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Abstract

We describe a new construction for 1-out-of-INV oblivious transfer which is highly
efficient — it requires only log N executions of a 1-out-of-2 oblivious transfer protocol.
We also present a construction for k-out-of-N oblivious transfer which is more efficient
than k repetitions of 1-out-of-N oblivious transfer, and a construction for oblivious
transfer with adaptive queries which is based on a new primitive — sum consistent
synthesizers. The efficiency of the new oblivious transfer protocols makes them useful
for a many applications. A direct corollary of the 1-out-of-/NV oblivious transfer protocol
is an efficient transformation of any Private Information Retrieval (PIR) protocol to a
Symmetric PIR (SPIR) protocol without increasing the number of databases.

1 Introduction

An oblivious evaluation protocol for a function f(-,-) allows two parties, Alice who knows x
and Bob who knows y, to jointly compute the value of f(z,y) in a way that does not reveal
to each side more information than can be deduced from f(z,y). The fact that for every
polynomially computable function f(-,-) there exists such a (polynomially computable) pro-
tocol is one of the most remarkable achievements of research in foundations of cryptography.
However, the resulting protocols are often not as efficient since the number of cryptographic
operations performed is proportional to the size of the circuit computing f(z,y) [48]. Even
for relatively simple functions this may be prohibitively expensive. Therefore it is interest-
ing to investigate for which functions it is possible to come up with a protocol that does
not emulate the circuit for the function.

This paper presents efficient protocols for the basic two party problem of 1-out-of-IV
oblivious transfer (OTZ). In this problem Bob knows N values and would like to let Alice
choose any one of them in such a way that she does not learn more than one, and he
remains oblivious to the value she chooses. This is a well known problem and we discuss
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two new applications of it for Symmetric Private Information Retrieval (SPIR) and oblivious
sampling (which is useful for example for checking the size of the index of a search engine).
The paper also describes protocols for k-out-of-IN oblivious transfer (OTkN ), and for running
oblivious transfer with k adaptive queries (OTé\;l). All protocols are based on standard
cryptographic assumptions.

Organization: In the rest of this section we discuss in more detail oblivious transfer
and oblivious function evaluation, and present appropriate security definitions. Section 2
presents protocols for 1-out-of-NV and k-out-of-IV OT. Section 3 presents protocols for oblivi-
ous transfer with apadtive queries. Section 4 describes various applications for the protocols
we present.

1.1 Oblivious Transfer

Oblivious Transfer (abbrev. OT) refers to several types of two-party protocols where at the
beginning of the protocol one party, the Sender (or sometimes Bob or B), has an input, and
at the end of the protocol the other party, the receiver (or sometime Alice or A), learns some
information about this input in a way that does not allow the sender to figure out what she
has learned. In this paper we are concerned with 1-out-of-2 OT protocols where the sender’s
input consists of two strings (X7, X2) and the receiver can choose to get either X; or X,
and learns nothing about the other string. Similarly, in 1-out-of-N OT the sender has as
input N strings X1, Xo,... Xy and the receiver can choose to get X; for some 1 < I < N
of her choice, without learning anything about the other inputs and without the sender
learning anything about 1.

l-out-2 OT was suggested by Even, Goldreich and Lempel [23], as a generalization of
Rabin’s “oblivious transfer” [45] (the notion was also developed independently by Wiesner
in the 1970’s, but not published till [47]). 1-out-of-N Oblivious Transfer was introduced
by Brassard, Crépeau and Robert [7] under the name ANDOS (all or nothing disclosure of
secrets). For an up-to-date definition of OT and oblivious function evaluation see Goldreich
[28].

Since its proposal OT has enjoyed a large number of applications and in particular Kilian
[34] and Goldreich and Vainish [31] have shown how to use OT in order to implement general
oblivious function evaluation, i.e., to enable Alice and Bob to evaluate any function of their
inputs without revealing more information than necessary. There are many application
for 1-out-of-N OT in case N is relatively large, and two direct applications are described
in Section 4. Another application is oblivious polynomial evaluation, which is described
in [41].

Reductions between various types of oblivious transfer protocols have been investigated
extensively and they all turn out to be information theoretically equivalent (See [6, 8, 18, 17,
11]). This is of interest, given the possibility of implementing OT using “physical means”,
e.g. via a noisy channel or quantum cryptography. However, some of these reductions are
not particularly efficient and in this paper we use non-information theoretic reductions, i.e.,
employ additional cryptographic primitives, to obtain very efficient reductions. In particular
we apply pseudo-random functions which can be based on one-way functions.

Staying in the complexity based world, without physical realizations of OT channels
but assuming that the adversary’s power is limited to probabilistic polynomial time, OT



can be implemented under a variety of assumptions (see e.g. [6, 23, 4]). Essentially every
known suggestion of public-key cryptography allows also to implement OT (although in
general public key cryptography and oblivious transfer are incomparable under black blox
reductions [26]), and the complexity of 1-out-of-2 OT is typical of public-key operations [6,
4]. OT can be based on the existence of trapdoor permutations, factoring, Diffie-Hellman
and the hardness of finding short vectors in a lattice (the Ajtai-Dwork cryptosystem). On
the other hand, given an OT protocol it is a simple matter to implement secret-key exchange
using it. Therefore from the work of Impagliazzo and Rudich [33] it follows that there is no
black-box reduction of OT from one-way functions.

Complexity: Our working assumption is that 1-out-of-2 OT is an expensive operation
compared to the evaluation of a pseudo-random function or a pseudo-random generator.
This is justified both theoretically, by the separation of [33] mentioned above, and in prac-
tice, where one can model a pseudo-random function by very efficient block ciphers or keyed
one-way hash functions which are several orders of magnitude more efficient than operations
in public-key cryptography. Our goal is therefore to come-up with efficient constructions
of 1-out-N OT protocols from 1-out-2 OT protocols, where the number of invocations of
the 1-out-2 OT protocol is small. For instance, the 1-out-N OT constructions of [6, 8] need
N calls to the 1-out-2 OT protocol. In contrast our protocols need only log N calls to the
1-out-2 OT protocol plus O(N) evaluations of a pseudo-random function (note that the
construction of [8] of 1-out-2 string OT from 1-out-2 bit OT is efficient).

Another measure of complexity is communication complexity. In conjunction with recent
work on private information retrieval (abbrev. PIR) we can obtain a protocol for 1-out-N
OT with O(N®m) communication overhead under the Quadratic Residuosity Assumption,
based on the PIR construction of [35] (where m is the security parameter, i.e. the length
of the modulos), or an O(m) protocol based on the PIR protocol of [12] (see Section 4.1.1).

1.2 Correctness and Security Definitions

When defining security for 1-out-of-IV oblivious transfer, there is no real difference between
l-out-of-2 OT and l-out-of-N OT and we will treat the former as l-out-of-N OT with
N =2

We first define the input and output for 1-out-of-N oblivious transfer. This is a two
party protocol run between a receiver (sometimes called Alice, or A) and a sender (called
Bob, or B).

e Input

— Receiver: an index 1 <71 < N.
— Sender: N data elements X1, Xo,..., Xn.

e Output

— Receiver: Xj.

— Sender: nothing.



The definition of correctness is simple: At the end of a successful execution where all
parties follow the protocol the receiver should obtain X; and be able to output it.

Oblivious transfer is a two party protocol and as such its definition of security can be
derived from the security definition of such protocols. However, there are several obstacles:
(i) Coming up with the precise definition of general multi-party protocols is a messy business
and there is no consensus yet on the definition (see [3, 13, 28, 39], though the two-party
case is less controversial). (ii) These definitions are rather complex, whereas the OT case
is much simpler and does not require the full power of the general definitions. (iii) We
feel that the constructions presented in this work are rather robust and should work with
several definitions. However, the existing definitions are of course a good guideline and we
follow most closely Goldreich’s [28]. We keep the formalities at a bare minimum and ignore
such important issues as uniformity.

The definition of security is separated into the issue of protecting the receiver and the
issues of protecting the sender.

The Receiver’s Security - Indistinguishability: Given that under normal operation,
the sender gets no output from the protocol the definition of the receiver’s security in a
1-out-N OT protocol is rather simple: it is required that for any 1 < I,I' < N and for any
probabilistic polynomial time B' executing the sender’s part, the views that B' sees in case the
recetver tries to obtain Xj and in case the receiver tries to obtain Xy are computationally
indistinguishable given X1, Xs,... Xy.

The Sender’s Security - Comparison with the Ideal Model: Here the issue is a bit
trickier, since the receiver (or whatever machine which is substituted for her part) obtains
some information, and we want to say that the receiver does not get more or different
information than she should. We make the comparison to the ideal implementation. The
ideal implementation contains a trusted third party Charlie that gets the sender’s input
X1,X2,... XN and the receiver’s request I and gives the receiver X;. The requirement is
that for every probabilistic polynomial-time machine A’ substituting the receiver, there exists
a probabilistic polynomial-time machine A" that plays the receiver’s role in the ideal model
such that the outputs of A’ and A" are computationally indistinguishable. This implies
that except for the single X7 that the receiver has learned the rest of Xy, Xs,... X are
semantically secure.

An issue that this definition does not handle is whether A’ “knows” which input it has
chosen, i.e. whether I (for which A learns X7) is extractable. It turns out that our l-out-
of-N construction enjoys this property even if the original 1-out-of-2 OT protocol it is built
from does not.

2 1-out-of-N Oblivious Transfer Protocol

In this section we describe efficient constructions of a 1-out-of-N Oblivious Transfer protocol,
and a k-out-of-N OT protocol. Section 4 describes two applications for these new protocols,
and in particular a transformation of any Private Information Retrieval (PIR) protocol to



a Symmetric PIR (SPIR) protocol, without using additional databases. A more involved
application is that of oblivious polynomial evaluation which is described in [41].

The 1-out-of-N OT protocol uses, in addition to the 1-out-of-2 OT, an additional cryp-
tographic primitive, pseudo-random functions. A pseudo-random function is a function
that cannot be distinguished from a truly random one by an observer granted access to
the function in a black-box manner. Assume, for example, a function Fg, specified by a
short key K which can only be accessed by the observer by adaptively specifying inputs
and obtaining the value of the function on these inputs. (See [29, 27, 36, 42, 43] for precise
definitions and various constructions). Our working assumption is that block ciphers (such
as DES, or triple DES) or keyed one-way hash functions (such as HMAC), can be modeled
as a pseudo-random function. Therefore, the function Fx (z) can be implemented by keying
a block cipher with the key K and encrypting z, or keying a hash function with K and
applying it to z. The evaluation of a pseudo-random function is therefore considerably
cheaper than a typical public-key operation.

Let {Fk : {0,1}™ — {0,1}™ |K € {0,1}'} be a family of pseudo-random functions.
The 1-out-of-2 OT will be performed on strings of length ¢, since the transmitted strings
are used as keys of F'.

The main idea of the protocol is to have a rather small set of keys and to mask each
input with a product of a different subset of the keys. The keys are not applied directly
(which would leak information, for example if the keys were simply xored to the inputs and
the receiver knows some of the X;’s), but when a key K is to be used to mask input X7,
the value F (I) is used for masking. The complexity is measured in terms of the number
of invocations of the 1-out-of-2 OT and the number of times the pseudo-random function
F is evaluated.

We present two protocols for 1-out-of-/V oblivious transfer. First a protocol which solves
the problem using log N applications of 1-out-of-2 oblivious transfer, and then a recursive
protocol which reduces 1-out-of-N oblivious transfer to 1-out-of-v/N oblivious transfer.

2.1 A protocol for 1-out-of-N oblivious transfer

Protocol 2.1 (1-out-of-N oblivious transfer) The input of the sender (B) is X1, Xa, . ..

where each X1 € {0,1}™ and N = 2¢. The receiver (A) would like to learn Xr;
1. B prepares £ random pairs of keys
(KD, K1), (K3, K3), ... (K}, Ky)
where for all1 < j </ and b € {0,1}, KJI-’ is a t-bit key to the pseudo-random function
Fk.
For all 1 < I < N let (i1,io,...i7) be the bits' of I. B prepares Y1 = X1 @

@f:l FK?J' ().

2. For 1 < j < /¥, A and B engage in a 1-out-of-2 OT on the strings (K]O,K]l) If A
would like to learn X she should pick KJZ”

1To simplify the exposition we assume that the index I, which is in the range [1, N], is represented by
log N bits. The representation can be, for example, the binary representation of I — 1.

aXN7



3. B sends to A the strings Y1,Yo,...Yy.

4. A reconstructs X =Y & @le F i ().
i

Theorem 2.1 Protocol 2.1 is a 1-out-of-N Oblivious Transfer protocol.

Proof: It is straightforward to see that the receiver can get any value it wishes in the above
protocol. As for the security analysis, it has to be argued that both the sender’s security
and the receiver’s security are satisfied. Given that the 1-out-of-2 OT protocol maintains
the computational indistinguishability of A’s choice, performing it log N times preserves
the indistinguishability of all of A’s choices, i.e. for any 1 < I;, I, < N the distributions
that the sender B sees when the receiver A is retrieving X, or Xy, are computationally
indistinguishable. This is proved in the following lemma. The sender’s privacy is proved in
Lemma 2.3.

Lemma 2.2 If the receiver’s privacy is not preserved in protocol 2.1, then it is also not
preserved in the OT? protocol.

Proof of lemma: Assume that the receiver’s privacy is not preserved in protocol 2.1.
Namely, there are two receiver’s inputs Iy, I; for which the sender B can distinguish the
distributions that he sees when the receiver tries to retrieve X, or Xy,. In this case, B can
be used to compromise the receiver’s privacy in the 1-out-of-2 OT protocol: Let m > 1 be
the Hamming distance between Iy and I and let (Jy = Iy, J1,...,Jm = I1) be a sequence
of m < £ indexes with Hamming distance 1 between each other. A hybrid argument shows
that there must be a pair Jr, Jr41 for which B has a non negligible success probability in
distinguishing between the case that A is trying to learn X, and the case that she is trying
to learn X7, ,. Now, in order to break the privacy of a receiver A’ in a given OT? protocol,
simulate the part of the receiver in a OTY protocol with B. In the OT? protocols that
correspond to the bits in which J; agrees with Jr; ask to learn the input that corresponds
to the bit of J; (which is equal to the bit of J;,1). Run the receiver A’ in the OT? protocol
that corresponds to the bit in which J; differs from J;y;. The output of B distinguishes
with non negligible probability between the two possible inputs of A’. This concludes the
proof of the lemma. O

Lemma 2.3 If the sender’s privacy is not preserved in protocol 2.1, then either the OT%
protocol does not provide sender’s privacy, or the function F is not pseudo-random.

Proof: Assume that the OT? protocol preserves the sender’s privacy, i.e., that the receiver
learns only one of the two inputs of the sender. We show that this implies that F' is not
pseudo-random. Namely, that the receiver can be used as a black-box to decide whether a
given a value is Fx(I) or is random, for an unknown key K.

The assumption that the OT? protocol preserves the sender’s privacy implies that at the
end of step 2 of protocol 2.1 the receiver learns only a single element of every pair (K. ]Q, K Jl) of
keys. We first extract which keys are learned by the receiver. Fix the state of the receiver at
the end of this step, and run different experiments starting with this state. In order to find
out which keys the receiver learned, run 2¢ experiments {C; ;|1 < j < ¥, 0 <14 < 1}. In each
experiment C; ; choose a random key r and replace the values FK; (I), in the generation of



the encrypted inputs (the Y;’s), with F,.(I). If the distribution of the output of the receiver
for experiment Cj; is different by non-negligible difference, from the distribution of her
output in the runs of the protocol that use the original keys, then the receiver must have
learned KJZ in step 2 (note that this phenomenon does not depend on the hardness of the
pseudo-random function). At the end of this set of experiments extract, for each 1 < j < £,
the key, K;-) or K ]1, that the receiver learned in step 2.

We now use the receiver to break the pseudo-randomness of the function F. Run N
new experiments, denoted E; for 1 < I < N: In experiment Er replace the string Y7 with
a random value, and run the protocol to its end. For simplicity assume that the output of
the receiver is either 0 or 1. Let pg be the probability that the output of the receiver in the
original protocol is 1, and let p; be the probability that the output of experiment Ey is 1.
If the receiver can distinguish item I from random, then e; = |p;r — po| is non-negligible.

Let Ip be the index that corresponds to the keys that the receiver learned in step 2
(that is to say that the receiver learned all the keys that encrypt Yz,). It holds that e,
is non-negligible. If the sender’s privacy is not preserved in protocol 2.1, then there is an
additional index J, such that €7 is also non-negligible.

The element at position J can be used to break the pseudo-randomness of F', in the
following way. Denote the Hamming distance between Iy and J as h. This means that Y;
is encrypted using the outputs of h pseudo-random functions whose keys are unknown to
the receiver. Assume first that » = 1. Denote by j' the bit in which Iy and J differ, and
assume, wlog, that this bit is set to 0 in I. Therefore, the receiver did not learn K ]1, in step
2 of the protocol.

It is now possible to break the pseudo-randomness of Fx, keyed by a key K whose value
is unknown to us. First, for every I # J in which the bit j' is 1, ask to receive the value
Fi(I) and use it to replace Fi1 (I) in the encryption Y7. Then ask to receive a challenge

which is either Fx(J) or random, and use it to replace Fg:1 (J) in the encryption Y;. Run

the receiver on the resulting input. If her output is 1 thenj announce that the challenge is
random, otherwise announce that it is Fx (J).

If the Hamming distance h is greater than 1, then a hybrid argument shows that there
are two indexes Jp,J; with Hamming distance 1, for which |pj, — py,| is non-negligible.
These two indexes can be used instead of Iy and J (in exactly the same manner) in order
to break the pseudo-randomness of F'. This concludes the proof of the lemma and of the
theorem. O

Complexity: The computational complexity of the protocol is N log N evaluations of the
pseudo-random function Fx in the preprocessing of step 1, and log IV invocations of the
l-out-of-2 OT protocol in the transfer stage. The communication overhead involves the
sender sending to the receiver N encryptions, one of each of his input items.

Yuval Ishai (personal communication) has suggested an improvement to the preprocess-
ing complexity of the above protocol — each Y7 should be masked by @le F i (pref;(I))

J
where pref;(I) denotes the first j bits of I. The advantage of this proposal is that the total
number of evaluations of the pseudo-random function is linear N. We suggest a different
method for lowering the complexity in Protocol 2.2 in Section 2.1.1.



2.1.1 A recursive protocol for 1-out-of-N oblivious transfer

A different protocol for 1-out-of-INV oblivious transfer is recursive, and reduces the 1-out-of-
N problem to two 1-out-of-v/N protocols. The recursion can be continued, or alternatively,
the 1-out-of-v/N protocols can be run with O(v/N) overhead. The preprocessing overhead
of this protocol is only O(N). The protocol is used in the k-out-of-N protocol of Section 2.2.

Protocol 2.2 (1-out-of-N oblivious transfer) The sender (B’s) input is X1, Xs,... XN
where each X1 € {0,1}™ and N = 2¢. The receiver (A) would like to learn Xr;

1. B prepares two sets of VN randomly chosen keys

Ri,Ry,...,R

(for the rows) and
C1,Cy...,Cxy

(for the columns), each t-bits long. B arranges the N inputs in a VN x VN matriz,
i.e. each input is indezed now as X; j. Bob sets Y;; = X; ; ® Fg,(j) ® Fe, (7).

2. A and B engage in a 1-out-of-/N OT protocol on Ry, R, . .. R /5 and on C1,Co, ... C /5
(e.g. by invoking Protocol 2.1 twice). If A would like to learn X; ; she should pick R;
and Cj.

3. B sends to A all the Y; ;’s.
4. A reconstructs X;; =Y; ; © Fg,(j) ® Fc; (4).

It is clear that the receiver can get any value it wishes in the above protocol. The
complexity of the protocol is 2N evaluations of Fx for preprocessing, and two invocations
of the 1-out-of-v/N protocol for the transfer. Implementation of the 1-out-of-v/N protocols
using Protocol 2.1 involves /N log N evaluations of the function Fx and log N calls to the
1-out-of-2 OT. Protocol 2.2 can be described as being two-dimensional whereas Protocol 2.1
is (log n)-dimensional. The proofs of security are straightforward modifications of the proofs
of Protocol 2.1.

2.2 k-out-of-N Oblivious Transfer

Some applications can use a k-out-of-N oblivious transfer protocol, i.e., a protocol which
enables the receiver to choose any k out of N input strings. It is possible to achieve this
task by repeating Protocol 2.1 k times independently?, but the overhead would be kN log N
(or kN) applications of a pseudo-random function for preprocessing, and klog N oblivious
transfers for the k£ transfers. Since N might be very large, the preprocessing overhead might
be prohibitively expensive. It is, therefore, interesting to investigate whether it is possible

2A problem with repeating Protocol 2.1 k times is that the sender might not be consistent from round to
round and thus induce a distribution on the receiver’s output that is impossible in the ideal implementation.

A simple solution is that the sender commits to the X;’s (once), and protects the keys that open the
¢

commitments using the masks ®j:1 Fi; (I).
i



to keep the price low in terms of pseudo-random function evaluations while keeping the
number of 1-out-of-2 OTs proportional to k. Following we describe a k-out-of-N scheme
which achieves this property.

The scheme as described works for k¥ < N. Consider first running Protocol 2.2 to
perform a k-out-of-IN oblivious transfer. Suppose that in step 2 we let A obtain k of the
keys Ry, Ra, ... R /5 and k of the keys C1, Cs, ... C /5, by repeating the 1-out-v/N protocol
k times independently. Then A would be able to obtain any & values she wishes. However,
she gets more information than that: if she is interested in X; ; and X ; then, by learning
the keys (R;, Ry, Cj,Cj) she can actually also learn X; j; and X ;. The total number of
items she can learn is, therefore, k2, but all other values remain hidden. Furthermore, after
the execution of the protocol these k? values are well defined. The main idea we use is to
use this protocol to learn shares of the inputs, and repeat the protocol again after randomly
permuting the locations in the matrix. It is important that the permutation be revealed
only after the first protocol is executed, so that the receiver has effectively committed to a
set S C {1,... N} of k? values.

To get some basic intuition why this protocol should work, note that a good permutation
might be one where no two elements of S are mapped to the same column or to the same
row. The probability that there are two different values in S which are mapped to the same
row is at most \’;—%. If this procedure is repeated several times, each time with independent
keys and without revealing the new permutation before the previous stage is over, the
probability can be made arbitrarily small.

Protocol 2.3 (k-out-of-N oblivious transfer)
The input to B is X1, Xo,... XN, where N =2t and A would like to learn Xr,... X1

k
o Repeat for j=1to W

1. B chooses two random sets of VN keys, R{,Rg, . R{/ﬁ and C{,C’g, . C’f/ﬁ.
2. B chooses a random permutation o; on 1...N. For any I we let o; r(I) be the
first £/2 bits of o(I) and oj,c(I) be the second £/2 bits of o;(I). Bob arranges the

N inputs in a VN x VN matriz, i.e. input X is indezed now as XU'j,R(I),U'j,C(I)
3. B sends o to A.
4. A and B engage in two k-out-of-/N OT protocols, one for the keys R{, R%, R

and the other for the keys C{,Cg,...CJ . Foralll < I <k A picks Rij

VN
J
and Caj,c(I)'

N’

r(I)

e B computes Y7 = X7 EBJ-VL(FR]' (I)® F (I)), and sends them to A.

iR Coj0

o To reconstruct the desired inputs A computes for each 11,15, ... I} the value

W
X5, =Y, & PFp (I;) ® F (L))
=1

o, RU;) oj,c ;)



The protocol preserves the privacy of the receiver since the oblivious transfer protocols
that are run have this property (the proof is similar to that of Protocol 2.1). As for the
privacy of the sender, we present two different proofs: First a simple proof for the case
k < N'/8 and then a more intricate proof for the case k < N/,

Theorem 2.4 Fork < N'/8¢_ Protocol 2.8 with W = w+1 rounds, where w > log(1/68)/(4elog N),
is a k-out-of-N oblivious transfer protocol which provides sender security with probability
1-4.

Proof: Let S; be the set of k2 input elements which are mapped by the first permutation
o1, to the rectangle of size k X k whose keys are learned by the receiver. In order for the
receiver to be able to learn, in a subsequent round, the keys of more than k of these elements,
at least two of the elements must be mapped to the same row. The probability that there
are two elements of S7 which are mapped by a random permutation to the same row, is
at most k* / V/N. The probability that this happens in each of the w subsequent rounds
of the protocol, is at most (k*/v/N)” < N~*% and should be smaller than §. Setting
w > log(1/d)/(4elog N) satisfies this requirement. O

Theorem 2.5 Fork < N'/*°¢ Protocol 2.8 with W = w+2 rounds, where w > log(1/68)/(2¢log N),
18 a k-out-of-IN oblivious transfer protocol which provides sender security with probability
1-4.

Proof: The proof is composed of two stages. The first stage shows that, with high proba-
bility, after two rounds of the protocol the receiver knows the keys of at most O(k) input
elements. The second stage shows that after sufficiently more rounds, the receiver knows
the keys of only k elements.

Lemma 2.6 After two rounds of protocol 2.8 it holds with overwhelming probability that
the receiver knows the keys of at most (2e + 1)k input elements.

Proof of lemma: Let S; be the set of k2 input elements which were mapped, in the
first permutation o1, to the rectangle of size k x k whose keys are learned by the receiver.
Examine first the probability that the second permutation maps more than 2ek of these
elements to a rectangle of size k x k. The probability that a single input element is mapped
to the rectangle is p = (k/V/N)? = N=(1/242¢)_ Let z; be a random variable which is set
to 1 if the i’th element in Sy is mapped to the rectangle, and is 0 otherwise. Therefore,
Pr(z; = 1) = p. Define the random variable X as the number of elements of S; which are
mapped to the rectangle, i.e., X = Zfil ;.

We use the Chernoff bound to estimate the probability that X > 2ek. Consider the

following version of the Chernoff bound (see [1], Theorem A.12): Let z1,...,z¢ be mutually
independent random variables, with

P’I‘[.TZ' = 1] =

Prizj=0 = 1—p

Then, for all B> 1
1¢ ef-1 Pt

=1
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Returning to our proof, examine the following probability

1 & 1 &
Pr(X > 2ek) = Pr(ﬁ sz > 2e/k) = Pr(ﬁ sz > pp)
i=1 i=1

where 8 = 2¢/(kp) = 2eN'/*t3¢ Therefore,

e

IB)/J’;DIC? _ (E)Qek < N_(e/g),(N1/476)

P s
PI‘(X 2 26k) < (ﬂ—ﬂ)pk < ( ,8

Now, the number of possible rectangles is [(‘/kﬁ)]2 ~ NNV Therefore, the probability that
there is a rectangle which contains more than 2ek elements is about NV VAN (e/NY
N—OTN 1/4, and is negligible. This concludes the proof of the lemma.

The remainder of the proof follows the lines of the proof of Theorem 2.4. It bounds the
probability that the receiver can learn the keys of more than k of the 2ek elements whose
keys she knows after the first two rounds. The probability that this happens in a single

round is smaller than the probability that two of the elements are mapped to the same
2
row, i.e., smaller than % ~ 30N—2¢. The probability that this happens in w rounds

is (30N %)% and should be bounded by §. Therefore, if N2 < 30 then in order for a
protocol to be secure with probability 1 — 4, it should set w > log(1/d)/(2¢log N) (or more
accurately, w > log(1/8)/(2¢log N + log 30)). O

Complexity: The protocol consists of W rounds of communication. The preprocessing
stage requires 2W N invocations of a pseudo-random function. The transfer stages require a
total of 2W executions of k-out-of-v/N oblivious transfer protocols. Each of these could be
performed recursively, or by running k invocations of 1-out-of-y/N oblivious transfer. The
latter option has a total overhead of 2Wkv/N applications of a pseudo-random function,
and Wklog N invocations of OT?.

3 Oblivious Transfer with Adaptive Quqeries

3.1 Introduction

The k-out-of-N oblivious transfer protocol (Protocol 2.3) enables the receiver to simulta-
neously obtain any k out of the N values. However it is not secure to use this protocol to
perform k adaptive transfers of a single value, since the privacy of the sender is based on
hiding the permutations from the receiver.

This section presents several efficient protocols for & successive (possibly adaptive) obliv-
ious transfers, an operation which we denote as OTkI\Ql. The sender has to perform a single
initialization of his input, which requires O(N) work. Each transfer requires only log N
OT?’s. In some of the protocols the parameter k does not affect the complexity, and the
protocol can even be used for N successive transfers.
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3.1.1 Motivation

Adaptive oblivious transfer (OT}Y,,) protocols are useful whenever the following three re-
quirements hold:

e A large database should be queried in an adaptive fashion.
e The privacy of the the party which performs the queries should be preserved.

e The owner of the database does not want to reveal to the other party more than a
minimal amount of information.

Three different applications of this type are described in Section 4.2.

3.1.2 Protocol structure

Adaptive oblivious transfer (OT,?;I) protocols are composed of two phases, for initialization
and for transfer.

The initialization phase is run by the sender (Bob) who owns the N data elements. Bob
typically computes a commitment to each of the N data elements, with a total overhead
of O(N). He then sends the commitments to the receiver (Alice). (The protocol uses
commitments rather than simple encryptions in order to prevent Bob from changing the
data elements between different invocations of the transfer stage.)

The transfer phase is used to transfer a single data element to Alice. At the beginning of
each transfer Alice has an input I, and her output at the end of the phase should be data
element X;. The transfer phase typically involves the invocation of several OT]" protocols,
where m is small (either constant or v/N). In these OT’s Alice obtains keys which enable
her to open the commitment to X;. An OT,g\i<1 protocol supports up to k successive transfer
phases.

3.1.3 Correctness and Security Definitions

The correctness and security definitions are slight modifications of the definitions for the
OT{V case, which take into account the fact that the receiver’s operation can be adaptive.

The definition of correctness is simple: The sender’s input is X1, Xs,... Xn. At each
transfer phase the receiver’s input is 1 < I < N, and at the end of this transfer the receiver
should obtain X; and be able to output it. Note that this implies that the sender essentially
commits to his inputs at the beginning of the protocol and cannot change the X’s between
transfers.

The definition of security is separated into the issue of protecting the receiver and the
issue of protecting the sender, and is based on adapting the definition of oblivious transfer
to the adaptive case.

The Receiver’s Security - Indistinguishability: Since under normal operation the
sender gets no output from the protocol the definition of the receiver’s security in a OT,g\;l
protocol is rather simple: for any step 1 <t < k, for any previous items I,...,I;_1 that
the receiver has obtained in the first t — 1 transfers, for any 1 < I, I} < N and for any
probabilistic polynomial time B' executing the sender’s part, the views that B' sees in case the
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recetver tries to obtain Xj and in case the receiver tries to obtain Xp are computationally
indistinguishable given X1, Xs,... Xy.

The Sender’s Security - Comparison with Ideal Model: We make again a compar-
ison to the ideal implementation, using a trusted third party Charlie that gets the sender’s
input X1, Xo,... X and the receiver’s requests and gives the receiver the data elements she
has requested. The requirement is that for every probabilistic polynomial-time machine A’
substituting the receiver there exists a probabilistic polynomial-time machine A" that plays
the receiver’s role in the ideal model such that the outputs of A" and A" are computationally
indistinguishable. This implies that except for the X7, ,..., X7, that the receiver has learned
the rest of X1, Xo,... Xy are semantically secure.

3.2 The OT},, Protocols

The protocols use three cryptographic primitives, sum consistent synthesizers which are
introduced in Section 3.2.1, I-out-of-2 Oblivious Transfer (which were described in Sec-
tion 1.1), and commitments.

Commitment schemes are used to ensure that the sender does not change his inputs
between rounds. In a commitment scheme there is a commit phase which we assume to
map a random key k and a value z to a string commity(z), and a reveal phase which in our
case would simply be revealing the key k, which enables to compute . The commitment
should have the properties that given commity(z) the value z is indistinguishable from
random, and that it infeasible to generate open a commitment yielding two different z’s.
The commitment protocols we use are those of Chaum, van Heijst and Pfitzmann [14] in
Section 3.3 and of Naor [40] in Section 3.4.

3.2.1 Sum Consistent Synthesizers

The OT,g\;<1 protocols are based on encrypting the data elements using pseudo-random syn-
thesizers with a special property, which we call sum consistency. Each transfer phase reveals
information which is sufficient to decrypt just a single data element, but cannot be used in
conjunction with information from other transfer phases. Sum consistent synthesizers can
be constructed based on the decisional Diffie-Hellman assumption or based on a function
modeled as a random oracle. Section 3.3 presents an OT,i\f<1 protocol which uses synthesizers
based on decisional Diffie-Hellman assumption, and section 3.4 describes a construction of
an OT,g\;<1 protocol based on any sum consistent synthesizer.

Pseudo-random synthesizers

Pseudo-random synthesizers were introduced by Naor and Reingold in [42]. A pseudo-
random synthesizer S is an efficiently computable function of £ variables z1,..., s, that
satisfies the following property: given polynomially-many uniformly distributed assignments
to each of its input variables, the output of S on all the combinations of these inputs is
pseudo-random. Consider for example a synthesizer S(z,y) with two inputs. Then for
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random sets of inputs (z1,...,Zm), (Y1,.--,Ym), the set {S(zi,y;) |1 < i,5 < m} of m?
values is pseudo-random, i.e. indistinguishable from truly randoms3.

We use this property of synthesizers in order to encrypt the data elements. For example,
the elements can be arranged in a square and a random key can be attached to every row
and every column (say, key R; to row i, and key C; to column j). The element in position
(4,j) can be encrypted using the combined key S(R;,C;). It is ensured that the values of
some combined keys do not leak information about the values of other combined keys.

Sum consistent synthesizers

We require an additional property from the pseudo-random synthesizer functions that we
use: that they have the same output for any two input vectors for which the sum of the
input variables is the same. For example, for a two dimensional synthesizer S this implies
that for every x1,y1, T2, ys that satisfy z1 +y; = 22 + yo it holds that S(z1,y1) = S(z2,y2).
More formally, the requirement is as follows:

Definition 3.1 (sum consistent synthesizer) A function S (defined over m inputs in
a commutative group) is a sum consistent synthesizer if the following two conditions hold:

e S is a pseudo-random synthesizer.
e For every Ty,...,Tm, and every yi,...,Ym that satisfy 1" x; = Y. 1" y;, it holds that
S("ElamQa"'a:EM) = S(ylay%"'aym)

Construction 1 (Random oracle based sum consistent synthesizer) Let RO be a
function which is modeled as a random oracle. A sum consistent synthesizer can be realized
as

S(r1,z2,...,2m) = RO(x1+ 22+ - + )

This simple construction means that (1) it is plausible to assume that such functions exists,
and (2) suggests a heuristic approach for constructing them using a “complex” function
(e.g. SHA1). We prefer the number-theoretic construction that we present next, but on the
downside it requires exponentiations which are more complicated to compute than common
realizations of “complex” functions.

The following construction introduces sum consistent synthesizers based on the synthe-
sizers of [44] whose security relies on the decisional Diffie-Hellman assumption (the DDH
assumption is introduced and discussed in Section 3.3.1 below)*.

Construction 2 (DDH based sum consistent synthesizer) Let (Gg,g) be a group and
a generator for which the decisional Diffie-Hellman assumption holds. Let the input values
Z1,...,Zm be elements in {1,...,|G4|}. A sum consistent synthesizer can be realized as

S(z1,To,...,Ty) = grrrrom

3This is a special property which does not hold for any pseudo-random generator G, since it discusses
inputs which are not independent.

“In fact, in the usual representation these synthesizers have the same output for input vectors for which
the multiplication of the input elements is equal. It is possible to look at a different representation of the
inputs which results in the same outputs for sum consistent inputs. Both representations are sufficient for
out purposes.
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A sum consistent synthesizer S is used in adaptive oblivious transfer in the following
way. Suppose that the elements are arranged and encrypted as entries in a square, as
described above. Then for each transfer protocol Bob can choose a random value 7, and
let Alice obtain one of the values (Ry + r,Ra + r,...,R /5 + 7), and one of the values
(Ci—r,Cy—r,...,Cyx —r). Alice can compute S(R; +r,C; —r) = S(R;, C;) and obtain
the key that hides data element (, ). It should be endured that Alice is unable to combine
the values she obtains in different transfer phases, and this requirement complicates the
protocols a little.

3.2.2 The protocols

We present two types of OT,?;l protocols, protocols whose security depends on the Deci-
sional Diffie-Hellman assumption, and protocols which can be based on any sum consistent
synthesizer. We start with two DDH based protocols. These protocols are somewhat sim-
pler than the general construction, since the hardness of the discrete log problem prevents
some attacks which are possible in the general case. The DDH based protocols can be used
to transfer any number of elements. That is, they are good for OT,?;l with any £ < N,
and their efficiency does not depend on k. We then present a OT,?;I protocol based on any
sum consistent synthesizer. This protocol is secure for at most k transfers, where k is a
parameter which affects the complexity of the protocol.

3.3 Protocols based on the Decisional Diffie-Hellman Assumption

This section presents two protocols which are based on the decisional Diffie-Hellman as-
sumption. The protocols are very efficient, except for the fact that the basic operation they
use is an exponentiation in a group in which the DDH assumption holds.

3.3.1 The Decisional Diffie-Hellman assumption

The decisional Diffie-Hellman assumption (DDH assumption) is used as the underlying
security assumption of many cryptographic protocols (e.g. the Diffie-Hellman key agree-
ment protocol [20], the EIGamal encryption scheme [22], the Naor-Reingold pseudo-random
functions [44], and the Cramer-Shoup construction of a cryptosystem secure against chosen
ciphertext attacks [16]).

The DDH assumption is thoroughly discussed in [10]. The assumption is about a cyclic
group G and a generator g. Loosely speaking, it states that no efficient algorithm can distin-
guish between the two distributions (g¢, g, g%) and (g%, ¢°, g°), where a, b, c are randomly
chosen in [1, |G|].

Our protocols essentially encrypt the data elements using a key which is the output of
the DDH based pseudo-random synthesizer of [44].

3.3.2 A two-dimensional protocol

The following protocol arranges the elements in a two-dimensional structure of size v/ N x
Vv N. It uses OT,;/;J"l as a primitive. This primitive can either be realized recursively, or by k
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repetitions of a OTl‘/N protocol. In Section 3.3.4 we present a protocol which arranges the
elements in a log N dimensional structure and uses OT? as its basic primitive.

Let G be a group, and let G, be a subgroup of G generated by g in which the decisional
Diffie-Hellman assumption holds.

Protocol 3.1 B’s input is X1, X, ...Xn, where N = 2¢. Rename these inputs as {Xi; 1<
1,7 < \/]V} In each invocation of the protocol the receiver A would like to learn a different
element X; ;.

1. Initialization:

(a) B prepares 2/ N random keys
(Ri,R2,...,R/x) (C1,Co,...,Cyx)

which are random integers in the range 1,..., |Gyl
For every pair 1 < i,5 < VN, B prepares a commitment key K; j = g%iCi

a commitment Y; ; of X; j using this key, Y; ; = commitg, ; (X ;).

, and

(b) B sends to A the commitments Y1 1,...,Y 5 yx-

2. Transfer (this part takes place when A wants to learn an input element). For each
X, ; that A wants to learn the parties invoke the following protocol:

(a) B chooses random elements rg,r¢ (Tr is used to randomize the row keys, and r¢
is used to randomize the column keys).

(b) A and B engage in a OTY™ protocol on the values (Ry-rg, Ra-Tx, ..., Ryx-Tr).
If A wants to learn X; ; she should pick R;-rx.

(c) A and B engage in a OTY™ protocol on the values (C1-1¢,Ca-Tg,...,Cyx-ro).
If A wants to learn X;; she should pick Cj-rc.

(d) B sends to A the value g'/(Tr70),

(e) A reconstructs K;; as K;; = (g'/(rrre))(Rirr)(Ci7c) | and uses it to open the
commitment Y; ; and reveal X ;.

Theorem 3.1 Protocol 3.1 is an adaptive oblivious transfer protocol, which can be used for
N adaptive transfers.

Proof: The receiver can clearly use the protocol to obtain any value it wishes to receive
from the sender. The use of commitments ensures that the sender cannot change the input
elements from round to round.

The privacy of the receiver A is guaranteed by the security of the OTl‘/ﬁ , as is shown
by lemma 3.2. The privacy of the sender B is guaranteed by lemma 3.3.

Lemma 3.2 If the receiver’s privacy is not preserved in protocol 3.1, then it is also not
preserved in the OT,;/X_N1 protocol.
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Proof of lemma: Assume that the receiver’s privacy is not preserved in protocol 3.1.
Namely, there are two receiver’s inputs, X;, j,, Xi, j,, for which the sender B can distinguish
the distributions that he sees when the receiver tries to retrieve X;, j, or Xj, j,. In this case,
B can be used to compromise the receiver’s privacy in the 1-out-of-v/N OT protocol.

Assume, wlog, that the indexes of the two inputs are equal in one coordinate, say 11 = %o.
(Otherwise, it is possible to use a hybrid argument to show that the sender can distinguish
between two inputs which are equal in one of their coordinates. Namely, that the sender
can distinguish the case that the receiver’s A input is Xj, ;,, either from the case that A’s
input is Xj, j,, or from the case that her input is Xj, ;,.)

Now, in order to break the privacy of a receiver A’ in a given 1-out-of-v/N OT protocol,
run the part of the receiver in protocol 3.1 with B. In the oblivious transfer protocol
that corresponds to coordinate ¢ ask to learn the input that corresponds to 4; = i2. Then
run the receiver A’ in the 1-out-of-v/N OT protocol that corresponds to the j coordinate.
The output of the sender B distinguishes with non negligible probability between the two
possible inputs of A’. This concludes the proof of the lemma.

The security of the sender B is guaranteed by the decisional Diffie-Hellman assumption.
To show this we compare A to a party A’ who instead of running the transfer phases
simply asks and receives the keys for k¥ commitments, and prove that A does not gain more
information than A’. To complete the proof of security it is required to simulate A’ and
show that given the k keys she obtained she does not learn more than k committed values.
This statement seems trivial, but the formal proof of this property turns out to be rather
subtle (since it involves the the problem of selective decommitment) and is discussed in
Section 3.3.3. We provide here a proof that the receiver does not learn more than k keys,
and defer to Section 3.3.3 the discussion on learning more than k& input items.

Lemma 3.3 In k < N invocations of the above protocol, the receiver A does not learn more
information than a party A’ which can adaptively ask and obtain the commitment keys of k
elements.

Proof : The security of the OT,; f/ﬁ protocol ensures that in each invocation of the transfer
phase A can only learn a triplet of the following form Vi = (g'/™1"2, R;ry, Cjrs), where
r1,79 were chosen at random by B. This is equivalent to A learning a triplet V5 =
(¢fiCi/mr2 1 o), which has the same distribution. A can easily compute from this in-
formation the tuple V3 = (gfiCi, gfiCi / ™72y, r9) which of course does not contain more
information than the key g®Ci alone (which enables A to generate tuples in the same distri-
bution as that of V). The pseudo-randomness of the output of the DDH based synthesizer
ensures that A does not gain from k such keys more information than is available to A’
which simply asks and receives k keys. This concludes the proof of the lemma and of the
theorem. O

Complexity: The initialization phase requires B to compute all N commitment keys,
i.e. to compute N exponentiations (see in Protocol 3.2 a discussion on how to efficiently
implement these exponentiations by utilizing the structure of the exponents). Each transfer
phase requires two invocations of an OTl‘/ﬁ protocol. These can be realized by independent
OTY™ protocols (which each require O(v/N) initialization work by B). The k calls to OTY~
can also be realized by k calls to a OT, ,ﬂ protocol. A slight complication is the fact that
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in each transfer round the sender uses different keys rg, rc, and the transfer should be for
values of the form R; - rg or C; - ro, which are different in each round. Therefore, the
OT,;/;"’l protocol should not use commitments, but rather the sender should send, in each

round, encrypted values of {R; - rg, C; -rc}g. This does not enable the sender to change
from round to round the values that are transferred in the OT,; é\)’d protocol, since the OT,g\f<1
protocol employs commitments.

3.3.3 Solving the selective decommitment problem

To show that the receiver in protocol 3.1 does not learn more than k input items, it should
be proved that party A’ which sees N commitments and then asks for the keys of k of them
is not able to get information about more than k& committed values. A’ should, therefore,
be simulated by a party who can adaptively ask and get k of the committed values and
sees nothing else (as in the ideal model). Although there does not seem to be any obvious
way for A’ to take advantage of the fact that she sees the commitments before asking for
the keys, it is not trivial to prove that this is indeed the case. The problem is that it is
hard to simulate the operation of A’ because it is unknown at the time of generating the
commitments which of them she would like to open. See [21] for a discussion of this issue.

To enable the simulation it should be possible to open in the simulation any commitment
to any value. Luckily, in the scenario of OT; ,?;1 there is a way to enable this property by
amending the protocol in the following way. (For the sake of clarity we do not describe
these modifications in the body of the protocols in the paper.)

e In the beginning of the protocol the receiver A should send to B two values g1,92 € G
and prove (in zero-knowledge) that she knows the discrete log of gy to the base g;.
(In the simulation we would extract log,, g for the values g1, g2 that would be used
there).

e B would use commitments of the form g¢¢3, which were suggested in [14]. (These
commitments can be opened in an arbitrary way in the simulation, where log, g2 is
known). B commits to the value X in the following way: (i) chooses a random Y7
and computes C7 = gf( d g;/ T: (ii) takes the output of the synthesizer and uses it as a
key to encrypt (X;,Y7) by xoring it. (3) sends the two results (C; and the encrypted
(X[, Y[)) to A.

In the protocol, when the receiver computes the output of the synthesizer she can use
it to compute X; and use the commitment to verify the result. In the simulation it is
possible given X to find a Y7 which would be consistent with it, and give an output of the
synthesizer which “decrypts” these values.

More formally, suppose that there is a receiver A’ which receives all the commitments,
asks for the keys of k of the commitments, and is able to distinguish from random more
than k of the inputs. This A’ can be used to break the security of the commitment scheme
in the following manner. The reduction first extracts from A’ the discrete log of go to the
base g;. This information enables to open any commitment to any value. Then, the N
commitments, of the form ((X7,Y7) ® Ky, Cr) (where the K;’s are random keys which are
unknown to us), are sent to A’. When A’ asks to open commitment I, we can choose what
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value X7 to reveal for this commitment, compute the appropriate values of Y7 and K7, and
send Ky to A'. If, after receiving k such values, A’ is able to distinguish from random more
than k& committed values, we can use her output to distniguish from random one of the
committed values.

3.3.4 A protocol using OT?

The following protocol constructs OT}Y,; using direct invocations of a simple OT? protocol.

Protocol 3.2 B’s input is X1, Xo, ... X, where N = 2¢. In each invocation of the protocol
the receiver A would like to learn a different element Xi.

1. Initialization:

(a) B prepares £ random pairs of keys
(af,a1), (a3, a3), -- - (ap, ap)
where for all 1 < j < /¢ and b € {0,1} each ag’- is a random integer in the range
1,...,|Gql.
Foralll1 <I < N let (11,19, ...1¢) be the bits of I. B prepares a commitment key
K; = gHﬁ:laiﬁ , and a commitment Y1 of X using this key, Y1 = commitg, (X1).
(b) B sends to A the commitments Y1,Ys,...Yyn.

2. Transfer: For each X that A wants to learn the parties invoke the following protocol:

(a) B chooses random elements r1,...,rg. Element r; will be used to randomize the
keys of the i’th coordinate.

(b) For each 1< j < £, A and B engage in a OT? protocol on the strings (a?rj, a}rj).
If A wants to learn X; she should pick a;-jrj.
(c) B sends to A the value g'/™72t.

(d) A reconstructs Ky as K; = (gl/(ﬁw"ﬂ))(ai
commitment Y7 and reveal X7.

1”)"'(“7”), and uses it to open the

Theorem 3.4 Protocol 3.2 is an adaptive oblivious transfer protocol, which can be used for
N adaptive transfers.

Proof: It is clear that the receiver can obtain any value it wishes to receive in the Protocol.
The privacy of A is guaranteed by the privacy of the OT? protocols, and the proof is similar
to that of lemma 3.2 . The receiver A is also ensured by the commitments that the sender
B cannot change the values of the X;’s between transfers. The security of B is guaranteed
by the decisional Diffie-Hellman assumption, and is proven identically to the security of the
sender in protocol 3.1.

"Note also that B can set every a? to be equal to 1 without affecting the security of the system. The
gain from this is a reduction in the size of the keys that B needs to keep.
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Complexity: The initialization phase requires B to compute all N commitment keys.
This can be done with exactly N exponentiations if the order in which the commitment keys
are computed follows a Gray code (i.e. the Hamming distance between each two consecutive
words is 1). The computation can be further improved by using efficient techniques for
raising the same number to many powers, or for raising many elements to the same exponent
(see [38] for a survey of such techniques). It is an interesting problem to find a way to utilize
the special structure of the exponents (being all the multiplications of all the subsets of £
elements) to compute the N = 2¢ commitment keys more efficiently.

The transfer part of the protocol requires £ = log N invocations of an OT? protocol. In
addition A and B should each compute a single exponentiation.

3.4 Protocols Based on Any Sum Consistent Synthesizer

This section presents a OT,g\f<1 protocol which can be based on any sum consistent synthe-
sizer. We first describe a protocol which is insecure, examine it, and construct a secure
protocol.

An insecure protocol

The following protocol is insecure. The protocol is based on organizing the input elements
in a matrix, encrypting each element with the corresponding row and column keys, and
letting the receiver learn the keys of k locations.

Protocol 3.3 B’s input is {z;;|1 < i,5 < VN}, where N = 2°. Let S(z,y) be a sum
consistent synthesizer with two inputs.

1. Initialization:

(a) B prepares 2/ N random keys
(Ri1,Ro,...,R/5) (C1,0C%,...,Cyx)

For every pair 1 <14,5 < VN, B prepares a commitment key K; ; = S(R;,Cj),
and a commitment Y; ; of X; ; using this key, Y; ; = commitk, , (X ).

(b) B sends to A the commitments Y1 1,...,Y 5 yx-
2. Transfer: for each X; ; that A wants to learn the parties invoke the following protocol:
(a) B chooses random elements rp, T, such that rr+re = 0 (g is used to randomize

the row keys, and r¢ is used to randomize the column keys).

(b) A and B engage in a OTY'™ protocol on the values (Ry+7g, Ro+7g, ., R/y+7g).
If A wants to learn X; ; she should pick R; + Tg.

(c) A and B engage in a OTY™ protocol on the values (C1+r¢, Cotre, ..., Cuatre).
If A wants to learn X; ; she should pick C; + r¢.

(d) A reconstructs K;; as K;j = S(R; + m&,Cj + r¢)), and uses it to open the
commitment Y; ; and reveal X ;.
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The security problem: The above protocol seems to be correct and secure. It enables A
to learn any value she wishes and protects her privacy. However the protocol is insecure for
B because A can combine information she learns in different invocations of the protocols,
and use linear relations between the keys to learn more keys than she is entitled to. In
particular, she can use the relation (R; + C;) + (Ry + Cjr) = (Ry + C;) + (R; + Cjr). She
can thus ask to learn the keys of K; j, Ky j, K; j» and use them to compute the key K ;.

The secure protocol

In order to transform the above protocol to be secure, we use a mapping which ensures
that no linear relations exist between the keys of different entries. In particular, we use the
following construction of a set of matrices:

Construction 3 (k-out-of-N relation free matrices)
o Let My, ..., M, bet matrices of size VN x /N, each containing the elements1,...,N.

e Define a 2tv/N dimensional vector space V, whose coordinates correspond to the rows
and columns of each of the matrices. Denote the coordinates as {(i,7,k) |1 < i <
t,1<57<2,1<:< \/N} (i.e. i represents the matriz, j is either a row or a column,
and k is the row, or column, indezx).

e For each element x denote its row and column in matriz i as R;(x),C;(x). Construct
a vector vy, € V in which the coordinates that correspond to the locations of x in the
matrices are set to 1. Le., coordinates (i,1, R;(x)) and (i,2,C;(z)) are 1 for1 <i <t,
and all other coordinates are 0.

o The t matrices are k-out-of-N relation free if the vectors corresponding to any k + 1
elements are linearly independent.

The motivation for this construction is to allocate keys to inputs according to a mapping
defined by a relation free set of matrices. In this mapping there are no linear relation between
keys and the resulting protocol is good for oblivious transfer with adaptive queries. The
security of the protocol is based the following lemma.

Lemma 3.5 A randomized mapping of N elements to t matrices, where t = M—i—l =

log(v'N/k)
%7 is with high probability k-out-n relation free.
Proof: The vectors contain 2tv/N coordinates. Call the coordinates that correspond to
the row (or column) keys of a certain matrix a region. The vectors contain 2¢ regions, each
with v/N coordinates. Each vector has in each region a single coordinate with a ‘1’ value.

Consider a set of k + 1 linearly dependent vectors. Then each coordinate either has no
vectors in which it is set to 1, or it is set to 1 in at least two vectors. Therefore in each region
the non-zero values of all k + 1 vectors are concentrated in at most (k + 1)/2 coordinates.

Since the mapping to locations in matrices is random, the probability that this property
holds for a single region is at most (;\iﬁl)(k“)/ 2. The probability that it holds for all

N
k41

regions is therefore bounded by ( 5 \/N)(’H'l)t. Apply the probabilistic method and require
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this probability to be smaller than the inverse of the number of subsets, 1/( k]il) ~ (EELykHL

This holds for ¢ > (log(eN/(k + 1))/log(2V'N/(k + 1)) = %. Therefore, setting
— log(N/k) ; -

t= g (VN /A) + 1 satisfies the requirement of the theorem. O

It should be interesting to come up with an explicit construction of k-out-n relation free
matrices.

An overview of the protocol

On a high level, the transformation of protocol 3.3 is as follows. In the initialization phase
B takes a k-out-of-N relation free construction of ¢ matrices and maps the N elements to
the ¢ matrices according to the construction (we use the random construction of lemma 3.5).
He publishes the mapping and makes it available to A. B chooses random keys for every
row and column from each matrix (a total of 2¢y/n keys). The commitment key for each
element is the output of a sum consistent synthesizer with 2¢ inputs, which are the keys
corresponding to the rows and columns to which the element is mapped in each of the
matrices.

In each transfer phase B chooses 2t random hiding elements r; whose sum is 0. A and
B run 2t OTf/ﬁ protocols, which let A learn each of the relevant inputs to the synthesizer,
each summed with the corresponding random element 7;. The sum of these values equals
the sum of the inputs that generated the key to the commitment that hides X;, and so A
is able to open this commitment,

The protocol

Protocol 3.4 (Adaptive oblivious transfer based on any sum-consistent synthesizer)
B’s input is {z; ;|1 < 1i,j < VN}, where N = 2¢. B maps the inputs into t square matrices
independently at random. Let '} denote the row into x is mapped in matriz m, and let x7
denote the column into x is mapped in matriz m.

Let S(z,y) be a sum consistent synthesizer with two inputs.

1. Imitialization:

(a) B prepares 2tv/N random keys
(R%7R%7"'7‘R}/ﬁ) (C%’C%7"'7C\l/ﬁ)""’(R?L’Ré""’Rf/ﬁ) (C{’C§7""Cf/ﬁ)
For every pair 1 <14,j < /N, B prepares a commitment key

Kij = S(R%wi,')l C ...’wai,j)éa’ Cai,j)tc)

DR’ (@i)e’

That is, the output of the synthesizer on the row and column keys that correspond
to the locations of the input in each of the matrices. B prepares a commitment
Y;j of Xi; using this key, Y; j = commitr, ; (X ;)-

(b) B sends to A the commitments Y1 1,...,Y 5 yx-

2. Transfer: for each X;; that A wants to learn the parties invoke the following protocol:
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(a) B chooses random elements ri,rl, ... .rt L. such that their sum is 0. (r'T is

used to randomize the row keys of matriz m, and r is used to randomize the
column keys of matriz m).

(b) For every matriz 1 <m <t A and B engage in the following protocols:
e A OTY™ protocol on the values (RY* + r™ Ry + 1™ ..., T+ If A
wants to learn X; ; she should pick Rgij)m + ri.

e A OTY™ protocol on the values (CT* + r™ C&* + 1T, ... OO+ rlh). If A
wants to learn X; ; she should pick C™(z; ;)7 + rit.

(c) A reconstructs K; ; as

Ki,j = S(Rl )}{ + 7'112, C(l

(xi,5 Ti,j

)IC +Té,...,RE )gg—l—rz’chzg)tc +7"tc)

Ti,j
and uses it to open the commitment Y; ; and reveal X ;.

The following theorem states that protocol 3.4 is secure if enough matrices are used
(fortunately, if k£ is not too close to v N very few matrices are needed).

: log(N/k log N—41 o
Theorem 3.6 The above OTY,, protocol with t = ﬁ\/_ﬁL/kL) +1= %gmgk_k matrices is
secure.
Note that this yields a construction for any k = o(v/N). In particular, if & < N/ it is

enough to use only 4 matrices, and k < N/3 requires only 5 matrices.

Proof: The privacy of the receiver is preserved since each OTl‘/N protocol preserves her
privacy. The properties of these protocols ensure also that in each invocation of a OTl‘/ﬁ
protocol the receiver learns only a single item of the sender’s input. Consequently, in every
transfer stage the receiver learns one row key and one column key of each matrix, where
each of these keys is added to a random value and the sum of all the random values is zero.
The receiver learns, therefore, a single linear combination of all the row and column keys.
Note that we do not assume that in each run of the transfer protocol A has learnt the sum
of keys which correspond to one of the elements. In each transfer protocol she could have
obtained the sum of keys of her choice, not necessarily corresponding to an element X7, but
the equations she learnt span k equations which correspond to elements X;.

Assume that the receiver has run the transfer protocol k times, learned k linear relations
of the keys, and used them to learn the commitment keys of k+1 elements. This contradicts
the k-out-of-N relation freeness property of the matrices. O

4 Applications

This section describes the basic details of several applications of oblivious transfer and of
oblivious transfer with adaptive queries.

4.1 Applications of 1-out-of-N OT

Two applications of 1-out-of-N oblivious transfer are described here. Another application
is oblivious polynomial evaluation [41]
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4.1.1 PIR to SPIR transformation

The problem of allowing search in databases so that the database owner does not learn
what is being searched has received a great deal of attention. A system that allows a user
to access a database consisting of N words (W1, Wa, ... Wy), read any word it wishes with-
out the owner learning which word was accessed, and use o(N) communication, is called
PIR (for Private Information Retrieval) [15]. There are various proposals for implementing
such schemes, where the emphasis is on the communication complexity. Some of the pro-
posals require that the user communicates with several servers maintained by the database
owner where these servers are certified somehow not to communicate with each other. This
assumption (of non-communication replicated data-bases) was shown to be unnecessary by
Kushilevitz and Ostrovsky [35] where a PIR scheme with a single server was proposed —
where the user’s security depends on the Quadratic Residuocity assumption modulo a Blum
integer and the communication complexity is O(N¢m) (where m is the security parameter,
i.e., the length of a number that is hard to factor). Another proposal of such a scheme is
by Cachin et al [12] where the communication complexity is just m.

More recently attention was given to the question of protecting the database as well, i.e.,
that the user will not learn more than one word of data (or as many words as he or she paid
for). A PIR scheme that enjoys this property is called SPIR. In [25] a transformation of any
PIR scheme into a SPIR scheme was proposed at the cost of increasing the number of servers
(and introducing the separation of servers assumption). Kushilevitz and Ostrovsky [35] too,
suggest an adaptation of their single server PIR protocol to enable the receiver to learn just
a single element of the database, and transform it to a SPIR protocol by combining a zero-
knowledge proof in which the receiver proves that it followed the protocol. We show here
that the combination of 1-out-of-N oblivious transfer with any PIR protocol provides a SPIR
protocol which does not require to add any new servers and and requires relatively little
work on behalf of the parties involved. In particular, the overhead is just the sum of the
overheads of the PIR and oblivious transfer protocols, and is reasonable for any application
for which the overhead of PIR is reasonable.

It is not hard to see the connection between the PIR/SPIR setting and the 1-out-of-
N OT setting. As described in table 1, both PIR and OT protocols, provide privacy for
the receiver, but PIR protocols emphasize communication complexity, whereas oblivious
transfer protocols emphasize the server’s privacy. One can regard a SPIR construction as
a combination of l-out-of-N OT and PIR protocols, which provides low communication
complexity, and privacy for both parties. SPIR is essentially oblivious transfer with o(N)
communication. The important feature of Protocol 2.1 for 1-out-of-N OT is that for the
receiver to obtain the value of the desired X; she does not need all of Y7,Y5,...Yyn but
only Y7. Therefore if instead of step 3 in Protocol 2.1 the sender and the receiver perform a
PIR reading of Y1,Y>, ... Yy, then the receiver can get sufficient information without giving
the sender any information about the value she is interested in. The added communication
complexity to the PIR protocol is the log N invocations of the 1-out-of-2 OT protocol. The
evaluations of Fx do not add to the communication complexity, but add to the work done
by the database. Therefore one can use this protocol to transform any PIR protocol to a
SPIR protocol without increasing the number of databases.
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PIR | OT SPIR
Receiver Privacy + + +
Sender Privacy + = +
Communication | o(N) | O(N) o(N)

Table 1: A comparison of PIR, oblivious transfer, and SPIR. protocols.

PIR and oblivious transfer with adaptive queries

OTY protocols enable an efficient transformation of any PIR protocol to a SPIR protocol.
The adaptive oblivious transfer protocols we introduced would enable even more efficient
future transformations from PIR to SPIR, by transforming a protocol for k& adaptive invoca-
tions of PIR to a protocol for k adaptive invocations of SPIR (the problem is that currently
there are no adaptive PIR protocols, but when such a protocol is introduced, OT,?;l would
enable to immediately transform it to a SPIR protocol).

PIR vs. oblivious transfer

On a more practical level, we believe that it is preferable to use the computation efficient
OTY and OT},, protocols rather than the communication efficient PIR protocols. Oblivious
transfer protocols, including the protocol that can handle adaptive queries, require O(N)
communication only at the end of the initialization phase and before the transfer phases
begin. For many applications this communication overhead is not an issue. Communication
of Gigabytes of data is cheap and simple, using detachable storage devices (such as DATs
or DVDs) or fast communication networks. In contrast, single server PIR protocols [35, 12]
are very costly to implement since they require O(NN) exponentiations per transfer.

4.1.2 Oblivious sampling

In this section we briefly describe an application of 1-out-of-N OT protocols to a problem
suggested by Andrei Broder.

Consider the following scenario: Cold Fusion (Trademark) is a search engine claiming
to be the largest on the west coast. Alice would like to check this claim and measure the
number of URLs indezed by Cold Fusion, i.e., web pages which can be searched for using
Cold Fusion’s search interface. She might also like to check the overlap between the pages
indexed by Cold Fusion and by other search engines, and this task also requires a random
sample of the pages indexed by Cold Fusion (see [9]). One possibility is for Cold Fusion to
give Alice the list of the URLs it has indexed; Alice then will make sure that all (or most of)
these URLs are indeed indexed actively, i.e. that the corresponding page can be retrieved
in a search (it is much easier to gather many URLs without indexing the content). This can
be done by sampling a few of them, retrieving the corresponding page and searching for the
page via the public interface of Cold Fusion. The problem is of course that the list of URLs
is a trade secret and Cold Fusion will not reveal it even to a study that will declare it to
be the largest search engine. Therefore we are looking for a sampling procedure which will
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allow Alice to select a few URLs from the list, and then search for them in Cold Fusion’s
web interface. The selection procedure must

e Keep most of the list (the part not sampled) secret from Alice.

e Prevent Cold Fusion from learning which URLs were selected - otherwise it can quickly
add them to the active index. (There is a great difference between finding and storing
web pages on one hand, and indexing them so that they can be searched for through
a search engine’s interface, on the other hand. Alice wants to check how many web
pages are searchable, and therefore should keep the URLs she selected secret from
Cold Fusion, and then quickly search for them through its web interface).

l-out-of-N OT (and in particular k-out-of-N OT protocols) can be used for oblivious sam-
pling, i.e. to let the receiver sample a random element from a large set of elements known
to the sender, without giving the sender any information about the item that the receiver
chooses. In the case of the search engines application this enables Alice and Cold Fusion
to solve their problem at a small cost, even if Cold Fusion’s databases consists of hundreds
of millions of pages. If Cold Fusion claims to have indexed N URLs it should feed them as
the input X71,... Xy to the l-out-of-N OT protocol, whose main computational overhead
is logarithmic in V.

The only problem remaining is the duplication problem — what if Cold Fusion duplicates
some of the URLs in order to claim a larger set (namely, taking a database of N’ URLs,
and creating a database of N = ¢N' URLs by duplicating each URL ¢ times). This can
be solved using a hash tree structure, but there is also a very simple solution using the
following procedure — for some of the sampled URLs Alice does the following: she sends the
URL to Cold Fusion and asks it what was the index I that Alice chose when she sampled
the URL. If Cold Fusion does not answer correctly — then Alice can conclude that Cold
Fusion was cheating by duplicating URLs.

4.2 Applications of Oblivious Transfer with Adaptive Queries

Protocols for oblivious transfer with adaptive queries are useful when a large database
should be queried adaptively while hiding the queries from the database owner, and hiding
the contents of the database (exept for the answer for the queries) from the party making
the queries. Following are some examples for such applications.

Oblivious search: Bob owns a database which Alice wants to search. Suppose first that
the database is sorted and Alice would be using binary search. The two parties can invoke a
OTlf)Vg ~Nx1 protocol to perform this search without revealing to Bob the element that Alice
is searching for, and while limiting Alice’s knowledge to log N elements.

Alternatively, the data elements can be ordered by a two-level hash, using two hash
functions. The first function maps data elements into bins and the second function further
maps the elements that were mapped to the same bin (this is how perfect hash functions [24]
are constructed).

Note that the hash function that Bob uses in the first stage can be made public, but
the hash functions of the second stage should be kept secret from Alice since they disclose
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information about Bob’s inputs. Protocols for oblivious transfer with adaptive queries can
be used to let Alice obliviously determine whether an element is in the table. She first
uses the hash function of the first stage to compute by herself the bin to which the element
should have been mapped. She then performs an oblivious transfer to get the (second) hash
function that is used in that bin, and then another oblivious transfer to check the final
location into which the element should have been mapped.

Medical data: Suppose that Bob holds a database of medical information. For propri-
etary or privacy reasons Bob does not want to reveal the whole database to other parties
but he is willing to let them use it for their research. Alice wants to conduct a research
about a certain disease and has a list of patients that have this disease. She wants to search
Bob’s database for records related to these patients, but cannot reveal their identities to
Bob. Furthermore, whenever she finds certain information on one of her patients, she wants
to examine records of related patients (e.g., family members or patients which were treated
similarly). Alice and Bob can use OT}Y,; to enable Alice to gather the relevant information
from Bob’s database.

Patent database: Suppose that Bob holds a patent database. He does not want to give
the whole database to other parties, but is willing to let other people search the database
using a World-Wide-Web interface. Alice has a bright idea which she wants to patent and
as a first step she wants to conduct a search for related patents. This search is adaptive:
after she retreives a certain patent Alice might ask to read patents which are referenced
by this patent. She is afraid that if she conducts the search on Bob’s database he might
learn what she is interested in and maybe reveal her idea. Alice and Bob can use OT}Y,; to
enable Alice to search Bob’s database without revealing her queries to him.
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