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Abstract. In this paper we propose an efficient OTN
1 scheme in the

bounded storage model, which is provably secure without complexity as-
sumptions. Under the assumption that a public random string of M bits
is broadcasted, the protocol is secure against any computationally un-
bounded dishonest receiver who can store τM bits, τ < 1. The protocol
requires the sender and the receiver to store N · O(

√
kM) bits, where

k is a security parameter. When N = 2, our protocol is similar to that
of Ding [10] but has more efficient round and communication complex-
ities. Moreover, in case of N > 2, if the sender and receiver can store
N ·O(

√
kM) bits, we are able to construct a protocol for OTN

1 which has
almost the same complexity as in OT 2

1 scheme. Ding’s protocol was con-
structed by using the interactive hashing protocol which is introduced
by Noar, Ostrovsky, Venkatesan and Yung [15] with very large round-
complexity. We propose an efficiently extended interactive hashing and
analyze its security. This protocol answers partially an open problem
raised in [10].

1 Introduction

Consider two parties of the sender Alice and the receiver Bob. Alice has N secret
bitsX0, X1, · · · ,XN−1 ∈ GF (2), and Bob has a secret value c ∈ {0, 1, · · · , N−1}.
Alice sends X0, X1, · · · , XN−1 in such a way that Bob receives Xc, but does not
learn any information about other secrets Xi, i 6= c, and Alice learns nothing
about c. An 1-out-of-N Oblivious Transfer (OTN

1 ) is a cryptographic two-party
protocol that provides a solution for the goal.

OT 2
1 was suggested by Even, Goldreich, and Lempel [11], as a generalization

of Rabin’s Oblivious Transfer (OT) [16], and Crépeau [6] proved that OT and
OT 2

1 are equivalent. OTN
1 was introduced by Brassard, Crépeau, and Robert [2]

under the name ANDOS (all or nothing disclosure of secrets). Oblivious transfer
can be used to construct cryptographic protocols, such as bit commitment, zero-
knowledge proof, and generally secure multi-party computation [13, 21, 12, 7, 14].

Traditionally, oblivious transfer has been constructed under complexity as-
sumptions, such as the hardness of factoring or discrete log, or the existence of
trapdoor one-way permutations. However, they do not guarantee information-
theoretic security, and the security of the protocol could be subverted later, when
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enabled by breakthroughs in computing technology and algorithms. For example,
protocols based on the hardness of factoring or computing discrete logarithms
will become insecure if quantum computers become available [18]. Alternatives
to computational security assumptions that have been proposed include quan-
tum cryptography, the noisy channel model, and the bounded-storage model [1,
8, 3].

Cachin, Crépeau, and Marcil [4] proposed the first protocol for OT 2
1 in the

bounded-storage model that is unconditionally secure, without any complex-
ity assumption. Under the assumption that a public random string of M bits
is broadcasted, the CCM protocol [4] guarantees provable security against any
computationally unbounded dishonest receiver who can store τM bits, τ < 1.
Furthermore, the security against a dishonest receiver is preserved regardless
of future increases in storage capacity. The case where the storage bound is
placed on the sender is equivalent by the reversibility of OT [9]. Protocols in
the bounded-storage model make use of a very large amount of auxiliary infor-
mation, called public random string [17], in order to defeat the adversary. The
public random string could be a random bit sequence broadcasted by a satellite
or transmitted between the legitimate parties, or the signal of a deep-space ra-
dio source. Recently, Ding [10] proposed a similar but more efficient protocol for
OT 2

1 in the bounded-storage model than the CCM protocol. Ding’s protocol re-
duced the storage requirement from O(M 2/3) in the CCM protocol, to O(

√
kM)

where k is a security parameter and proved that any dishonest receiver who
stores O(M) bits succeeded with probability at most 2−O(k), rather than inverse
polynomially small.

In this paper, we propose a provably secure and efficient protocol for OTN
1

with a storage-bounded receiver, without any complexity assumption. Our pro-
tocol uses N public random strings of M bits and requires the sender and the
receiver to store N ·O(

√
kM) bits, where k is a security parameter. When N = 2,

our protocol is similar to that of Ding’s protocol but has more efficient round and
communication complexities. Moreover, in case of N > 2, if the sender and the
receiver can store N ·O(

√
kM) bits, we are able to construct a protocol for OTN

1

which has almost the same complexity as in OT 2
1 scheme. This is constructed

based on an extended interactive hashing scheme.

Noar, Ostrovsky, Venkatesan and Yung [15] introduced the interactive hash-
ing protocol, and Cachin, Crépeau, and Marcil [4] gave a new elegant analysis
on it. Interactive hashing is a protocol between a challenger Alice with no in-
put and a responder Bob with input string χ and provides a way to isolate two
strings. One of the strings is Bob’s input χ and the other is chosen randomly,
without influence from Bob. However, Alice does not learn that which one is χ.
Up to the present, the interactive hashing has been based on NOVY protocol
[15] which has very large round and communication complexities. The round
and communication complexities of NOVY protocol, which has the string of t
bits to be transmitted, are t− 1 rounds and t2− 1 bits respectively. Thus Ding’s
protocol for OT 2

1 which is based on NOVY protocol has very large round and
communication complexities.
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We propose more efficiently extended interactive hashing scheme than the
NOVY protocol. We can accomplish the interactive hashing with t/m−1 rounds
and t2/m−m bits of communication complexity, when m is a divisor of t, and
provide a way to isolate more than two strings. As a concrete example of what
is claimed in this paper (Section 4), assume that the length of a public random
string is one Petabit, (i.e. M = 1015 ), and 1000 ≤ k ≤ 10000 for a security
parameter k, then we can choose k easily such that the protocol has t3/2 − t1/2-
bit communication complexity which is much lower than that of NOVY protocol.
This result answers partially an open problem raised in [10].

This paper is organized as follows. In Section 2, we construct a new universal
hash family. Using this, we propose an extended interactive hashing protocol.
The protocol for OTN

1 in the bounded-storage model is presented in Section 3.
In Section 4, we discuss the complexity of our protocol.

2 Extended Interactive Hashing

In this section we propose an efficiently extended interactive hashing protocol
and give an analysis on it. In order to construct this, we first introduce a new
universal hash family.

2.1 Universal hash family

The technique of universal hashing was introduced in 1979 by Carter and Weg-
man [5] and is used in many areas of computer science and cryptography [19,
20].

Definition 1 Let F be the set of all functions from X to Y and let H-hash
family be a subset of |H| functions in F . H-hash family is called universal if, for
any distinct elements x1, x2 ∈ X, there exist at most |H|/|Y | functions h ∈ H
such that h(x1) = h(x2).

Let t and m be positive integers such that m is a divisor of t. We now define a
universal hash family from GF (2)t to GF (2)m. Let f(x) be an irreducible poly-
nomial of degreem over GF (2). Then GF (2m) = GF (2)[x]/(f(x)) is represented

as {∑m−1
i=0 aix

i : ai ∈ GF (2)}. Define the bijective function φ : GF (2)m →
GF (2m) by (am−1, · · · , a1, a0) 7→ am−1x

m−1 + · · ·+ a1x+ a0. Let t = lm. Then
GF (2)t = (GF (2)m)l = {(Al−1, · · · , A1, A0) : Ai ∈ GF (2)m, 0 ≤ i ≤ l − 1}.
We regard GF (2)t as (GF (2)m)l and let S = (GF (2)m)l. In order to define a
universal hash family from S to GF (2)m, for any ζ = (ζl−1, · · · , ζ1, ζ0) ∈ S, we
define the hash function using the above function φ as follows ;

hζ : S −→ GF (2)m

(Al−1, · · · , A1, A0) 7−→ φ−1(

l−1
∑

i=0

φ(Ai) · φ(ζi)). (1)
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Consider the set H of hash functions from S to GF (2)m as follows ;

H = {hζ : ζ = (ζl−1, · · · , ζ1, ζ0) ∈ S},

where hζ is defined in (1).

Lemma 1. H is a universal hash family.

Proof. For any two distinct elements x = (xl−1, · · · , x0), y = (yl−1, · · · , y0) ∈ S,
we need to count the number of ζ = (ζl−1, · · · , ζ0) ∈ S with hζ(x) = hζ(y).
Since x 6= y, there is an index i0 ∈ {0, · · · , l− 1} such that xi0 6= yi0 ∈ GF (2)m.
Then for any ζ ∈ S

hζ(x) = hζ(y)⇔ φ(ζi0)(φ(yi0)− φ(xi0)) +
∑

i6=i0

φ(ζi)(φ(yi)− φ(xi)) = 0

⇔ φ(ζi0)(φ(yi0)− φ(xi0)) =
∑

i6=i0

φ(ζi)(φ(yi)− φ(xi)) ∈ GF (2m)

⇔ φ(ζi0) =
∑

i6=i0

φ(ζi)(φ(yi)− φ(xi)) · (φ(yi0)− φ(xi0))−1. (2)

Since φ is bijective, for each choice of ζi’s for i 6= i0, equation (2) has exactly
one solution in ζi0 . Since the number of i’s for i 6= i0 is l−1 and ζi ∈ GF (2)m for
each i, there are exactly 2m(l−1) = |H|/2m functions hζ ∈ H with hζ(x) = hζ(y).
Thus, H is a universal hash family. ut

The universal hash family H defined above has the following properties.

Lemma 2. Let H be the hash family defined above. For any two nonzero distinct

elements x, y ∈ S and for any b ∈ GF (2)m, let Tb = {h ∈ H : h(x) = b, h(y) =
b}. Then |Tb| = |H|/22m.

Proof. For any two nonzero elements x = (xl−1, · · · , x0), y = (yl−1, · · · , y0) ∈ S,
let x 6= y. Note that Tb = {ζ ∈ S : hζ(x) = b, hζ(y) = b} by definition.
Since x 6= y, there are two distinct indices j, k ∈ {0, · · · , l − 1} such that
xj 6= 0, yk 6= 0 ∈ GF (2)m. Then for any ζ = (ζl−1, · · · , ζ0) ∈ S

hζ(x) = b⇔ φ(xj)φ(ζj) +
∑

i6=j

φ(xi)φ(ζi) = φ(b)

⇔ φ(ζj) = (
∑

i6=j

φ(xi)φ(ζi) + φ(b)) · φ(xj)−1,

hζ(y) = b⇔ φ(ζk) = (
∑

i6=k

φ(yi)φ(ζi) + φ(b)) · φ(yk)−1.

Hence by similar method in Lemma 1, |Tb| = 2m(l−2) = |H|/22m. ut
Lemma 3. Let H be the hash family defined above. Then for any nonzero ele-

ment s ∈ S and for any b ∈ GF (2)m, |{h ∈ H : h(s) = b}| = |H|/2m.
Proof. clear. ut
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2.2 Interactive Hashing

Interactive hashing is a two-party protocol between a challenger Alice and a
responder Bob. Cachin, Crépeau, and Marcil [4] gave a new elegant analysis on
it in order to be used to construct OT in the bounded-storage model. Bob has a
secret t-bit string χ ∈ T ⊂ GF (2)t, where |T | ≤ 2t−k and χ and T are unknown
to Alice. At the end of the protocol, Alice receives two strings, one of which is χ,
but Alice does not know which one is χ. Also, Bob cannot force both two strings
to be in T , except with a small probability ν(k).

The following interactive hashing protocol is proposed in Noar, Ostrovsky,
Venkatesan and Yung [15]: Alice randomly chooses t − 1 linearly independent
vectors a1, · · · , at−1 ∈ GF (2)t. The protocol then proceeds in t − 1 rounds. In
Round i, for each i = 1, · · · , t− 1,

1. Alice announces ai to Bob.
2. Bob computes bi = ai · χ and sends bi to Alice.

At the end, both Alice and Bob have the same system of linear equations
bi = ai ·χ, i = 1, · · · , t− 1 over GF (2). Since a1, · · · , at−1 ∈ GF (2)t are linearly
independent, the system has exactly two t-bit strings χ1, χ2 as solutions and one
of them is χ by standard linear algebra. Thus Alice does not know information-
theoretically that which solution is χ. Also, the condition that Bob cannot force
both two strings to be in T , except with a small probability ν(k), was proved in
[4].

Since the round and communication complexities of NOVY protocol, which
transmits the string of t bits, are t−1 rounds and t2−1 bits respectively, the pro-
tocol which is based on NOVY protocol has very large round and communication
complexities.

2.3 Extended Interactive Hashing Protocol

We propose a new scheme between a challenger Alice with no input and a re-
sponder Bob with input string χ which provides a way to isolate more than two
strings. Bob has a secret t-bit string χ ∈ T ⊂ GF (2)t, where |T | ≤ 2t−k and χ
and T are unknown to Alice. For some positive integers l and m, let t = lm. The
protocol should meet the following requirements:

1. Bob sends a secret t-bit string in such a way that Alice receives 2m t-bit
strings and one of them is χ, but Alice does not know that which one is χ.

2. Bob cannot force any two of them to be in T , except with a small probability
ν(k).

We regard GF (2)t as (GF (2)m)l and let S = (GF (2)m)l. Bob chooses a
secret t-bit string χ = (χl−1, · · · , χ1, χ0) ∈ S, where χi ∈ GF (2)m, 0 ≤ i ≤ l−1.
Now we consider the universal family H of hash functions from S to GF (2)m

which is defined in Section 2.1 as

H = {hζ : ζ = (ζl−1, · · · , ζ1, ζ0) ∈ S},
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where hζ is defined in (1).
Our scheme is described below.

Protocol : The protocol operates in t/m − 1 rounds. In Round i, for i =
1, · · · , t/m− 1,

1. Alice chooses a function hi ∈ H with uniform distribution. Let ai ∈ GF (2)t

be the description vector of hi such that hi = hai . If ai is linearly dependent
in a1, · · · , ai−1, then Alice repeats this step until it is independent. Alice
sends ai to Bob.

2. Let ai = (a
(t/m−1)
i , · · · , a(1)

i , a
(0)
i ) ∈ S, a

(j)
i ∈ GF (2)m, 0 ≤ j ≤ t/m − 1.

Bob computes m-bit bi = hai(χ) = φ−1
(

∑t/m−1
j=0 φ(a

(j)
i ) · φ(χj)

)

, and sends

bi to Alice.

After the t/m − 1 rounds, both Alice and Bob have the same t/m − 1 linear
equations over GF (2)m with χ as a solution. The system has exactly 2m t-
bit strings χ0, · · · , χ2m−1 as solutions, one of which is χ. We call this scheme
extended interactive hashing. We note that in case of m = 1, our protocol is the
same as interactive hashing.

It is clear that Alice does not know information-theoretically that which
solution is χ. Thus Condition 1 of extended interactive hashing is satisfied. We
now come to Condition 2 regarding the security against a dishonest responder
Bob. In our protocol, Bob can cheat if he can answer Alice’s queries in such a
way that T contains two distinct elements s1, s2 received by Alice. In Theorem
1, we show that Bob can only cheat in extended interactive hashing if the size
of |T | is close to |GF (2)t| = 2t. In order to prove this, we need some lemmas.

The following lemma shows that each round of scheme reduces the size of
T by a factor of almost 2m with very high probability. This approach was used
first to prove the security of interactive hashing in [4]. We improve this method
in our model.

Lemma 4. Let T ⊂ GF (2)t be any subset with |T | = 2αt for 0 < α < 1 and

let p be a positive integer such that p ≤ αt/3. Let m be a positive integer which

is a divisor of t. Let H be the universal family of hash functions from GF (2)t

to GF (2)m defined above. Let U be a random variable with uniform distribution

over H. Then for any b ∈ GF (2)m,

Pr

[

|{s ∈ T : U(s) = b}| <
(

1

2m
+

1

2p+m/2
+

1

23p

)

|T |
]

≥ 1− 2−p.

Proof. For any s ∈ T and b ∈ GF (2)m, we consider the following random
variables

X(b,s) =

{

1 if U(s) = b

0 otherwise

and their sum Xb =
∑

s∈T X(b,s) = |{s ∈ T : U(s) = b}|. Thus we must show
that for any b ∈ GF (2)m,

Pr

[

Xb <

(

1

2m
+

1

2p+m/2
+

1

23p

)

|T |
]

≥ 1− 2−p. (3)
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Case 1: b 6= 0 ∈ GF (2)m.
By the definition X(b,s) and Lemma 3, we obtain that for any s 6= 0 ∈ T

E[X(b,s)] = E[X2
(b,s)] = 1 · |{h ∈ H : h(s) = b}|

|H|

=
1

2m
,

and X(b,0) = X2
(b,0) = 0 by the definition of our hash family. Thus E[Xb] =

|T |−1
2m .

By the definition of Xb, we obtain that

E[X2
b ] = E[

∑

s∈T

X2
(b,s) + 2

∑

si<sj∈T

X(b,si)X(b,sj)].

Since b 6= 0, X(b,0) = 0. Using this fact and Lemma 2 we obtain that

E[
∑

si<sj∈T

X(b,si)X(b,sj)] =
∑

0<si<sj∈T

E[X(b,si)X(b,sj)]

=
∑

0<si<sj∈T

{h ∈ H : h(si) = h(sj) = b}
|H|

<
(|T | − 1)2

2
· ( 1

2m
)2.

Thus, we have E[X2
b ] <

|T |−1
2m +

(

|T |−1
2m

)2

and

V ar[Xb] = E[X2
b ]− (E[Xb])

2

<
|T | − 1

2m
.

Now, by Chebychev Inequality we obtain that for any b 6= 0 ∈ GF (2)m and
δ > 0

Pr

[
∣

∣

∣

∣

Xb −
|T | − 1

2m

∣

∣

∣

∣

≥ δ

]

<
|T | − 1

2mδ2
.

Substituting δ =
√

2p(|T | − 1)/2m, we have

Pr

[
∣

∣

∣

∣

Xb −
|T | − 1

2m

∣

∣

∣

∣

≥ 2
p+αt−m

2

]

< 2−p.

Hence, if p ≤ αt/3, then with probability at least 1− 2−p, we obtain

Xb <

(

1

2m
+ 2

p+αt−m
2 −αt

)

|T |

<

(

1

2m
+

1

2p+m/2

)

|T |

and (3) is satisfied.
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Case 2: b = 0 ∈ GF (2)m.

Using X(0,0) = 1, Lemma 2 and Lemma 3, we obtain that E[X0] =
|T |−1
2m + 1

and E[X2
0 ] <

3(|T |−1)
2m + 1 +

(

|T |−1
2m

)2

. Thus V ar[X0] <
|T |−1
2m . By Chebychev

Inequality we obtain that for any δ > 0

Pr

[∣

∣

∣

∣

X0 −
( |T | − 1

2m
+ 1

)∣

∣

∣

∣

≥ δ

]

<
|T | − 1

2mδ2
.

Substituting δ =
√

2p(|T | − 1)/2m, we have that with probability at least 1−2−p,

X0 <

(

1

2m
+

1

2p+m/2
+

1

23p

)

|T |

using p ≤ αt/3, and the lemma is proved. ut

The following lemma was proved in [4]

Lemma 5. [4] Let T ⊂ GF (2)t be any subset with |T | = 2αt for 0 < α < 1. Let
p and q be positive integers such that 2αt < mq − p and p,mq ≤ t where m is

a divisor of t. Let H be the universal family of hash functions from GF (2)t to
GF (2)mq. Let U be a random variable with uniform distribution over H. Then
for any distinct s1, s2 ∈ T , we have

Pr[U(s1) = U(s2)] ≤ 2−p.

Lemma 6. Suppose that Alice and Bob engage in extended interactive hashing

of a t-bit string as described above. Let T ⊂ GF (2)t be any subset with |T | = 2αt

for 0 < α < 1 and let r be a positive integer such that log2 t ≤ r ≤ αt/6. Let m
be a positive integer which is a divisor of t and m ≤ 2r. If α < 1 − 8r+2m+2

t ,

then with probability at most 1
m2r , Bob can answer Alice’s queries in such a way

that Bob’s answers are consistent for two distinct elements s1, s2 ∈ T .

Proof. For i = 1, · · · , t/m−1 , let Ti ⊂ T be the subset of T satisfying hj(s) = bj ,
for j = 1, · · · , i, after Round i of the extended interactive hashing protocol. Let
p = 2r. Then using r ≤ αt/6 and α < 1− 8r+2m+2

t , we obtain that αt ≥ 3p and
αt−3p
m + 1 < t

m − 1. Thus there exists a positive integer ij such that

0 ≤ αt− 3p

m
< ij ≤

αt− 3p

m
+ 1 <

t

m
− 1. (4)

Applying Lemma 4 by induction on i from 1 to ij − 1, we get

|Ti| <
(

1

2m
+

1

2p+m/2
+

1

23p

)i

|T |,

except with probability at most i · 2−p. Thus, we obtain that

log2 |Tij | < (αt−mij) + ij log2(1 + 2m/2−p + 2−3p+m) < 3p+ 1 (5)
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by (4) and ij log2(1 + 2m/2−p + 2−3p+m) < t/m · (2m/2−p + 2−3p+m) < 1.
Now we want to apply Lemma 5 for step ij (round ij through t/m − 1

collectively) using Tij . Since α < 1 − 4p+2m+2
t , 4p < t − αt − 2m − 2 and

2 log2 |Tij | < 6p+ 2 < 2p+ t− αt− 2m by (5). Using (4) we get

2p+ t− αt− 2m = t−m
(

αt− 3p

m
+ 2

)

− p ≤ t+m(−ij − 1)− p

and 2 log2 |Tij | < m(t/m− 1− ij)− p holds. Hence we can apply Lemma 5 and
the overall failure probability is at most (ij + 1)2−p < t/m · 2−p < 1

m2r , which
proves the lemma. ut

The following theorem shows that Condition 2 of extended interactive hash-
ing is satisfied.

Theorem 1 Suppose that Alice and Bob engage in extended interactive hashing

of a t-bit string as defined above. For positive integers l and m, let t = lm. Let

T ⊂ GF (2)t be any subset with |T | ≤ 2t−k where k satisfies log2 t ≤ k ≤ 2t/3. If

m < k−2
6 , then with probability at most 2−O(k)

m , Bob can answer Alice’s queries in

such a way that Bob’s answers are consistent for two distinct elements s1, s2 ∈ T .
Proof. For any positive integer r which satisfies log2 t ≤ r ≤ (t − 2)/18, let
k = 12r + 2. Then we get r ≤ t−k

6 and m < 2r. Thus the theorem follows from
Lemma 6. ut

Corollary 1 Suppose that Alice and Bob engage in extended interactive hashing

of a t-bit string as defined above. For positive integers l and m, let t = lm,m < t.
Let T0, T1 ⊂ GF (2)t be any two subsets with |T0|, |T1| ≤ 2t−k where k satisfies

log2 t ≤ k ≤ 2t/3. If m < k−2
6 , then the probability that Bob can answer Alice’s

queries such that two distinct elements, which one lies in T0 and the other one

lies in T1, are consistent with his answers is at most 2−O(k)

m .

3 1-out of-N Oblivious Transfer Protocol

In this section we describe an efficient protocol for OTN
1 in the bounded-storage

model. Throughout the paper, let k be a security parameter andM be the length
of a public random string, and let L = τM , τ < 1, be the storage bound on the
reciever Bob. For simplicity, we only consider L = M/6(i.e. τ = 1/6). For any
τ < 1 we can obtain similar results.

An OTN
1 scheme is a two-party protocol between the sender Alice who pos-

sesses N secret bits X0, · · · , XN−1 ∈ GF (2) and the reciver Bob who would
like to learn one of them at his choice. We assume that Alice is honest, that is,
it won’t send secrets that are not claimed. An OTN

1 scheme should satisfy the
following requirements :

1. Correctness : if Alice and Bob follow the protocol, Bob obtains Xc after
executing the protocol, where c ∈ {0, · · · , N − 1} is a secret value of his
choice.
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2. Bob’s privacy : after executing the protocol with Bob, Alice shall not get
any information about Bob’s secret value c.

3. Alice’s privacy : after executing the protocol with Alice, Bob does not learn
any information about other secrets Xi, i 6= c or their combination except
with a negligible probability ν(k).

3.1 Basis Ideas

In this subsection we explain the basic ideas of our protocol for OTN
1 . Let n =

2
√
kM .
First, Alice and Bob choose independent random subsets A, B ⊂ {1, · · · ,M}

with |A| = |B| = n, respectively. If public random string α
R←− GF (2)M is

broadcasted, Alice stores α[i],∀i ∈ A and Bob stores α[j],∀j ∈ B, where α[i]
is the i-th bit of α. Then Alice sends her subset A to Bob, and Bob computes
A ∩ B. Following lemma shows that |A ∩B| ≥ k with very high probability.

Lemma 7. [10] Let A,B be two independent random subset of {1, · · · ,M} with
|A| = |B| = 2

√
kM . Then Pr[ |A ∩ B| < k ] < e−k/4.

Fact 1 (Encoding k-Element Subsets) [4] Each of the
(

n
k

)

k-element subsets

of {1, · · · , n} can be uniquely encoded as a dlog2

(

n
k

)

e-bit string.

Next, Bob encodes a random k-element subset AI ⊂ A ∩ B as a dlog2

(

n
k

)

e-
bit string and sends AI to Alice by the extended interactive hashing protocol
defined in Section 2.3. After executing the extended interactive hashing protocol
between Alice and Bob, they can construct one “good” set and N−1 “bad” sets.
Bob knows the “good” set, but does not learn any information about the “bad”
sets. Alice knows all of the sets, but does not distinguish between the “good”
set and the“bad” sets.

Next, Bob asks Alice to encrypt Xc with the “good” set and other secrets
Xi, i 6= c with the bad sets. Since Bob knows the “good” set, not the “bad” sets,
he can recover Xc, but not Xi 6= c.

3.2 Protocol for OT N
1

We propose the OTN
1 protocol for a receiver with bounded memory size. The pro-

tocol uses N public random string α0, · · · , αN−1
R←− GF (2)M . Let n = 2

√
kM

and let t = dlog2

(

n
k

)

e. For some positive integers l and m, suppose t = lm and
m < (k − 2)/6.

Protocol (OTN
1 ) : A sender Alice has N input bits X0, · · · , XN−1 when

N = 2u, 1 ≤ u ≤ m. A receiver Bob chooses c ∈ {0, · · · , N − 1} and want
to know Xc.

1. Alice randomly choosesN setsA(0) = {a(0)
1 , · · · , a(0)

n }, · · · ,A(N−1) = {a(N−1)
1 ,

· · · , a(N−1)
n } ⊂ {1, · · · ,M} with length n. Bob randomly chooses N sets
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B(0) = {b(0)1 , · · · , b(0)n }, · · · , B(N−1) = {b(N−1)
1 , · · · , b(N−1)

n } ⊂ {1, · · · ,M}
with length n.

2. If the first public random string α0
R←− GF (2)M is broadcasted, Alice stores

α0[a
(0)
1 ], · · · , α0[a

(0)
n ] and Bob stores α0[b

(0)
1 ], · · · , α0[b

(0)
n ]. After a short time,

if the second public random string α1
R←− GF (2)M is broadcasted, Al-

ice stores α1[a
(1)
1 ], · · · , α1[a

(1)
n ] and Bob stores α1[b

(1)
1 ], · · · , α1[b

(1)
n ]. After

iterative procedures, if αN−1
R←− GF (2)M is broadcasted, Alice stores the

αN−1[a
(N−1)
1 ], · · · , αN−1[a

(N−1)
n ] and Bob also stores the αN−1[b

(N−1)
1 ], · · · ,

αN−1[b
(N−1)
n ].

3. Alice sendsA(0), · · · ,A(N−1) to Bob. Bob randomly chooses ε
R←− {0, · · · , N−

1}, and computes A(ε) ∩ B(ε). If | A(ε) ∩ B(ε) | < k , then he aborts the

protocol. Otherwise, Bob chooses a set I = {i1, · · · , ik} such that A(ε)
I =

{a(ε)
i1
, · · · , a(ε)

ik
} ⊂ A(ε) ∩ B(ε).

4. Bob encodes I as a t-bit string, where t = dlog2

(

n
k

)

e. Bob sends I to Alice
with the extended interactive hashing protocol in t/m − 1 rounds. After
executing the extended interactive hashing, both Alice and Bob have exactly
2m t-bit strings, one of which is I. Bob chooses N subsets I0 < · · · < IN−1

such that I = Iδ for some δ ∈ {0, · · · , N − 1} and such that N strings that
encode I0, · · · , IN−1 are among the 2m possible strings from the extended
interactive hashing protocol, and sends them to Alice.

5. Alice checks whether N k-subsets I0 < · · · < IN−1 ⊂ {1, · · · , n} received
in Step 4 are contained in all of 2m k-subsets, computed by the extended
interactive hashing protocol. If any one of N k-subsets isn’t contained in 2m

k-subsets, she aborts the protocol. For some δ ∈ {0, · · · , N −1}, I = Iδ. Bob
knows δ, but Alice does not know δ .

6. Bob sends u bits γ = δ ⊕ ε and ρ = c ⊕ ε to Alice, where for any x, y ∈
{0, · · · , N−1}, x⊕y is defined as follows: x⊕y = (x0⊕y0, · · · , xu−1⊕yu−1) ∈
GF (2)u where x = (x0, · · · , xu−1), y = (y0, · · · , yu−1) ∈ GF (2)u.

7. Alice sets Y0 =
⊕k

j=1 α0[a
(0)
Iγ [j]], · · · , YN−1 =

⊕k
j=1 αN−1[a

(N−1)
Iγ⊕N−1[j]

] where

Il[j] denote the j-th element of k-subset Il, for l = 0, · · · , N − 1. Then
Alice computes Z0 = X0

⊕

Yρ, · · · , ZN−1 = XN−1

⊕

Yρ
⊕

N−1, and sends
Z0, · · · , ZN−1 to Bob.

8. Bob gets Xc = Zc

⊕

Yε.

Remark 1. Alice and Bob store N · n = 2N
√
kM bits in Step 2. Alice and Bob

also store t2/m bits in the extended interactive hashing of the Step 4. Here
t = dlog2

(

n
k

)

e< k · (log2 n − log2 k/e). Because k ¿ M , they need to store
O(n)/m bits. Thus, in order to implement the protocol, Alice and Bob should
store N · n+O(n)/m bits.
Remark 2. The probability that an honest receiver Bob aborts in Step 3 of the
protocol, is not more than e−k/4 by Lemma 6.
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Correctness : Since Yε =
⊕k

j=1 αε[a
(ε)
Iγ⊕ε[j]

] =
⊕k

j=1 αε[a
(ε)
I[j]], Bob can know Yε.

Thus, he can compute Xc = Zc

⊕

Yρ⊕c = Zc

⊕

Yε.

Bob’s Privacy : Because Alice does not know ε defined in Step 3 and δ defined in
Step 5, She gains no information about the Bob’s secret c with γ and ρ received
from Step 6.

Alice’s privacy : In order to prove the security against a dishonest receiver Bob,
who can store L = M/6 bits, we apply the method of proof in the Ding’s
model [10]. If α0 is broadcasted in Step 2, Bob computes an arbitrary func-
tion η0 = A0(η0), |η0| = M/6 using unlimited computing power. And if α1 is
broadcasted, Bob computes an arbitrary function η1 = A1(η0, α1), |η1| = M/6.
After iterative procedures, if αN−1 is broadcasted, Bob computes an arbitrary
function ηN−1 = AN−1(ηN−2, αN−1), |ηN−1| = M/6. In Step 3 - Step 6, us-
ing A(0), · · · ,A(N−1) and ηN−1, Bob uses an arbitrary strategy in interacting
with Alice. After executing the protocol, Bob tries to gain an information about
Xi, i 6= c, using the information ηN−1 on (α0, · · · , αn−1), Z0, · · · , ZN−1 received
from Alice in Step 7, and all information Ω which he gains in Step 3 - Step 6.

Theorem 2 Consider the OTN
1 protocol defined above. For any A0 : GF (2)M −→

GF (2)M/6, A1 : GF (2)M/6 ×GF (2)M−→ GF (2)M/6, · · · , AN−1 : GF (2)M/6 ×
GF (2)M −→ GF (2)M/6, for any strategy Bob uses in Step 3 - Step 6 of the

protocol, with probability at least 1 − 2−O(k) − N · 2−0.02M , there exist some

ρ ∈ {0, 1, · · · , N − 1} such that ∀X0, · · · , XN−1 ∈ GF (2), ∀c ∈ {0, · · · , N − 1},
∀i ∈ {1, · · · , N − 1} and for any distinguisher D,

| Pr[ D(ηN−1, Ω, Yρ⊕i ⊕Xc, Yρ ⊕Xc⊕i) = 1 ]

− Pr[ D(ηN−1, Ω, Yρ⊕i ⊕Xc, Yρ ⊕ 1⊕Xc⊕i) = 1 ] | < 2−k/3, (6)

where η0 = A0(α0), η1 = A1(η0, α1), · · · , ηN−1 = AN−1(ηN−2, αN−1), Ω de-

notes all the information Bob obtains in Step 3 - Step 6, and Y0, · · · , YN−1 are

defined in Step 7. Thus the view of Bob is essentially the same, even though Xc⊕i

is replaced by 1 ⊕Xc⊕i. Hence Bob gains no information about any non-trivial

function or relation involving more than two Xi’s in the protocol.

A proof of this theorem which guarantees the privacy of Alice is given in the
appendix.

4 Complexity

In the bounded-storage model, complex of OTN
1 mainly depends on the extended

interactive hashing scheme. Since the complexity of the extended interactive
hashing scheme for OTN

1 is similar to that of OT 2
1 , we compare the complexity of

our extended interactive hashing protocol for OT 2
1 with the complexity of NOVY

protocol, which is an interactive hashing scheme used in the CCM protocol [4]
and Ding’s protocol [10].
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The NOVY protocol, which transmits the string of t-bits, has t − 1 rounds
complexity and (t − 1) · (t + 1) = t2 − 1 bits of communication complexity. On
the other hand our extended interactive hashing protocol has t/m − 1 rounds
complexity and (t/m−1) ·(t+m) = t2/m−m bits of communication complexity
when m divides t. In case of m = 1, we note that our protocol and the NOVY
protocol are same. If there exists m such that m > 1, our protocol can be
constructed about m times as efficient as compared with the NOVY protocol.
As m is large , we see that the complexity of our protocol is more reduced. By
Theorem 1, m satisfies the following condition ; 1 ≤ m < (k− 2)/6, where k is a
security parameter. Thus if we choose the largest integer m such that m divides
t and 1 ≤ m < (k − 2)/6, then we can obtain the integer m which makes our
protocol most efficient. For example, assume that the length of public random
string is Petabit (i.e. M = 1015) and 1000 ≤ k ≤ 10000 for a security parameter
k. Table 1 gives the information for a security parameter k that we can choose
in our protocol.

Table 1. M = 1015, n = d2
√
kMe, t = dlog2

(

n

k

)

e and mmax is the largest positive
integer m, which divides t and m < (k − 2)/6.

k
the number of k such that the number of k such that

mmax ≥
√
t mmax = 1

1000 - 2000 218 101

2001 - 3000 329 100

3001 - 4000 353 92

4001 - 5000 389 95

5001 - 6000 403 90

6001 - 7000 414 77

7001 - 8000 440 75

8001 - 9000 426 93

9000 - 10000 445 65

In case mmax = 1 in Table 1, our interactive hashing protocol is simply
equivalent to the NOVY protocol. By Table 1 we have that the number of k
such that mmax = 1 is less than 10% for 1000 ≤ k ≤ 10000. If we choose k
such that mmax ≥

√
t, then we can construct protocol which has much lower

communication complexity of t3/2 − t1/2 bits than that of the NOVY protocol.
Such k are more than 20% for 1000 ≤ k ≤ 2000, 30% for 2001 ≤ k ≤ 5000 and
40% for 5001 ≤ k ≤ 10000. Hence, we can choose k easily such that our extended
interactive hashing for OT 2

1 becomes more efficient than the NOVY protocol for
CCM protocol and Ding’s protocol.



Efficient Oblivious Transfer in the Bounded-Storage Model 155

5 Conclusion

In this paper we propose the OTN
1 protocol as a generalization of the Ding’s

protocol for OT 2
1 in the bounded-storage model. Furthermore, when N = 2, our

protocol is similar to that of Ding, but is constructed more efficient than that of
Ding. We used the efficiently extended interactive hashing protocol for the sake
of reducing a complexity of the protocol. The proposed extended interactive
hashing protocol which transmits t-bit string has t/m− 1 round complexity and
(t/m − 1) · (t + m) = t2/m − m bits of communication complexity when m
divides t, and provides a way to isolate more than two strings. We note that
a given m in this paper must divide t and satisfy m < (k − 2)/6. And we
show that we can choose an integer m such that the protocol has t3/2 − t1/2

bit communication compexity which is much lower than that of NOVY protocol
by a concrete example. This fact provides a partial answer for an open problem
raised in [10]. Using such extended interactive hashing, we also constructed the
protocol for OTN

1 having almost the same efficiency as OT 2
1 scheme.
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6. C. Crépeau, Equivalence between two flavours of oblivious transter, In Advances in
Cryptology - CRYPTO ’87, pp. 351-368, 1987.
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A Proof of Theorem 2

We extend the proof in Ding [10] to deal with OTN
1 . We use the same definitions

and lemmas as given in [10].

Definition 2 Define K def
= {I ⊂ {1, · · · ,M} : |I| = k}.

Definition 3 Let E ⊂ GF (2)M and I ∈ K. We say that I is good for E if

∣

∣

∣

∣

∣

|{α ∈ E :
⊕k

i=1 α[I[i]] = 0}|
|E| − |{α ∈ E :

⊕k
i=1 α[I[i]] = 1}|
|E|

∣

∣

∣

∣

∣

< 2−k/3.

Definition 4 Let E ⊂ GF (2)M . We say that E is fat if |E| ≥ 20.813M .

Lemma 8. [10] For any function f : GF (2)M → GF (2)M/6 and α
R←− GF (2)M ,

Pr[f−1(f(α)) is fat ] > 1− 2−0.02M .

Definition 5 For A ⊂ {1, · · · ,M}, define KA def
= {I ⊂ A : |I| = k}.

Definition 6 For A ⊂ {1, · · · ,M} and E ⊂ GF (2)M , define

BAE
def
= {I ⊂ KA : I is not good for E}.

Lemma 9. [10] Let E ⊂ GF (2)M be fat. For a uniformly random A ⊂ {1, · · · ,M}
with |A| = n,

Pr

[

|BAE | < |KA| · 2−k/6 =

(

n

k

)

· 2−k/6
]

> 1− 2−k/6.
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PROOF OF THEOREM 2 : In order to show the equation (6) of Theorem 2,
it suffices to show that with probability 1 − 2−O(k) − N · 2−0.02M , there exists
ρ ∈ {0, 1, · · · , N − 1} such that for any i ∈ {1, · · · , N} and for any distinguisher
D,

|Pr[D(ηN−1, Ω, Yρ⊕i, Yρ) = 1]− Pr[D(ηN−1, Ω, Yρ⊕i, Yρ ⊕ 1) = 1]| < 2−k/3.(7)

Here η0 = A0(α0), η1 = A1(η0, α1), · · · , ηN−1 = AN−1(ηN−2, αN−1), Ω denotes
all the information Bob obtains in Step 3-Step 6, and Y0, · · · , YN−1 are defined
in Step 7 of the protocol.

Note that as in the proof of Theorem 1 in [10] it suffices to show the equation
(7) in the case that Bob’s recording functions A0, · · · , AN−1 are deterministic.

We prove a slightly stronger result that the equation (7) hold even if Bob
stores not only ηN−1, but also η0, η1, · · · , ηN−2. Let

E0
def
= {α ∈ GF (2)M : A0(α) = η0}, E1

def
= {α ∈ GF (2)M : A1(η0, α) = η1},

· · · , EN−1
def
= {α ∈ GF (2)M : AN−1(ηN−2, α) = ηN−1}.

After η0, · · · , ηN−1 are computed in Step 2 of the protocol, Bob can compute
E0, · · · , EN−1 using unlimited computing power. But given η0, · · · , ηN−1, all
Bob knows about (α0, · · · , αN−1) are that it is uniformly random in E0 ×
· · · × EN−1. By Lemma 8, for any recording functions A0, · · · , AN−1 and for

α0, · · · , αN−1
R←− GF (2)M ,

Pr[All of E0, · · · , EN−1 are fat ] > 1−N · 2−0.02M (8)

Thus, consider the case that all of E0, · · · , EN−1 are fat.
Let A(0), · · · ,A(N−1) be the random subsets of {1, · · · ,M} with |A(i)| =

n,∀i ∈ {0, 1, · · · , N − 1}, which Alice chooses in Step 1 of the protocol. By (8)
and Lemma 9, we have that for any i ∈ {1, · · · , N − 1}, for ρ ∈ {0, · · · , N − 1},
with probability at least 1−N · 2−0.02M − 2−k/6+1,

|BA(ρ)

Eρ
|, |BA(ρ⊕i)

Eρ⊕i
| <

(

n

k

)

· 2−k/6. (9)

Thus consider the case that BA(ρ)

Eρ
,BA(ρ⊕i)

Eρ⊕i
satisfy (9).

For each ε ∈ {0, · · · , N−1}, denoteA(ε) = {a(ε)
1 , · · · , a(ε)

n }. For J = {j1, · · · , jk}
⊂ {1, · · · , n}, denote A(ε)

J = {a(ε)
j1
, · · · , a(ε)

jk
}. By Definition 5, A(ε)

J ∈ KA(ε) . De-
fine

Fρ
def
= {J ⊂ {1, · · · , n} : |J | = k ∧ A(ρ)

J ∈ BA(ρ)

Eρ
};

Fρ⊕i
def
= {J ⊂ {1, · · · , n} : |J | = k ∧ A(ρ⊕i)

J ∈ BA(ρ⊕i)

Eρ⊕i
}.

Using (9) and |Fρ| = |BA
(ρ)

Eρ
|, |Fρ⊕i| = |BA

(ρ⊕i)

Eρ⊕i
|, we have

|Fρ|, |Fρ⊕i| <
(

n

k

)

· 2−k/6. (10)
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Consider I0, · · · , IN−1 defined in Step 5 of the protocol. Let γ be the first u-bit
which Bob sends to Alice in Step 6 of the protocol. Then by (8), (9), (10)
and Corollary 1 on the extended interactive hashing, we have that for any
strategy Bob uses in Step 3 - Step 6, with probability at least 1 − 2−O(k) −
N · 2−0.02M , Iγ⊕ρ /∈ Fρ ∨ Iγ⊕ρ⊕i /∈ Fρ⊕i. WLOG, assume Iγ⊕ρ⊕i /∈ Fρ⊕i. Let

Yρ =
⊕k

j=1 αρ[a
(ρ)
Iγ⊕ρ[j]

], Yρ⊕i =
⊕k

j=1 αρ⊕i[a
(ρ⊕i)
Iγ⊕ρ⊕i[j]

] as defined in Step 7 of the

protocol. Since Iγ⊕ρ⊕i /∈ Fρ⊕i, by definition A(ρ⊕i)
Iγ⊕ρ⊕i[j]

/∈ B
EA

(ρ⊕i)

ρ⊕i

. By definition

3 of goodness, for αρ⊕i
R←− Eρ⊕i,

|Pr[Yρ⊕i = 0]− Pr[Yρ⊕i = 1]| < 2−k/3.

Since (αρ, αρ⊕i)
R←− Eρ × Eρ⊕i, Yρ and Yρ⊕i are independent. Thus for any

b ∈ GF (2),

|Pr[Yρ⊕i = 0 | Yρ = b]− Pr[Yρ⊕i = 1 | Yρ = b]| < 2−k/3

which proves (7) and the proof is done.


