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1 Introduction

Oblivious Transfer (OT) protocols allow one party, the
sender, to transmit part of its inputs to another party,
the chooser, in a manner that protects both of them:
the sender is assured that the chooser does not receive
more information than it is entitled, while the chooser is
assured that the sender does not learn which part of the
inputs it received. OT is used as a key component in
many applications of cryptography. Its computational
requirements are quite demanding and they are likely
to be the bottleneck in many applications that invoke
it.

1.1 Contributions. This paper presents several
significant improvements to oblivious transfer (OT)
protocols of strings, and in particular: (i) Improving
the efficiency of applications which many invocations
of oblivious transfer. (ii) Providing the first two-round
OT protocol whose security analysis does not invoke
the random oracle model. In more detail, the paper
discusses the following issues:

e Oblivious transfer protocols with low amortized
overhead, and a bandwidth/computation tradeoff for
oblivious transfer, are discussed in Section 3. In
particular we are able to break the “one exponenti-
ation for each OT” barrier and decrease the num-
ber of exponentiations required by any desired fac-
tor, at the cost of increasing the communication
overhead. For example, in Section 3.2.1 we show a
specific example requiring a single exponentiation
per eight invocations of 1-out-of-2 oblivious trans-
fer (OT}), using online communication of 400 bytes
per OTZ. Another application (Section 3.1) is a
OTN protocol whose amortized overhead is just a
single exponentiation (regardless of the size of the
sender’s input), and O(N) communication (as in
all previous OT} protocols).

The analysis of this construction relies on model-
ing hash functions as truly random functions (the
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random oracle assumption) as well as the compu-
tational Diffie-Hellman Assumption.

e A two round l-out-N OT protocol which requires
a fixed number of exponentiations on the chooser’s
side and O(N) exponentiations on the sender’s
side is described in Section 4. The analysis of
the construction relies on the Decisional Diffie-
Hellman Assumption. This is the first two-round
OT protocol whose security analysis does not rely
on the random oracle assumption.

1.2 Motivation. All known oblivious transfer pro-
tocols require “public key” operations (e.g. trapdoor
functions), that are typically implemented using mod-
ular exponentiations, which are computationally inten-
sive tasks'. The result of Impagliazzo and Rudich [20]
implies that it is unlikely that oblivious transfer could
be based on more efficient one-way functions or other
private-key cryptographic primitives. Our working as-
sumption is that such private-key functions are substan-
tially more efficient than oblivious transfer, and, there-
fore, we wish to minimize the use of oblivious transfer.

Our work is motivated by applications which require
two or more parties to perform many oblivious transfers
of strings. Such applications include for example Yao’s
protocol for secure two-party computation [34, 19], and
protocols for OT{V and for oblivious evaluation of poly-
nomials [24], which use reductions to many invocations
of OT?. The computation overhead of oblivious trans-
fer is often more demanding than its communication
overhead. For example, the analysis of a recent privacy
preserving protocol for computing the ID3 data mining
algorithm [22] shows that the communication overhead
can be done in a matter of seconds, while the compu-
tation takes several minutes. This is a good case for
providing a bandwidth/computation tradeoff. As a spe-
cific example consider a recent construction of privacy-
preserving protocols for auctions [25]. We examine a
representative scenario of this protocol in Section 3.2.1
and demonstrate that using the tradeoff we can reduce
the time that it takes to complete the protocol by a
factor of 32 (e.g., for some reasonable choice of the pa-
rameters the time is reduced from half an hour to less
than a minute). Another application is a protocol for 1-
out-of-N oblivious transfer protocol which requires only
a single exponentiation.

TFor example, about 50 exponentiations of 1024 bit numbers

can be computed in a single second, on a Pentium III PC.



The bandwidth /computation tradeoff is ideal in sce-
narios which require the use of prozy oblivious transfer —
a three party variant of oblivious transfer defined in [25].
In this protocol the role of the chooser is divided be-
tween two parties: a chooser which chooses which of
the sender inputs is learned, and a proxy which learns
this item. The tradeoff is particularly useful if the party
playing the chooser in the proxy oblivious transfer pro-
tocol has limited computational resources (for example,
if it is a handheld device), since the computational over-
head of the chooser is greatly reduced, and she can actu-
ally compute all the exponentiations in a preprocessing
step. The increase in communication affects only the
sender and the proxy.

Two round oblivious transfer with no ran-
dom oracle assumptions: Previous oblivious trans-
fer protocols of strings require at least three rounds of
interaction, or depend on a security analysis which mod-
els some function as a random oracle. In section 4 we
present the first two-round oblivious transfer protocol
whose security does not depend on the random oracle
assumption. Recent discussions demonstrate that mod-
eling specific functions as random might not be justi-
fied [6, 7, 15], and therefore motivate our construction.

1.3 Related Work.

Reducing computational work via amortization has
been done in several contexts in cryptography. The
best results are in the area of signatures: it is possible
to werify several modular exponential equations (and in
particular signatures) with a number of exponentiations
proportional to the security parameter (See [1, 23, 29]).
The only example we are aware of where amortization
reduces the cost to below an exponentiation per signa-
ture generation is Batch RSA [18].

In this paper we are concerned with 1-out-of-2
Oblivious Transfer (OT?). This primitive was suggested
by Even, Goldreich and Lempel [17], as a generalization
of Rabin’s “oblivious transfer” [27]. There have been
many suggestions for implementing OTs; the one that
is our starting point is by Bellare and Micali [2].
This protocol can be viewed as an instance of the
EGL paradigm [17] for designing oblivious transfer
protocols based on public-key cryptosystems, where the
cryptosystem in question is El Gamal. The two-round
Bellare-Micali protocol as presented in [2] is not known
to be secure?. To the best of our knowledge no analysis
of it using random oracles has appeared previously.

Regarding 1l-out-of-N OT protocols, Naor and
Pinkas [24] have shown how to implement them using
log N parallel invocations of OT?’s protocols. This con-
struction requires log N exponentiations, compared to
the amortized overhead of a single exponentiation of the
protocol of Section 3.1 (the communication overhead of

ZHowever if the two strings of the sender are random, then
the protocol does not leak both of them. There are also provable

alternatives using more rounds for a proof of knowledge

both protocols is O(N)). We apply this algorithm to
obtain some variants of the protocols presented in this
paper (Remark 3.1 and Section 4.1).

Oblivious transfer is related to Private Information
Retrieval (PIR). A discussion of this relation appears in
Remark 3.4.

2 Preliminaries

2.1 Definitions of Security - Oblivious Transfer
In this paper we are concerned with 1-out-of-2 Oblivious
Transfer (OT}) where one party, the sender, has input
composed of two strings (My, M;), and the input of a
second party, the chooser, is a bit o. The chooser should
learn M, and nothing regarding M;_, while the sender
should gain no information about o. The definition
of l-out-of-N oblivious transfer is a straightforward
generalization.

In order to define security we discuss separately
protecting the sender and the chooser. Since we can-
not offer both the sender and the chooser unconditional
(information-theoretic) protection, we offer only compu-
tational protection for (at least) one of them. We start
by defining the security for the protocols presented in
Section 3, where the sender is protected computation-
ally and the chooser information-theoretically:

The Chooser’s Security: Given that under nor-
mal operation the sender gets no output from the pro-
tocol the definition of the chooser’s security is simple:
for any o, 7 € {0,1} and for any adversary B’ executing
the sender’s part, the views that B’ sees in case she tries
to obtain M, and in case the chooser tries to obtain M,
are statistically indistinguishable given My and M;.

The Sender’s Security: We make the compar-
ison to the ideal implementation using a trusted third
party that receives My and M; from the sender’s inputs,
and receives o from the receiver, and tells the chooser
M,. Our requirement is that for every distribution on
the inputs (Mo, M1) and any adversarial probabilistic
polynomial-time machine A substituting the chooser,
there exists a simulator — a probabilistic polynomial-
time machine A’ — that gets to play the chooser’s role
in the ideal model and receives the same a priori infor-
mation about My and M; as A, such that the outputs
of A and A" are computationally indistinguishable to a
polynomial time distinguisher that is given M, and M;.

Since we are interested in simultaneous executions
of many 1-out-of-2 OT protocols we should clarify the
security in this case. If n simultaneous protocols are
executed, then the chooser’s security is that for any
&,7 € {0,1}", the distribution the sender sees when
the input to the chooser is &, or is 7, is statistically
indistinguishable. ~ As for the sender’s security, we
should take into account the fact that the adversary
controls a subset of the choosers. The definition requires
that for any distribution on the inputs ]\/.70 and M 1, any
subset S C {1,...n}, and any adversarial (probabilistic
polynomial time) machine 4 that controls the choosers



in a subset S of the protocols, there exists a probabilistic
polynomial-time machine A’ that gets to play the
chooser’s role for the subset S in the ideal model and
receives the same a priori information about M, and
M, as A, such that the outputs of A4 and A’ are
computationally indistinguishable to a polynomial time

distinguisher that is given M, and M.

2.1.1 Definitions for the construction which
does not rely on random oracles. In contrast to
the above definition, the protocols in Section 4 offer the
sender information-theoretic security and the chooser
only computational security, as defined below.

The Chooser’s Security: For any 0,7 € {0,1}
and for any probabilistic polynomial time adversary B’
executing the sender’s part, the views that B’ sees
in case the chooser tries to obtain M, and in case
the chooser tries to obtain M, are computationally
indistinguishable given My and M.

The Sender’s Security: We make the comparison
to the ideal implementation, using a trusted third
party that receives My and M; from the sender’s
inputs, and receives o from the receiver, and tells
the chooser M,. Our requirement is that for every
distribution on the inputs (My, M;) and any adversarial
(not necessarily polynomial-time) A substituting the
chooser, there exists a simulator — again not necessarily
polynomial-time - A’ that gets to play the chooser’s role
in the ideal model and the same a priori information
about My and M; as A, such that the outputs of A and
A’ are statistically indistinguishable given My and M;.

2.1.2 Other issues. The above definitions do not
address the issue of whether the sender is committed
to his input prior to and independently of the chooser’s
inputs, i.e. the definition does not disallow the possibil-
ity that the values {M}; might depend on o’ (this can
happen for instance in Protocol 3.2, see Remark 3.3).
Although this requirement is significant, we do not re-
quire it since it seems that it is best to handle this issue
at the level of the application above the OT, as can be
done in the auctions architecture of [25]. Similarly, an-
other issue not handled is whether A “knows” which
input it has chosen, i.e. whether o (for which A4 learns
M,) is extractable. The major help of the random or-
acles is for this extraction to be possible. Once o has
been extracted the simulation is straightforward.

2.2 Assumptions and Models. The analysis of
the security of the constructions in this paper is based
on the Computational Diffie-Hellman Assumption, the
Decisional Diffie-Hellman Assumption and the random
oracle model.

The Diffie-Hellman assumptions: We assume that
we have some probabilistic method to generate a group
Zq and a generator g. The Computational version of
the assumption states that any probabilistic polynomial

time machine that is given random g, g € Z, has only
negligible probability to correctly compute g%, where
the probability is over the choice of the group and g,
choices of g% and ¢® and the internal coin-flips of the
machine. Various boosting algorithms are known for
this problem [31]. In particular, the assumption implies
that extracting discrete logarithms is hard.

The Decisional version of the Diffie-Hellman as-
sumption is that it is difficult to differentiate between
(9%, g%, ¢*") and (g°, g°, g°) for randomly chosen a, b and
c. For this version a reduction from the worst case hard-
ness to the average case hardness is known [4, 33, 26].
The Random Oracle model: Some of the construc-
tions of this paper (Section 3) use a function H that is
modeled in the analysis as a random oracle, i.e. chosen
as a truly random function available to any participant
(of course, in the application itself H is implemented as
a hash function, such as SHA). The proof of security
is based on the fact that the adversary can evaluate in
limited time only a small number of the values of the
function.

The major way we utilize the random oracle is
for allowing extraction (by the simulator) without any
interaction. Le. the simulator A" monitors the queries
to H by the adversary A and answers them in an
appropriate manner. The security is measured in terms
of the number of queries to H.

While the random oracle model is often used in the
analysis of many cryptographic protocols (e.g. [3, 32]),
it best not to assume this behavior from the concrete
functions actually used in the construction. (See [6, 7,
15] for recent discussions on the subject.) We manage
to achieve this in Section 4: we show a two round 1-
out-N protocol that requires two exponentiations on
the chooser side (for any N) and O(N) exponentiations
from sender’s side. It is an interesting open problem
whether it is possible to get efficient constructions on
the sender’s side as well (without relying on random
oracles assumptions).

Efficiency of operations: the operation we consider
the most expensive is modular exponentiation; in con-
trast private-key encryptions and calls to the function
H are considered cheaper. We minimize the number of
exponentiations, but at the same time we do increase
the number of calls to the other primitives significantly.

2.3 The basic oblivious transfer protocol. Our
starting point is the Bellare-Micali [2] protocol for
oblivious transfer, which we have amended with random
oracles. The revised construction is described below.

ProTOCOL 2.1. (OBLIVIOUS TRANSFER USING A
RANDOM ORACLE)

Input: The chooser’s input is o € {0,1}, and the
sender’s input is two strings Moy, M.
Output: The chooser’s output is M.

Preliminaries: The protocol operates over a group Z,
of prime order. More specifically, G, can be a sub-



group of order q of Z, where p is prime and qlp—1.
Let g be a generator group, for which the computa-
tional Diffie-Hellman assumption holds. The pro-
tocol uses a function H which is assumed to be a
random oracle.

Initialization: The sender chooses a random element
C € Z, and publishes it. (It is only important that
the chooser will not know the discrete logarithm of
C to the base g. It is irrelevant whether the sender
knows the discrete log of C.)

Protocol:

o The chooser picks a random 1 < k < q, sets
public keys PK, = g* and PK,_, = C/PK,,
and sends PKy to the sender.

e The sender computes PK, = C/PKy and
chooses random ro,m1 € Z,. It encrypts My
by Eo = (g™, H(PK;°) ® My), and encrypts
M, by Ey = (9", H(PK{") ® M), and sends
the encryptions Ey, Ey to the chooser.

e The chooser computes H((g")*) = H(PK"~)
and uses it to decrypt M, .

Overhead: This protocol requires the sender to com-
pute four exponentiations (two of them can be pre-
computed before the protocol begins). The chooser
should compute two exponentiations (one of which can
be pre-computed).

When discussing the communication overhead it is

important to distinguish between the length of the in-
put elements My, My, and the length of group elements
(which can typically be 768 or 1024 bits long). The com-
munication from the chooser to the sender is composed
of one group element, and the communication from the
sender to the chooser is composed of two group elements
and two elements in the size of the inputs.
Security: (we only give an intuitive discussion, see
more details in further protocols). The chooser’s pri-
vacy is preserved since the value that she sends to the
sender, PK, is uniformly random (and independent of
o). As for the sender’s security, the chooser cannot
know the discrete logarithms of both PKy and PKj,
since this would reveal to her the discrete logarithm of
C. The Diffie-Hellman assumption implies that she can-
not compute both (PKp)™ and (PK;)™. Together with
the random oracle assumption this ensures that she can-
not distinguish either H ((PKp)™) or H((PK;)™) from
random.

3 OT with Low Amortized Overhead and
Bandwidth/Computation Tradeoff

The basic oblivious transfer protocol (protocol 2.1) re-
quires the sender to compute four exponentiations. This
section describes two methods for reducing this over-
head: (1) A 1-out-of-N oblivious transfer construction
with low amortized overhead, in which the sender and
chooser compute only a single exponentiation per trans-
fer, while the communication overhead is not affected.

(2) A tradeoff between the bandwidth and the communi-
cation requirements of 1-out-of-2 oblivious transfer pro-
tocols.

A single 1-out-of-2 oblivious transfer. As a
warmup, consider protocol 2.1 with the modification
that the sender uses the same random value r for both
encryptions. Namely, r = ry = r1. Since it holds that
PK, - PK, = C, it also holds that (PKy)" - (PKy)" =
CT". Therefore, the operation of the sender can be de-
fined as follows:

e Initialization: Choose a random r, compute C”

and g".

e Transfer: After receiving PKy, compute (PKj)",
and (PK;)" = C"/(PK,)". Send g¢" and
the two encryptions, H((PKp)",0) & My and
H((PK;)",1) ® My, to the chooser.
The online overhead of the sender is reduced to a single
exponentiation, while the precomputation overhead is
two exponentiations, as before.
Security:

The chooser’s privacy is preserved, since for any
C the distribution of PKj is the same whether it was
chosen directly at random or as C'/PK; for random
PK;.

As for the sender’s security, consider an adversary
A. We describe the simulator A’ operating in the ideal
model and achieving results which are indistinguishable
from those of the adversary A. The simulator simulates
both the sender (at least externally, without knowing
My and M) and A. It chooses C' and r and gives A the
value C. When A sends PKj the simulator selects two
random strings ap and «; (of the appropriate length)
and sends them and ¢" in response (as if they were the
sender’s answers). It then monitors all of A queries to
H. All queries that do not contain (PKy)" or (PK;)"
are answered at random. If A asks H about (PK”, o),
then A’ asks the trusted party in the ideal model to
receive M,. It then sets H(PK”,o) to be a, ® M,.
Then whatever A outputs so does A’ (in particular, they
have the same transcript).

It is easy to verify that in its interaction with A’,
A witnesses exactly the same distribution as it would
under normal operation (and hence the output of the
simulated one cannot be distinguished from the real
one) - except for when A queries after H(PK],o)
or H(PK7T_,,1 — o) (since A’ cannot supply it with
M;_,). However, if this occurs with probability e then
we can use A in order to break the computational Diffie-
Hellman problem in time proportional to €/m? where m
is the number of queries to the random oracle. Given g
and ¢°, fix C = ¢% and g" = g*. Perform the previous
simulation and guess that queries ¢ and j correspond
to PK} and PKY]. Their product is C" = g°. The
probability of success is at least ¢/m?. (Using the
boosting algorithm in [31] one can get an algorithm that
is almost always right, at the expense of increased time.)



To conclude, if € (which is an upper bound on
the difference between the two distributions) is non-
negligible, then we have an efficient algorithm breaking
the CDH.

Note that adding the index o as a suffix to PK] in
the call for H assures that the answers for PKy and PK;
are independent, even if PKj is chosen (maliciously) to

be equal to PK by setting it to be v/C. (If the protocol
should be run several times with the same constant C,
then the input to H should include a random element,
R, as explained for protocol 3.1.

It is also worth noting that it is possible to reduce
the above dependency on m (the number of oracle
queries) from m? to m by assuming the hardness of the
Decisional Diffie-Hellman problem. Given a candidate y
for g*°, check and see whether any two calls to H of the
form (z9,0) and (z1,1) are such that zq - 1 = y. This
can be done in linear time by computing for all zy’s the
value y/zo and checking for intersection with the x;’s.

3.1 OT{ with amortized complexity of a single
exponentiation. The idea is to use the same value g"
for all transfers between the sender and chooser, and
expand from 1-out-2 OT to l-out-N OT by using N
public-keys, so that the chooser can know the corre-
sponding secret-key of at most one of them. This is
achieved using N — 1 public values. The computational
overhead of the sender is consequently reduced to a sin-
gle exponentiation per transfer regardless of the number
of inputs.

ProTocOL 3.1. (MANY SIMULTANEOUS
OF-N OT’S WITH THE SAME g")
Initialization: The sender chooses N — 1 random con-

stants C1,Cs,...,Cn_1 (it will hold that PKy -

PK; = C;). It also chooses a random r and com-

putes g". The values C,...,Cn—1 and g" are sent

to the chooser and play the role of the public-key
of the sender. The same values will be used for all
transfers.

1-oUT-

The sender precomputes for every 1 < i < N —1
the value (C;)".

Transfer: The sender’s input is My, My,... Mn_1.
The chooser’s input is o € {0, ...N — 1} (she
should learn M, ).

e The chooser selects a random k and sets
PK, = g*. If 0 # 0 she computes PK, =
C,/PK,. She sends PKy to the sender and
can already compute a decryption key (g")* =
(PK,)".

e The sender computes (PKy)" and then for
every 1 <i < N — 1 computes (without doing
any additional exponentiations)

(PE;)" = (Ci)"/(PKo)"

The sender chooses a random string® R.
He then encrypts each M; by computing
H((PK;)",R,i)®M;, and sends these encryp-
tions and R to the chooser.

o The chooser uses H((PK,)",R,0) to decrypt
M,.

Overhead: The initialization phase consists of N ex-
ponentiations on the sender’s side. Following the initial-
ization (that can be amortized on all subsequent trans-
fers), in each transfer the sender performs only a single
exponentiation per transfer, plus N — 1 multiplications
and N invocations of H. The chooser can precompute
the decryption key before receiving the encrypted ele-
ments from the sender. The communication overhead
from the sender to the chooser corresponds to the size
of the N strings.

REMARK 3.1. Suppose that the cost of N exponen-
tiations for the initialization, and a public key consisting
of N wvalues, are considered too high. We can combine
Protocol 3.1 with the 1-out-N protocol of [24] in order
to design the following: let K be a parameter such that
a public-key of size K and initialization of K exponen-
tiations is acceptable. Then if we express the index i
in base K (i.e. as a vector of length log N/log K of
numbers in {0, ... K —1}) we can perform the [24] algo-
rithm using log N/log K invocations of 1-out-of-K OT
(instead of OT}). The 1-out-of-K OT is performed us-
ing Protocol 3.1 (with a single exponentiation). The
result is a protocol that requires log N/log K exponen-
tiations from the sender and 2log N/log K exponenti-
ations from the chooser, for every transfer. Note that
setting K = log N/loglog N implies that without any
amortization of the initialization cost the complexity is
reduced to 2log N/ loglog N, including the initialization
(compared to log N of the plain [24] protocol).

Security: The Chooser’s security is, as before, in-
formation theoretic — the distribution on PKj is in-
dependent of the values of Cp,...Cny_1 and o. The
sender’s security is based on the same argument as the
sender’s security for the single oblivious transfer which
uses a single ¢g". The first point to note is that if the
chooser knows for more than a single public key (say
for PK;, and PK,;,) the values (PK;,)" and (PK;,)",
then (PK;,)"/(PK;,)" = (C;,/C;,)". This in turn can
be used to deduce the Diffie-Hellman value of a ran-
dom C and random g¢": given inputs A = ¢ and
B = g¢* (where the goal is to compute %), simulate
A by generating the constants C; = A" for a ran-
dom r; and g" = g°. If A is successful on i; and is,
then (Cy, /Cy,)" = g% /g?*Ti>. Raising the latter to
1/(ri, —ri,) yields g®°.

3The string should be long enough so that there are no two

invocations of the protocol in which R obtains the same value.
Namely, the length should be larger than 2log(n) bits, where n
is the number of invocations of the protocol. Alternatively, the
sender could use a counter to set the value of R, and then the
length could be reduced to logn.



Since we envision using Protocol 3.1 many times
with the same public-key C,Cs,...Cn_1 and ¢g", we
should describe the actions of the simulator A’ against
an adversary that controls some subset of the users.
Therefore, the input of H contains a random element
R which ensures that the inputs in different invocations
of the protocol will be different. As before the goal is to
extract the values in which A is interested (and obtain
them in the ideal model). A’ chooses C1,Cs,...Cr—1 at
random as well as g". When A sends in the message of
the tth user A’ responds with random (g, as,...an_1)
for the encryptions of the M;’s and a random R;.
Whenever A queries H on a point (z, R',j), A’ checks
whether R' = R; for some t. If not, a random answer
is given. If R' = R; and = (PKj;)" then A' asks
in the ideal model for the values corresponding to j
and obtain M;. It then has to set H appropriately -
set H((PK;)",R:,j) = a; & M;. The only difference
between the distribution the simulated A sees and the
real one occurs if (i) A queries on another PK7, — which
we have argued can be used for breaking the CDH, so
by assumption it happens with negligible probability.
(ii) One of the H(x, R:,j) is queried in advance - but
this happens with low probability, at most (number of
queries / size of group), for each query.

REMARK 3.2. The protocol would have been inse-
cure if it were using plain El Gamal encryption instead
of a random oracle H: Suppose that the transfer was of
the form ((PK;o)" - mio, (PK;1)" - m;1). Then if the
chooser has prior knowledge of one of the transferred
elements (say, m; ), she could compute the correspond-
ing encryption key (PK; )" from the encrypted message
even if she knows the private key of the other element.
Therefore she can compute both (PK;o)" and (PK;1)",
multiply them and get (C;)". This value enables her to
decrypt both elements in every other transfer.

3.2 Bandwidth/Computation tradeoff for OT?.

The computation overhead of OT} can be reduced
by performing ¢ OT?’s at the same transfer using
protocol 3.1. The idea is to translate ¢ calls to OT}
into a single 1-out-L OT for L = 2¢. (This can be
seen as the opposite of what [24] do: they translate
a l-out-L OT into ¢ OT?’s.) While this reduces the
computation it increases the communication, so we
obtain a computation/communication tradeoff.

Let ¢ be a parameter which denotes the num-
ber of strings that are transferred in each batch, i.e.
if the number of OT?’s is large, partition them into
blocks of £. Consider one block, in which the sender
should transfer to the chooser one string out of each
of the pairs {(m;o,mi1)}%_,. Our approach is to
perform all ¢ transfers simultaneously. The sender
defines L = 2° strings, Moy,..., M _,, correspond-
ing to all combinations of ¢ strings, one from each
pair. Namely, M; = (mij,,maj,,...,Mye;,), where
ji is the ith bitof j, 0 < j < L — 1. Instead of en-
gaging in ¢ OT?’s, the parties can engage in a single

1-out-of-L oblivious transfer of one of these strings.

ProTOCOL 3.2. (SIMULTANEOUS TRANSFER OF £

STRINGS)
The parties Tun protocol 3.1 for I1-out-of-L oblivious
transfer. The sender’s input contains the L strings
My, ...,Mp_1. The chooser’s input is @ = o1,...,00,
where o; is her choice in the ith oblivious transfer.

The protocol obtains a general tradeoff between
reducing the computational overhead of the sender, and
exponentially increasing the communication overhead
(although the exponential blowup in the communication
seems very limiting, the optimal tradeoff seems to
happen for a rather large value of ¢, as is described in
Section 3.2.1).

THEOREM 3.1. (BANDWIDTH/COMPUTATION
TRADEOFF) In protocol 3.2 the amortized computational
overhead per transfer (OT?) is 1/{ exponentiations, for
both the sender and the chooser. In addition the sender
performs 2° /¢ multiplications. The offline communica-
tion overhead is 2° keys per transfer, while the online
communication overhead is 2¢/{ keys per transfer.
Computation overhead: During the transfer phase
the sender has to perform a single exponentiation and
L = 2! multiplications. The chooser performs one
exponentiation when she sends the request and one
when she receives it (note that both of them can be
done offline).

The initialization phase requires L exponentiations

from the sender, but these are amortized over all the
blocks ever sent by the sender.
Communication overhead: It may seem as if the
communication is £ - L times the size of an input
element, since there are L messages M; of length ¢
each. However a finer analysis is called for: First we
distinguish between group elements (which might be
long, say 1000 bits) and private-keys which can be as
short as 100 bits. Furthermore, another distinction is
between online and offline communication, where the
latter refers to messages that can be sent independently
of the inputs. Therefore we can think of them as
being sent in a preprocessing phase (say when the
communication network is idle, or stored in a DVD).

From the chooser to the sender only a single group
element is sent. The online communication from the
sender to the chooser can be reduced from O(¢ - L) to
O(L) by encrypting each m; with a different key, and
running the oblivious transfer with the keys as inputs.
That is , the following protocol is run:

1. The sender chooses for each 1 < i < / and o €
{0,1} a random key k;, (a total of 2¢ keys). For
each 1 < j < L let M; = (k1j,,k2,55,- -, Kej,)
be the concatenation of the keys of the values
transferred when j is chosen.

2. For each 1 < j < L the sender chooses a random
key K and encrypts M; with H(Kj, R), i.e. gen-
erates M} @ H (K, R). These encryptions are sent
offline.



3. In the transfer phase of the protocol the sender first
sends, for all 1 <4 < ¢ and o € {0,1}, the values
Ey, ,(m;y). The values that are actually trans-
ferred in the oblivious transfer are (K, Ko, ... K}).
Each Kj; is encrypted with H((PK;)", R, j).

4. The chooser uses the key K; to decrypt the corre-
sponding string M]’ It then uses the keys k; ; in
M]' to decrypt the elements m; ;.
Offtine communication: The total length of the offline
communication in step 2 is Ll|k; | bits. The length of
the keys |k; | can be set to be 100 bits, and does not
increase if the inputs are longer (however, if the inputs
m; » are shorter, they can be encrypted by xoring them
with the corresponding keys k; ,, and then the keys can
be as short as the inputs).
Online communication: In the transfer step itself the
sender sends a message of length L|K | + 2¢|m; .| bits
to the receiver (the keys K; can also be 100 bits long).
Note that in comparison to the alternative of run-
ning the oblivious transfer protocol £ times indepen-
dently, there is an L = 2¢ multiplicative increase in the
offline communication, and an L/ increase in the on-
line communication. The increase in the communication
compared to the basic Bellare-Micali protocol (Proto-
col 2.1) is smaller, since all messages in that protocol in-
clude elements in the group in which the Diffie-Hellman
assumption holds.

Security: The chooser is protected information theo-
retically, as before. As for the sender’s security, the ma-
jor point is preventing the chooser from learning more
than a single string in each transfer. We should describe
the actions of the simulator A’ against an adversary
that controls some subset of the choosers. As before
the goal is to extract the values in which A is inter-
ested and obtain them in the ideal model. A’ chooses
C1,Cy,...Cr—1 at random as well as g". In the pre-
processing phase .4’ generates for each chooser ¢ a ran-
dom vector {B] = (61’]'1762,]'27"'7Bl,je>|1 <j< L}
When A sends in the message of the tth chooser A’
responds with random (v1,0,71,1,72,0,V2,1,---7¢,1) for
the encrypted values, random (ay,as,...ay) for the
keys and random R;. Whenever A queries H on a
point (z,R',j), A" checks whether R' = R; for some
t. If not, a random answer is given. If R = R;
and z = (PKj;)" then A’ asks in the ideal model for
the values corresponding to (ji,Ja,-..j¢) and obtains
M;. Tt then has to set H appropriately - choose ran-
dom key K; and set H(PK],R;,j) = a; © K;. Set

H(Kj, R;) = B; ® <"}/1,j1,’}/2’j2, .. -’Vl,je> ® M;. The only
difference between the distribution the simulated A sees
and the real one occurs if (i) A queries on another
(PKj)" — which we have argued can be used for break-
ing the CDH, so by assumption it happens with negli-
gible probability. (ii) One of the H(Kj, R:) is queried
in advance - this happens with low probability.
REMARK 3.3. The protocol allows a malicious

sender a mew possible abuse not handled by our defi-
nition of security in Section 2.1: he can encode k; , in-
consistently in the different strings that should include
ki . Therefore the chooser gets different values of m; »
depending on (i',0"). Fortunately, there is a simple so-
lution in a framework like [25]: add periodic checks, by
requesting the sender to open all hidden strings and show
consistency.

REMARK 3.4. It is interesting to mnote that the
approach we have taken in investigating the band-
width/computation tradeoff is somewhat opposite to the
approach of Private Information Retrieval (PIR) (see
e.g., [21, 5]). The goal of PIR protocols is to minimize
the communication overhead, and this requires (in the
case of single server solutions) to increase the compu-
tation overhead, up to computing an exponentiation for
every bit of the database. Our goal, on the other hand, is
to reduce the computation overhead of oblivious transfer
protocols by increasing the communication overhead. As
we describe below, this approach makes sense in many
applications, since existing oblivious transfer protocols
often have lesser utilization of bandwidth than of com-
putation.

3.2.1 Which tradeoff to choose? The optimal bal-
ance between communication and computation depends
on specific considerations for each case, depending on
the available bandwidth and computational resources.
A very realistic assumption is, however, that the goal
is to minimize the latency of the oblivious transfer pro-
tocol. This latency is affected by both the communi-
cation and the computation times. Typical bandwidth
between the chooser and the sender could be 1.5Mb/sec
for a T1 line or 35Mb/sec for a T3 line. On the other
hand, an exponentiation of a 1000 bit number takes
about 20 msec on a state of the art computer Pentium
IIT or Celeron at 500Mhz (see [12] for benchmark re-
sults). (This is where the exponent is 200 bits long.)
For a quick estimate of the optimal value of /,
consider the tasks of the chooser (the analysis for the
sender is almost identical). Most of her overhead is
incurred by computing a single exponentiation for every
¢ transfers, and receiving on-line 2¢ keys (say, 100-2 bits
for 100 bit keys) from the sender (offline 2°¢ keys should
be sent). Optimal online performance is achieved when
the same amount of time is invested in the computation
and in the communication since in this case there are
no idle times for either the processor or the network.
Suppose that the bandwidth is B bits per second,
the keys are k bits long, and the processor is capable
of performing E exponentiations per second. Then,
considering only the online communication, the latency
per OT? is max(i%, 75) (this is assuming pipelining
of the communication and computation; otherwise the
two quantities should be added .) Minimal latency is



achieved when

2k
—— = —. Namely,

B E £=

log —- .
8 LE

The optimal tradeoff is achieved (perhaps surpris-
ingly) using a rather large £. For example a server which
can perform E = 50 exponentiations per second, and
uses a T1 line (1.5Mbps), should set £ = 8 to obtain
optimal performance. Assuming that the server invests
more in its resources, distributes the exponentiations
between 5 processors (achieving £ = 250), and uses
a T3 line, £ = 10 is optimal. Figure 1 describes the
throughput, i.e. the number of OT}’s per second, that
is achieved for different values of the bandwidth (when
E and k are kept constant). Figure 2 describes the gain
in speed as a function of ¢ (namely, the throughput di-
vided by that of a protocol with no optimizations), for
representative values of B, E and k.

An example. As a concrete example for the improve-
ment achieved by the techniques presented here, and
in particular by the bandwidth/communication trade-
off, consider the auction protocol of [25]. The main
computational overhead of the protocol is the execu-
tion of many oblivious transfers. More accurately, for
N bidders with m bit inputs, the protocol requires Nm
oblivious transfers?.

The overhead of the sender in a naive application
of the basic protocol (protocol 2.1) is

Computing 4Nm exponentiations, and send-

ing 2Nm - (1024 + 100) bits.
(Assuming a 1024 bit modulus and 100 bit keys.) For an
auction with N = 1000 bidders, and m = 24 bit bids,
this results in 96,000 exponentiations, and a message
of 6.7 Mbytes. Each receiver should compute 2m = 48
exponentiations.

If protocol 3.2 with ¢ = 8 is used, then the overhead
of the sender is

Computing Nm/8 exponentiations, sending

Am . (1024 + 28 - 100) bits online, and &% -

(2% -8 - 100) bits offline.
For the same values of N and m, the sender computes
only 3000 exponentiations (an improvement by a fac-
tor of 32). Each receiver computes 6 exponentiations
( 3 offline and 3 online). The sender sends an online
message of length 10 Mbytes, and an offline message
of length 76 Mbytes. Using a T1 communication line,
and a computer which computes 50 exponentiations per
second, both the computation and the online communi-
cation take about 60 seconds for all bidders (compared
to approximately half an hour for the original protocol).

TMore accurately, the protocol uses a proxy oblivious transfer
protocol which involves three parties. However, the protocols
we defined in this paper can be translated in a straightforward

manner to the proxy OT setting.

4 How to avoid random oracles

This section discusses methods for designing protocols
whose analysis does mot rely on random oracles. The
first issue is whether it is possible to design a two-round
(this is called “non-interactive” by Bellare and Micali)
OT protocol which does not rely on the random-oracle
assumption. The only previous protocol that (almost®)
fits the two-round requirement was recently proposed
by Dwork and Naor [16] and is quite inefficient, as it
relies on the general protocol for non-interactive zero-
knowledge protocols for languages in NV P. We note that
independently of this work Aiello, Ishai and Reingold
[28] suggested a protocol with a similar structure for a
related problem.

The structure of the protocol is chooser to sender
and then sender to chooser. Unlike the protocols
of [2, 16] there is no need for the sender to have a
public-key or public-value. It is based on the DDH
assumption and offers information-theoretic protection
for the sender and computational indistinguishability
for the chooser (the opposite of the case in the Bellare-
Micali scheme and the other schemes in this paper).
The idea is for the chooser to create two encryption
keys so that at most one of them is legitimate. It uses
the following idea: if a key is badly formed, then the
corresponding ciphertext has a random value. This
is done similarly to the randomized self-reduction of
the DDH problem (see [33] and [26]). The idea of
randomizing bad ciphertexts was previously suggested
by Canetti and Goldwasser [8] in order to design a
threshold variant of the Cramer-Shoup cryptosystem
[10] — there if a ciphertext is not valid, then it decrypts
to a random value.

For the protocol we assume some El Gamal like
method that is semantically secure. The simplest case
is to assume that the messages are in the subgroup in
which we operate. Otherwise we have to use hashing
(probabilistic, not random-oracle type, see e.g. [26]).

ProTocor 4.1. (BAsic PROTOCOL)

1. The chooser generates random g%, g* and co, ¢ such
that ¢, = ab and ¢i_, is random. Chooser sends
r=yg%y=g"z2 =92 =g".

2. The sender verifies that zg # z1. It then generates
random (ro, so) and (r1,s1) and

s0

(a) Computes wo = z°° - g™ and encrypts My
using the key z3° - y™. The value wy and the
encryption are sent to the chooser.

(b) Computes wi = x°' - g"* and encrypts M
using the key z7* - y™. The value wy and the
encryption are sent to the chooser.

3. The chooser computes (w,)® and decrypts M,.

5That protocol requires either a public-string (not key) from

the sender or relies on non-uniformity.



Overhead: The chooser is required to compute three
exponentiations when preparing g%, ¢* and g°= = ¢
(as well as selecting g°'~—= at random). Note that one of
{g%, g*} can remain fixed and there is no need to change
it from transfer to transfer. Therefore the chooser can
compute (offline) two exponentiations per transfer, and
compute an additional exponentiation (online) when it
receives the message from the sender. The sender has
to compute two double exponentiations (of two different
values) per transfer.

Security: The Chooser’s security is based on the
indistinguishability of ¢, and c¢;—, which in turn is
based on the DDH assumption. The sender’s security
is information-theoretic and is based on the following
claim.

CrLAM 4.1. If z; # g, then (x37 - glm 257 -y'™) is
uniformly distributed.

The proof follows from the randomized reduction of
DDH of [26] and [33].

Therefore if z; # g% no information about m., is
transferred. Since at most one of {2, 21} equals g,
the chooser’s gets information on at most one of My
and M;.

4.1 The 1-out-of-N Protocol.

It is straightforward to generalize the above scheme
to l-out-of-N OT. The interesting point is that it can
done be without increasing the chooser’s complexity.
The point is that the chooser does not have to choose
and send the g¢’s explicitly. Suppose that the chooser
is interested in M;. Then she chooses ¢; = a - b and sets
z; = g°. This in turns defines all the z;’s by setting
zj = 2z - ¢’~% and in particular zy = ¢%~*. Therefore
what the chooser sends is g%, ¢” and zy = g /g’. The
sender on the other hand still has to perform all the
work he performed previously.

Security: The sender’s security is information theo-
retic, as before. As for the chooser’s security, under the
DDH assumption no probabilistic polynomial-time ma-
chine can distinguish for any fixed 7 between a triple of
the form (g2, g%, ¢**~%) and a random triple. Therefore
triples of the form (g2, g°, g**~*) and (g“,gb,g“b*il)
computationally indistinguishable.

Overhead: The chooser is required to compute three
exponentiations when preparing g2, ¢* and ¢%® (and as
before one of {g% ¢*} can remain fixed). The sender
has to compute 2N double exponentiations. As for
communication, the chooser is sending a fixed number
of elements and receives from the sender 2N elements.
Hence the chooser performs roughly as much work as
she does in the random oracle based OT? construction
of Protocol 3.1.

are

REMARK 4.1. Note that the protocol in [24] is more
egalitarian in that each side performs log N exponenti-
ations. As in Remark 3.1 we can combine the two ap-
proaches. Expressing the index i in base K (i.e. as a
vector of length log N/log K of numbers in {0,... K —

Throughput
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Figure 1: The throughput (number of OT? per second)
as a function of the bandwidth, using the optimal ¢, for
E = 50 and keys of k£ = 100 bits.

1}) we perform the [24] algorithm using 1-out-of-K OT
(instead of 1-out-2); the 1-out-of-K OT is performed
using the above protocol. The result is a protocol that
requires K log N/log K exponentiations from the sender
and 2log N/log K exponentiations from the chooser.

4.2 Two Applications and a Caveat.

One scenario where this protocol is applicable is
the architecture for performing auctions and mechanism
design of [25]. The bidders should participate in many
OT protocols as choosers. The method for reducing the
computational load is very relevant there - it can save
significant work on both the bidder and auctioneer side,
but not for the auction issuer.

Another application is turning PIR into SPIR. with-
out increasing the number of rounds (A SPIR protocol
also protects the owner of the data from leaking in-
formation about more than one entry.) In [24] it was
suggested to construct SPIRs based on OT? without
increasing the number of rounds compared to the OT}
protocol, so one can either apply Protocol 4.1 or can
do it directly using the OT}Y protocol described in Sec-
tion 4.1. Namely, the sender creates a PIR database for
the 2N elements it sends in response to the chooser’s
query, and runs a PIR protocol for selecting the ith
entry. Since in all known single-server PIR protocols
[5, 21] the sender performs a huge number of operations
anyway, the latter approach is most appropriate.

Finally, note that in the protocol we cannot rule out
the possibility of malleability from the Sender’s side: the
information the sender transmits might be a function
of the bit(s) o the chooser is requesting (without the
sender really knowing what he is sending). This is not
relevant in case the sender is committed to its value
prior to the protocol, as in the [25] scenario.
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