
EÆient Oblivious Transfer Protools

Moni Naor

�

Benny Pinkas

y

1 Introdution

Oblivious Transfer (OT) protools allow one party, the

sender, to transmit part of its inputs to another party,

the hooser, in a manner that protets both of them:

the sender is assured that the hooser does not reeive

more information than it is entitled, while the hooser is

assured that the sender does not learn whih part of the

inputs it reeived. OT is used as a key omponent in

many appliations of ryptography. Its omputational

requirements are quite demanding and they are likely

to be the bottlenek in many appliations that invoke

it.

1.1 Contributions. This paper presents several

signi�ant improvements to oblivious transfer (OT)

protools of strings, and in partiular: (i) Improving

the eÆieny of appliations whih many invoations

of oblivious transfer. (ii) Providing the �rst two-round

OT protool whose seurity analysis does not invoke

the random orale model. In more detail, the paper

disusses the following issues:

� Oblivious transfer protools with low amortized

overhead, and a bandwidth/omputation tradeo� for

oblivious transfer, are disussed in Setion 3. In

partiular we are able to break the \one exponenti-

ation for eah OT" barrier and derease the num-

ber of exponentiations required by any desired fa-

tor, at the ost of inreasing the ommuniation

overhead. For example, in Setion 3.2.1 we show a

spei� example requiring a single exponentiation

per eight invoations of 1-out-of-2 oblivious trans-

fer (OT

2

1

), using online ommuniation of 400 bytes

per OT

2

1

. Another appliation (Setion 3.1) is a

OT

N

1

protool whose amortized overhead is just a

single exponentiation (regardless of the size of the

sender's input), and O(N) ommuniation (as in

all previous OT

N

1

protools).

The analysis of this onstrution relies on model-

ing hash funtions as truly random funtions (the

�

Dept. of Computer Siene and Applied Math, Weizmann

Institute of Siene, Rehovot, Israel. Currently on sabbatial

in IBM Almaden Researh Lab and Stanford University. Email:

naor�wisdom.weizmann.a.il.

y

STAR Lab, Intertrust Tehnologies. Most of this work was

done while the author was at the Weizmann Institute of Siene

and the Hebrew University of Jerusalem, and was supported

by an Eshkol grant of the Israeli Ministry of Siene. Email:

bpinkas�intertrust.om, benny�pinkas.net.

random orale assumption) as well as the ompu-

tational DiÆe-Hellman Assumption.

� A two round 1-out-N OT protool whih requires

a �xed number of exponentiations on the hooser's

side and O(N) exponentiations on the sender's

side is desribed in Setion 4. The analysis of

the onstrution relies on the Deisional DiÆe-

Hellman Assumption. This is the �rst two-round

OT protool whose seurity analysis does not rely

on the random orale assumption.

1.2 Motivation. All known oblivious transfer pro-

tools require \publi key" operations (e.g. trapdoor

funtions), that are typially implemented using mod-

ular exponentiations, whih are omputationally inten-

sive tasks

1

. The result of Impagliazzo and Rudih [20℄

implies that it is unlikely that oblivious transfer ould

be based on more eÆient one-way funtions or other

private-key ryptographi primitives. Our working as-

sumption is that suh private-key funtions are substan-

tially more eÆient than oblivious transfer, and, there-

fore, we wish to minimize the use of oblivious transfer.

Our work is motivated by appliations whih require

two or more parties to perform many oblivious transfers

of strings. Suh appliations inlude for example Yao's

protool for seure two-party omputation [34, 19℄, and

protools for OT

N

1

and for oblivious evaluation of poly-

nomials [24℄, whih use redutions to many invoations

of OT

2

1

. The omputation overhead of oblivious trans-

fer is often more demanding than its ommuniation

overhead. For example, the analysis of a reent privay

preserving protool for omputing the ID3 data mining

algorithm [22℄ shows that the ommuniation overhead

an be done in a matter of seonds, while the ompu-

tation takes several minutes. This is a good ase for

providing a bandwidth/omputation tradeo�. As a spe-

i� example onsider a reent onstrution of privay-

preserving protools for autions [25℄. We examine a

representative senario of this protool in Setion 3.2.1

and demonstrate that using the tradeo� we an redue

the time that it takes to omplete the protool by a

fator of 32 (e.g., for some reasonable hoie of the pa-

rameters the time is redued from half an hour to less

than a minute). Another appliation is a protool for 1-

out-of-N oblivious transfer protool whih requires only

a single exponentiation.

1

For example, about 50 exponentiations of 1024 bit numbers

an be omputed in a single seond, on a Pentium III PC.

1

2

The bandwidth/omputation tradeo� is ideal in se-

narios whih require the use of proxy oblivious transfer {

a three party variant of oblivious transfer de�ned in [25℄.

In this protool the role of the hooser is divided be-

tween two parties: a hooser whih hooses whih of

the sender inputs is learned, and a proxy whih learns

this item. The tradeo� is partiularly useful if the party

playing the hooser in the proxy oblivious transfer pro-

tool has limited omputational resoures (for example,

if it is a handheld devie), sine the omputational over-

head of the hooser is greatly redued, and she an atu-

ally ompute all the exponentiations in a preproessing

step. The inrease in ommuniation a�ets only the

sender and the proxy.

Two round oblivious transfer with no ran-

dom orale assumptions: Previous oblivious trans-

fer protools of strings require at least three rounds of

interation, or depend on a seurity analysis whih mod-

els some funtion as a random orale. In setion 4 we

present the �rst two-round oblivious transfer protool

whose seurity does not depend on the random orale

assumption. Reent disussions demonstrate that mod-

eling spei� funtions as random might not be justi-

�ed [6, 7, 15℄, and therefore motivate our onstrution.

1.3 Related Work.

Reduing omputational work via amortization has

been done in several ontexts in ryptography. The

best results are in the area of signatures: it is possible

to verify several modular exponential equations (and in

partiular signatures) with a number of exponentiations

proportional to the seurity parameter (See [1, 23, 29℄).

The only example we are aware of where amortization

redues the ost to below an exponentiation per signa-

ture generation is Bath RSA [18℄.

In this paper we are onerned with 1-out-of-2

Oblivious Transfer (OT

2

1

). This primitive was suggested

by Even, Goldreih and Lempel [17℄, as a generalization

of Rabin's \oblivious transfer" [27℄. There have been

many suggestions for implementing OTs; the one that

is our starting point is by Bellare and Miali [2℄.

This protool an be viewed as an instane of the

EGL paradigm [17℄ for designing oblivious transfer

protools based on publi-key ryptosystems, where the

ryptosystem in question is El Gamal. The two-round

Bellare-Miali protool as presented in [2℄ is not known

to be seure

2

. To the best of our knowledge no analysis

of it using random orales has appeared previously.

Regarding 1-out-of-N OT protools, Naor and

Pinkas [24℄ have shown how to implement them using

logN parallel invoations of OT

2

1

's protools. This on-

strution requires logN exponentiations, ompared to

the amortized overhead of a single exponentiation of the

protool of Setion 3.1 (the ommuniation overhead of

2

However if the two strings of the sender are random, then

the protool does not leak both of them. There are also provable

alternatives using more rounds for a proof of knowledge

both protools is O(N)). We apply this algorithm to

obtain some variants of the protools presented in this

paper (Remark 3.1 and Setion 4.1).

Oblivious transfer is related to Private Information

Retrieval (PIR). A disussion of this relation appears in

Remark 3.4.

2 Preliminaries

2.1 De�nitions of Seurity - Oblivious Transfer

In this paper we are onerned with 1-out-of-2 Oblivious

Transfer (OT

2

1

) where one party, the sender, has input

omposed of two strings (M

0

;M

1

), and the input of a

seond party, the hooser, is a bit �. The hooser should

learn M

�

and nothing regardingM

1��

while the sender

should gain no information about �. The de�nition

of 1-out-of-N oblivious transfer is a straightforward

generalization.

In order to de�ne seurity we disuss separately

proteting the sender and the hooser. Sine we an-

not o�er both the sender and the hooser unonditional

(information-theoreti) protetion, we o�er only ompu-

tational protetion for (at least) one of them. We start

by de�ning the seurity for the protools presented in

Setion 3, where the sender is proteted omputation-

ally and the hooser information-theoretially:

The Chooser's Seurity: Given that under nor-

mal operation the sender gets no output from the pro-

tool the de�nition of the hooser's seurity is simple:

for any �; � 2 f0; 1g and for any adversary B

0

exeuting

the sender's part, the views that B

0

sees in ase she tries

to obtainM

�

and in ase the hooser tries to obtainM

�

are statistially indistinguishable given M

0

and M

1

.

The Sender's Seurity: We make the ompar-

ison to the ideal implementation using a trusted third

party that reeivesM

0

andM

1

from the sender's inputs,

and reeives � from the reeiver, and tells the hooser

M

�

. Our requirement is that for every distribution on

the inputs (M

0

;M

1

) and any adversarial probabilisti

polynomial-time mahine A substituting the hooser,

there exists a simulator { a probabilisti polynomial-

time mahine A

0

{ that gets to play the hooser's role

in the ideal model and reeives the same a priori infor-

mation about M

0

and M

1

as A, suh that the outputs

of A and A

0

are omputationally indistinguishable to a

polynomial time distinguisher that is givenM

0

andM

1

.

Sine we are interested in simultaneous exeutions

of many 1-out-of-2 OT protools we should larify the

seurity in this ase. If n simultaneous protools are

exeuted, then the hooser's seurity is that for any

~�; ~� 2 f0; 1g

n

, the distribution the sender sees when

the input to the hooser is ~�, or is ~� , is statistially

indistinguishable. As for the sender's seurity, we

should take into aount the fat that the adversary

ontrols a subset of the hoosers. The de�nition requires

that for any distribution on the inputs

~

M

0

and

~

M

1

, any

subset S � f1; : : : ng, and any adversarial (probabilisti

polynomial time) mahine A that ontrols the hoosers

3

in a subset S of the protools, there exists a probabilisti

polynomial-time mahine A

0

that gets to play the

hooser's role for the subset S in the ideal model and

reeives the same a priori information about

~

M

0

and

~

M

1

as A, suh that the outputs of A and A

0

are

omputationally indistinguishable to a polynomial time

distinguisher that is given

~

M

0

and

~

M

1

.

2.1.1 De�nitions for the onstrution whih

does not rely on random orales. In ontrast to

the above de�nition, the protools in Setion 4 o�er the

sender information-theoreti seurity and the hooser

only omputational seurity, as de�ned below.

The Chooser's Seurity: For any �; � 2 f0; 1g

and for any probabilisti polynomial time adversary B

0

exeuting the sender's part, the views that B

0

sees

in ase the hooser tries to obtain M

�

and in ase

the hooser tries to obtain M

�

are omputationally

indistinguishable given M

0

and M

1

.

The Sender's Seurity: We make the omparison

to the ideal implementation, using a trusted third

party that reeives M

0

and M

1

from the sender's

inputs, and reeives � from the reeiver, and tells

the hooser M

�

. Our requirement is that for every

distribution on the inputs (M

0

;M

1

) and any adversarial

(not neessarily polynomial-time) A substituting the

hooser, there exists a simulator { again not neessarily

polynomial-time - A

0

that gets to play the hooser's role

in the ideal model and the same a priori information

about M

0

and M

1

as A, suh that the outputs of A and

A

0

are statistially indistinguishable given M

0

and M

1

.

2.1.2 Other issues. The above de�nitions do not

address the issue of whether the sender is ommitted

to his input prior to and independently of the hooser's

inputs, i.e. the de�nition does not disallow the possibil-

ity that the values fMg

i

might depend on �

0

j

(this an

happen for instane in Protool 3.2, see Remark 3.3).

Although this requirement is signi�ant, we do not re-

quire it sine it seems that it is best to handle this issue

at the level of the appliation above the OT, as an be

done in the autions arhiteture of [25℄. Similarly, an-

other issue not handled is whether A \knows" whih

input it has hosen, i.e. whether � (for whih A learns

M

�

) is extratable. The major help of the random or-

ales is for this extration to be possible. One � has

been extrated the simulation is straightforward.

2.2 Assumptions and Models. The analysis of

the seurity of the onstrutions in this paper is based

on the Computational DiÆe-Hellman Assumption, the

Deisional DiÆe-Hellman Assumption and the random

orale model.

The DiÆe-Hellman assumptions: We assume that

we have some probabilisti method to generate a group

Z

q

and a generator g. The Computational version of

the assumption states that any probabilisti polynomial

time mahine that is given random g

a

; g

b

2 Z

q

has only

negligible probability to orretly ompute g

ab

, where

the probability is over the hoie of the group and g,

hoies of g

a

and g

b

and the internal oin-ips of the

mahine. Various boosting algorithms are known for

this problem [31℄. In partiular, the assumption implies

that extrating disrete logarithms is hard.

The Deisional version of the DiÆe-Hellman as-

sumption is that it is diÆult to di�erentiate between

(g

a

; g

b

; g

ab

) and (g

a

; g

b

; g

) for randomly hosen a; b and

. For this version a redution from the worst ase hard-

ness to the average ase hardness is known [4, 33, 26℄.

The Random Orale model: Some of the onstru-

tions of this paper (Setion 3) use a funtion H that is

modeled in the analysis as a random orale, i.e. hosen

as a truly random funtion available to any partiipant

(of ourse, in the appliation itself H is implemented as

a hash funtion, suh as SHA). The proof of seurity

is based on the fat that the adversary an evaluate in

limited time only a small number of the values of the

funtion.

The major way we utilize the random orale is

for allowing extration (by the simulator) without any

interation. I.e. the simulator A

0

monitors the queries

to H by the adversary A and answers them in an

appropriate manner. The seurity is measured in terms

of the number of queries to H .

While the random orale model is often used in the

analysis of many ryptographi protools (e.g. [3, 32℄),

it best not to assume this behavior from the onrete

funtions atually used in the onstrution. (See [6, 7,

15℄ for reent disussions on the subjet.) We manage

to ahieve this in Setion 4: we show a two round 1-

out-N protool that requires two exponentiations on

the hooser side (for any N) and O(N) exponentiations

from sender's side. It is an interesting open problem

whether it is possible to get eÆient onstrutions on

the sender's side as well (without relying on random

orales assumptions).

EÆieny of operations: the operation we onsider

the most expensive is modular exponentiation; in on-

trast private-key enryptions and alls to the funtion

H are onsidered heaper. We minimize the number of

exponentiations, but at the same time we do inrease

the number of alls to the other primitives signi�antly.

2.3 The basi oblivious transfer protool. Our

starting point is the Bellare-Miali [2℄ protool for

oblivious transfer, whih we have amended with random

orales. The revised onstrution is desribed below.

Protool 2.1. (Oblivious transfer using a

random orale)

Input: The hooser's input is � 2 f0; 1g, and the

sender's input is two strings M

0

;M

1

.

Output: The hooser's output is M

�

.

Preliminaries: The protool operates over a group Z

q

of prime order. More spei�ally, G

q

an be a sub-

4

group of order q of Z

�

p

, where p is prime and qjp�1.

Let g be a generator group, for whih the omputa-

tional DiÆe-Hellman assumption holds. The pro-

tool uses a funtion H whih is assumed to be a

random orale.

Initialization: The sender hooses a random element

C 2 Z

q

and publishes it. (It is only important that

the hooser will not know the disrete logarithm of

C to the base g. It is irrelevant whether the sender

knows the disrete log of C.)

Protool:

� The hooser piks a random 1 � k � q, sets

publi keys PK

�

= g

k

and PK

1��

= C=PK

�

,

and sends PK

0

to the sender.

� The sender omputes PK

1

= C=PK

0

and

hooses random r

0

; r

1

2 Z

q

. It enrypts M

0

by E

0

= hg

r

0

; H(PK

r

0

0

) �M

0

i, and enrypts

M

1

by E

1

= hg

r

1

; H(PK

r

1

1

)�M

1

i, and sends

the enryptions E

0

; E

1

to the hooser.

� The hooser omputes H((g

r

�

)

k

) = H(PK

r

�

�

)

and uses it to derypt M

�

.

Overhead: This protool requires the sender to om-

pute four exponentiations (two of them an be pre-

omputed before the protool begins). The hooser

should ompute two exponentiations (one of whih an

be pre-omputed).

When disussing the ommuniation overhead it is

important to distinguish between the length of the in-

put elements M

0

;M

1

, and the length of group elements

(whih an typially be 768 or 1024 bits long). The om-

muniation from the hooser to the sender is omposed

of one group element, and the ommuniation from the

sender to the hooser is omposed of two group elements

and two elements in the size of the inputs.

Seurity: (we only give an intuitive disussion, see

more details in further protools). The hooser's pri-

vay is preserved sine the value that she sends to the

sender, PK

0

, is uniformly random (and independent of

�). As for the sender's seurity, the hooser annot

know the disrete logarithms of both PK

0

and PK

1

,

sine this would reveal to her the disrete logarithm of

C. The DiÆe-Hellman assumption implies that she an-

not ompute both (PK

0

)

r

0

and (PK

1

)

r

1

. Together with

the random orale assumption this ensures that she an-

not distinguish either H((PK

0

)

r

0

) or H((PK

1

)

r

1

) from

random.

3 OT with Low Amortized Overhead and

Bandwidth/Computation Tradeo�

The basi oblivious transfer protool (protool 2.1) re-

quires the sender to ompute four exponentiations. This

setion desribes two methods for reduing this over-

head: (1) A 1-out-of-N oblivious transfer onstrution

with low amortized overhead, in whih the sender and

hooser ompute only a single exponentiation per trans-

fer, while the ommuniation overhead is not a�eted.

(2) A tradeo� between the bandwidth and the ommuni-

ation requirements of 1-out-of-2 oblivious transfer pro-

tools.

A single 1-out-of-2 oblivious transfer. As a

warmup, onsider protool 2.1 with the modi�ation

that the sender uses the same random value r for both

enryptions. Namely, r = r

0

= r

1

. Sine it holds that

PK

0

� PK

1

= C, it also holds that (PK

0

)

r

� (PK

1

)

r

=

C

r

. Therefore, the operation of the sender an be de-

�ned as follows:

� Initialization: Choose a random r, ompute C

r

and g

r

.

� Transfer: After reeiving PK

0

, ompute (PK

0

)

r

,

and (PK

1

)

r

= C

r

=(PK

0

)

r

. Send g

r

and

the two enryptions, H((PK

0

)

r

; 0) � M

0

and

H((PK

1

)

r

; 1)�M

1

, to the hooser.

The online overhead of the sender is redued to a single

exponentiation, while the preomputation overhead is

two exponentiations, as before.

Seurity:

The hooser's privay is preserved, sine for any

C the distribution of PK

0

is the same whether it was

hosen diretly at random or as C=PK

1

for random

PK

1

.

As for the sender's seurity, onsider an adversary

A. We desribe the simulator A

0

operating in the ideal

model and ahieving results whih are indistinguishable

from those of the adversary A. The simulator simulates

both the sender (at least externally, without knowing

M

0

andM

1

) and A. It hooses C and r and gives A the

value C. When A sends PK

0

the simulator selets two

random strings �

0

and �

1

(of the appropriate length)

and sends them and g

r

in response (as if they were the

sender's answers). It then monitors all of A queries to

H . All queries that do not ontain (PK

0

)

r

or (PK

1

)

r

are answered at random. If A asks H about (PK

r

�

; �),

then A

0

asks the trusted party in the ideal model to

reeive M

�

. It then sets H(PK

r

�

; �) to be �

�

�M

�

.

Then whateverA outputs so does A

0

(in partiular, they

have the same transript).

It is easy to verify that in its interation with A

0

,

A witnesses exatly the same distribution as it would

under normal operation (and hene the output of the

simulated one annot be distinguished from the real

one) - exept for when A queries after H(PK

r

�

; �)

or H(PK

r

1��

; 1 � �) (sine A

0

annot supply it with

M

1��

). However, if this ours with probability � then

we an use A in order to break the omputational DiÆe-

Hellman problem in time proportional to �=m

2

where m

is the number of queries to the random orale. Given g

a

and g

b

, �x C = g

a

and g

r

= g

b

. Perform the previous

simulation and guess that queries i and j orrespond

to PK

r

0

and PK

r

1

. Their produt is C

r

= g

ab

. The

probability of suess is at least �=m

2

. (Using the

boosting algorithm in [31℄ one an get an algorithm that

is almost always right, at the expense of inreased time.)

5

To onlude, if � (whih is an upper bound on

the di�erene between the two distributions) is non-

negligible, then we have an eÆient algorithm breaking

the CDH.

Note that adding the index � as a suÆx to PK

r

�

in

the all forH assures that the answers for PK

0

and PK

1

are independent, even if PK

0

is hosen (maliiously) to

be equal to PK

1

by setting it to be

p

C. (If the protool

should be run several times with the same onstant C,

then the input to H should inlude a random element,

R, as explained for protool 3.1.

It is also worth noting that it is possible to redue

the above dependeny on m (the number of orale

queries) from m

2

to m by assuming the hardness of the

Deisional DiÆe-Hellman problem. Given a andidate y

for g

ab

, hek and see whether any two alls to H of the

form (x

0

; 0) and (x

1

; 1) are suh that x

0

� x

1

= y. This

an be done in linear time by omputing for all x

0

's the

value y=x

0

and heking for intersetion with the x

1

's.

3.1 OT

N

1

with amortized omplexity of a single

exponentiation. The idea is to use the same value g

r

for all transfers between the sender and hooser, and

expand from 1-out-2 OT to 1-out-N OT by using N

publi-keys, so that the hooser an know the orre-

sponding seret-key of at most one of them. This is

ahieved using N � 1 publi values. The omputational

overhead of the sender is onsequently redued to a sin-

gle exponentiation per transfer regardless of the number

of inputs.

Protool 3.1. (Many simultaneous 1-out-

of-N OT's with the same g

r

)

Initialization: The sender hooses N �1 random on-

stants C

1

; C

2

; : : : ; C

N�1

(it will hold that PK

0

�

PK

i

= C

i

). It also hooses a random r and om-

putes g

r

. The values C

1

; : : : ; C

N�1

and g

r

are sent

to the hooser and play the role of the publi-key

of the sender. The same values will be used for all

transfers.

The sender preomputes for every 1 � i � N � 1

the value (C

i

)

r

.

Transfer: The sender's input is M

0

;M

1

; : : :M

N�1

.

The hooser's input is � 2 f0; : : : N � 1g (she

should learn M

�

).

� The hooser selets a random k and sets

PK

�

= g

k

. If � 6= 0 she omputes PK

0

=

C

�

=PK

�

. She sends PK

0

to the sender and

an already ompute a deryption key (g

r

)

k

=

(PK

�

)

r

.

� The sender omputes (PK

0

)

r

and then for

every 1 � i � N � 1 omputes (without doing

any additional exponentiations)

(PK

i

)

r

= (C

i

)

r

=(PK

0

)

r

:

The sender hooses a random string

3

R.

He then enrypts eah M

i

by omputing

H((PK

i

)

r

; R; i)�M

i

, and sends these enryp-

tions and R to the hooser.

� The hooser uses H((PK

�

)

r

; R; �) to derypt

M

�

.

Overhead: The initialization phase onsists of N ex-

ponentiations on the sender's side. Following the initial-

ization (that an be amortized on all subsequent trans-

fers), in eah transfer the sender performs only a single

exponentiation per transfer, plus N � 1 multipliations

and N invoations of H . The hooser an preompute

the deryption key before reeiving the enrypted ele-

ments from the sender. The ommuniation overhead

from the sender to the hooser orresponds to the size

of the N strings.

Remark 3.1. Suppose that the ost of N exponen-

tiations for the initialization, and a publi key onsisting

of N values, are onsidered too high. We an ombine

Protool 3.1 with the 1-out-N protool of [24℄ in order

to design the following: let K be a parameter suh that

a publi-key of size K and initialization of K exponen-

tiations is aeptable. Then if we express the index i

in base K (i.e. as a vetor of length logN= logK of

numbers in f0; : : :K�1g) we an perform the [24℄ algo-

rithm using logN= logK invoations of 1-out-of-K OT

(instead of OT

2

1

). The 1-out-of-K OT is performed us-

ing Protool 3.1 (with a single exponentiation). The

result is a protool that requires logN= logK exponen-

tiations from the sender and 2 logN= logK exponenti-

ations from the hooser, for every transfer. Note that

setting K = logN= log logN implies that without any

amortization of the initialization ost the omplexity is

redued to 2 logN= log logN , inluding the initialization

(ompared to logN of the plain [24℄ protool).

Seurity: The Chooser's seurity is, as before, in-

formation theoreti { the distribution on PK

0

is in-

dependent of the values of C

0

; : : : C

N�1

and �. The

sender's seurity is based on the same argument as the

sender's seurity for the single oblivious transfer whih

uses a single g

r

. The �rst point to note is that if the

hooser knows for more than a single publi key (say

for PK

i

1

and PK

i

2

) the values (PK

i

1

)

r

and (PK

i

2

)

r

,

then (PK

i

1

)

r

=(PK

i

2

)

r

= (C

i

1

=C

i

2

)

r

. This in turn an

be used to dedue the DiÆe-Hellman value of a ran-

dom C and random g

r

: given inputs A = g

a

and

B = g

b

(where the goal is to ompute g

ab

), simulate

A by generating the onstants C

i

= A

r

i

for a ran-

dom r

i

and g

r

= g

b

. If A is suessful on i

1

and i

2

,

then (C

i

1

=C

i

2

)

r

= g

abr

i

1

=g

abr

i

2

. Raising the latter to

1=(r

i

1

� r

i

2

) yields g

ab

.

3

The string should be long enough so that there are no two

invoations of the protool in whih R obtains the same value.

Namely, the length should be larger than 2 log(n) bits, where n

is the number of invoations of the protool. Alternatively, the

sender ould use a ounter to set the value of R, and then the

length ould be redued to log n.

6

Sine we envision using Protool 3.1 many times

with the same publi-key C

1

; C

2

; : : : C

N�1

and g

r

, we

should desribe the ations of the simulator A

0

against

an adversary that ontrols some subset of the users.

Therefore, the input of H ontains a random element

R whih ensures that the inputs in di�erent invoations

of the protool will be di�erent. As before the goal is to

extrat the values in whih A is interested (and obtain

them in the ideal model). A

0

hooses C

1

; C

2

; : : : C

L�1

at

random as well as g

r

. When A sends in the message of

the tth user A

0

responds with random (�

0

; �

2

; : : : �

N�1

)

for the enryptions of the M

i

's and a random R

t

.

Whenever A queries H on a point (x;R

0

; j), A

0

heks

whether R

0

= R

t

for some t. If not, a random answer

is given. If R

0

= R

t

and x = (PK

j

)

r

then A

0

asks

in the ideal model for the values orresponding to j

and obtain M

j

. It then has to set H appropriately -

set H((PK

j

)

r

; R

t

; j) = �

j

�M

j

. The only di�erene

between the distribution the simulated A sees and the

real one ours if (i) A queries on another PK

r

j

0

{ whih

we have argued an be used for breaking the CDH, so

by assumption it happens with negligible probability.

(ii) One of the H(x;R

t

; j) is queried in advane - but

this happens with low probability, at most (number of

queries = size of group), for eah query.

Remark 3.2. The protool would have been inse-

ure if it were using plain El Gamal enryption instead

of a random orale H: Suppose that the transfer was of

the form h(PK

i;0

)

r

�m

i;0

; (PK

i;1

)

r

�m

i;1

i. Then if the

hooser has prior knowledge of one of the transferred

elements (say, m

i;0

), she ould ompute the orrespond-

ing enryption key (PK

i;0

)

r

from the enrypted message

even if she knows the private key of the other element.

Therefore she an ompute both (PK

i;0

)

r

and (PK

i;1

)

r

,

multiply them and get (C

i

)

r

. This value enables her to

derypt both elements in every other transfer.

3.2 Bandwidth/Computation tradeo� for OT

2

1

.

The omputation overhead of OT

2

1

an be redued

by performing ` OT

2

1

's at the same transfer using

protool 3.1. The idea is to translate ` alls to OT

2

1

into a single 1-out-L OT for L = 2

`

. (This an be

seen as the opposite of what [24℄ do: they translate

a 1-out-L OT into ` OT

2

1

's.) While this redues the

omputation it inreases the ommuniation, so we

obtain a omputation/ommuniation tradeo�.

Let ` be a parameter whih denotes the num-

ber of strings that are transferred in eah bath, i.e.

if the number of OT

2

1

's is large, partition them into

bloks of `. Consider one blok, in whih the sender

should transfer to the hooser one string out of eah

of the pairs f(m

i;0

;m

i;1

)g

`

i=1

. Our approah is to

perform all ` transfers simultaneously. The sender

de�nes L = 2

`

strings, M

0

; : : : ;M

L�1

, orrespond-

ing to all ombinations of ` strings, one from eah

pair. Namely, M

j

= hm

1;j

1

;m

2;j

2

; : : : ;m

`;j

`

i, where

j

i

is the ith bit of j; 0 � j � L � 1. Instead of en-

gaging in ` OT

2

1

's, the parties an engage in a single

1-out-of-L oblivious transfer of one of these strings.

Protool 3.2. (Simultaneous transfer of `

strings)

The parties run protool 3.1 for 1-out-of-L oblivious

transfer. The sender's input ontains the L strings

M

0

; : : : ;M

L�1

. The hooser's input is

�!

� = �

1

; : : : ; �

`

,

where �

i

is her hoie in the ith oblivious transfer.

The protool obtains a general tradeo� between

reduing the omputational overhead of the sender, and

exponentially inreasing the ommuniation overhead

(although the exponential blowup in the ommuniation

seems very limiting, the optimal tradeo� seems to

happen for a rather large value of `, as is desribed in

Setion 3.2.1).

Theorem 3.1. (Bandwidth/omputation

tradeoff) In protool 3.2 the amortized omputational

overhead per transfer (OT

2

1

) is 1=` exponentiations, for

both the sender and the hooser. In addition the sender

performs 2

`

=` multipliations. The o�ine ommunia-

tion overhead is 2

`

keys per transfer, while the online

ommuniation overhead is 2

`

=` keys per transfer.

Computation overhead: During the transfer phase

the sender has to perform a single exponentiation and

L = 2

`

multipliations. The hooser performs one

exponentiation when she sends the request and one

when she reeives it (note that both of them an be

done o�ine).

The initialization phase requires L exponentiations

from the sender, but these are amortized over all the

bloks ever sent by the sender.

Communiation overhead: It may seem as if the

ommuniation is ` � L times the size of an input

element, sine there are L messages M

i

of length `

eah. However a �ner analysis is alled for: First we

distinguish between group elements (whih might be

long, say 1000 bits) and private-keys whih an be as

short as 100 bits. Furthermore, another distintion is

between online and o�ine ommuniation, where the

latter refers to messages that an be sent independently

of the inputs. Therefore we an think of them as

being sent in a preproessing phase (say when the

ommuniation network is idle, or stored in a DVD).

From the hooser to the sender only a single group

element is sent. The online ommuniation from the

sender to the hooser an be redued from O(` � L) to

O(L) by enrypting eah m

i

with a di�erent key, and

running the oblivious transfer with the keys as inputs.

That is , the following protool is run:

1. The sender hooses for eah 1 � i � ` and � 2

f0; 1g a random key k

i;�

(a total of 2` keys). For

eah 1 � j � L let M

0

j

= hk

1;j

1

; k

2;j

2

; : : : ; k

`;j

`

i

be the onatenation of the keys of the values

transferred when j is hosen.

2. For eah 1 � j � L the sender hooses a random

key K

j

and enrypts M

0

j

with H(K

j

; R), i.e. gen-

erates M

0

j

�H(K

j

; R). These enryptions are sent

o�ine.

7

3. In the transfer phase of the protool the sender �rst

sends, for all 1 � i � ` and � 2 f0; 1g, the values

E

k

i;�

(m

i;�

). The values that are atually trans-

ferred in the oblivious transfer are (K

1

;K

2

; : : :K

L

).

Eah K

j

is enrypted with H((PK

j

)

r

; R; j).

4. The hooser uses the key K

j

to derypt the orre-

sponding string M

0

j

. It then uses the keys k

i;j

in

M

0

j

to derypt the elements m

i;j

.

O�ine ommuniation: The total length of the o�ine

ommuniation in step 2 is L`jk

i;�

j bits. The length of

the keys jk

i;�

j an be set to be 100 bits, and does not

inrease if the inputs are longer (however, if the inputs

m

i;�

are shorter, they an be enrypted by xoring them

with the orresponding keys k

i;�

, and then the keys an

be as short as the inputs).

Online ommuniation: In the transfer step itself the

sender sends a message of length LjK

j

j + 2`jm

i;�

j bits

to the reeiver (the keys K

j

an also be 100 bits long).

Note that in omparison to the alternative of run-

ning the oblivious transfer protool ` times indepen-

dently, there is an L = 2

`

multipliative inrease in the

o�ine ommuniation, and an L=` inrease in the on-

line ommuniation. The inrease in the ommuniation

ompared to the basi Bellare-Miali protool (Proto-

ol 2.1) is smaller, sine all messages in that protool in-

lude elements in the group in whih the DiÆe-Hellman

assumption holds.

Seurity: The hooser is proteted information theo-

retially, as before. As for the sender's seurity, the ma-

jor point is preventing the hooser from learning more

than a single string in eah transfer. We should desribe

the ations of the simulator A

0

against an adversary

that ontrols some subset of the hoosers. As before

the goal is to extrat the values in whih A is inter-

ested and obtain them in the ideal model. A

0

hooses

C

1

; C

2

; : : : C

L�1

at random as well as g

r

. In the pre-

proessing phase A

0

generates for eah hooser t a ran-

dom vetor f

~

�

j

= h�

1;j

1

; �

2;j

2

; : : : ; �

`;j

`

ij1 � j � Lg.

When A sends in the message of the tth hooser A

0

responds with random (

1;0

;

1;1

;

2;0

;

2;1

; : : :

`;1

) for

the enrypted values, random (�

1

; �

2

; : : : �

L

) for the

keys and random R

t

. Whenever A queries H on a

point (x;R

0

; j), A

0

heks whether R

0

= R

t

for some

t. If not, a random answer is given. If R

0

= R

t

and x = (PK

j

)

r

then A

0

asks in the ideal model for

the values orresponding to (j

1

; j

2

; : : : j

`

) and obtains

M

j

. It then has to set H appropriately - hoose ran-

dom key K

j

and set H(PK

r

j

; R

t

; j) = �

j

� K

j

. Set

H(K

j

; R

t

) =

~

�

j

� h

1;j

1

;

2;j

2

; : : :

`;j

`

i �M

j

. The only

di�erene between the distribution the simulated A sees

and the real one ours if (i) A queries on another

(PK

j

0

)

r

{ whih we have argued an be used for break-

ing the CDH, so by assumption it happens with negli-

gible probability. (ii) One of the H(K

j

; R

t

) is queried

in advane - this happens with low probability.

Remark 3.3. The protool allows a maliious

sender a new possible abuse not handled by our de�-

nition of seurity in Setion 2.1: he an enode k

i;�

in-

onsistently in the di�erent strings that should inlude

k

i;�

. Therefore the hooser gets di�erent values of m

i;�

depending on (i

0

; �

0

). Fortunately, there is a simple so-

lution in a framework like [25℄: add periodi heks, by

requesting the sender to open all hidden strings and show

onsisteny.

Remark 3.4. It is interesting to note that the

approah we have taken in investigating the band-

width/omputation tradeo� is somewhat opposite to the

approah of Private Information Retrieval (PIR) (see

e.g., [21, 5℄). The goal of PIR protools is to minimize

the ommuniation overhead, and this requires (in the

ase of single server solutions) to inrease the ompu-

tation overhead, up to omputing an exponentiation for

every bit of the database. Our goal, on the other hand, is

to redue the omputation overhead of oblivious transfer

protools by inreasing the ommuniation overhead. As

we desribe below, this approah makes sense in many

appliations, sine existing oblivious transfer protools

often have lesser utilization of bandwidth than of om-

putation.

3.2.1 Whih tradeo� to hoose? The optimal bal-

ane between ommuniation and omputation depends

on spei� onsiderations for eah ase, depending on

the available bandwidth and omputational resoures.

A very realisti assumption is, however, that the goal

is to minimize the lateny of the oblivious transfer pro-

tool. This lateny is a�eted by both the ommuni-

ation and the omputation times. Typial bandwidth

between the hooser and the sender ould be 1.5Mb/se

for a T1 line or 35Mb/se for a T3 line. On the other

hand, an exponentiation of a 1000 bit number takes

about 20 mse on a state of the art omputer Pentium

III or Celeron at 500Mhz (see [12℄ for benhmark re-

sults). (This is where the exponent is 200 bits long.)

For a quik estimate of the optimal value of `,

onsider the tasks of the hooser (the analysis for the

sender is almost idential). Most of her overhead is

inurred by omputing a single exponentiation for every

` transfers, and reeiving on-line 2

`

keys (say, 100�2

`

bits

for 100 bit keys) from the sender (o�ine 2

`

` keys should

be sent). Optimal online performane is ahieved when

the same amount of time is invested in the omputation

and in the ommuniation sine in this ase there are

no idle times for either the proessor or the network.

Suppose that the bandwidth is B bits per seond,

the keys are k bits long, and the proessor is apable

of performing E exponentiations per seond. Then,

onsidering only the online ommuniation, the lateny

per OT

2

1

is max(

2

`

k

`B

;

1

`E

) (this is assuming pipelining

of the ommuniation and omputation; otherwise the

two quantities should be added .) Minimal lateny is

8

ahieved when

2

`

k

B

=

1

E

: Namely; ` = log

B

kE

:

The optimal tradeo� is ahieved (perhaps surpris-

ingly) using a rather large `. For example a server whih

an perform E = 50 exponentiations per seond, and

uses a T1 line (1.5Mbps), should set ` = 8 to obtain

optimal performane. Assuming that the server invests

more in its resoures, distributes the exponentiations

between 5 proessors (ahieving E = 250), and uses

a T3 line, ` = 10 is optimal. Figure 1 desribes the

throughput, i.e. the number of OT

2

1

's per seond, that

is ahieved for di�erent values of the bandwidth (when

E and k are kept onstant). Figure 2 desribes the gain

in speed as a funtion of ` (namely, the throughput di-

vided by that of a protool with no optimizations), for

representative values of B;E and k.

An example. As a onrete example for the improve-

ment ahieved by the tehniques presented here, and

in partiular by the bandwidth/ommuniation trade-

o�, onsider the aution protool of [25℄. The main

omputational overhead of the protool is the exeu-

tion of many oblivious transfers. More aurately, for

N bidders with m bit inputs, the protool requires Nm

oblivious transfers

4

.

The overhead of the sender in a naive appliation

of the basi protool (protool 2.1) is

Computing 4Nm exponentiations, and send-

ing 2Nm � (1024 + 100) bits.

(Assuming a 1024 bit modulus and 100 bit keys.) For an

aution with N = 1000 bidders, and m = 24 bit bids,

this results in 96; 000 exponentiations, and a message

of 6:7 Mbytes. Eah reeiver should ompute 2m = 48

exponentiations.

If protool 3.2 with ` = 8 is used, then the overhead

of the sender is

Computing Nm=8 exponentiations, sending

Nm

8

� (1024 + 2

8

� 100) bits online, and

Nm

8

�

(2

8

� 8 � 100) bits o�ine.

For the same values of N and m, the sender omputes

only 3000 exponentiations (an improvement by a fa-

tor of 32). Eah reeiver omputes 6 exponentiations

(3 o�ine and 3 online). The sender sends an online

message of length 10 Mbytes, and an o�ine message

of length 76 Mbytes. Using a T1 ommuniation line,

and a omputer whih omputes 50 exponentiations per

seond, both the omputation and the online ommuni-

ation take about 60 seonds for all bidders (ompared

to approximately half an hour for the original protool).

4

More aurately, the protool uses a proxy oblivious transfer

protool whih involves three parties. However, the protools

we de�ned in this paper an be translated in a straightforward

manner to the proxy OT setting.

4 How to avoid random orales

This setion disusses methods for designing protools

whose analysis does not rely on random orales. The

�rst issue is whether it is possible to design a two-round

(this is alled \non-interative" by Bellare and Miali)

OT protool whih does not rely on the random-orale

assumption. The only previous protool that (almost

5

)

�ts the two-round requirement was reently proposed

by Dwork and Naor [16℄ and is quite ineÆient, as it

relies on the general protool for non-interative zero-

knowledge protools for languages in NP . We note that

independently of this work Aiello, Ishai and Reingold

[28℄ suggested a protool with a similar struture for a

related problem.

The struture of the protool is hooser to sender

and then sender to hooser. Unlike the protools

of [2, 16℄ there is no need for the sender to have a

publi-key or publi-value. It is based on the DDH

assumption and o�ers information-theoreti protetion

for the sender and omputational indistinguishability

for the hooser (the opposite of the ase in the Bellare-

Miali sheme and the other shemes in this paper).

The idea is for the hooser to reate two enryption

keys so that at most one of them is legitimate. It uses

the following idea: if a key is badly formed, then the

orresponding iphertext has a random value. This

is done similarly to the randomized self-redution of

the DDH problem (see [33℄ and [26℄). The idea of

randomizing bad iphertexts was previously suggested

by Canetti and Goldwasser [8℄ in order to design a

threshold variant of the Cramer-Shoup ryptosystem

[10℄ { there if a iphertext is not valid, then it derypts

to a random value.

For the protool we assume some El Gamal like

method that is semantially seure. The simplest ase

is to assume that the messages are in the subgroup in

whih we operate. Otherwise we have to use hashing

(probabilisti, not random-orale type, see e.g. [26℄).

Protool 4.1. (Basi Protool)

1. The hooser generates random g

a

; g

b

and

0

;

1

suh

that

�

= ab and

1��

is random. Chooser sends

x = g

a

; y = g

b

; z

0

= g

0

; z

1

= g

1

.

2. The sender veri�es that z

0

6= z

1

. It then generates

random (r

0

; s

0

) and (r

1

; s

1

) and

(a) Computes w

0

= x

s

0

� g

r

0

and enrypts M

0

using the key z

s

0

0

� y

r

0

. The value w

0

and the

enryption are sent to the hooser.

(b) Computes w

1

= x

s

1

� g

r

1

and enrypts M

1

using the key z

s

1

1

� y

r

1

. The value w

1

and the

enryption are sent to the hooser.

3. The hooser omputes (w

�

)

b

and derypts M

�

.

5

That protool requires either a publi-string (not key) from

the sender or relies on non-uniformity.

9

Overhead: The hooser is required to ompute three

exponentiations when preparing g

a

; g

b

and g

�

= g

ab

(as well as seleting g

1��

at random). Note that one of

fg

a

; g

b

g an remain �xed and there is no need to hange

it from transfer to transfer. Therefore the hooser an

ompute (o�ine) two exponentiations per transfer, and

ompute an additional exponentiation (online) when it

reeives the message from the sender. The sender has

to ompute two double exponentiations (of two di�erent

values) per transfer.

Seurity: The Chooser's seurity is based on the

indistinguishability of

�

and

1��

whih in turn is

based on the DDH assumption. The sender's seurity

is information-theoreti and is based on the following

laim.

Claim 4.1. If z

�

6= g

ab

, then (x

s

�

�

� g

r

�

�

; z

s

�

�

� y

r

�

�

) is

uniformly distributed.

The proof follows from the randomized redution of

DDH of [26℄ and [33℄.

Therefore if z

�

6= g

ab

no information about m

�

is

transferred. Sine at most one of fz

0

; z

1

g equals g

ab

,

the hooser's gets information on at most one of M

0

and M

1

.

4.1 The 1-out-of-N Protool.

It is straightforward to generalize the above sheme

to 1-out-of-N OT. The interesting point is that it an

done be without inreasing the hooser's omplexity.

The point is that the hooser does not have to hoose

and send the g

i

's expliitly. Suppose that the hooser

is interested in M

i

. Then she hooses

i

= a � b and sets

z

i

= g

i

. This in turns de�nes all the z

j

's by setting

z

j

= z

i

� g

j�i

and in partiular z

0

= g

i

�i

. Therefore

what the hooser sends is g

a

; g

b

and z

0

= g

i

=g

i

. The

sender on the other hand still has to perform all the

work he performed previously.

Seurity: The sender's seurity is information theo-

reti, as before. As for the hooser's seurity, under the

DDH assumption no probabilisti polynomial-time ma-

hine an distinguish for any �xed i between a triple of

the form (g

a

; g

b

; g

ab�i

) and a random triple. Therefore

triples of the form (g

a

; g

b

; g

ab�i

) and (g

a

; g

b

; g

ab�i

0

) are

omputationally indistinguishable.

Overhead: The hooser is required to ompute three

exponentiations when preparing g

a

; g

b

and g

ab

(and as

before one of fg

a

; g

b

g an remain �xed). The sender

has to ompute 2N double exponentiations. As for

ommuniation, the hooser is sending a �xed number

of elements and reeives from the sender 2N elements.

Hene the hooser performs roughly as muh work as

she does in the random orale based OT

2

1

onstrution

of Protool 3.1.

Remark 4.1. Note that the protool in [24℄ is more

egalitarian in that eah side performs logN exponenti-

ations. As in Remark 3.1 we an ombine the two ap-

proahes. Expressing the index i in base K (i.e. as a

vetor of length logN= logK of numbers in f0; : : :K �

Figure 1: The throughput (number of OT

2

1

per seond)

as a funtion of the bandwidth, using the optimal `, for

E = 50 and keys of k = 100 bits.

1g) we perform the [24℄ algorithm using 1-out-of-K OT

(instead of 1-out-2); the 1-out-of-K OT is performed

using the above protool. The result is a protool that

requires K logN= logK exponentiations from the sender

and 2 logN= logK exponentiations from the hooser.

4.2 Two Appliations and a Caveat.

One senario where this protool is appliable is

the arhiteture for performing autions and mehanism

design of [25℄. The bidders should partiipate in many

OT protools as hoosers. The method for reduing the

omputational load is very relevant there - it an save

signi�ant work on both the bidder and autioneer side,

but not for the aution issuer.

Another appliation is turning PIR into SPIR with-

out inreasing the number of rounds (A SPIR protool

also protets the owner of the data from leaking in-

formation about more than one entry.) In [24℄ it was

suggested to onstrut SPIRs based on OT

2

1

without

inreasing the number of rounds ompared to the OT

2

1

protool, so one an either apply Protool 4.1 or an

do it diretly using the OT

N

1

protool desribed in Se-

tion 4.1. Namely, the sender reates a PIR database for

the 2N elements it sends in response to the hooser's

query, and runs a PIR protool for seleting the ith

entry. Sine in all known single-server PIR protools

[5, 21℄ the sender performs a huge number of operations

anyway, the latter approah is most appropriate.

Finally, note that in the protool we annot rule out

the possibility of malleability from the Sender's side: the

information the sender transmits might be a funtion

of the bit(s) � the hooser is requesting (without the

sender really knowing what he is sending). This is not

relevant in ase the sender is ommitted to its value

prior to the protool, as in the [25℄ senario.

Referenes

10

Figure 2: The gain in speed as a funtion of `, for a

bandwidth of B = 1; 500; 000Mbps, omputation power

of E = 50 exponentiations per seond, and k = 100 bit

keys.

[1℄ M. Bellare, J. Garay and T. Rabin. \Fast Bath Veri�-

ation for Modular Exponentiation and Digital Signa-

tures." Pro. Advanes in Cryptology{Eurorypt '98,

LNCS (1403), Springer-Verlag, pp. 236-250, 1998.

[2℄ M. Bellare and S. Miali, \Non-interative oblivious

transfer and appliations", Pro. Adv. in Cryptology -

Crypto '89, Springer-Verlag LNCS 435 (1990), 547-557.

[3℄ M. Bellare and P. Rogaway, \Random Orales are Pra-

tial: A Paradigm for Designing EÆient Protools",

1st ACM Conferene on Computer and Communia-

tions Seurity, ACM Press, November 1993.

[4℄ D. Boneh, \The Deision DiÆe-Hellman Problem",

Pro. of the Third Algorithmi Number Theory Sym-

posium, Springer-Verlag LNCS 1423 (1998), 48{63.

[5℄ C. Cahin, S. Miali and M. Stadler, Computation-

ally Private Information Retrieval With Polylogarith-

mi Communiation, Advanes in Cryptology { Euro-

rypt '99, LNCS 1592, Springer-Verlag, 1999.

[6℄ R. Canetti, Towards Realizing Random Orales: Hash

Funtions That Hide All Partial Information, Advanes

in Cryptology { Crypto '97, pp. 455-469.

[7℄ R. Canetti, O. Goldreih, and S. Halevi, The random

orale methodology, revisited, Pro. 30th ACM Sympo-

sium on Theory of Computing, 1998, pp. 209-218.

[8℄ R. Canetti and S. Goldwasser: An EÆient Thresh-

old Publi Key Cryptosystem Seure Against Adaptive

Chosen Ciphertext Attak, Advanes in Cryptology {

EUROCRYPT '99, Springer-Verlag, 1999, pp. 90-106.

[9℄ R. Cramer, I. Damgard and B. Shoenmakers, \Proofs

of partial knowledge and simpli�ed design of witness

hiding protools", Pro. Advanes in Cryptology {

Crypto '94, Springer-Verlag LNCS 839 (1994), 174{187.

[10℄ R. Cramer and V. Shoup, \A pratial publi key

ryptosystem provably seure against adaptive hosen

iphertext attaks", Pro. Advanes in Cryptology -

Crypto '98, Springer-Verlag LNCS 1462 (1998), 13{25.

[11℄ A. De Santis, G. Di Cresenzo, G. Persiano, and M.

Yung, On Monotone Formula Closure of SZK, Pro. of

35th IEEE Symposium on Foundations of Computer

Siene (FOCS '94), Santa Fe, New Mexio, USA,

November 20-22, 1994, pp. 454-465.

[12℄ W. Dai, Crypto++ 3.1 Benhmarks, available at

http://www.eskimo.om/~weidai/benhmarks.html

[13℄ W. DiÆe and M. Hellman, New diretions in ryptog-

raphy, IEEE Trans. Inform. Theory, 22 (6), 644-654,

1976.

[14℄ D. Dolev, C. Dwork and M. Naor, \Non-malleable ryp-

tography", Pro. 23th ACM Symp. on Theory of Com-

puting, 1991. Full version: to appear Siam J. on Com-

puting. Available at

http://www.wisdom.weizmann.a.il/~naor/onpub.html

[15℄ C. Dwork, M. Naor, O. Reingold and L. Stokmeyer,

Magi Funtions, FOCS'99, pp. 523-534.

[16℄ C. Dwork, M. Naor, Zaps and their appliations, 41st

IEEE Symp. on Foundations of Comp. Siene, 2000.

[17℄ S. Even, O. Goldreih and A. Lempel, \A Randomized

Protool for Signing Contrats", Communiations of

the ACM 28, 1985, pp. 637{647.

[18℄ A. Fiat, Bath RSA, J. of Crypt. 10(2): 75-88 (1997).

[19℄ O. Goldreih, M. Miali and A. Wigderson, \How to

play any mental game", Pro. 19th ACM Symp. on

Theory of Computing, 1987, pp. 218{229.

[20℄ R. Impagliazzo and S. Rudih, \Limits on the Provable

Consequenes of One-Way Permutations", 20th ACM

Symp. on the Theory of Computing, 1989, 44{61.

[21℄ E. Kushilevitz and R. Ostrovsky, Repliation Is Not

Needed: Single Database, Computationally-Private In-

formation Retrieval, 38th FOCS, pp. 364-373, 1997.

[22℄ Y. Lindell and B. Pinkas, Privay Preseving Data

Mining, Pro. Advanes in Cryptology - Crypto '2000,

Springer-Verlag LNCS 1880, pp. 36{54, 2000.

[23℄ J. Naor and M. Naor, Small-Bias Probability Spaes:

EÆient Construtions and Appliations, SIAM J.

Comput. 22(4): 838-856 (1993).

[24℄ M. Naor and B. Pinkas, Oblivious Transfer and Polyno-

mial Evaluation, Pro. 31st Symp. on Theory of Com-

puter Siene (STOC), pp. 245-254, May 1-4, 1999.

[25℄ M. Naor, B. Pinkas and R. Sumner, Privay Preserving

Autions and Mehanism Design, Pro. of the 1st ACM

onferene on Eletroni Commere, November 1999.

[26℄ M. Naor and O. Reingold, Number-Theoreti onstru-

tions of eÆient pseudo-random funtions, 38th IEEE

Symp. on Foundations of Comp. Si., 1997, 458-467.

[27℄ M. O. Rabin, \How to exhange serets by oblivious

transfer", Teh. Memo TR-81, Aiken Computation

Laboratory, 1981.

[28℄ O. Reingold, personal ommuniation, 2000.

[29℄ K. Sako, J. Kilian, Seure Voting Using Partially

Compatible Homomorphisms. CRYPTO 1994: 411-424

[30℄ C. P. Shnorr, \EÆient Signature Generation by

Smart Cards", J. of Crypt., 4(3), pp. 161-174, 1991.

[31℄ V. Shoup Lower bounds for disrete logarithms and

related problems, in Pro. Eurorypt '97, Springer

Verlag LNCS 1233, pp. 256-266, 1997.

[32℄ V. Shoup and R. Gennaro , Seuring threshold ryp-

tosystems against hosen iphertext attak, Pro. Ad-

vanes in Cryptology - Eurorypt'98, Springer-Verlag

LNCS 1403, 1998, pp. 1{16.

[33℄ M. Stadler, Publily veri�able seret sharing, Pro.

Advanes in Cryptology - EUROCRYPT '96, LNCS,

vol. 1070, Springer, 1996, pp. 190-199.

[34℄ A.C. Yao, \How to generate and exhange serets",

Pro. of the 27th IEEE Symp. on Foundations of

Computer Siene, 1986, pp. 162{167.

