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Abstract

In this paper we propose a very efficient (string) OT 1
n scheme for any

n ≥ 2. We build our OT 1
n scheme from fundamental cryptographic tech-

niques directly. It achieves optimal efficiency in the number of rounds
and the total number of exchanged messages for the case that the re-
ceiver’s choice is unconditionally secure. The computation time of our
OT 1

n scheme is very efficient, too. The receiver need compute 2 modu-
lar exponentiations only no matter how large n is, and the sender need
compute 2n modular exponentiations. Furthermore, the system-wide pa-
rameters need not change during the lifetime of the system and are uni-

versally usable. That is, all possible receivers and senders use the same
parameters and need no trapdoors specific to each of them. For our OT 1

n

scheme, the privacy of the receiver’s choice is unconditionally secure and
the privacy of the un-chosen secrets is at least as strong as the hardness
of the decisional Diffie-Hellman problem.
We extend our OT 1

n scheme to distributed oblivious transfer schemes.
Our distributed OT 1

n scheme takes full advantage of the research results
of secret sharing and is conceptually simple. It achieves better security
than Noar and Pinkas’s scheme does in many aspects. For example, our
scheme is secure against collusion of R and t-1 servers and it need not
restrict R to contact at most t servers, which is difficult to enforce.
For applications, we present a method of transforming any single-

database PIR protocol into a symmetric PIR protocol with only one extra
unit of communication cost.

Keywords: oblivious transfer, distributed oblivious transfer, private information
retrieval.

1 Introduction

Consider two parties of the sender S and the receiver R. S has n secrets
m1,m2, . . . ,mn and is willing to disclose one of them (mα) to R at R’s choice
α. However, R does not want to reveal to S its choice α and S does not want
R to gain any information about other secrets mi, i 6= α. An oblivious transfer
scheme is a cryptographic two-party protocol that provides a solution for the
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goal. Oblivious transfer has many flavors, such as, original oblivious transfer
(OT ), 1-out-2 oblivious transfer (OT 1

2 ) and 1-out-n oblivious transfer (OT 1
n).

Rabin [31] proposes the concept of oblivious transfer (OT ) in the crypto-
graphic scenario. In this case, S has only one secret (bit) m and would like
to have R to get it with probability 0.5. On the other hand, R does not want
S to know whether it gets m or not. For OT 1

2 , S has two secrets m1 and m2

and would like to have R to get one of them at R’s choice. Again, R does not
want S to know which secret it chooses. OT 1

n is a natural extension of OT 1
2

to the case of n secrets. Nevertheless, to construct OT 1
n from OT 1

2 is not triv-
ial. OT 1

n is also known as ”all-or-nothing disclosure of secrets (ANDOS)” in
which R is not allowed to gain combined information of the secrets, such as,
their exclusive-or. Essentially, all these flavors are equivalent in the informa-
tion theoretic sense [9, 12, 15]. Oblivious transfer is a fundamental primitive
for cryptography and secure distributed computation [23, 24] and has many ap-
plications, such as, private information retrieval (PIR), fair electronic contract
signing, oblivious secure computation, etc [5, 14, 21].

A general approach for constructing OT 1
n schemes is first to construct a

basis OT 1
2 scheme (where m1 and m2 are bits) and then to construct the OT 1

n

scheme by (explicitly or implicitly) invoking the basis OT 1
2 scheme for many

runs, typically, n or log2 n runs [9, 11, 26]. Another approach is to build OT 1
n

schemes from basic techniques directly [29, 30, 33, 35]
In this paper we propose a very efficient OT 1

n scheme for any n ≥ 2 even
when the secrets mi’s are strings. We build our OT 1

n scheme from fundamental
cryptographic techniques directly. It achieves optimal efficiency in the number of
rounds and the total number of exchanged messages for the case that R’s choice
is unconditionally secure. The computation time of our OT 1

n scheme is very
efficient, too. R need compute 2 modular exponentiations only no matter how
large n is, and S need compute 2n modular exponentiations. Furthermore, the
system-wide parameters need not change during the lifetime of the system and
are universally usable. That is, all possible R’s and S’s use the same parameters
and need no trapdoors (eg. factoring of N = pq) specific to each of them. For
our OT 1

n scheme, the privacy of R’s choice α is unconditionally secure and the
privacy of the un-chosen secrets mi, i 6= α, is at least as strong as the hardness
of the decisional Diffie-Hellman problem.

Our OT 1
n scheme can be parallelized to construct an OT kn scheme, in which

R can get k secrets among n secrets at its choice. Our OT kn schemes are very
efficient, too.

Furthermore, we can combine our OT 1
n scheme with any secret sharing

scheme to form an efficient threshold (distributed) oblivious transfer scheme.
The concept of threshold (distributed) oblivious transfer is formally proposed
by Noar and Pinkas [28], though it was used in some other contents [32]. For
distributed oblivious transfer, there are p servers additionally. Each server holds
partial information about the secrets mi’s. If R contacts t (the threshold) or
more servers, it can compute mα of its choice; otherwise, it cannot get any
information about the secrets. R’s choice should not be revealed by a coalition
of t′ servers for some threshold t′ ≤ p. Our threshold OT 1

n scheme takes full
advantage of the research results of secret sharing and is conceptually simple. It
achieves better security than Noar and Pinkas’s scheme does in many aspects.
For example, our scheme is secure against collusion of R and t-1 servers and it
need not restrict R to contact at most t servers, which is difficult to enforce.
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In the end we further extend threshold oblivious transfer to access-structure
oblivious transfer (Γ-OT kn ). Our Γ-OT 1

n scheme is very efficient, too.
For applications, we present a method of transforming any single-database

PIR protocol into a symmetric PIR (SPIR) protocol with only one extra unit
of communication cost. As SPIR is equivalent to OT 1

n , this transformation pro-
vides a reduction from PIR to OT 1

n with almost no extra communication cost. In
particular, any computational PIR [25], in which the receiver’s choice is compu-
tationally private, with efficient communication complexity can be transformed
to an OT 1

n scheme (with R’s choice is computationally secure) with almost the
same efficiency for communication complexity. Some communication-efficient
single-database PIR schemes have been proposed [13, 25].

1.1 Previous work and comparison

Oblivious transfer has been studied in various flavors and security models ex-
tensively (cf. [1, 4, 7, 9, 11, 17, 21, 26, 30, 33, 35]). In particular, bit OT 1

2

(where m1 and m2 are bits) attracts much attention from researchers since it
is the basis oblivious transfer scheme to which string OT 1

2 and OT 1
n schemes

are reduced. Most previous oblivious transfer schemes are based on hardness of
factoring or quadratic residuosity problems except the one in [4], which is based
on hardness of computing discrete logarithm.

The reduction approach is studied in [8, 9, 11, 15, 26]. For example, a k-bit
string OT 1

2 scheme can be achieved by invoking βk runs of a bit OT 1
2 scheme

for some β, 2 ≤ β ≤ 18, [8, 9, 11]. In [26], a string OT 1
n scheme is constructed

by invoking log2 n runs of a string OT 1
2 scheme.

The generic construction is studied in [21, 30, 33, 35, 29]. In particular,
Stern [35] proposes a general construction for OT 1

n based on any public-key
encryption scheme that has some specific properties, such as, the property of
”additive” homomorphism. The privacy of the receiver’s choice of the scheme
is computationally secure. Stern focuses on providing a zero-knowledge proof
for verifying that n committed bits consist of exact one 1 and n − 1 0’s. The
numbers of rounds and exchanged messages are less efficient than ours with the
same measuring parameters. For example, the scheme takes O(

√

log2 n) rounds
if better efficiency for exchanged messages is desired.

Naor and Pinkas [29] proposes the first two-round oblivious transfer pro-
tocol, which achieves unconditional security for the sender’s choice also. In
comparison, the system parameter of our protocol is a constant, while theirs is
O(n). Furthermore, our protocol can be extended to threshold oblivious trans-
fer easily and transfer any PIR protocol into a SPIR protocol without increasing
communication complexity.

Distributed oblivious transfer has been studied in various contents under
variant models, such as function evaluation [3] and private information re-
trieval [22]. Naor and Pinkas [28] identify the important attributes of distributed
oblivious transfer. They propose a threshold (string) OT 1

2 scheme such that R
and the involved servers need do polynomial evaluation only. Nevertheless, it
comes with cost of privacy and simplicity. For example, a coalition of less than
t servers can compute R’s choice. One scheme (based on sparse polynomials)
is not secure against collusion of R and a single server. Some schemes cannot
prevent R from learning linear combination of secrets. Furthermore R cannot
contact more than t servers; otherwise, the scheme is not secure.
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In some sense, our schemes fall in the category of non-interactive oblivious
transfer [4, 34], in which R selects a public key and S performs non-interactive
oblivious transfer using R’s public key. The schemes in [34] are based on the
quadratic residuosity assumption. Each R uses a specific Blum integer N that is
re-usable by the R. The privacy of R’s choice is computationally secure and the
privacy of the un-chosen secret is unconditionally secure. The bit OT 1

2 scheme
is extended to the bit OT 1

n scheme. The k-bit string OT 1
2 scheme invokes k

runs of the bit OT 1
2 scheme. The number (size) of exchanged messages is not as

efficient as ours. For example, if k is close to the security parameter, our k-bit
string OT 1

2 scheme exchanges O(k) bits and that of [34] exchanges O(k2) bits.
Transforming any PIR scheme to a symmetric PIR scheme has been studied

in [19, 26]. Naor and Pinkas [26] show such a reduction using one call to the
base PIR scheme and a logarithmic number of calls to a string OT 1

2 scheme.
Crescenzo, etc [19], show a reduction using communication poly(k) times of
that of the base PIR scheme, where k is the security parameter. In comparison,
our reduction uses only one extra communication cost.

2 1-out-n Oblivious Transfer

AnOT 1
n scheme is a two-party protocol in which the sender S possesses n (string)

secrets m1,m2, . . . ,mn and would like to reveal one of them to the receiver R
at R’s choice. We assume that S is honest, that is, it won’t send secrets that
are not the same as claimed ones, either in content or in order. An OT 1

n scheme
should meet the following requirements:

1. Correctness: if both R and S follow the protocol, R gets mα after execut-
ing the protocol with S, where α is its choice.

2. Receiver’s privacy: after executing the protocol with R, S shall not get
information about R’s choice α.

3. Sender’s privacy: after executing the protocol with S, R gets no informa-
tion about other mi’s or their combinations, i 6= α,

Let g and h be two generators in Gq, which is an order-q group, where q
is prime. Let x ∈R X denote that x is chosen uniformly and independently
from the set X. We assume that the decisional Diffie-Hellman (DDH) problem
over Gq is hard. That is, it is not possible to distinguish the following two
distribution ensembles with a non-negligible advantage in polynomial time:

– D = {DGq} = {(g, g
a, gb, gab)}Gq , where g ∈R Gq\{1} and a, b ∈R Zq;

– R = {RGq} = {(g, g
a, gb, gc)}Gq , where g ∈R Gq\{1} and a, b, c ∈R Zq.

For simplicity, we omit the security parameter size(q) in the later arguments.
Note that the DDH assumption is stronger than the discrete logarithm assump-
tion. Typically, Gq is the set of quadratic residues of Z∗p , where p = 2q + 1 is
also prime. Any element in Gq\{1} is a generator of Gq.

The system-wide parameters are (g, h,Gq), which can be used by all possible
senders and receivers. Assume that the discrete logarithm logg h is unknown to
all. As long as logg h is not revealed, g and h can be used repeatedly. Our OT 1

n

scheme is as follows. Wlog, we assume that the secrets mi’s are all in Gq.
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OT1
n

scheme:

– S’s input: m1,m2, . . . ,mn ∈ Gq; R’s choice: α, 1 ≤ α ≤ n;

1. R sends y = grhα, r ∈R Zq.

2. S sends ci = (gki ,mi(y/h
i)ki), ki ∈R Zq, 1 ≤ i ≤ n;

3. By cα = (a, b), R computes mα = b/ar.

Correctness. Since cα = (a, b) = (gkα ,mα(y/h
α)kα), we have

b/ar = mα(y/h
α)kα/(gkα)r = mα(g

rhα/hα)kα/(gkα)r = mα.

Efficiency. The scheme takes only two rounds. This is optimal since at least
R has to choose α and let S know, and S has to respond to R’s request. R
sends one message y to S and S sends n messages ci, 1 ≤ i ≤ n, to R. This
is also optimal (within a constant factor of 2) by the argument for the lower
bound Ω(n) of communication cost of the single-database PIR when R’s choice
is unconditionally secure [14].

For computation, R need do 2 modular exponentiations for y and mα. S
need do 2n modular exponentiations for ci, in which gki can be pre-computed,
1 ≤ i ≤ n. This is very efficient, too.
Security. The above OT 1

n scheme has the properties that the choice α of R
is unconditionally secure and R gets no information about any other mi, i 6= α,
if the DDH problem is hard.

Theorem 2.1 For the OT 1
n scheme, the choice α of R is unconditionally secure.

Proof. For any α′, there is r′ that satisfies y = gr
′

hα
′

. Therefore, S cannot
get any information about R’s α even if it has unlimited computing power. 2

Theorem 2.2 For the OT 1
n scheme, if R follows the protocol, it gets no infor-

mation about mi, 1 ≤ i 6= α ≤ n, assuming that the DDH problem is hard. That
is, all ci’s, 1 ≤ i 6= α ≤ n, are computationally indistinguishable from a random
z = (g, h, a, b), g, h ∈R Gq\{1}, a, b ∈R Gq, even if R knows the r and α in
y = grhα.

Proof. Since the DDH assumption is stronger than the DL assumption, R
cannot compute two different pairs of (r, α) and (r′, α′) that both satisfy y =
grhα = gr

′

hα
′

. Otherwise, R computes logg h = (r′− r)/(α−α′). Therefore, R
cannot get two secrets.

We show that ci, i 6= α, looks random assuming that the DDH problem is
hard. Formally, we define the random variable of ci as

Ci = (g, h, gki ,mi(g
rhα−i)ki)

where ki ∈R Zq, g, h ∈R Gq\{1}. Note that we treat g and h as random variables
in Ci. Let Z = (r1, r2, r3, r4), where r1, r2 ∈R Gq\{1} and r3, r4 ∈R Gq. We
show that if Ci and Z are computationally distinguishable by distinguisher A, D
and R of the DDH problem are computationally distinguishable by the following
A′, which uses A as a procedure:

– Input: (g, u, v, w); (which is either from R or D)
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1. If u 6= 1, let h = u; otherwise, output 1 if and only if u = 1;

2. Feed (g, u, v,miv
rwα−i) to A.

3. A(g, u, v,miv
rwα−i) = 1 if and only if output 1.

We can see that if (g, u, v, w) = (g, ga, gb, gab) is from D and a 6= 0,

(g, u, v,miv
rwα−i) = (g, h, gb,mi(g

rhα−i)b)

has the right form for Ci. If (g, u, v, w) = (g, ga, gb, gc) is from R and a 6= 0,

(g, h, v,miv
rwα−i) = (g, h, gb,mig

br+c(α−i))

is uniformly distributed over Gq\{1}×Gq\{1}×Gq×Gq, which is Z. Therefore,
if A distinguishes Ci and Z with a non-negligible advantage ε, A′ distinguishes
R and D with an advantage ε ·(1−1/q)+1/q, where 1/q is the offset probability
in Step 1. 2

2.1 Without System-Wide Parameters

We can remove the requirement of using system-wide parameters (g, h,Gq).
Now, S first chooses g, h and Gq, and sends them to R, that is, the following
step is added to the scheme.

0. S chooses (g, h,Gq) and sends them to R, where g, h ∈R Gq\{1}.

Even if S knows logg h, R’s choice α is still unconditionally secure.

2.2 Forcing R to obtain mα

R may compute y of some special form such that it can compute combined
information of the secrets. We don’t know whether such y exists. To prevent
this attack, we can require R to send a non-interactive zero-knowledge proof
of knowledge of his knowing r and α that satisfy y = grhα, denoted by NI-
ZKIP(g, h, y). The new step 1 of the OT 1

n scheme becomes:

1′. R sends y = grhα and β = NI-ZKIP(g, h, y), where r ∈R Zq.

In this case, S should check validity of NI-ZKIP(g, h, y) in Step 2. If the check
fails, S aborts the protocol. In fact, this modification results in a very secure
OT 1

n scheme. We shall discuss this in Section 7.
The property of forcing R to get some mα may be useful in some applications.

For example, the sender can be assured that R cannot later deny that he has
gotten some mα.

3 k-out-n Oblivious Transfer

We can have k parallel runs of the OT 1
n scheme to obtain an efficient OT kn

scheme, which takes only two rounds.
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OTk
n

scheme:

– S’s input: m1,m2, . . . ,mn; R’s choice: α1, α2, . . . , αk, where 1 ≤
αi ≤ n, 1 ≤ i ≤ k;

1. R sends yl = grlhαl , rl ∈R Zq, 1 ≤ l ≤ k.

2. S sends ci,l = (gki,l ,mi(yl/h
i)ki,l), ki,l ∈R Zq, 1 ≤ l ≤ k, 1 ≤ i ≤

n;

3. By cαl,l = (a, b), R computes mαl = b/arl . 1 ≤ l ≤ k.

We can show that the OT kn scheme has the same correctness and security
properties as those of the OT 1

n scheme.

4 Threshold Oblivious Transfer

For a threshold t-out-of-p OT 1
n (or (t, p)-OT 1

n) scheme, there are three types of
parties: one sender S, p servers S1, S2, . . . , Sp, and one receiver R. S has n
secrets m1,m2, . . . ,mn. It computes shares mi,j , 1 ≤ j ≤ p, of mi, 1 ≤ i ≤ n,
and distributed shares mi,j , 1 ≤ i ≤ n, to server Sj , 1 ≤ j ≤ p. Then, R chooses
α, 1 ≤ α ≤ n, and contacts with any t or more servers to get information about
the shares. By the received information, R should be able to compute mα and
no others.

By [28], a (t, p)-OT 1
n scheme should meet the following requirements:

1. Correctness: if R and servers follow the protocol and R receives infor-
mation from t or more servers, R can compute one mα, where α is its
choice.

2. Sender’s privacy: even if R receives information from t or more servers, it
gains no information about any other mi, 1 ≤ i 6= α ≤ n. Furthermore,
if R receives information from less than t servers, it gains no information
about any mi, 1 ≤ i ≤ n.

3. Receiver’s privacy: there is a threshold t′, t′ ≥ 1, such that no coalition
of less than t′ servers can gain any information about the choice α of R.
The threshold t′ should be as large as possible.

4. Security against receiver-server collusion: after R gets mα, there is a
threshold t′′, 1 ≤ t′′ ≤ t, such that no coalition of less than t′′ servers
and R can gain any information about any other mi, 1 ≤ i 6= α ≤ n. The
threshold t′′ should be as close to t as possible.

By the OT 1
n scheme in Section 2, we can easily construct a threshold (t, p)-

OT 1
n scheme. Our scheme can make use of any threshold secret sharing scheme.

Our (t, p)-OT 1
n scheme achieves t′ =∞ and t′′ = t. Both are optimal.

We construct our (t, p)-OT 1
n scheme using the standard (t, p)-secret-sharing

scheme. Let mi be shared by the servers via polynomial fi(x) of degree t-1
such that fi(0) = mi, 1 ≤ i ≤ n. Each server Sj , 1 ≤ j ≤ p, holds the shares
mi,j = fi(j), 1 ≤ i ≤ n. By contacting t servers, R can compute t shares of
mα,j ’s and construct mα, where α is R’s choice. Our (t, p)-OT 1

n scheme is as
follows.
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(t,p)−OT1
n

scheme:

– Sj ’s input: m1,j ,m2,j , . . . ,mn,j ; R’s choice: α, 1 ≤ α ≤ n;

1. R sends y = grhα to t different servers Sj1 , Sj2 , . . . , Sjt , r ∈ Zq;

2. Each Sjl , 1 ≤ l ≤ t, sends ci,jl = (gki,jl ,mi,jl(y/h
i)ki,jl ), 1 ≤ i ≤ n,

to R;

3. By cα,jl = (ajl , bjl), R computes shares mα,jl = bjl/a
r
jl
, 1 ≤ l ≤ t.

Then, R interpolates these t shares to get

mα =
t

∑

l=1

mα,jl(
∏

1≤d6=l≤t

jd
jd − jl

)

by Lagrange’s interpolation method.

Correctness. If R contacts with t or more servers, it can compute t shares
mα,jl of mα, 1 ≤ l ≤ t. Therefore, it can compute mα as shown in the scheme.
Efficiency. The scheme takes only two rounds. This is optimal, again. R

sends one message y to t servers and each contacted server Sj responds with
n messages ci,j , 1 ≤ i ≤ n. This is very efficient. For computation, R need
do t + 1 modular exponentiations for y and t shares mα,jl , 1 ≤ l ≤ t, and one
Lagrange interpolation for mα. Each contacted server Sj need do 2n modular
exponentiations for ci,j , 1 ≤ i ≤ n.
Security. Our (t, p)-OT 1

n scheme has the following security properties:

1. Sender’s privacy: if R contacts with t or more servers, the privacy of mi,
1 ≤ i 6= α ≤ n, is at least as strong as the hardness of the the DDH
problem. (The proof is similar to that of Theorem 2.2.) Furthermore, if R
gets information from less than t servers, R cannot compute information
about any mi, 1 ≤ i ≤ n. This is guaranteed by the polynomial secret
sharing scheme we use.

2. Receiver’s privacy is unconditionally secure. Since for any α′, there is r′

that satisfies y = gr
′

hα
′

. Even if the servers have unlimited computing
power, they cannot compute R’s choice α.

3. It is secure against collusion of R and t-1 servers Sr1 , Sr2 , . . . , Srt−1
, assum-

ing the hardness of the DDH problem. Since for R and Srl , 1 ≤ l ≤ t− 1,
the privacy of shares mi,j , i 6= α, j 6= r1, r2, . . . , rt−1, is at least as strong
as the hardness of the DDH problem, R and these t-1 servers cannot com-
pute any information about other secrets mi, 1 ≤ i 6= α ≤ n.

4.1 (t,p)-OTk

n
Scheme

We can extend the (t, p)-OT 1
n scheme to a (t, p)-OT kn scheme easily. This is

done by executing k parallel runs of the (t, p)-OT 1
n scheme, similar to the OT kn

scheme in Section 4.
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4.2 (p,p)-OT1

n
Scheme

For (p, p)-OT 1
n , we can use mi = mi,1mi,2 · · ·mi,p to share mi. Then, R can

compute mα = (b1b2 · · · bp)/(a1a2 · · · ap)
r. It need do 2p − 1 modular multipli-

cations and one modular exponentiations, which is very efficient.

4.3 Verifiable (t,p)-OTk

n
Scheme

We can combine Feldman’s or Peterson’s verifiable secret sharing scheme and
our OT kn scheme to form a verifiable (t, p)-OT kn scheme. In this case, the sender
S, who has all mi’s, publishes the verification values for mi’s. Typically, the
verification values for the shares of mi are ga0 , ga1 , . . . , gat−1 , where mi is shared
via a degree-(t-1) polynomial fi(x) = mi + a1x + a2x

2 + · · · + at−1x
t−1. After

computing mα,jl , 1 ≤ l ≤ t, R can verify these shares using the verification
values published by S.

5 Access-Structure Oblivious Transfer

Let Γ = {γ1, γ2, . . . , γz} be a monotonic access structure over p servers
S1, S2, . . . , Sp. Each γi = {Si1 , Si2 , . . . , Sil} is an authorized set of servers such
that all servers in γi together can construct the shared secret. Assume that
n messages m1,m2, . . . ,mn are shared according to Γ by some secret sharing
scheme S such that S(γ) = (m1,m2, . . . ,mn) if and only if γ ∈ Γ, where S(γ)
means that S computes shared secrets from shares of the servers in γ.

We define Γ-OT 1
n such that R can get the secret mα from the servers in an

authorized set γ ∈ Γ, where α is R’s choice. The requirements for a satisfactory
Γ-OT 1

n are the same as those for the threshold OT 1
n schemes in Section 4.

We can combine our OT 1
n scheme and a general secret sharing scheme S to

form a Γ-OT 1
n scheme as follows.

1. Let Sj obtain a share mi,j of mi by the secret sharing scheme S, 1 ≤ i ≤ n.

2. Let γ be an authorized set that R contacts its servers to obtain mα.
When R contacts Sj ∈ γ with y = grhα, Sj responds with ci,j =
(gki,j ,mi,j(y/h

i)ki,j ), 1 ≤ i ≤ n.

3. R computes mα,j for each Sj ∈ γ and applies S(γ) to compute mα.

The above Γ-OT 1
n scheme meets the requirements. This can be proved by

the same arguments for the threshold oblivious transfer schemes in Section 4.
We omit them here.

6 Applications

Efficient string OT 1
n schemes can improve practical efficiency of the schemes in

which oblivious transfer is used. One primary application is for private infor-
mation retrieval (PIR), in which the user (U) wants to query one data block
from a database, but U does not want the database manager (DBM) to know
which data block he is interested in [14]. The regular PIR does not restrict U
to obtain only one data block of the database. We consider the symmetric PIR
(SPIR), in which DBM does not want to release more than one data block [22].
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Assume that the database has n data blocks mi’s, each is in Gq. The following
steps achieve SPIR. U wants to obtain mα.

1. U sends y = grhα to DBM;

2. DBM computes ci = (gki ,mi(y/h
i)ki), 1 ≤ i ≤ n;

3. Now, DBM treats ci’s as its data blocks. DBM and U perform a regular
PIR protocol so that U obtains cα.

4. U computes mα = b/ar, where cα = (a, b).

This method transforms any single-database PIR scheme into a single-
database SPIR scheme with only an extra unit of communication cost in step
1. If U’s choice α of the base PIR scheme in Step 3 is computationally private,
the transformed SPIR scheme’s user privacy is computationally secure. On the
other hand, if the base PIR scheme is unconditionally secure, the user’s choice
of the transformed SPIR is unconditionally private.

The transformed SPIR scheme uses at most one more round than that of
the base PIR scheme. The reason is that the fist step may be combined with
the first step of the base PIR in step 3.

Theorem 6.1 If there exists a single-database PIR scheme with communication

complexity c(n) and round complexity r(n), there exists an OT 1
n scheme with

communication complexity c(n) + 1 and round complexity r(n) + 1, but with the
additional assumption of hardness of the DDH problem.

7 Further Security

Naor and Pinkas [26] give a very formal definition for security of OT 1
n oblivious

transfer:

1. Receiver’s privacy – indistinguishability: S’s views of R’s different choices
α and α′, α 6= α′, are computationally indistinguishable.

2. Sender’s privacy – compared with Ideal Model: The Ideal Model is that
there is a trusted third party (TTP) that gets S’s secrets m1,m2, . . . ,mn

and R’s choice α and gives mα to R. Sender’s secrecy is that for every
probabilistic poly-time substitute R′ for R, there is a corresponding R′′ in
the Ideal Model such that the outputs of R′ and R′′ are computationally
indistinguishable.

The modified OT 1
n scheme, consisting of Steps 1′, 2 and 3, in Section 2.2

meets both requirements.

Theorem 7.1 The modified OT 1
n scheme, consisting of Steps 1

′, 2 and 3, in
Section 2.2 meets both the requirements of Receiver’s privacy and Sender’s pri-

vacy above.

Proof. (Sketch) Since R’s choice is unconditionally secure, the scheme meets
the requirement of Receiver’s privacy.

For each probabilistic polynomial-time adversary R′, substituting for R, in
the real run, we can construct a corresponding R′′ (in the Ideal Model) whose
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output is computationally indistinguishable from that of R′ as follows. R′′ uses
R′ as a re-settable subroutine. When R′ sends y and β = NI-ZKIP(g, h, y)
to S, R′′ simulates R′ to get α in a re-settable way with an overwhelming
probability. If β is not legal or the simulation fails to produce α, TTP outputs
⊥ (abort). The probability of TTP outputting ⊥ is almost equal to that of
S outputting ⊥. After obtaining α, R′′ sends α to TTP and gets mα. R′′

sets cα = (gk,mα(y/h
α)k) and ci = (ai, bi) for 1 ≤ i 6= α ≤ n, ai, bi ∈R Gq,

and outputs the simulation result of R′ on c1, c2, . . . , cn. The output of R′′ is
computationally indistinguishable from that of R′. If there is a claim that R′

gets information about mα′ , α
′ 6= α. We can use R′ to solve the DDH problem

by manipulating its input ci’s, which is similar to the proof of Theorem 2.2.
Therefore, the scheme meets the requirement of Sender’s privacy. 2

8 Conclusion

The current trend of research on the design of cryptographic protocols is to
find provably-secure practical protocols. Our results are along this direction.
We have presented a very efficient (string) OT 1

n scheme and extended it to
construct threshold, access-structure and verifiable OT kn schemes for any n ≥ 2
and 1 ≤ k ≤ n. We also present its application on private information retrieval.
It is interesting to find more applications of this construction.
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[17] C. Crépeau, J. van de Graff, A. Tapp, ”Committed oblivious transfer and
private multi-party computations,” In Proceedings of Advances in Cryp-
tology - Crypto 95, Lecture Notes in Computer Science 963, pp.110-123,
Springer-Verlag, 1995.
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