any elliptic curve).

Unfortunately, even under the restriction on the rank of the Jacobian,
Chabauty–Coleman-type theorems are not wholly satisfactory since they pro-
vide a bound on the number of rational points and not on the height of such
rational points. Thus, if the bound obtained in Theorem 13.3.5 is not sharp,
we cannot say exactly which are the rational points on the curve. In fact,
Coleman’s bound is often not sharp. This situation is similar to the one that
we have already met in applications of Strassmann’s theorem; see Section
4.5.4.

Following this idea, Flynn studies in more detail the Jacobian of each
curve instead of proving a theorem valid for all curves. This leads to an
explicit method for finding rational points on curves satisfying Chabauty’s
condition that provides a better bound than Coleman’s theorem, so that we
can hope that we can now obtain a sharp bound. This method is explained in
full detail in [Fly], but we will not describe it here since it involves advanced
tools on Jacobians, so we will give only the main ideas. Afterward, we will
describe the elliptic Chabauty method, also due to Flynn [Fly-Wet1]. It has
the advantage of being very similar, but uses only the classical tools on elliptic
curves already described in the rest of this book. In addition, it also allows
us to solve certain Diophantine problems for which Chabauty’s condition is
not satisfied.

13.3.3 Explicit Chabauty According to Flynn

As described above, This method provides a better bound than Coleman’s,
and in contrast to Coleman’s, this bound is often sharp. Unfortunately, at
present it is available only for curves of genus 2 (for which the rank of the
Jacobian is 1), since it involves an intricate study of the group law on the
Jacobian and of the formal group law. Moreover, it requires that the structure
of JK(C) have been computed. Thus, in what follows we assume that we have
computed the torsion subgroup and a generator G of the free part of JK(C).

The method is described in detail in [Fly] and [Cas-Fly], and uses the
representation of elements of the Jacobian by pairs of points on the curve
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that are conjugate over some quadratic extension of K. It can be split into
six main steps.

(1) The first step is just the remark that finding K-rational points on C
is equivalent to finding elements on the Jacobian represented by a pair
{P,P}. Indeed a point P defined over a quadratic extension of K is
K-rational if and only if it is equal to its conjugate.

(2) We choose a prime p such that the curve has good reduction at p, we
let m be the order of G in the Jacobian reduced modulo p, and we set
E = m · G. It is easy to prove that every element of the Jacobian can be
written uniquely in the form

A+ n · E , with n ∈ Z and A is in a finite set U .

(3) Using the formal group law on the Jacobian (see Section 7.3.5 for the
case of elliptic curves), for each A in the finite set U we can express the
coordinates representing an element of the form A + n · E as a power
series in n. The fact that E is in the kernel of the reduction modulo p
ensures that these power series are convergent in Zp.

(4) There exists a trivial relation between the coordinates representing the
element A+n ·E that expresses that the two points representing A+n ·E
are equal. Flynn deduces that for each A ∈ U , if an element of the
Jacobian of the form A+n · E is represented by two equal points, n must
be a zero of a power series that converges in Zp.

(5) We use Strassmann’s theorem described in Section 4.5 to bound the num-
ber of such zeros.

(6) The sum of these bounds for all A in the finite set U gives a bound on
the number of elements of the Jacobian represented by a pair of the form
(P,P ) and hence a bound on the number of rational points on the curve
itself.

Remark. As in Coleman’s method it can happen that the bound is not
sharp, but this happens much less frequently. Moreover, if the bound is not
sharp, we can try another prime p of good reduction. Finally, even if the
bound is not sharp after several attempts, we obtain a great deal of local
information on the missing points, and this can be used to find exactly all
the rational points as in the complete example that we will give in Section
13.3.6.

Example 13.3.7. Let C be the curve of genus 2 defined over Q by the equa-
tion

y2 = 2x(x2 − 2x− 2)(−x2 + 1) .

The Jacobian of this curve has rank 1, so that Chabauty’s condition is satis-
fied, and in [Cas-Fly] Flynn gives a detailed proof based on this method that
the only rational points on this curve are
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C(Q) =
{
O, (0, 0), (1, 0), (−1, 0),

(
−1

2
,
3
4

)
,

(
−1

2
,−3

4

)}
.

Since these six points cannot be equal over Fp if p � 5, we will always have
|C(Fp)| = 6, so that Coleman’s bound will always be equal to 8, which is not
sharp. In particular, this example shows why Coleman’s bound is often not
sharp.

This method provides a powerful tool for finding rational points, but as
already mentioned, it can unfortunately be used only for curves of genus 2
whose Jacobian has rank 1. In higher genus, there are no theoretical obstruc-
tions but the arithmetic on the Jacobian and the formal group law are much
more complicated. In recent years, mathematicians have preferred to focus
on curves of genus 2 but whose Jacobians have higher rank, in other words
when Chabauty’s condition is not satisfied.

13.3.4 When Chabauty Fails

We have already seen that a trivial instance of Dem′yanenko’s method allows
us to find rational points on a curve C by covering them by rational points
on an elliptic curve of rank 0. We are now going to see how to generalize
this. The idea remains the same, but we will also treat the case in which the
elliptic curves have nonzero rank.

The first step is to find a covering collection for C over the base field K.
A covering collection is a set {Di → C} of K-rational covers of C in a single
K-isomorphism class such that every point in C(K) is the image of a point
in some Di(K). Given a covering collection, the question of determining or
of bounding the set of rational points on C can be reduced to determining or
bounding the set of rational points on each of the covers. There are several
techniques to find such covering collections, which all use the same idea: we
first find an Abelian variety A that maps to the Jacobian of C under an
isogeny φ. The pullbacks under φ of a suitably chosen set of embeddings of
the curve in its Jacobian then give a covering collection on curves lying over
A.

Example 13.3.8. In his PhD dissertation [Wet], Wetherell solves, thanks
to this kind of technique, what seems to be the only curve considered by
Diophantus that has genus strictly greater than 1 (Problem 17 of Book VI of
the Arabic manuscript of Arithmetica [Ses]). This curve of genus 2 is given
by the equation

C : y2 = x6 + x2 + 1 .

It covers two elliptic curves with the maps (x, y) �→ (x2, y) and (x, y) �→
(1/x2, y/x3). Let A denote the product of these elliptic curves. Both elliptic
curves have rank 1 over Q, so that the Jacobian of C, which is isogenous to
A, has rank 2, and hence Chabauty’s condition is not satisfied. Wetherell
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uses pullbacks of the isogeny from A to J(C) to find a pair of genus-3 curves
D1 and D2 whose rational points cover the rational points on C (up to the
hyperelliptic involution). The Jacobians of these genus-3 curves have rank
1 and 0, so that the rational points on these curves can be found using
Chabauty’s methods. Finally, one finds that the finite rational points on C
are (0,±1) and (±1/2,±9/8).

Example 13.3.9. In [Fly-Wet2], Flynn and Wetherell use another method,
whose principle has been used for several other Diophantine equations, to
solve the Diophantine equation

x4 + y4 = 17

proposed by Serre. They use the map introduced for 2-descent on the Jacobian
that generalizes the fundamental 2-descent map for elliptic curves studied in
Sections 8.2 and 8.3. Thanks to this map, they obtain a covering collection
for the curve defined over Q by the equation

y2 = (9x2 − 28x + 18)(x2 + 12x + 2)(x2 − 2) ,

whose rational points are sufficient to solve Serre’s equation.

There is a more classical approach using resultants to obtain covering
collections. It is used by Bruin to solve some generalized Fermat equations,
see [Bru1] and Chapter 14, and in [Duq1] to solve a hyperelliptic curve of
genus 4 whose Jacobian has rank 4. This method consists in factoring the
polynomial f defining the curve over some number field so that both factors
must be squares but have lower degrees. We will illustrate this method in the
complete example given in Section 13.3.6.

In most cases, such covering methods give rise to a new Diophantine prob-
lem on elliptic curves that is very similar to the problem of finding rational
points on curves of higher genus. This new problem can be solved, under
certain conditions, by the method called elliptic curve Chabauty. We will de-
scribe this method in detail for two reasons. The first one is that it allows
us to solve many Diophantine problems that do not satisfy Chabauty’s con-
dition. The second one is that, as explained above, it is very similar to the
explicit Chabauty method developed by Flynn and much easier to describe
and to understand.

13.3.5 Elliptic Curve Chabauty

We want to solve the following problem: given an elliptic curve E defined
over a number field K = Q(α) of degree d over Q, find all the points in E(K)
having their x-coordinate in Q.
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It follows from Faltings’s theorem that the number of such points is finite
and this also follows from Chabauty’s theorem if the Mordell–Weil rank of
E(K) is strictly less than d.

As in the explicit method developed by Flynn for curves of genus 2, we
will be able to conclude only under this condition. For this, we will use the
formal group law on elliptic curves to construct power series with coefficients
in Zp whose zeros correspond to the points that we want (in other words,
having a Q-rational x-coordinate). The number of these zeros can then be
bounded thanks to Strassmann’s theorem or to the Weierstrass preparation
theorem seen in Chapter 4. Once again, we will obtain an upper bound only
for the number of points and not for the heights of the points, so that the
method fails if the bound obtained is not sharp.

The first step of the method is evidently the determination of the Mordell–
Weil group E(K). This can be done using descent methods generalizing those
explained for the case of Q in Chapter 8; see [Sim2].

Thus, in what follows we will assume that we know the torsion subgroup
and a set of generators of E(K). It is clearly not necessary to treat the trivial
case of rank 0. We thus write

E(K) = 〈P1, . . . , Pr〉 ⊕ E(K)t .

The second step is to transform the condition of Q-rationality into a condition
of vanishing of power series. To do this, choose a prime number p such that
α is p-integral, and let α̃ denote the image of α in ZK/pZK . Assume that p
is chosen so that the following conditions hold:

(1) [Qp(α) : Qp] = [Q(α) : Q] = d ,
(2) Q(α)/Q is unramified at p ,
(3) |α|p = 1 ,
(4) The residue field of Qp(α) is Fp (α̃) ,
(5) The curve E has good reduction at p ,
(6) The coefficients of the equation defining E are p-integral.

Remark. The first condition is always satisfied if d is 2 or 3. In higher
degrees it is much more difficult to satisfy. However, in [Fly-Wet2] Flynn and
Wetherell prove that we can remove this condition. Conditions (2), (5), and
(6) are not difficult to satisfy, and conditions (3) and (4) ensure that α (or
α̃) is a generator for all fields and rings that we will consider.

Denote by Ẽ the reduction of E modulo p. Thanks to condition (5), Ẽ is
an elliptic curve defined over Fp (α̃). Let us now define for all integers i � r,

P̃i , the reduction of Pi modulo p,
mi , the order of P̃i in Ẽ (Fp (α̃)),
Qi , the multiple mi · Pi of Pi in E(Q(α)),
ti , the t-coordinate of Qi (ti = −xi/yi if Qi = (xi, yi)).
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We now want to write any point in E(Q(α)) in terms of the Qi instead of
the Pi. To do this, we define a finite set U in the following way:

U = {T + n1 · P1 + · · ·+ nr · Pr : T ∈ E(Q(α))t, −mi/2 < ni � mi/2} ,

so that every point P in E(Q(α)) can be written uniquely in the form

P = U + n1 ·Q1 + · · ·+ nr ·Qr , (13.4)

where U lies in the finite set U and ni ∈ Z. In order to express the x-
coordinate of a point in this form as a power series, we use the formal group
law described in Section 7.3.5. The curves that we deal with are given by
equations of the form

y2 = g3x
3 + g2x

2 + g1x + g0 .

Thus, let us first give the explicit formulas that we need for such curves.
These formulas can be easily deduced from the formulas for the formal group
law given in 7.3.5. We set t = −x/y. The inverse of the x-coordinate is in
Z [g0, g1, g2, g3] [[t]] and the beginning of its expansion is

1
x

= g3

(
t2 + g2t

4 +
(
g1g3 + g2

2

)
t6 + O

(
t8
))

. (13.5)

Moreover, we can express the x-coordinate of the sum of a point (x0, y0) and a
point (x, y) as a power series ψ in t with coefficients in Z [g0, g1, g2, g3, x0, y0]:

ψ(t) = x0 + 2y0t +
(
3g3x

2
0 + 2g2x0 + g1

)
t2

+ (4g3x0y0 + 2g2y0) t3 + O
(
t4
)

.
(13.6)

We will also use the formal logarithm and the formal exponential. The be-
ginning of their expansions are given by

L(t) = t +
1
3
g2t

3 +
1
5
(
g2
2 + 2g1g3

)
t5 + O

(
t7
)

, (13.7)

E(t) = t− 2
3!

g2t
3 +

8
5!
(
2g2

2 − 6g1g3

)
t5 + O

(
t7
)

. (13.8)

Remark. Note that as usual the coefficients of E(t) are not in the ring
Z [g0, g1, g2, g3], but the denominator of the kth coefficient divides k!.

We can now use this formal group structure. The t-coordinate of n1 ·Q1 +
· · · + nr · Qr can be expressed as a formal power series in the r variables
n1, . . . , nr. Indeed we have

t-coord(n1 ·Q1 + · · ·+ nr ·Qr) = E(n1L(t1) + · · ·+ nrL(tr)) .

The sixth condition on p, the above remark, and the fact that each Qi is in
the kernel of reduction modulo p (so that |ti|p � p−1) ensure that this power
series has coefficients in Zp[α] converging to zero in Zp[α].
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To describe all points in E(Q(α)) as in (13.4), it is now necessary to add
such a linear combination of the Qi with an element U of the finite set U .
If U = (x0, y0), we use formula (13.6) to express the x-coordinate of U + n1 ·
Q1 + · · ·+ nr ·Qr as a power series in Zp[α][[n1, . . . , nr]]. If U is the point at
infinity, we use formula (13.5) to express the inverse of the x-coordinate of
U +n1 ·Q1 + · · ·+nr ·Qr as a power series in Zp[α][[n1, . . . , nr]]. In any case,
let us call θU the resulting power series. We can split θU into its components

θU = θ
(0)
U + θ

(1)
U α + · · ·+ θ

(d−1)
U αd−1 ,

where each θ
(i)
U is a power series in Zp[[n1, . . . , nr]] whose coefficients converge

to zero in Zp. Finally, a point P = U+n1 ·Q1+· · ·+nr ·Qr has its x-coordinate
in Q if and only if

θ
(1)
U (n1, . . . , nr) = · · · = θ

(d−1)
U (n1, . . . , nr) = 0 .

The strategy is now clear: for each U in the finite set U , we compute these
d − 1 power series in r variables. Then we use Strassmann’s theorem given
in Section 4.5 or variants in several variables (see [Sug, Duq1]) to obtain a
bound on the number of zeros of such a system of power series. This bound
is also a bound on the number of points with a Q-rational x-coordinate of
the form U + n1 · Q1 + · · · + nr · Qr. Doing this for all the elements of the
finite set U give a bound for the elliptic Chabauty problem.

Remarks. (1) By this method, we obtain a system of d− 1 power series in
r variables, so that the Chabauty-like restriction on the rank of E(Q(α))
(namely r < d) is crucial for the success of this method.

(2) This method can easily be adapted if Q is replaced by a number field.

13.3.6 A Complete Example

In this section, we will apply and illustrate the elliptic curve Chabauty
method to prove the following theorem [Duq2].

Theorem 13.3.10. Let C be the curve of genus 2 defined over Q by the
equation

C : y2 = (x2 + 1)(x2 + 3)(x2 + 7) .

The rational points on this curve are

C(Q) = {∞+,∞−, (1,±8), (−1,±8)} ,

where ∞+ and ∞− are the points on the nonsingular curve that lie over the
point at infinity on C.
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This curve was introduced by Flynn and Wetherell in [Fly-Wet1] together
with about fifty semirandom curves of the same type (where the polynomial
f is even) in order to test their method for such curves. It is the only one
for which their method fails. Thus we use another method by changing the
problem of finding rational points on a hyperelliptic curve into an elliptic
Chabauty problem.

Since the polynomial x2 +1 factors in the number field Q(i) we are going
to apply the resultant method as follows. If (x, y) is a point on C(Q) there
exist y1, y2, and α in Q(i) such that we have simultaneously

αy2
1 = (x2 + 3)(x + i) ,

αy2
2 = (x2 + 7)(x− i) .

These equations are those of elliptic curves defined over Q(i) with a point
(x, yi) having its x-coordinate in Q. Therefore, if for each α we are able to
solve the corresponding elliptic Chabauty problem on one of these two curves,
then we are able to prove Theorem 13.3.10.

The first step is to enumerate the possible values for α. The resultant of
(x2 + 3)(x + i) and (x2 + 7)(x− i) is equal to −273i, so that if y �= 0,∞, we
can assume, without loss of generality, that α is a square-free {2, 3}-unit in
Q(i). The {2, 3}-units of Q(i) are generated by i, 1 + i, and 3, so that

α ∈ {1, i, 1 + i, 3, 1− i, 3i, 3(1 + i), 3(1− i)}.

We can reduce this set by standard local arguments. Indeed, if x is in Q,
α(x2 +3)(x+ i) and α(x2 +7)(x− i) can be simultaneously squares modulo 9
in Q(i) only if α = 1+ i or 1− i. We will treat only the case α = 1− i (in fact
the other case can be deduced from this one by an easy change of variables).
Let E1 and E2 be the elliptic curves defined over Q(i) by the equations

E1 : y2 = (1− i)(x2 + 3)(x + i) .

E2 : y2 = (1− i)(x2 + 7)(x− i) .

If (x, y) ∈ C(Q), there exist a point on E1(Q(i)) and a point on E2(Q(i))
having the same x-coordinate x (which is in Q). Thus if the elliptic Chabauty
method succeeds either for E1 or for E2, Theorem 13.3.10 is proved. In fact,
the rank of E1(Q(i)) is equal to 2, so that the method cannot be applied since
the Chabauty-like condition is not satisfied. On the other hand, the rank of
E2(Q(i)) is equal to 1, so hopefully the method can be applied. The torsion
subgroup is equal to {O, (i, 0)}, and G = (4i − 3, 12) is a generator for the
free part of E2(Q(i)); see [Sim2].

The smallest prime number p satisfying the six conditions given in Section
13.3.5 is p = 11. The reduction G̃ of G modulo 11 on Ẽ2 has order 5, so that
we set
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m = 5 ,

Q = 5 ·G ,

t = the t-coordinate of Q (t = −x/y if Q = (x, y)) ,
U = {O, (i, 0),±G,±2 ·G,±G + (i, 0),±2 ·G + (i, 0)} .

Therefore every point P in E2(Q(i)) can be written in the form P = U +nQ
with U in the finite set U and n in Z. In fact, U can be easily reduced in two
ways.

First, since Q is in the kernel of the reduction modulo 11, P̃ = Ũ . Thus if
the x-coordinate of P is in Q, the x-coordinate of Ũ is in F11. Hence we
can eliminate the points (i, 0),±G and ±2 ·G from U .
Second, since n is in Z, if we know the values of n such that the x-coordinate
of U + nG is in Q, we know the values of n such that the x-coordinate of
−U + nG is in Q. This explains why U has not been defined by

{T + n1 · P1 + · · ·+ nr · Pr : T ∈ E(Q(α))t, 0 � ni � mi − 1} .

Finally, we choose

U = {O, G + (i, 0), 2 ·G + (i, 0)} .

We will now compute the beginning of the expansions of the power series
involved in the method. In fact, working modulo 115 will be sufficient for
our purpose. Thanks to the standard estimate |k!|p � p−(k−1)/(p−1) and the
remark given after equation 13.8, the terms in O(t7) can be ignored. Let us
first compute the t-coordinate of Q (mod 115),

t = 11(10763 + 7311i) (mod 115) ,

then its formal logarithm thanks to (13.7),

L(t) = 11(1446 + 5496i) (mod 115) .

We can now compute the t-coordinate of nQ modulo 115 thanks to the formal
exponential (13.8)

t-coord(nQ) = 11(1446 + 5496i)n + 113(77 + 15i)n3 (mod 115) .

Thanks to the expansions (13.5) and (13.6), we deduce that

θO(n) = 112(574 + 17i)n2 + 114(8 + 7i)n4 (mod 115) ,

θG+(i,0)(n) = −1 + 11(45 + 3073i)n + 112(382 + 1318i)n2

+ 113(68 + 16i)n3 + 114(10 + 5i)n4 (mod 115) ,

θ2·G+(i,0)(n) = 154608 + 11 · 10541i + 11(1484 + 10609i)n

+ 112(445 + 247i)n2 + 113(115 + 93i)n3 + 114(7 + 8i)n4 (mod 115) .



462 13. Rational Points on Higher-Genus Curves

Thus, when U + nQ has its x-coordinate in Q the following power series
θ
(1)
U (n) must vanish:

θ
(1)
O (n) = 112 · 17n2 + 114 · 7n4 (mod 115) ,

θ
(1)
G+(i,0)(n) = 11 · 3073n + 112 · 1318n2 + 113 · 16n3 + 114 · 5n4 (mod 115) ,

θ
(1)
2·G+(i,0)(n) = 11 · 10541 + 11 · 10609n

+ 112 · 247n2 + 113 · 93n3 + 114 · 8n4 (mod 115) .

We now use Strassmann’s theorem to bound the number of zeros of these
power series.

– If U = O, we assume that n �= 0 and apply Strassmann’s theorem to the
power series

θ
(1)
O (n)
n2

= 112 · 17 + 114 · 7n2 (mod 115) ,

which proves that this power series has no 11-adic solution. Thus θ
(1)
O has

only one zero. We already know that O is Q-rational, so that the bound is
sharp in this case.

– If U = G + (i, 0), we deduce that the power series θ
(1)
G+(i,0) has at most one

zero in Z11. Again this bound is sharp since for n = 0, G + (i, 0) + nQ =
(−1,−4i) has its x-coordinate in Q.

– If U = 2 · G + (i, 0), the bound given by Strassmann’s theorem is again
equal to 1 but we do not know any point of the form 2 · G + (i, 0) + nQ
having its x-coordinate in Q. Thus the bound is not sharp and the method
fails.

Finally, the elliptic Chabauty method only allows us to prove that the points
on E2(Q(i)) having their x-coordinate in Q are O, (−1,±4i), and at most
one point P0 (and its opposite) such that

P0 = 2 · (4i− 3, 12) + (i, 0) + nQ with n ∈ Z .

We could of course try other prime numbers p, but the method also fails for
p = 19 and p = 23.

Thus the elliptic Chabauty method does not allow us to prove Theorem
13.3.10 directly. However, we get some local information. Indeed, Let x0 de-
note the x-coordinate of P0. Since Q is in the kernel of the reduction modulo
11, x0 is equal to the x-coordinate of 2 · (4i − 3, 12) + (i, 0) modulo 11. It
follows that x0 ≡ 3 (mod 11). It is now easy to check that there is no point in
C(Q) whose x-coordinate is congruent to 3 modulo 11. Thus, even if the el-
liptic Chabauty method used alone fails here (and this is not often the case),
we still have proved Theorem 13.3.10.



14. The Super-Fermat Equation

This chapter gives a detailed survey of the work done on the super-Fermat
equation by many authors, assuming without proof the most difficult results.
The parametrizations given for the elliptic case were initially obtained (with
a few errors and omissions) by F. Beukers and D. Zagier, and completed by
J. Edwards for the most difficult and interesting icosahedral case. Although
I have included this chapter in the part dealing with “modern methods,”
most of its contents is the treatment of the elliptic cases not including the
icosahedral case. This is not at all modern, but is exactly the type of reasoning
done using simple algebraic number theory that we have employed many
times in Chapter 6. Sections 14.2, 14.3, and 14.4 should therefore not be
studied directly (it would probably be rather boring to do so), but considered
instead as exercises that the reader is invited to solve by himself without
looking at the completely detailed solutions given in these sections. On the
other hand, the solution to the icosahedral case, due to Beukers and Edwards,
uses classical invariant theory, but in a very original manner linked to the
modern theory of Grothendieck dessins d’enfants, and the results on the
hyperbolic case use modern methods for finding rational points on curves of
higher genus (Chapter 13), and the modular method of Ribet–Wiles (Chapter
15).

14.1 Preliminary Reductions

The general super-Fermat equation is the equation Axp + Byq + Czr = 0 for
given nonzero integers A, B, C and integral exponents p, q, and r greater
than or equal to 2 (otherwise the equation would have little interest). The
number of integers less than or equal to some large X of the form Axp

is O(X1/p), and similarly for Byq and Czr. Thus, to be able to obtain 0
as a sum of such quantities by something other than pure accident, it is
reasonable to believe that we must have X � O(X1/p+1/q+1/r), in other
words 1/p + 1/q + 1/r � 1. Thus, we expect (of course we have no proof)
that when 1/p + 1/q + 1/r < 1 (the so-called hyperbolic case), we will have
only finitely many solutions. On the other hand, when 1/p + 1/q + 1/r > 1
(the so-called elliptic or spherical case), we expect an infinity of solutions.
Finally, as we have seen in Sections 6.4.2, 6.4.3, 6.4.4, 6.4.5, and 6.5, in the
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intermediate case 1/p + 1/q + 1/r = 1 (the so-called parabolic) we can have
infinitely many or finitely many solutions, depending on A, B, C.

This heuristic reasoning is almost correct, but not quite. Indeed, I claim
that for many triples (p, q, r) it is easy to construct an infinite number of
“nontrivial” solutions. Assume for instance that A = B = 1 and C = −1 and
that (p, q, r) are pairwise coprime. Let a and b be integers strictly greater
than 1, and set c = a+ b. Multiplying this equation by auqrbvprcwpq for some
integers u, v, and w we obtain

auqr+1bvprcwpq + auqrbvpr+1cwpq = auqrbvprcwpq+1 .

This is a “nontrivial” solution to our equation if we choose u ≡ (qr)−1

(mod p), v ≡ (pr)−1 (mod q), and w ≡ (pq)−1 (mod r). Therefore it is
necessary to add a further condition to exclude this type of solution, and
the natural choice is to ask that x, y, and z be pairwise coprime. With that
additional restriction, our heuristic reasoning is correct.

A second reduction can be made most of the time. Assume that two
among p, q, and r are coprime. Without loss of generality, assume for example
that gcd(p, q) = 1. There exist unique positive integers u and v such that
up−vq = 1 and 1 � u � p, 1 � v � q. Multiplying our equation by AvqBpq−up

gives the equation xp
1 + yq

1 + C1z
r = 0 with x1 = (AB)ux, y1 = AvBp−vy

and C1 = AvqBpq−upC. We may thus in that case assume that A = B = 1.
Note, however, that the coprimality of the solutions may be destroyed by this
transformation.

In this chapter, we will in fact often consider the case A = B = 1 and
C = ±1. It is easy to see that we can then reduce to the case C = −1:
indeed, if C = 1 and if xp + yq + zr = 0, then if p, q, and r are all three
even it is clear by positivity that there are no nontrivial solutions, or else
at least one of them, say r, is odd, and then the equation can be written
xp + yq − (−z)r = 0, thus with C = −1. Therefore we will consider mainly
the equations xp + yq = zr, as usual with gcd(x, y) = 1.

Finally, given a triple (p, q, r) up to permutation, if we want to fix the
right-hand side, say zr, then we must consider the four equations −xp−yq =
zr, xp − yq = zr, −xp + yq = zr, and xp + yq = zr. If p (respectively q,
respectively r) is odd, we may change x into −x (respectively y into −y,
respectively z into −z). Then it is easily seen by examination of cases that
we can reduce to the examination of a smaller number of equations. More
precisely, if at least two of p, q, and r are odd, it is sufficient to consider the
equation xp +yq = zr; if exactly one is odd, we must in addition consider the
equation xp − yq = zr if p or r is odd, and the equation −xp + yq = zr if q
is odd. Finally, if p, q, and r are even, we must consider the three equations
xp + yq = zr, xp− yq = zr, and −xp + yq = zr, except if p = q, in which case
it is enough to consider the first two.

We will begin by considering the elliptic case. Up to permutation of
(p, q, r), this corresponds to the cases (p, q, r) = (2, 2, r) for r � 2, (2, 3, 3),
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(2, 3, 4), (2, 3, 5), which for reasons that will be seen below can be called the
dihedral, tetrahedral, octahedral, and icosahedral cases respectively.

14.2 The Dihedral Cases (2, 2, r)

This case is the simplest. We must consider the two equations x2 − y2 = zr

and x2 + y2 = zr.

14.2.1 The Equation x2 − y2 = zr

We set a = x+y, b = x−y, so that ab = zr. Since x and y are coprime, there
are two cases. The first is x �≡ y (mod 2), in which case a and b are coprime
and z is odd, hence a = ±sr

1, b = ±tr1 for coprime odd integers s1 and t1,
so that x = ±(sr

1 + tr1)/2, y = ±(sr
1 − tr1)/2, and z = s1t1 (and also −s1t1 if

r is even). If we insist on not having denominators, we set s = (s1 + t1)/2,
t = (s1−t1)/2, which are coprime integers of opposite parity, hence we obtain
the parametrization

(x, y, z) = (±((s + t)r + (s− t)r)/2,±((s + t)r − (s− t)r)/2, s2 − t2)

(and also z = t2 − s2 if r is even). Note that here we can insist either that
the ± signs be the same (this is how they have been obtained), or that they
be independent, since a change of t into −t changes only y into −y.

The second case is x ≡ y ≡ 1 (mod 2), so that a and b are even but a/2
and b/2 are coprime of opposite parity. Changing y into −y if necessary, we
may therefore assume that a/2 is even and b/2 is odd. Since (a/2)(b/2) =
2r−2(z/2)r, we have a = ±2r−1sr, b = ±2tr for coprime integers s and t with
t odd if r � 3, t �≡ s (mod 2) if r = 2, so that we obtain

(x, y, z) = (±(2r−2sr + tr),±(2r−2sr − tr), 2st)

(and also z = −2st if r is even).
We thus obtain the following special cases, where we always assume that

s and t are coprime, plus indicated additional conditions modulo 2. Often
the additional sign of x, y, or z when r is even can be absorbed by changing
s into −s, or t into −t, or by exchanging s and t.

r = 2: (x, y, z) = (±(s2 + t2), 2ts, (s− t)(s + t)), where s �≡ t (mod 2), up
to exchange of y and z.

r = 3: (x, y, z) = (s(s2 + 3t2), t(3s2 + t2), (s − t)(s + t)), where s �≡ t
(mod 2), or (x, y, z) = (±(2s3 + t3), 2s3 − t3, 2ts), where 2 � t.

r = 4: (x, y, z) = (±(s4+6t2s2+t4), 4ts(s2+t2), (s−t)(s+t)), where s �≡ t
(mod 2), or (x, y, z) = (±(2s2 − 2st + t2)(2s2 + 2st + t2),±(2s2 − t2)(2s2 +
t2), 2ts), where 2 � t.

r = 5: (x, y, z) = (s(s4 + 10t2s2 + 5t4), t(5s4 + 10t2s2 + t4), (s− t)(s + t)),
where s �≡ t (mod 2), or (x, y, z) = (±(8s5 + t5), 8s5 − t5, 2ts), where 2 � t.
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14.2.2 The Equation x2 + y2 = zr

Here we set a = x + iy, b = x − iy so that ab = zr. If we had x ≡ y ≡ 1
(mod 2), we would have zr ≡ 2 (mod 8), which is impossible since r � 2.
Thus since x and y are coprime, x and y have opposite parity and a and
b are coprime in the principal ideal domain Z[i]. It follows that there exist
α = s + it ∈ Z[i] and some v = 0, 1, 2, or 3 such that x + iy = ivαr, hence
x−iy = i−vαr, z = αα (and also z = −αα if r is even). Clearly multiplication
by iv corresponds to changing signs of x and/or y and exchange of x and y,
so that up to exchange of x and y we obtain the parametrization⎧⎪⎨⎪⎩

x = ±∑
0�k��r/2�(−1)k

(
r
2k

)
t2ksr−2k ,

y = ±∑
0�k��(r−1)/2�(−1)k

(
r

2k+1

)
t2k+1sr−2k−1 ,

z = s2 + t2 (and also −(s2 + t2) if r is even) .

Furthermore, the condition gcd(x, y) = 1 of course implies that s and t are
coprime, and since r � 2, if s and t were both odd we would have αr ≡
(1 + i)r ≡ 0 (mod 2Z[i]), so that x and y would both be even. It follows that
in addition s and t have opposite parity. Conversely, it is easy to see that if
this is the case then x and y are coprime.

We thus obtain the following special cases, where we assume that s and t
are coprime of opposite parity. Again the additional sign of x, y, or z when r
is even, or the exchange of x and y can be absorbed by changing s into −s,
or t into −t, or by exchanging s and t, or a combination.

r = 2: (x, y, z) = (2ts, s2 − t2,±(s2 + t2)), up to exchange of x and y.

r = 3: (x, y, z) = (s(s2 − 3t2), t(3s2 − t2), s2 + t2).

r = 4: (x, y, z) = (±(s2−2st−t2)(s2+2st−t2), 4ts(s−t)(s+t),±(s2+t2)),
up to exchange of x and y.

r = 5: (x, y, z) = (s(s4 − 10t2s2 + 5t4), t(5s4 − 10t2s2 + t4), s2 + t2).

14.2.3 The Equations x2 + 3y2 = z3 and x2 + 3y2 = 4z3

As additional examples of dihedral equations we prove the following results,
which we will need elsewhere.

Proposition 14.2.1. (1) The equation x2 +3y2 = z3 in nonzero integers x,
y, and z with x and y coprime can be parametrized by

(x, y, z) = (s(s− 3t)(s + 3t), 3t(s− t)(s + t), s2 + 3t2) ,

where s and t denote coprime integers of opposite parity such that 3 � t.



14.3 The Tetrahedral Case (2, 3, 3) 467

(2) The equation x2 + 3y2 = 4z3 in nonzero integers x, y, and z with x and
y coprime has the two disjoint parametrizations

(x, y, z) = ((s + t)(s− 2t)(2s− t), 3st(s− t), s2 − st + t2) ,

(x, y, z) = (±(s3 + 3s2t− 6st2 + t3), s3 − 3s2t + t3, s2 − st + t2) ,

where in both cases s and t are coprime integers such that 3 � s + t. The
first parametrization corresponds to the case 6 | y, and the second to the
case that y is coprime to 6.

Proof. For (1) we set x1 = x+3y and the equation becomes x2
1−3x1(2y)+

3(2y)2 = z3. Thanks to Proposition 6.4.16 of Chapter 6 we know that this
equation has three disjoint parametrizations. Among these, only the first
gives an even value for the second variable, so that x1 = s3 +3s2t−6st2 + t3,
y = 3st(s− t)/2, and z = s2−st+ t2. If s is even we set S = t−s/2, T = s/2,
if t is even we set S = s − t/2, T = t/2, and if s and t are both odd we set
S = (s + t)/2 and T = (s− t)/2. In all three cases we check that up to sign
we obtain the given parametrizations and the conditions at the primes 2 and
3.

For (2) we note that x and y are both odd, so we set x1 = (x+3y)/2, and
the equation is x2

1 − 3x1y + 3y2 = z3. By Proposition 6.4.16 once again we
obtain three parametrizations, but it is immediate that (up to the sign of x,
which does not matter) the last two are interchanged by exchanging s and t,
so we have only the two parametrizations given above. Note that because of
this sign change in the interchange of the last two parametrizations we have
to add a ± sign for the parametrization of x. ��

Note that by looking modulo 8 it is clear that the equation x2+3y2 = 2z3

is impossible in coprime x, y.

14.3 The Tetrahedral Case (2, 3, 3)

14.3.1 The Equation x3 + y3 = z2

Thanks to the reductions made above, for (p, q, r) = (2, 3, 3) it is sufficient to
consider the single equation x3 +y3 = z2. We will imitate what we did in the
case of FLT, by factoring x3 + y3 in Z[ζ], where ζ is a primitive cube root of
unity. Thus, we write

(x + y)(x + ζy)(x + ζ2y) = z2 .

Case 1: 3 � z. If π ∈ Z[ζ] is a prime element that divides two distinct factors
on the left, then π | 1−ζ, hence π = 1−ζ, which is excluded since 3 � z. Thus
the factors are coprime in Z[ζ], and each one is equal to a unit multiplied
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by a square. If we had factored directly in Z, we would have obtained that
x + y = ±a2 for a ∈ Z, and since the cofactor x2 − xy + y2 is always positive
and z2 > 0, we necessarily have x + y = a2. Thus our equation implies that
x+y = a2 with a ∈ Z and x+ζy = (−ζ)kα2 for some integer k, and conversely
this implies also x + ζ2y = (−ζ2)kα2, hence z = ±aαα. In addition, since
ζ = ζ4 is a square, we may write (−ζ)kα2 = (−1)k(αζ2k)2. Finally, our
equation is thus equivalent to the equations x + y = a2, x + ζy = εα2,
z = ±aαα, where a ∈ Z, α ∈ Z[ζ], and ε = ±1.

If we set β = ζ2α then

β2 + β
2

= ζα2 + ζ2α2 = ε(ζ(x + ζy) + ζ2(x + ζ2y)) = ε(−x− y) = −εa2 .

Conversely, if β ∈ Z[ζ] satisfies β2 + β
2

= −εa2 and if we set α = ζβ, then
one checks that

εα2 − a2

εα2 − a2
= −ζ2 =

ζ − 1
ζ − 1

,

so that y = (εα2 − a2)/(ζ − 1) ∈ Q. However, 3 � a, so that a2 ≡ 1 (mod 3),
and also (1 − ζ) � β, so that α2 ≡ ±ε (mod 1 − ζ). However, if α2 ≡ −ε
(mod 1 − ζ), we would have −a2 ≡ ε(−ε)(ζ + ζ2) ≡ 1 (mod 1 − ζ), which
is absurd. Thus α2 ≡ ε (mod 1 − ζ), so in fact y ∈ Z. Thus our equation is
now equivalent to the single simpler equation a2 = −ε(β2 + β

2
). If we write

β = u + vζ with u and v in Z, this gives finally the equation

a2 = ε(v2 + 2uv − 2u2) .

Note that the condition gcd(x, y) = 1 implies that a and β are coprime in
Z[ζ], hence that gcd(u, v) = 1. Note also for future reference that this implies
that u+ v and a are coprime (easy exercise left to the reader). Also, since we
are in the case 3 � z, we have 3 � a hence 3 � u + v. Thus

1 ≡ a2 ≡ ε((u + v)2 − 3u2) ≡ ε(u + v)2 ≡ ε (mod 3) ,

so that we must have ε = 1.
We have thus reduced our problem to the solution of a Diophantine equa-

tion of degree 2, for which an algorithmic solution is always possible.
We can do one more important reduction. It is clear that exchanging x

and y is equivalent to changing β into β, or in other words the pair (u, v) into
the pair (u− v,−v). Note that v ≡ a (mod 2). Thus, if a is odd, v is odd, so
either u or u− v is odd. If a is even, then v is even, so that u is odd since it
is coprime to v. Thus in all cases we may assume, possibly after exchanging
x and y, that u + v �≡ a (mod 2).

We write 3u2 = (u + v)2 − a2 = (u + v − a)(u + v + a). Since 3 � a and
3 � (u+ v), if necessary by changing β into −β (or a into −a) we may assume
that 3 | u+v−a, and then 3 � u+v+a. Since u+v and a are coprime, and since
we have reduced above to the case that they do not have the same parity, it
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follows that u + v − a and u + v + a are coprime. Thus u + v − a = 3ε1s
2
1,

u + v + a = ε1t
2
1, so u = ε2s1t1 with s1 and t1 coprime and odd, and with

ε1 = ±1 and ε2 = ±1. If we change simultaneously u, v, and a into their
opposites, we may assume that ε1 = 1. Changing s1 into −s1 we may also
assume that ε2 = 1. Finally, we set s = s1, t = (t1−s1)/2, which are coprime
with s odd, which gives u = s(s+2t), v = s2 +2t2, a = −s2 +2st+2t2). The
condition 3 � u + v (or 3 | a) is equivalent to 3 � (s2 + st + t2), hence (since
s and t are coprime) to s �≡ t (mod 3). Replacing everywhere gives the first
parametrization⎧⎪⎨⎪⎩

x = s(s + 2t)(s2 − 2ts + 4t2) ,

y = −4t(s− t)(s2 + ts + t2) ,

z = ±(s2 − 2ts− 2t2)(s4 + 2ts3 + 6t2s2 − 4t3s + 4t4) ,

where s is odd and s �≡ t (mod 3), up to exchange of x and y.
Note that if we had s ≡ t (mod 3) we would have 3 | gcd(x, y), contrary to

our assumption. Note also that if we had not done the reduction equivalent to
exchanging x and y, we would have obtained a second parametrization, which
would have been equivalent to the first one where x and y are exchanged.
Case 2: 3 | z. In this case x + y, x + ζy, and x + ζ2y are all three divisible
by 1− ζ, and their quotient by 1− ζ are pairwise coprime. Thus

x + y

3
x + ζy

1− ζ

x + ζ2y

1− ζ2
= (z/3)2

with the three factors on the left pairwise coprime, so as above, our equation
is equivalent to x + y = 3a2, x + ζy = ε(1− ζ)α2, z = ±3aαα, with ε = ±1.
We note that since 3 � xy (otherwise 3 | gcd(x, y)) then vp(x + ζy) = vp(x +
y + (ζ − 1)y) = 1, where p = (1− ζ)Z[ζ], so that α is coprime to 1− ζ.

We have (1−ζ)y = 3a2−ε(1−ζ)α2, hence y = (1−ζ2)a2−εα2, and since
y ∈ Q we obtain α2−α2 = εa2(ζ−ζ2). Conversely, if this is satisfied for some
α ∈ Z[ζ], then we can take y = (1 − ζ2)a2 − εα2 ∈ Z. Thus as before, our
equation is equivalent to the single simpler equation a2(ζ− ζ2) = ε(α2−α2).
If we write α = u + vζ with u and v in Z, this finally gives the equation

a2 = εv(2u− v) .

We have already mentioned that α is coprime to 1 − ζ, which is equivalent
to 3 � u + v. In addition, the condition gcd(x, y) = 1 implies that a and α
are coprime in Z[ζ], so that gcd(u, v) = 1. Thus the GCD of v and 2u− v is
equal to 1 if v is odd, and to 2 if v is even.

It is easily seen that exchanging x and y is here equivalent to simultane-
ously changing α into α and ε into −ε. Thus, we may assume that ε = 1, so
we have two possibilities according to the parity of v.

– If v is odd, then v = ε1s
2
1, 2u− v = ε1t

2
1, so that a = ε2s1t1 with s1 and t1

odd and ε1 = ±1. Changing α into −α, we may assume that ε1 = 1, and
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changing s1 into −s1 that ε2 = 1. We set s = (s1 + t1)/2, t = (s1 − t1)/2,
which are coprime integers of opposite parity, so that v = (s + t)2, u =
s2 + t2, a = s2 − t2. The condition 3 � u + v is again equivalent to s �≡ t
(mod 3). Replacing everywhere gives the second parametrization, where
the sign of z can be absorbed by exchanging s and t:⎧⎪⎨⎪⎩

x = s4 − 4ts3 − 6t2s2 − 4t3s + t4 ,

y = 2(s4 + 2ts3 + 2t3s + t4) ,

z = 3(s− t)(s + t)(s4 + 2s3t + 6s2t2 + 2st3 + t4) ,

where s �≡ t (mod 2) and s �≡ t (mod 3), up to exchange of x and y.
– If v is even, then v = 2ε1s

2, 2u−v = 2ε1t
2, so u = ε1(s2+t2) and a = 2ε2st,

where s and t are coprime integers of opposite parity. As before, we may
reduce to the case ε1 = ε2 = 1. The condition 3 � u + v is now equivalent
to 3 � t. Replacing everywhere gives the third and final parametrization,
where the sign of z can be absorbed by changing s into −s:⎧⎪⎨⎪⎩

x = −3s4 + 6t2s2 + t4 ,

y = 3s4 + 6t2s2 − t4 ,

z = 6st(3s4 + t4) ,

where s �≡ t (mod 2) and 3 � t, up to exchange of x and y.

We have thus proved the following theorem.

Theorem 14.3.1. The equation x3 + y3 = z2 in integers x, y, z with
gcd(x, y) = 1 can be parametrized by one of the above three parametrizations,
up to exchange of x and y, where s and t denote coprime integers satisfying
the given congruences modulo 2 and 3. In addition, these parametrizations are
disjoint, in that any solution to our equation belongs to a single parametriza-
tion (up to exchange of x and y).

14.3.2 The Equation x3 + y3 = 2z2

This equation is very similar to the preceding one, and will be needed in the
octahedral case. Thus we give only a brief sketch. We can factor x3 + y3 as
usual, and we use the fact that 2 is inert in Z[ζ]. As usual we distinguish two
cases.
Case 1: 3 � z. Using the same technique as above, it is easily seen that
our equation is equivalent to the equations x + y = 2a2, z = ±aββ, and
2a2 = −(v2 + 2uv − 2u2), where β = u + vζ, and u and v are coprime. Thus
v = 2w must be even; hence u is odd, so we obtain (u−w−a)(u−w+a) = 3w2.
It follows that a2 = (u − w)2 − 3w2 ≡ (1 − w)2 − 3w2 ≡ 1 (mod 2), so a
is odd. Since 3 | a and 3 � u + v ≡ u − w (mod 3), we may assume that
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3 | (u−w− a). Thus, we have two different cases (where as usual we can get
rid of the signs):
Case 1.1: 2 � w. Here u−w−a = 3s2

1, u−w+a = t21 with s1 and t1 odd and
coprime; hence setting s = s1, t = (t1 − s1)/2 coprime with s odd and with
s �≡ t (mod 3), we obtain w = s(s+2t), a = −s2+2st+2t2, u = 3s2+4st+2t2.
Replacing gives the first parametrization, where the exchange of x and y can
be absorbed by the exchange of s and t:⎧⎪⎨⎪⎩

x = −(s2 + 4ts− 2t2)(3s2 + 4ts + 2t2) ,

y = (s2 + 2t2)(5s2 + 8ts + 2t2) ,

z = ±(s2 − 2ts− 2t2)(7s4 + 20ts3 + 24t2s2 + 8t3s + 4t4) ,

where s is odd and s �≡ t (mod 3).
Case 1.2: 2 | w. Here u − w − a = 6s2, u − w + a = 2t2, w = 2st; hence
a = t2− 3s2, u = 3s2 + 2st + t2, and s and t are coprime integers of opposite
parity with 3 � t. Replacing gives the second parametrization, where the
exchange of x and y can be absorbed by changing s into −s:⎧⎪⎨⎪⎩

x = (3s2 − 6ts + t2)(3s2 + 2ts + t2) ,

y = (3s2 − 2ts + t2)(3s2 + 6ts + t2) ,

z = ±(3s2 − t2)(9s4 + 18t2s2 + t4) ,

where s �≡ t (mod 2) and 3 � t.
Case 2: 3 | z. Using the same technique as above, it is easily seen that
our equation is equivalent to the equations x + y = 6a2, z = ±3aαα, y =
2(1− ζ2)a2 − εα2, and 2a2 = εv(2u− v), where α = u + vζ and u and v are
coprime, and α is coprime to 1−ζ. Thus v = 2w must be even, and hence u is
odd, so we deduce that a is even and εw(u−w)/2 = (a/2)2. Since exchanging
x and y is equivalent to changing α into α and ε into −ε, we may assume
that ε = 1. Once again we have two cases, where as usual we can get rid of
the signs.
Case 2.1: 2 � w. Here w = s2, u − w = 2t2, a = 2st, so u = s2 + 2t2,
v = 2s2, where s and t are coprime with s odd. Replacing, we obtain the
third parametrization: ⎧⎪⎨⎪⎩

x = −3s4 + 12t2s2 + 4t4 ,

y = 3s4 + 12t2s2 − 4t4 ,

z = 6ts(3s4 + 4t4) ,

where s is odd and 3 � t, up to exchange of x and y.
Case 2.2: 2 | w. Here w = 2s2, u−w = t2, a = 2st, so u = 2s2 + t2, v = 4s2,
where s and t are coprime with t odd. Replacing, we obtain the fourth and
final parametrization:
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⎧⎪⎨⎪⎩
x = −12s4 + 12t2s2 + t4 ,

y = 12s4 + 12t2s2 − t4 ,

z = 6ts(12s4 + t4) ,

where t is odd and 3 � t, up to exchange of x and y.
We have thus proved the following theorem.

Theorem 14.3.2. The equation x3 + y3 = 2z2 in integers x, y, z with
gcd(x, y) = 1 can be parametrized by one of the above four parametriza-
tions, up to exchange of x and y, where s and t denote coprime integers
with the indicated congruence conditions modulo 2 and 3. In addition, these
parametrizations are disjoint, in that any solution to our equation belongs to
a single parametrization (up to exchange of x and y).

14.3.3 The Equation x3 − 2y3 = z2

We will also need this equation in the octahedral case. Note first that z is
necessarily odd, since otherwise x is even, so y is also even, a contradiction.
Similarly, it is easy to check that the congruence x3−2y3 ≡ 0 (mod 9) implies
that x ≡ y ≡ 0 (mod 3), which is impossible. Thus we must have 3 � z, i.e.,
the “second case” does not occur.

We now work in the number field K = Q(θ), where θ3 = 2, whose ring
of integers is Z[θ] and is a principal ideal domain. Note also that 3 is totally
ramified in Z[θ]. Our equation is a norm equation of the type N (α) = z2, for
α = x− yθ ∈ Z[θ]. We factor our equation as (x− yθ)(x2 +xyθ + y2θ2) = z2.
Since 3 � z, as usual it is easily seen that the two factors on the left are
coprime in Z[θ], so that x− yθ = ±εkβ2 for ε = θ − 1 the fundamental unit,
and some β ∈ Z[θ]. We may of course assume that k = 0 or 1. Taking norms
and using the fact that N (ε) = 1 gives z2 = ±N (β)2, so that the sign must
be +, and then z = ±N (β). The only condition is thus that the coefficient of
θ2 in εkβ2 be equal to 0. Writing β = u + vθ + wθ2, we thus have two cases.
Case 1: k = 0. Here we obtain the equations v2 + 2uw = 0, x = u2 + 4vw,
y = −2(w2 + uv), z = ±(u3 + 2v3 + 4w3 − 6uvw). Thus v = 2v1 is even,
so u is odd. Since x and y are coprime, so are u and w. Thus the equation
uw = −2v2

1 implies that u = ε1s
2, w = −ε12t2, v = ε22st for some ε1 and ε2

equal to ±1, with s and t coprime and s odd. As usual, changing if necessary
β into −β, and s into −s, we may assume that ε1 = ε2 = 1. Replacing gives
the first parametrization:⎧⎪⎨⎪⎩

x = s(s3 − 16t3) ,

y = −4t(s3 + 2t3) ,

z = ±(s6 + 40t3s3 − 32t6) ,

where s is odd and s �≡ t (mod 3).
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Case 2: k = 1. Here we obtain the equations (2v − 2w)u − v2 + 2w2 = 0,
x = −u2 + 4wu + 2v2− 4wv, y = −u2 + 2vu− 4wv + 2w2. The first equation
can be written (u−w)2 + w2 = (v− u)2. Since gcd(u, v, w) = 1, the solution
to the Pythagorean triple equation gives the parametrizations u − w = 2st,
w = s2−t2, v−u = ε1(s2 +t2) or w = 2st, u−w = s2−t2, v−u = ε1(s2 +t2)
for ε1 = ±1, where s and t are coprime integers of opposite parity. Since we
can change β into −β, we may assume that ε1 = 1. Replacing gives the
following two further parametrizations:

⎧⎪⎨⎪⎩
x = 3s4 + 12ts3 + 6t2s2 + 4t3s + 3t4 ,

y = −3s4 + 6t2s2 + 8t3s + t4 ,

z = ±(9s6 + 18ts5 + 45t2s4 + 60t3s3 + 15t4s2 − 6t5s− 5t6) ,

where s �≡ t (mod 2) and 3 � t, and⎧⎪⎨⎪⎩
x = 7s4 + 4ts3 + 6t2s2 − 4t3s− t4 ,

y = 3s4 − 8ts3 − 6t2s2 − t4 ,

z = ±(17s6 + 30ts5 − 15t2s4 + 20t3s3 + 15t4s2 + 6t5s− t6) ,

where s �≡ t (mod 2) and s �≡ t (mod 3).
We have thus proved the following theorem:

Theorem 14.3.3. The equation x3 − 2y3 = z2 in integers x, y, z with
gcd(x, y) = 1 can be parametrized by one of the above three parametriza-
tions, where s and t denote coprime integers with the indicated congruence
conditions modulo 2 and 3. In addition, these parametrizations are disjoint,
in that any solution to our equation belongs to a single parametrization.

14.4 The Octahedral Case (2, 3, 4)

According to the reductions made above, this case reduces to the two equa-
tions x2 ± y4 = z3. We consider both separately.

14.4.1 The Equation x2 − y4 = z3

Factoring gives (x−y2)(x+y2) = z3. Since x and y are coprime, either x−y2

and x + y2 are coprime, or x and y are odd and (x − y2)/2 and (x + y2)/2
are coprime.
Case 1: 2 � z. Here x − y2 and x + y2 are coprime, so that x − y2 = a3,
x + y2 = b3, z = ab (the possible sign can be removed by changing the sign
of a). This is equivalent to x = y2 + a3, z = ab, and 2y2 + a3 = b3. Changing
variable names, we are thus reduced to the equation x3 + y3 = 2z2 with x
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and y odd, which we have studied above. Note that the exchange of x and y
in this latter equation is equivalent to the exchange of b with −a, hence to
the exchange of x with −x in our initial equation. Thus after replacing we
obtain the following four different parametrizations of our equation, where
in each case s and t are coprime integers satisfying the indicated additional
congruence conditions modulo 2 and 3:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = 4s(s + 2t)(s2 + ts + t2)(s4 + 4ts3 + 16t2s2 + 24t3s + 12t4)
× (19s4 − 4ts3 + 8t3s + 4t4) ,

y = ±(s2 − 2ts− 2t2)(7s4 + 20ts3 + 24t2s2 + 8t3s + 4t4) ,

z = (s2 + 2t2)(s2 + 4ts− 2t2)(3s2 + 4ts + 2t2)(5s2 + 8ts + 2t2) ,

where s is odd and s �≡ t (mod 3).
Note that changing t into −s− t changes x into −x, hence we do not need

to put a ± sign in front of x. The three other parametrizations are

⎧⎪⎨⎪⎩
x = 4ts(3s2 + t2)(3s4 − 2t2s2 + 3t4)(81s4 − 6t2s2 + t4) ,

y = ±(3s2 − t2)(9s4 + 18t2s2 + t4) ,

z = −(3s2 − 6ts + t2)(3s2 − 2ts + t2)(3s2 + 2ts + t2)(3s2 + 6ts + t2) ,

where s �≡ t (mod 2) and 3 � t,⎧⎪⎨⎪⎩
x = ±(3s4 − 4t4)(9s8 + 408t4s4 + 16t8) ,

y = 6ts(3s4 + 4t4) ,

z = (3s4 − 12t2s2 − 4t4)(3s4 + 12t2s2 − 4t4) ,

where s is odd and 3 � t, and⎧⎪⎨⎪⎩
x = ±(12s4 − t4)(144s8 + 408t4s4 + t8) ,

y = 6ts(12s4 + t4) ,

z = (12s4 − 12t2s2 − t4)(12s4 + 12t2s2 − t4) ,

where t is odd and 3 � t.
Note that the exchange of x and y in the parametrizations of x3+y3 = 2z3

corresponds only to the exchange of x and −x in the present ones.
Case 2: 2 | z. Here we must have 2 | ((x−y2)/2)(x+y2)/2, so that changing
x into −x if necessary, we may assume that 4 | x−y2. It follows that x−y2 =
4a3, x + y2 = 2b3, z = 2ab. This is equivalent to x = y2 + 4a3, z = 2ab, and
y2+2a3 = b3, with y odd. We are thus reduced to the equation x3−2y3 = z2,
which we have studied above. We thus obtain three parametrizations, which
after replacing gives the following three additional parametrizations of our
equation, for a total of seven:
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⎧⎪⎨⎪⎩
x = ±(s6 − 176t3s3 − 32t6)(s6 + 32t6) ,

y = ±(s6 + 40t3s3 − 32t6) ,

z = −8ts(s3 − 16t3)(s3 + 2t3) ,

where s is odd and s �≡ t (mod 3),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = ±(−27s12 + 324ts11 + 1782t2s10 + 3564t3s9 + 3267t4s8

+ 2376t5s7 + 2772t6s6 + 3960t7s5 + 4059t8s4

+ 2420t9s3 + 726t10s2 + 156t11s + 29t12) ,

y = ±(9s6 + 18ts5 + 45t2s4 + 60t3s3 + 15t4s2 − 6t5s− 5t6) ,

z = −2(3s4 − 6t2s2 − 8t3s− t4)(3s4 + 12ts3 + 6t2s2 + 4t3s + 3t4) ,

where s �≡ t (mod 2) and 3 � t, and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = ±(397s12 + 156ts11 + 2046t2s10 + 1188t3s9 − 1485t4s8 − 2376t5s7

− 924t6s6 − 792t7s5 + 99t8s4 + 44t9s3 − 66t10s2 − 12t11s− 3t12) ,

y = ±(17s6 + 30ts5 − 15t2s4 + 20t3s3 + 15t4s2 + 6t5s− t6) ,

z = 2(3s4 − 8ts3 − 6t2s2 − t4)(7s4 + 4ts3 + 6t2s2 − 4t3s− t4) ,

where s �≡ t (mod 2) and s �≡ t (mod 3).

Remark. We could have used the parametrizations of the dihedral equation
x2− y2 = z3, but it would not have been really simpler. The same is true for
the next equation.

We have thus proved the following theorem:

Theorem 14.4.1. The equation x2 − y4 = z3 in integers x, y, z with
gcd(x, y) = 1 can be parametrized by one of the above seven parametriza-
tions, where s and t denote coprime integers with the indicated congruence
conditions modulo 2 and 3. In addition, these parametrizations are disjoint,
in that any solution to our equation belongs to a single parametrization.

14.4.2 The Equation x2 + y4 = z3

We note that here we cannot have x and y both odd, since otherwise z3 ≡ 2
(mod 8), absurd. We work in Z[i] and factor the equation as (x + iy2)(x −
iy2) = z3. Since x and y are coprime and not both odd, x + iy2 and x− iy2

are coprime in Z[i]. Thus there exists α ∈ Z[i] such that x + iy2 = α3,
so that x − iy2 = α3 and z = αα, where the possible power of i can be
absorbed in α. We write α = u + iv, so that z = u2 + v2, x = u3 − 3uv2, and
y2 = 3u2v − v3; hence we must solve this equation. Note that since x and
y are coprime, we have gcd(u, v) = 1 and u and v have opposite parity. We
write y2 = v(3u2 − v2) and consider two cases.



476 14. The Super-Fermat Equation

Case 1: 3 � v. Then v and 3u2 − v2 are coprime, so v = εa2, 3u2 − v2 = εb2,
y = ±ab with ε = ±1, and then a and b are coprime, b is odd, and 3 � ab. We
note that 3u2 − v2 ≡ −(u2 + v2) ≡ −1 (mod 4) since u and v have opposite
parity; hence we must have ε = −1, so the equations to be solved are v = −a2

and 3u2 = v2 − b2. Since 3 � v and 3 � b, changing if necessary b into −b, we
may assume that 3 | v − b, so the second equation is u2 = ((v − b)/3)(v + b).
Note that v and b are coprime. I claim that v is odd. Indeed, otherwise a
is even, so that 4 | v = −a2; hence v2 − b2 ≡ 7 (mod 8), while 3u2 ≡ 3
(mod 8), a contradiction. Thus v is indeed odd, so u is even and v − b and
v + b are even with (v − b)/2 and (v + b)/2 coprime. Thus we can write
v− b = 6ε1c

2, v + b = 2ε1d
2, u = 2cd (where the sign of u can be removed by

changing c into −c) with c and d coprime, and 3 � d. Thus v = ε1(3c2 + d2),
b = ε1(d2 − 3c2), and since v = −a2 we have ε1 = −1. The last remaining
equation to be solved is the second-degree equation d2 + 3c2 = a2. Corollary
6.3.15 gives us a priori the two parametrizations d = ±(s2 − 3t2), c = 2st,
a = ±(s2 + 3t2) with coprime integers s and t of opposite parity such that
3 � s, and d = ±(s2 + 4st + t2), c = s2 − t2, a = ±2(s2 + st + t2), with
coprime integers s and t of opposite parity such that s �≡ t (mod 3). However,
since v = −a2 is odd, a is odd so this second parametrization is impossible.
Thus there remains only the first one, so replacing everywhere gives the first
parametrization

⎧⎪⎨⎪⎩
x = 4ts(s2 − 3t2)(s4 + 6t2s2 + 81t4)(3s4 + 2t2s2 + 3t4) ,

y = ±(s2 + 3t2)(s4 − 18t2s2 + 9t4) ,

z = (s4 − 2t2s2 + 9t4)(s4 + 30t2s2 + 9t4) ,

where s �≡ t (mod 2) and 3 � s.
Case 2: 3 | v. Set w = v/3. Then 3 � u, and w and u2 − 3w2 are coprime,
so v = ε3a2, u2 − 3w2 = εb2, y = ±3ab with ε = ±1, and then a and b
are coprime and b is odd. Since u and v (hence w) have opposite parity, we
have u2 − 3w2 ≡ u2 + w2 ≡ 1 (mod 4); hence we must have ε = 1, so the
equations to be solved are w = a2 and u2−3w2 = b2. Corollary 6.3.15 tells us
that there exist coprime integers c and d of opposite parity such that either
u = c2 + 3d2, w = 2cd, b = c2 − 3d2 with 3 � c, or u = 2(c2 + cd + d2),
w = c2 − d2, b = c2 + 4cd + d2 with c �≡ d (mod 3), where the signs can be
absorbed as usual by changing either x into −x or b into −b. Thus in the first
case the final equation to be solved is 2cd = a2, so that there exist coprime
s and t with 3 � s such that either c = 2s2, d = t2, a = ±2st and t odd, or
c = s2, d = 2t2, a = ±2st and s odd. Replacing everywhere gives the second
and third parametrizations:⎧⎪⎨⎪⎩

x = ±(4s4 + 3t4)(16s8 − 408t4s4 + 9t8) ,

y = 6ts(4s4 − 3t4) ,

z = 16s8 + 168t4s4 + 9t8 ,
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where t is odd and 3 � s, and⎧⎪⎨⎪⎩
x = ±(s4 + 12t4)(s8 − 408t4s4 + 144t8) ,

y = 6ts(s4 − 12t4) ,

z = s8 + 168t4s4 + 144t8 ,

where s is odd and 3 � s.
In the second case the final equation to be solved is c2 − d2 = a2 with

c and d of opposite parity, hence with a odd, so that by the solution to the
Pythagorean equation there exist coprime integers s and t of opposite parity
such that c = s2 + t2, d = 2st, a = s2 − t2 with s �≡ t (mod 3). Replacing
everywhere gives the fourth and final parametrization:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = ±2(s4 + 2ts3 + 6t2s2 + 2t3s + t4)(23s8 − 16ts7 − 172t2s6 − 112t3s5

− 22t4s4 − 112t5s3 − 172t6s2 − 16t7s + 23t8) ,

y = 3(s− t)(s + t)(s4 + 8ts3 + 6t2s2 + 8t3s + t4) ,

z = 13s8 + 16ts7 + 28t2s6 + 112t3s5 + 238t4s4

+ 112t5s3 + 28t6s2 + 16t7s + 13t8 ,

where s �≡ t (mod 2) and s �≡ t (mod 3).
We have thus proved the following theorem:

Theorem 14.4.2. The equation x2 + y4 = z3 in integers x, y, z with
gcd(x, y) = 1 can be parametrized by one of the above four parametriza-
tions, where s and t denote coprime integers with the indicated congruence
conditions modulo 2 and 3. In addition, these parametrizations are disjoint,
in that any solution to our equation belongs to a single parametrization.

14.5 Invariants, Covariants, and Dessins d’Enfants

There is a completely different way of attacking the super-Fermat equation in
the elliptic case, which is based on geometrical methods. This is an alternative
way for the tetrahedral and octahedral cases, but is the only known way of
solving the icosahedral case. The reason is that in the tetrahedral case (2, 3, 3)
and the octahedral case (2, 3, 4), we can factor the equation (possibly in some
number field), hence reduce to a simpler equation, and we treated these cases
with complete success. On the other hand, in the icosahedral case (2, 3, 5),
it is not possible to factor the equation. Thus another approach is needed,
which will be given by the considerations of the present section.
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14.5.1 Dessins d’Enfants, Klein Forms, and Covariants

The present subsection will serve as a motivation for the results that will be
given without proof below, and we refer to [Edw] for details. For the moment
we ignore all rationality questions and we look for one-variable polynomials
P , Q, and R with complex coefficients satisfying P 3 + Qk = R2 for k = 3, 4,
and 5. We could try to solve this by indeterminate coefficients, but there is
no guarantee that we would succeed. However, we can use a very important
theorem due to G. Belyi, which tells us (in our special case) that for any
graph inscribed in the Riemann sphere (a “dessin d’enfant,” the name coined
by A. Grothendieck), there exists a rational function φ from the sphere to P1

such that the zeros of φ have order equal to the number of edges meeting at
the vertices V of the graph, the poles of φ have order equal to the number of
vertices along the faces F of the graph, and finally the values where φ = −1
have order 2, one for each edge E of the graph, and the coefficients of φ may
be chosen in a number field.

We apply this to the five platonic solids, and we index the polynomials
according to their degrees.

– For the tetrahedron, we have φ = P 3
4 /Q3

4 and φ + 1 = R2
6/Q3

4, so that
P 3

4 + Q3
4 = R2

6.
– For the cube, we have φ = P 3

8 /Q4
6 and φ+1 = R2

12/Q4
6, so that P 3

8 +Q4
6 =

R2
12.

– For the octahedron, we have φ = P 4
6 /Q3

8 and φ + 1 = R2
12/Q3

8, so that
P 4

6 + Q3
8 = R2

12. This is exactly the same equation as for the cube (coming
from the fact that the cube and the octahedron are dual), so we do not
need to consider the cube.

– For the dodecahedron, we have φ = P 3
20/Q5

12 and φ+1 = R2
30/Q5

12, so that
P 3

20 + Q5
12 = R2

30.
– For the icosahedron, we have φ = P 5

12/Q3
20 and φ + 1 = R2

30/Q3
20, so that

P 5
12+Q3

20 = R2
30. This is exactly the same equation as for the dodecahedron

(coming from the fact that the dodecahedron and the icosahedron are dual),
so we do not need to consider the dodecahedron.

This geometric interpretation explains the origin of the tetrahedral, octa-
hedral, and icosahedral terminology, which is always used in relation to finite
subgroups of PSL2(C).

Almost a century before Belyi, Klein had already shown the existence of
the Belyi functions φ in the case of platonic solids. More precisely, he proved
the following:

Theorem 14.5.1. Let G be the vertices of a regular tetrahedron, octahedron,
or icosahedron inscribed in the Riemann sphere, let N be the north pole of
the sphere, and for g ∈ G let (αg : βg) ∈ P1(C) be the point obtained by
stereographic projection from N (if g = N , choose the point at infinity (1 : 0)).
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Let k = |G| be the number of vertices (4, 6, or 12 respectively), let r be the
number of edges meeting at each vertex (3, 4, or 5 respectively), and set

fG(s, t) =
∏
g∈G

(βgs− αgt),

hG(s, t) =
1

k2(k − 1)2

(
∂2fG

∂s2

∂2fG

∂t2
−
(

∂2fG

∂s∂t

)2
)

,

jG(s, t) =
1

2k(k − 2)

(
∂fG

∂s

∂hG

∂t
− ∂fG

∂t

∂hG

∂s

)
.

Then after a suitable rotation of the sphere there exists a constant uG ∈ C
such that

j2
G + h3

G + fr
G/uG = 0 .

Although for the moment the polynomials are with coefficients in C, this
is exactly what we need for solving the (2, 3, r) equation in the elliptic case.
To make this clearer, we look at all three cases. Consider first the regular
tetrahedron. Up to rescaling and rotation we can choose fG(s, t) = t(s3− t3)
(the factor t corresponds to the north pole N , and the roots of s3− t3 to the
cube roots of unity, i.e., to the face of the tetrahedron opposite to N). A short
computation shows that j2

G + h3
G + f3

G/64 = 0, so that uG = 64. Similarly,
consider the regular octahedron. Clearly we can choose fG(s, t) = st(s4− t4)
(draw a picture!), and a short computation shows that j2

G + h3
G + f4

G/432 =
0, so that uG = 432. Finally, consider the regular icosahedron. Here the
geometry is slightly more complicated, but after a little work it can be seen
that we may choose fG(s, t) = st(s10−11s5t5− t10) (Exercise 1), and a short
computation shows that j2

G + h3
G + f5

G/1728 = 0, so that uG = 1728.
Starting from these basic solutions, if we apply an element of GL2(C) we

obtain a new relation of the same type (this is in fact the meaning of the word
covariant), hence as many as we want. The basic problem is now to obtain
polynomials with coefficients in Q, or even in Z, and to separate equivalent
parametrizations under GL2(Z). This can be done using a suitable reduction
theory; see [Edw].

14.5.2 The Icosahedral Case (2, 3, 5)

It can be checked that up to signs, all the parametrizations that we have given
in the preceding sections correspond to special cases of Klein’s theorem: let
us introduce a convenient shorthand, copied from [Edw]. We simply write
f = [ak, . . . , a0] as an abbreviation for

f(s, t) =
∑

0�i�k

(
k

i

)
ais

itk−i .
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The inclusion of the binomial coefficient is natural and simplifies the formulas.
Starting from f we define h and j as in the theorem, and since we now want
arithmetic solutions, we will impose uG = ±1, so that the parametrizations
of x2 + y3 ± zr = 0 will be x = ±j, y = h, and z = ±f for any sign in x and
any sign in z if r = 4.

So that the reader can relate to what we have done in the cases r = 3 and
r = 4, we give in abbreviated form the results that we have obtained, in the
same order.

For the equation x2 + y3 − z3 = 0 the three parametrizations are f1 =
[1, 0, 0, 2, 0], f2 = [2, 1, 0, 1, 2], and f3 = [3, 0, 1, 0,−1].

For the equation x2 + y3 − z4 = 0 the seven parametrizations are f1 =
[7, 1,−2,−4,−4,−4,−8], f2 = [27, 0, 3, 0,−1, 0,−1], f3 = [0, 3, 0, 0, 0, 4, 0],
f4 = [0, 12, 0, 0, 0, 1, 0], f5 = [1, 0, 0, 2, 0, 0,−32], f6 = [9, 3, 3, 3, 1,−1,−5],
and f7 = [17, 5,−1, 1, 1, 1,−1].

For the equation x2 + y3 + z4 = 0 the four parametrizations are f1 =
[1, 0,−1, 0,−3, 0, 27], f2 = [0, 4, 0, 0, 0,−3, 0], f3 = [0, 1, 0, 0, 0,−12, 0], and
f4 = [3, 4, 1, 0,−1,−4,−3].

We can now give without proof Edwards’s result on the (2, 3, 5) equation.

Theorem 14.5.2. Up to changing x into −x there are exactly 27 distinct
parametrizations of x2 + y3 + z5 = 0 given by

f1 = [0, 1, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−20736, 0] ,

f2 = [−1, 0, 0,−2, 0, 0, 80/7, 0, 0, 640, 0, 0,−102400] ,

f3 = [−1, 0,−1, 0, 3, 0, 45/7, 0, 135, 0,−2025, 0,−91125] ,

f4 = [1, 0,−1, 0,−3, 0, 45/7, 0,−135, 0,−2025, 0, 91125] ,

f5 = [−1, 1, 1, 1,−1, 5,−25/7,−35,−65,−215, 1025,−7975,−57025] ,

f6 = [3, 1,−2, 0,−4,−4, 24/7, 16,−80,−48,−928,−2176, 27072] ,

f7 = [−10, 1, 4, 7, 2, 5, 80/7,−5,−50,−215,−100,−625,−10150] ,

f8 = [−19,−5,−8,−2, 8, 8, 80/7, 16, 64, 64,−256,−640,−5632] ,

f9 = [−7,−22,−13,−6,−3,−6,−207/7,−54,−63,−54, 27, 1242, 4293] ,

f10 = [−25, 0, 0,−10, 0, 0, 80/7, 0, 0, 128, 0, 0,−4096] ,

f11 = [6,−31,−32,−24,−16,−8,−144/7,−64,−128,−192,−256, 256, 3072] ,

f12 = [−64,−32,−32,−32,−16, 8, 248/7, 64, 124, 262, 374, 122,−2353] ,

f13 = [−64,−64,−32,−16,−16,−32,−424/7,−76,−68,−28, 134, 859, 2207] ,

f14 = [−25,−50,−25,−10,−5,−10,−235/7,−50,−49,−34, 31, 614, 1763] ,

f15 = [55, 29,−7,−3,−9,−15,−81/7, 9,−9,−27,−135,−459, 567] ,

f16 = [−81,−27,−27,−27,−9, 9, 171/7, 33, 63, 141, 149,−67,−1657] ,

f17 = [−125, 0,−25, 0, 15, 0, 45/7, 0, 27, 0,−81, 0,−729] ,

f18 = [125, 0,−25, 0,−15, 0, 45/7, 0,−27, 0,−81, 0, 729] ,
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f19 = [−162,−27, 0, 27, 18, 9, 108/7, 15, 6,−51,−88,−93,−710] ,

f20 = [0, 81, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−256, 0] ,

f21 = [−185,−12, 31, 44, 27, 20, 157/7, 12,−17,−76,−105,−148,−701] ,

f22 = [100, 125, 50, 15, 0,−15,−270/7,−45,−36,−27,−54,−297,−648] ,

f23 = [192, 32,−32, 0,−16,−8, 24/7, 8,−20,−6,−58,−68, 423] ,

f24 = [−395,−153,−92,−26, 24, 40, 304/7, 48, 64, 64, 0,−128,−512] ,

f25 = [−537,−205,−133,−123,−89,−41, 45/7, 41, 71, 123, 187, 205,−57] ,

f26 = [359, 141,−1,−21,−33,−39,−207/7,−9,−9,−27,−81,−189,−81] ,

f27 = [295,−17,−55,−25,−25,−5, 31/7,−5,−25,−25,−55,−17, 295] .

For instance, one of the simplest parametrizations, given by f20, is explic-
itly⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = ±(81s10 + 256t10)
×(6561s20 − 6088608t5s15 − 207484416t10s10 + 19243008t15s5 + 65536t20) ,

y = −6561s20 − 2659392t5s15 − 10243584t10s10 + 8404992t15s5 − 65536t20 ,

z = 12st(81s10 − 1584t5s5 − 256t10) .

14.6 The Parabolic and Hyperbolic Cases

14.6.1 The Parabolic Case

We now consider the parabolic case 1/p + 1/q + 1/r = 1. Up to permutation
of (p, q, r), this corresponds to the three cases (p, q, r) = (2, 3, 6), (2, 4, 4), and
(3, 3, 3). The result is then simply as follows.

Proposition 14.6.1. In the parabolic case 1/p + 1/q + 1/r = 1, the equa-
tion xp + yq = zr has no solutions in nonzero coprime integers, except that
the equation x3 + y6 = z2 has the solutions (x, y, z) = (2,±1,±3), and the
equation x3 + y2 = z6 has the solutions (x, y, z) = (−2,±3,±1).

Proof. The (3, 3, 3) case is FLT for exponent 3, which has been proved in
Section 6.9, the case of general coefficients having been studied in Sections
6.4.2, 6.4.3, 6.4.4, and 6.4.5. The (2, 4, 4) case corresponds to the equations
x4± y4 = z2 which have been solved in Proposition 6.5.3, the case of general
coefficients having been treated in Sections 6.5.1, 6.5.2, and 6.5.3. We are left
with the (2, 3, 6) case which, thanks to the reductions made above, reduces
to the equations x3 ± y6 = z2, the case of general coefficients having been
treated in Section 6.5.5. As a special case of Proposition 6.5.9 (with variable
names changed), it is clear that if we set X = x/y2, Y = z/y3 our equations
are equivalent to finding rational points on the curves Y 2 = X3 ± 1. This is
done by the 2-descent technique, explained in Chapter 8, which is here very
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easy to apply since the 2-torsion point (∓1, 0) has rational coordinates. We
have treated this example in Proposition 8.2.14, but we can of course be lazy
and use Cremona’s mwrank program, which tells us that both curves have
rank 0. The curve Y 2 = X3 − 1 has only the point (1, 0) as torsion point (in
addition to the point at infinity). On the other hand, the curve Y 2 = X3 + 1
has a torsion subgroup of order 6, and apart from the point at infinity the
torsion points are (−1, 0), (0,±1), and (2,±3). The points (−1, 0) and (0,±1)
correspond to z = 0 and x = 0, respectively, while the points (2,±3) give
x = 2y2, z = ±3y3. Since x and y are coprime, we must have y = ±1, hence
x = 2 and z = ±3, proving the proposition. ��

Thus in the parabolic case there are only finitely many nonzero coprime
solutions. As already mentioned, this is because we consider the super-Fermat
equation only with coefficients ±1, and in the case of general coefficients, the
equation may have finitely or infinitely many coprime solutions, depending
on whether the rank of the corresponding elliptic curve is zero or not, see
the sections mentioned above. For instance, the equations x2 + y4 = 2z4 and
x4 + 8y4 = z2 have infinitely many coprime solutions, see Exercise 13 of
Chapter 8.

14.6.2 General Results in the Hyperbolic Case

We finally consider what is by far the most difficult case, the hyperbolic
case 1/p + 1/q + 1/r < 1. Proving all that is known would require a book
in itself, so we will give only a survey with few proofs. Note that when we
talk of solutions to our equations, we always mean integral nonzero coprime
solutions.

First, there is a beautiful theorem of Darmon and Granville [Dar-Gra] as
follows.

Theorem 14.6.2. For fixed p, q, and r such that 1/p + 1/q + 1/r < 1 and
fixed nonzero integers A, B, and C, there exist only finitely many solutions
to the equation Axp + Byq + Czr = 0 in integers x, y, and z with x and y
coprime.

To prove this theorem, Darmon and Granville succeed in reducing it to
Faltings’s famous theorem on the finiteness of the number of rational points
on a curve of genus greater than or equal to 2 (Mordell’s conjecture), which
is not a trivial task since Axp + Byq + Czr = 0 does not a priori represent a
curve.

Second, we recall the very important abc conjecture of Masser–Oesterlé,
which implies many results or other conjectures in number theory (for in-
stance, Elkies has proved that it implies Faltings’s result above: abc implies
Mordell; see [Elk1]). There are several possible statements of this conjecture,
but the following is sufficient.
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Definition 14.6.3. For a nonzero natural integer N we define the radical
rad(N) of N as the product of the prime numbers dividing N , i.e., rad(N) =∏

p|N p.

The abc conjecture is then as follows.

Conjecture 14.6.4. Let ε > 0. If a, b, and c are three nonzero pairwise
coprime integers such that a + b + c = 0 then

max(|a|, |b|, |c|) = Oε(rad(abc)1+ε) .

We then have the following result:

Proposition 14.6.5. The abc conjecture implies that the total number of
nonzero coprime solutions to xp ± yq ± zr = 0 with 1/p + 1/q + 1/r < 1
is finite, even allowing p, q, and r to vary. Here, if x = ±1 (respectively
y = ±1, respectively z = ±1), we identify solutions having the same value of
xp (respectively yq, respectively zr).

Proof. Order p, q, and r such that p � q � r. Then the hyperbolic
cases correspond to the triples (2, 3, r) for r � 7, (2, 4, r) for r � 5, (2, q, r)
for r � q � 5, (3, 3, r) for r � 4, (3, q, r) for r � q � 4, or (p, q, r) with
r � q � p � 4. In all these cases one checks immediately that 1/p + 1/q +
1/r � 41/42, attained for (p, q, r) = (2, 3, 7). We apply the abc conjecture
to a = xp, b = ±yq, and c = ±zr, and we choose ε = 1/42. Note that
rad(abc) = rad(xyz) � xyz. If we set M = max(|xp|, |yq|, |zr|), we thus have

M = O((xyz)1+ε) = O(M (1/p+1/q+1/r)(1+ε))

= O(M (41/42)(43/42)) = O(M1763/1764) ,

which is impossible if M is sufficiently large. Thus M is bounded, hence so are
x, y, z, p, q, and r (except in the special case min(|x|, |y|, |z|) = 1), proving
the proposition. ��

A stronger statement is given in Exercise 2.

Remark. As already mentioned in Chapter 1, it has been proved by P. Mihăi-
lescu in 2002 that Catalan’s conjecture is true, i.e., that xp±yq = 1 is possible
only if xp = 9 and yq = 8, and I refer the reader to Section 6.11 and Chapter
16 for a detailed description of the proof (see also [Bilu] and [Boe-Mis]). Thus
the special case mentioned in the proposition occurs only (up to ordering of
p, q, and r) for p = 2, q = 3, r � 7, with (±3)p − 2q = 1r (and also (−1)r

when r is even).

A computer search gives the following 10 essentially different solutions
(where as above the first one is counted only once, and we also count once
solutions differing only by sign changes):
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1r + 23 = (±3)2 (for r � 7, with also (−1)r for r even) ,

(±3)4 + (−2)5 = (±7)2 ,

29 + (−7)3 = (±13)2 ,

27 + 173 = (±71)2 ,

35 + (±11)4 = (±122)2 ,

156133 − (±33)8 = (±1549034)2 ,

657 + (−1414)3 = (±2213459)2 ,

1137 + (−9262)3 = (±15312283)2 ,

177 + 762713 = (±21063928)2 ,

(±43)8 + 962223 = (±30042907)2 .

These solutions can easily be found in a few seconds by a systematic
search on a PC. A search for several weeks has not revealed any additional
solutions. There may be no more, and on probabilistic grounds one would
expect at most two or three more. Note also that the number of solutions
found decreases with χ = 1/p+1/q+1/r−1, as can be expected: counting the
first one when possible, we have five solutions for χ = −1/42, three solutions
for χ = −1/24, two solutions for χ = −1/20, one solution for χ = −1/18,
and no solution for other χ (apart from the first when applicable).

14.6.3 The Equations x4 ± y4 = z3

We now study a few hyperbolic equations. In each case, we proceed as follows.
We reduce the equation to finding integral or rational points on curves. We
then use general methods to find this set of points. When the curve is an
elliptic curve, we use Cremona’s mwrank program, which does all the work
for us, or the methods explained in Chapter 8. When the curve is a curve
of higher genus, or an elliptic curve of nonzero rank, the problem becomes
more difficult and we will mention only the known results. We begin with the
simple equations x4 ± y4 = z3.

Proposition 14.6.6. The equations x4±y4 = z3 have no solution in nonzero
coprime integers x, y, z.

Proof. Write our equation as x4 + ηy4 = z3 with η = ±1. Although we
could use the solution of the elliptic equation X2 + ηy4 = z3 given in Section
14.4.2, it is much simpler to use only the solution to the dihedral equation
X2 + ηY 2 = Z3 seen above. We consider two cases.
Case 1: η = 1, or η = −1 and 2 � z. In this case we deduce from Section
14.2.2 that there exist coprime integers s and t of opposite parity such that
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x2 = s(s2 − 3ηt2), y2 = t(3s2 − ηt2), and z = s2 + ηt2, since the second
parametrization for η = −1 is excluded by the condition 2 � z. Since s and
t are coprime, one at least is not divisible by 3. If necessary by exchanging
x and y, and changing z into −z if η = −1, we may assume that 3 � s. It
follows that s is coprime to s2− 3ηt2, and so there exist integers a and b and
a sign ε1 = ±1 such that s = ε1a

2 and s2 − 3ηt2 = ε1b
2. Since 3 � s we have

s2− 3ηt2 ≡ 1 (mod 3), therefore ε1 = 1, and we obtain the equations s = a2,
s2 − 3ηt2 = b2, and b2 = a4 − 3ηt2. Since s and t have opposite parity one
is even and the other is odd. Clearly 2 | s would imply 4 | s (since s = a2)
hence s2 − 3ηt2 ≡ ±3 (mod 8), in contradiction to s2 − 3ηt2 = b2. Thus
2 | t and 2 � s. I now claim that 3 | t. Indeed, otherwise t would be coprime
to 3s2 − ηt2, so we would have similarly t = ε2c

2 and 3s2 − ηt2 = ε2d
2.

Thus 4 | t, so 3s2 − ηt2 ≡ 3 (mod 8), which is impossible for ε2d
2. Thus

t = 3t1 for some integer t1, and we deduce that (y/3)2 = t1(s2 − 3ηt21). The
factors are now coprime, so t1 = ±e2 for some integer e. We thus obtain the
equation b2 = a4 − 27ηe4. This is a hyperelliptic quartic equation, which is
therefore easy to reduce to an elliptic curve using Corollary 7.2.2. In fact,
we have already done the work in Corollary 6.5.8, and so we are reduced to
the computation of the rank of the elliptic curves Y 2 = X3 − 27ηX, which
is easily done using 2-descent or mwrank. Since we find that both ranks are
equal to 0 this case follows. Note that if we had found a nonzero rank it would
not have implied that our equation has nonzero solutions since we dropped
some conditions along the way.
Case 2: η = −1 and 2 | z. In this case we deduce from Section 14.2.2 that
there exist coprime integers s and t and some sign ε = ±1 such that 2 � t and
x2 = ε(2s3 + t3), y2 = 2s3− t3, and z = 2st. Since x2y2 = −ε(t6− 4s6) and t
is odd, we have t6 − 4s6 ≡ 1 (mod 4), so we deduce that ε = −1, and x and
y are odd. We can thus write ((y− x)/2)((y + x)/2) = (y2 − x2)/4 = s3, and
since x and y are coprime so are (y − x)/2 and (y + x)/2. Thus there exist
integers a and b such that y−x = 2a3 and y +x = 2b3; therefore y = a3 + b3,
x = b3 − a3. But then (−t)3 = (x2 + y2)/2 = a6 + b6, which has no nonzero
solution since it is a special case of Fermat’s equation A3 + B3 = C3 with
A = a2, B = b2, and C = −t, proving the proposition. ��

14.6.4 The Equation x4 + y4 = z5

Proposition 14.6.7. The equation x4 + y4 = z5 has no solution in nonzero
coprime integers x, y, z.

Proof. Once again we use the solution to the dihedral equation. Our equa-
tion is thus equivalent to x2 = s(s4− 10t2s2 +5t4), y2 = t(5s4− 10t2s2 + t4),
and z = s2 + t2, where s and t are coprime integers of opposite parity. I claim
that 5 | st. Indeed, if s and t are not divisible by 5, then the factors in the
expressions for x2 and y2 are coprime; hence in particular there exist integers
u and v such that s4 − 10t2s2 + 5t4 = ±u2 and 5s4 − 10t2s2 + t4 = ±v2.
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Then if t is even s is odd, and the second equation gives a contradiction
modulo 8, and similarly if t is odd then s is even and now the first equation
gives a contradiction modulo 8, proving my claim. Thus 5 | st, and if neces-
sary exchanging x and y, hence s and t, we may assume that 5 | s. Writing
s = 5s1, we thus have in particular (x/5)2 = s1(125s4

1 − 50t2s2
1 + t4), hence

125s4
1 − 50t2s2

1 + t4 = ±u2 for some integer u. If t is even then s1 is odd,
and this gives a contradiction modulo 8. Thus s = 5s1 is even, and since t is
coprime to 5 the equation for y2 gives 5s4− 10t2s2 + t4 = ±v2, and since s is
even and t is odd, again looking modulo 8 we see that the sign must be +, so
we finally obtain the hyperelliptic quartic equation V 2 = T 4−10T 2 +5, with
V = v/s2 and T = t/s. Corollary 7.2.2 tells us that if we set X = 2(T 2−V −5)
and Y = 4T (T 2 − V − 5) this is a birational transformation whose inverse is
T = Y/(2X) and V = Y 2/(4X2)−X/2−5, and which transforms our genus-1
curve into the Weierstrass equation in minimal form Y 2 = X(X2+20X+80).
This curve has a rational point of order 2, so the 2-descent method of Section
8.2.4 is easily applicable and shows that our curve has rank 0 (or we can
be lazy and use mwrank). The only nontrivial torsion point has X = 0, so
V = 5− T 2, but replacing in the quartic we obtain the contradiction 25 = 5,
proving the proposition. ��

Remark. The equation x4−y4 = z5 leads to elliptic curves of nonzero rank,
and I do not know whether it can be treated by similar methods (although
the nonexistence of nontrivial solutions follows from the (2, 4, 5) case treated
by Bruin; see below).

14.6.5 The Equation x6 − y4 = z2

Proposition 14.6.8. The equation x6 − y4 = z2 has no solution in nonzero
coprime integers x, y, z.

Proof. Once again, we use the solution to the dihedral equation X2+Y 2 =
Z3. We deduce that x6−y4 = z2 is equivalent to x2 = s2+t2, y2 = s(s2−3t2),
z = t(3s2 − t2), where s and t are coprime with s �≡ t (mod 2). The first
equation is equivalent to s = 2uv, t = u2 − v2, x = ±(u2 + v2), up to
exchange of s and t, where u and v are coprime integers of opposite parity.
We consider both cases.
Case 1: 2 | s. Set a = u + v, b = u − v, which are coprime and both odd.
Then s = (a2 − b2)/2 and t = ab, so the last equation to be solved can be
written 8y2 = (a2−b2)(a4−14a2b2 +b4). Since b is odd, we can set Y = y/b3,
X = a2/b2, and we obtain the elliptic curve 8Y 2 = (X − 1)(X2 − 14X + 1),
which can be given in reduced Weierstrass form as y2 = (x+2)(x2−2x−11).
In any case, the mwrank program tells us that (outside the point at infinity)
the only rational point has y = 0, which does not correspond to a solution of
our equation.
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Case 2: 2 � s. Here s = u2−v2, t = 2uv, so that the last equation to be solved
can be written y2 = (u2−v2)(u4−14u2v2 +v4). We cannot have v = 0, since
otherwise t = 0 hence z = 0, which is impossible. Thus, we can set Y = y/v3,
X = u2/v2 and we obtain the elliptic curve Y 2 = (X − 1)(X2 − 14X + 1),
which can be given in reduced Weierstrass form as y2 = (x+4)(x2−4x−44).
In any case the mwrank program again tells us that the only rational point
has y = 0, which again does not correspond to a solution. ��

14.6.6 The Equation x4 − y6 = z2

Proposition 14.6.9. The equation x4 − y6 = z2 has no solution in nonzero
coprime integers x, y, z.

Proof. Once again, we use the solution to the dihedral equation. We find
that our equation is equivalent to x2 = s(s2+3t2), z = t(3s2+t2), y2 = s2−t2

with s and t coprime of opposite parity, or to x2 = ±(2s3 + t3), z = 2s3− t3,
y2 = 2ts with s and t coprime and t odd. We consider both cases separately.
Case 1: 2 � y. This corresponds to the first parametrization. Since y2+t2 = s2

and y is odd, there exist coprime u and v of opposite parity such that y =
u2−v2, t = 2uv, and s = ±(u2 +v2). Since x2 > 0, we have s > 0, so the ± is
+. The last equation to be solved is thus is x2 = (u2 + v2)(u4 +14u2v2 + v4).
Note for future reference that since u and v have opposite parity, x is odd.
We have v �= 0, since otherwise t = 0 hence z = 0, which is impossible.
Thus we set Y = z/v3, X = u2/v2 and obtain the elliptic curve Y 2 =
(X + 1)(X2 + 14X + 1), which can be given in reduced Weierstrass form as
y2 = (x− 4)(x2 + 4x− 44). However, here the mwrank program tells us that
this is a curve of rank 1, so we must proceed differently. Note that when we set
X = u2/v2, we implicitly forget the information that X is a square. In order
to keep it, we must return to the equation x2 = (u2 + v2)(u4 + 14u2v2 + v4).
First, we set a = u+v, b = u−v, which are coprime and both odd. We obtain
2x2 = (a2+b2)(a4−a2b2+b4). Since a4−a2b2+b4 = (a2+b2)2−3a2b2, it follows
that the only possible common prime divisor of a2 + b2 and a4 − a2b2 + b4

is p = 3. But this is impossible, since a2 + b2 ≡ 0 (mod 3) if and only if
a ≡ b ≡ 0 (mod 3), which is excluded since a and b are coprime. Thus the
factors are coprime, and by positivity we obtain that there exist integers c
and d such that a2 + b2 = 2c2, a4 − a2b2 + b4 = d2, and x = ±cd, and c and
d are both odd since x is odd.

We consider only the second equation. Setting D = d/b2, A = a/b we
obtain the hyperelliptic quartic curve D2 = A4−A2 +1 of genus 1. Corollary
7.2.2 tells us that if we set X = 2A2 − 2D − 1, Y = 2A(2A2 −D − 1) this is
a birational transformation whose inverse is A = Y/(2X), D = Y 2/(4X2)−
(X+1)/2 and that transforms our genus-1 curve into the Weierstrass equation
Y 2 = X(X2 + 2X − 3), and now the mwrank program tells us that the rank
is zero, but there are eight rational torsion points on the curve: not counting
the point at infinity, they are (−3, 0), (−1,±2), (0, 0), (1, 0), and (3,±6).



488 14. The Super-Fermat Equation

Because of our birational transformation, we cannot have Y = 0. It is easy to
check that the other four points, (X,Y ) = (−1,±2) and (3,±6), correspond
to the four points (A,D) = (±1,±1). Since A = a/b and a and b are coprime,
we must have therefore a = ±1 and b = ±1, hence a = ±b. Now recall that
a = u+v and b = u−v. It follows that a = ±b is equivalent to uv = 0, hence
to t = 0, which is impossible since this implies z = 0, so that there are no
solutions in this case as claimed.
Case 2: 2 | y. This corresponds to the second parametrization x2 = ±(2s3 +
t3), z = 2s3 − t3, y2 = 2ts with s and t coprime and t odd. Thus there exist
coprime a and b with a odd and ε = ±1 such that t = εa2, s = 2εb2, and
y = ±2ab. The last equation to be solved is thus x2 = ±ε(a6 + 16b6). Since
a is odd, we have ε = ± hence the equation is x2 = a6 + 16b6. We have
b �= 0, since otherwise y = 0, so that setting Y = x/b3 and X = a2/b2 we
obtain the elliptic curve Y 2 = X3 + 16, whose minimal Weierstrass equation
is y2 + y = x3, and mwrank tells us that the only rational points outside the
point at infinity of this curve are those with x = 0, hence X = 0, hence a = 0,
which is impossible since a is odd. ��

14.6.7 The Equation x6 + y4 = z2

Proposition 14.6.10. The equation x6+y4 = z2 has no solution in nonzero
coprime integers x, y, z.

Proof. Once again, we use the solution to the dihedral equation. We find
that our equation is equivalent to z = s(s2+3t2), y2 = t(3s2+t2), x2 = s2−t2

with s and t coprime of opposite parity, or to z = ±(2s3 + t3), y2 = 2s3− t3,
x2 = 2ts with s and t coprime and t odd. We consider both cases separately.
Case 1: 2 � x. This corresponds to the first parametrization. Since x2 + t2 =
s2 and x is odd, there exist coprime u and v of opposite parity such that
x = u2 − v2, t = 2uv, s = ±(u2 + v2). The last equation to be solved is thus
y2 = 2uv(3u4+10u2v2+3v4). We set a = u+v, b = u−v, which are both odd,
and this gives 2y2 = (a2 − b2)(a4 + a2b2 + b4). We set Y = y/b3, X = a2/b2

and we obtain the elliptic curve 2Y 2 = (X−1)(X2 +X +1) = X3−1, whose
reduced Weierstrass equation is y2 = x3− 8. Once again mwrank tells us that
this equation has no solutions with y �= 0.
Case 2: 2 | x. This corresponds to the second parametrization. Since t is
odd, s is even, and since s and t are coprime the equation x2 = 2ts gives
t = εu2, s = 2εv2, and x = ±2uv with u and v coprime, u odd, and ε = ±1.
The last equation to be solved is thus y2 = ε(16v6 − u6). Since u is odd, y is
odd, so that y2 ≡ 1 (mod 8), while 16v6 − u6 ≡ −1 (mod 8). Thus ε = −1,
and we have y2 = u6 − 16v6. We have v �= 0, since otherwise s = 0, hence
z = 0, which is impossible. Thus setting Y = y/v3 and X = u2/v2 gives
the elliptic curve Y 2 = X3 − 16 in reduced Weierstrass form, and once again
mwrank tells us that this curve has no solutions with y �= 0. ��
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Putting together the three equations above, we obtain the following:

Corollary 14.6.11. The equations ±x6 ± y4 = z2 have no solutions in
nonzero coprime integers x, y, z.

14.6.8 Further Results

The reason for which it has not been difficult to treat the (4, 4, 3) cases, one
of the (4, 4, 5) cases, and the (2, 4, 6) cases is that we have always been able
to reduce to curves of genus 1 with only a finite number of rational points.
In only one case, we had a curve of genus 1 with infinitely many rational
points, but we were able to bypass it by using additional information given
by the elliptic parametrizations. Unfortunately, in other hyperbolic cases,
when reducing to finding rational points on curves, some of these curves will
have infinitely many rational points, and some will be of genus greater than or
equal to 2, and our knowledge of algorithmic methods for finding all rational
points on such curves is much smaller. One of the only general methods, due
to Chabauty, unfortunately works only in certain cases; see Chapter 13. In
other cases, such as FLT itself, one can also use the method of Ribet–Wiles
for finding all the solutions. Thus, we give a brief survey of known results. For
equations with fixed small exponents (p, q, r), one method is to find covering
curves for the solutions. These curves may be of genus 1, as we have seen
in the (4, 4, 3), (4, 4, 5), and (2, 4, 6) examples, but are in general of higher
genus. We summarize below the known results, including the highest genus
that is necessary and the name of the authors. Recall that we consider only
nonzero coprime solutions.

Equation Solutions Genus Author(s)
±x6 ± y4 = z2 none 1 Bruin
x2 + y4 = z5 none 2 Bruin
x2 − y4 = z5 (±7,±3,−2),

(±122,±11, 3) 2 Bruin
x2 + y8 = z3 (±1549034,±33, 15613) 2 Bruin
x2 − y8 = z3 (±3,±1, 2),

(±30042907,±43, 96222) 2 Bruin
x2 + y3 = z7 (±3,−2, 1),

(±71,−17, 2),
(±2213459, 1414, 65),

(±15312283, 9262, 113),
(±21063928,−76271, 17) 3 Poonen–Schaefer–Stoll

x2 + y3 = z9 (±3,−2, 1),
(±13, 7, 2) 3 Bruin

The results of N. Bruin can be found in [Bru1], [Bru2], [Bru3], and [Bru4].
The recent (2, 3, 7) result (see [Poo-Sch-Sto]) deserves special mention. Using
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Galois representation techniques and level lowering à la Ribet–Wiles (see
Chapter 15), the authors show that solutions come from rational points on
twists of the modular curve X(7) that come from a finite list of elliptic curves,
and this leads to finding the rational points satisfying congruence conditions
modulo 2 and 3 on precisely 10 curves of genus 3 defined over Q, which over
C are all isomorphic to the so-called Klein quartic curve, whose projective
equation is x3y + y3z + z3x = 0.

Using known techniques it is possible to find the rational points satisfying
the congruence conditions on 9 of the 10 curves, leading to the given solu-
tions. To prove that the tenth curve does not have any rational point is more
difficult, but has been achieved by the authors. It is interesting to note that
the large solutions for the (2, 3, 7) come from extremely small solutions on
the twisted Klein curves.

Once again we note that the large number of solutions in this case is
(heuristically) due to the fact that χ = 1/p + 1/q + 1/r − 1 = −1/42 is as
close to zero as it can be in the hyperbolic case.

All the other results on the super-Fermat equation (including the original
Fermat equation itself) have also been proved using Galois representation
techniques. We refer to Chapter 15, written by S. Siksek, for a black-box
explanation of this method, and we also refer to the excellent papers [Kra2]
and [Ben2] for surveys, details, and references. Among the results obtained
to date (2007) using this method we cite the following:

Equation Conditions Author(s)
xn + yn = zn 3 � n Ribet–Taylor–Wiles
x3 + y3 = zn 17 � n � 10000 or z even Kraus
x5 + y5 = zn 3 � n and z even Darmon–Kraus
xn + yn = z2 4 � n Darmon–Merel, Poonen
xn + yn = z3 3 � n Darmon–Merel, Poonen
x4 + yn = z4 2 � n Darmon
x2 + y4 = zn 211 � n Ellenberg, Ramakrishnan
x2 − y4 = zn 5 � n Bennett–Skinner
x2 + y2n = z3 11 � n � 107 and n �= 31,

or 3 � y Chen
x4 + y2n = z3 2 � n Bennett–Chen
x2 + y4n = z3 2 � n Bennett–Chen
x2n + y2n = z5 2 � n Bennett

14.7 Applications of Mason’s Theorem

It is interesting to note that most of the important Diophantine problems that
we have met in this book, such as Fermat’s last theorem, Catalan’s equation,
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the super-Fermat equation, and others, have a very simple answer if we look at
them in the context of polynomials, in other words if we look for polynomial,
as opposed to rational or integral, solutions. This essentially follows from a
single, elementary, result, due to Mason. It should be emphasized that these
results have no use whatsoever for the initial Diophantine equations to be
solved over Q. Nonetheless I believe that they have a place in this book.

14.7.1 Mason’s Theorem

The reader should compare the following with Definition 14.6.3 and Conjec-
ture 14.6.4.

Definition 14.7.1. For a nonzero polynomial P in one variable, we define
rad(P ) to be the monic polynomial with no multiple roots having the same
roots as P , in other words rad(P ) =

∏
P (α)=0(X − α) = P/ gcd(P,P ′).

Proposition 14.7.2 (Mason). Let A, B, C be pairwise coprime polynomi-
als in one variable, not all constant and such that A + B + C = 0. Then

max(deg(A),deg(B),deg(C)) � deg(rad(ABC))− 1 .

In other words, the abc conjecture is true for polynomials.
Proof. Let f = A/C and g = B/C, so that f and g are rational functions

such that f + g + 1 = 0. Note that g is not constant; otherwise, f would also
be constant and A, B, and C would be proportional hence constant since
they are pairwise coprime. Differentiating, it follows that f ′ = −g′, so

B

A
=

g

f
= −f ′/f

g′/g
.

If we write

A(X) = a
∏

i

(X−αi)ai , B(X) = b
∏
j

(X−βj)bj , C(X) = c
∏
k

(X−γk)ck

we have

f ′

f
(X) =

∑
i

ai

X − αi
−
∑

k

ck

X − γk
and

g′

g
(X) =

∑
j

bj

X − βj
−
∑

k

ck

X − γk
.

Thus if we multiply f ′/f and g′/g by N = rad(ABC) we obtain polynomials,
and the degree of these polynomials is less than or equal to deg(N)−1. From
the equality

B

A
= −Nf ′/f

Ng′/g

and the fact that A and B are coprime we deduce that B divides Nf ′/f
and A divides Ng′/g, hence that max(deg(A),deg(B)) � deg(N) − 1, so
deg(C) = deg(−A−B) � deg(N)− 1, proving the proposition. ��
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14.7.2 Applications

Corollary 14.7.3. FLT is true for polynomials in one variable that are not
all constant, in other words if f , g, and h are nonzero polynomials, not all
constant and such that fn + gn = hn then n � 2.

Proof. Dividing the equation by gcd(f, g)n we may assume that f , g,
and h are pairwise coprime. Setting A = fn, B = gn, C = −hn we have
A+B +C = 0 and rad(ABC) | fgh. Thus by the above proposition we have

nmax(deg(f),deg(g),deg(h)) � deg(fgh)−1 = deg(f)+deg(g)+deg(h)−1 .

Adding the corresponding inequalities for f , g, and h we obtain

n(deg(f) + deg(g) + deg(h)) � 3(deg(f) + deg(g) + deg(h))− 3 ,

hence n < 3 as claimed. ��

Note that since we have a two-parameter coprime integer solution to FLT
for n = 2, a fortiori there exists a solution with polynomials in one variable,
for instance f = 2x, g = x2 − 1, and h = x2 + 1.

More generally, a similar proof shows that the super-Fermat equation can
have solutions only in the elliptic case:

Corollary 14.7.4. Let p, q, r be integers such that 2 � p � q � r, and
assume that f , g, and h are pairwise coprime polynomials, not all constant
and satisfying the super-Fermat equation fp + gq = hr. We are then in the
elliptic case, in other words (p, q, r) = (2, 2, r) for some r � 2, (2, 3, 3),
(2, 3, 4), or (2, 3, 5).

Proof. Once again we have A + B + C = 0 with A = fp, B = gq, and
C = −hr, which are pairwise coprime by assumption, and rad(ABC) | fgh.
If we denote by a, b, and c respectively the degrees of f , g, and h, the above
proposition tells us that max(pa, qb, rc) � a + b + c − 1. Since p � q � r we
have p(a + b + c) � pa + qb + rc � 3(a + b + c) − 3; hence as for FLT we
deduce that p < 3, so that p = 2, and the inequality pa � a + b + c− 1 gives
a � b+ c− 1. If q = 2 we are in the dihedral case (2, 2, r). Otherwise, assume
that q � 3. Our basic inequality now gives 2a + qb + rc � 3a + 3b + 3c − 3;
hence since q � r,

q(b + c) � qb + rc � a + 3b + 3c− 3 � 4(b + c)− 4 ,

so that q < 4, hence q = 3. Finally, for p = 2 and q = 3 the inequality for qb
gives 2b � a+c−1 � b+2c−2, so that b � 2c−2, hence a � b+c−1 � 3c−3.
Thus rc � a + b + c − 1 � 6(c − 1), hence r < 6, so r = 3, 4, or 5, proving
the corollary. ��

Note that we have seen in Sections 14.2, 14.3, 14.4, and 14.5.2, that in
all the elliptic cases we have a two-variable parametrization, so in the given
cases of the corollary, solutions do indeed exist.
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14.8 Exercises for Chapter 14

1. Show that, as claimed in the text, in Theorem 14.5.1 we can choose fG(s, t) =
st(s10 − 11s5t5 − t10) in the case of the regular icosahedron.

2. (M. Stoll.) Assume that the following weaker form of the abc Conjecture 14.6.4
is valid: there exists ε < 1/5 such that for all nonzero pairwise coprime integers
a, b, c with a + b + c = 0 we have max(|a|, |b|, |c|) = O(rad(abc)1+ε).

(a) Prove that there are in total only finitely many solutions to the super-Fermat
equations with 1/p + 1/q + 1/r < 5/6 + δ for some δ > 0 depending on ε.

(b) Deduce from the Darmon–Granville Theorem 14.6.2 that there are in total only
finitely many solutions in the hyperbolic case.

3. Let p and q be integers such that p � 2 and q � 2. Using Mason’s theorem
(Proposition 14.7.2), prove that if f and g are nonconstant coprime polynomials
then

deg(fp − gq) � (p − 1 − p/q) deg(f) + 1 .

The special case deg(f3 − g2) � (deg(f)/2) + 1 is due to Davenport and is the
polynomial analogue of Hall’s conjecture, which states that if a, b are coprime
positive integers different from 1 then for every ε > 0 we have |a3−b2| � a1/2−ε

except for finitely many (a, b).

4. Let p, q, and r be strictly positive integers. Show that there do not exist any
solutions to the negative super-Fermat equation x−p + y−q = z−r with x, y,
and z pairwise coprime.



15. The Modular Approach to Diophantine
Equations

By Samir Siksek

15.1 Newforms

15.1.1 Introduction and Necessary Software Tools

One of the most powerful tools in the study of Diophantine equations, ex-
tensively developed in the past few years, has been the use of special types
of elliptic curves associated with possible solutions of the Diophantine equa-
tion (but not considered as Diophantine equations in themselves), now called
Hellegouarch–Frey curves, or simply Frey curves. The three very deep theo-
rems that are necessary to use these tools are on the one hand the Taniyama–
Shimura–Weil conjecture, now proved thanks to Wiles and successors (The-
orems 8.1.4 and 8.1.5), Ribet’s level-lowering Theorem 15.2.5, and Mazur’s
Theorem 15.2.6; see below. The aim of this chapter is to explain these tools
so that they can be used by the reader as a black box, in particular with a
minimal knowledge of the underlying (beautiful) mathematics. Since the first
great success of this method was the complete proof of Fermat’s last theorem
in 1995, it is not surprising that the method is difficult, and requires more
prerequisites than assumed in the rest of this book. However, considering its
importance, we have decided to include it as a chapter in the last part of
this book. We will see for instance that FLT is the easiest case to which the
method applies.

Apart from the black box that we will explain in detail, the reader ab-
solutely needs to have at his disposal a number of software tools, which are
all available in the magma computer algebra system, and some of which are
available in Pari/GP. First he will need to be able to compute the minimal
model, the conductor, and the minimal discriminant of an elliptic curve de-
fined over Q. Given such an elliptic curve E, he will also need to compute
the coefficients a�(E) such that |E(F�)| = �+ 1− a�(E) for reasonable values
of � at which E has good reduction. All of these functions are available in
both the above-mentioned systems. He will also need to be able to compute
the list of newforms at a given level, together with the totally real number
fields that they generate (see below for the definitions). This is available in
magma in a package written by W. Stein.
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15.1.2 Newforms

The fundamental objects that we will need to use are normalized newforms
of weight 2 without character on Γ0(N), which we simply abbreviate to new-
forms of level N . Although a newform is a modular form for a certain sub-
group of SL2(Z) that is an eigenfunction of important operators called Hecke
operators, in keeping with the black-box principle we need to know only the
following.

– A newform is a q-expansion

f = q +
∑
n�2

cnqn

with no term in q0 and normalized so that the coefficient of q is equal to
1. The cn will be called the Fourier coefficients of f .

– The field K = Q(c2, c3, . . . ) obtained by adjoining to Q the Fourier coef-
ficients of f is a finite and totally real extension of Q, in other words is a
totally real number field.

– The Fourier coefficients cn are algebraic integers, in other words they be-
long to ZK .

– Let L be the Galois closure of K. If f is a newform and σ is any element
of Gal(L/Q) then q +

∑
n�2 σ(cn)qn is again a newform, denoted by σ(f)

and called a conjugate of f . We will usually identify a newform with all of
its conjugates.

– The Ramanujan conjecture, proved by Deligne in the general case, but
much easier in the weight 2 case: If � is a prime we have |c�| � 2�1/2. Since
this is also true for the conjugates of f , we have in fact |σ(c�)| � 2�1/2 for
all σ.

– For a given level N , the number of newforms (up to conjugacy or not) is
finite. For the sake of completeness, we give the formula for the number
of newforms (the number of newforms up to conjugacy does not have any
known closed form). This formula appears in several places; see for instance
[Hal-Kra1] and [Mart].

Proposition 15.1.1. We define five arithmetic functions Ai(N) for 1 � i �
5 by asking that they be multiplicative, and that their values on prime powers
pk be given as follows:

(1) A1(p) = −1, A1(pk) = 0 when k � 2.
(2) A2(p) = p(1−1/p), A2(p2) = p2(1−1/p−1/p2), A2(pk) = pk(1−1/p)(1−

1/p2) when k � 3.
(3) A3(p) =

(−4
p

) − 1, A3(p2) = −(−4
p

)
, A3(pk) = 0 when k � 3 for p �= 2,

while A3(2) = A3(22) = −1, A3(23) = 1, and A3(2k) = 0 for k � 4.
(4) A4(p) =

(−3
p

) − 1, A4(p2) = −(−3
p

)
, A4(pk) = 0 when k � 3 for p �= 3,

while A4(3) = A4(32) = −1, A4(33) = 1, and A4(3k) = 0 for k � 4.
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(5) A5(p2) = p(1 − 2/p), A5(p2k) = pk(1 − 1/p)2 when k � 2, and
A5(p2k−1) = 0 for k � 1.

The number of newforms of level N (counting conjugate ones as distinct) is
equal to

A1 +
A2

12
− A3

4
− A4

3
− A5

2
.

Corollary 15.1.2. There are no newforms for levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60 .

For all other levels there are newforms.

Proof. Follows from an immediate (computer-aided) computation from
the proposition. ��

Example. If N = 110 the formula shows that there are five newforms. In fact
there are three newforms for which K = Q, hence alone in their conjugacy
class, and one conjugacy class of newforms for which K = Q(

√
33), which

gives the two other conjugate newforms. Explicitly we have

f1 = q − q2 + q3 + q4 − q5 − q6 + 5q7 + · · · ,

f2 = q + q2 + q3 + q4 − q5 + q6 − q7 + · · · ,

f3 = q + q2 − q3 + q4 + q5 − q6 + 3q7 + · · · ,

f4 = q − q2 + θq3 + q4 + q5 − θq6 − θq7 + · · · ,

f5 = σ(f4) ,

where θ = (−1 +
√

33)/2 and σ is the nontrivial automorphism of Q(
√

33).

15.1.3 Rational Newforms and Elliptic Curves

We will say that a newform f is rational when the field K associated with
f is equal to Q, in other words if all the Fourier coefficients of f are in Z,
such as the first three forms in the above example. These will be particularly
important for us. We recall the modularity theorem for elliptic curves, proved
by Wiles and successors (formerly the Taniyama–Shimura–Weil conjecture).

Theorem 15.1.3 (The Modularity Theorem for Elliptic Curves). Let
N � 1 be an integer. There is a one-to-one correspondence f �→ Ef between
rational newforms of level N and isogeny classes of elliptic curves E defined
over Q and of conductor equal to N . Under this correspondence, for all primes
� � N we have c� = a�(Ef ), where c� is the �th Fourier coefficient of f and
a�(Ef ) = � + 1− |Ef (F�)| as in Section 7.3.4.
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Remarks. (1) The correspondence f �→ Ef was found by Shimura, and
is not difficult. The fact that this correspondence is surjective, in other
words that any elliptic curve over Q comes from a newform is much
deeper, and was first proved by Wiles and Taylor–Wiles in [Wil], [Tay-Wil]
for squarefree N , and in complete generality by Breuil, Conrad, Diamond,
and Taylor in [BCDT].

(2) Note that with the definition that we have given in Section 7.3.4 we have
c� = a�(Ef ) for all primes �, including those dividing the conductor, but
we will not need this.

To take again the example given above at level 110, we see from the theo-
rem that up to isogeny there exists exactly three elliptic curves of conductor
110 defined over Q. An immediate computation shows that f1, f2, f3 corre-
spond respectively to the curves denoted by 110C1, 110B1, and 110A1 in the
tables of Cremona [Cre2].

The above theorem, which is among one of the crowning achievements
of number theory of the second half of the twentieth century (together with
Deligne’s proof of the Weil conjectures and of the Ramanujan conjecture, and
with Faltings’s proof of the Mordell and Shafarevich conjectures), is needed
to go back and forth with ease between rational newforms and elliptic curves.
However, there is really no need to understand what is going on in detail:
we simply remember that with each (isogeny class of) elliptic curve(s) of
conductor N is associated a rational newform of level N , and conversely.
This is not at all the case with the second essential tool that we need, Ribet’s
lowering theorem, for which we need to understand a little more what is going
on.

15.2 Ribet’s Level-Lowering Theorem

We keep the notation c� for the Fourier coefficients of a newform, and a�(E) =
� + 1− |E(F�)|.

15.2.1 Definition of “Arises From”

Definition 15.2.1. Let E be an elliptic curve over Q of conductor N , let
f be a newform of level N ′ not necessarily equal to N , and let K be the
number field generated by the Fourier coefficients of f . We will say that E
arises modulo p from f , and write E ∼p f , if there exists a prime ideal p
of K above p such that c� ≡ a�(E) (mod p) for all but finitely many prime
numbers �.

For instance, if E = Ef is the elliptic curve of level N ′ corresponding to a
rational newform f then c� = a�(E) for � � N ′, so that E ∼p f for all primes
p. This will be an uninteresting case. On the other hand, if E is an elliptic
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curve of conductor N such that E ∼p f with f a rational newform of level
N ′, then by the modularity theorem above we know that f corresponds to
an elliptic curve F = Ef defined over Q of conductor N ′, and we will also
write E ∼p F .

It is not difficult to prove that the above definition implies the following
important properties, which makes it more precise.

Proposition 15.2.2. Assume that E ∼p f . There exists a prime ideal p of
K above p such that for all prime numbers � we have:

(1) If � � pNN ′ then a�(E) ≡ c� (mod p).
(2) If �‖N but � � pN ′ then c� ≡ ±(� + 1) (mod p).

There is, however, a slight but essential refinement of this proposition due
to Kraus–Oesterlé [Kra-Oes], which is the final form of the definition of ∼p

that we will use:

Proposition 15.2.3. Let E and F be elliptic curves over Q with respective
conductors N and N ′, and assume that E ∼p F as defined above. Then for
all primes numbers � we have:

(1) If � � NN ′ then a�(E) ≡ a�(F ) (mod p).
(2) If �‖N but � � N ′ then a�(F ) ≡ ±(� + 1) (mod p).

The crucial refinement of this proposition is that we have removed the
assumption that � �= p. This will be important in applications since p will be
an unknown exponent in the equations that we want to solve, and it would
be awkward to have conditions depending on p.

Note that the condition � � NN ′ means that the elliptic curves E and F
have good reduction modulo �, in other words that their reduction is nonsin-
gular. The condition that �‖N and � � N ′ means that F has good reduction,
and it is easily shown that this means that E has multiplicative reduction at
�, see Section 7.1.4, but we will not need this interpretation.

15.2.2 Ribet’s Level-Lowering Theorem

Let E be an elliptic curve defined over Q. For any finite place p of Q we
can find a generalized Weierstrass equation that is integral at p and whose
discriminant has minimal p-adic valuation. Since Q has class number 1, it is
possible to glue these local equations and obtain a global integral generalized
Weierstrass equation whose discriminant Δmin has minimal p-adic valuation
for all prime numbers p. This equation is not unique (it is unique up to
simple changes of coordinates), but Δmin is unique, and it will be called the
minimal discriminant of E. On the other hand, E has a conductor N that
can be explicitly computed using an algorithm due to Tate (see for example
Algorithms 7.5.1 and 7.5.2 of [Coh0], and [Pap]), and N and Δmin are related
by the fact that N | Δmin and that N and Δmin have the same prime divisors,
the primes of bad reduction.
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Definition 15.2.4. Keep the above notation and let p be a prime number.
We define Np by the formula1

Np = N
/ ∏

q‖N
p|vq (Δmin)

q ;

in other words, Np is equal to N divided by the product of all prime numbers
q such that vq(N) = 1 and p | vq(Δmin).

We emphasize that the Δmin occurring in the definition of Np must be
the minimal discriminant.

We can now state a simplified special case of Ribet’s level-lowering theo-
rem that will be sufficient for our applications (see [Rib1] for the full state-
ment).

Theorem 15.2.5 (Ribet’s Level-Lowering Theorem). Let E be an el-
liptic curve defined over Q and let p � 5 be a prime number. Assume that
there does not exist a p-isogeny (i.e., of degree p) defined over Q from E to
some other elliptic curve, and let Np be as above. There exists a newform f
of level Np such that E ∼p f .

As mentioned, Ribet’s theorem is much more general than this, but the
present statement is sufficient. In addition, in Ribet’s general theorem there
is a modularity assumption, but since we restrict to the case of elliptic curves
this assumption is automatically satisfied thanks to the modularity theorem.

Example. Let E be the elliptic curve with minimal Weierstrass equation

y2 = x3 − x2 − 77x + 330 ,

referenced as 132B1 in [Cre2]. We compute that the minimal discriminant
and the conductor are respectively
1 Highbrow remark, to be omitted on first reading. This Np is not always

the same as the Serre conductor. If N ′
p denotes the Serre conductor then N ′

p | Np ,
and Np/N ′

p is a power of p. More precisely,

Np =

⎧⎪⎨⎪⎩
N ′

p if E has good reduction at p ,

pN ′
p if E has multiplicative reduction at p ,

p2N ′
p if E has additive reduction at p .

Ribet’s theorem allows us to obtain a newform of level N ′
p and weight kp �

2 (where kp is the Serre weight). Since we have limited ourselves to weight-2
newforms, it turns out that we obtain a newform of level Np and not N ′

p . To
understand why we have chosen to restrict to weight 2, note that later p will be
an unknown exponent in some Diophantine equation. Often we will not know
whether p is a prime of good reduction. The restriction that we have made
allows us to deal with all these cases uniformly, by giving a unique level and
weight regardless of whether E has good, multiplicative, or additive reduction
at p.
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Δmin = 24 · 310 · 11 and N = 22 · 3 · 11 .

Using [Cre2] we see that the only isogeny that the curve has is a 2-isogeny,
so we may apply Ribet’s theorem with p = 5. We find that Np = 22 ·11 = 44,
so Ribet’s theorem asserts the existence of a newform f at level 44 such that
E ∼5 f . The formula given for the number of newforms shows that there is
a single one at level 44, necessarily rational, and Cremona’s tables show that
it corresponds to the elliptic curve F = 44A1 with equation

y2 = x3 + x2 + 3x− 1 ,

so that E ∼5 F . In order for the reader to understand what is expected from
Proposition 15.2.3 we give the values of a�(E) and a�(F ) for � � 37.

� 2 3 5 7 11 13 17 19 23 29 31 37
a�(E) 0 −1 2 2 −1 6 −4 −2 −8 0 0 −6
a�(F ) 0 1 −3 2 −1 −4 6 8 −3 0 5 −1

15.2.3 Absence of Isogenies

There are a number of technical difficulties that must be solved in order to
be able to apply Ribet’s theorem in practice. The most important one is
the restriction that E should not have any p-isogenies defined over Q (for
simplicity we will say that E has no p-isogenies), in other words that there
should be no subgroup of order p of E that is stable under conjugation (see
Definition 8.4.1). This is not always easy to check, but there are several results
that help us in doing so. We give here two of the most useful.

Theorem 15.2.6 (Mazur [Maz]). Let E be an elliptic curve defined over
Q of conductor N . Then E does not have any p-isogeny if at least one of the
following conditions holds:

(1) p � 17 and j(E) /∈ Z[1/2].
(2) p � 11 and N is squarefree.
(3) p � 5, N is squarefree, and 4 | |Et(Q)|, this last condition meaning that

E(Q) has full 2-torsion.

Theorem 15.2.7 (Diamond–Kramer [Dia-Kra]). Let E be an elliptic cur-
ve defined over Q of conductor N . If v2(N) = 3, 5, or 7, then E does not
have any p-isogeny for p an odd prime.

Example. Let E be an elliptic curve defined over Q of conductor N and
minimal discriminant Δmin. We have the following theorem, conjectured by
Brumer–Kramer in [Bru-Kra] and proved by Serre in [Ser3] assuming a hy-
pothesis that has now been removed thanks to the theorems of Ribet and
Wiles.
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Theorem 15.2.8. Assume that N is squarefree. If Δmin is a pth power for
some prime p then p � 5 and E has a rational point of order p.

Proof. We prove only the statement p � 7 using the tools that we have
introduced. Since N is squarefree and Δmin is a pth power, the definition
shows that Np = 1. Assume first that p � 11. Since N is squarefree, the
second condition of Mazur’s theorem shows that E does not have any p-
isogeny. We can thus apply Ribet’s theorem, which tells us that E ∼p f
for a newform f of level 1. Since there are no such newforms, we have a
contradiction showing that p � 7. With some extra work Serre shows that E
has a rational point of order p. In addition one can prove that there are no
curves with N squarefree whose discriminant is a power of 7 (see [Mes-Oes]).

��

Remark. If E has no p-isogenies then Ribet’s theorem implies that E ∼p f
for some newform f of level Np. At that level there may be rational newforms,
but also nonrational newforms defined over number fields of relatively large
degree. In fact, the following proposition shows that the degree is unbounded:

Proposition 15.2.9. An elliptic curve defined over Q can arise from a new-
form whose field of definition K has arbitrarily large degree.

Proof. Let p � 5 be a prime, set L = 2p+4 + 1, and let E be the elliptic
curve with equation

Y 2 = X(X + 1)(X − 2p+4) .

Using Tate’s algorithm we easily compute that the minimal discriminant and
conductor are given by

Δmin = 22pL2, N = 2 rad(L)

(see Definition 14.6.3). From Mazur’s Theorem 15.2.6 we know that E has
no p-isogenies, so we can apply Ribet’s theorem, which tells us that E ∼p f
for some newform at level Np whose field of definition is some number field
K. We cannot compute Np, but since L is odd, 2‖N , and v2(Δmin) = 2p, it
follows from the definition of Np that Np is odd. Thus by Proposition 15.2.2
(2) applied to � = 2 we deduce that p | NK/Q(3 ± c2), where we denote by
c� the Fourier coefficients of the newform f . However, we know that all the
conjugates of c2 in Q are bounded in absolute value by 2

√
2, and that c2 is

an algebraic integer. It follows that p � (3 + 2
√

2)[K:Q] < 6[K:Q], hence that

[K : Q] >
log(p)
log(6)

,

proving the proposition. ��
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15.2.4 How to use Ribet’s Theorem

The general strategy for applying to a Diophantine equation the tools that
we have introduced is the following. We assume that it has a solution, and to
such a solution we associate if possible in some way an elliptic curve, called
a Hellegouarch–Frey curve, or simply a Frey curve.2 The key properties that
a “Frey curve” E must have are the following:

– The coefficients of E depend on the solution of the Diophantine equation.
– The minimal discriminant Δmin of E can be written in the form Δmin =

C ·Dp, where D depends on the solution of the Diophantine equation, p is
an unknown prime occurring as an exponent in the Diophantine equation,
and most importantly C does not depend on the solution of the Diophantine
equation, but only on the equation itself.

– If � is a prime dividing D then E has multiplicative reduction at �, in other
words v�(N) = 1, where N is the conductor of E.

The conductor N will be divisible by the primes dividing C and D, but
because of the last condition above, the primes dividing D will be removed
when computing Np (see Definition 15.2.4); in other words, Np is a divisor
of N that is divisible only by primes dividing C, hence depending only on
the equation. Without knowing the solutions to the Diophantine equation we
can thus easily write a finite number of possibilities for Np depending only
on the equation. Using Ribet’s theorem we will then be able to list a finite
set of newforms f such that E ∼p f .

From then on we have to work more. Knowing the newform gives local
information on the elliptic curve E, and since the equation of E has coef-
ficients that depend on the solution to the Diophantine equation, we may
obtain useful information about these solutions, including of course the fact
that they do not exist.

The rest of this chapter is devoted to giving concrete examples of how
Ribet’s theorem is used to obtain information about solutions to certain
Diophantine equations, and occasionally to solve them.

15.3 Fermat’s Last Theorem and Similar Equations

The foremost example, for which in fact this whole machinery was developed
and successfully applied, is FLT. As we will see, FLT is in fact one of the
simplest applications, because no newform exists corresponding to a solution,
so we do not need to do the extra work mentioned above.

2 Y. Hellegouarch was the first to have this idea, but G. Frey realized that it would
become very fruitful once the modularity theorem was proved.
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15.3.1 A Generalization of FLT

Thus, since FLT is too easy (!!!), we will solve a more general problem:

Theorem 15.3.1. Let p � 5 be a prime. The equation

xp + 2ryp + zp = 0

has no solution with xyz �= 0 and x, y, and z pairwise coprime, except when
r = 1, for which it has the solutions (x, y, z) = ±(1,−1, 1).

This theorem is the celebrated theorem of Wiles for r = 0, and it was
proved by Ribet in [Rib2] for r � 2, and by Darmon–Merel in [Dar-Mer] for
r = 1.

Proof. Assume that (x, y, z) is a nontrivial primitive solution to our equa-
tion (in other words that xyz �= 0, and that x, y, and z are pairwise coprime).
It is clear that without loss of generality we may assume that 2ryp ≡ 0
(mod 2) (this is automatic if r � 1, and is obtained by a suitable permu-
tation of x, y, and z if r = 0 since at least one must be even), and that
xp ≡ −1 (mod 4) (x must be odd; otherwise, x and z will both be even hence
not coprime, and we change if necessary (x, y, z) into (−x,−y,−z), since p is
odd). We associate to this solution the Frey elliptic curve E with equation

Y 2 = X(X − xp)(X + 2ryp) .

It is easily checked that the invariants are given by

c4 = 16(z2p−2r(xy)p), disc(E) = 22r+4(xyz)2p, j(E) =
(z2p − 2rxpyp)3

22r−8(xyz)2p
.

Note that disc(E) is not necessarily the minimal discriminant. In fact, using
Tate’s algorithm we easily compute that the minimal discriminant and the
conductor are given by the following formulas:

Δmin =

{
22r+4(xyz)2p if 16 � 2ryp ,

22r−8(xyz)2p if 16 | 2ryp ,

and

N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 rad2(xyz) if r � 5 or y is even ,
rad2(xyz) if r = 4 and y is odd ,
8 rad2(xyz) if r = 2 or r = 3 and y is odd ,
32 rad2(xyz) if r = 1 and y is odd ,

where for an integer X and a prime q we define radq(X) by the formula

radq(X) =
∏

�|X, � prime
� 
=q

�
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(see also Definition 14.6.3).
Applying Definition 15.2.4 we find that

Np =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 if r = 0 or r � 5 and r �≡ 4 (mod p) ,
1 if r ≡ 4 (mod p) ,
2 if 1 � r � 3 and y is even ,
8 if r = 2 or r = 3 and y is odd ,
32 if r = 1 and y is odd .

Before applying Ribet’s level-lowering theorem we must ensure that E has
no p-isogenies. However, note that by construction the Frey curve has full 2-
torsion, so that 4 | |E(Q)tors|. Thus, if N is squarefree Mazur’s Theorem
15.2.6 tells us that E does not have p-isogenies (since p � 5 is prime). From
the formulas given for N we see that if N is not squarefree then v2(N) = 3
or v2(N) = 5 (since by definition rad2(X) is squarefree and odd). We may
therefore apply Diamond–Kramer’s Theorem 15.2.7, which shows that there
are no p-isogenies in this case also.

The hypotheses being satisfied, we may therefore apply Ribet’s level-
lowering Theorem 15.2.5. This theorem tells us that there exists a newform
of level Np such that E ∼p f . Now by Corollary 15.1.2 there do not exist
newforms at levels 1, 2, and 8, so we deduce that Np = 32, hence that r = 1
and y is odd. Note in passing that we have already solved FLT (!). In ad-
dition, there do exist newforms in level 32, and this is a good (if somewhat
annoying) thing since there exists the solution (1,−1, 1) for r = 1, so of
course this case cannot be eliminated. This is of course a special case of a
natural-philosophical remark: it is in general easier to show that a Diophan-
tine equation has no solutions at all than to show that the list of solutions is
as given.

To deal with the remaining case, we look at newforms at level 32. Proposi-
tion 15.1.1 tells us that there is a single newform, which is therefore necessar-
ily rational, and it is easy to compute using [Cre2] that under the modularity
theorem it corresponds to the elliptic curve F with equation

Y 2 = X(X + 1)(X + 2) ,

referred to as 32A2 in [Cre2]. Note that if we take the known solution
(x, y, z) = (−1, 1,−1) to our initial Diophantine equation, the correspond-
ing Frey curve is exactly F .

For the moment the only thing that we know is that E ∼p F , in other
words that E arises modulo p from F . We must now perform the additional
work mentioned above. Here we are helped by quite a special circumstance,
which does not often happen: the curve F has complex multiplication.

15.3.2 E Arises from a Curve with Complex Multiplication

In this case we can use the following theorem.
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Theorem 15.3.2. Let E and F be two elliptic curves defined over Q. As-
sume that F has complex multiplication by some order in an imaginary
quadratic field L, and that p is a prime number such that E ∼p F .

(1) If p = 11 or p � 17 and p splits in L the conductors of E and F are
equal.

(2) If p � 5, p is inert in L, and E has a Q-rational subgroup of order 2 or
3, then j(E) ∈ Z[1/p].

Remarks. (1) Part (1) was proved by Halberstadt and Kraus in [Hal-Kra1]
as a consequence of work of Momose [Mom], and part (2) was proved by
Darmon and Merel in [Dar-Mer].

(2) For other Diophantine applications of this theorem see [Dar-Mer], [Kra2],
[Ivo1], and [Ivo2].

(3) In part (2) of the theorem we can in fact say a little more:

Proposition 15.3.3. With the assumptions of Theorem 15.3.2 (2), assume
in addition that p2 � N and that p � N ′, where N is the conductor of E and
N ′ that of F . Then in fact j(E) ∈ Z.

Proof. By (2) we know that j(E) ∈ Z[1/p]. Assume by contradiction that
j(E) /∈ Z, so that the denominator of j(E) is divisible by p. Thus p | N ,
and since p2 � N we have p‖N . Since p � N ′ we can apply Proposition 15.2.3
(2) so that ap(F ) ≡ ±(p + 1) (mod p). However, since p is inert in L and
F has complex multiplication by an order in L, we have ap(F ) = 0, which
contradicts the congruence. ��

15.3.3 End of the Proof of Theorem 15.3.1

Using the above theorem we can now complete the proof of Theorem 15.3.1.
Recall that we have shown that r = 1, that y is odd, and that E ∼p F ,
where F is the curve with equation Y 2 = X(X + 1)(X + 2). To simplify we
will assume that p �= 5 and p �= 13. The proof of the theorem having been
achieved by Dénes in [Den] for p � 31 using classical tools from algebraic
number theory, this is not an important restriction.

We note that F has complex multiplication by Z[i]: indeed, setting X1 =
X +1 in the equation gives the isomorphic curve Y 2 = X3

1 −X1, which is the
prototypical example of a curve with CM; see Section 7.3.1 (change (X1, Y )
to (−X1, iY )). We thus consider two cases.
Case 1. p ≡ 1 (mod 4). In this case p splits in Z[i], so we deduce from
Theorem 15.3.2 (1) (which is applicable since we have excluded p = 5 and
p = 13) that the conductor N of E is equal to that of F , hence to 32. It
follows from the formula given above for N that rad2(xyz) = 1, in other
words that x, y, and z are powers of 2. But since x, y, and z are odd we thus
have x, y, z equal to ±1, giving the two solutions (x, y, z) = ±(1,−1, 1).
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Case 2. p ≡ 3 (mod 4). In this case p is inert in Z[i]. In addition the Frey
curve E clearly has rational 2-torsion (in fact full 2-torsion), so we may apply
Theorem 15.3.2 (2), which tells us that j(E) ∈ Z[1/p]. Furthermore, from the
formula for N and the fact that the conductor N ′ of F is equal to 32, it follows
that p2 � N and p � N ′, so by Proposition 15.3.3 we have in fact j(E) ∈ Z.
However, since j(E) = 64(z2p−2xpyp)3/(xyz)2p and x, y, and z are pairwise
coprime, it follows that x, y, and z cannot have any odd prime divisors, hence
that they are powers of 2, so we conclude again that the only possibilities are
(x, y, z) = ±(1,−1, 1). ��

15.3.4 The Equation x2 = yp + 2rzp for p � 7 and r � 2

We treat another equation that also leads to curves with CM. Consider the
Diophantine equation

x2 = yp + 2rzp ,

where we assume that p � 7 is prime, and as usual xyz �= 0 and x, y, and z
pairwise coprime. We first solve this equation for r � 2 (see [Ben-Ski], [Ivo1],
and [Sik]).

Theorem 15.3.4. The only nonzero pairwise coprime solutions to x2 = yp+
2rzp for r � 2 and p � 7 prime are for r = 3, for which (x, y, z) = (±3, 1, 1)
is a solution for all p.

We will prove a slightly weaker version of this theorem in which we assume
that p �= 7 when r � 6, p �= 7, 11, and 13 when r = 2, and p �= 13 when
r = 3. The other cases can be treated similarly but using other theorems, or
attacked directly using classical algebraic number theory techniques.

Proof. Changing if necessary x into −x we may assume that x ≡ 3
(mod 4). We consider the Frey curve E with equation

Y 2 = X(X2 + 2xX + yp) .

Note that in contrast to the Frey curve considered in the previous section,
this curve has nontrivial 2-torsion, but not full 2-torsion.

We compute that the invariants are given by

c4 = 16(4x2 − 3yp), disc(E) = 2r+6(y2z)p, j(E) =
(4x2 − 3yp)3

2r−6(y2z)p
.

Using Tate’s algorithm we easily compute that the minimal discriminant and
the conductor are given by the following formulas:

Δmin =

{
2r+6(y2z)p if 64 � 2rzp ,

2r−6(y2z)p if 64 | 2rzp ,

and
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N =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 rad2(yz) if r � 7 or z is even ,
rad2(yz) if r = 6 and z is odd ,
8 rad2(yz) if r = 4 or r = 5 and z is odd ,
32 rad2(yz) if r = 3 and z is odd ,
4 rad2(yz) if r = 2 and z ≡ 3 (mod 4) ,
16 rad2(yz) if r = 2 and z ≡ 1 (mod 4) .

As usual we must ensure that E has no p-isogenies for p � 7. In the
first two cases for N above, N is squarefree, so Mazur’s Theorem 15.2.6 (2)
applies, at least for p �= 7, which we assume. Note that since E does not have
full 2-torsion we cannot apply (3). In the next two cases we have v2(N) = 3
or 5, so we can apply Theorem 15.2.7. In the final two cases we note that from
the formula for j(E) and the fact that x, y, and z are pairwise coprime and
odd, j(E) ∈ Z[1/2] can occur only if y and z are equal to ±1, which is not
possible for r = 2, so Mazur’s theorem implies that there are no p-isogenies
if p � 17. Thus, using the above-mentioned two theorems we have shown the
absence of p-isogenies except perhaps for p = 7 if r � 6 or z even, or for
r = 2, z odd, and p = 7, 11, and 13, cases that we exclude for simplicity.

This annoying but essential technical step being done, we are ready to
apply Ribet’s theorem. Using Definition 15.2.4 we find that

Np =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if r � 7 and r �≡ 6 (mod p) ,
1 if r ≡ 6 (mod p) ,
2 if 2 � r � 5 and z is even ,
8 if r = 4 or r = 5 and z is odd ,
32 if r = 3 and z is odd ,
4 if r = 2 and z ≡ 3 (mod 4) ,
16 if r = 2 and z ≡ 1 (mod 4) .

Since there are no newforms in levels 1, 2, 4, 8, and 16, these cases are
completely solved, and the only remaining case is r = 3 and z odd, which
must of course remain since there does exist a solution for r = 3. We obtain
a newform of level 32, and since there is a single one, it corresponds to
the same elliptic curve F with complex multiplication by Z[i] seen in the
preceding section. Once again we consider two cases: if p ≡ 1 (mod 4) then p
is split in Q(i), so by Theorem 15.3.2 (1) (which we can apply only if p �= 13)
we deduce that N = 32, and from the explicit formula for N and the fact
that y and z are odd this means that y and z are equal to ±1, giving as only
solutions (±3, 1, 1) (the other three values of (y, z) lead to x /∈ Z). If p ≡ 3
(mod 4) then p is inert in Q(i), and E has a rational point of order 2 (even if
it does not have full 2-torsion). Thus by Theorem 15.3.2 (2) and Proposition
15.3.3 we deduce that j(E) ∈ Z, which is impossible unless y and z are equal
to ±1, again giving the known solutions. ��
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Remark. I am indebted to A. Kraus for pointing out that the above theorem
is false if we assume only that gcd(x, y, z) = 1, as is shown by the example
(x, y, z) = (3 · 2(p−3)/2, 2, 1) for r = p− 3, see [Ivo1].

15.3.5 The Equation x2 = yp + zp for p � 7

Theorem 15.3.5 (Darmon–Merel [Dar-Mer]). If p � 7 is prime there are
no nonzero pairwise coprime solutions to x2 = yp + zp.

We will prove this for p �= 13.
Proof. First note that if z (or y) is even we can write x2 = yp + 2p(z/2)p,

which does not have any pairwise coprime solutions for p � 7 by Theorem
15.3.4. We may therefore assume that both y and z are odd, hence that x
is even, and since x2 ≡ y + z (mod 4) we have y + z ≡ 0 (mod 4). Thus,
if necessary exchanging y and z and changing x into −x we may assume
that y ≡ 3 (mod 4) and x ≡ 3 (mod 4). As in the preceding section, to any
possible solution we associate the Frey curve E with equation

Y 2 = X(X2 + 2xX + yp) .

We easily compute that the minimal discriminant is given by Δmin =
26(y2z)p, and the conductor is N = 25 rad(yz). By Theorem 15.2.7, E does
not have any isogenies of degree p, so we may apply Ribet’s level-lowering
theorem, which tells us that E ∼p f for some newform f of level Np with
Np = 32, corresponding once again to the elliptic curve F with complex mul-
tiplication by Z[i]. Once again we consider two cases: if p ≡ 1 (mod 4) then
p is split in Q(i); hence by Theorem 15.3.2 (1) (which we can apply only if
p �= 13) we deduce that N = 32, so that rad(yz) = 1, which means that y
and z are equal to ±1, which is not possible unless x = 0, which has been
excluded. If p ≡ 3 (mod 4) then p is inert in Q(i); hence by Theorem 15.3.2
(2), since E has a rational point of order 2, we deduce from Proposition 15.3.3
that j(E) ∈ Z, which implies y and z equal to ±1 once again by the explicit
formula for j(E) given in the preceding section, again a contradiction. ��

To finish this section on the equation x2 = yp + 2rzp, we note that the
case r = 1 remains unresolved, although it is straightforward to show that in
this case there are no pairwise coprime solutions with z even, see [Ivo1] and
[Ivo2] for these and additional results.

15.4 An Occasional Bound for the Exponent

The above three examples are in fact quite miraculous. In many cases there
were no newforms at all, and in the cases in which a newform existed, it was
a rational newform corresponding to an elliptic curve with complex multi-
plication. In general we cannot expect that these phenomena will occur: we
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will usually find a finite collection of newforms, some rational, and some irra-
tional, which we have to study separately. It is, however, sometimes possible
to obtain a bound for the exponent p occurring in the Diophantine equation
thanks to the following proposition.

Proposition 15.4.1. Let E/Q be an elliptic curve of conductor N , and let
t be an integer such that t | |Et(Q)|, where we recall that Et(Q) is the torsion
subgroup of E(Q). Let f be a newform of level N ′ with Fourier coefficients
cn, let K be the totally real number field that they generate, and let � be a
prime number such that �2 � N and � � N ′. Finally, define

S� =
{

a ∈ Z, −2�1/2 � a � 2�1/2 and a ≡ � + 1 (mod t)
}

,

B′
�(f) = NK/Q((� + 1)2 − c2

�)
∏

a∈S�

NK/Q(a− c�) , and

B�(f) =

{
�B′

�(f) if f is not rational ,
B′

�(f) if f is rational .

Then if E ∼p f we have p | B�(f).

Proof. First note that if � is a prime of good reduction, in other words such
that � � N , then by Proposition 8.1.13, |Et(Q)| divides E(F�) = �+1−a�(E),
so if t | |Et(Q)| we have a�(E) ≡ � + 1 (mod t).

Assume first that � �= p. Since � � N ′ and �2 � N , by Proposition 15.2.2
either � � pN , in which case p | NK/Q(a�(E) − c�), or �‖N , in which case
p | NK/Q((� + 1)2 − c2

�) since � �= p. Since by Hasse’s theorem −2�1/2 �
a�(E) � 2�1/2, and since in this case � is a prime of good reduction, so that
a�(E) ≡ � + 1 (mod t), it follows that if � �= p we have p | B′

�(f), hence in
particular p | �B′

�(f) in all cases. If, in addition, f is rational, we can use the
more precise Proposition 15.2.3 to conclude that p | B′

�(f) whether or not �
is equal to p, proving the proposition. ��

Remark. The reader may wonder why we do not simply choose t = |Et(Q)|
in the above proposition, but suppose only that t | |Et(Q)|. The reason is
that later on we will apply the proposition to Frey curves related to some
Diophantine equations. We will often know that our Frey curves have points
of order 2 or 3, say, and we can in those cases take t = 2 or 3. However, our
Frey curves will be elliptic curves whose coefficients depend on some unknown
variables appearing in the Diophantine equations. It is therefore not possible,
or not convenient, to compute exactly the order of the torsion subgroup.

This proposition enables us to bound p if we can find a prime � such that
B�(f) �= 0. This is not always possible (see below), but it is guaranteed that
we will succeed in the following cases:
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Proposition 15.4.2. In each of the following cases there are infinitely many
� for which B�(f) �= 0:

(1) When f is irrational.
(2) When f is rational, t is either a prime number or is equal to 4, and for

every elliptic curve F isogenous to the elliptic curve corresponding to f
we have t � |Ft(Q)|.

(3) If f is rational and t = 4, and if for every elliptic curve F isogenous to the
elliptic curve corresponding to f then F (Q) does not have full 2-torsion.

Note that for (1), if f is not rational it is easy to show that c� /∈ Q for
infinitely many �, so that B�(f) �= 0 at least for all such � since (�+1)2−c2

� �= 0
(recall that |c�| � 2�1/2).

Of course we do not need to know whether we will succeed, we are happy
if we find some � for which B�(f) �= 0.

Example. We give an example in which it can easily be shown that B�(f) =
0 for all �. Let m � 5 and assume that L = 2m − 1 is a (Mersenne) prime
number. Consider the elliptic curve F with equation

Y 2 = X(X + 1)(X + 2m) .

Using Tate’s algorithm it is easy to show that the conductor N of F is equal to
2L. By the modularity theorem, we can let f be the newform corresponding
to F . If � �= 2 and � �= L then � is a prime of good reduction. Thus |Ft(Q)|
divides |F (F�)|, so if t is any divisor of it we have t | |F (F�)| = � + 1 − c�;
hence c� ≡ � + 1 (mod t) and of course |c�| � 2�1/2; hence c� ∈ S�, so indeed
B�(f) = 0 for all � �= 2 and L.

15.5 An Example of Serre–Mazur–Kraus

In this section we consider the Diophantine equation

xp + Lryp + zp = 0 ,

where L is a fixed odd prime number (we have treated the case L = 2 in
Theorem 15.3.1) and p � 5 is prime. As usual we may assume that xyz �= 0
and that x, y, and z are pairwise coprime. We may also assume that r < p
(otherwise we can include the extra powers of L in y), and in fact that
0 < r < p since the case r = 0 is FLT, which has already been treated (!).
This equation was studied by Serre in [Ser3] and by Kraus in [Kra3], and
the connection with Mazur will become apparent below. Since we will come
back to this equation several times, we will call it the SMK equation (with
the implicit assumptions that p � 5 is prime, that L is an odd prime, and
that 0 < r < p), and say that (x, y, z) is a nontrivial solution of the SMK
equation if x, y, z are nonzero and pairwise coprime.
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Let A, B, and C be some permutation of xp, Lryp, and zp chosen such that
B ≡ 0 (mod 2) and A ≡ −1 (mod 4), which is always possible by coprimality.
Consider the Frey curve E with equation

Y 2 = X(X −A)(X + B) .

One easily computes that the minimal discriminant Δmin is given by Δmin =
2−8L2r(xyz)2p, and that the conductor N is equal to N = rad(Lxyz). Note
that this is much simpler than the formulas that we obtained for L = 2. Thus
the conductor is squarefree, and E has full 2-torsion, so by Mazur’s Theorem
15.2.6 (3), E does not have any p-isogeny.

Since L is an odd prime we see that vL(Δmin) ≡ 2r �≡ 0 (mod p) since
0 < r < p, and v2(Δmin) ≡ −8 �≡ 0 (mod p). Thus using Definition 15.2.4 we
see that Np = 2L. Applying Ribet’s theorem we deduce that E arises modulo
p from some newform f of level 2L.

Now we have the following lemma.

Lemma 15.5.1. Assume that F is an elliptic curve defined over Q with
conductor 2L, and assume that F has full 2-torsion. Then L is either a
Mersenne or a Fermat prime (in other words L is a prime such that L =
2m − 1 or L = 22k

+ 1).

Proof. Since F has full 2-torsion, up to isomorphism it has an equation of
the form Y 2 = X(X−a)(X + b) with a and b in Z. It is easily shown that we
can choose a and b such that this equation is minimal at all primes different
from 2. Since the conductor is equal to 2L and the above model is minimal
outside 2 its discriminant has the form 2uLv. On the other hand, it is equal
to 16a2b2(a + b)2, so that a, b, and a + b are products of powers of 2 and L.
Since the model is minimal at L it must have bad reduction at L, so that at
least one of a, b, and a + b is divisible by L. Since L2 does not divide the
conductor, by Proposition 8.1.6 the curve reduced modulo L cannot have a
cusp, which clearly means that at most one (hence exactly one) of a, b, and
a + b is divisible by L. Writing a + b− (a + b) = 0 we thus obtain a relation
of the form

±2α ± 2β ± 2γLδ = 0

with δ � 1. Thus 2γLδ = ±2α±2β . If α = β then the right-hand side is either
equal to 0 or to a power of 2, which is impossible since it is divisible by the
odd prime L. Thus α �= β, so assume α < β, say. Thus 2γLδ = ±2α(2β−α±1),
from which we deduce that γ = α and Lδ = 2m ± 1 for some m; in other
words, Lδ ± 1 = 2m for some sign ±. If the sign is − the left-hand side is
divisible by L− 1, so L− 1 | 2m; hence L− 1 = 2k, so L = 2k + 1 is a Fermat
prime (since it is trivially shown that 2k + 1 can be a prime only if k is a
power of 2). If the sign is +, write δ = 2tε with ε odd. The left-hand side is
divisible by L2t

+1, so L2t

+1 = 2k for some integer k. However, if t � 1 then
since L is odd L2t

= (L2)2
t−1 ≡ 1 (mod 8), so that 2k ≡ 2 (mod 8) which
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is impossible since L � 3. Thus t = 0, and hence L = 2k − 1 is a Mersenne
prime, proving the lemma. ��

The following theorem stated in [Ser3] is now immediate:

Theorem 15.5.2 (Mazur). Let L be an odd prime that is neither a Mersenne
nor a Fermat prime. There exists a constant CL such that for any nontrivial
solution (x, y, z, p) to the SMK equation we have p � CL.

Proof. By the discussion preceding the lemma we know that E ∼p f for a
newform f at level Np = 2L. If f is irrational then by Proposition 15.4.2 (1)
we know that there are infinitely many � for which B�(f) �= 0. If f is rational,
then since L is not a Mersenne or Fermat prime the lemma implies that none
of the elliptic curves F isogenous to the curve corresponding to f under the
modularity theorem has full 2-torsion, so it follows from Proposition 15.4.2
(3) that there are infinitely many � for which B�(f) �= 0. In both cases any
suitable � gives a bound CL on the exponent p. ��

In [Kra3] Kraus shows that we can choose the bound

CL = (((L + 1)/2)1/2 + 1)(L+11)/6 .

This bound is very large, but in practice we can obtain a much lower bound
since for a given newform f we compute several B�(f) and p must divide the
greatest common divisor of all of them.

Theorem 15.5.3. Suppose that 3 � L � 100 is prime. Then the SMK equa-
tion does not have any nontrivial solutions, except for L = 31, in which case
E ∼p F , where F is the curve 62A1 in [Cre2].

Proof. This follows from the use of Proposition 15.4.1, the method of
Kraus (Proposition 15.6.3 below), and the method of predicting exponents
(Section 15.7 below). We will see examples of each of these methods applied
to this theorem. ��

Note that for L = 31 and r = 1 there is the evident (but nontrivial!)
solution (x, y, z, p) = (2,−1,−1, 5), so this value of L cannot be excluded.

Example. As an illustration, we treat the case L = 19:

Proposition 15.5.4. The above result is true for L = 19.

Proof. From what we have done we already know that E ∼p f for some
newform of level 38. There are two newforms of level 38, and although this
cannot be seen purely from the dimension formulas that we have given, both
are rational. Their q-expansions are:
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f1 = q − q2 + q3 + q4 − q6 − q7 + · · · ,

f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · · .

Since E has full 2-torsion we can apply Proposition 15.4.1 with t = 4,
and we can then compute that B3(f1) = −15 and B5(f1) = −144. Since p
must divide both and p � 5 we obtain a contradiction, so that necessarily
E ∼p f2. A similar computation gives

B3(f2) = 15, B5(f2) = 240, B7(f2) = 1155, B11(f2) = 3360 .

Thus p = 5, which solves our equation for all p � 7. We now treat the case
p = 5. We first note that all the B�(f2) will be divisible by 5, hence that
there is no point in pushing these computations any further. The reason for
this is the following. Let F be the elliptic curve corresponding to f2, which is
38B1 in [Cre2]. Looking at [Cre2] we see that this curve has a rational point
of order 5. It follows that 5 | |F (F�)| = � + 1− a�(F ) for all � � 38. Thus from
the definition of B� we see that this implies that 5 | B�(f2) for all primes
� � 38, so it is impossible to eliminate p = 5 in this way.

However, we can turn this to our advantage as follows. Assume that E ∼5

f2, or equivalently, that E ∼5 F . Then a�(E) ≡ a�(F ) (mod 5) for all but
finitely many �, so by what we have said above, 5 | (�+1− a�(E)) for all but
finitely many �. We now use an important theorem from algebraic number
theory, the Čebotarev density theorem, which implies that E has necessarily
a 5-isogeny (we will assume this fact, see [Ser4], IV-6). On the other hand, the
conductor N = rad(Lxyz) of E is squarefree and E has full 2-torsion, so by
Theorem 15.2.6 (3) we deduce that E has no 5-isogeny, a contradiction. ��

For the analogue of this trick when the newform is irrational see [Kra3],
pages 1155–1156.

15.6 The Method of Kraus

For convenience we begin with the following elementary lemma (recall Defi-
nition 7.3.15 for the notion of quadratic twist).

Lemma 15.6.1. Let A, B, and C be nonzero integers such that A+B+C =
0, and let E be the elliptic curve with equation

Y 2 = X(X −A)(X + B) .

Then any permutation of A, B, and C gives rise to a curve that is either
isomorphic to E, or to its quadratic twist by −1, in other words to the curve
E′ with equation Y 2 = X(X + A)(X −B).
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Proof. The exchange of A and B clearly changes E into E′. The exchange
of A and C changes E into the curve with equation Y 2 = X(X +A+B)(X +
B), which we see is again isomorphic to E′ by changing X into X −B. The
exchange of B and C changes E into the curve Y 2 = X(X − A)(X − A −
B), isomorphic to E′ by changing X into X + A. Conversely, these three
transpositions change E′ into a curve isomorphic to E. Thus the remaining
two nontrivial permutations, which are products of two transpositions, will
change E into a curve isomorphic to E. ��

As we have seen, Proposition 15.4.1 is often capable of bounding the
exponent p of our Diophantine equation when our (hypothetical Frey) curve
arises modulo p from a newform f . There is another important method due
to Kraus [Kra1] that can often be used to derive a contradiction, but for a
fixed value of p. In fact:

– Kraus introduced and used this method to show that the equation

a3 + b3 = cp with abc �= 0 and pairwise coprime

has no solutions for 11 � p � 10000.
– A combination of Kraus’s method, Proposition 15.4.1, and classical tech-

niques for Diophantine equations, recently led to the complete solution in
integers of the equations y2 = xn + t for n � 3 and 1 � t � 100, which
we already considered at length in Section 6.7 (see [BMS2] and [Sik-Cre]).
As an application of the study of exponent-(p, p, 2) super-Fermat equa-
tions, it is sometimes possible to determine all the rational points on the
hyperelliptic curves y2 = xn + t; see [Ivo2] or [Ivo-Kra].

In this section we adapt the method of Kraus to the Serre–Mazur–Kraus
equation considered in the preceding section. Recall that E is the curve Y 2 =
X(X−A)(X+B), where A, B, and C is some permutation of xp, Lryp, and zp

such that A ≡ −1 (mod 4) and 2 | B. It is somewhat awkward to work with
the curve E since there are six possibilities for the triple A, B, C. However,
if we let E′ be the curve with equation

Y 2 = X(X − xp)(X + zp) ,

we see from the above lemma that E and E′ are either isomorphic or quadratic
twists of each other by −1. If we write δ = (z/x)p, it is clear that E′ is the
quadratic twist by xp of the curve Eδ with equation

Y 2 = X(X − 1)(X + δ) .

Thus by Proposition 7.3.16 it follows that if � � x then a�(E) = ±a�(Eδ),
where the sign ± is a product of a Legendre symbol

(±1
�

)
with the Legendre

symbol
(

xp

�

)
. From this remark together with Proposition 15.2.2 and the fact

that the conductor N of E is equal to rad(Lxyz), we deduce the following.
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Lemma 15.6.2. Keep the above notation, assume that E ∼p f for some
newform f of level 2L, and let K be the number field generated by the Fourier
coefficients cn of f . Let � be a prime different from 2, L, and p. Then

(1) If � � xyz then p | NK/Q(a�(Eδ)2 − c2
�).

(2) If � | xyz then p | NK/Q((� + 1)2 − c2
�).

The following proposition is now immediate.

Proposition 15.6.3. Let p � 5 be a fixed prime number, and let E be as
above. Assume that for every newform f of level 2L there exists a positive
integer n satisfying the following conditions, where as usual c� denotes the
�th Fourier coefficient of f :

(1) � = np + 1 is prime.
(2) � �= L.
(3) p � NK/Q((� + 1)2 − c2

�).
(4) For all δ ∈ F� such that δn = 1 and δ �= −1 we have p � NK/Q(a�(Eδ)2−

c2
�).

Then the SMK equation for exponent p does not have any nontrivial solution.

Proof. If � satisfies (1) and (2) it is a prime different from 2, L, and p, so
the above lemma is applicable. Because of (3) and the lemma we have � � xyz.
But then the reduction modulo � of δ = (x/z)p is well defined and is in F∗

� ,
and evidently satisfies δn = 1. In addition, we cannot have δ ≡ −1 (mod �),
since otherwise xp ≡ −zp (mod �), so that by the SMK equation we would
have � | Lryp, which is impossible since � �= L and � � y. Thus the lemma and
(4) give a contradiction. ��

As an example, we have the following theorem.

Theorem 15.6.4. Assume that L = 31. Then the SMK equation does not
have any nontrivial solution for 11 � p � 106.

Proof. Thanks to Ribet’s theorem we have seen that E ∼p f for a newform
f of level 2L = 62. The number of newforms is equal to 3, but one is rational
and the other two are conjugate over Q(

√
3). If we set θ =

√
3, the forms are

f1 = q + q2 + q4 − 2q5 + · · · ,

f2 = q − q2 + (1 + θ)q3 + q4 − 2θq5 − (1 + θ)q6 + 2q7 + · · · .

Since the conductor N of E is equal to rad(Lxyz) hence squarefree, if we
choose � �= 2 or 31 we may apply Proposition 15.4.1 with t = 4, which
tells us that p | B�(f) for all such �. We compute that B3(f2) = −792,
B5(f2) = 184320, B7(f2) = 14515200, and since the only primes p dividing
the first two are p = 2 and p = 3, we deduce that E ∼p f2 is not possible,
so if E exists we must have E ∼p f1. On the other hand, it is easy to see
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that the same method cannot work for f1, in other words that B�(f1) = 0
for all �. However, we proceed as follows. Under the modularity theorem the
rational newform f1 corresponds to an elliptic curve F that is the curve 62A1
in [Cre2], with minimal generalized Weierstrass equation

Y 2 + XY + Y = X3 −X2 −X + 1 .

It is now immediate to write a small program that for a given prime p looks
for a prime � satisfying the conditions of Proposition 15.6.3, and the program
easily finds such a prime for 11 � p � 106, the total time being less than 20
minutes. On the other hand, the program fails to find an � for p = 5 (which
is a good thing since solutions exist), and fails also for p = 7, proving the
theorem. We will treat the case p = 7 later (see Corollary 15.7.5). ��

Remark. Using a variant of the modular method that they call the sym-
plectic method, Halberstadt and Kraus [Hal-Kra1] show that for every prime
number p ≥ 7 with p ≡ 3 (mod 4), the equation xp + 31yp + zp = 0 has no
nontrivial solutions.

15.7 “Predicting Exponents of Constants”

The title of this section is in quotes because it is rather vague. For various
Diophantine equations the modular approach explained in this chapter is very
effective at predicting exponents of terms with constant base. For instance,
this method is central to the recent determination of all perfect powers in the
Fibonacci and Lucas sequences [BMS1].

15.7.1 The Diophantine Equation x2 − 2 = yp

We will illustrate this method by studying the Diophantine equation

x2 − 2 = yp, p � 5 prime ,

which is a special case of the equations studied in Section 6.7.
We will explain shortly what is the exponent that we would like to predict.

We give two motivations for studying this equation.

– The more general equation x2−2m = yp has been solved in Theorem 15.3.4
for m � 2. For m = 0 it is due to Ko Chao and has been proved as Theorem
6.11.8, but can now be proved using modular techniques as a consequence
of Theorem 15.3.1. Thus there remains the case m = 1.

– The equation x2 − 2 = yp is now considered to be one of the most difficult
exponential equations. This section presents a partial attempt at solving
this equation, due to Bugeaud, Mignotte, and Siksek.
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Similarly to the case m � 2, we associate to any solution of the equation
the Frey curve E with equation

Y 2 = X(X2 + 2xX + 2) .

We easily compute that

Δmin = 28yp, N = 27 rad(y), and Np = 128 .

Thanks to Theorem 15.2.7 we know that E does not have any p-isogenies.
It follows from Ribet’s theorem that E arises from a newform of level 128.
Proposition 15.1.1 tells us that there are four newforms of level 128, and it
is easily shown that they are all rational. Thus they correspond under the
modularity theorem to the four elliptic curves F1 = 128A1, F2 = 128B1,
F3 = 128C1, F4 = 128D1, so E ∼p Fi for some i. Note that the Diophantine
equation has the universal solutions (x, y) = (±1,−1) valid for all p � 3. It
follows that any attempt to show that p is bounded by some result similar
to Proposition 15.4.1 will fail, and so will any method mimicking Kraus’s
method. However, we can still use the modular approach to derive some
nontrivial information on the Diophantine equation.

The classical line of attack for an equation of the type x2 + t = yp, which
we have used at length in Section 6.7, is to factor it in the quadratic field
Q(
√−t). As we did in that section, since Q(

√
2) has class number 1 and a

fundamental unit is 1 +
√

2, we deduce that there exist U , V in Z such that

x +
√

2 = (1 +
√

2)r(U + V
√

2)p ,

where in addition we may assume that −(p−1)/2 < r � (p−1)/2 by including
all pth powers of the fundamental unit in the second factor. We deduce that

1
2
√

2

(
(1 +

√
2)r(U + V

√
2)p − (1−

√
2)r(U − V

√
2)p

)
= 1 .

Thus to solve our equation for any particular exponent p we must solve p
Thue equations of the above form, one for each value of r. As p gets large the
coefficients of these equations become very unpleasant, making it difficult
to solve the Thue equations. This has already been noted in Section 6.7.
However, based on a short search, we believe that the only solutions are
the universal solutions (x, y) = (±1,−1) mentioned above. Since x +

√
2 =

(1+
√

2)r(U +V
√

2)p, we suspect that the only values of r that can give rise
to solutions are r = ±1. Indeed, we prove this using the modular approach
together with a result proved by classical means.

Proposition 15.7.1. With the above notation we have r = ±1.

Proof. Let F be one of the four elliptic curves Fi above, and assume that
E ∼p F . Let � be a prime number satisfying the following conditions:
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(1) � = np + 1 for some integer n.
(2) � ≡ ±1 (mod 8).
(3) a�(F ) �≡ ±(� + 1) (mod p).
(4) (1+ θ)n �≡ 1 (mod �), where θ is a square root of 2 in F�, which exists by

(2).

Since Np = 128 and N = 27 rad(y), if � | y we would have � � Np and
�‖N . It follows from Proposition 15.2.3 that a�(F ) ≡ ±(� + 1) (mod p),
contradicting condition (c). Thus � � y, so that yp ∈ μn(F�), where y is the
class of y in F�, and

μn(F�) = {δ ∈ F�/ δn = 1} .

Set
X ′

� = {δ ∈ F�/ δ2 − 2 ∈ μn(F�)} ,

so that x ∈ X ′
� . Since |μn(F�)| = n, we have |X ′

� | � 2n. We want to refine X ′
�

so as to have better information on the value of x modulo �. For δ ∈ X ′
� let

Eδ be the elliptic curve over F� with equation

Y 2 = X(X2 + 2δX + 2) .

We let
X� = {δ ∈ X ′

�/ a�(Eδ) ≡ a�(F ) (mod p)} .

Since � � y, it follows from Proposition 15.2.3 that x ∈ X�, and we can hope
that the set X� is much smaller than X ′

� . We want to obtain information on
r from the fact that x ∈ X�. Note first that from the formula linking x +

√
2

to r, U , and V there exists δ ∈ X� such that

δ + θ = (1 + θ)r(U + V θ)p in F� .

Since U2 − 2V 2 = ±y and � � y, it follows that U + V θ �= 0 in F�.
To obtain information about r we use the discrete logarithm in F�. Let g

be a fixed primitive root modulo �. The discrete logarithm with respect to g is
the isomorphism from (F∗

� ,×) to (Z/(�− 1)Z,+) given by gk �→ k mod �− 1.
Let Φ be the group homomorphism from (F∗

� ,×) to (Z/pZ,+) obtained by
composing the discrete logarithm with the natural projection from Z/(�−1)Z
to Z/pZ. Applying Φ to the fundamental identity obtained above we deduce
that

Φ(δ + θ) ≡ rΦ(1 + θ) (mod p) .

By the fourth assumption that we have made at the beginning of this proof
we have Φ(1 + θ) �≡ 0 (mod p), since otherwise 1 + θ = gkp for some k, so
that (1 + θ)n = gkpn = gk(�−1) = 1. Thus we deduce that

r mod p ∈ R�(F ), where R�(F ) =
{

Φ(δ + θ)
Φ(1 + θ)

, δ ∈ X�

}
.
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Since −(p−1)/2 < r � (p−1)/2, to show that r = ±1 it is sufficient to show
that r ≡ ±1 (mod p). Therefore if we can find primes �1, . . . , �k satisfying the
four conditions given above and such that⋂

1�j�k

R�j
(F ) ⊂ {±1 mod p} ,

and if we can do this for F = F1, F2, F3, and F4, we will have proved that
r = ±1.

We wrote a short GP script to carry out the above calculations for 5 �
p � 106, and this took about three hours to run.

On the other hand, and this is outside the scope of this chapter, a careful
application of linear forms in logarithms to this problem (see [Lau-Mig-Nes]
and Chapter 12) shows that p < 8200 if y �= −1. It follows that for any
p > 8200 we have y = −1, so that r = ±1 as is easily seen, and for p < 106

we also have r = ±1 by the GP computation above, proving the proposition.
��

Note that the method of linear forms in logarithms has not only shown
that r = ±1 for p > 8200, but has completely solved the equation x2−2 = yp

in that range. It remains to solve the finite number of remaining equations
for p < 8200, knowing now that in that range we have r = ±1. Knowing this
last fact we can improve on this range as follows.

Lemma 15.7.2. If y �= −1 then y � (
√

p− 1)2.

Proof. Note the trivial fact that if y �= −1 then y > 1, and furthermore
y is odd, since otherwise x2 ≡ 2 (mod 4), which is absurd. Thus there exists
an odd prime � such that � | y. Since N = 27 rad(y) and Np = 128 it follows
from Proposition 15.2.3 that

� + 1 ≡ ±a�(F ) (mod p) ,

where F is one of the four curves Fi. However, by Hasse’s theorem we know
that |a�(F )| < 2

√
�. It follows that

p � � + 1 + 2
√

� = (
√

� + 1)2 � (
√

y + 1)2 ,

proving the lemma. ��

Using this lemma and once again a careful application of linear forms
in logarithms one can prove that p < 1237; see [Lau-Mig-Nes] for a slightly
weaker result.

On the other hand, for the small values of p we can try to solve the
Thue equations that one obtains with r = ±1. In fact if we let Fr(U, V ) =
((1+

√
2)r(U +V

√
2)p− (1−√2)r(U −V

√
2)p)/(2

√
2), so that the equations

to be solved are Fr(U, V ) = 1, we see that F−1(U, V ) = F1(U,−V ), so it is
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sufficient to solve the Thue equation F1(U, V ) = 1. Using the built-in Thue
equation solver in GP for 5 � p � 37 we obtain that (U, V ) = (1, 0) is the
only solution in that range, thus proving the following modest result.

Lemma 15.7.3. If 5 � p � 37 the only solutions to x2− 2 = yp are (x, y) =
(±1,−1).

15.7.2 Application to the SMK Equation

Thanks to the method of predicting exponents it is possible to give a useful
strengthening of Proposition 15.6.3 that will allow us to solve further equa-
tions. We recall that E is the Frey curve associated with a nonzero coprime
solution to xp + Lryp + zp = 0, and that by Ribet’s theorem we know that
E ∼p f for some newform f of level 2L.

Proposition 15.7.4. Let p � 5 be a fixed prime number, and let f be the
newform of level 2L such that E ∼p f . Assume that there exists a positive
integer n satisfying the following conditions:

(1) � = np + 1 is prime.
(2) � �= L.
(3) Ln �≡ 1 (mod �)
(4) p � NK/Q((� + 1)2 − c2

�).

Set
X� = {δ ∈ F∗

� , δn = 1, δ �= −1, p | NK/Q(a�(Eδ)2 − c2
�)} ,

and

R� =
{

Φ(−1− δ)
Φ(L)

, δ ∈ X�

}
⊂ Z/pZ ,

where, as in the preceding section, Φ denotes a group homomorphism from
F∗

� to the additive group Z/pZ. Then

r mod p ∈ R� .

Proof. By Proposition 15.6.3, if (x, y, z) is a nontrivial solution then δ =
z/x

p ∈ X� as defined above. We now apply the homomorphism Φ to the
identity Lryp = xp(−1 − (z/x)p) and note that Φ(L) �≡ 0 (mod p) since
otherwise Ln ≡ 1 (mod �), which has been excluded, proving the proposition.

��

Remarks. (1) Proposition 15.6.3 says that if we omit the condition Ln �≡ 1
(mod �) and if X� = ∅ then the SMK equation has no nontrivial solution.

(2) If for some finite set I of � we have
⋂

�∈I R� = ∅, we deduce that the
SMK equation has no nontrivial solution.
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We give two examples of the use of the above proposition. First, we can
now solve the case p = 7 of the SMK equation for L = 31, which we had been
unable to treat by a direct application of the method of Kraus in Theorem
15.6.4.

Corollary 15.7.5. The SMK equation does not have any nontrivial solution
for L = 31 and p = 7.

Proof. We use n = 6 hence � = 43. An immediate computation shows that
the assumptions of the lemma are satisfied, and we find that X� = {6, 36},
and then that R� = {0 mod 7}. It follows that r ≡ 0 (mod 7), and since
we can assume that 0 � r < p we have r = 0. We are thus reduced to the
ordinary FLT equation, which has no nontrivial solution. Another way of
finishing the proof is as follows: we choose also � = 71 and we find similarly
that R� = {1, 4 mod 7}, which has empty intersection with R43. ��

As an additional example, we solve the case L = 23 of the SMK equation.

Corollary 15.7.6. The SMK equation does not have any nontrivial solution
for L = 23 and p � 5.

Proof. By Ribet’s theorem we know that if E is the Frey curve corre-
sponding to a possible solution (x, y, z) then E ∼p f for a newform f of level
46. By Proposition 15.1.1 there is a single newform at that level, necessarily
rational, and equal to

f = q − q2 + q4 + 4q5 − 4q7 + · · · .

With the notation of Proposition 15.4.1 we compute that B3(f) = B7(f) = 0
but B5(f) = 240, and since p � 5 this shows that our equation is impossible
for p � 7. There remains the case p = 5, which we treat using the method
of predicting exponents. Under the modularity theorem f corresponds to the
elliptic curve 46A1 in [Cre2] with equation Y 2+XY = X3−X2−10X−12. We
first use � = 31 in Proposition 15.7.4, and we compute that R� = {2 mod 5},
so that r ≡ 2 (mod 5). We then use � = 181, and we compute that R� =
{0, 1, 4 mod 5}, which has empty intersection withR31, proving that the SMK
equation has no nontrivial solutions. ��

15.8 Recipes for Some Ternary Diophantine Equations

We end this chapter by giving a number of recipes for ternary Diophan-
tine equations, in other words for super-Fermat equations of the type Axp +
Byq + Czr = 0, where (p, q, r) will be called the signature of the equation.
How to associate to such an equation a Frey curve is detailed for the three
important signatures (p, p, p), (p, p, 2), and (p, p, 3) respectively by Kraus



15.8 Recipes for Some Ternary Diophantine Equations 523

[Kra3], by Bennett–Skinner [Ben-Ski], and by Bennett, Vatsal, and Yazdani
[Ben-Vat-Yaz]. For the convenience of the reader we reproduce the recipes
for the Frey curves and levels appearing in these papers. However, we would
like to emphasize the following points:

– There is much more in the above-mentioned papers than just the recipes,
and the reader is particularly urged to pursue them.

– The choice of Frey curve given here is far from canonical. Sometimes it is
possible to construct an alternative Frey curve that turns out to be more
useful for the problem at hand. See for example [Ivo2] and [Ivo-Kra].

– For some problems it is possible to use several Frey curves and exploit the
information obtained from these curves simultaneously. For an example of
this “multi-Frey” approach see [BMS3].

This section is heavily influenced by Bennett’s paper [Ben2].

15.8.1 Recipes for Signature (p, p, p)

Consider the equation

Axp + Byp + Czp = 0 ,

where p � 5 is prime and where we assume that Ax, By, and Cz are nonzero
and pairwise coprime. Setting R = ABC, we may clearly assume that vq(R) <
p for all prime numbers q, since otherwise (A, B, and C being pairwise
coprime) this means that one of A, B, and C is divisible by qp, and this
can be removed by dividing x, y, or z by p. Without loss of generality we
may of course assume that Byp ≡ 0 (mod 2) and that Axp ≡ −1 (mod 4).
The Frey curve is the curve E with equation

Y 2 = X(X −Axp)(X + Byp) .

Its minimal discriminant is given by

Δmin =

{
24R2(xyz)2p if 16 � Byp ,

2−8R2(xyz)2p if 16 | Byp ,

and the conductor is given by N = 2α rad2(Rxyz), where

α =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if v2(R) � 5 or v2(R) = 0 ,
1 if 1 � v2(R) � 4 and y is even ,
0 if v2(R) = 4 and y is odd ,
3 if 2 � v2(R) � 3 and y is odd ,
5 if v2(R) = 1 and y is odd .
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Theorem 15.8.1 (Kraus). Under the above assumptions we have E ∼p f
for some newform f of level Np = 2β rad2(R), where

β =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if v2(R) � 5 or v2(R) = 0 ,
0 if v2(R) = 4 ,
1 if 1 � v2(R) � 3 and y is even ,
3 if 2 � v2(R) � 3 and y is odd ,
5 if v2(R) = 1 and y is odd .

Proof. The proof is left as an exercise to the reader, who is referred to
[Kra3]. ��

For a much deeper study of the equation Axp + Byp + Czp = 0 including
several variants of the modular approach, we heartily recommend the paper
by Halberstadt and Kraus [Hal-Kra2]. For lack of space we do not explain
these variants, but we mention just one of many interesting results proved
using these methods.

Theorem 15.8.2 (Halberstadt–Kraus). Let A, B, and C be odd pairwise
coprime integers and set N = 2 rad(ABC). Let r be the number of isogeny
classes of elliptic curves of conductor N (over Q) having full 2-torsion defined
over Q. There exists a set P of prime numbers having density 1/2r such that
for each prime p ∈ P the equation Axp + Byp + Czp = 0 has no nontrivial
solutions.

15.8.2 Recipes for Signature (p, p, 2)

Consider the equation
Axp + Byp = Cz2 ,

where p � 7 is prime and where we assume that Ax, By, and Cz are nonzero
and pairwise coprime. As usual we may assume that for all primes q we have
vq(A) < p and vq(B) < p, and that C is squarefree. Also it is easy to see that
without loss of generality we may suppose that we are in one of the following
situations:

(1) ABCxy ≡ 1 (mod 2) and y ≡ −BC (mod 4).
(2) xy ≡ 1 (mod 2) and either v2(B) = 1 or v2(C) = 1.
(3) xy ≡ 1 (mod 2), v2(B) = 2, and z ≡ −By/4 (mod 4).
(4) xy ≡ 1 (mod 2), 3 � v2(B) � 5, and z ≡ C (mod 4).
(5) v2(Byp) � 6 and z ≡ C (mod 4).

In cases (1) and (2) we consider the curve E1 with equation

Y 2 = X3 + 2CzX2 + BCypX .
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In cases (3) and (4) we consider the curve E2 with equation

Y 2 = X3 + CzX2 +
BCyp

4
X .

Finally, in case (5) we consider the curve E3 with equation

Y 2 + XY = X3 +
Cz − 1

4
X2 +

BCyp

64
X .

Theorem 15.8.3 (Bennett–Skinner [Ben-Ski]). With the above assump-
tions and notation we have:

(1) The minimal discriminant Δmin of Ei is given by

Δmin = 2δi AB2C3(xy2)p ,

where
δ1 = 6, δ2 = 0, δ3 = −12 .

(2) The conductor N of Ei is given by

N = 2αC2 rad(ABxy) ,

where

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 if i = 1, case (1) ,
6 if i = 1, case (2) ,
1 if i = 2, case (3), v2(B) = 2, and y ≡ −BC/4 (mod 4) ,
2 if i = 2, case (3), v2(B) = 2, and y ≡ BC/4 (mod 4) ,
4 if i = 2, case (4) and v2(B) = 3 ,
2 if i = 2, case (4) and v2(B) = 4 or 5 ,
−1 if i = 3, case (5) and v2(By7) = 6 ,
0 if i = 3, case (5) and v2(By7) � 7 .

(3) Assume that E does not have complex multiplication (which is the case if
we assume that xy �= ±1)and that it does not correspond to the equation

64 · 17 + 1 · (−1)7 = 7 · 32 .

Then Ei ∼p f for some newform f of level

Np = 2βC2 rad(AB) ,

where

β =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α in cases (1)—(4) ,

0 in case (5) and v2(B) �= 0, 6 ,
1 in case (5) and v2(B) = 0 ,
−1 in case (5) and v2(B) = 6 .
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(4) The curves Ei have nontrivial 2-torsion.
(5) Assume that E = Ei is a curve associated with some solution (x, y, z)

satisfying the above conditions. Suppose that F is another curve defined
over Q such that E ∼p F . Then the denominator of the j-invariant j(F )
of F is not divisible by any odd prime q �= p dividing C.

Remark. Part (4) is included to help with the application of Proposition
15.4.1, and part (5) is often very useful for eliminating rational newforms
(which correspond to elliptic curves), see for example Exercise (2) below.

Exercises. (1) Determine all the solutions to the equation

xp + 2ryp = 3z2, r � 2, p � 7 prime

in coprime nonzero integers x, y, and z.
(2) Let Fn and Ln be the Fibonacci and Lucas numbers (see Section 6.8.1).

Noting that L2
n = 5F 2

n +4(−1)n, using the above recipes and in particular
part (5) of the above theorem, prove that the equation Ln = yp has no
solution with n even.

15.8.3 Recipes for Signature (p, p, 3)

Consider the equation
Axp + Byp = Cz3 ,

where p � 5 is prime and where we assume that Ax, By, and Cz are nonzero
and pairwise coprime. As usual we may assume that for all primes q we have
vq(A) < p and vq(B) < p, and that C is cubefree. Without loss of generality
we may also assume that Ax �≡ 0 (mod 3) and Byp �≡ 2 (mod 3). Let E be
the elliptic curve with equation

Y 2 + 3CzXY + C2BypY = X3 .

Theorem 15.8.4 (Bennett–Vatsal–Yazdani [Ben-Vat-Yaz]). With the a-
bove assumptions and notation we have:

(1) The minimal discriminant Δmin of E is given by

Δmin = 33AB3C8(xy3)p

(2) The conductor of E is given by

N = 3α rad3(ABxy) rad3(C)2 ,

where
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α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if 9 | (2 + C2Byp − 3Cz) ,
3 if 3‖(2 + C2Byp − 3Cz) ,
4 if v3(Byp) = 1 ,
3 if v3(Byp) = 2 ,
0 if v3(Byp) = 3 ,
1 if v3(Byp) � 4 ,
5 if 3 | C .

(3) Assume that the curve E does not correspond to one of the equations

1 · 25 + 27 · (−1)5 = 5 · 13, 1 · 27 + 3 · (−1)7 = 1 · 53,

2 · 15 + 27 · (−1)5 = 25 · (−1)3, or 2 · 17 + 3 · (−1)7 = (−1)3 .

Then E ∼p f for a newform f of level

Np = 3β rad3(AB) rad3(C)2 ,

where

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if 9 | (2 + C2Byp − 3Cz) ,
3 if 3‖(2 + C2Byp − 3Cz) ,
4 if v3(Byp) = 1 ,
3 if v3(Byp) = 2 ,
0 if v3(B) = 3 ,
1 if v3(Byp) � 4 and v3(B) �= 3 ,
5 if 3 | C .

(4) The curve E has a point of order 3, namely the point (0, 0).
(5) Suppose that F is an elliptic curve defined over Q such that E ∼p F .

Then the denominator of the j-invariant j(F ) of F is not divisible by
any odd prime q �= p dividing C.



16. Catalan’s Equation

The present chapter gives a complete proof of Catalan’s conjecture, now
Mihăilescu’s Theorem 6.11.1. As with the other chapters in the last part of
this book it is not totally self-contained, but is sufficiently complete that the
reader can read what is missing in the literature (essentially the proof of
Thaine’s theorem). I have followed notes of Yu. Bilu [Bilu] and R. Schoof,
but for the most part this is a rewrite of notes of J. Boéchat and M. Mischler
[Boe-Mis]. I claim entire responsibility for possible errors.

16.1 Mihăilescu’s First Two Theorems

Recall that Catalan’s equation is xp − yq = 1 with p and q greater than or
equal to 2 and x, y nonzero integers. We have seen that we can reduce to p
and q distinct primes, that there are no solutions for q = 2, and that the only
solutions for p = 2 are (x, y) = (±3, 2) for q = 3, so that we can assume that
p and q are distinct odd primes. In that case Cassels’s Theorem 6.11.5, and
more precisely Corollary 6.11.6, tells us that there exist nonzero integers a
and b, and positive integers u and v, such that

x = qbu, x− 1 = pq−1aq,
xp − 1
x− 1

= pvq ,

y = pav, y + 1 = qp−1bp,
yq + 1
y + 1

= qup .

The goal of this section is to prove the first two theorems of Mihăilescu
on Catalan’s equation, the first of which considerably strengthens Cassels’s
theorem (Theorem 16.1.3). We begin by introducing some notation that will
be used in the rest of this chapter, and then prove two lemmas, the first of
which which will be used at other places in the proof.

Notation. In this chapter, unless mentioned otherwise, p and q will always
stand for distinct odd primes, and x and y for nonzero integers such that
xp − yq = 1. We will often write ζ instead of ζp. However, it will also be
convenient at times to use ζ for any conjugate of ζp, and in that case we will
have to use the notation ζp explicitly to mean a fixed primitive pth root of
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unity. We set K = Q(ζ), π = 1−ζ, we let p = πZK be the unique prime ideal
of K above p, we let G = Gal(K/Q) � (Z/pZ)∗, and when p � t we denote
by σt ∈ G the automorphism of K sending ζ to ζt. Since we will extensively
use complex conjugation, as in Chapter 3 we will denote it by ι (Greek iota),
although it will sometimes be convenient to write as usual u instead of ι(u).
Note that ι ∈ G, so it commutes with all the σt, and that ισt = σp−t.

Lemma 16.1.1. For all i such that 1 � i � p − 1 set βi = (x − ζi)/(1 −
ζi). The βi are algebraic integers not divisible by p and the ideals that they
generate are pairwise coprime and equal to qth powers of ideals.

Proof. By Cassels’s relations recalled above we have p | (x − 1), hence
vp(x−1) � p−1 � 2, hence vp(βi−1) = vp(x−1)−vp(1− ζi) � 1. It follows
that vp(βi) = 0, and since (1 − ζi)ZK = p, that βi is an algebraic integer
coprime to p. Furthermore, (1− ζi)βi − (1− ζj)βj = ζj − ζi. Since we have
(ζj−ζi)ZK = p for all i �≡ j (mod p), it follows that for 1 � i �= j � p−1 the
ideals βiZK and βjZK are integral and coprime. Finally, using the polynomial
equality

∏
1�i�p−1(X − ζi) = (Xp − 1)/(X − 1) and Cassels’s relations we

have ∏
1�i�p−1

βi =

∏
1�i�p−1(x− ζi)∏
1�i�p−1(1− ζi)

=
xp − 1

p(x− 1)
= vq .

Since the ideals βiZK are pairwise coprime, it follows that each of them is
the qth power of an ideal, proving the lemma. ��

For simplicity, in the sequel we set β = β1 = (x− ζ)/(1− ζ), so that there
exists an ideal b such that βZK = bq.

16.1.1 The First Theorem: Double Wieferich Pairs

We can now continue the study of Catalan’s equation in two different ways.
The first is the classical one initiated by Kummer in the study of FLT I,
assuming that q does not divide the class number hp of K, and deduce a
contradiction. Indeed, this is what we are going to do in the next subsection. A
second method, however, is to use Stickelberger’s Theorem 3.6.19 instead, and
this leads to complementary and stronger results. In the present subsection
we begin with this latter method.

Recall that we denote by Is(p) the Stickelberger ideal of K = Q(ζp).1

Recall also that we denote complex conjugation by ι ∈ G.

Lemma 16.1.2. For any θ ∈ (1− ι)Is(p) the element (x−ζ)θ is a qth power
in K.
1 There is a necessary notational confusion here: when we were studying the Stick-

elberger ideal of a general cyclotomic field Q(ζm) the letter p stood for a prime
number not dividing m. This notation will no longer occur in this context, so
here p is the prime such that K = Q(ζp).
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Proof. Write θ = (1 − ι)θ1 with θ1 ∈ Is(p). By the preceding lemma we
have βZK = bq for some ideal b, while by Stickelberger’s Theorem 3.6.19 we
have bθ1 = αZK for some α ∈ K. It follows that αqZK = bqθ1 = βθ1ZK , so
there exists a unit u ∈ U(K) such that βθ1 = uαq. We can thus write

(x− ζ)θ =
(

1− ζ

1− ι(ζ)

)θ1 u

ι(u)

(
α

ι(α)

)q

.

Now (1− ζ)/(1− ι(ζ)) = −ζ, and by Lemma 3.5.19, u/ι(u) is also a root of
unity. Thus the first two factors are roots of unity in K, in other words (2p)th
roots of unity, and since q is coprime to 2p, they are qth powers, proving the
lemma. ��

Mihăilescu’s first theorem is the following.

Theorem 16.1.3 (Mihăilescu). If p and q are odd primes, and x and y
are nonzero integers such that xp − yq = 1, then

p2 | y, q2 | x, qp−1 ≡ 1 (mod p2), pq−1 ≡ 1 (mod q2) .

Proof. If m is an integral ideal we will use the standard notation u ≡ v
(mod ∗m) to mean that vq(u − v) � vq(m) for all prime ideals q | m, which
allows us to work with congruences between algebraic numbers that are not
necessarily algebraic integers. Since (1 − xζ−1) = (−ζ−1)(x − ζ) and since
(−ζ−1)θ is a 2pth root of unity hence a qth power, it follows from the above
lemma that (1−xζ−1)θ is a qth power for any θ ∈ (1− ι)Is(p). Furthermore,
by Cassels’s relations we have q | x, hence (1 − xζ−1)θ ≡ 1 (mod ∗qZK), so
by the easy but crucial Exercise 20 of Chapter 3, since q is unramified in K
it follows that (1− xζ−1)θ ≡ 1 (mod ∗q2ZK). On the other hand, if we write
θ =

∑
σ∈G aσσ it is clear by expanding and using q | x that

(1− xζ−1)θ = 1− xS (mod ∗q2ZK) with S =
∑
σ∈G

aσσ(ζ−1) .

It follows from these two congruences that xS ≡ 0 (mod ∗q2ZK). Assume
by contradiction that q2 � x. Then S ≡ 0 (mod ∗qZK), and since the σ(ζ−1)
form a permutation of the ζj for 1 � j � p − 1, they form a Z-basis of ZK ,
so q | aσ for all σ ∈ G. However, this cannot be true for all θ ∈ (1− ι)Is(p):
for instance, if we choose θ = (1− ι)Θ2 then it is clear that

θ = −
∑

1�j�(p−1)/2

σ−1
j +

∑
(p+1)/2�j�p−1

σ−1
j

does not satisfy this condition. It follows that q2 | x, which is the first impor-
tant result of the theorem. We can now easily conclude: since q2 | x, using
Cassels’s relations we have pq−1aq = x−1 ≡ −1 (mod q2), and since pq−1 ≡ 1
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(mod q) we thus have aq ≡ (−1)q (mod q), so using once again Exercise 20
of Chapter 3 we deduce that aq ≡ −1 (mod q2), and replacing back in Cas-
sels’s relation gives pq−1 ≡ 1 (mod q2). Since p and q play symmetrical roles
(since they are odd, recall that we can change (p, q, x, y) to (q, p,−y,−x))
the symmetrical results of the theorem follow. ��

Remarks. (1) Because of Wieferich’s criterion for FLT I (Corollary 6.9.10),
a pair (p, q) of primes such that pq−1 ≡ 1 (mod q2) and qp−1 ≡ 1
(mod p2) is called a double Wieferich pair. The only known such pairs
are (2, 1093), (3, 1006003), (5, 1645333507), (5, 188748146801), (83, 4871),
(911, 318917), and (2903, 18787); see [Kel-Ric]. However, on reasonable
probabilistic grounds it is expected that there exist infinitely many, in
fact even for a given p.

(2) In view of the simplicity of the above proof, based only on Stickelberger’s
theorem from 1890 and on Cassels’s relations from 1960, it is quite sur-
prising that it was not found before 2001 (published in 2003). It is even
more surprising in view of the fact that Wieferich’s and Furtwängler’s
criteria for FLT I (Theorem 6.9.9 and Corollary 6.9.10) are exactly of
the same type and are also proved using Stickelberger’s theorem, via
Eisenstein’s reciprocity law, which is a consequence.

16.1.2 The Equation (xp − 1)/(x − 1) = pyq

The initial proof of Mihăilescu’s second theorem used a very technical study
of the action of complex conjugation ι. Part of this study will be necessary
in any case for the third and fourth theorems, but for the second theorem a
much simplified version, proving in fact a stronger result, has very recently
been found by B. Dupuy, and I thank him and Yu. Bilu for the possibility of
including it here. We thus begin by proving Dupuy’s theorem, part of which
had already been proved by Mihăilescu.

Theorem 16.1.4 (Mihăilescu, Dupuy). Let p and q be distinct odd primes
with p � 5. If q � h−

p the equation (xp − 1)/(x − 1) = pyq has no solutions
with x �= 1 and y �= 1.

We prove this theorem by starting from Lemma 16.1.1 in a Kummer-like
manner instead of using the Stickelberger ideal. We will first prove a number
of intermediate results. In this section, we will always assume without further
mention that p and q are distinct odd primes such that q � h−

p . Recall that
we have set β = (x− ζ)/(1− ζ), and that we denote complex conjugation by
ι, considered as an element of Gal(K/Q).

Lemma 16.1.5. There exists μ ∈ K such that ι(β)/β = μq. Furthermore, μ
is unique and satisfies ι(μ) = μ−1.
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Proof. By Lemma 16.1.1 we know that β is an algebraic integer coprime to
its conjugates, not divisible by p, and equal to a qth power of an ideal, so write
βZK = bq for some integral ideal b of K. Recall from Proposition 3.5.21 that
the natural map j from Cl(K+) to Cl(K) is injective, and that by definition
h−

p = hp/h+
p = [Cl(K) : j(Cl(K+))]. It follows that [b]h

−
p ∈ Cl(K+); in

other words there exist an ideal c1 of K+ and an element γ1 ∈ K∗ such that
bh−

p = γ1j(c1). Since q and h−
p are coprime we can write uq + vh−

p = 1 for
some integers u and v, so that b = βuγv

1 j(cv
1) = γj(c), where γ ∈ K∗ and

c ⊂ K+. It follows that j(cq) = βγ−qZK is a principal ideal of K, and since j
is injective, cq itself is a principal ideal of K+, say cq = δZK+ with δ ∈ K+.
Thus βZK = γqδZK , so there exists a unit u ∈ K such that β = uγqδ.
Since δ ∈ K+ it follows that ι(β)/β = (ι(u)/u)(ι(γ)/γ)q. By Lemma 3.5.19
we know that ι(u)/u is a root of unity, hence a 2pth root of unity in K,
and since q is odd and distinct from p, it is coprime to 2p, so it follows that
ι(u)/u is a qth power, proving the first statement. Since K does not contain
any qth roots of unity different from 1 the element μ is unique, and since
(ι(μ)μ)q = 1, for the same reason we have ι(μ) = μ−1. ��

Lemma 16.1.6. Denote by r an inverse of q modulo p. Then φ = β(μ+ζr)q

is a unit of K.

Proof. By the binomial theorem we have β(μ + ζr)q =
∑

0�n�q cnβμn for
some algebraic integers cn. Since (βμn)q = βq−nι(β)n and β is an algebraic
integer, it follows that φ is an algebraic integer. Now set

φ′ = βq−1

( ∑
0�k�q−1

μk(−ζr)q−1−k

)q

.

As above, we have φ′ =
∑

0�n�q(q−1) dnβq−1μn for some algebraic integers
dn, and since (βq−1μn)q = βq(q−1)−nι(β)n is an algebraic integer, φ′ is also
an algebraic integer. Finally, a small computation using ζrq = ζ shows that
φφ′ = ((1 − ζ2)/(1 − ζ))q, which is a cyclotomic unit, showing that φ is a
unit. ��

We now work in Kp = Qp(ζ). By Lemma 6.11.3 we have x ≡ 1 (mod p),
so that vp(λ) � 1 − 1/(p − 1), where we have set λ = (x − 1)/(1 − ζ). Note
that ι(λ) = (x− 1)/(1 − ζ−1) = −ζλ. Since p �= q, it follows from Corollary
4.2.15 that the series (1 + x)1/q converges in Kp for x = λ and x = −ζλ.

Lemma 16.1.7. We have

μ = (1 + λ)−1/q(1− ζλ)1/q ,

where (1+λ)−1/q (and similarly (1−ζλ)1/q)means the power series (1+x)−1/q

evaluated at x = λ.
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Proof. Denote by ν the right-hand side. Since 1+λ = (x− ζ)/(1− ζ) = β
and ι(λ) = −ζλ, we have νq = ι(β)/β = μq, so that μ = ην for some qth root
of unity η ∈ Kp. Since Kp � Qp(ζ), it follows from Exercise 20 of Chapter
4 that if p �≡ 1 (mod q) we have η = 1, while if p ≡ 1 (mod q) we have
η ∈ Qp. In particular, we have ι(η) = η, where we identify Gal(Kp/Qp) with
Gal(K/Q). Applying ι to the equality μ = ην and using ι(μ) = μ−1, we
obtain μ−1 = ηι(ν) = ην−1, so that η2 = 1. Since ηq = 1 and q is odd we
have η = 1 in all cases, as claimed. ��

As a last result, we need a congruence for φ. We will use the convenient
notation u = v + O(x) for some x ∈ Kp to mean that vp(u− v) � vp(x), and
we recall that vp(λ) � 1− 1/(p− 1).

Lemma 16.1.8. (1) We have

φ

(1 + ζ)q
=
(

1− (x− 1)
ζr − ζ

(ζ − 1)(ζr + 1)
+ O(λ2)

)
.

(2) If q ≡ 1 (mod p), we have

φ

(1 + ζ)q
=
(

1− q − 1
2q

(x− 1)2
ζ

(ζ − 1)2
+ O((q − 1)2λ2) + O((q − 1)λ3)

)
.

Proof. (1). By definition we have β = (x − ζ)/(1 − ζ) = 1 + λ. On the
other hand, by the preceding lemma we have μ = (1 + λ)−1/q(1 − ζλ)1/q.
Since 1/q ∈ Zp we have

(
1/q
k

) ∈ Zp for all k, so that by expanding the power
series we obtain

φ = β(μ + ζr)q = (1 + ζr)q(1 + a1λ + O(λ2))

with a1 = (ζr−ζ)/(ζr+1), and (1) follows after replacing λ by (x−1)/(1−ζ).
(2). Set a = (q − 1)/q, so that vp(a) � 1. We write

μ = (1− ζλ)(1 + λ)−1(1 + λ)a(1− ζλ)−a .

By Lemma 4.2.12 applied to an = a(a−1) · · · (a−n+1), for vp(x) � 1/(p−3)
we have

(1+x)a = 1+ax+
a(a− 1)

2
x2 +O(ax3) = 1+ax− a

2
x2 +O(a2x2)+O(ax3) .

Furthermore, we have vp(λ) � 1 − 1/(p − 1) > 1/(p − 3) since p � 5. Thus
after a small calculation we obtain

μ(1 + λ) = 1 + λ(a(1 + ζ)− ζ)− aλ2

2
(ζ + 1)2 + O(a2λ2) + O(aλ3) ,

so that (μ + ζ)(1 + λ) = (1 + ζ)(1 + aλ− aλ2(1 + ζ)/2 + O(a2λ2) + O(aλ3)).
It follows that
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φ = (1 + ζ)q(1 + λ)1−q

(
1 + aqλ− aq

1 + ζ

2
λ2 + O(a2λ2) + O(aλ3)

)
= (1 + ζ)q(1 + λ)1−q(1− a

a− 1
λ− a

1 + ζ

2
λ2 + O(a2λ2) + O(aλ3))

since aq = q−1 = a/(1−a) = a+O(a2). Applying once again Lemma 4.2.12
to an = (1− q)(−q) · · · (2− q − n) we obtain similarly

(1 + λ)1−q = 1 +
a

a− 1
λ− a

2(a− 1)
λ2 + O(a2λ2) + O(aλ3)

= 1 +
a

a− 1
λ +

a

2
λ2 + O(a2λ2) + O(aλ3),

and replacing gives

φ = (1 + ζ)q

(
1− aζ

2
λ2 + O(a2λ2) + O(aλ3)

)
,

proving (2) after replacing a by (q − 1)/q and λ by (x− 1)/(1− ζ).
Note that we have proved the lemma by working in Kp, but since all the

quantities that are involved are in K, the result is also true in K. ��

For simplicity, write N and Tr instead of NK/Q and TrK/Q.

Lemma 16.1.9. For α ∈ ZK we have

N (α) ≡ 1 + Tr(α− 1) + O(α− 1)2 .

Proof. Write ε = α − 1 and k = (p − 1)vp(α − 1) = vp(α − 1). For any
σ ∈ G = Gal(K/Q) we have σ(α) = 1 + σ(ε), and σ(ε) ∈ pk since p is stable
by σ. Multiplying these equations together gives∏

σ∈G

α = 1 +
∑
σ∈G

σ(ε) + O(p2k) ,

proving the lemma. ��

Lemma 16.1.10. Denote by πK the canonical reduction map from ZK to
ZK/p = Fp, which is a ring homomorphism. For any α ∈ ZK we have
Tr(α) ≡ −πK(α) (mod p).

Proof. We have Tr(ζk) = Tr(ζ) = −1 if p � k, and Tr(ζk) = Tr(1) =
p − 1 ≡ −1 (mod p) if p | k, so the result is true for α = ζk since ζ ≡ 1
(mod p), therefore for any α ∈ ZK by linearity. ��

Proof of Theorem 16.1.4. Set b1 = (ζr−ζ)/((ζ−1)(ζr +1)). From Lemma
16.1.8 (1), the above lemma, and the fact that (x−1)b1/λ is integral we deduce
that N (φ/(1+ ζ)q) = 1− (x− 1)Tr(b1)+O(λ2), and in particular N (φ/(1+
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ζ)q) ≡ 1 (mod p). Since φ and 1+ζ are units we haveN (φ/(1+ζ)q) = ±1, and
since p is not above 2 the sign must be +, so that vp((x−1)Tr(b1)) � vp(λ2).
Now by the above lemma we have

Tr(b1) ≡ −πK(b1) ≡ −πK((ζr − ζ)/(ζ − 1))πK(ζr + 1)−1 (mod p) .

From (ζr− ζ)/(ζ− 1) =
∑

1�j�r−1 ζj we deduce that πK((ζr− ζ)/(ζ− 1)) =
r−1, and πK(ζr +1) = 2, so that Tr(b1) ≡ (r−1)/2 (mod p). It follows that
if r �≡ 1 (mod p), in other words if q �≡ 1 (mod p), we have vp(Tr(b1)) = 0.
Since λ = (x − 1)/(1 − ζ) we deduce from the inequality given above that
vp(x− 1) � 2(vp(x− 1)− 1/(p− 1)), so that vp(x− 1) � 2/(p− 1), giving a
contradiction when p � 5 since vp(x − 1) � 1, and proving Theorem 16.1.4
when q �≡ 1 (mod p).

Assume now that q ≡ r ≡ 1 (mod p). In that case b1 = 0, so by Lemma
16.1.8 (2) we have

φ = (1 + ζ)q(1− (x− 1)2((q − 1)/(2q))c + O((q − 1)2λ2) + O((q − 1)λ3))

with c = ζ/(ζ−1)2. As in the preceding case we must have N (φ/(1+ζ)q) = 1,
and

N (φ/(1+ζ)q) = 1−(x−1)2((q−1)/(2q))Tr(c)+O((q−1)2λ2)+O((q−1)λ3) .

By Exercise 25 of Chapter 2 we have Tr(c) = (1 − p2)/12, which has p-
adic valuation 0 for p � 5, so the above equalities together with vp(λ) =
vp(x− 1)− 1/(p− 1) imply that 2vp(x− 1) + vp(q − 1) � min(A,B), with

A = 2vp(q−1)+2vp(x−1)−2/(p−1) and B = vp(q−1)+3vp(x−1)−3/(p−1)) .

If the minimum is equal to A this gives the inequality vp(q−1) � 2/(p−1) < 1
for p � 5, a contradiction since p | (q− 1). If the minimum is equal to B this
gives the inequality vp(x − 1) � 3/(p − 1) < 1, once again a contradiction
since p | (x− 1), proving the theorem. ��

16.1.3 Mihăilescu’s Second Theorem: p | h−
q and q | h−

p

Mihăilescu’s second theorem is now immediate.

Theorem 16.1.11 (Mihăilescu). Let p and q be distinct odd primes. If
p � h−

q or q � h−
p the equation xp−yq = 1 does not have any nonzero solutions.

Proof. By Cassels’s theorem, we know that a solution to xp − yq = 1
implies (xp − 1)/(x − 1) = pvq, which does not have any nontrivial solution
for p � 5 by Dupuy’s theorem, and for p = 3 by Nagell’s Corollary 6.7.15.
Symmetrically ((−y)q−1)/((−y)−1) = qup also does not have any nontrivial
solution if p � h−

q . ��
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Corollary 16.1.12. If p and q are distinct odd primes and p or q is less
than or equal to 43 then the equation xp − yq = 1 does not have any nonzero
solutions.

Proof. Thanks to the above theorem it is sufficient to check that for any
p and q with min(p, q) � 43 we have p � h−

q or q � h−
p . For this we need to

compute h−
p for small values of p, which is easily done thanks to Corollary

10.5.27. We find in completely factored form that h−
p = 1 for p � 19, and

h−
23 = 3, h−

29 = 23, h−
31 = 32, h−

37 = 37 (coming from the fact that 37 is an
irregular prime), h−

41 = 112, and h−
43 = 211. By symmetry we may assume

that 3 � p < q. From this list we see that q � h−
p since all the prime divisors

of h−
p are less than or equal to p, except when p = 43. In that case q | h−

43

for q = 211. Thus we must check that 43 � h−
211, which is the case since we

compute that

h−
211 = 32 · 72 · 41 · 71 · 181 · 281 · 421 · 1051 · 12251 · 113981701 · 4343510221

(the fact that h−
211 has so many small factors comes from Corollary 10.5.28,

and evidently we do not need this complete factorization just to check that
43 � h−

211). ��

Remarks. (1) The reason we stop at 43 is that for p = 47 and q = 139 we
check that q | h−

p and p | h−
q so that we cannot apply Theorem 16.1.11

to this pair. In any case we have proved this result just for fun, because
we will use it only up to 11.

(2) We now have two quite different criteria for proving that Catalan’s equa-
tion does not have any nonzero solutions: Theorems 16.1.3 and 16.1.11.
It is highly plausible that there are no pairs (p, q) satisfying both, but
this is not known. However, thanks to the work of Baker and followers on
linear forms in logarithms, it is not difficult to show that the above theo-
rems of Mihăilescu prove Catalan’s conjecture up to a finite and not too
unreasonable amount of computer calculations, which have been started
but not completed, first because they would be very long, but second,
mainly because thanks to further theorems of Mihăilescu that we will see
below they are not necessary.

16.2 The + and − Subspaces and the Group S

From now on we will have to consider carefully the action of complex conju-
gation on all the objects that we study. Thus as usual we denote by K+ the
subfield of K fixed by complex conjugation ι, in other words the maximal
totally real subfield of K; see Section 3.5.4.
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16.2.1 The + and − Subspaces

Let R be a commutative ring and M an R[G]-module. We define M± = {x ∈
M, ι(x) = ±x}. If 2 is invertible in R we set ε± = (1 ± ι)/2 ∈ R[G]. It is
clear that ε± are complementary projectors, in other words that (ε±)2 = ε±,
ε+ + ε− = 1, and ε+ε− = 0. It is also clear that M± = ε±M and that
M = M+ ⊕M−. If 2 is not invertible in R (for instance in the important
special case R = Z) we set ε± = 1 ± ι, and we have only the inclusions
ε±M ⊂ M± and M+ ⊕ M− ⊂ M , the indexes being powers of 2. In the
special case where M = R[G] however, we have the following:

Lemma 16.2.1. ε±R[G] = R[G]±, and both are free R-modules of dimen-
sion (p− 1)/2.

Proof. The left-hand side is always a submodule of the right-hand side.
Thus let x =

∑
1�t�p−1 atσt ∈ R[G]±. Since ισt = σp−t, this means that

ap−t = ±at. Thus if we set y =
∑

1�t�(p−1)/2 atσt it is clear that x = ε±y.
The last statement is clear since ap−t = ±at. ��

Exercise: show that the index of Z[G]+⊕Z[G]− in Z[G] is equal to 2(p−1)/2.
Recall that we have defined the Stickelberger ideal Is = Is(p) by Is =

Z[G] ∩ΘZ[G], where

Θ =
1
p

∑
1�t�p−1

tσ−1
t .

We define

I = (1− ι)Is = ε−Is ⊂ I−s = Is ∩ Z[G]− = Is ∩ ε−Z[G] ,

the last equality following from the lemma (we have already used I in Lemma
16.1.2). By Lemma 3.6.17, Is is generated by Θp+1 and by the Θb for 1 � b �
p − 1. Set gb = −Θb for 1 � b � p − 1, and gp = −Θp+1. By Lemma 3.6.16
we have gb =

∑
1�t�p−1	bt/p
σ−1

t , including for b = p since 	(p + 1)t/p
 = t
for 1 � t � p− 1. Finally, for 1 � i � p− 1 set

fi = gi+1 − gi =
∑

1�t�p−1

(⌊
t(i + 1)

p

⌋
−
⌊

ti

p

⌋)
σ−1

t ,

where we note that the coefficient of σ−1
t is equal to 0 or 1. Since the gi

for 1 � i � p generate Is and that we have g1 = 0, it follows that the
fi for 1 � i � p − 1 also generate Is. Furthermore, since 	tp/p
 = t and
	t(p − 1)/p
 = t − 1 for 1 � t � p − 1 it follows that fp−1 =

∑
1�t�p−1 σt.

This is the norm element s(G) ∈ Z[G] since αs(G) = NK/Q(α).

Definition 16.2.2. If f =
∑

1�t�p−1 atσt ∈ Z[G] we define

‖f‖ =
∑

1�t�p−1

|at| .
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It is clear that ‖f‖ � 0, that ‖f‖ = 0 if and only if f = 0, and it is
immediately checked that ‖fg‖ � ‖f‖‖g‖, and it is clear as well that there
is equality if all the coefficients of f and g are nonnegative.

Lemma 16.2.3. (1) For 1 � i � p− 2 we have ‖fi‖ = (p− 1)/2.
(2) Is is a free Z-module of rank (p + 1)/2 generated by the fi for 1 � i �

(p− 1)/2 and by fp−1 = s(G).
(3) I is a free Z-module of rank (p − 1)/2 generated by the ei = ε−fi for

1 � i � (p− 1)/2.
(4) For 1 � i � (p − 1)/2 the coefficients of ei are equal to ±1, and in

particular ‖ei‖ = p− 1.

Proof. (1) and (4). For 1 � t � p− 1 and 1 � i � p− 1 we note that

	ti/p
+ 	(p− t)i/p
 = 	ti/p
+ i− �ti/p� = i− 1

since p � ti. It follows that∑
1�t�p−1

	ti/p
 =
∑

1�t�(p−1)/2

(	ti/p
+ 	(p− t)i/p
) = (i− 1)(p− 1)/2 .

Since the coefficients of fi are equal to 0 or 1, for 1 � i � p − 2 we have
‖fi‖ = i(p− 1)/2− (i− 1)(p− 1)/2 = (p− 1)/2, proving (1) (note that this
is false for i = p− 1 since in that case the above computation is not valid for
i + 1 = p, and in fact we know that ‖fp−1‖ = ‖s(G)‖ = p− 1). The proof of
(4) follows immediately from (1) and is left to the reader.

(2). Exchanging i and t in the first equality proved in (1) we see that

	it/p
+ 	(p− i)t/p
 = t− 1 = 	(i + 1)t/p
+ 	(p− i− 1)t/p
 ,

in other words that

	(p− i)t/p
 − 	(p− i− 1)t/p
 = 	(i + 1)t/p
 − 	it/p
 .

It follows that fp−1−i = fi, so the fi for 1 � i � (p−1)/2 together with s(G)
generate Is.

Let us set ei = ε−fi. Since trivially ε−(s(G)) = 0 and I = ε−Is, it follows
that the ei for 1 � i � (p− 1)/2 generate I. Assume that we have shown (3),
in other words that the ei form a Z-basis of I. It is then clear that the fi for
1 � i � (p − 1)/2 together with s(G) form a Z-basis of Is: indeed if we had
a relation

∑
1�i�(p−1)/2 λifi + λs(G) = 0, then applying ε− we would obtain∑

1�i�(p−1)/2 λiei = 0; hence λi = 0, and hence λ = 0 also, and (2) follows.

(3). We will prove (3) indirectly. Since Is is a finitely generated torsion-
free Z-module, it is free, as are its submodules. Proving (3) is thus equivalent
to showing that the Z-rank of I is equal to (p− 1)/2. Now by Lemma 16.2.1,
dimZ Z[G]− = (p − 1)/2. By Lemma 3.6.22, multiplication by pΘ is an in-
jective map from Z[G]− to Z[G]−, so dimZ pΘZ[G]− = (p − 1)/2. Now by



540 16. Catalan’s Equation

definition Is = ΘZ[G] ∩ Z[G], so I−s = ΘZ[G] ∩ Z[G]−. Since pΘ ∈ Z[G] we
thus have the chain of inclusions

pΘZ[G]− = pΘZ[G]− ∩ Z[G]− ⊂ ΘZ[G]− ∩ Z[G]− ⊂ I−s ⊂ Z[G]− .

Since the extremities of this chain have Z-rank equal to (p− 1)/2, it follows
that all the terms of the chain do, and in particular that dimZ(I−s ) = (p−1)/2.
Finally, we note that if x ∈ I−s then ε−x ∈ I, but on the other hand, ε−x =
x+x = 2x. It follows that 2I−s ⊂ I ⊂ I−s , so dimZ(I) = dimZ(I−s ) = (p−1)/2,
proving the lemma. ��

Remark. It follows from this lemma that the ei for 1 � i � (p − 1)/2
are Z-linearly independent. We leave as an exercise for the reader to show
that this is equivalent to showing that the ((p − 1)/2) × ((p − 1)/2) matrix
M = (mi,j)1�i,j�(p−1)/2 defined by mi,j = 	(i + 1)(j + 1)/p
 has a nonzero
determinant. This can be done without too much difficulty by showing that
det(M) is equal to the determinant of the map multiplication by Θ from
C[G]− to itself multiplied by p/(2(p−3)/2), which as remarked after Lemma
3.6.22 is up to sign equal to h−

p (see Exercise 61 of Chapter 10).

16.2.2 The Group S

Recall that in this whole chapter q denotes an odd prime distinct from p.

Definition 16.2.4. (1) We define

E = {uπk, u ∈ U(K), k ∈ Z} .

(2) We define V to be the group of elements α ∈ K∗ such that vr(α) ≡ 0
(mod q) for all prime ideals r �= p, and we set S = V/K∗q.

Remarks. (1) It we set T = {p}, the group E is simply the group of T -units
of K, while the group S is the so-called q-Selmer group of the ring ZK,T

of T -integers of K, but we will not use this terminology.
(2) The group V is also equal to the set of α ∈ K∗ such that αZK = bqpk

for some ideal b and some k ∈ Z. In particular, Lemma 16.1.1 tells us
that x− ζ ∈ V , so that the class of x− ζ belongs to S.

(3) We could perform the entire proof that follows using U(K) instead of E,
and make all the corresponding changes to the groups S, C, etc., that
we will define, but we have slightly more freedom by allowing arbitrary
powers of π in the elements that we use. The price to pay is that we will
work in Z[ζp, 1/p] instead of Z[ζp].

Proposition 16.2.5. (1) E is a Z[G]-module and E = Z[ζp, 1/p]∗.
(2) α ∈ V if and only if there exists an ideal a and k ∈ Z such that αZK =

πkaq.
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(3) S is a Z[G]-module annihilated by qZ[G], so S is an Fq[G]-module.

Proof. Immediate consequences of the definition and left to the reader.
��

We set G+ = Gal(K+/Q) = G/〈ι〉, which has cardinality (p − 1)/2.
We denote as usual by Cl(K) and Cl(K+) the class groups of K and K+

respectively. The group Cl(K) is a Z[G]-module, so we can speak of Cl(K)±.
By definition Cl(K)+ is the subgroup of ideal classes invariant by ι. This is
in general not equal to Cl(K+), but by Proposition 3.5.21 the natural map
from Cl(K+) to Cl(K)+ is injective, so that Cl(K+) can be considered as
a subgroup of Cl(K)+ and in particular h+

p | |Cl(K)+|. Furthermore, by
the general considerations given at the beginning of Section 16.2.1 we have
Cl(K)− ⊕Cl(K)+ ⊂ Cl(K). It follows that there is a natural injection from
Cl(K)− to Cl(K)/Cl(K)+. In particular

|Cl(K)−| divides
hp

|Cl(K)+| divides
hp

h+
p

= h−
p .

In the following lemma, recall that if A is an abelian group, then A[q]
denotes the set of elements x ∈ A such that xq = 1 (or qx = 0 in additive
notation).

Lemma 16.2.6. Keep all the above notation.

(1) We have an exact sequence of Fq[G]-modules

0 −→ E/Eq −→ S −→ Cl(K)[q] −→ 0 .

(2) E/Eq is invariant by ι, so is an Fq[G+]-module.
(3) We have S− � Cl(K)[q]− = Cl(K)−[q] and an exact sequence of Fq[G+]-

modules
0 −→ E/Eq −→ S+ −→ Cl(K)[q]+ −→ 0 .

(4) S is annihilated by I.

Proof. (1) is a general property of Selmer groups and is immediate to
prove: if α ∈ S then αZK = πkaq for some ideal a, and we send α to the ideal
class of a. It is clear that this lands in Cl[q], and that it is independent of
the chosen representative of α (changing α into αγq amounts to changing a
into γa, which is in the same ideal class). Its kernel is the set of α such that
αZK = πkγqZK for some element γ; hence α = πkγqu for some u ∈ U(K),
so that α/γq ∈ E is such that α/γq = α. Finally, the map is surjective since
if aq = αZK then the class of a is the image of the class of α.

(2). Let α = πku ∈ E. Since ι(π) = 1− ζ−1 = −z−1π and −ζ−1 is a qth
power since q and 2p are coprime, it follows that ι(π)/π ∈ Eq. Furthermore,
if u ∈ U(K) then by Lemma 3.5.19, ι(u)/u is a 2pth root of unity, so once
again ι(u)/u ∈ Eq, proving (2).
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(3). Since q is odd, 2 is invertible in Fq, so that for any Fq[G]-module
M we have M = M+ ⊕ M−. In particular, taking + and − parts in an
exact sequence of Fq[G]-modules preserves exactness. Since by (2) we have
(E/Eq)+ = E/Eq and (E/Eq)− = 0, taking the − part of the exact sequence
of (1) gives S− � Cl(K)[q]−, which is clearly equal to Cl(K)−[q], and taking
the + part gives the exact sequence of (3).

(4). By Stickelberger’s theorem we know that Is annihilates Cl(K) hence
Cl(K)[q], and by (3) that ε− annihilates E/Eq with ε− = 1−ι. Since I = ε−Is

it follows that I annihilates both Cl(K)[q] and E/Eq, so it annihilates S
thanks to the exact sequence of (1). ��

16.3 Mihăilescu’s Third Theorem: p < 4q2 and q < 4p2

This is not an important part of the proof of Catalan’s conjecture, and was
found only afterward, but it has the great advantage of completely avoiding
the use of linear forms in logarithms and extensive computer calculations (as
opposed to the straightforward proofs above).

In this section we let as before p and q be distinct odd primes and x and
y be nonzero integers such that xp − yq = 1. To simplify notation we will
write N instead of NK/Q, where as usual K = Q(ζp). Recall that by Lemma
16.1.1 we know that the class [x − ζp] of x − ζp modulo qth powers belongs
to the group S.

Definition 16.3.1. We denote by X the annihilator of [x − ζp] in Z[G], in
other words the set of θ ∈ Z[G] such that (x− ζp)θ = αq for some α ∈ K∗.

It is clear that X is an ideal of Z[G].

Lemma 16.3.2. The map sending θ ∈ X to α ∈ K∗ such that (x−ζp)θ = αq

is a well-defined injective group homomorphism.

Proof. The map is well defined since K = Q(ζp) does not contain any
other qth root of unity than 1. It is clear that it is a group homomorphism
from the additive group X to the multiplicative group K∗. Let us show that
it is injective: let θ ∈ X be such that (x − ζp)θ = 1. For any σ ∈ G we thus
have (x− σ(ζp))θ = σ(1) = 1, hence N (x− ζp)θ = 1. If θ =

∑
σ∈G aσσ, since

N (x − ζp) ∈ Z it follows that N (x − ζp)s = 1, where s =
∑

σ∈G aσ. Now
recall that by Lemma 16.1.1 we have (x − ζp)/(1 − ζp) ∈ ZK , and so, since
N (1− ζp) = p, we have p | N (x− ζp), and in particular N (x− ζp) � p. Thus
we must have s =

∑
σ∈G aσ = 0, so we can write

1 =
(x− ζp)θ

(1− ζp)s
=

∏
σ∈G

(
x− σ(ζp)

1− ζp

)aσ

,

and since (1−σ(ζp))/(1−ζp) is a unit for all σ ∈ G it follows that
∏

σ∈G σ(β)aσ

is a unit, where we have set β = (x − ζp)/(1 − ζp). Now by Lemma 16.1.1
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the ideals bσ = σ(β)ZK are (integral and) coprime. Since
∏

σ∈G baσ
σ = ZK

it follows that aσ = 0 for all σ ∈ G, in other words that θ = 0, proving
injectivity and the lemma. ��

Proposition 16.3.3. Assume that min(p, q) � 11. Let θ =
∑

σ∈G aσσ ∈
X ∩ (1 − ι)Z[G], let α ∈ K∗ be such that (x − ζp)θ = αq, and assume that
‖θ‖ =

∑
σ∈G |aσ| � 3q/(p− 1). Then for all τ ∈ G we have

|Arg(τ(α)q)| � ‖θ‖
|x| − 1

and |Arg(τ(α))| > π

q
,

where Arg(z) denotes the principal determination of the argument, i.e., such
that −π < Arg(z) � π.

Proof. Since θ ∈ (1− ι)Z[G] we have ιθ = −θ, so for all τ ∈ G,

|τ(α)|2q = |(x− ζp)τθ|2 = (x− ζp)τθ(x− ζp)τιθ = (x− ζp)τθ(x− ζp)−τθ = 1 ,

so that |τ(α)| = 1. For the same reason we have aισ = −aσ, hence s =∑
σ∈G aσ = 0. It follows that

αq = (x− ζp)θ =
∏
σ∈G

(x− σ(ζp))aσ

= xs
∏
σ∈G

(1− σ(ζp)/x)aσ =
∏
σ∈G

(1− σ(ζp)/x)aσ .

Fix some τ ∈ G, and set ζ = τ(ζp). We thus have

τ(α)q =
∏
σ∈G

(1− σ(ζ)/x)aσ .

Denote by Log the principal branch of the complex logarithm, in other words
such that Log (z) = log(|z|) + iArg(z), and let f be some determination of
the complex logarithm, so that f(z)− Log (z) is an integral multiple of 2iπ.
We thus have ∑

σ∈G

aσLog (1− σ(ζ)/x) = f(τ(α)q) .

Now since |x| > 1 we have

|Log (1− σ(ζ)/x)| =
∣∣∣∣∣∣
∑
k�1

σ(ζ)k/(kxk)

∣∣∣∣∣∣ �
∑
k�1

|x|−k = 1/(|x| − 1) .

Note that for all z we have f(z) = log(|z|) + i(Arg(z) + 2kπ) for some k ∈ Z,
hence |f(z)| � |Arg(z) + 2kπ|. If k = 0 this gives |f(z)| � |Arg(z)|, while if
k �= 0 this gives
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|f(z)| � |2kπ| − |Arg(z)| � (2|k| − 1)π � π � |Arg(z)|
since |Arg(z)| � π, so that we always have |f(z)| � |Arg(z)|. Thus

|Arg(τ(α)q)| � |f(τ(α)q)| � 1
|x| − 1

∑
σ∈G

|aσ| � ‖θ‖
|x| − 1

,

proving the first inequality. Now assume by contradiction that |Arg(τ(α))| �
π/q. It is immediately checked that in that case |Arg(τ(α)q)| = q|Arg(τ(α))|,
so that |Arg(τ(α))| � ‖θ‖/(q(|x|−1)). Furthermore, if we set φ = Arg(τ(α)),
since |τ(α)| = 1 we have τ(α) = cos(φ) + i sin(φ), hence

τ(α)− 1 = 2 sin(φ/2)(− sin(φ/2) + i cos(φ/2)) ,

so that
|τ(α)− 1| = 2| sin(φ/2)| � |φ| = |Arg(τ(α))| .

We thus have |τ(α) − 1| � ‖θ‖/(q(|x| − 1)), so taking the product over all
σ ∈ G we obtain

| N (α− 1)| = |τ(α)− 1|2
∏
σ∈G

σ 
=τ, σ 
=ιτ

|σ(α)− 1| �
( ‖θ‖

q(|x| − 1)

)2

2p−3 ,

since |σ(α)− 1| � |σ(α)|+ 1 = 2.
Now set θ+ =

∑
σ∈G, aσ �0 aσσ and θ− =

∑
σ∈G, aσ �0(−aσ)σ, so that θ =

θ+ − θ−. Since aισ = −aσ we have ιθ+ = θ− hence αq = (x− ζp)θ = β/ι(β),
where β = (x− ζp)θ+

is an algebraic integer. Now

N (β2) = N (β)N (ι(β)) = N (βι(β))

= NK/Q

(∏
σ∈G

(x− σ(ζp))|aσ |
)

� (|x|+ 1)‖θ‖(p−1) ,

so that N (β) � (|x| + 1)‖θ‖(p−1)/2. Write αZK = a/b, where a and b are
coprime integral ideals. We have aq/bq = (β/ι(β))ZK , hence aqι(β) = bqβ,
and since a and b are coprime it follows that bq | ι(β)ZK . In particular,
N (bq) � N (ι(β)) = N (β), so that N (b) � (|x| + 1)‖θ‖(p−1)/(2q). Now by
Lemma 16.3.2, since we have chosen θ �= 0 we have α �= 1. Thus, since bα = a
and b are integral ideals, it follows that a1 = b(α − 1) = {xα − x, x ∈ b} is
also an integral ideal, so that 1 � N (a1) = N (b)| N (α− 1)|. Combining the
inequalities that we have obtained above we thus have

1 � (|x|+ 1)‖θ‖(p−1)/(2q)

( ‖θ‖
q(|x| − 1)

)2

2p−3 .

This inequality is going to lead to a contradiction. Since |x| � 6 (see below)
we have (1 + |x|)2 � 2(|x| − 1)2, hence
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(1 + |x|)2−‖θ‖(p−1)/(2q) � 2p−1(‖θ‖/q)2 ,

so by the assumption ‖θ‖ � 3q/(p − 1) of the proposition and the fact that
p � 5 we deduce that

(1 + |x|)1/2 � 2p−1(3/(p− 1))2 � 2p−1 = 4(p−1)/2 .

Now by Proposition 6.11.15 (essentially Hyrrö’s result), we have |x| � qp−1+q
(which incidentally shows that |x| � 6). It follows that q(p−1)/2 < (1 +
|x|)1/2 � 4(p−1)/2, which is absurd since q � 5 by assumption. ��

To prove the next result (Proposition 16.3.6) we need several lemmas.

Lemma 16.3.4. The number of k-tuples of nonnegative integers λi such that∑
1�i�k λi � s is equal to

(
s+k

s

)
=
(
s+k

k

)
.

Proof. The map that sends (λi)1�i�k to the set of
∑

1�i�j(λi + 1) for
1 � j � k is easily seen to be a bijection from the set of k-tuples with sum s
to the set of subsets of cardinality k of [1, s + k], whose cardinality is equal
to

(
s+k

k

)
. ��

Lemma 16.3.5. Assume that min(p, q) � 11 and that q > 4p2. There exist
at least q + 1 elements θ ∈ I such that ‖θ‖ � 3q/(2(p− 1)).

Proof. Recall from Lemma 16.2.3 that I has a basis of elements ei for
1 � i � (p − 1)/2 that are such that ‖ei‖ = p − 1. Consider the set of
θ =

∑
1�i�(p−1)/2 λiei, where λi ∈ Z�0 and

∑
i λi � s = 	3q/(2(p − 1)2)
.

For such a θ we have

‖θ‖ � (p− 1)
∑

i

λi � (p− 1)s � 3q/(2(p− 1)) .

By the preceding lemma the number of such θ is equal to
(
s+(p−1)/2

s

)
. Since

we can also consider −θ when θ �= 0, it follows that we construct in this way
2
(
s+(p−1)/2

s

)−1 distinct elements θ. Let us show that this quantity is greater
than or equal to q + 1. First note that(

s+(p−1)/2
s

)
p2(s + 1)

=

∏
2�j�(p−1)/2(s + j)

p2((p− 1)/2)!
,

which is evidently an increasing function of s. Since q � 4p2 � 4(p − 1)2

we have s � 6, so that
(
s+(p−1)/2

s

)
/(s + 1) �

(
6+(p−1)/2

6

)
/(7p2) = f(p), say.

We compute that f(p)/f(p − 2) = (p + 11)(p − 2)2/(p2(p − 1)), and it is
easily checked that this is greater than 1 as soon as p � 5. Thus f(p) is an
increasing function of p. In particular, we compute that f(11) = 6/11 > 1/3.
Thus if p � 11 we have
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(
s + (p− 1)/2

s

)
>

p2(s + 1)
2

>
p2q

2(p− 1)2
� q + 2

2
,

the last inequality being immediate since q > 4p2. The number of distinct
elements θ that we have constructed is thus greater than or equal to q + 1,
as claimed. ��

Proposition 16.3.6. Assume that min(p, q) � 11 and that q > 4p2. For all
τ ∈ G there exists a nonzero θ ∈ I such that ‖θ‖ � 3q/(p− 1) and such that
|Arg(τ(α))| � π/q, where α ∈ K∗ is the element such that (x− ζp)θ = αq.

Proof. By the above lemma there exist at least q + 1 elements θ ∈ I
such that ‖θ‖ � 3q/(2(p − 1)). For each such θ there exists a unique α
such that (x − ζp)θ = αq. Since θ ∈ I ⊂ (1 − ι)Z[G], by the first in-
equality of Proposition 16.3.3 we deduce that |Arg(τ(α)q)| � ‖θ‖/(|x| − 1).
Now note that Arg(τ(α)q) = q Arg(τ(α)) + 2kπ for some k, so that 2kπ =
−q Arg(τ(α)) + Arg(τ(α)q), and since Arg is always between −π and π we
have 2|k|π < (q+1)π, hence 2|k| � q, hence |k| � (q−1)/2 since q is an odd in-
teger. Since there are exactly q integers k such that −(q−1)/2 � k � (q−1)/2
and we have at least q + 1 distinct θ, it follows from the pigeonhole princi-
ple that there exist θ1 and θ2 with θ1 �= θ2, satisfying the given properties,
with in addition the same value of k. For i = 1, 2 write (x − ζp)θi = αq

i ,
θ = θ1 − θ2, so that (x − ζp)θ = αq with α = α1/α2, and evidently
‖θ‖ � ‖θ1‖+ ‖θ2‖ � 3q/(p− 1). Since

Arg(τ(αi)) =
Arg(τ(αi)q)

q
− 2kπ

q

we have

|Arg(τ(α2))−Arg(τ(α1))| = 1
q
|Arg(τ(α2)q)−Arg(τ(α1)q)| � 2π/q < π ,

hence Arg(τ(α)) = Arg(τ(α2)) − Arg(τ(α1)). Using the inequalities ‖θ‖ �
3q/(2(p− 1)) and |x| − 1 > qp−1 (Proposition 6.11.15) we thus have

|Arg(τ(α))| = |Arg(τ(α2))−Arg(τ(α1))|
� |Arg(τ(α2)) + 2kπ/q|+ |Arg(τ(α1)) + 2kπ/q|
� (|Arg(τ(α2)q)|+ |Arg(τ(α1)q)|)/q

� 2‖θ‖/(q(|x| − 1)) � 3/((p− 1)qp−1) < π/q ,

proving the proposition. ��

Mihăilescu’s third theorem is now immediate.

Theorem 16.3.7. Let p and q be odd primes such that min(p, q) � 11, and
let x and y be nonzero integers such that xp − yq = 1. Then p < 4q2 and
q < 4p2.
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Proof. By symmetry, it is enough to prove that q < 4p2. Assume by
contradiction that q > 4p2. By Proposition 16.3.6 for all τ ∈ G there exists
a nonzero θ ∈ I such that ‖θ‖ � 3q/(p − 1) and |Arg(τ(α))| � π/q, where
(x− ζp)θ = αq. By Lemma 16.2.6 (4), S is annihilated by I; hence the class
[x−ζp] is annihilated by I, so that I ⊂ X. Since by definition I = (1− ι)Is ⊂
(1− ι)Z[G], it follows that θ ∈ X ∩ (1− ι)Z[G], and since ‖θ‖ � 3q/(p−1) we
deduce from Proposition 16.3.3 that |Arg(τ(α))| > π/q, which contradicts
the inequality obtained from Proposition 16.3.6 and proves the theorem. ��

16.4 Mihăilescu’s Fourth Theorem: p ≡ 1 (mod q) or
q ≡ 1 (mod p)

This is the most subtle part of the proof. Up to now, we have used rather
simple properties of cyclotomic fields, the essential tool being Stickelberger’s
theorem and the properties of the minus part of the class group. In contrast,
Mihăilescu’s fourth theorem rests on properties of the plus part of the class
group. This is much less well understood (think about real quadratic fields
compared to imaginary quadratic fields), but a remarkable theorem has been
proved by F. Thaine on the plus part, which in some sense is an analogue of
Stickelberger’s theorem. This theorem has had a number of very important
applications, for instance in the proof of the finiteness of the Tate–Shafarevich
group of elliptic curves of rank less than or equal to 1. It is also crucial in the
present section. It would take us too long to give a proof of Thaine’s theorem,
so I refer to [Boe-Mis] or to the second edition of [Was].

In the first three subsections we prove some necessary results on the plus
part, which are independent of Catalan’s equation, assuming at a crucial
point Thaine’s theorem, which we will of course state. In the last subsection
we give the proof of Mihăilescu’s fourth theorem.

16.4.1 Preliminaries on Commutative Algebra

Lemma 16.4.1. Let R be a commutative ring, b an ideal of R, M an R-
module of finite type, and φ an R-endomorphism of M such that φ(M) ⊂ bM .
There exists a nonzero monic polynomial P ∈ R[X] such that P (φ) = 0, and
such that all the coefficients of P other than the leading one belong to b.

In the above, recall that bM is the R-module of linear combinations of
the product of an element of b by an element of M , and that for any endo-
morphism φ, we let φ0 be the identity.

Proof. Let (mi)1�i�n be an R-generating set for M , and let bi,j ∈ b be
such that φ(mj) =

∑
1�i�n bi,jmi for 1 � j � n. The module M can be

considered as an R[φ]-module through the map A(φ) · m = A(φ)(m) for
A ∈ R[X] and m ∈ M . If we set B = (bi,j)1�i,j�n and if we denote by In

the identity matrix of order n we can thus write in the ring of matrices with
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coefficients in R[φ] the equation (φIn − B)V = 0, where V is the (column)
vector of the mi. Multiplying by the comatrix of φIn − B, we deduce that
det(φIn − B)V = 0, in other words that det(φIn − B)mi = 0 for all i.
Since the mi generate M it follows that det(φIn − B)M = 0, hence that
det(φIn − B) = 0 as an endomorphism of M , and this is clearly a monic
polynomial in φ whose coefficients are in b apart from the leading one. ��

Recall that one denotes by AnnR(M) the annihilator of an R-module M ,
in other words the set of x ∈ R such that xM = 0. It is evidently an ideal
of R.

Lemma 16.4.2. Let R be a commutative ring, b an ideal of R, M an R-
module of finite type, and denote by ψ the canonical surjection from R to
R/b. If R/(AnnR(M) + b) has no nonzero nilpotent elements then

ψ(AnnR(M)) = AnnR/b(M/bM) .

Proof. The inclusion ⊂ is trivial, so let us show the reverse inclusion.
Thus, let ψ(α) ∈ AnnR/b(M/bM); in other words, α ∈ R is such that
αM ⊂ bM . Applying the preceding lemma to the map multiplication by
α, we deduce that there exist bi ∈ b such that the map multiplication
by β = αn + bn−1α

n−1 + · · · + b0 is the zero map in M , in other words
such that β ∈ AnnR(M). Since bi ∈ b it follows that αn ∈ AnnR(M) + b,
and since R/(AnnR(M) + b) has no nonzero nilpotent elements we have
α ∈ AnnR(M) + b, hence ψ(α) ∈ ψ(AnnR(M)). ��

Lemma 16.4.3. Let H be a cyclic group of order n, and assume that q � n.
Set s =

∑
σ∈H σ ∈ Fq[H]. The rings Fq[H] and Fq[H]/(sFq[H]) have no

nonzero nilpotent elements.

Proof. Since H is cyclic we have Fq[H] � Fq[X]/((Xn − 1)Fq[X]), and
Fq[H]/(sFq[H]) � Fq[X]/((Xn−1 + · · ·+ X + 1)Fq[X]), so that

Fq[H] � (Fq[X]/((X − 1)Fq[X]))× Fq[H]/((Xn−1 + · · ·+ X + 1)Fq[H])
� Fq × Fq[H]/(sFq[H])

if (X − 1) and Xn−1 + · · ·+ X + 1 are coprime, which is the case since q � n.
If η is a nilpotent element of Fq[H]/(sFq[H]), then under this isomorphism
(0, η) will be a nilpotent element of Fq[H], so it is enough to prove that there
are none in this ring. Since Fq[H] � Fq[X]/((Xn − 1)Fq[X]), it follows that
if the class of A(X) ∈ Fq[X] is nilpotent then (Xn − 1) | A(X)k for some
k � 1. However, since the derivative of Xn − 1 is equal to nXn−1 hence is
nonzero since q � n, it follows that the roots of Xn− 1 in an algebraic closure
of Fq are all distinct. Thus Xn − 1 | A(X), and so the class of A is equal to
0, as claimed. ��

We end this subsection by recalling without proof some basic facts on
semisimple rings and modules that can be found in any good textbook.
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Definition 16.4.4. (1) A commutative ring R is semisimple if it is a finite
product of fields.

(2) An R-module M is simple if its only submodules are 0 and M .
(3) An R-module is semisimple if it is a finite direct sum of simple modules.
(4) An R-module M is cyclic if it is generated over R by a single element,

in other words if M = aR for some a ∈M .

Lemma 16.4.5. Let H be a cyclic group of order n, and assume that q � n.
Then Fq[H] is a semisimple ring.

Proof. Let Xn− 1 =
∏

1�i�g P ei
i (X) be the decomposition of Xn− 1 as a

power product of distinct monic irreducible polynomials in Fq[X]. Since q � n
the polynomial Xn− 1 has distinct roots in an algebraic closure of Fq, hence
ei = 1 for all i. Thus by the lemma

Fq[H] � Fq[X]/((Xn − 1)Fq[X]) �
∏

1�i�g

Ki ,

where Ki = Fq[X]/(Pi(X)Fq[X]) is a field, so Fq[H] is semisimple. ��

The following proposition summarizes the results that we need.

Proposition 16.4.6. Let R be a semisimple ring. Then:

(1) Any R-module is semisimple.
(2) Every exact sequence of R-modules is split.
(3) For any R-module M there exists α ∈M such that AnnR(α) = AnnR(M),

so M contains the cyclic submodule aR isomorphic to R/ AnnR(M).
(4) If R and M are finite then |M | � |R/ AnnR(M)| with equality if and

only if M is cyclic.
(5) Let M be a cyclic module. Every submodule M ′ of M is also cyclic,

AnnR(M) = AnnR(M ′)·AnnR(M/M ′), and AnnR(M) and AnnR(M/M ′)
are coprime ideals.

16.4.2 Preliminaries on the Plus Part

Recall some notation. We let as always p and q be distinct odd primes, and
we set K = Q(ζp) and G = Gal(K/Q), which is canonically isomorphic to
(Z/pZ)∗. We let K+ = Q(ζp + ζ−1

p ) be the maximal totally real subfield of
K, G+ = Gal(K+/Q) = G/〈ι〉. We recall from Propositions 3.5.20 and 3.5.21
that U(K) = 〈ζp〉U(K+) and that the natural map from Cl(K+) to Cl(K)
is injective.

Lemma 16.4.7. We have Cl(K+)[q] = Cl(K)[q]+.
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Proof. By Proposition 3.5.21 we can write by abuse of notation Cl(K+)[q] ⊂
Cl(K)[q], and since evidently Cl(K+) is invariant by ι we have Cl(K+)[q] ⊂
Cl(K)[q]+. Conversely, let a be a representative of an element of Cl(K)[q]+.
Since Cl(K)[q] is an Fq[G]-module and 2 is invertible in Fq, it follows that
Cl(K)[q]+ is equal to the kernel of multiplication by (1−ι)/2 (or by 1−ι) from
Cl(K)[q] to itself. Thus there exist α and β in K∗ such that aι(a)−1 = αZK

and aq = βZK . Let b be the ideal of K+ defined by b = NK/K+(a). We have
bZK = aι(a), hence bqZK = aqι(aq) = βι(β)ZK = NK/K+(β)ZK ; hence
intersecting with K+, we deduce that bq = NK/K+(β)K+, so that the class
of b belongs to Cl(K+)[q]. Furthermore, setting m = (q + 1)/2 we compute
that

bmZK = amι(a)m = am(aα−1)m = aq+1α−m = aβα−m ,

so the class of a is equal to the class of bmZK , proving the lemma. ��

Recall from Definition 16.2.4 that E = {uπk, u ∈ U(K), k ∈ Z} =
Z[ζp, 1/p]∗. This is a Z[G]-module, so that E/Eq is an Fq[G]-module. By
Lemma 3.5.19 and the fact that π = 1 − ζp, for any x ∈ E the expression
ι(x)/x is a 2pth root of unity, and since q is coprime to 2p, it is a qth power.
It follows that E/Eq is pointwise invariant by ι, so that it is in fact an
Fq[G+]-module. The following lemma describes its structure very precisely
when p �≡ 1 (mod q).

Lemma 16.4.8. Assume that p �≡ 1 (mod q).

(1) We have |E/Eq| = q(p−1)/2.
(2) If we set W = U(K+)/{±1}, then AnnZ[G+](W ) = sZ[G+], where s =∑

σ∈G+ σ.
(3) We have AnnFq [G+](W/W q) = sFq[G+].
(4) We have AnnFq [G+](E/Eq) = 0.
(5) E/Eq is a free Fq[G+]-module of rank 1.

Proof. (1). The map (u, k) from U(K)× Z to E is an isomorphism since
k is defined uniquely as the p-adic valuation of uπk, hence by Dirichlet’s
theorem, as an abelian group E � μ2p×Z(p−1)/2, since the rank of the group
of units of K is equal to (p − 3)/2. Since 2p is coprime to q it follows that
E/Eq � (Z/qZ)(p−1)/2, proving (1).

(2). Let
∑

σ∈G+ aσσ belong to AnnZ[G+](W ), in other words be such that∏
σ∈G+ σ(ε)aσ = ±1 for all ε ∈ U(K+). Let (εi)1�i�(p−3)/2 be a system of

fundamental units of K+. Taking logarithms we have
∑

σ∈G+ aσ log(|σ(εi)|) =
0 for all i. On the other hand, by Dirichlet’s theorem the ((p− 3)/2)× ((p−
1)/2) matrix of the σ(εi)i�(p−3)/2,σ∈G+ has rank (p− 3)/2, so its kernel has
dimension 1. Since

∑
σ∈G+ log(|σ(εi)|) = 0, this kernel is generated over R

by the column vector having all (p − 1)/2 coordinates equal to 1. It follows
that aσ = a for all σ, hence that

∑
σ∈G+ aσσ = a · s, as claimed.
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(3). By Lemma 16.4.3 applied to H = G+, we see that if p �≡ 1 (mod q) the
ring Fq[G+]/(sFq[G+]) has no nonzero nilpotent elements. Set temporarily
I = sZ[G+]+qZ[G+]. It is clear that Z[G+]/I � Fq[G+]/(sFq[G+]), hence has
no nonzero nilpotents. It is clear from (2) that sFq[G+] ⊂ AnnFq [G+](W/W q),
so let us show the reverse inclusion. Let θ ∈ AnnFq [G+](W/W q); in other
words, θ ∈ Fq[G+] is such that W θ ⊂ W q. We apply Lemma 16.4.2 to
R = Z[G+], b = qZ[G+], and M = W , where of course we recall that the
action of R on M is multiplicative, while it is written additively in the lemma.
Since by (2) we have AnnR(M) = sR, we see that since R/(AnnR(M) + b)
has no nonzero nilpotent elements we have ψ(AnnR(M)) = AnnR/b(M/bM).
Translating into our context this means that sFq[G+] = AnnFq [G+](W/W q),
which is (3).

(4). Let us compute the image and kernel of the natural map from U(K+)
to U(K)/U(K)q. By Proposition 3.5.20 any u ∈ U(K) has the form u = ζε,
where ε ∈ U(K+) and ζ is a 2pth root of unity, hence a qth power. It follows
that the class of u in U(K)/U(K)q is equal to the class of ε, so the map is
surjective. Now let ε ∈ U(K+) be in the kernel, in other words be such that
ε = uq for some u ∈ U(K). Thus ε = ι(u)q = uq, hence ι(u) = u, so that
u ∈ U(K+); hence the kernel is equal to U(K+)q. It follows from this that

U(K)/U(K)q � U(K+)/U(K+)q �W/W q ,

so that E/Eq � W/W q × Z/qZ. Note that all of the above isomorphisms
are canonical, and in particular are isomorphisms of Fq[G+]-modules. Thus
it follows from (3) that

AnnFq [G+](E/Eq) ⊂ AnnFq [G+](W/W q) ⊂ sFq[G+] .

Now note that for any σ ∈ G+ we have sσ = s. It follows that sFq[G+] = Fqs.
Thus, let as ∈ AnnFq [G+](E/Eq) with a ∈ Z. Since π = 1 − ζp ∈ E we have
πas ∈ Eq, hence vp(πas) ≡ 0 (mod q) by definition of E. On the other hand,
for all σ ∈ G we have πσ = uσπ for some unit uσ, hence πs = uπ(p−1)/2 for
some unit u. It follows that vp(pas) = a(p− 1)/2. Since q � (p− 1)/2 we thus
have q | a, hence a = 0, proving (4).

(5). By Proposition 16.4.6 (3) applied to the semisimple ring R = Fq[G+]
and to M = E/Eq, there exists α ∈ M such that AnnR(α) = AnnR(M),
hence AnnR(α) = 0 by (4). This means that the map x �→ x · α from R
to M is an injective R-module homomorphism. However, by (1) we have
|M | = |E/Eq| = q(p−1)/2 = |Fq[G+]| = |R|. It follows that the map is a
bijection, so that R and M are isomorphic R-modules. ��

Definition 16.4.9. (1) To simplify notation we set Rp = Z[ζp, 1/p], so that
E = R∗

p.
(2) Recall that we denote by [α] the class of α modulo qth powers in S. We

define the group of q-primary elements of S by
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Sq = {[α] ∈ S, α ≡ βq (mod q2Rp), β invertible modulo q2Rp} ,

and Eq = {u ∈ E, [u] ∈ Sq}.
Lemma 16.4.10. We have

Eq = {u ∈ E, u ≡ βq (mod q2Rp)} .

Proof. If u belongs to the right-hand side then u ∈ E, u ≡ βq (mod q2Rp),
so βq modulo q2 is equal to u. Since elements of E are invertible in Rp,
it follows that βq modulo q2 is invertible, hence so is β, so that u ∈ Eq.
Conversely, let u ∈ Eq, so that u ∈ E and [u] ∈ Sq. By definition of Sq there
exist α ∈ K∗ and β, γ ∈ Rp such that uαq = βq + q2γ, and β is invertible
modulo q2Rp. Let q be a prime ideal of K different from p = πZK . We thus
have vq(u) = 0, and since β, γ are in Rp and q �= p we have vq(β) � 0 and
vq(γ) � 0. It follows that vq(α) � 0 for all prime ideals q �= p; in other words,
α ∈ Rp. Now modulo q2Rp we have uαq = β

q
. Since β is invertible it follows

that α is also invertible, and u = (βα−1)q. Thus if β0 ∈ Rp is a representative
of βα−1, we have u = β0

q
; in other words, u = βq

0 + q2γ0 for some γ0 ∈ Rp,
proving the reverse inclusion and the lemma. ��

16.4.3 Cyclotomic Units and Thaine’s Theorem

Definition 16.4.11. The group C of p-cyclotomic units of K is the multi-
plicative subgroup of K∗ generated by the roots of unity and the 1 − ζk

p for
k ∈ Z. We define Cq = C ∩ Eq and call the elements of Cq the q-primary
p-cyclotomic units.

Note that the group C ∩ U(K) is the group of cyclotomic units from
Definition 3.5.16. Here we also allow powers of π = 1− ζp.

Lemma 16.4.12. If p and q are distinct odd primes then C = Cq implies
that p < q.

Proof. Let ζ be any primitive pth root of unity, not necessarily equal to ζp.
Then 1+ζq = (1−ζ2q)/(1−ζq) ∈ C, so that 1+ζq ∈ Cq. Furthermore, I claim
that Rp/q2Rp � Z[ζp]/q2Z[ζp]: indeed, let φ be the map sending x ∈ Z[ζp]
to its class in Rp/q2Rp. Its kernel is equal to q2Rp ∩ Z[ζp] = q2Z[ζp], so it
is enough to prove that φ is surjective. So let y/pn ∈ Rp = Z[ζp, 1/p], with
y ∈ Z[ζp]. Since pn and q2 are coprime there exist u and v in Z such that
upn + vq2 = 1. It follows that y/pn = uy + vyq2/pn, and hence the class of
y/pn in Rp/q2Rp is equal to the class of uy ∈ Z[ζp], so it is in the image of
φ, proving my claim.

Since 1+ζq ∈ Cq ⊂ Eq we can write 1+ζq = βq +q2γ with β and γ in Rp,
and thanks to the above isomorphism, changing if necessary β and γ by an
element of q2Rp we may assume that β and γ belong to Z[ζp]. It follows that
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1+ζq ≡ βq (mod q2Z[ζp]). Thus, by the binomial expansion we have (1+ζ)q ≡
1+ ζq ≡ βq (mod qZ[ζp]). Since q is unramified in K it follows from Exercise
20 of Chapter 3 that (1 + ζ)q ≡ βq (mod q2Z[ζp]). Thus (1 + ζ)q ≡ 1 + ζq

(mod q2Z[ζp]), so that F (ζ) ∈ qZ[ζp], where F (X) = ((1+X)q−1−Xq)/(qX),
which is clearly a polynomial with integer coefficients of degree q−2. Denote
by F ∈ Fq[X] the reduction of F modulo q. If q is again a prime ideal above
q then in the finite field Z[ζp]/q we have F (ζ) = 0, where ζ is the image of ζ
in Z[ζp]/q. Since this is true for all the p− 1 roots of unity ζ distinct from 1,
and since these roots of unity are not congruent modulo q since the norm of
their difference is equal to p, it follows that F has at least p−1 distinct roots
in Z[ζp]/q. Since deg(F ) = q− 2 we thus have p− 1 � q− 2, hence p < q. ��

We now state without proof the remarkable theorem of F. Thaine, refer-
ring for the proof to [Boe-Mis] or to the second edition of [Was]. We state
only the special case of the theorem that will be needed.

Theorem 16.4.13 (Thaine). Recall that C is the group of p-cyclotomic
units of K. We have

AnnFq [G+](E/CEq) ⊂ AnnFq [G+](Cl(K+)[q]) .

Note that this theorem is also valid for the cyclotomic units themselves,
with the corresponding modification of E.

The main result of this section, which will be used to prove the fourth
and last theorem of Mihăilescu, is the following.

Theorem 16.4.14. Let p and q be odd primes such that p > q and p �≡ 1
(mod q). Then AnnFq [G+](S+ ∩ Sq) �= 0.

Proof. Set R = Fq[G+], which is semisimple by Lemma 16.4.5. By Lemma
16.4.8 (5), E/Eq is a cyclic R module, hence by Proposition 16.4.6 (5) and (4),
any submodule M of E/Eq is also cyclic, hence isomorphic to R/ AnnR(M).
Since R � Fq[X]/((X(p−1)/2 − 1)Fq[X]), any ideal of R is isomorphic to
f(X)Fq[X]/((X(p−1)/2−1)Fq[X]) for some f(X) ∈ Fq[X] dividing X(p−1)/2−
1, which we may assume to be monic, so in particular M � R/ AnnR(M) �
Fq[X]/(f(X)Fq[X]). In particular, dimFq

(M) = deg(f).
Now recall from Lemma 16.2.6 (3) that we have an exact sequence of

R-modules 0 −→ E/Eq −→ S+ −→ Cl(K)[q]+ −→ 0. By definition we have
Eq = {u ∈ E, [u] ∈ Sq}, so under restriction, this exact sequence leads
to an exact sequence 0 −→ Eq/Eq −→ S+ ∩ Sq −→ Cl(K)[q]+, where the
last map is not necessarily surjective. Since R is semisimple, by Proposition
16.4.6 (2) every exact sequence is split, so in particular S+∩Sq is isomorphic
to a submodule of Eq/Eq ⊕ Cl(K)[q]+, which we will write as S+ ∩ Sq ↪→
Eq/Eq ⊕ Cl(K)[q]+.

Recall also that C is the group of p-cyclotomic units and that Cq = C∩Eq.
Consider the sequence of inclusions 0 ⊂ CqE

q/Eq ⊂ CEq/Eq ⊂ E/Eq,
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and call E1, E2, and E3 the successive quotients, so that E1 = CqE
q/Eq,

E2 = CEq/CqE
q, and E3 = E/CEq. Since R is semisimple, by Proposition

16.4.6 (1) and (2) every R-module is semisimple and every exact sequence
is split. In particular, if 0 ⊂ A ⊂ B ⊂ C is a sequence of inclusions then
C � B ⊕ (C/B) � A ⊕ (B/A) ⊕ (C/B). Since by Lemma 16.4.8 E/Eq is a
free R-module of rank 1 we thus have an isomorphism

E1 ⊕ E2 ⊕ E3 � R � Fq[X]/((X(p−1)/2 − 1)Fq[X]) .

It follows that the Ei are isomorphic to submodules of R which as before are
isomorphic to Fq[X]/(ei(X)Fq[X]) for some monic factors ei(X) of X(p−1)/2−
1 such that dimFq

(Ei) = deg(ei). By the above isomorphism we have e1e2e3 =
X(p−1)/2 − 1.

By definition of S we have Eq ⊂ Eq, hence CqE
q ⊂ Eq. We thus have an

exact sequence

1 −→ CqE
q/Eq −→ Eq/Eq −→ Eq/CqE

q −→ 1 .

Since exact sequences are split it follows that Eq/Eq � E1 ⊕ Eq/CqE
q. On

the other hand, it is clear that the kernel of the natural map from Eq to
E/CEq is equal to Eq ∩CqE

q. Indeed, one inclusion is trivial. Conversely, if
x ∈ Eq has the form x = ceq with c ∈ C and e ∈ E, then since eq ∈ Eq we
have c ∈ Eq ∩ C = Cq, hence x ∈ CqE

q as claimed. It follows that Eq/CqE
q

is isomorphic to a subgroup of E3 = E/CEq. Putting everything together we
obtain

S+ ∩ Sq ↪→ Eq/Eq ⊕ Cl(K)[q]+

� E1 ⊕ Eq/CqE
q ⊕ Cl(K)[q]+ ↪→ E1 ⊕ E3 ⊕ Cl(K)[q]+ .

Now by Thaine’s theorem, any annihilator of E3 = E/CEq also annihilates
Cl(K+)[q], which is equal to Cl(K)[q]+ by Lemma 16.4.7. Since ei annihilates
Ei by definition, it follows that e1e3 annihilates E1⊕E3, and Thaine’s theo-
rem implies that e3 annihilates Cl(K)[q]+, so e1e3 annihilates S+ ∩Sq. Thus
assume now by contradiction that AnnR(S+∩Sq) = 0. We thus have e1e3 = 0
in Fq[X]/((X(p−1)/2− 1)Fq[X]), in other words X(p−1)/2− 1 = e1e2e3 | e1e3,
so that e2 = 1, hence E2 = 0. By definition this means that CqE

q = CEq. We
have already noted that Eq ⊂ Eq, hence Cq ∩ Eq = C ∩ Eq. I claim that we
have C = Cq. Indeed, let c ∈ C. Since c = c · 1 ∈ CEq = CqE

q we can write
c = cqe

q with cq ∈ Cq and e ∈ E. Thus eq = c/cq ∈ C ∩Eq = Cq ∩Eq ⊂ Cq,
so that c = cqe

q ∈ Cq as claimed. Applying Lemma 16.4.12 we deduce that
p < q, which contradicts the assumption of the proposition. ��

16.4.4 Preliminaries on Power Series

Recall that if R is a commutative ring we denote by R[[T ]] the ring of formal
power series with coefficients in R.
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Lemma 16.4.15. Let R be a commutative ring of characteristic 0, let f(T ) =∑
k�0(ak/k!)T k and g(T ) =

∑
k�0(bk/k!)T k, and let q ∈ R. Assume that

there exist a and b in R such that ak ≡ ak (mod qR) and bk ≡ bk (mod qR).
Then we have fg(T ) =

∑
k�0(ck/k!)T k with ck ≡ (a + b)k (mod qR).

Proof. Immediate and left to the reader. ��

As always, in the sequel we assume that p and q are distinct odd primes.

Definition 16.4.16. (1) If F (T ) =
∑

k�0 akT k ∈ K[[T ]] is a formal power
series in T with coefficients in K, for any σ ∈ G we let F σ(T ) =∑

k�0 σ(ak)T k.
(2) If F (T ) =

∑
k�0 akT k ∈ K[[T ]] is a formal power series in T , for any

integer k � 0 we denote by Fk(T ) the sum of the terms of degree less
than or equal to k, in other words Fk(T ) =

∑
0�j�k ajT

j.
(3) Let θ =

∑
σ∈G nσσ ∈ Z[G]. We define Fθ(T ) ∈ K[[T ]] to be the formal

power series defined by the product

Fθ(T ) =
∏
σ∈G

(1− σ(ζp)T )nσ /q ,

where the power is obtained using the generalized binomial expansion.

Note that since |σ(ζp)| = 1, if z ∈ C is such that |z| < 1 then the power
series obtained by replacing T by z in Fθ(T ) converges absolutely, and its
sum will evidently be denoted by Fθ(z).

Definition 16.4.17. Let

F (T ) =
∑
k�0

akT k ∈ C[[T ]] and G(T ) =
∑
k�0

bkT k ∈ R[[T ]] .

We say that F is dominated by G if for all k we have |ak| � bk.

Proposition 16.4.18. For simplicity, write F instead of Fθ.

(1) The coefficients of F (T ) are integral outside q, in other words have the
form a/qk for some a ∈ ZK and k ∈ Z�0.

(2) More precisely, if θ =
∑

σ∈G nσσ then F (T ) =
∑

k�0(ak/(qkk!))T k,
where ak ∈ ZK satisfies

ak ≡
(
−
∑
σ∈G

nσσ(ζp)

)k

(mod qZK) .

(3) If τ ∈ G and |t| < 1 the series F τ (t) converges. If, in addition, 0 � nσ � q
for all σ ∈ G, then if we set m = (

∑
σ∈G nσ)/q we have

|F τ (t)− F τ
k (t)| �

(
m + k

k + 1

) |t|k+1

(1− |t|)m+k+1
.
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Proof. We have

(1− σ(ζp)T )nσ /q =
∑
k�0

(
nσ/q

k

)
(−σ(ζp))kT k ,

hence (1) follows from Lemma 4.2.8. More precisely, we have(
n/q

k

)
=

n(n− q) · · · (n− q(k − 1))
qkk!

,

so (1 − qσ(ζp)T )n/q =
∑

k�0 bk/k! with bk ≡
∑

k�0(−nσ(ζp))k (mod qZK).
It thus follows from Lemma 16.4.15 that

F (qT ) =
∏
σ∈G

(1− σ(ζp)T )nσ /q =
∑
k�0

(ak/k!)T k ,

where

ak ≡
(∑

σ∈G

(−nσσ(ζp))

)k

(mod qZK) ,

proving (2). For (3) we note that when 0 � n � q we have∣∣∣∣(n/q

k

)∣∣∣∣ =
∣∣∣∣n(n− q) · · · (n− q(k − 1))

k!

∣∣∣∣
=

n(q − n)(2q − n) · · · (q(k − 1)− n)
k!

� n(n + q) · · · (n + q(k − 1))
k!

=
(−n/q

k

)
.

It follows that the series (1−σ(ζp)T )n/q is dominated by the series (1−T )−n/q,
so that F (T ) is dominated by

∏
σ∈G(1−T )−nσ /q = (1−T )−m, and the same

is evidently true for F τ (T ). It follows that for |t| < 1 we have

|F τ (t)− F τ
k (t)| �

∣∣∣∣∣∣(1− |t|)−m −
∑

0�j�k

(−m

j

)
(−|t|)j

∣∣∣∣∣∣ = |S(|t|)− Sk(|t|)| ,

say, where we have set S(T ) = (1 − T )−m. Now by the Taylor–Lagrange
theorem there exists c ∈ [0, |t|] such that S(|t|) − Sk(|t|) = (|t|k+1/(k +
1)!)S(k+1)(c). Since all the derivatives of S are evidently positive on [0, 1[,
they are increasing, so that

S(k+1)(c) � S(k+1)(|t|) = m(m + 1) · · · (m + k)(1− |t|)−m−k−1

= (m + k)!/((m− 1)!(1− |t|)m+k+1) ,

and (3) follows. ��
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Proposition 16.4.19. Keep the same assumptions and notation, but as-
sume in addition that θ ∈ (1 + ι)Z[G]. Then

(1) Fθ = F ∈ K+[[T ]].
(2) Assume that t ∈ Q satisfies |t| < 1 and is such that there exists α ∈ K

such that (1 − tζp)θ = αq. Then α ∈ K+, and for all σ ∈ G we have
Fσ(t) = σ(α).

Proof. Since θ =
∑

σ∈G nσσ ∈ (1 + ι)Z[G] we have ιθ = θ hence nισ = nσ

for all σ ∈ G. Thus if as usual P is a set of representatives of G modulo 〈ι〉 we
can write F = F1F1, where F1 is the same product as F but only over σ ∈ P ,
so the coefficients of F are real, hence in K+, proving (1). For (2), the same
reasoning shows that (1 − tζp)θ ∈ R. It follows that αq = αq = β = β = αq,
hence α = α since qth roots are unique in K. It follows that α ∈ K+.
Since G is abelian, it follows that σ(α) ∈ K+ for all σ ∈ G. In addition
σ(α)q = (1− tσ(ζp))θ = F σ(t)q. However, since we have seen that Fσ(t) ∈ R,
it follows that Fσ(t)/σ(α) is a real qth root of unity in C. Since q is odd, it
must be equal to 1, proving the proposition. ��

Note that although not difficult, this last argument is one of the most
subtle in the proof, and was in fact initially overlooked.

16.4.5 Proof of Mihăilescu’s Fourth Theorem

In the above subsections we have studied properties of cyclotomic units, the
plus part of cyclotomic fields, and power series, without any reference to
Catalan’s equation. We now begin the proof proper. We keep all of the above
notation, in particular R = Fq[G+].

Theorem 16.4.20. Let p and q be distinct odd primes such that min(p, q) �
11, and let x and y be nonzero integers such that xp−yq = 1. The submodule
of S+ generated by the class [x − ζp]1+ι is free; in other words, AnnR([x −
ζp]1+ι) = 0.

Proof. Recall that [x − ζp] ∈ S, so that we indeed have [x − ζp]1+ι ∈
S+. Thus let ψ =

∑
σ∈G+ νσσ ∈ AnnR([x − ζp]1+ι) with νσ ∈ Fq, so that

[x− ζp](1+ι)ψ = 1. Let P be a system of representatives in G of G+ = G/〈ι〉,
and by abuse of notation if σ ∈ G+ denote again by σ the element of P
whose class is σ. If we set ψ =

∑
σ∈P νσσ we thus have [x− ζp](1+ι)ψ = 1. By

definition of S it follows that for any θ ∈ Z[G] whose reduction modulo q is
equal to ±(1 + ι)ψ we have (x− ζp)θ ∈ K∗q. If for σ ∈ P we set νισ = νσ we
have (1 + ι)ψ =

∑
σ∈G νσσ ∈ Fq[G]. Let θ1 =

∑
σ∈G nσσ ∈ Z[G] be the lift

of (1+ ι)ψ such that 0 � nσ < q, so that ‖θ1‖ < (p− 1)q. If for any integer n
such that 0 � n < q we set c(n) = q−n if n �= 0 and c(0) = 0, then we again
have 0 � c(n) < q, and evidently n + c(n) � q. Thus θ2 =

∑
σ∈G c(nσ)σ is a

lift of −(1 + ι)ψ, 0 � c(nσ) < q, and ‖θ2‖+ ‖θ1‖ � q(p − 1). It follows that
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for i = 1 or i = 2 we have ‖θi‖ � q(p− 1)/2, and we let θ be equal to the θi

satisfying this inequality.
Let α ∈ K∗ be such that (x− ζp)θ = αq. By Lemma 16.1.1 we know that

β = (x − ζp)/(1 − ζp) ∈ ZK , that vp(β) = 0, and that the ideals generated
by the conjugates of β are pairwise coprime. It follows that for all σ ∈ G we
have vp(x− σ(ζp)) = 1. Thus

‖θ‖ =
∑
σ∈G

nσvp(x− σ(ζp)) = vp

(∏
σ∈G

(x− σ(ζp))nσ

)
= vp

(
(x− ζp)θ

)
= qvp(α) ≡ 0 (mod q) .

Since 0 � ‖θ‖ � q(p − 1)/2 it follows that there exists m ∈ [0, (p − 1)/2]
such that ‖θ‖ = mq. In addition, since nσ and nισ both reduce to νσ modulo
q and are both in the interval [0, q − 1], they are in fact equal. It follows
that θ = (1 + ι)φ, where φ =

∑
σ∈P nσσ is a lift of ψ. In particular, for all

σ ∈ G, (x − σ(ζp))θ = ((x − σ(ζp))(z − ι(σ(ζp))))φ is a real number. Since
qth roots are unique in K, when they exist, it follows that all the conjugates
of α are real. Since for x ∈ Q we have xθ = x‖θ‖ it follows that for all
σ ∈ G we have (1 − σ(ζp)/x)θ = (σ(α)/xm)q. Since 1/x ∈ Q and |1/x| < 1,
we may apply Proposition 16.4.19 and deduce that for all σ ∈ G we have
σ(α) = xmF σ(1/x), where F = Fθ. Set

Iσ = qm+vq (m!)|σ(α)− xmF σ
m(1/x)| .

We are now going to use a Runge-type argument and show that |Iσ| < 1 and
that

∏
σ∈G Iσ ∈ Z. First, by Proposition 16.4.18 (3) we have

Iσ = qm+vq (m!)|x|m|F σ(1/x)− F σ
m(1/x)|

� qm+vq (m!)

(
2m

m + 1

)
|x|−1(1− 1/|x|)−(2m+1)

� qm+m/(q−1)+m(log(4)/ log(q))|x|−1(1− 1/|x|)−(2m+1) ,

where we have used vq(m!) � m/(q−1) and
(
2m
k

)
� 22m. Since m � (p−1)/2

and by Proposition 6.11.15 we have |x| � qp−1, it follows that

Iσ � q((p−1)/2)(1+1/(q−1)+log(4)/ log(q))|x|−1(1− 1/|x|)−p

� q((p−1)/2)(−1+1/(q−1)+log(4)/ log(q))(1− 1/qp−1)−p .

Now Iσ < 1 is equivalent to log(Iσ)/ log(q) < 0, and we have

log(Iσ)
log(q)

=
p− 1

2

(
−1 +

1
q − 1

+
log(4)
log(q)

)
− p

log(q)
log(1− 1/qp−1) .

However, by the mean value theorem there exists c ∈ [0, 1] such that
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− log(1−1/qp−1) = log(qp−1)−log(qp−1−1) =
1

qp−1 − c
� 1

qp−1 − 1
� 1

q2 − 1

since p � 3. Since we have assumed that q � 7 we immediately obtain

log(Iσ)
log(q)

� p− 1
2

(
−1 +

1
6

+
log(4)
log(7)

)
+

p

48 log(7)
� −0.0497p + 0.061 ,

and this is strictly negative as soon as p � 2, proving that Iσ < 1.
Let us now look at the arithmetic properties of Iσ. By Proposition 16.4.18

we have F σ
m(T ) =

∑
0�k�m ak/(qkk!)T k with ak ∈ ZK . It follows that

qm+vq (m!)ak/(qkk!) ∈ ZK , hence that qm+vq (m!)xmF σ
m(1/x) ∈ ZK (note that

there are no convergence problems here since we deal with polynomials). In
addition, since (x−ζp)θ = αq and all the coefficients of θ are nonnegative, αq

is an algebraic integer, hence α also, so that α ∈ ZK = Z[ζp]. It follows that
γ = qm+vq (m!)(α − xmFm(1/x)) ∈ ZK , hence that NK/Q(γ) ∈ Z. However,
| NK/Q(γ)| =

∏
σ∈G Iσ < 1 by what we have proved above. It follows that

NK/Q(γ) = 0, hence that γ = 0, in other words that

qm+vq (m!)α =
∑

0�k�m

qm+vq (m!) ak

qkk!
xm−k .

Now all the terms occurring in the sum are divisible by q except the term
with k = m. Thus 0 ≡ (qvq (m!)/m!)am (mod qZK), so am ≡ 0 (mod qZK).
On the other hand, by Proposition 16.4.18 we have am ≡ sm (mod qZK),
where s = −∑

σ∈G nσσ(ζp). Thus sm ≡ 0 (mod qZK), so for every prime
ideal q of K above q we have sm ∈ q, hence s ∈ q, and since q is unramified,
by the Chinese remainder theorem we deduce that s ≡ 0 (mod qZK), in other
words that

∑
σ∈G(nσ/q)σ(ζp) ∈ ZK . Since the σ(ζp) are up to permutation

the ζj
p for 1 � j � p−1, which form a Z-basis of ZK , it follows that nσ/q ∈ Z

for all σ, and since 0 � nσ < q we deduce that nσ = 0 for all σ. Thus θ = 0,
hence ψ = 0 and ψ = 0, as was to be proved. ��

Mihăilescu’s fourth theorem is now immediate.

Theorem 16.4.21. Let p and q be odd primes such that min(p, q) � 11, and
let x and y be nonzero integers such that xp − yq = 1. Then p ≡ 1 (mod q)
or q ≡ 1 (mod p).

Proof. By Theorem 16.4.20, AnnR([x− ζp]1+ι) = 0. By Mihăilescu’s first
Theorem 16.1.3 we know that q2 | x, and as usual (−ζp) is a qth power since
q and 2p are coprime. It follows that x−ζp ≡ βq (mod q2Rp), hence [x−ζp] ∈
Sq, so that [x− ζp]1+ι ∈ Sq ∩S+. Now by symmetry assume for instance that
p > q, so that of course q �≡ 1 (mod p). If we assume by contradiction that
p �≡ 1 (mod q) then Theorem 16.4.14 tells us that AnnFq [G+](S+ ∩ Sq) �= 0,
and in particular AnnR([x− ζp]1+ι) �= 0, a contradiction. ��
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16.4.6 Conclusion: Proof of Catalan’s Conjecture

We now summarize what we have done in Chapter 6 and in the present chap-
ter, and finish the proof of Catalan’s conjecture. Let x and y be nonzero
integers and m, n � 2 such that xm − yn = 1. Lebesgue’s Proposition 6.7.12
tells us that n = 2 and m prime is impossible, from which we deduce that
the case n even is impossible. Similarly, Ko Chao’s Theorem 6.11.8 tells us
that m = 2 and n prime is impossible apart from 32 − 23 = 1, so the case
m even is also solved. Thus we may assume that m and n are odd, and
it is sufficient to prove impossibility for m = p and n = q odd primes. In
particular, the equation becomes symmetrical since we can change (p, q, x, y)
into (q, p,−y,−x). By Mihăilescu’s second theorem (more precisely Corollary
16.1.12) we may assume that min(p, q) � 11 (in fact 43, but 11 is sufficient).
Thus, by Mihăilescu’s fourth Theorem 16.4.21, exchanging p and q if neces-
sary thanks to the above symmetry, we may assume that p ≡ 1 (mod q). By
the binomial theorem we have

pq = (1+(p−1))q = 1+q(p−1)+
∑

2�i�q−1

(
q

i

)
(p−1)i+(p−1)q ≡ 1 (mod q2) .

On the other hand, by Mihăilescu’s first Theorem 16.1.3 we have pq−1 ≡
1 (mod q2), hence pq ≡ p (mod q2), so that p ≡ 1 (mod q2). Finally, by
Mihăilescu’s third Theorem 16.3.7, we have p < 4q2. It follows that p =
1 + kq2 with k = 1, 2, or 3. Clearly k = 1 and k = 3 are impossible since
otherwise p would be even, and k = 2 is impossible since q2 ≡ 1 (mod 3)
hence 1 + 2q2 ≡ 0 (mod 3), which is again impossible, finishing the proof of
Catalan’s conjecture. ��
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[Cas-Frö] J. Cassels and A. Fröhlich, Algebraic Number Theory , Academic
Press, London, New York (1967).

[Cat] E. Catalan, Note extraite d’une lettre adressée à l’éditeur , J. reine
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rithmes de nombres algébriques, Canadian J. Math. 45 (1993), 176-
224.

[Wald2] M. Waldschmidt, Diophantine Approximation on Linear Algebraic
Groups, Grundlehren der math. Wiss. 326 (2000), Springer-Verlag.

[Wals] P. G. Walsh, A quantitative version of Runge’s theorem on Diophan-
tine equations, Acta Arith. 62 (1992), 157–172.

[Was] L. Washington, Introduction to Cyclotomic Fields (2nd ed.), Grad-
uate Texts in Math. 83, Springer-Verlag (1997).

[Watk] M. Watkins, Real zeros of real odd Dirichlet L-functions, Math.
Comp. 73 (2004), 415–423.

[Wats] G. Watson, A Treatise on the Theory of Bessel Functions (2nd ed.),
Cambridge Univ. Press (1966).

[Wet] J. Wetherell, Bounding the Number of Rational Points on Certain
Curves of High Rank , PhD thesis, Univ. California Berkeley (1997).

[Wil] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Annals
of Math. 141 (1995), 443–551.

[Yam] Y. Yamamoto, Real quadratic number fields with large fundamental
units, Osaka J. Math. 8 (1971), 261–270.

[Zag] D. Zagier, Modular parametrizations of elliptic curves, Canad. Math.
Bull. 28 (1985), 372–384.



Index of Notation

Symbols

‖ ‖ an absolute value on a field, or a norm, 183
| | usually a p-adic absolute value, 183
1 the constant arithmetic function 1, 152

A

]a, b[ open interval with endpoints a and b, ix, ix
(a, b)p local Hilbert symbol at p �∞, 295
[a, b[, ]a, b] half-open intervals with endpoints a and b, ix, ix
a ∗ b arithmetic convolution of a and b, 152
AGM arithmetic–geometric mean, 486
Ap(t) set linked to y2 = xp + t, 411
Arg(z) principal determination of the argument of z, 169

B

B(a, b) beta function, 93(
α
k

)
generalized binomial coefficient, ix, ix

Bk(χ) χ-Bernoulli number, 43
Bk,p p-adic Bernoulli numbers, 308
Bk(x), Bk Bernoulli polynomial, number, 3

C

�x� ceiling of x, ix, ix
c� Fourier coefficient of a newform, 498
X(E) Tate–Shafarevich group of E, 479, 522, 555
χ(n) often a Dirichlet character at n, 156
χD(n) Kronecker–Legendre symbol

(
D
n

)
, 317

χ− χ−(n) = χ(−n), 43
Cl(K) class group of K, 131
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ClT (K) T -class group of K, 550
Cn cyclic group of order n, 114
Cp the completion of the algebraic closure of Qp, 260
cp(E) Tamagawa number, 522
〈g〉 cyclic group generated by g, 145

D

d(n) number of divisors of n, 157
δ(n) Kronecker’s δ function, 156
δk,1 1 if k = 1, 0 otherwise, 4
〈x〉 x/ωv(x), diamond of x, 229
disc(E) discriminant of elliptic curve E, 466
d(L/K) relative discriminant of L/K, 130
d(Λ,y) distance from y to the nearest vector of Λ distinct

from y, 58
d | n d is a positive divisor of n, ix, ix, 152
d‖n d | n and gcd(d, n/d) = 1, ix, ix, 155
Dπ,f (X) Dwork power series generalized to pf , 256
Dπ(X) Dwork power series, 255
D(P/p) decomposition group of P/p, 134

E

E0 noncompact component of E(R), 485
E1(x) exponential integral, 574
e1, e2, e3 roots of 4X3 − g2X − g3 = 0, 484
Egg the egg, compact component of E(R), 485
e(P/p) ramification index of P/p, 132
ε((a1, . . . , an)) ε-invariant of a quadratic form, 300
ε(E) sign of the functional equation, root number, 521
Ep(X) Artin–Hasse exponential, 217
E ∼p f E arises modulo p from f , 498
η(τ) Dedekind’s eta function, 215
expp(x) p-adic exponential, 211

F

E, F general finite fields, sometimes their algebraic clo-
sure, x, x

f(χ), f conductor of Dirichlet character χ, 25
F(f), f̂ Fourier transform of f , 104, 107
	x
 floor of x, ix, ix
Fn usually the Fibonacci sequence, 421
f(P/p) residual degree of P/p, 132
{x} x− 	x
, fractional part of x, ix, ix
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G

G usually a group, also Catalan’s constant, 127
g sometimes the genus of a curve, 90, 441
g sometimes the number of prime ideals above p, 134
G0 group of points reducing to a nonsingular point, 507
G1 group of points reducing to O, 508
g2(Λ) g2-invariant of lattice Λ, 483
g3(Λ) g3-invariant of lattice Λ, 483
γ usually Euler’s constant, 33
Γp(s) p-adic gamma function at s, 368
Γr(s, x) higher incomplete gamma function, 574
γ(s) π−s/2Γ(s/2), 172
Γ(s, x) incomplete gamma function, 573
Γ(x) gamma function at x, 78
γp(χ), γp p-adic Euler constants, 308
gcd(a, b), GCD greatest common dnivisor, viii, viii
gcd(a, b∞) limit of gcd(a, bn), ix, ix
GN group of points of level � N , 508
G(τ, s) nonholomorphic Eisenstein series, 211

H

H⊥ orthogonal of H in V , 286
h(D) class number of quadratic order of discriminant D,

318
h(E) height of the elliptic curve E, 603
Hk

∑
1�j�k 1/j, harmonic sum, 110

h(K), h class number of K, 131
Hn

∑
1�k�n 1/k, 85

Hn harmonic sum
∑

1�j�n 1/j, 128
HNF Hermite normal form, 16, 340
h(P ) näıve height of a point P ∈ E(Q), 530
ĥ(P ) canonical height of P ∈ E(Q), 530
hp class number of Q(ζp), 432
hpk class number of Q(ζpk ), 148
h−

pk minus class number of pkth cyclotomic field, 149
h+

pk class number of maximal totally real subfield, 148
H(p, t), H(t) conditions for y2 = xp + t, 411

I

�(s) imaginary part of s, ix, ix
I(P/p) inertia group of P/p, 134
Is(m), Is Stickelberger ideal, 160
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J(χ1, χ2) Jacobi sum associated with two characters, 82
j(E) j-invariant of elliptic curve E, 467
Jk(χ1, . . . , χk) Jacobi sum, 79

K

K usually a number field, x, x
K a general p-adic field, x, x, 235
Kn(F ) higher K-groups, 244
Kp completion of K at the prime ideal p, x, x, 195
K(T, 2) same as ST (K), 551

L
L usually a number field, x, x
Λ(χ, s) completed L-function for χ, 172
Λ(E, s) completed L-function of an elliptic curve, 521
Λ(n) von Mangoldt’s function, 159
λ(N) Carmichael’s function of N , 93
L(a, s) Dirichlet series associated with a, 151
L a general p-adic field, x, x
L(χ, s) L-series of character χ, 162
lcm(a, b), LCM least common multiple, viii, viii
L(ED, s) L-function of elliptic curve E twisted by D, 590(

a
p

)
,
(

m
n

)
,
(

a
b

)
Legendre, Jacobi, or Kronecker symbol, 33(

a
b

)
m

mth power reciprocity symbol, 166
L(f) Laplace transform of f , 108
LF (E) space of F -linear maps from E to E, 118
LogΓp(x) Diamond’s log gamma function for x ∈ Zp, 330
LogΓp(χ, x) Morita’s log gamma function for x ∈ Zp, 337
LogΓ(s) complex log gamma function at s, 81
LH fixed field of L by H, 104
Li2 dilogarithm function, 278, 404
Lik polylogarithm function, 278
Li(x) logarithm integral, 257
[L : K] the degree of L over K, or the index of K in L, 107
Ln usually the Lucas sequence, 421
logp(x) p-adic logarithm, 211
Lp(χ, s) p-adic L-function of character χ, 301

M

M(f) Mellin transform of f , 107
μ(n) Möbius function of n, 153
μn group of roots of unity of order n, 18
μn = μn(K) subgroup of nth roots of unity in K, 112
μp group of (Np− 1)st roots of unity in Kp, 228

J
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N

	x� nearest integer to x, ix, ix
Np the absolute norm of a prime ideal p, 191[
n
x

]
1 · 2 · · ·n/(x(x + 1) · · · (x + n)), 281

O

O identity element of an elliptic curve, 473
Ω(n) number of prime divisors of n with multiplicity, 156
ω Teichmüller character, 391
ω(n) number of distinct prime divisors of n, 156
ωP(x) (q − 1)st root of 1 congruent to x mod P, 152
ωv(a) extension of Teichmüller character to Q∗

p, 281
ω(x) Teichmüller character of x, 227, 228
〈x〉 x/ω(x) ∈ U1, 229
ordP order of the point P , 443

P

Φf(x, y) (f(x)− f(y))/(x− y), 277
φ(n) Euler’s φ function, 141
Π a uniformizer of a prime ideal in an extension, 432
π either a uniformizer of a prime ideal, or 3.14. . . , 432
PID principal ideal domain, 106, 129∏(p)

product over integers prime to p, 302

ψb x �→ ζ
TrFq /Fp (bx)
p , 75

ψp(x) LogΓ′
p(x), Diamond’s p-adic ψ function, 331

ψ(x) logarithmic derivative of Γ(x), 76
℘(z) Weierstrass ℘ function, 482

Q

Qp completion of Q at p, the field of p-adic numbers,
195

R

r1 number of real embeddings of a number field, 107
r2 half the number of nonreal embeddings of a number

field, 107
R(A,B) resultant of polynomials A and B, 143
rad(N) radical of the integer or polynomial N , 483
R(E) regulator of the elliptic curve E, 522, 601
�(s) real part of s, ix, ix
rk(n) number of representations of n as a sum of k squares,

317
rQ(n) number of representations of n by Q, 215
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S

S1(X), S1(Zp) strictly differentiable functions, 277
S2(E) 2-Selmer group of E, 555
S(a, b; p) Kloosterman sum, 100
s\p (s− a0(s))/p, essentially 	s/p
, 365
σ(n) sum of divisors of n, 157
σk(n) sum of kth powers of divisors of n, 157, 317
s(N) sometimes the squarefree part of N , 541
sp(n), s(n) sum of the digits of n in base p, 155, 207
ST (K) T -Selmer group of number field K, 551∑(p)

sum over integers prime to p, 302

T

τ often an element of the upper half-plane H, 586
τ(χ), τ(χ, a) Gauss sum for multiplicative character χ, 31
τ(χ, ψ) Gauss sum with additive character ψ, 75
τ(n) Ramanujan τ function, 159
τq(r) Gauss sum associated with a Dwork character, 386
θ(χ, τ) theta function of character χ, 170
t(n) product of factorials of digits of n in base p, 155

U

U0 the group of p-adic units, 226
U1 group of p-adic units congruent to 1 mod p, 228
Ui group of p-adic units congruent to 1 mod pi, 228
U(K) unit group of K, 131
UT (K) T -unit group of K, 550
〈u〉 distance from u to the nearest integer, 58

W

W (χ) root number of modulus 1, 49
WQ Atkin–Lehner operator, 596

Z

Z�0 nonnegative integers, ix, ix
ζ usually a primitive pth root of unity, 432
ζC(T ) zeta function of a curve or variety C, 91
ζK(s) Dedekind zeta function of a number field, 216
ζp(s, x) p-adic Hurwitz zeta function, 283
ζQ(s) Epstein zeta function for the quadratic form Q, 215
ζ(s) Riemann zeta function, 72, 153
ζ(s, z) Hurwitz zeta function, 71, 168, 190
Z>0 strictly positive integers, ix, ix
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ZK , ZL ring of algebraic integers of K, L, x, x, 128
Z�0 negative or zero integers, ix, ix
Z<0 strictly negative integers, ix, ix
ζn a primitive nth root of unity, 17
Zp, Zp the ring of p-adic or p-adic integers, 195
z(p) 	e(p/p)/(p− 1)
+ 1, 229
ζπ pth root of 1 congruent to 1 + π mod p2, 256
ζp(s) Kubota–Leopoldt p-adic zeta function, 301
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Abel, N., 30, 200, 251, 256
Abouzaid, M., 417
Adams, J., 67, 325
Alford, R., 94
Almkvist, G., 69
Alpern, D., 384
Amice, Y., 276
Apéry, R., 99, 141
Apostol, T., 94
Arnold, V., 121
Artin, E., 70, 115, 167, 217, 219
Atkin, O., 565, 596, 613
Ax, J., 73

B

Baker, A., viii, viii, 2, 411, 414,
424, 424, 517, 519, 600, 603

Balasubramanian, R., 4
Balog, A., 133
Barnes, E., 135
Batut, C., 11, 99
Beck, M., 380
Beilinson, A., 245
Belabas, K., x, x
Belyi, G., 478
Bender, C., 99
Bennett, M., x, x, 339, 416, 423,

490, 523
Bernardi, D., x, x

Bernoulli, J., 3, 264
Bessel, F., 111
Beukers, F., 275, 400, 463
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Binet, J., 125
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Blichfeldt, H., 63
Bloch, S., 245
Boéchat, J., viii, viii, 442, 529
Borel, A., 244
Borevich, Z., x, x
Bourbaki, N., 21
Brauer, R., 242
Bremner, A., 410, 462, 608, 614
Breuil, C., 2, 242, 498
Brindza, B., 437
Bruin, N., 456, 486, 489
Brumer, A., 501
Buchmann, J., 357
Bugeaud, Y., viii, viii, 411, 424,
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Bump, D., 262

C

Cantor, D., 447
Cardano, G., 561
Carlitz, L., 326
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Carmichael, R., 93
Cassels, I., x, x, 2, 283, 311, 330,

359, 443, 465, 609, 614
Catalan, E., 2, 127, 428, 442
Cauchy, A.-L., 188, 269, 440
Čebotarev, N., 325, 514
Čebyshev, P., 276
Chabauty, C., 452, 489
Chein, E., 445
Chen, I., 490
Chevalley, C., 72
Chowla, S., 223
Clausen, T., 63, 325
Coates, J., 245, 522
Cohen, H., 41, 99, 140, 195, 198
Cohn, J., 410, 424
Coleman, R., 452
Colliot-Thélène, J.-L., 327
Colmez, P., 275, 276, 301, 346
Conrad, B., 2, 242, 259, 498
Conrey, B., 137, 239
Conway, J., 51
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Dénes, P., 506
Darmon, H., 133, 465, 482, 490,

504, 506, 509
Davenport, H., 82, 173, 174, 182,

311, 394, 424, 427, 493
David, S., 517, 603
Dedekind, R., 117, 127, 131, 215,

216
Delaunay, C., x, x, 584, 598
Deligne, P., 4, 11, 92, 160, 240,

335, 496, 498
Delone, B., 386
Dem′yanenko, V., 376, 381, 408,

450
Deshouillers, J.-M., 4
Deuring, M., 497, 588
Diamond, F., 2, 242, 498, 501
Diamond, J., 281, 330

Dirac, P., 22, 178
Dirichlet, P.-G. Lejeune, 1, 138,

237
Dress, F., 4
Dupuy, B., 532
Duquesne, S., viii, viii, x, x, 441,

459
Dwork, B., 217, 240, 255, 375, 388

E

Edwards, J., 463, 480
Eichler, M., 198
Eisenstein, G., 159, 170, 193, 201,

211, 264, 434
Elkies, N., 55, 276, 378, 385, 482,

518, 565
Ellenberg, J., 424, 490
Epstein, P., 210, 215
Erdős, P., 246
Euler, L., 6, 19, 21, 77, 141, 154,

267, 338, 387
Evertse, J., 437

F

Faltings, G., vii, vii, 2, 92, 368,
449, 482, 498, 518, 521

Fel′dman, N., 411
Fermat, P., 55, 314, 338, 415, 424,

427, 482, 503, 517, 518
Ferrero, B., 389
Fibonacci, L., 421
Fisher, T., 369, 557
Flynn, V., 409, 449, 453, 456, 460
Fourier, J., 45, 104, 148, 269
Frey, G., 2, 495, 503
Fricke, R., 587
Friedman, E., 275, 287, 395
Frobenius, G., 69, 180, 498
Fubini, G., 28
Furtwängler, P., 434
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Galois, E., 101
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Hall, P., 493
Hanke, J., 313
Hanrot, G., viii, viii, 411, 413, 417,

436
Hardy, G. H., 4
Hasse, H., 6, 82, 91, 98, 173, 174,

182, 217, 305, 318, 326, 394, 494
Hayashi, Y., 591
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Houriet, J., 312, 330, 331
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Symbols

290-theorem, 313

A

abc conjecture, 482
Abel–Plana formula, 30
Abelian extension, 167
abelian group
– finite, 14
– finitely generated, 11
abscissa
– of absolute convergence, 160
– of convergence, 162, 259
absolute norm, 109
absolute trace, 109
absolute value, 183
– Archimedean, 184
– equivalent, 184
– extension, 237
– non-Archimedean, 184
– normalization, 191
– trivial, 184
absolutely irreducible, 468
additive character, 74
additive number theory, 4
additive reduction, 472
affine curve, 90
AGM, 483, 486
algebraic geometry, 7
algebraic integer, 126

algebraic number theory, 6
algebraic rank, 522
Almkvist–Meurman theorem, 70,

133, 327
analytic p-adic function, 205
analytic element, 189
analytic number theory, 151
analytic rank, 522
approximate functional equation,

176
approximation of linear forms, 60
Archimedean absolute value, 184
arithmetic
– convolution, 152
– function, 151
arithmetic geometry, 7
arithmetic surface, 7
arithmetic–geometric mean, 483, 486
Artin’s conjecture, 167, 219
Artin–Hasse exponential, 217
Artin–Schreier polynomial, 115
Artin–Schreier subgroup, 70
Artin–Schreier theory, 115
asymptotic expansion, 19
Atkin–Lehner operator, 596
automorphism
– Frobenius, 498

B

baby-step giant-step algorithm, 357,
565
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bad reduction, 506
basic CM elliptic curve, 571
basis
– orthogonal, 288
Bernoulli
– χ, 43
– number, 3
– polynomial, 3, 118
Bernoulli–Euler triangle, 121
Bernoulli–Hurwitz number, 264
Bessel functions, 111
beta function, 93
birational transformation, 475
Birch–Swinnerton-Dyer conjecture,

vi, vi, 3, 245, 452, 522
BSD conjecture, vi, vi, 245, 452,

479, 522

C

cannonball problem, 424, 425
canonical coordinates, 506
canonical height, 530
Carmichael number, 93
Carmichael’s function, 93
CAS: computer algebra system, v,

v
Cassels–Sansone number, 609
Catalan’s constant, 127
Catalan’s equation, 2, 428, 442
Cauchy sequence, 192
Cauchy’s formula, 188, 440
Čebotarev density theorem, 325,

514
character
– additive, 74
– conductor of, 25
– Dirichlet, 25
– Dwork, 388
– even, 171
– group, 18
– multiplicative, 74
– odd, 171
– orthogonality, 20, 29
– primitive, 25

– real primitive, 43
– trivial, 18
characteristic of a field, 65
characteristic polynomial of an el-

ement, 109
Chevalley–Warning theorem, 72, 204
χ-Bernoulli number, polynomial, 43
Chowla–Selberg formula, 223
circle method, 4
circle problem, 182
class group, 131, 338
– T , 550
class number, 131
class number formula, 138
Clay foundation, 3
CM point, 586
cocycle condition, 110
compact representation, 357
complementary law, 35
complete field, 192
completely multiplicative function,

154
completion, 194
complex cubic field, 108
complex multiplication, 265, 484,

588
complex multiplication field, 149
conductor
– of a character, 25
– of an elliptic curve, 521
congruent number, 3, 393, 450
conjecture
– Artin, 167
– Birch–Swinnerton-Dyer (BSD),

vi, vi, 3, 245, 452, 522
– Catalan, 2
– congruent number, 3
– Fermat (FLT), 1
– Mordell, 2, 498
– Ramanujan, 496
– Shafarevich, 498
– Taniyama–Shimura–Weil, 2, 497,

521
– Waring, 4, 376
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– Weil, 3
constant term
– in Euler–MacLaurin, 26
content of a polynomial, 124
contiguity relation, 149
contiguous bases, 288
continued fraction method, 357
convex set, 63
convolution, 104
– arithmetic, 152
coordinates
– canonical, 506
covariant, 478
covolume of a lattice, 51
critical strip, 243
curve, 7
– affine, 90
– elliptic, 2, 452
– hyperelliptic, 442
– projective, 90
cusp, 469
cyclic cubic field, 109
cyclotomic field, 144
cyclotomic polynomial, 201
cyclotomic unit, 142

D

decomposition group, 134
Dedekind domain, 131
Dedekind eta function, 215
Dedekind independence theorem,

117
Dedekind zeta function, v, v, 216
degree
– of an isogeny, 474
degree of a divisor, 444
descent, 387, 391
– infinite, 338, 373
– second, 546
2-descent
– general, 548
– with 2-torsion, 532
3-descent
– with rational 3-torsion, 557

dessin d’enfant, 478
determinant of a lattice, 51
diagonal form, 293
diagonal hypersurface, 177
diamond of x, 229
dilogarithm, 278, 404
dimension, 6
Diophantine m-tuple, 424
Diophantine equation, 1
Dirichlet character, 25
Dirichlet series, 160
– formal, 151
Dirichlet’s class number formula,

138
Dirichlet’s theorem on primes, 27,

237
discrete logarithm, 93
discrete valuation ring, 196
discriminant
– fundamental, 43
– of a quadratic form, 286
– of an elliptic curve, 466
– prime, 48
– relative, 130
distribution formula
– for Γp, 372
– for LogΓp, 331, 340
– for LogΓp(χ), 338
– for ψp , 331
– for ψp(χ), 338
– for ζp, 286, 292
– for ζp(χ), 295
– for Bernoulli polynomials, 5
– for complex gamma, 88
– for fractional part, 171
– for higher gamma, 135
– for Hurwitz zeta, 77
– for sum of digits, 171
division algebra, 65
divisor
– degree, 444
– effective, 444
– group, 444
– on a curve, 444
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– rational, 445
– reduced, 446
– semireduced, 446
– suitable, 363
divisor problem, 182
dot product, 286
double point, 469
doubly exponential numerical in-

tegration, 37
dual group, 18
dual isogeny, 474
duplication formula
– for Γp, 372
– for complex gamma, 88
– for Hurwitz zeta, 77
Dwork character, 388
Dwork power series, 255

E

E arises from f , 498
effective divisor, 444
egg, 485
Egyptian number, 463
Eisenstein
– criterion, 201
– polynomial, 201, 253
Eisenstein series, 264
– holomorphic, 159
– nonholomorphic, 211
Eisenstein’s reciprocity law, 170,

434
elementary divisor theorem, 12, 13
elementary number theory, 151
elliptic curve, 2, 452
– basic CM, 571
– rank, 452
– supersingular, 498
elliptic logarithm, 425, 483, 603
Epstein zeta function, 210, 215
equation
– Catalan, 428
– Diophantine, 1
– Pell–Fermat, 354
– Thue, 414, 437

– Weierstrass, 465
equivalence
– Kummer, 114
equivalent absolute values, 184
equivalent ideals, 131
equivalent norms, 235
equivalent quadratic forms, 291
ERH, 238
eta function
– Dedekind, 215
Euler number, 6, 267
Euler polynomial, 121
Euler product, 154
Euler’s totient function, 141
Euler–MacLaurin summation for-

mula, 19
Eulerian number, 126
Eulerian polynomial, 126
even character, 171
exact hexagon lemma, 244
expansion
– asymptotic, 19
exponent of a group, 93
exponential
– p-adic, 211
– Artin–Hasse, 217
– formal, 504
exponential generating function, 3,

8
exponential integral, 574
extended Riemann hypothesis, 238
extension
– Galois, 103
– Kummer, 179
– maximal unramified, 242
– normal, 103
– of p-adic fields, 235
– of absolute values, 237
– tamely ramified, 240
– totally ramified, 240, 253
– unramified, 240, 249
extraneous zero, 177

F
factor basis, 357
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Fermat prime, 512
Fermat triangle, 482, 514
Fermat’s last theorem, 1,

427
Fibonacci number, 420
Fibonacci sequence, 421
field
– characteristic, 65
– complete, 192
– completion, 194
– complex cubic, 108
– cyclic cubic, 109
– cyclotomic, 144
– finite, 7, 65
– fixed, 104
– global, 7
– imaginary quadratic, 108
– number, 106
– p-adic, 7, 183
– perfect, 101
– place, 190
– prime, 65
– pure cubic, 108
– quadratic, 136
– real quadratic, 108
– regular, 232
– residue, 7, 189
– skew, 65
– totally real cubic, 108
filtration (p-adic), 509
finite abelian group structure, 14
finite field, 7, 65
finitely generated abelian group,

11
first case of FLT, 428
fixed field, 104
FLT, 1, 427, 503
FLT I, 428
FLT II, 435
formal Dirichlet series, 151
formal Euler product, 154
formal exponential, 504
formal group, 503
formal logarithm, 504

Fourier
– coefficient, 45, 496
– inversion formula, 105
– series, 45
– transform, 46, 104, 148
fractional part, 16
Frey curve, 503
Fricke involution, 587
Frobenius automorphism
– elliptic curves, 498
– finite fields, 69
– unramified p-adic extension, 250
Frobenius homomorphism
– elliptic curves, 495
– number fields, 180
function
– L, v, v
– arithmetic, 151
– Bessel, 111
– beta, 93
– Dedekind zeta, v, v
– kernel, 104
– Möbius, 153
– multiplicative, 154
– theta, 169
– zeta, v, v
function tending rapidly to 0, 163
functional equation
– approximate, 176
– of L-function, 172
– of theta function, 171
fundamental discriminant, 43
fundamental parallelogram, 483
fundamental parallelotope, 51
fundamental unit, 132, 338

G

Galois extension, 103
Galois representation, 2
Galois theory, 101
gamma function
– p-adic, 368
– complex, 80
– higher, 192
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– real, 78
Gauss sum, 31, 75
Gauss’s lemma on contents, 124
generating function
– exponential, 3, 8
– ordinary, 3, 8
genus of a curve, 90
geometry
– algebraic, 7
– arithmetic, 7
– projective, 90
global field, 7
global solution, v, v
Goldbach’s conjecture, 455
good reduction, 506, 520
Gram matrix, 51
Gram–Schmidt basis, 52
Gross–Koblitz formula, 151, 386
Gross–Zagier theorem, 590
group
– class, 338
– dual, 18
– formal, 503
– Picard, 445
– Tate–Shafarevich, 306
– unit, 338
group character, 18
group of units of a ring, 20

H

Hadamard product, 85, 248
Hadamard’s inequality, 52
half-system, 39
harmonic sum, 128, 142
Hasse interval, 497
Hasse norm principle, 318
Hasse principle, 6, 326
Hasse–Davenport relation
– lifting, 174, 182
– product, 82, 173, 394
Hasse–Minkowski theorem, 305
Hasse–Weil zeta function, 91, 497
Hecke–Eisenstein series, 193
Heegner point, 586

Heegner point method, 528, 584
height
– canonical, 530
– näıve, 530
height pairing matrix, 531, 601
Hellegouarch–Frey curve, 503
Hensel lifting, v, v
Hensel’s lemma, 199, 202
Herbrand quotient, 245
Hermite normal form, 16, 340
Hermite’s inequality, 54
higher gamma function, 192
Hilbert modular form, 193
Hilbert symbol, 295
Hilbert’s tenth problem, vii, vii
Hilbert’s Theorem 90, 118
holomorphic Eisenstein series, 159
Hurwitz zeta function, 71, 168, 190
hyperbolic plane, 287
hyperbolic quadratic form, 292
hyperelliptic curve, 442, 514
hypergeometric series, 149, 406

I

ideal
– primitive, 363
ideal class group, 131
imaginary quadratic field, 108
incomplete gamma function, 172,

573
inequality
– Pólya–Vinogradov, 198
– triangle, 183
– ultrametric, 188
inertia group, 134
infinite descent, 373, 391
infrastructure, 357
integral quadratic form, 311
invariant differential, 501
inverse binomial symbol, 281
inverse limit, 224
inversion formula
– Möbius, 153
irreducible
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– absolutely, 468
irregular prime, 69, 432
isogenous elliptic curves, 473
isogeny, 473
– degree, 474
– dual, 474
isogeny conjecture, 521
isotropic
– subspace, 287
– vector, 287
Iwasawa logarithm, 264

J

Jacobi sum, 79
Jacobi symbol, 36
Jacobian, 408, 479
Jacobian variety, 445
Jacobstahl–Kazandzidis congruence,

381

K

Kash, v, v, 338
K-automorphism, 102
K-embedding, 102
kernel function, 104
Klein form, 478
Klein quartic curve, 489
Kloosterman sum, 100
Kodaira type, 597
Krasner analytic function, 267, 269,

346
Krasner’s lemma, 238
Kronecker limit formula, 213
Kronecker symbol, 36
Kronecker’s Jugendtraum, 146
Kronecker–Weber theorem, 140, 145,

167
Kummer congruence, 67, 324
Kummer equivalence, 114
Kummer extension, 179
Kummer theory, 436

L

L-function, v, v

– functional equation, 172
Λ-function, 242
Langlands program, 167, 242
Laplace
– inversion formula, 109
– transform, 28, 104, 108
large sieve inequality, 139
lattice, 51
– covolume, 51
– determinant, 51
– fundamental parallelotope, 51
– minimum, 54
Legendre symbol, 33
level of a p-adic point, 508
level-lowering, 490, 498, 500
Lichtenbaum’s conjecture, 244
Lipschitz-continuous, 277
LLL algorithm, 58
LLL-reduced basis, 56
local ring, 189
local solution, v, v
local to global principle, 326
local-to-global principle, v, v
log gamma function
– complex LogΓ, 81
– Diamond’s LogΓp, 330
– Morita’s LogΓp(χ), 337
logarithm
– p-adic, 211
– discrete, 93
– elliptic, 425, 483, 603
– formal, 504
Lucas number, 420
Lucas sequence, 421

M

magma, v, v, 338, 495
Mahler coefficient, 221
Mahler’s theorem, 220
von Mangoldt’s function, 159
Manin constant, 586
Mason’s theorem, 491
matrix
– Gram, 51
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– orthogonal, 51
matrix-integral quadratic form, 311
maximal unramified extension, 242
Mazur’s theorem, 528
Mellin
– inversion formula, 107
– transform, 104, 107
Mersenne prime, 512
Mertens’s theorem, 268
method
– infinite descent, 338, 373, 391
– stationary phase, 117
– steepest descent, 117
minimal model, 506, 519
minimal polynomial, 106
minimum of a lattice, 54
Minkowski’s convex body theorem,

63
minus class number, 149
Möbius
– function, 141, 153, 156
– inversion formula, 153
model
– minimal, 506, 519
modular form, 2, 159, 172
– Hilbert, 193
modular parametrization, 586
modularity theorem, 497
Mordell’s conjecture, 2, 92, 482,

498
Mordell’s theorem, 538, 554
morphism (of quadratic modules),

286
multiplication
– complex, 484
multiplicative character, 74
multiplicative function, 154
multiplicative quadratic form, 329
multiplicative reduction, 472
Mumford’s representation, 446
mwrank, 479

N

Nagell–Lutz theorem, 524

näıve height, 530
Nakayama’s lemma, 231
newform, 496
– rational, 497
Noether’s theorem, 110
non-Archimedean absolute value,

184
nondegenerate
– quadratic form, 287
– quadratic module, 287
nonholomorphic Eisenstein series,

211
nonsingular
– equation, 203
– solution, 73, 203
nonsplit multiplicative reduction,

472
nontrivial zero, 177
norm
– absolute, 109
– equivalent, 235
– relative, 109
norm on a vector space, 235
normal basis theorem, 120, 251
normal extension, 103
normal form
– Hermite, 16, 340
– Smith, 15
normalization of absolute values,

191
number
– Bernoulli, 3
– congruent, 393, 450
– Egyptian, 463
– Euler, 6, 267
– Eulerian, 126
– Fermat, 512
– Fibonacci, 420, 424
– Lucas, 420, 424
– Mersenne, 512
– Stirling, 125, 222, 268
– tangent, 6
number field, 106
number theory
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– additive, 4
– algebraic, 6
– analytic, 151
– elementary, 151

O

obstruction, 306
odd character, 171
order of a point on a curve, 443
orthogonal
– basis, 288
– direct sum, 286
– elements, 286
– of a subset, 286
orthogonal matrix, 51
orthogonality of characters, 20, 29
Ostrowski’s theorem, 190

P

p-adic exponential, 211
p-adic field, v, v, 7, 183
p-adic gamma function, 368
p-adic integer, 196
p-adic logarithm, 211
p-adic number, v, v
p-adic regulator, 458
p-adic root, 202
p-adic unit, 226
pairing (perfect), 112
Pari/GP, v, v, 338, 495
Pascal’s triangle, 118
Pell–Fermat equation, 354
– Kronecker’s solution, 229
perfect field, 101
perfect pairing, 112
Picard group, 445
place of a number field, 190
PNT, 245
point
– rational, 465
point on a curve, 90
Poisson summation formula, 45
Pólya–Vinogradov inequality, 198
polylogarithm, 192, 278

polynomial
– Artin–Schreier, 115
– Bernoulli, 3, 118
– characteristic, 109
– cyclotomic, 201
– Eisenstein, 201, 253
– separable, 101
power basis, 107
pth power-free, 360
preparation theorem, 270
primary algebraic number, 169
prime fundamental discriminant, 48
prime number theorem, 245
prime subfield, 65
primes in arithmetic progression,

237
primitive character, 25
primitive element theorem, 106
primitive ideal, 363
primitive root, 23
principal ideal problem, 338
principle
– local-to-global, v, v
product
– dot, 286
product formula, 191
profinite completion, 70
profinite group, 70
projective curve, 90
projective geometry, 90
projective limit, 224
projective point, 90
pure cubic field, 108
Pythagorean triangle, 3, 451, 482
Pythagorean triple, 352

Q

quadratic field, 108, 136
quadratic form, 286, 305
– integral, 311
– matrix-integral, 311
– multiplicative, 329
– universal, 312
quadratic module, 286
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quadratic reciprocity law, 35
quadratic twist, 489, 499, 589
quotient
– Herbrand, 245

R

Raabe’s formula
– for LogΓp, 335
– for LogΓp(χ), 344
– for ζp, 287
– for ζp(χ), 297
– for complex gamma, 103
radical
– of a polynomial, 491
– of an integer, 483
radical (of a quadratic module),

286
radius of convergence, 206
Ramanujan τ function, 159, 259
Ramanujan sum, 153
Ramanujan’s conjecture, 160, 241,

496
ramification index, 132
rank
– algebraic, 452, 522
– analytic, 522
rational cuboid problem, 456
rational divisor, 445
rational newform, 497
rational point, 465
rational subgroup, 557
real primitive character, 43
real quadratic field, 108
reciprocity law, 35
– Shimura, 589
reduced divisor, 446
reduction
– additive, 472
– bad, 506
– good, 506, 520
– nonsplit multiplicative, 472
– split multiplicative, 472
reflection formula
– for Γp, 371

– for LogΓp, 331
– for LogΓp(χ), 338
– for ψp , 331
– for ψp(χ), 338
– for ζp, 286
– for ζp(χ), 295
– for complex gamma, 89
regular p-adic field, 232
regular prime, 69, 432
regulator
– p-adic, 458
– of a real quadratic field, 138
– of an elliptic curve, 601
relative
– discriminant, 130
– norm, 109
– trace, 109
representation
– Galois, 2
residual degree, 132
residue field, 7, 189
resultant of two polynomials, 143,

180
RH, 162
Ribet’s level-lowering, 500
Riccati differential equation, 611
Riemann hypothesis, 159, 162
– extended, 238
– for curves, 91
Riemann zeta
– function, 153
– series, 153
Riemann–Lebesgue lemma, 106
root
– primitive, 23
root number, 49, 521

S

SEA algorithm, 565
second case of FLT, 435
second descent, 546
Selberg zeta function, 243
Selmer group
– T , 551
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– of an elliptic curve, 555
semireduced divisor, 446
separable polynomial, 101
series
– Eisenstein, 264
Shafarevich conjecture, 498
Shimura’s reciprocity law, 589
Siegel zero, 239
sign of quadratic Gauss sums, 45
signature of a number field, 107
singular modulus, 571
singular series, 4
skew field, 65
Skolem’s equation, 385
Smith normal form, 15
SMK equation, 511
solution
– global, v, v
– local, v, v
Sondow’s formula, 140
special value, 243
special values of L-function, 186
split (totally), 135
split multiplicative reduction, 472
square pyramid problem, 424
squarefree integer, 156
squarefree part, 541
Stark’s conjectures, 193
stationary phase, 117
steepest descent, 117
Stickelberger ideal, 160
Stickelberger’s congruence, 155, 390
Stickelberger’s ideal theorem, 162
Stickelberger’s theorem, 390, 391
Stirling number
– first kind, 222, 268
– second kind, 125
Stirling transform, 282
Stirling’s formula, 34, 82
– complex, 85
Strassmann’s theorem, 266, 387
strictly differentiable, 277
structure
– class group, 131

– unit group, 131
structure of finite abelian groups,

14
Sturm’s algorithm, 107
suitable divisor, 363
sum
– Gauss, 31
– Jacobi, 79
– Ramanujan, 153
summation formula
– Euler–MacLaurin, 19
– generalized Poisson, 178
– Poisson, 45
supersingular elliptic curve, 498,

512
surface, 7
– algebraic, 7
– arithmetic, 7
symbol
– Hilbert, 295
symmetric set, 63
system of fundamental units, 338

T

Tamagawa number, 508, 554
tamely ramified extension, 240
tangent number, 6
tanh-sinh numerical integration, 37
Taniyama–Shimura–Weil conjecture,

2, 497, 521
Tate’s algorithm, 499
Tate–Shafarevich group, 306, 479,

555
Tauberian theorem, 253
T -class group, 550
Teichmüller character, 152, 228
Teichmüller representative, 249
theta function, 169, 170
– functional equation, 171
Thue equation, 414, 424, 437
totally discontinuous, 197
totally ramified extension, 240, 253
totally real cubic field, 108
totally split, 135
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totient function, 141
trace
– absolute, 109
– relative, 109
transform
– Fourier, 104
– Laplace, 104, 108
– Mellin, 104, 107
triangle
– Fermat, 482, 514
– Pythagorean, 3, 451
triangle inequality, 183
triangular number, 331
trigonometric sum, 4
trivial character, 18
trivial zero, 177
T -Selmer group, 551
T -unit group, 550
Tunnell’s theorem, 453
T -virtual square, 551
twin prime conjecture, 455
twisted projective equivalence, 392

U

ultrametric inequality, 188
unimodular matrix, 15
unit, 126
– cyclotomic, 142
– fundamental, 132
– p-adic, 226
unit group, 131, 338
– T , 550
unit group of a ring, 20
unit group structure, 131
unit in ZK , 131
universal quadratic form, 312
unramified extension, 240, 249

V

Vandiver’s conjecture, 438
virtual square

– T , 551
Volkenborn integral, 277

W
Waring’s problem, 4, 376, 455
Wedderburn’s theorem, 65
Weierstrass ℘-function, 482
Weierstrass equation, 465
Weierstrass’s preparation theorem,

270
Weil conjectures, 3, 92, 335
Weil representation, 148
Weil’s bounds, 90, 335
Weil’s conjectures, 178
Wieferich’s criterion, 435
Wiles’s theorem, 521
Wilson prime, 405
Wilson’s theorem, 368
Witt’s theorem, 290, 293
Wolstenholme prime, 383, 407
Wolstenholme’s congruence, 97, 406

Z

zero
– extraneous, 177
– nontrivial, 177
– Siegel, 239
– trivial, 177
zeta function, v, v
– Dedekind, 216
– diagonal hypersurface, 177
– Epstein, 210, 215
– Hasse–Weil, 91, 497
– Hurwitz, 71, 168, 190
– Hurwitz p-adic, 283
– χ-Hurwitz p-adic, 291
– Kubota–Leopoldt p-adic, 301
– of a curve, 91
– Riemann, 153
– Selberg, 243
Zorn’s lemma, 262
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