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1 Introdu
tion

Oblivious Transfer (OT) proto
ols allow one party, the

sender, to transmit part of its inputs to another party,

the 
hooser, in a manner that prote
ts both of them:

the sender is assured that the 
hooser does not re
eive

more information than it is entitled, while the 
hooser is

assured that the sender does not learn whi
h part of the

inputs it re
eived. OT is used as a key 
omponent in

many appli
ations of 
ryptography. Its 
omputational

requirements are quite demanding and they are likely

to be the bottlene
k in many appli
ations that invoke

it.

1.1 Contributions. This paper presents several

signi�
ant improvements to oblivious transfer (OT)

proto
ols of strings, and in parti
ular: (i) Improving

the eÆ
ien
y of appli
ations whi
h many invo
ations

of oblivious transfer. (ii) Providing the �rst two-round

OT proto
ol whose se
urity analysis does not invoke

the random ora
le model. In more detail, the paper

dis
usses the following issues:

� Oblivious transfer proto
ols with low amortized

overhead, and a bandwidth/
omputation tradeo� for

oblivious transfer, are dis
ussed in Se
tion 3. In

parti
ular we are able to break the \one exponenti-

ation for ea
h OT" barrier and de
rease the num-

ber of exponentiations required by any desired fa
-

tor, at the 
ost of in
reasing the 
ommuni
ation

overhead. For example, in Se
tion 3.2.1 we show a

spe
i�
 example requiring a single exponentiation

per eight invo
ations of 1-out-of-2 oblivious trans-

fer (OT

2

1

), using online 
ommuni
ation of 400 bytes

per OT

2

1

. Another appli
ation (Se
tion 3.1) is a

OT

N

1

proto
ol whose amortized overhead is just a

single exponentiation (regardless of the size of the

sender's input), and O(N) 
ommuni
ation (as in

all previous OT

N

1

proto
ols).

The analysis of this 
onstru
tion relies on model-

ing hash fun
tions as truly random fun
tions (the

�
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random ora
le assumption) as well as the 
ompu-

tational DiÆe-Hellman Assumption.

� A two round 1-out-N OT proto
ol whi
h requires

a �xed number of exponentiations on the 
hooser's

side and O(N) exponentiations on the sender's

side is des
ribed in Se
tion 4. The analysis of

the 
onstru
tion relies on the De
isional DiÆe-

Hellman Assumption. This is the �rst two-round

OT proto
ol whose se
urity analysis does not rely

on the random ora
le assumption.

1.2 Motivation. All known oblivious transfer pro-

to
ols require \publi
 key" operations (e.g. trapdoor

fun
tions), that are typi
ally implemented using mod-

ular exponentiations, whi
h are 
omputationally inten-

sive tasks

1

. The result of Impagliazzo and Rudi
h [20℄

implies that it is unlikely that oblivious transfer 
ould

be based on more eÆ
ient one-way fun
tions or other

private-key 
ryptographi
 primitives. Our working as-

sumption is that su
h private-key fun
tions are substan-

tially more eÆ
ient than oblivious transfer, and, there-

fore, we wish to minimize the use of oblivious transfer.

Our work is motivated by appli
ations whi
h require

two or more parties to perform many oblivious transfers

of strings. Su
h appli
ations in
lude for example Yao's

proto
ol for se
ure two-party 
omputation [34, 19℄, and

proto
ols for OT

N

1

and for oblivious evaluation of poly-

nomials [24℄, whi
h use redu
tions to many invo
ations

of OT

2

1

. The 
omputation overhead of oblivious trans-

fer is often more demanding than its 
ommuni
ation

overhead. For example, the analysis of a re
ent priva
y

preserving proto
ol for 
omputing the ID3 data mining

algorithm [22℄ shows that the 
ommuni
ation overhead


an be done in a matter of se
onds, while the 
ompu-

tation takes several minutes. This is a good 
ase for

providing a bandwidth/
omputation tradeo�. As a spe-


i�
 example 
onsider a re
ent 
onstru
tion of priva
y-

preserving proto
ols for au
tions [25℄. We examine a

representative s
enario of this proto
ol in Se
tion 3.2.1

and demonstrate that using the tradeo� we 
an redu
e

the time that it takes to 
omplete the proto
ol by a

fa
tor of 32 (e.g., for some reasonable 
hoi
e of the pa-

rameters the time is redu
ed from half an hour to less

than a minute). Another appli
ation is a proto
ol for 1-

out-of-N oblivious transfer proto
ol whi
h requires only

a single exponentiation.

1

For example, about 50 exponentiations of 1024 bit numbers


an be 
omputed in a single se
ond, on a Pentium III PC.

1



2

The bandwidth/
omputation tradeo� is ideal in s
e-

narios whi
h require the use of proxy oblivious transfer {

a three party variant of oblivious transfer de�ned in [25℄.

In this proto
ol the role of the 
hooser is divided be-

tween two parties: a 
hooser whi
h 
hooses whi
h of

the sender inputs is learned, and a proxy whi
h learns

this item. The tradeo� is parti
ularly useful if the party

playing the 
hooser in the proxy oblivious transfer pro-

to
ol has limited 
omputational resour
es (for example,

if it is a handheld devi
e), sin
e the 
omputational over-

head of the 
hooser is greatly redu
ed, and she 
an a
tu-

ally 
ompute all the exponentiations in a prepro
essing

step. The in
rease in 
ommuni
ation a�e
ts only the

sender and the proxy.

Two round oblivious transfer with no ran-

dom ora
le assumptions: Previous oblivious trans-

fer proto
ols of strings require at least three rounds of

intera
tion, or depend on a se
urity analysis whi
h mod-

els some fun
tion as a random ora
le. In se
tion 4 we

present the �rst two-round oblivious transfer proto
ol

whose se
urity does not depend on the random ora
le

assumption. Re
ent dis
ussions demonstrate that mod-

eling spe
i�
 fun
tions as random might not be justi-

�ed [6, 7, 15℄, and therefore motivate our 
onstru
tion.

1.3 Related Work.

Redu
ing 
omputational work via amortization has

been done in several 
ontexts in 
ryptography. The

best results are in the area of signatures: it is possible

to verify several modular exponential equations (and in

parti
ular signatures) with a number of exponentiations

proportional to the se
urity parameter (See [1, 23, 29℄).

The only example we are aware of where amortization

redu
es the 
ost to below an exponentiation per signa-

ture generation is Bat
h RSA [18℄.

In this paper we are 
on
erned with 1-out-of-2

Oblivious Transfer (OT

2

1

). This primitive was suggested

by Even, Goldrei
h and Lempel [17℄, as a generalization

of Rabin's \oblivious transfer" [27℄. There have been

many suggestions for implementing OTs; the one that

is our starting point is by Bellare and Mi
ali [2℄.

This proto
ol 
an be viewed as an instan
e of the

EGL paradigm [17℄ for designing oblivious transfer

proto
ols based on publi
-key 
ryptosystems, where the


ryptosystem in question is El Gamal. The two-round

Bellare-Mi
ali proto
ol as presented in [2℄ is not known

to be se
ure

2

. To the best of our knowledge no analysis

of it using random ora
les has appeared previously.

Regarding 1-out-of-N OT proto
ols, Naor and

Pinkas [24℄ have shown how to implement them using

logN parallel invo
ations of OT

2

1

's proto
ols. This 
on-

stru
tion requires logN exponentiations, 
ompared to

the amortized overhead of a single exponentiation of the

proto
ol of Se
tion 3.1 (the 
ommuni
ation overhead of

2

However if the two strings of the sender are random, then

the proto
ol does not leak both of them. There are also provable

alternatives using more rounds for a proof of knowledge

both proto
ols is O(N)). We apply this algorithm to

obtain some variants of the proto
ols presented in this

paper (Remark 3.1 and Se
tion 4.1).

Oblivious transfer is related to Private Information

Retrieval (PIR). A dis
ussion of this relation appears in

Remark 3.4.

2 Preliminaries

2.1 De�nitions of Se
urity - Oblivious Transfer

In this paper we are 
on
erned with 1-out-of-2 Oblivious

Transfer (OT

2

1

) where one party, the sender, has input


omposed of two strings (M

0

;M

1

), and the input of a

se
ond party, the 
hooser, is a bit �. The 
hooser should

learn M

�

and nothing regardingM

1��

while the sender

should gain no information about �. The de�nition

of 1-out-of-N oblivious transfer is a straightforward

generalization.

In order to de�ne se
urity we dis
uss separately

prote
ting the sender and the 
hooser. Sin
e we 
an-

not o�er both the sender and the 
hooser un
onditional

(information-theoreti
) prote
tion, we o�er only 
ompu-

tational prote
tion for (at least) one of them. We start

by de�ning the se
urity for the proto
ols presented in

Se
tion 3, where the sender is prote
ted 
omputation-

ally and the 
hooser information-theoreti
ally:

The Chooser's Se
urity: Given that under nor-

mal operation the sender gets no output from the pro-

to
ol the de�nition of the 
hooser's se
urity is simple:

for any �; � 2 f0; 1g and for any adversary B

0

exe
uting

the sender's part, the views that B

0

sees in 
ase she tries

to obtainM

�

and in 
ase the 
hooser tries to obtainM

�

are statisti
ally indistinguishable given M

0

and M

1

.

The Sender's Se
urity: We make the 
ompar-

ison to the ideal implementation using a trusted third

party that re
eivesM

0

andM

1

from the sender's inputs,

and re
eives � from the re
eiver, and tells the 
hooser

M

�

. Our requirement is that for every distribution on

the inputs (M

0

;M

1

) and any adversarial probabilisti


polynomial-time ma
hine A substituting the 
hooser,

there exists a simulator { a probabilisti
 polynomial-

time ma
hine A

0

{ that gets to play the 
hooser's role

in the ideal model and re
eives the same a priori infor-

mation about M

0

and M

1

as A, su
h that the outputs

of A and A

0

are 
omputationally indistinguishable to a

polynomial time distinguisher that is givenM

0

andM

1

.

Sin
e we are interested in simultaneous exe
utions

of many 1-out-of-2 OT proto
ols we should 
larify the

se
urity in this 
ase. If n simultaneous proto
ols are

exe
uted, then the 
hooser's se
urity is that for any

~�; ~� 2 f0; 1g

n

, the distribution the sender sees when

the input to the 
hooser is ~�, or is ~� , is statisti
ally

indistinguishable. As for the sender's se
urity, we

should take into a

ount the fa
t that the adversary


ontrols a subset of the 
hoosers. The de�nition requires

that for any distribution on the inputs

~

M

0

and

~

M

1

, any

subset S � f1; : : : ng, and any adversarial (probabilisti


polynomial time) ma
hine A that 
ontrols the 
hoosers
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in a subset S of the proto
ols, there exists a probabilisti


polynomial-time ma
hine A

0

that gets to play the


hooser's role for the subset S in the ideal model and

re
eives the same a priori information about

~

M

0

and

~

M

1

as A, su
h that the outputs of A and A

0

are


omputationally indistinguishable to a polynomial time

distinguisher that is given

~

M

0

and

~

M

1

.

2.1.1 De�nitions for the 
onstru
tion whi
h

does not rely on random ora
les. In 
ontrast to

the above de�nition, the proto
ols in Se
tion 4 o�er the

sender information-theoreti
 se
urity and the 
hooser

only 
omputational se
urity, as de�ned below.

The Chooser's Se
urity: For any �; � 2 f0; 1g

and for any probabilisti
 polynomial time adversary B

0

exe
uting the sender's part, the views that B

0

sees

in 
ase the 
hooser tries to obtain M

�

and in 
ase

the 
hooser tries to obtain M

�

are 
omputationally

indistinguishable given M

0

and M

1

.

The Sender's Se
urity: We make the 
omparison

to the ideal implementation, using a trusted third

party that re
eives M

0

and M

1

from the sender's

inputs, and re
eives � from the re
eiver, and tells

the 
hooser M

�

. Our requirement is that for every

distribution on the inputs (M

0

;M

1

) and any adversarial

(not ne
essarily polynomial-time) A substituting the


hooser, there exists a simulator { again not ne
essarily

polynomial-time - A

0

that gets to play the 
hooser's role

in the ideal model and the same a priori information

about M

0

and M

1

as A, su
h that the outputs of A and

A

0

are statisti
ally indistinguishable given M

0

and M

1

.

2.1.2 Other issues. The above de�nitions do not

address the issue of whether the sender is 
ommitted

to his input prior to and independently of the 
hooser's

inputs, i.e. the de�nition does not disallow the possibil-

ity that the values fMg

i

might depend on �

0

j

(this 
an

happen for instan
e in Proto
ol 3.2, see Remark 3.3).

Although this requirement is signi�
ant, we do not re-

quire it sin
e it seems that it is best to handle this issue

at the level of the appli
ation above the OT, as 
an be

done in the au
tions ar
hite
ture of [25℄. Similarly, an-

other issue not handled is whether A \knows" whi
h

input it has 
hosen, i.e. whether � (for whi
h A learns

M

�

) is extra
table. The major help of the random or-

a
les is for this extra
tion to be possible. On
e � has

been extra
ted the simulation is straightforward.

2.2 Assumptions and Models. The analysis of

the se
urity of the 
onstru
tions in this paper is based

on the Computational DiÆe-Hellman Assumption, the

De
isional DiÆe-Hellman Assumption and the random

ora
le model.

The DiÆe-Hellman assumptions: We assume that

we have some probabilisti
 method to generate a group

Z

q

and a generator g. The Computational version of

the assumption states that any probabilisti
 polynomial

time ma
hine that is given random g

a

; g

b

2 Z

q

has only

negligible probability to 
orre
tly 
ompute g

ab

, where

the probability is over the 
hoi
e of the group and g,


hoi
es of g

a

and g

b

and the internal 
oin-
ips of the

ma
hine. Various boosting algorithms are known for

this problem [31℄. In parti
ular, the assumption implies

that extra
ting dis
rete logarithms is hard.

The De
isional version of the DiÆe-Hellman as-

sumption is that it is diÆ
ult to di�erentiate between

(g

a

; g

b

; g

ab

) and (g

a

; g

b

; g




) for randomly 
hosen a; b and


. For this version a redu
tion from the worst 
ase hard-

ness to the average 
ase hardness is known [4, 33, 26℄.

The Random Ora
le model: Some of the 
onstru
-

tions of this paper (Se
tion 3) use a fun
tion H that is

modeled in the analysis as a random ora
le, i.e. 
hosen

as a truly random fun
tion available to any parti
ipant

(of 
ourse, in the appli
ation itself H is implemented as

a hash fun
tion, su
h as SHA). The proof of se
urity

is based on the fa
t that the adversary 
an evaluate in

limited time only a small number of the values of the

fun
tion.

The major way we utilize the random ora
le is

for allowing extra
tion (by the simulator) without any

intera
tion. I.e. the simulator A

0

monitors the queries

to H by the adversary A and answers them in an

appropriate manner. The se
urity is measured in terms

of the number of queries to H .

While the random ora
le model is often used in the

analysis of many 
ryptographi
 proto
ols (e.g. [3, 32℄),

it best not to assume this behavior from the 
on
rete

fun
tions a
tually used in the 
onstru
tion. (See [6, 7,

15℄ for re
ent dis
ussions on the subje
t.) We manage

to a
hieve this in Se
tion 4: we show a two round 1-

out-N proto
ol that requires two exponentiations on

the 
hooser side (for any N) and O(N) exponentiations

from sender's side. It is an interesting open problem

whether it is possible to get eÆ
ient 
onstru
tions on

the sender's side as well (without relying on random

ora
les assumptions).

EÆ
ien
y of operations: the operation we 
onsider

the most expensive is modular exponentiation; in 
on-

trast private-key en
ryptions and 
alls to the fun
tion

H are 
onsidered 
heaper. We minimize the number of

exponentiations, but at the same time we do in
rease

the number of 
alls to the other primitives signi�
antly.

2.3 The basi
 oblivious transfer proto
ol. Our

starting point is the Bellare-Mi
ali [2℄ proto
ol for

oblivious transfer, whi
h we have amended with random

ora
les. The revised 
onstru
tion is des
ribed below.

Proto
ol 2.1. (Oblivious transfer using a

random ora
le)

Input: The 
hooser's input is � 2 f0; 1g, and the

sender's input is two strings M

0

;M

1

.

Output: The 
hooser's output is M

�

.

Preliminaries: The proto
ol operates over a group Z

q

of prime order. More spe
i�
ally, G

q


an be a sub-
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group of order q of Z

�

p

, where p is prime and qjp�1.

Let g be a generator group, for whi
h the 
omputa-

tional DiÆe-Hellman assumption holds. The pro-

to
ol uses a fun
tion H whi
h is assumed to be a

random ora
le.

Initialization: The sender 
hooses a random element

C 2 Z

q

and publishes it. (It is only important that

the 
hooser will not know the dis
rete logarithm of

C to the base g. It is irrelevant whether the sender

knows the dis
rete log of C.)

Proto
ol:

� The 
hooser pi
ks a random 1 � k � q, sets

publi
 keys PK

�

= g

k

and PK

1��

= C=PK

�

,

and sends PK

0

to the sender.

� The sender 
omputes PK

1

= C=PK

0

and


hooses random r

0

; r

1

2 Z

q

. It en
rypts M

0

by E

0

= hg

r

0

; H(PK

r

0

0

) �M

0

i, and en
rypts

M

1

by E

1

= hg

r

1

; H(PK

r

1

1

)�M

1

i, and sends

the en
ryptions E

0

; E

1

to the 
hooser.

� The 
hooser 
omputes H((g

r

�

)

k

) = H(PK

r

�

�

)

and uses it to de
rypt M

�

.

Overhead: This proto
ol requires the sender to 
om-

pute four exponentiations (two of them 
an be pre-


omputed before the proto
ol begins). The 
hooser

should 
ompute two exponentiations (one of whi
h 
an

be pre-
omputed).

When dis
ussing the 
ommuni
ation overhead it is

important to distinguish between the length of the in-

put elements M

0

;M

1

, and the length of group elements

(whi
h 
an typi
ally be 768 or 1024 bits long). The 
om-

muni
ation from the 
hooser to the sender is 
omposed

of one group element, and the 
ommuni
ation from the

sender to the 
hooser is 
omposed of two group elements

and two elements in the size of the inputs.

Se
urity: (we only give an intuitive dis
ussion, see

more details in further proto
ols). The 
hooser's pri-

va
y is preserved sin
e the value that she sends to the

sender, PK

0

, is uniformly random (and independent of

�). As for the sender's se
urity, the 
hooser 
annot

know the dis
rete logarithms of both PK

0

and PK

1

,

sin
e this would reveal to her the dis
rete logarithm of

C. The DiÆe-Hellman assumption implies that she 
an-

not 
ompute both (PK

0

)

r

0

and (PK

1

)

r

1

. Together with

the random ora
le assumption this ensures that she 
an-

not distinguish either H((PK

0

)

r

0

) or H((PK

1

)

r

1

) from

random.

3 OT with Low Amortized Overhead and

Bandwidth/Computation Tradeo�

The basi
 oblivious transfer proto
ol (proto
ol 2.1) re-

quires the sender to 
ompute four exponentiations. This

se
tion des
ribes two methods for redu
ing this over-

head: (1) A 1-out-of-N oblivious transfer 
onstru
tion

with low amortized overhead, in whi
h the sender and


hooser 
ompute only a single exponentiation per trans-

fer, while the 
ommuni
ation overhead is not a�e
ted.

(2) A tradeo� between the bandwidth and the 
ommuni-


ation requirements of 1-out-of-2 oblivious transfer pro-

to
ols.

A single 1-out-of-2 oblivious transfer. As a

warmup, 
onsider proto
ol 2.1 with the modi�
ation

that the sender uses the same random value r for both

en
ryptions. Namely, r = r

0

= r

1

. Sin
e it holds that

PK

0

� PK

1

= C, it also holds that (PK

0

)

r

� (PK

1

)

r

=

C

r

. Therefore, the operation of the sender 
an be de-

�ned as follows:

� Initialization: Choose a random r, 
ompute C

r

and g

r

.

� Transfer: After re
eiving PK

0

, 
ompute (PK

0

)

r

,

and (PK

1

)

r

= C

r

=(PK

0

)

r

. Send g

r

and

the two en
ryptions, H((PK

0

)

r

; 0) � M

0

and

H((PK

1

)

r

; 1)�M

1

, to the 
hooser.

The online overhead of the sender is redu
ed to a single

exponentiation, while the pre
omputation overhead is

two exponentiations, as before.

Se
urity:

The 
hooser's priva
y is preserved, sin
e for any

C the distribution of PK

0

is the same whether it was


hosen dire
tly at random or as C=PK

1

for random

PK

1

.

As for the sender's se
urity, 
onsider an adversary

A. We des
ribe the simulator A

0

operating in the ideal

model and a
hieving results whi
h are indistinguishable

from those of the adversary A. The simulator simulates

both the sender (at least externally, without knowing

M

0

andM

1

) and A. It 
hooses C and r and gives A the

value C. When A sends PK

0

the simulator sele
ts two

random strings �

0

and �

1

(of the appropriate length)

and sends them and g

r

in response (as if they were the

sender's answers). It then monitors all of A queries to

H . All queries that do not 
ontain (PK

0

)

r

or (PK

1

)

r

are answered at random. If A asks H about (PK

r

�

; �),

then A

0

asks the trusted party in the ideal model to

re
eive M

�

. It then sets H(PK

r

�

; �) to be �

�

�M

�

.

Then whateverA outputs so does A

0

(in parti
ular, they

have the same trans
ript).

It is easy to verify that in its intera
tion with A

0

,

A witnesses exa
tly the same distribution as it would

under normal operation (and hen
e the output of the

simulated one 
annot be distinguished from the real

one) - ex
ept for when A queries after H(PK

r

�

; �)

or H(PK

r

1��

; 1 � �) (sin
e A

0


annot supply it with

M

1��

). However, if this o

urs with probability � then

we 
an use A in order to break the 
omputational DiÆe-

Hellman problem in time proportional to �=m

2

where m

is the number of queries to the random ora
le. Given g

a

and g

b

, �x C = g

a

and g

r

= g

b

. Perform the previous

simulation and guess that queries i and j 
orrespond

to PK

r

0

and PK

r

1

. Their produ
t is C

r

= g

ab

. The

probability of su

ess is at least �=m

2

. (Using the

boosting algorithm in [31℄ one 
an get an algorithm that

is almost always right, at the expense of in
reased time.)
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To 
on
lude, if � (whi
h is an upper bound on

the di�eren
e between the two distributions) is non-

negligible, then we have an eÆ
ient algorithm breaking

the CDH.

Note that adding the index � as a suÆx to PK

r

�

in

the 
all forH assures that the answers for PK

0

and PK

1

are independent, even if PK

0

is 
hosen (mali
iously) to

be equal to PK

1

by setting it to be

p

C. (If the proto
ol

should be run several times with the same 
onstant C,

then the input to H should in
lude a random element,

R, as explained for proto
ol 3.1.

It is also worth noting that it is possible to redu
e

the above dependen
y on m (the number of ora
le

queries) from m

2

to m by assuming the hardness of the

De
isional DiÆe-Hellman problem. Given a 
andidate y

for g

ab

, 
he
k and see whether any two 
alls to H of the

form (x

0

; 0) and (x

1

; 1) are su
h that x

0

� x

1

= y. This


an be done in linear time by 
omputing for all x

0

's the

value y=x

0

and 
he
king for interse
tion with the x

1

's.

3.1 OT

N

1

with amortized 
omplexity of a single

exponentiation. The idea is to use the same value g

r

for all transfers between the sender and 
hooser, and

expand from 1-out-2 OT to 1-out-N OT by using N

publi
-keys, so that the 
hooser 
an know the 
orre-

sponding se
ret-key of at most one of them. This is

a
hieved using N � 1 publi
 values. The 
omputational

overhead of the sender is 
onsequently redu
ed to a sin-

gle exponentiation per transfer regardless of the number

of inputs.

Proto
ol 3.1. (Many simultaneous 1-out-

of-N OT's with the same g

r

)

Initialization: The sender 
hooses N �1 random 
on-

stants C

1

; C

2

; : : : ; C

N�1

(it will hold that PK

0

�

PK

i

= C

i

). It also 
hooses a random r and 
om-

putes g

r

. The values C

1

; : : : ; C

N�1

and g

r

are sent

to the 
hooser and play the role of the publi
-key

of the sender. The same values will be used for all

transfers.

The sender pre
omputes for every 1 � i � N � 1

the value (C

i

)

r

.

Transfer: The sender's input is M

0

;M

1

; : : :M

N�1

.

The 
hooser's input is � 2 f0; : : : N � 1g (she

should learn M

�

).

� The 
hooser sele
ts a random k and sets

PK

�

= g

k

. If � 6= 0 she 
omputes PK

0

=

C

�

=PK

�

. She sends PK

0

to the sender and


an already 
ompute a de
ryption key (g

r

)

k

=

(PK

�

)

r

.

� The sender 
omputes (PK

0

)

r

and then for

every 1 � i � N � 1 
omputes (without doing

any additional exponentiations)

(PK

i

)

r

= (C

i

)

r

=(PK

0

)

r

:

The sender 
hooses a random string

3

R.

He then en
rypts ea
h M

i

by 
omputing

H((PK

i

)

r

; R; i)�M

i

, and sends these en
ryp-

tions and R to the 
hooser.

� The 
hooser uses H((PK

�

)

r

; R; �) to de
rypt

M

�

.

Overhead: The initialization phase 
onsists of N ex-

ponentiations on the sender's side. Following the initial-

ization (that 
an be amortized on all subsequent trans-

fers), in ea
h transfer the sender performs only a single

exponentiation per transfer, plus N � 1 multipli
ations

and N invo
ations of H . The 
hooser 
an pre
ompute

the de
ryption key before re
eiving the en
rypted ele-

ments from the sender. The 
ommuni
ation overhead

from the sender to the 
hooser 
orresponds to the size

of the N strings.

Remark 3.1. Suppose that the 
ost of N exponen-

tiations for the initialization, and a publi
 key 
onsisting

of N values, are 
onsidered too high. We 
an 
ombine

Proto
ol 3.1 with the 1-out-N proto
ol of [24℄ in order

to design the following: let K be a parameter su
h that

a publi
-key of size K and initialization of K exponen-

tiations is a

eptable. Then if we express the index i

in base K (i.e. as a ve
tor of length logN= logK of

numbers in f0; : : :K�1g) we 
an perform the [24℄ algo-

rithm using logN= logK invo
ations of 1-out-of-K OT

(instead of OT

2

1

). The 1-out-of-K OT is performed us-

ing Proto
ol 3.1 (with a single exponentiation). The

result is a proto
ol that requires logN= logK exponen-

tiations from the sender and 2 logN= logK exponenti-

ations from the 
hooser, for every transfer. Note that

setting K = logN= log logN implies that without any

amortization of the initialization 
ost the 
omplexity is

redu
ed to 2 logN= log logN , in
luding the initialization

(
ompared to logN of the plain [24℄ proto
ol).

Se
urity: The Chooser's se
urity is, as before, in-

formation theoreti
 { the distribution on PK

0

is in-

dependent of the values of C

0

; : : : C

N�1

and �. The

sender's se
urity is based on the same argument as the

sender's se
urity for the single oblivious transfer whi
h

uses a single g

r

. The �rst point to note is that if the


hooser knows for more than a single publi
 key (say

for PK

i

1

and PK

i

2

) the values (PK

i

1

)

r

and (PK

i

2

)

r

,

then (PK

i

1

)

r

=(PK

i

2

)

r

= (C

i

1

=C

i

2

)

r

. This in turn 
an

be used to dedu
e the DiÆe-Hellman value of a ran-

dom C and random g

r

: given inputs A = g

a

and

B = g

b

(where the goal is to 
ompute g

ab

), simulate

A by generating the 
onstants C

i

= A

r

i

for a ran-

dom r

i

and g

r

= g

b

. If A is su

essful on i

1

and i

2

,

then (C

i

1

=C

i

2

)

r

= g

abr

i

1

=g

abr

i

2

. Raising the latter to

1=(r

i

1

� r

i

2

) yields g

ab

.

3

The string should be long enough so that there are no two

invo
ations of the proto
ol in whi
h R obtains the same value.

Namely, the length should be larger than 2 log(n) bits, where n

is the number of invo
ations of the proto
ol. Alternatively, the

sender 
ould use a 
ounter to set the value of R, and then the

length 
ould be redu
ed to log n.
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Sin
e we envision using Proto
ol 3.1 many times

with the same publi
-key C

1

; C

2

; : : : C

N�1

and g

r

, we

should des
ribe the a
tions of the simulator A

0

against

an adversary that 
ontrols some subset of the users.

Therefore, the input of H 
ontains a random element

R whi
h ensures that the inputs in di�erent invo
ations

of the proto
ol will be di�erent. As before the goal is to

extra
t the values in whi
h A is interested (and obtain

them in the ideal model). A

0


hooses C

1

; C

2

; : : : C

L�1

at

random as well as g

r

. When A sends in the message of

the tth user A

0

responds with random (�

0

; �

2

; : : : �

N�1

)

for the en
ryptions of the M

i

's and a random R

t

.

Whenever A queries H on a point (x;R

0

; j), A

0


he
ks

whether R

0

= R

t

for some t. If not, a random answer

is given. If R

0

= R

t

and x = (PK

j

)

r

then A

0

asks

in the ideal model for the values 
orresponding to j

and obtain M

j

. It then has to set H appropriately -

set H((PK

j

)

r

; R

t

; j) = �

j

�M

j

. The only di�eren
e

between the distribution the simulated A sees and the

real one o

urs if (i) A queries on another PK

r

j

0

{ whi
h

we have argued 
an be used for breaking the CDH, so

by assumption it happens with negligible probability.

(ii) One of the H(x;R

t

; j) is queried in advan
e - but

this happens with low probability, at most (number of

queries = size of group), for ea
h query.

Remark 3.2. The proto
ol would have been inse-


ure if it were using plain El Gamal en
ryption instead

of a random ora
le H: Suppose that the transfer was of

the form h(PK

i;0

)

r

�m

i;0

; (PK

i;1

)

r

�m

i;1

i. Then if the


hooser has prior knowledge of one of the transferred

elements (say, m

i;0

), she 
ould 
ompute the 
orrespond-

ing en
ryption key (PK

i;0

)

r

from the en
rypted message

even if she knows the private key of the other element.

Therefore she 
an 
ompute both (PK

i;0

)

r

and (PK

i;1

)

r

,

multiply them and get (C

i

)

r

. This value enables her to

de
rypt both elements in every other transfer.

3.2 Bandwidth/Computation tradeo� for OT

2

1

.

The 
omputation overhead of OT

2

1


an be redu
ed

by performing ` OT

2

1

's at the same transfer using

proto
ol 3.1. The idea is to translate ` 
alls to OT

2

1

into a single 1-out-L OT for L = 2

`

. (This 
an be

seen as the opposite of what [24℄ do: they translate

a 1-out-L OT into ` OT

2

1

's.) While this redu
es the


omputation it in
reases the 
ommuni
ation, so we

obtain a 
omputation/
ommuni
ation tradeo�.

Let ` be a parameter whi
h denotes the num-

ber of strings that are transferred in ea
h bat
h, i.e.

if the number of OT

2

1

's is large, partition them into

blo
ks of `. Consider one blo
k, in whi
h the sender

should transfer to the 
hooser one string out of ea
h

of the pairs f(m

i;0

;m

i;1

)g

`

i=1

. Our approa
h is to

perform all ` transfers simultaneously. The sender

de�nes L = 2

`

strings, M

0

; : : : ;M

L�1

, 
orrespond-

ing to all 
ombinations of ` strings, one from ea
h

pair. Namely, M

j

= hm

1;j

1

;m

2;j

2

; : : : ;m

`;j

`

i, where

j

i

is the ith bit of j; 0 � j � L � 1. Instead of en-

gaging in ` OT

2

1

's, the parties 
an engage in a single

1-out-of-L oblivious transfer of one of these strings.

Proto
ol 3.2. (Simultaneous transfer of `

strings)

The parties run proto
ol 3.1 for 1-out-of-L oblivious

transfer. The sender's input 
ontains the L strings

M

0

; : : : ;M

L�1

. The 
hooser's input is

�!

� = �

1

; : : : ; �

`

,

where �

i

is her 
hoi
e in the ith oblivious transfer.

The proto
ol obtains a general tradeo� between

redu
ing the 
omputational overhead of the sender, and

exponentially in
reasing the 
ommuni
ation overhead

(although the exponential blowup in the 
ommuni
ation

seems very limiting, the optimal tradeo� seems to

happen for a rather large value of `, as is des
ribed in

Se
tion 3.2.1).

Theorem 3.1. (Bandwidth/
omputation

tradeoff) In proto
ol 3.2 the amortized 
omputational

overhead per transfer (OT

2

1

) is 1=` exponentiations, for

both the sender and the 
hooser. In addition the sender

performs 2

`

=` multipli
ations. The o�ine 
ommuni
a-

tion overhead is 2

`

keys per transfer, while the online


ommuni
ation overhead is 2

`

=` keys per transfer.

Computation overhead: During the transfer phase

the sender has to perform a single exponentiation and

L = 2

`

multipli
ations. The 
hooser performs one

exponentiation when she sends the request and one

when she re
eives it (note that both of them 
an be

done o�ine).

The initialization phase requires L exponentiations

from the sender, but these are amortized over all the

blo
ks ever sent by the sender.

Communi
ation overhead: It may seem as if the


ommuni
ation is ` � L times the size of an input

element, sin
e there are L messages M

i

of length `

ea
h. However a �ner analysis is 
alled for: First we

distinguish between group elements (whi
h might be

long, say 1000 bits) and private-keys whi
h 
an be as

short as 100 bits. Furthermore, another distin
tion is

between online and o�ine 
ommuni
ation, where the

latter refers to messages that 
an be sent independently

of the inputs. Therefore we 
an think of them as

being sent in a prepro
essing phase (say when the


ommuni
ation network is idle, or stored in a DVD).

From the 
hooser to the sender only a single group

element is sent. The online 
ommuni
ation from the

sender to the 
hooser 
an be redu
ed from O(` � L) to

O(L) by en
rypting ea
h m

i

with a di�erent key, and

running the oblivious transfer with the keys as inputs.

That is , the following proto
ol is run:

1. The sender 
hooses for ea
h 1 � i � ` and � 2

f0; 1g a random key k

i;�

(a total of 2` keys). For

ea
h 1 � j � L let M

0

j

= hk

1;j

1

; k

2;j

2

; : : : ; k

`;j

`

i

be the 
on
atenation of the keys of the values

transferred when j is 
hosen.

2. For ea
h 1 � j � L the sender 
hooses a random

key K

j

and en
rypts M

0

j

with H(K

j

; R), i.e. gen-

erates M

0

j

�H(K

j

; R). These en
ryptions are sent

o�ine.
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3. In the transfer phase of the proto
ol the sender �rst

sends, for all 1 � i � ` and � 2 f0; 1g, the values

E

k

i;�

(m

i;�

). The values that are a
tually trans-

ferred in the oblivious transfer are (K

1

;K

2

; : : :K

L

).

Ea
h K

j

is en
rypted with H((PK

j

)

r

; R; j).

4. The 
hooser uses the key K

j

to de
rypt the 
orre-

sponding string M

0

j

. It then uses the keys k

i;j

in

M

0

j

to de
rypt the elements m

i;j

.

O�ine 
ommuni
ation: The total length of the o�ine


ommuni
ation in step 2 is L`jk

i;�

j bits. The length of

the keys jk

i;�

j 
an be set to be 100 bits, and does not

in
rease if the inputs are longer (however, if the inputs

m

i;�

are shorter, they 
an be en
rypted by xoring them

with the 
orresponding keys k

i;�

, and then the keys 
an

be as short as the inputs).

Online 
ommuni
ation: In the transfer step itself the

sender sends a message of length LjK

j

j + 2`jm

i;�

j bits

to the re
eiver (the keys K

j


an also be 100 bits long).

Note that in 
omparison to the alternative of run-

ning the oblivious transfer proto
ol ` times indepen-

dently, there is an L = 2

`

multipli
ative in
rease in the

o�ine 
ommuni
ation, and an L=` in
rease in the on-

line 
ommuni
ation. The in
rease in the 
ommuni
ation


ompared to the basi
 Bellare-Mi
ali proto
ol (Proto-


ol 2.1) is smaller, sin
e all messages in that proto
ol in-


lude elements in the group in whi
h the DiÆe-Hellman

assumption holds.

Se
urity: The 
hooser is prote
ted information theo-

reti
ally, as before. As for the sender's se
urity, the ma-

jor point is preventing the 
hooser from learning more

than a single string in ea
h transfer. We should des
ribe

the a
tions of the simulator A

0

against an adversary

that 
ontrols some subset of the 
hoosers. As before

the goal is to extra
t the values in whi
h A is inter-

ested and obtain them in the ideal model. A

0


hooses

C

1

; C

2

; : : : C

L�1

at random as well as g

r

. In the pre-

pro
essing phase A

0

generates for ea
h 
hooser t a ran-

dom ve
tor f

~

�

j

= h�

1;j

1

; �

2;j

2

; : : : ; �

`;j

`

ij1 � j � Lg.

When A sends in the message of the tth 
hooser A

0

responds with random (


1;0

; 


1;1

; 


2;0

; 


2;1

; : : : 


`;1

) for

the en
rypted values, random (�

1

; �

2

; : : : �

L

) for the

keys and random R

t

. Whenever A queries H on a

point (x;R

0

; j), A

0


he
ks whether R

0

= R

t

for some

t. If not, a random answer is given. If R

0

= R

t

and x = (PK

j

)

r

then A

0

asks in the ideal model for

the values 
orresponding to (j

1

; j

2

; : : : j

`

) and obtains

M

j

. It then has to set H appropriately - 
hoose ran-

dom key K

j

and set H(PK

r

j

; R

t

; j) = �

j

� K

j

. Set

H(K

j

; R

t

) =

~

�

j

� h


1;j

1

; 


2;j

2

; : : : 


`;j

`

i �M

j

. The only

di�eren
e between the distribution the simulated A sees

and the real one o

urs if (i) A queries on another

(PK

j

0

)

r

{ whi
h we have argued 
an be used for break-

ing the CDH, so by assumption it happens with negli-

gible probability. (ii) One of the H(K

j

; R

t

) is queried

in advan
e - this happens with low probability.

Remark 3.3. The proto
ol allows a mali
ious

sender a new possible abuse not handled by our de�-

nition of se
urity in Se
tion 2.1: he 
an en
ode k

i;�

in-


onsistently in the di�erent strings that should in
lude

k

i;�

. Therefore the 
hooser gets di�erent values of m

i;�

depending on (i

0

; �

0

). Fortunately, there is a simple so-

lution in a framework like [25℄: add periodi
 
he
ks, by

requesting the sender to open all hidden strings and show


onsisten
y.

Remark 3.4. It is interesting to note that the

approa
h we have taken in investigating the band-

width/
omputation tradeo� is somewhat opposite to the

approa
h of Private Information Retrieval (PIR) (see

e.g., [21, 5℄). The goal of PIR proto
ols is to minimize

the 
ommuni
ation overhead, and this requires (in the


ase of single server solutions) to in
rease the 
ompu-

tation overhead, up to 
omputing an exponentiation for

every bit of the database. Our goal, on the other hand, is

to redu
e the 
omputation overhead of oblivious transfer

proto
ols by in
reasing the 
ommuni
ation overhead. As

we des
ribe below, this approa
h makes sense in many

appli
ations, sin
e existing oblivious transfer proto
ols

often have lesser utilization of bandwidth than of 
om-

putation.

3.2.1 Whi
h tradeo� to 
hoose? The optimal bal-

an
e between 
ommuni
ation and 
omputation depends

on spe
i�
 
onsiderations for ea
h 
ase, depending on

the available bandwidth and 
omputational resour
es.

A very realisti
 assumption is, however, that the goal

is to minimize the laten
y of the oblivious transfer pro-

to
ol. This laten
y is a�e
ted by both the 
ommuni-


ation and the 
omputation times. Typi
al bandwidth

between the 
hooser and the sender 
ould be 1.5Mb/se


for a T1 line or 35Mb/se
 for a T3 line. On the other

hand, an exponentiation of a 1000 bit number takes

about 20 mse
 on a state of the art 
omputer Pentium

III or Celeron at 500Mhz (see [12℄ for ben
hmark re-

sults). (This is where the exponent is 200 bits long.)

For a qui
k estimate of the optimal value of `,


onsider the tasks of the 
hooser (the analysis for the

sender is almost identi
al). Most of her overhead is

in
urred by 
omputing a single exponentiation for every

` transfers, and re
eiving on-line 2

`

keys (say, 100�2

`

bits

for 100 bit keys) from the sender (o�ine 2

`

` keys should

be sent). Optimal online performan
e is a
hieved when

the same amount of time is invested in the 
omputation

and in the 
ommuni
ation sin
e in this 
ase there are

no idle times for either the pro
essor or the network.

Suppose that the bandwidth is B bits per se
ond,

the keys are k bits long, and the pro
essor is 
apable

of performing E exponentiations per se
ond. Then,


onsidering only the online 
ommuni
ation, the laten
y

per OT

2

1

is max(

2

`

k

`B

;

1

`E

) (this is assuming pipelining

of the 
ommuni
ation and 
omputation; otherwise the

two quantities should be added .) Minimal laten
y is
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a
hieved when

2

`

k

B

=

1

E

: Namely; ` = log

B

kE

:

The optimal tradeo� is a
hieved (perhaps surpris-

ingly) using a rather large `. For example a server whi
h


an perform E = 50 exponentiations per se
ond, and

uses a T1 line (1.5Mbps), should set ` = 8 to obtain

optimal performan
e. Assuming that the server invests

more in its resour
es, distributes the exponentiations

between 5 pro
essors (a
hieving E = 250), and uses

a T3 line, ` = 10 is optimal. Figure 1 des
ribes the

throughput, i.e. the number of OT

2

1

's per se
ond, that

is a
hieved for di�erent values of the bandwidth (when

E and k are kept 
onstant). Figure 2 des
ribes the gain

in speed as a fun
tion of ` (namely, the throughput di-

vided by that of a proto
ol with no optimizations), for

representative values of B;E and k.

An example. As a 
on
rete example for the improve-

ment a
hieved by the te
hniques presented here, and

in parti
ular by the bandwidth/
ommuni
ation trade-

o�, 
onsider the au
tion proto
ol of [25℄. The main


omputational overhead of the proto
ol is the exe
u-

tion of many oblivious transfers. More a

urately, for

N bidders with m bit inputs, the proto
ol requires Nm

oblivious transfers

4

.

The overhead of the sender in a naive appli
ation

of the basi
 proto
ol (proto
ol 2.1) is

Computing 4Nm exponentiations, and send-

ing 2Nm � (1024 + 100) bits.

(Assuming a 1024 bit modulus and 100 bit keys.) For an

au
tion with N = 1000 bidders, and m = 24 bit bids,

this results in 96; 000 exponentiations, and a message

of 6:7 Mbytes. Ea
h re
eiver should 
ompute 2m = 48

exponentiations.

If proto
ol 3.2 with ` = 8 is used, then the overhead

of the sender is

Computing Nm=8 exponentiations, sending

Nm

8

� (1024 + 2

8

� 100) bits online, and

Nm

8

�

(2

8

� 8 � 100) bits o�ine.

For the same values of N and m, the sender 
omputes

only 3000 exponentiations (an improvement by a fa
-

tor of 32). Ea
h re
eiver 
omputes 6 exponentiations

( 3 o�ine and 3 online). The sender sends an online

message of length 10 Mbytes, and an o�ine message

of length 76 Mbytes. Using a T1 
ommuni
ation line,

and a 
omputer whi
h 
omputes 50 exponentiations per

se
ond, both the 
omputation and the online 
ommuni-


ation take about 60 se
onds for all bidders (
ompared

to approximately half an hour for the original proto
ol).

4

More a

urately, the proto
ol uses a proxy oblivious transfer

proto
ol whi
h involves three parties. However, the proto
ols

we de�ned in this paper 
an be translated in a straightforward

manner to the proxy OT setting.

4 How to avoid random ora
les

This se
tion dis
usses methods for designing proto
ols

whose analysis does not rely on random ora
les. The

�rst issue is whether it is possible to design a two-round

(this is 
alled \non-intera
tive" by Bellare and Mi
ali)

OT proto
ol whi
h does not rely on the random-ora
le

assumption. The only previous proto
ol that (almost

5

)

�ts the two-round requirement was re
ently proposed

by Dwork and Naor [16℄ and is quite ineÆ
ient, as it

relies on the general proto
ol for non-intera
tive zero-

knowledge proto
ols for languages in NP . We note that

independently of this work Aiello, Ishai and Reingold

[28℄ suggested a proto
ol with a similar stru
ture for a

related problem.

The stru
ture of the proto
ol is 
hooser to sender

and then sender to 
hooser. Unlike the proto
ols

of [2, 16℄ there is no need for the sender to have a

publi
-key or publi
-value. It is based on the DDH

assumption and o�ers information-theoreti
 prote
tion

for the sender and 
omputational indistinguishability

for the 
hooser (the opposite of the 
ase in the Bellare-

Mi
ali s
heme and the other s
hemes in this paper).

The idea is for the 
hooser to 
reate two en
ryption

keys so that at most one of them is legitimate. It uses

the following idea: if a key is badly formed, then the


orresponding 
iphertext has a random value. This

is done similarly to the randomized self-redu
tion of

the DDH problem (see [33℄ and [26℄). The idea of

randomizing bad 
iphertexts was previously suggested

by Canetti and Goldwasser [8℄ in order to design a

threshold variant of the Cramer-Shoup 
ryptosystem

[10℄ { there if a 
iphertext is not valid, then it de
rypts

to a random value.

For the proto
ol we assume some El Gamal like

method that is semanti
ally se
ure. The simplest 
ase

is to assume that the messages are in the subgroup in

whi
h we operate. Otherwise we have to use hashing

(probabilisti
, not random-ora
le type, see e.g. [26℄).

Proto
ol 4.1. (Basi
 Proto
ol)

1. The 
hooser generates random g

a

; g

b

and 


0

; 


1

su
h

that 


�

= ab and 


1��

is random. Chooser sends

x = g

a

; y = g

b

; z

0

= g




0

; z

1

= g




1

.

2. The sender veri�es that z

0

6= z

1

. It then generates

random (r

0

; s

0

) and (r

1

; s

1

) and

(a) Computes w

0

= x

s

0

� g

r

0

and en
rypts M

0

using the key z

s

0

0

� y

r

0

. The value w

0

and the

en
ryption are sent to the 
hooser.

(b) Computes w

1

= x

s

1

� g

r

1

and en
rypts M

1

using the key z

s

1

1

� y

r

1

. The value w

1

and the

en
ryption are sent to the 
hooser.

3. The 
hooser 
omputes (w

�

)

b

and de
rypts M

�

.

5

That proto
ol requires either a publi
-string (not key) from

the sender or relies on non-uniformity.



9

Overhead: The 
hooser is required to 
ompute three

exponentiations when preparing g

a

; g

b

and g




�

= g

ab

(as well as sele
ting g




1��

at random). Note that one of

fg

a

; g

b

g 
an remain �xed and there is no need to 
hange

it from transfer to transfer. Therefore the 
hooser 
an


ompute (o�ine) two exponentiations per transfer, and


ompute an additional exponentiation (online) when it

re
eives the message from the sender. The sender has

to 
ompute two double exponentiations (of two di�erent

values) per transfer.

Se
urity: The Chooser's se
urity is based on the

indistinguishability of 


�

and 


1��

whi
h in turn is

based on the DDH assumption. The sender's se
urity

is information-theoreti
 and is based on the following


laim.

Claim 4.1. If z

�

6= g

ab

, then (x

s

�

�

� g

r

�

�

; z

s

�

�

� y

r

�

�

) is

uniformly distributed.

The proof follows from the randomized redu
tion of

DDH of [26℄ and [33℄.

Therefore if z

�

6= g

ab

no information about m

�

is

transferred. Sin
e at most one of fz

0

; z

1

g equals g

ab

,

the 
hooser's gets information on at most one of M

0

and M

1

.

4.1 The 1-out-of-N Proto
ol.

It is straightforward to generalize the above s
heme

to 1-out-of-N OT. The interesting point is that it 
an

done be without in
reasing the 
hooser's 
omplexity.

The point is that the 
hooser does not have to 
hoose

and send the g




i

's expli
itly. Suppose that the 
hooser

is interested in M

i

. Then she 
hooses 


i

= a � b and sets

z

i

= g




i

. This in turns de�nes all the z

j

's by setting

z

j

= z

i

� g

j�i

and in parti
ular z

0

= g




i

�i

. Therefore

what the 
hooser sends is g

a

; g

b

and z

0

= g




i

=g

i

. The

sender on the other hand still has to perform all the

work he performed previously.

Se
urity: The sender's se
urity is information theo-

reti
, as before. As for the 
hooser's se
urity, under the

DDH assumption no probabilisti
 polynomial-time ma-


hine 
an distinguish for any �xed i between a triple of

the form (g

a

; g

b

; g

ab�i

) and a random triple. Therefore

triples of the form (g

a

; g

b

; g

ab�i

) and (g

a

; g

b

; g

ab�i

0

) are


omputationally indistinguishable.

Overhead: The 
hooser is required to 
ompute three

exponentiations when preparing g

a

; g

b

and g

ab

(and as

before one of fg

a

; g

b

g 
an remain �xed). The sender

has to 
ompute 2N double exponentiations. As for


ommuni
ation, the 
hooser is sending a �xed number

of elements and re
eives from the sender 2N elements.

Hen
e the 
hooser performs roughly as mu
h work as

she does in the random ora
le based OT

2

1


onstru
tion

of Proto
ol 3.1.

Remark 4.1. Note that the proto
ol in [24℄ is more

egalitarian in that ea
h side performs logN exponenti-

ations. As in Remark 3.1 we 
an 
ombine the two ap-

proa
hes. Expressing the index i in base K (i.e. as a

ve
tor of length logN= logK of numbers in f0; : : :K �

Figure 1: The throughput (number of OT

2

1

per se
ond)

as a fun
tion of the bandwidth, using the optimal `, for

E = 50 and keys of k = 100 bits.

1g) we perform the [24℄ algorithm using 1-out-of-K OT

(instead of 1-out-2); the 1-out-of-K OT is performed

using the above proto
ol. The result is a proto
ol that

requires K logN= logK exponentiations from the sender

and 2 logN= logK exponentiations from the 
hooser.

4.2 Two Appli
ations and a Caveat.

One s
enario where this proto
ol is appli
able is

the ar
hite
ture for performing au
tions and me
hanism

design of [25℄. The bidders should parti
ipate in many

OT proto
ols as 
hoosers. The method for redu
ing the


omputational load is very relevant there - it 
an save

signi�
ant work on both the bidder and au
tioneer side,

but not for the au
tion issuer.

Another appli
ation is turning PIR into SPIR with-

out in
reasing the number of rounds (A SPIR proto
ol

also prote
ts the owner of the data from leaking in-

formation about more than one entry.) In [24℄ it was

suggested to 
onstru
t SPIRs based on OT

2

1

without

in
reasing the number of rounds 
ompared to the OT

2

1

proto
ol, so one 
an either apply Proto
ol 4.1 or 
an

do it dire
tly using the OT

N

1

proto
ol des
ribed in Se
-

tion 4.1. Namely, the sender 
reates a PIR database for

the 2N elements it sends in response to the 
hooser's

query, and runs a PIR proto
ol for sele
ting the ith

entry. Sin
e in all known single-server PIR proto
ols

[5, 21℄ the sender performs a huge number of operations

anyway, the latter approa
h is most appropriate.

Finally, note that in the proto
ol we 
annot rule out

the possibility of malleability from the Sender's side: the

information the sender transmits might be a fun
tion

of the bit(s) � the 
hooser is requesting (without the

sender really knowing what he is sending). This is not

relevant in 
ase the sender is 
ommitted to its value

prior to the proto
ol, as in the [25℄ s
enario.
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