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Abstract
One of the most socially valuable aspects of modern technology is how it enables people of all
backgrounds to communicate with each other in lightning speeds. Even though the speed and
performance of these communication tools can be called modern, the same cannot be said about
their security. One such underdeveloped field in terms of security is the field of group messaging
systems. Even though cryptography is an established field of science these days, we still haven’t
developed group messaging tools that are able to resist motivated adversaries. As part of this thesis,
we perform a brief survey of the various group messaging applications that are currently in use and
informally discuss their security properties. We look at how end-to-end security can be achieved
through group key exchange protocols and present their security model in depth. We put special
focus on insider attacks of group key exchange protocols and we also present a novel insider attack
on a published protocol. We then discuss techniques for proving the security of a group key exchange
against certain types of attacks. To demonstrate these techniques we slightly modify a published
group key exchange and then prove it secure. Finally, this thesis includes Go source code that
simulates a published group key exchange as a means to verify its correctness.
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Chapter 1

Prologue

1.1 Background

Humans have a natural need to communicate with each other and with the recent advancements of

technology, people’s ability to communicate has reached new levels. It is easy and natural now for

people to communicate in real-time with their peers remotely over computer screens.

The first instant messaging protocols were developed even before the Internet. Protocols like

Talkomatic, which worked over the PLATO system, and BITNET relay, which worked over BITNET,

saw significant use by universities during the 80s and influenced the way messaging protocols are

designed now. After the rise of the Internet, hundreds of messaging protocols have been developed

to suit the various use cases: from low-latency to high-latency, and from two-party chats down to

thousands of people.

Nowadays, most Internet users use some sort of messaging protocol as part of their daily routine

(e.g. Skype, IRC, Facebook chat, etc.), and as of 2014, companies like Skype serve millions of users

who spend billions of minutes everyday conversing with each other 1 2.

1.2 Motivation

Humans also have a natural need for privacy. Almost everyone expects some degree of privacy in

their life and personal activities: Most people speak with their lovers in private, pull the curtains

before changing clothes and shut the door of the toilet before using it. It is the author’s opinion

1http://blogs.skype.com/2014/05/01/the-skype-community-welcomes-its-2000000th-user/

2http://blogs.skype.com/2013/04/03/thanks-for-making-skype-a-part-of-your-daily-lives-2-billion-minutes-a-day/

5



that it should be possible for people to experience their life with us much privacy as they choose to,

and that this should also include their online activities.

Unfortunately, even though online messaging systems are so widely used, their privacy is nowhere

close to robust. Most deployed chat systems leak information to third parties without making this

obvious to the users. Information might be leaked to the local network, to advertisement firms, to

the company that runs the chat system or to law enforcement.

1.3 Contributions

As part of this thesis, we provide a brief survey on group messaging protocols that have been

developed. We put special focus on their security properties and their group key exchange.

More specifically, we examine insider attacks on such group key exchanges and their implications

to group messaging. We present an insider attack of our own on a published group key exchange

and look at security models that aim to cover such insider attacks.

We also look at techniques for proving group key exchange secure against various adversaries.

Finally, we present a proof of our own against a slightly modified version of a published protocol.

1.4 Document Structure

The rest of the thesis is structured in the following manner:

• Chapter 2 is an introduction to group messaging systems and their security. We discuss

various security properties that group messaging systems should have, and then examine a few

deployed systems and their security. We introduce key exchange, by looking at how they can

be used to provide end-to-end security in group messaging systems. Finally, we give a brief

overview of previous research on group key exchange for group messaging applications.

• Chapter 3 provides informal descriptions of insider attacks on group key exchange, as well as

their implications to the group messaging application.

• Chapter 4, motivated by the previous chapter, details the security model and security proper-

ties of group key exchanges. Finally, we give an introduction into proof techniques that could

be used to prove such group key exchange secure.

• Chapter 5 presents a novel insider attack on the mBD+S protocol presented in “Flexible group

key exchange with on-demand computation of subgroup keys.” by Abdalla et al. [1]

• Chapter 6 provides a security proof for a slightly modified version of the protocol in “Secure

group key establishment revisited” by Bohli et al. [7]
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Chapter 2

Group Messaging Security

By “group messaging”, we usually refer to text-based protocols that allow participants to exchange

messages with each other. Such protocols can be synchronous and real-time as is the case for IRC,

or asynchronous as is the case for most messaging systems on mobile phones (e.g. WhatsApp). This

section focuses on the security of group messaging systems.

2.1 Group Messaging Security Models

Group messaging security is a new field of study and there is currently no widely accepted definition

of what it means for a group messaging system to be secure.

2.1.1 The Need for End-To-End Security

Because of the lack of robust security models in this space, it’s easy to claim that a group messaging

system is secure and private, even if it provides no protection against realistic threats. For example,

most widely used group messaging systems today are server-based and assume that the server is

honest. In other words, they do not attempt to provide any end-to-end security whatsoever.

2.1.2 Off-The-Record Messaging

Fortunately, there has been research on security models for two-party instant messaging systems

that we could use as a basis for defining security on the group setting.

One important security philosophy for two-party instant messaging is Off-The-Record Messaging

as established by Borisov, Goldberg and Brewer [8]. While not a formal security model per se, it

establishes important security properties that secure messaging systems should have.

Their idea is that instant messaging over the Internet should be able to mimic casual conversations

of friends in a private space. That is, it must provide the following informal security properties:
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End-to-end Confidentiality: No one apart from the two participants should be able to read the

conversation.

Authentication: Participants are assured that their correspondents are who they think they are.

Forward Secrecy: Even if an adversary compromises the long-term keys of the participants, he

should not be able to decrypt past encrypted communication

Deniability: Even though there is authentication, no participant should be able to cryptographi-

cally prove that this communication took place between those two parties to a third party.

Goldberg et al. implemented this philosophy into a protocol called OTR, which is a well-known

example of usable secure messaging. However, OTR is a two-party protocol and tweaking it into a

multiparty protocol is not straightforward.

2.2 Further Security Properties for Group Messaging

Multiparty messaging can also have security properties that are not applicable in the two-party

model. For example:

Room Consistency: All participants should see the exact same room setup. An adversary should

not be able to insert or remove participants from the group.

Transcript Consistency: All participants should see the exact same chat transcript. An adver-

sary should not be able to reorder or hide messages from a subgroup of the participants.

Subgroup Messaging: It should be possible to efficiently send end-to-end secured messages to

just a subgroup of the participants.

A more detailed survey on security properties that are applicable to messaging systems can be

found on a recent paper by Unger et al. [31]

2.3 Survey on Deployed Group Messaging Systems

This section briefly examines some group messaging systems actually in use. There are not many

secure instant messaging systems deployed currently, and we will see that most of the chat systems

people use in their daily life are not actually end-to-end secure.
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Skype, Facebook chat, etc.

Skype, Facebook, Google and other web platforms have their own web chat systems. Most of these

web applications actually use XMPP 1 for communication, or implement their own closed-source

messaging protocol. Currently, none of these protocols are end-to-end, which means that

corporate servers can read all the messages or they can impersonate users in conversations.

IRC and XMPP

IRC 2 and XMPP MUCs have been widely used for group messaging. However, they are old proto-

cols, not designed with security in mind and they provide no end-to-end security.

SILC

SILC 3 is one of the oldest attempts to provide secure group messaging. It uses its own chat

framework and requires dedicated server infrastructure, in contrast to overlay protocols like OTR

that can be used on top of already existing chat framework (e.g. IRC, XMPP). Also, the SILC

protocol does not provide end-to-end security by default. Users can specify their own private key

to encrypt their messages in an end-to-end fashion, however this approach does not provide proper

perfect forward secrecy or authentication.

2.4 Group Key Exchange and Group Messaging

Since most of the above systems seem to suffer by end-to-end security issues, it would be appropriate

to look deeper into how end-to-end security can be achieved. The standard way to achieve end-to-

end security, is for the participants of a group messaging system to derive common cryptographic

keys in such a manner that they cannot be guessed by an outsider attacker.

There are multiple ways that participants of a group can derive common keys. As an example,

a group leader can be assigned who chooses a key and runs a key transport protocol to transfer the

key to the other participants [16]. Or a two-party key exchange can be conducted pairwise between

all n participants resulting in n2 pairwise keys that can be used to encrypt messages to everyone as

a group [27].

1http://xmpp.org/

2http://www.ietf.org/rfc/rfc1459.txt

3http://www.silcnet.org/
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In this work, we focus on group key exchange and their role in group messaging. Specifically, we

study authenticated group key exchanges, which allow authentication and key exchange to happen

with a single run of the protocol.

Group key exchange are complicated cryptographic constructions and have various security prop-

erties. We believe that our lack of understanding of group key exchange plays an important role

for the tiny usage of end-to-end encryption in modern communications. The rest of this document

focuses on group key exchange and their security.

2.5 Previous work on Group Messaging Security

Several attempts have been made to construct secure group messaging systems and to design group

key exchange protocols that would be suitable for this particular application.

The authors of OTR proposed a generalization of two-party OTR to the multiparty use case [20].

Their work mainly focused on establishing security properties and security models, but the actual

cryptographic primitives that would be used were specified in an abstract manner. Matthew Van

Gundy [22] followed up by proposing a specific 4-round authenticated deniable group key exchange

based on [6].

Liu et al. [25] proposed a group messaging protocol which attempts to keep all the properties

of OTR. Their group key exchange is based on the Burmester-Desmedt group key exchange with

modifications to make it more dynamic, allowing members to join and drop out of the conversation

with little overhead.

The recently proposed (n+1)sec protocol [18] utilizes the group key exchange from [1] to provide

a deniable group key exchange. It also attempts to provide transcript consistency by attaching

pointers to previous messages in every message.

Finally, the TextSecure messaging protocol was extended to the group setting by sending mes-

sages to each recipient using the two-party TextSecure protocol [27]. The group messaging protocol

uses multicast encryption by broadcasting a single encrypted message to all participants and then

sending the decryption key to each participant in a pairwise fashion.
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Chapter 3

Insider Attacks on Group Key Exchange

Group Key Exchange (GKE) protocols allow a group of users to establish a shared session group key

which can be further used to provide confidentiality or authentication in different group applications.

In the setting of key exchange, attacks that aim to undermine the security of the session key have

been studied for years, both for the two-party case and the group setting (for a taxonomy of known

key attacks see [29]). However, attacks that can be launched by malicious protocol participants are

less well understood. We informally call such attacks insider attacks.

Malicious protocol participants can derive the session key by simply following the protocol, so

learning the session key is not an interesting attack in this threat model. Instead, we are interested in

attacks that allow insiders to impersonate other participants, or to disable other security properties

of the key exchange. This section aims to present informal definitions of such attacks, as well as

demostrate them in the context of group messaging.

3.1 Impersonation Attacks

Unknown Key Share Attack

The Unknown Key Share attack (or identity-misbinding attack) is a type of impersonation attack,

first presented by Diffie et al. [17]. Informally speaking, if such an attack is mounted against Alice,

then Alice believes to share a session key with Bob, whereas in fact Alice shares a key with a third

party Eve. In most cases the attack can be launched by outsiders [15] but there are also cases where

the attack can only be launched by malicious protocol participants [24].

Recently, Bader et al. [19] presented an Unknown Key Share attack that applies specifically to

the group messaging protocol Textsecure along with a few possible exploitation scenarios.
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Key Compromise Impersonation Attack

A Key Compromise Impersonation attack (KCI) is a type of impersonation attack that can be

launched to Alice by Eve only after compromising Alice’s long-term key. For example, if a protocol

is vulnerable to a KCI attack and if Eve has compromised Alice’s long-term private key, then Eve

can successfuly pretend to be Bob when talking to Alice. This attack can be launched both by

outsiders but also by protocol insiders as presented by Boyd et al [21].

It is worth mentioning that KCI attacks can be particularly effective in the context of group

messaging: Imagine that the mafia needs to acquire some data from a corporate system. The mafia

hackers manage to compromise the system only to find out that the the desired data has been

moved elsewhere. However, it manages to compromise the long-term group messaging keys of that

system. Leveraging a KCI attack in the next group messaging session, the mafia can impersonate a

trusted confident of the company and request the data to be delivered to them or placed again on

the compromised system.

3.2 Key Integrity Attacks

Key integrity attacks are attacks that force a subgroup of participants of a key exchange to derive

different session keys from other participants. There are various examples of this attack on group

key exchange [14], and we also present an attack of this kind on Section 5.

Key integrity attacks can also apply to group messaging: Imagine that members of the mafia

have infiltrated a multi-stakeholder corporation. At some point, the corporation’s executive board

schedules an emergency meeting to notify the stakeholders of some important updates. If that

meeting happened using a group messaging protocol that suffers from key integrity attacks, the

mafia could force some participants to derive a different session key than others, effectively blocking

the important information from getting to them.

3.3 Key Control Attacks

A key control attack can be launched by malicious protocol parcicipants to force the resulting session

key to have a specific value, or to lie into a restricted set of values. It was first presented by Mitchell

et al. [28] and since then various other protocols have been found to be vulnerable.

Key control attacks don’t seem to be particularly effective against properly designed group mes-

saging protocols. Section 6.3 details some possible attacks that could be launched against weakly

designed group messaging protocols that use a key exchange suffering from key control issues.
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Chapter 4

Provable Security and Group Key Exchange

Because of all these possible attacks, we want to be able to concretely reason about protocols

and the security they offer. To do so, we have defined security models that consider the protocol

participants, their trust relationship, communication environment and further relevant aspects, as

well as definitions of required security goals. With such formalized models, we are able to examine the

security of protocols with mathematics and logic and apply reductionist methods to prove protocols

secure given certain assumptions.

4.1 Security Models for Group Key Exchange

A security proof of a group key exchange is only as secure and robust as its security model. Hence,

we first take a look at published security models of group key exchange.

4.1.1 History

Over the past years, there have been many proposed security models for key exchange and some of

them have also been adapted to work on the group setting. For a comprehensive survey see [26]. In

this document, we use the security model presented in [21]. In the following paragraph, we provide

a short timeline of its development.

While new protocols for key exchange and key distribution have been getting published since

the 80s, there was no way to formally validate or prove such protocols secure. The security of

such earlier group key exchange protocols has been analyzed with ad-hoc methods and heuristics

based on informal definitions. Many such protocols were later found to be insecure, which urged

cryptographers to develop systematic methods and frameworks to analyze and reason about key

exchanges.

In 1993, Bellare and Rogaway presented an initial security model for two-party key exchange [3]

loosely based on previous work by Bird et al. [5]. A few years later the same authors extended their
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security model to also include the three-party case [4]. In 2000, Bellare. Pointcheval and Rogaway [2]

further refined the way the model defines participant partnering and also gave corruption capabilities

to the adversary allowing them to formally treat forward secrecy.

More recently, in 2001, Bresson, Chevassut, Pointcheval, and Quisquater [9] modified the previous

two-party models to derive a security model designed for group key exchange protocols. That security

model was further refined, using Shoup’s concept of corruptions [30] by Bresson et al. [10, 11].

Finally, Boyd et al. [21] adapted those security models to also consider KCI attacks to arrive at the

security model we will be using through this document.

4.1.2 The Execution Environment

Our security model puts the adversary A in the center of the universe. Informally speaking, the

adversary completely controls the communication channel between the group participants and is

able to create, edit, reorder or block any messages between them. She is also able to corrupt group

participants compromising their short-term state or even their long-term key which effectively allows

her to impersonate them. In this section, we clarify the adversary’s capabilities and goals by defining

a precise security model.

Protocol participants

We fix a non-emtpy set ID of n participants that want to take part in the group key exchange

protocol P . Each participant Ui ∈ ID can have multiple instances called oracles, involved in

distinct concurrent executions of P . We denote instance s of player Ui as πs
i with s ∈ N.

Long-Lived Keys

Each player Ui ∈ ID holds a long-lived key LLU which can be either a pair of matching public/private

keys or a symmetric key. LLU is specific to U , not one of its instances. Associated to a protocol P

is an LL-key generator GLL which at initialization generates LLU and assigns it to U .

Accepted state

An instance πi
U enters an accepted state when it computes a session key skiU . Note that an instance

may terminate or abort without ever entering into an accepted state.

Partnering

Each protocol instance πi
U of a participant is identified by a unique session ID sidiU . We assume

that the session ID is generated during the protocol run.
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Furthermore, each protocol instance πi
U of a participant has a partner ID pidiU which is the set

of identities of the participants with whom πi
U wishes to establish a common group key. Note that

pidiU includes the identity of U itself.

Two instances πi
U and πj

U ′ at two different parties U and U ′ respectively are considered partnered

if both instances have accepted, and sidiU = sidjU ′ as well as pidiU = pidiU ′ .

Oracle queries

The adversary A interacts with the system by querying the participant oracles. The adversary is

allowed to ask the following queries:

• Execute(sid, pid): Prompts a complete execution of the protocol among the parties in pid using

the unique session ID sid. A is given all the protocol messages, modelling passive attacks.

• Send(πi
U ,m): Sends a message m to the instance πi

U . If the message is (sid, pid) the instance

πi
U is initiated with session ID sid and partner ID pid. The response of πi

U to any Send query

is returned to A.

• RevealKey(πi
U ): If πi

U has accepted, A is given the session key skiU established at πi
U .

• Corrupt(U): The long-term secret key SKU of U is returned to A. This query returns neither

the short-term session key (if computed) nor the internal state.

• RevealState(πi
U ): The internal state of U is returned to A. We assume that internal state

is erased once πi
U has accepted. Hence, a RevealState query to an accepted instance returns

nothing.

• Test(πi
U ): A random bit b is secretly chosen. If b = 1, A is given skiU established at πi

U .

Otherwise, a random value chosen from the session key probability distribution is given. Note

that a Test query is allowed only on an accepted instance.

4.2 Security Definitions

4.2.1 Authenticated Key Exchange Security

One of the basic security definitions of GKE protocols is Authenticated Key Exchange security (AKE-

security) which ensures that the derived group key is indistinguishable from a random string to the

adversary. This implies that the adversary has no better method of deriving the group key (or parts

of it) than simply guessing it.

We first need to define the notion of freshness which is central to the definition of AKE-security.

Informally, a session is considered fresh if the session key is not trivially compromised; hence the

session can be challenged using a Test query:
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Definition 1. (Freshness) An instance πi
U is considered fresh if the following conditions hold:

• the instance πi
U or any of its partners has not been asked a RevealKey query after their

acceptance.

• the instance πi
U or any of its partners has not been asked a RevealState query before their

acceptance.

• if πj
U is a partner of πi

U and A asked Corrupt(U ′), then any message that A sends to πi
U on

behalf of πj
U , must come from πj

U intended to πi
U .

We can now give the following definition of Authenticated Key Exchange security:

Definition 2. (AKE-security) An adversary Aake against the AKE-security notion is allowed to

make Execute, Send, RevealState, RevealKey and Corrupt queries in Stage 1. Aake makes a Test

query to an instance πi
U at the end of Stage 1 and is given a challenge key Kb as described above.

Aake can continued asking queries during Stage 2. Finally, Aake outputs a bit b′ and wins the AKE

security game if (1) b′ = b and (2) if the instance πi
U that was asked the Test query remained fresh

till the end of Aake’s execution. Let SuccAake
be the success probability of Aake in winning the AKE

security game. The advantage of Aake in winning this game is AdvAake
= |2Pr[SuccAake

]− 1|.

A protocol is called AKE-secure if AdvAake
is negligible given a security parameter k for any

probabilistic polynomial-time algorithm Aake.

In our security model, the definition of AKE-security and freshness are specially designed to also

take KCI attacks on account. In an implicit authentication protocol, an outsider who manages to

derive the session key of another participant A, can impersonate A to anyone else. The third freshness

condition requires that the adversary remains passive for any partner that it corrupts. That’s natural,

since AKE-security is an outsider security notion, and an adversary that impersonates corrupted

parties would be considered an insider. Furthermore, our definitions imply forward secrecy as Aake

is allowed to obtain the long-term private keys of all parties, without being able to break the AKE

security of old sessions.

4.2.2 Mutual Authentication

Since the AKE security definition was designed to handle attacks by outsiders, it’s important to also

define a security definition that captures attacks by malicious insiders. For this reason we define

the Mutual Authentication notion that models impersonation attacks and ensures agreement on the

session key in the presence of insiders.

Definition 3. (Mutual Authentication) An adversary Ama against the mutual authentication notion

of a GKE protocols is allowed to make Execute, Send, RevealState, RevealKey and Corrupt queries.

Ama violates the mutual authentication property of the protocol if at some point during the protocol

16



run, there exists an uncorrupted instance πi
U (although the party U may be corrupted) that has

accepted a key skiU and another party U ′ ∈ pidiU that is uncorrupted at the time πi
U accepts such

that:

1. there is no instance πj
U ′ with (pidjU ′ , sid

j
U ′) = (pidiU , sid

i
U ) or

2. there is no instance πj
U ′ with (pidjU ′ , sid

j
U ′) = (pidiU , sid

i
U ) that has accepted with skjU ′ ̸= skiU .

Let SuccAma be the success probability of Ama in winning the mutual authentication game.

A protocol is said to provide mutual authentication in the presence of insiders if SuccAma is

negligible given a security parameter k for any polynomial time Ama.

The MA definition in our security model is stronger than earlier definitions, since it captures

the additional goal of KCI in the presence of insiders by giving the adversary the extra power of

corrupting the long-term private key of participants.

4.2.3 Security Model and The Real World

It is easy to see that a crucial step in analyzing the security of a cryptographic protocol is defining a

suitable security model. The appropriateness of the security model depends on how well it captures

adversarial actions in the real world.

By allowing the adversary to issue queries to the oracles, we model information leakage by various

real world attacks. For example, the Corrupt query models the compromise of long-term private

keys which could happen when a hacker compromises a system. Similarly, the RevealKey query

models an attack where the hacker breaks into the system right after the key exchange, just in time

to steal the resulting session key but not the victim’s long-term key.

By giving the adversary access to all those oracles we let him combine all those real world attacks

in an attempt to defeat the stated security definitions. The security definitions represent concrete

flaws of the key exchange, hence if no possible adversary can defeat them, we can say that the key

exchange protocol is secure.

4.3 Provable Security and Key Exchange

Modern cryptography employs provable security to reason about the security of cryptographic pro-

tocols. That is, a cryptographic construction provides certain security goals if there exists a cor-

responding proof of security in some mathematically indisputable way. In this thesis, we focus on

proof techniques that rely on computational complexity.
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4.3.1 Computational Security Proofs for Key Exchange

The core idea of computational security proofs is that all involved parties (including the adversary)

are modeled by probabilistic polynomial-time algorithms whose outputs follow some probability

distribution. In such security proofs, we usually model each security goal as an adversarial attack

that the adversary can launch by interacting with the honest parties. In such proofs, the adversary

is considered to be successful if a certain event Win occurs with a non-negligible probability.

Security proofs in computational security models are mostly of reductionist nature and carried out

by contradiction. The idea behind the reduction is usually to show is to show that some intractable

problem P1 implies the hardness of a problem P2 which was specially constructed to guarantee a

specific security goal. For this purpose, it is usually shown that a solver algorithm for P2 can also

solve the intractable P1 with polynomially bounded additional complexity.

4.3.2 Sequence of Games Proofs

Modern key exchange protocols rely on multiple cryptographic primitives as building blocks. Con-

structing reductions proofs of such protocols is quite complex and error-prone. A technique called

“sequence of games” was developed to reduce complexity of such reductionist proofs.

In the “sequence of games” approach one constructs a sequence of games G0, G1, . . . , Gn starting

with G0 being the original security model. The original game, specifies an event Win that must

occur in case of a successful attack in the original protocol. Subsequent games define more events

Wini that are all related to Win. Then one tries to show that the probability of Wini is negligible

close to that of Wini+1. Finally, the probability of the adversary to win the final game Winn should

be equal to the target probability according to the security goal definition in the underlying security

model. By creating this chain of negligible events, leading to a final fair game, we know that also in

the original game the adversary had only negligible chance of winning.

4.3.3 Random Oracle Model

One non-standard methodology frequently applied to computational security proofs is the Random

Oracle Model. The random oracle model involves modelling certain parts of cryptosystems, called

hash functions, as totally random functions about whose internal workings the attacker has no

information.

This is useful because hash functions are problematic from a provable security point of view.

This is because there are various ways to construct them and they are commonly developed using

symmetric techniques which are difficult to prove using reductionist logic since there are no natural

intractable problems to reduce them to. The random oracle model attempts to overcome our inability

to make strong statements about the security of hash functions by modelling them as completely

18



random functions about which an attacker has no information. A “sequence of games” proof that

uses the random oracle model will be demonstrated on section 6

It is worth mentioning that the random oracle model is considered controversial in provable

security. This is because it allows cryptographers to take shortcuts that simply can’t be supported

in the real world we live in. One important result in this area is from Canetti et al. [13] who

demonstrated that it was possible to have a scheme that was provably secure in the random oracle

model, and yet insecure when the random oracle was replaced with any hash function.
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Chapter 5

Analysis of an mBD+S Protocol

5.1 Introduction

In 2010, Abdalla et al. [1] proposed two group key exchange protocols: mBD+P and mBD+S based

on the group key exchange protocol by Burmester and Desmedt [12].

The original paper proved the AKE-security of those protocols in the random oracle model.

However, the protocols were found vulnerable by Cheng et al. [14] to a key integrity attack that

could be launched by malicious insiders. While this was not a violation of AKE security, we believe

insider attacks are important and secure group key exchange should be designed appropriately.

In this section we review the mBD+S protocol and then demonstrate a novel key integrity attack

that can be launched by malicious insiders on the protocol. Our attack is similar to the issue that

Bohli et al. [7] presented on the Kat and Yung protocol [23].

5.2 The mBD+S Protocol

The mBD+S protocol works in two stages: the group stage and the subgroup stage.

The group stage of the mBD+S protocol is run initially amongst all participants to derive a

common group key. Then, any subset of participants can run the subgroup stage on-demand to

derive a private subgroup key.

The group stage is two rounds whereas the subgroup stage is one round, hence running the

subgroup stage is cheaper than running a separate group stage for the subgroup. In this chapter we

focus on the group stage of the protocol.
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Notation

Through this chapter we use the notation of the original paper. That is, by G we denote a cyclic group

of prime order generated by a group element g. By H,Hg : {0, 1}∗ → {0, 1}k we denote two crypto-

graphic hash functions. The symbol “|” will be used for the concatenation of bit-strings. Since the

protocol is authenticated, we will make use of a digital signature scheme Σ = (Keygen, Sign, V erify)

which we assume to be existentially unforgeable under chosen message attacks (UF-CMA).

Let the group of users be defined by pid = (U1, . . . , Un). In the following description we assume

that user indices form a cycle such that U0 = Un and Un+1 = U1. Figure 5-1 outlines the execution

of the protocol after initialization.

Protocol

Round 1
Computation Each Ui computes yi = gxi for some random xi ∈R Zq.
Broadcast Each Ui broadcasts (Ui, yi).

Round 2
Computation

1. Each Ui sets sidi = (U1|y1, . . . , Un|yn).
2. Each Ui sets k′i−1,i = yxi

i−1 and k′i,i+1 = yxi
i+1

3. Each Ui sets z′i−1,i = H(k�i−1,i, sidi) and z′i,i+1 = H(k′i,i+1, sidi)
4. Each Ui sets zi = z′i−1,i ⊕ z′i,i+1

5. Each Ui sets σi = Sign(ski, (Ui, zi, sidi))

Broadcast Each Ui broadcasts (Ui, zi, σi)

Check
Each Ui checks that z1⊕ . . .⊕zn = 0 and whether all received signatures σj are valid
and aborts if any of these checks fails.

Group Key Computation
1. Each Ui iteratively for each j = i, . . . , i+ n− 1 computes z′j,j+1 = z′j−1,j ⊕ zj
2. Each Ui accepts ki = Hg(z

′
1,2, . . . , z

′
n,1, sidi) as the group session key.

Figure 5-1: The mBD+S protocol from [1]

5.3 Insider Attack on the mBD+S Protocol

We now present an attack that can be launched by malicious insiders and aims to disturb the

key integrity of the protocol. In this attack, the goal of the adversary A is to force some involved

participants to compute a different session key than the rest, while having the same session identifier.

Say n > 3, then the adversary A can mount the following attack in a new protocol session:
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1. A corrupts U1 and U3. Since A has corrupted U1 and U3 she can compute signatures on their

behalf and impersonate them completely.

2. In the second protocol round, A computes z1 and z3 as specified, and then sets z1 = z3 and

z3 = z1. A computes σ1 = Sign(sk1, (U1, z1, sid1)) instead of σ1 = Sign(sk1, (U1, z1, sid1)),

and similarly computes σ3 = Sign(sk3, (U3, z3, sid3)) instead of σ3 = Sign(sk3, (U3, z3, sid3)).

Now A broadcasts (U1, z1, σ1) on behalf of U1 and (U3, z3, σ3) on behalf of U3. In other words,

A swaps the zi-contributions of U1 and U3.

Now all protocol participants have computed the same sidi, all of them have received the same

messages but a subgroup of the participants will derive different session keys than the rest.

5.4 Insider Attack Proof of Concept

We show the attack on a group of 4 participants U1, . . . , U4. Assuming that the attacker launched

the above attack by corrupting U1 and U3, we now execute the Check and Group Key Computation

phases to compute the derived session group key for honest participants U2 and U3 and demonstrate

that they are different. Remember that the attacker has set z1 ← z′2,3 ⊕ z′3,4 and z3 ← z′4,1 ⊕ z′1,2

Check phase

First of all, we can see that the adversary can pass the Check phase since all the signatures are valid

and furthermore z1 ⊕ z2 ⊕ z3 ⊕ z4 = 0 stands since it expands to:

(z′2,3 ⊕ z′3,4)⊕ (z′1,2 ⊕ z′2,3)⊕ (z′4,1 ⊕ z′1,2)⊕ (z′3,4 ⊕ z′1,4) = 0

Group Key Computation phase

Next is the Group Key Computation phase, where we compute the group key as ki = Hg(z
′
1,2, z

′
2,3, z

′
3,4, z

′
4,1, sidi).

It is worth noting that during the second round of the protocol, U2 had already derived z′1,2 and

z′2,3, and U4 has already derived z′3,4 and z′4,1. The table below details the computations of U2 and

U4 when deriving their unknown z′i,i+1 values:
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Point of View of U2 Point of View of U4

z′1,2 was derived in second round by U2

z′1,2 = z′4,1 ⊕ z1

= z′4,1 ⊕ z′2,3 ⊕ z′3,4

z′2,3 was derived in second round by U2

z′2,3 = z′1,2 ⊕ z2

= z′4,1 ⊕ z′2,3 ⊕ z′3,4 ⊕ z′1,2 ⊕ z′2,3

= z′3,4 ⊕ z′4,1 ⊕ z′1,2

z′3,4 = z′2,3 ⊕ z3

= z′2,3 ⊕ z′4,1 ⊕ z′1,2

z′3,4 was derived in second round by U4

z′4,1 = z′3,4 ⊕ z4

= z′2,3 ⊕ z′4,1 ⊕ z′1,2 ⊕ z′3,4 ⊕ z′1,4

= z′1,2 ⊕ z′2,3 ⊕ z′3,4

z′4,1 was derived in second round by U4

Looking at the above table, we can now calculate the derived group keys of U2 and U4 using the

formula

ki = Hg(z
′
1,2, z

′
2,3, z

′
3,4, z

′
4,1, sidi)

In our example, this gives us:

k2 = Hg(z
′
1,2, z

′
2,3, z

′
2,3 ⊕ z′4,1 ⊕ z′1,2, z

′
1,2 ⊕ z′2,3 ⊕ z′3,4, sid2)

k4 = Hg(z
′
4,1 ⊕ z′2,3 ⊕ z′3,4, z

′
3,4 ⊕ z′4,1 ⊕ z′1,2, z

′
3,4, z

′
4,1, sid4)

where sid2 = sid4 but all the other elements are unequal. Hence k2 ̸= k4.
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Chapter 6

Analysis of a Group Key Exchange Proto-

col

6.1 Introduction

In 2007, Bohli et al. [7] proposed a two-round group key exchange protocol and proved it secure

for their definitions of outsider and insider security. Later, Boyd et al. [21] showed a new proof of

security in the random oracle model.

In this chapter, we present the protocol and then modify it slightly to make it symmetric and

easier to implement. Finally, we prove the modified protocol secure in the random oracle model

against the AKE security definition.

6.2 Protocol Overview

Let U1, . . . , Un be the set of parties who wish to establish a common group key. It is assumed that

the parties are ordered in a logical ring with Ui−1 and Ui+1 being the left and right neighbours of

Ui for 1 ≤ i ≤ n, U0 = Un and Un+1 = U1. During the initialization phase, a cyclic group G of

prime order q, a generator g of G and the description of a hash function H that maps to {0, 1}k

are chosen. Each party is assumed to have a long-term private and public key pair for a public key

signature scheme. Figure 6-1 on page 26 outlines the execution of the protocol after initialization.

It is worth noting that in this protocol all participants Ui do identical actions, except from

participant Un who does different actions. This asymmetry of the protocol should not influence

its security and should not give Un any advantage under the examined security model. On this

note, Boyd et al. proved the protocol AKE-secure, and they also showed that it satisfies the mutual

authentication and contributiveness security properties.
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Round 1
Computation

1. Each Ui except Un chooses ki ∈R {0, 1}k , xi ∈R Zq and computes yi = gxi . Un

additionally computes H(kn).
2. Each Ui except Un sets M I

i = ki∥yi, while Un sets M I
n = H(kn)∥yn.

3. Each Ui computes a signature σI
i on M I

i ∥pidi.
Broadcast Each Ui broadcasts M I

i ∥σI
i .

Check Each Ui checks all signatures σI
j of incoming messages M I

j ∥σI
j for j ̸= i.

Round 2
Computation

1. Each Ui computes tLi = H(yxi
i−1), tRi = H(yxi

i+1), Ti = tLi ⊕ tRi and sidi =

H(pid∥k1∥ . . . ∥kn−1∥H(kn)). Un additionally computes maskn = kn ⊕ tRn .
2. Each Ui except Un sets M II

i = Ti∥sidi while Un sets M II
n = maskn∥Tn∥sidn

3. Each Ui computes a signature σII
i on M II

i .
Broadcast Each Ui broadcasts M II

i ∥σII
i .

Check
1. Each Ui verifies the incoming the signatures σII

j on the corresponding message
M II

j for every j ̸= i. Each Ui also checks that T1⊕ . . .⊕Tn
?
= 0 and sidi

?
= sidj .

2. Each Ui for i < n, extracts kn = maskn ⊕ T1 ⊕ . . . ⊕ Ti−1 ⊕ tLi and checks the
commitment H(kn) sent in Round 1 for the kn extracted.

Key Computation
Each Ui computes the session key ski = H(pidi∥k1∥ . . . ∥kn)

Figure 6-1: Original protocol from [7]

6.3 Rationale for a Modified Symmetric Protocol

In this section we present a slightly modified version of the protocol in Figure 6-1 to make it

symmetric. While no security flaws have been found in the protocol or in its security proofs, we

think that symmetric protocols are more elegant and they are also easier to implement since less code

needs to be written and no special procedures are needed for choosing the distinguished participant.

Furthermore, the assymetric protocol has a slightly weaker notion of key control, since the

distinguished participant can wait until all the other participants have sent their ki contributions in

the first round, which allows her to predetermine some bits of the session key by carefully choosing

her kn contribution. While the distinguished participant cannot set the whole session key to a

specific value of her choosing, she can still predetermine b bits of the session key by brute forcing

through 2b possible kn values.

The above issue is not covered under the usual contributiveness definition, and hence the original

protocol was proved secure under contributiveness by Boyd et al. It is also worth noting that this

shortcoming is not severe in the case where this group key exchange is used in a group messaging
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application assuming that the resulting secret is used carefully to achieve end-to-end security. An

example of how this can go wrong would be if the group messaging protocol splits the session key

into parts and uses those parts individually to achieve security. In that case, and if the parts are

sufficiently small, the adversary could set those bits to specific values which might be able to influence

security. However, these attacks are theoretical enough that we don’t consider them serious security

threats.

Finally, this modification was also suggested in the original paper by Bohli et al. but they never

demonstrated the modified protocol or proved it secure.

6.4 Our Modified Symmetric Protocol

In this section we present our modified symmetric protocol. The initialization phase is the same as

the one described in Section 6.2, and the rest of the protocol can be seen in Figure 6-2 on page 28.

The main difference between our modified protocol and the original protocol, is that in our

modified version all participants commit to their key contribution ki in the first round, and publish

their contributions encrypted with the Burmester-Desmedt keys on the second round. In the final

step, participants decrypt all the encrypted key contributions they have received and use them to

calculate the group key.

The above procedure is also demonstrated in the deniable key exchange protocol by Bohli et al.

[6], but their protocol requires four rounds to complete because of the deniability requirement.

6.5 Security Proof for Modified Protocol

We now show that our modified protocol in Figure 6-2 is AKE-secure as per Definition 2. Our proof

required minimal modifications to the proofs of the original protocol [7, 21].

Theorem 6.5.1. The protocol in Figure 6-2 is AKE-secure as per Definition 2 assuming that the

CDH assumption holds in G, the signature scheme is UF-CMA secure and that H is a random oracle.

The advantage of A is upper bounded by:

AdvAake
≤ 2

(
n2Advcma +

((n+ 2)qs + qr)
2

2k
+

q2s
2k

+ nqsqrSucc
cdh +

qsqr
2kn

)
where n is the number of participants, Advcma is the advantage of a polynomial adversary against

the UF-CMA security of the signature scheme, Succcdh is the probability of solving CDH in G and k

is the security parameter. qs and qr are the upper bounds on the number of Send and random oracle

queries respectively that Aake can ask.

Proof. We provide the proof in a sequence of games. Let Si be the event that Aake wins the AKE-
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Round 1
Computation

1. Each Ui chooses ki ∈R {0, 1}k , xi ∈R Zq and computes yi = gxi .
2. Each Ui sets M I

i = H(ki)∥yi.
3. Each Ui computes a signature σI

i on M I
i ∥pidi.

Broadcast Each Ui broadcasts M I
i ∥σI

i .
Check Each Ui checks all signatures σI

j of incoming messages M I
j ∥σI

j for j ̸= i.

Round 2
Computation

1. Each Ui computes tLi = H(yxi
i−1), tRi = H(yxi

i+1), Ti = tLi ⊕ tRi and
sidi = H(pid∥H(k1)∥ . . . ∥H(kn−1)∥H(kn)).

2. Each Ui encrypts their ki contribution as eki = ki ⊕ tRi .

3. Each Ui sets M II
i = eki∥Ti∥sidi.

4. Each Ui computes a signature σII
i on M II

i .
Broadcast Each Ui broadcasts M II

i ∥σII
i .

Check
1. Each Ui verifies the incoming the signatures σII

j on the corresponding message
M II

j for every j ̸= i.
2. Each Ui also checks that T1 ⊕ . . .⊕ Tn

?
= 0 and sidi

?
= sidj .

3. Each Ui extracts kj = ekj ⊕ Tj+1 ⊕ . . .⊕ Ti−1 ⊕ tLi for every j ̸= i.

4. Each Ui checks the commitment H(kj) sent in Round 1 for the kj extracted.

Key Computation
Each Ui computes the session key ski = Hg(pidi∥k1∥ . . . ∥kn).

Figure 6-2: Our modified protocol
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security game in Game i. We also define τi to be the advantage of Aake in Game i computed

as

τi = |2Pr[Si]− 1| (6.1)

Now we present the sequence of games:

Game 0: In this first game, the protocol participants’ oracles are faithfully simulated for the

adversary i.e. the system behaves as in the real model. By definition we have:

AdvAake
= τ0 = |2Pr[S0]− 1| (6.2)

Game 1: This is the same game as the previous game, except that the simulation fails if an event

Forge occurs. Hence:

|Pr[S1]− Pr[S0]| ≤ Pr[Forge]

This allows us to update equation 6.2 as follows:

AdvAake
= τ0 = |2Pr[S0]− 1| = |2Pr[S0]− 2Pr[S1] + 2Pr[S1]− 1|

≤ |2Pr[S0]− 2Pr[S1]|+ |2Pr[S1]− 1|

≤ 2Pr[Forge] + τ1

(6.3)

Informally, the event Forge occurs when Aake manages to forge a signature of an uncorrupted

participant. It occurs when Aake issues a Send query with a message of the form (Mi, σi) such

that Ui is not corrupted and the message has not been an output of an instance at Ui.

If such a signature forgery occurs as part of Aake, we can use Aake to construct a forger F

which outputs a forgery (σ,m) with respect to any given public key Kp:

Our forger F receives as input the target public key Kp and access to a public signing oracle.

F will emulate the whole system and use Aake as a subroutine for executing the forging attack.

To start, F initializes all participant keys as normal according to the protocol, except from

Ui where F sets its public key to Kp. F then runs Aake as a subroutine and simulates the

participants by answering oracle queries made by Aake as follows:

When Aake makes a Send query, F answers in a straightforward way, using the long-term

keys of the oracles to sign the flows, except when the query is towards an oracle of Ui, in

which case F needs to use the signing oracle to derive a valid signature. When Aake makes a

Corrupt-query, F again answers in a straightforward way except if the target is Ui, in which

case F does not know the long-term key and hence stops and fails.
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If Aake makes a query of the form Send(∗, (σ,m)) where σ is a valid signature on m with

respect to Kp and (σ,m) have not been encountered before, then F halts and outputs (σ,m)

as a forgery.

The probability of Aake not corrupting the wanted party is ≥ 1/n. The probability of Aake

outputting a valid forgery on behalf of this user is also ≥ 1/n. Hence the advantage of a chosen

message attacker on this digital signature scheme is Advcma ≥ 1/n2Pr[Forge], which gives us:

Pr[Forge] ≤ n2 ∗Advcma

Advcma is negligible by the UF-CMA assumption, hence the event Forge occurs with negligible

probability only.

Game 2: This game is identical to the previous game, but the simulation fails if an event Collision

occurs. So for this game:

|Pr[S2]− Pr[S1]| ≤ Pr[Collision]

Acting as before we get:

τ1 = |2Pr[S1]− 1| =

≤ |2Pr[S1]− 2Pr[S2]|+ |2Pr[S2]− 1|

≤ 2Pr[Collision] + τ2

(6.4)

The event Collision occurs when the random oracle H produces a collision for any of its inputs.

Each Send query requires at most n+ 2 queries to the random oracle, and the adversary can

also query the random oracle directly. Hence, the total number of random oracle queries is

bounded by ((n+ 2)qs + qr), where qs and qr are the maximum number of Send and random

oracle queries respectively that Aake can ask. Hence, by the birthday paradox, the probability

of Collision is:

Pr[Collision] ≤ ((n+ 2)qs + qr)
2

2k

Game 3: This game is identical to the previous game, but the simulation fails if an event Repeat

occurs. For this game:

|Pr[S3]− Pr[S2]| ≤ Pr[Repeat]

and the advantage of the adversary on this game is:
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τ2 = |2Pr[S2]− 1| =

≤ |2Pr[S2]− 2Pr[S3]|+ |2Pr[S3]− 1|

≤ 2Pr[Repeat] + τ3

(6.5)

The event Repeat occurs when an instance at a party Ui chooses a key contribution ki that

was previously chosen by an oracle of a participant. As there are a maximum qs instances that

may have chosen a nonce ki, the birthday paradox gives us:

Pr[Repeat] ≤ q2s
2k

Game 4: This game is identical to the previous game except that the following rule is added: The

simulator chooses a random value s ∈R [1, qs], where qs is the maximum number of protocol

sessions that the adversary can activate. The value s represents a guess as to the protocol

session in which Aake is going to call the Test query. If Aake does not ask the Test query

during session s, then the game is aborted.

Let’s call Guess the event were the simulator guesses correctly. Then we have:

Pr[S4] = Pr[S4 ∧Guess] + Pr[S4 ∧ ¬Guess]

= Pr[S4|Guess]Pr[Guess] + Pr[S4|¬Guess]Pr[¬Guess] (6.6)

where Pr[S4|Guess] is the probability of winning provided that the guess was correct; since the

adversary won’t notice a difference if the guess is correct, its probability of winning Game 4 if

the guess is correct is the same as winning in the previous game, that is Pr[S4|Guess] = Pr[S3].

Also, since s was picked randomly, the probability of guessing the Test session correctly is

Pr[Guess] = 1/qs. Finally, if the guess was incorrect, the simulator aborts by setting the bit

b′ at random, hence the probability that A will win in this case is Pr[S4|¬Guess] = 1/2. Using

the above, we can continue working on equation 6.6:

Pr[S4] = Pr[S4|Guess]Pr[Guess] + Pr[S4|¬Guess]Pr[¬Guess]

= Pr[S3]
1

qs
+

1

2
(1− 1

qs
) (6.7)

Hence from equations 6.1 and 6.7 we have:
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τ4 = |2Pr[S4]− 1|

=

∣∣∣∣2(Pr[S3]
1

qs
+

1

2
(1− 1

qs
))− 1

∣∣∣∣
=

∣∣∣∣2Pr[S3]− 1

qs

∣∣∣∣
=

τ3
qs

which gives us:

τ4 =
1

qs
τ3 =⇒ τ3 = qsτ4 (6.8)

Now we have pinned down the specific session that the test query will be asked, and because

of the previous games we also know that during that session the adversary is an outsider and

passive with respect to all parties.

Game 5: In this game we change the way Send queries are answered during the test session, so

that the adversary has no way to distinguish between this and the previous game without

breaking the CDH assumption. Here is how the simulator works in this game:

In round 1 of the test session, all messages yi are chosen at random from G instead of being

discrete logarithm public keys. In round 2, all tRi are assigned random values from {0, 1}k,

instead of being hashed Burmester-Desmedt secrets. All other computations are performed as

in Game 4.

The only way that an adversary can distinguish between this and the previous game, would be

to calculate the discrete logarithm xi of yi, and query the random oracle for H(yxi
i+1). Then the

adversary could check that the random oracle output H(yxi
i+1) did not match the tRi message

of the participant. Let Ask be such an event:

|Pr[S5]− Pr[S4]| ≤ Pr[Ask]

and the advantage of the adversary on this game is:

τ4 = |2Pr[S4]− 1| =

≤ |2Pr[S4]− 2Pr[S5]|+ |2Pr[S5]− 1|

≤ 2Pr[Ask] + τ5

(6.9)

If the event Ask occurs as part of Aake, we can use Aake to solve the CDH problem in G. That
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is, we can construct a CDH solver ∆ that given a CDH instance (g, ga, gb) can compute gab.

The construction follows similar logic as the F construction of Game 1:

During the test session, ∆ initializes all participants as normal. During Round 1, ∆ picks a

participant instance πi
U and sets yi = ga and yi+1 = gb. If the event Ask happens in this test

session, it means that Aake might have queried the random oracle for H(gab).

The adversary, in her attempt to distinguish this game, could have picked any (yi, yi+1) pair of

public keys to break. There are n such pairs, hence ∆ has at least 1/n chance that the target

CDH instance was broken. Furthermore, the probability that a randomly chosen entry from

the random oracle table is the target CDH solution is at least 1/qr where qr is the maximum

number of random oracle queries allowed. This gives us:

Succcdh ≥ 1

nqr
Pr[Ask]

which can be rewritten as

Pr[Ask] ≤ nqrSucc
cdh

and since Succcdh is negligible by definition, the event Ask occurs with negligible probability

only.

Game 6: This game is the same as the previous game except that in the test session the game

halts if Aake asks a random oracle query with input (pidi∥k1∥ . . . ∥kn).

Because of the previous game, random values were XORed with the key shares ki, and hence

the protocol messages in round 2 carry no information about k1 . . . kn. The best that an

adversary can do in this case is to guess their values and since they are n k-bit strings, the

probability that the adversary will guess correctly is (1/2k)n. Finally, the probability that

Aake will ask the right random oracle query during the test session is at most qr/2
kn. Which

gives us:

|Pr[S6]− Pr[S5]| ≤
qr
2kn

τ5 = |2Pr[S5]− 1|

≤ |2Pr[S5]− 2Pr[S6]|+ |2Pr[S6]− 1|

≤ 2
qr
2kn

+ τ6

(6.10)

However, if the adversary is not able to query the random oracle H on the correct input then

the adversary has no advantage in distinguishing the real session key from a random one and
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so:

τ6 = 0 (6.11)

By combining equations 6.2 to 6.11 we calculate the final advantage to be as claimed:

AdvAake
≤ 2Pr[Forge] + 2Pr[Collision] + 2Pr[Repeat] + 2Pr[Ask] + 2

qr
2kn

)

≤ 2

(
n2Advcma +

((n+ 2)qs + qr)
2

2k
+

q2s
2k

+ nqrqsSucc
cdh +

qsqr
2kn

)

34



Chapter 7

Conclusions and Future Directions

While the scientific field of secure messaging is young, in recent years we see increased interest by

researchers and engineers to understand the problem space and design usable solutions.

Since secure messaging systems have so many different applications, we need better understanding

of their use cases and the properties they require. For example, are we talking about 3 friends

chatting, or a 2000 people group? How should additional people join the chat (with invitation,

password, ...)? Do we want people to see when others are online or not (presence-hiding)? Do we

expect clients on shaky unreliable networks or not (mobile phones)? By better understanding these

requirements we also comprehend the tradeoffs that are involved which allow us to design useful

secure messaging systems. Of course, robust usability studies are also required to finally create

usable tools that will have maximal impact.

We believe it’s important to develop such tools as free software, and also design them in the

open so that researchers can be involved easily. In recent years, we are happy to see discussion lists

designed specifically for secure messaging discussions 1 2.

On the cryptographic side, by better understanding the tradeoffs of secure messaging we can

design group key exchanges optimized for this specific use case. In the future, it’s important to look

into extended security properties that could be used in such an application (anonymous, unlinkable,

deniable key exchange). We should also optimize the computational costs of our key exchange

protocols, to be able to facilitate groups of large size. Finally, the development of robust security

models for group key exchange is very important as is further research on the categorization and

taxonomy of such security models and the threats they handle.

1https://moderncrypto.org/

2https://lists.cypherpunks.ca/mailman/listinfo/otr-dev
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Appendix A

Mathematical Background

A.1 Computational Assumptions

We now describe some computational assumptions which form the basis of security for the GKE

protocols that we describe in the later chapters.

Definition 4 (Discrete Logarithm Assumption). Let G be a cyclic group of prime order p and let

g be an arbitrary primitive root of G. The discrete logarithm of ga ∈ G to the base g is the unique

integer a ∈ Zp. The discrete logarithm problem (DLP) is computing the discrete logarithm of ga to

the base g, given a random instance (g, ga). We say that the discrete logarithm assumption holds in

G if for all Probabilistic Polynomial-Time (PPT) algorithms, the probability of solving the DLP in

G is negligible in a given security parameter k.

Definition 5 (Computational Diffie-Hellman (CDH) Assumption). Let G, g, p be as described

above. The CDH problem is to compute gab given a random instance (g, ga, gb) for a, b ∈ Zp. We say

that the CDH assumptions hold in G if for all PPT algorithms, the probability of solving the CDH

problem is negligible in a given security parameter k. Note that the hardness of the CDH problem

entails that of the DLP.

A.2 Crypto Background

Negligible Function

Informally, we call a function f negligible if it approaches zero faster than the reciprocal of any

polynomial. More concretely:

Definition 6 (Negligible Function). A function f : N → R is negligible if for every positive
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polynomial p there exists an N ∈ N such that for all n < N ,

f(n) <
1

p(n)

To illustrate the power of this definition, consider an adversary who wants to guess a k-bit string.

Since there are 2k possible strings of size k, an attacker who tries a random string has probability 1/2k

of guessing it right. 2−k is a negligible function (following the definition above), which means that

even if the attacker does a constant number of attempts or even a number of attempts polynomial

in k, the attacker would still have a negligible probability of guessing the actual string.

A.2.1 Digital Signatures

A digital signature is a cryptographic scheme for demonstrating the authenticity of a digital message.

It’s an asymmetric cryptography construction, hence it uses private and public keys. Informally,

given a message, Alice can generate a valid signature for that message using her private key. The

verifier Bob, given a message and its signature, can verify that the message was signed by the owner

of a specific private key. A digital signature scheme typically consists of three algorithms:

• A key generation algorithm that selects a private key uniformly at random from a set of possible

private keys. The algorithm outputs the private key and a corresponding public key.

• A signing algorithm that, given a message and a private key, produces a signature.

• A signature verifying algorithm that given a message, public key and a signature, either accepts

or rejects the message’s claim to authenticity.

To better demonstrate the power of this construction, we now describe the notion of UF-CMA

security for digital signature schemes. Informally, UF-CMA security for signature schemes requires

that an adversary cannot produce a signature on a message that has not been signed before.

Unforgeability under Chosen-Message-Attack (UF-CMA security)

Definition 7 (UF-CMA security). A digital signature scheme is UF-CMA secure if the advantage

of any PPT adversary in the following game is negligible in the security parameter k.

The game is carried out in three phases:

Setup The challenger runs the KeyGen algorithm and obtains a key pair (pk, sk). The public key

pk is given to the adversary. Also, a public signing oracle is instantiated which can produce

signatures of arbitrary messages using sk.
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Signing Oracle Queries The adversary can issue queries to the signing oracle with arbitrary input

messages m1, . . . ,mq , for a q polynomial in k. The signing oracle replies with a signature of

each message produced using sk. The signing queries may be asked adaptively i.e., the message

mi is allowed to be selected after obtaining the responses to messages m1, . . . ,mi−1.

Forgery Eventually, the adversary outputs a signature (m,σ). The adversary wins the UF-CMA

game if (1) σ is valid signature on m under pk and (2) m has not been an input to any of the

sign queries i.e. m /∈ {m1, . . . ,mq}.

The advantage of an adversary in the UF-CMA game is defined to be the same as its probability

of success in the game.
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Appendix B

Implementation of a Deniable Group Key

Agreement

In this section we provide a research-level implementation of the Deniable Group Key Agreement

protocol by Bohli et al. [6]. Our implementation is written in Go, and it simply simulates a key

exchange session, verifies that it completes successfully and that all participants derive the same

key.

package main

import (

”crypto/sha256”

”math/big”

”fmt”

”bytes”

” container/ l i s t ”

)

const (

// security_param i s equal to the output length of SHA256

security_param = 32 // 32 * 8 = 256

// number of simulated part ic ipants

// f e e l f r e e to change this , but should be > 2

n_participants = 8

)

var (

// group order

group_q *big . Int
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// group generator

group_g *big . Int

// group prime

group_p *big . Int

)

// l inked l i s t of part i c ipants

var part i c ipants l i s t . L ist

// Round 1:

// Where each part ic ipant commits to her key share , and pub l i c i z e s her

// c i r cu l a r group key agreement publ ic key .

func (p *Partic ipant ) round_1() {

var hashBytes [ security_param ] byte

// Compute phase

// k <- {0 ,1}^k

p . k = rand_bytes ( hashBytes [ : ] )

// x <- Z_q

p . x = rand_int (group_q)

// y = g^x

p . y = new( big . Int ) .Exp(group_g , p . x , group_p)

// Broadcast phase

// Compute commitment

h := sha256 .New()

h .Write (p . k)

h .Sum(p .h_k [ : 0 ] )

// Broadcast i t

fmt . Pr int f ( ” [M-1-%d BROADCAST START]\n” , p . i )

fmt . Pr int f (”H(k_%d) = %x\ny_%d = %d\n” , p . i , p .h_k, p . i , p . y)

fmt . Pr int f ( ” [M-1-%d BROADCAST END]\n” , p . i )

// Print debugging in fo

debug . Pr int f (” Partic ipant %d:\nk = 0x%x\nx = %d\ny = %d\nh_k = 0x%x” ,

p . i , p . k , p . x , p . y , p .h_k)

}

// Round 2:

// Where each part ic ipant generates a ses s ion id , and pub l i c i z e s her

// Schnorr short - term public key

func (p *Partic ipant ) round_2() {

// Compute phase

// s id = H(pid | | H(k_1) | | H(k_2) | | . . . | | H(k_n) )

h := sha256 .New()
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h .Write (p . pid )

fo r p_tmp := part i c ipants . Front () ; p_tmp != n i l ; p_tmp = p_tmp.Next () {

h .Write (p_tmp. Value . (* Partic ipant ) .h_k [ : ] )

}

h .Sum(p . s id [ : 0 ] )

// r <- Z_q

p . r = rand_int (group_q)

// z = g^r

p . z = new( big . Int ) .Exp(group_g , p . r , group_p)

debug . Pr int f (” Partic ipant %d:\ nr = 0x%x\nz = 0x%x\n” ,

p . i , p . r , p . z )

// Broadcast phase

fmt . Pr int f ( ” [M-2-%d BROADCAST START]\n” , p . i )

fmt . Pr int f (” sid_%d = 0x%x\nz_%d = 0x%x\n” , p . i , p . sid , p . i , p . z )

fmt . Pr int f ( ” [M-2-%d BROADCAST END]\n” , p . i )

}

// Round 3:

// Where each part ic ipant ca l cu la t e s the shared - sec re t fo r her

// neighbours and then pub l i c i z e s her encrypted commited value .

func (p *Partic ipant ) round_3() {

// Compute phase

prev_p := p . get_prev_participant_circular () . Value . (* Partic ipant )

next_p := p . get_next_participant_circular () . Value . (* Partic ipant )

debug . Pr int f(”%d . previous : %d . next : %d” , p . i , prev_p . i , next_p . i )

// t_L = H(y_{i -1}^x)

h_l := sha256 .New()

to_hash_tmp_l := new( big . Int ) .Exp(prev_p . y , p . x , group_p)

h_l .Write (to_hash_tmp_l . Bytes () )

h_l .Sum(p . t_l [ : 0 ] )

debug . Pr int f (”prev_p . y = 0x%x\np . x = 0x%x\nto_hash_tmp_l = 0x%x\nt_L = 0x%x” ,

prev_p . y , p . x , to_hash_tmp_l , p . t_l )

// t_R = H(y_{ i+1}^x)

h_r := sha256 .New()

to_hash_tmp_r := new( big . Int ) .Exp(next_p . y , p . x , group_p)

h_r .Write (to_hash_tmp_r . Bytes () )

h_r .Sum(p . t_r [ : 0 ] )

debug . Pr int f (”next_p . y = 0x%x\np . x = 0x%x\nto_hash_tmp_r = 0x%xt_L = 0x%x” , next_p

. y , p . x , to_hash_tmp_r , p . t_r)
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// t = t_L ^ t_R

xored_tmp := xor_bytes (p . t_l [ : ] , p . t_r [ : ] )

copy(p . t [ : ] , xored_tmp)

debug . Pr int f (”t_L = 0x%x\nt_R = 0x%x\nt = 0x%x” , p . t_l , p . t_r , p . t )

// Broadcast phase

// broadcast (k ^ t_R, t , U_i)

encrypted_commited_value := xor_bytes (p . k , p . t_r [ : ] )

copy(p . encrypted_commited_value [ : ] , encrypted_commited_value )

fmt . Pr int f ( ” [M-3-%d BROADCAST START]\n” , p . i )

fmt . Pr int f (” encrypted_commit = 0x%x , t = 0x%x\n” , p . encrypted_commited_value , p . t )

fmt . Pr int f ( ” [M-3-%d BROADCAST END]\n” , p . i )

}

// Verify that the round1 commitment of part ic ipant ’ i ’ was l e g i t .

// Return true i f the commitment was l e g i t ; otherwise f a l s e .

func (p *Partic ipant ) commitment_was_legit ( i int ) ( bool ) {

// I f clockwise , to get k_i from the PoV of part ic ipant ’ i -n ’ :

// k_i ^ t_i^R ^ T_i ^ T_{i -1} ^ T_{i -2} ^ T_{i -n+1} ^ H(y_{ i -n+1}^x{ i -n})

// Example :

// to get k_5 from the PoV of 2 :

// k_5 ^ t_5^R ^ T_5 ^ T_4 ^ T_3 ^ H(y_3^x_2)

// Let ’ s begin by f inding part ic ipant ’ i ’

// Get target part ic ipant

p_target := get_participant_element ( i )

i f p . i == p_target . Value . (* Part ic ipant ) . i {

debug . Pr int f (”Asked to ve r i f y our own commited value (k_%d) : Tr iv i a l l y

true . ” , p . i )

return true

}

debug . Pr int f ( ” [ - ] Computing k_%d from the PoV of %d :” , p_target . Value . (*

Part ic ipant ) . i , p . i )

xor_l i st := make ( [ ] [ ] byte , 0) // l i s t that contains a l l the values that must be

xored

// add the encrypted k_d to the XOR l i s t

debug . Pr int f (”Appending k_%d XOR t_%d^R: 0x%x .” ,

p_target . Value . (* Partic ipant ) . i , p_target . Value . ( * Partic ipant ) . i , p_target

. Value . (* Partic ipant ) . t [ : ] )

xor_l i st = append( xor_list , p_target . Value . (* Partic ipant ) . encrypted_commited_value

[ : ] )

p_tmp := p_target
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// Loop part ic ipants in a clockwise fashion

for {

i f p_tmp. Value . ( * Partic ipant ) . i == p . i {

// we got from part ic ipant ’ i ’ to ’p ’ .

// time to stop .

debug . Pr int f (”Reached %d . Bai l ing . ” , p_tmp. Value . (* Partic ipant ) . i )

break

}

i f p_tmp. Value . ( * Partic ipant ) . i == ((p . i + 1) % n_participants ) {

// append H(y_i^x_j)

dh_shared_secret := new( big . Int ) .Exp(p_tmp. Value . (* Partic ipant ) . y ,

p . x , group_p)

h := sha256 .New()

h .Write ( dh_shared_secret . Bytes () )

hashed_dh := h .Sum( n i l )

xor_l ist = append( xor_list , hashed_dh [ : ] )

debug . Pr int f (”Appending H(y_%d^x_%d) : 0x%x .” , p_tmp. Value . (*

Partic ipant ) . i , p . i , hashed_dh [ : ] )

}

// add T_j to the l i s t

xor_l ist = append( xor_list , p_tmp. Value . ( * Partic ipant ) . t [ : ] )

debug . Pr int f (”Appending T_%d : 0x%x .” , p_tmp. Value . (* Partic ipant ) . i , p_tmp.

Value . ( * Partic ipant ) . t [ : ] )

p_tmp = get_prev_circular (p_tmp)

}

// xor everything together

xor_panic := xor_bytes ( xor_l i st [ 0 ] , xor_l i st [ 1 : ] . . . )

i f bytes . Equal ( xor_panic , p_target . Value . (* Partic ipant ) . k) {

// commitment was l e g i t

debug . Pr int f (”Found l e g i t commitment k_%d : 0x%x” , p_target . Value . (*

Partic ipant ) . i , xor_panic )

return true

}

fmt . Pr int f (” xor_panic k_%d : 0x%x” , p_target . Value . (* Partic ipant ) . i , xor_panic )

fmt . Pr int f (” fo r r ea l z k_%d : 0x%x” , p_target . Value . (* Partic ipant ) . i , p_target . Value

. (* Partic ipant ) . k)

return f a l s e

}
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// Do the ve r i f y phase of round 4.

func (p *Partic ipant ) round4_verify () ( bool ) {

// Verify that t_1 ^ t_2 ^ t_3 ^ . . . ^ t_n = 0

pre_xor := part i c ipants . Front () . Value . (* Partic ipant ) . t

fo r p_tmp := part i c ipants . Front () . Next () ; p_tmp != n i l ; p_tmp = p_tmp.Next () {

xor_step := xor_bytes (pre_xor [ : ] , p_tmp. Value . (* Partic ipant ) . t [ : ] )

copy(pre_xor [ : ] , xor_step )

}

debug . Pr int f ( ” [ - ] VERIFY that pre_xor i s zeroes : pre_xor = 0x%x” , pre_xor )

// check that the f i n a l xor value i s 0

fo r i := range pre_xor {

i f pre_xor [ i ] != 0 {

fmt . Println (”My god ! pre_xor : 0x%x” , pre_xor )

return f a l s e

}

}

// for each part ic ipant , decrypt her k_j value ( c iphertext

// broadcasted in round3) and check that her round1 commitment

// was l e g i t :

f o r i := 0; i < n_participants ; i++ {

re su l t := p . commitment_was_legit ( i )

i f ! r e su l t {

return f a l s e

}

}

return true

}

// Round 4:

// Where each part ic ipant generates her sess ionkey and ses s ion

// confirmation . Then they send a Schnorr s ignature to authenticate

// the hash of the i r se s s ion key and ses s ion confirmation .

func (p *Partic ipant ) round_4() {

// Verify phase

i f ! p . round4_verify () {

panic (”omg round4_verify f a i l z ”)

}

// Compute phase

// compute ses s ion key : sk_i = H(pid_i | | k_i | | . . . | | k_n)

h_sk := sha256 .New()

h_sk .Write (p . pid )
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f o r p_tmp := part i c ipants . Front () ; p_tmp != n i l ; p_tmp = p_tmp.Next () {

h_sk .Write (p_tmp. Value . (* Partic ipant ) . k [ : ] )

}

h_sk .Sum(p . ss [ : 0 ] )

// compute ses s ion confirmation : sconf_i = H((y_i , k_i) | | . . . | | (y_n, k_n) )

h_sconf := sha256 .New()

fo r p_tmp := part i c ipants . Front () ; p_tmp != n i l ; p_tmp = p_tmp.Next () {

h_sconf .Write (p_tmp. Value . ( * Partic ipant ) . y . Bytes () )

h_sconf .Write (p_tmp. Value . ( * Partic ipant ) . k [ : ] )

}

h_sconf .Sum(p . sconf [ : 0 ] )

// compute c_i = H( sid_i | | sconf_i ) mod q

h_ci := sha256 .New()

h_ci .Write (p . s id [ : 0 ] )

h_ci .Write (p . sconf [ : 0 ] )

p . c = new( big . Int ) . SetBytes (h_ci .Sum( n i l ) )

p . c .Mod(p . c , group_q)

// d_i = r_i - c_i * a_i (mod q)

tmp := new( big . Int ) .Mul(p . c , p . sk )

tmp.Mod(tmp, group_q) // i s th i s necessary ?

tmp. Sub(p . r , tmp)

tmp.Mod(tmp, group_q)

i f tmp. Sign () < 0 {

tmp.Add(tmp, group_q)

}

p . d = tmp

debug . Pr int f (” sk_i = 0x%x\nsconf_i = 0x%x\nc_i = 0x%x\nd_i = 0x%x\n” ,

p . ss , p . sconf , p . c . Bytes () , p . d . Bytes () )

// Broadcast phase

// broadcast (d_i , U_i)

fmt . Pr int f ( ” [M-4-%d BROADCAST START]\n” , p . i )

fmt . Pr int f (”d_i = 0x%x\n” , p . d . Bytes () )

fmt . Pr int f ( ” [M-4-%d BROADCAST END]\n” , p . i )

}

// Final v e r i f i c a t i on :

// Where each part ic ipant v e r i f i e s the Schnorr s ignatures of the other

// part ic ipants .

func (p *Partic ipant ) f i na l_ve r i f i c a t i on () ( bool ) {

// foreach part ic ipant we need to ve r i f y that :
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// g^d_j * PK_j^c_i == z_j (mod p)

fo r p_tmp_element := part i c ipants . Front () ; p_tmp_element != n i l ; p_tmp_element =

p_tmp_element . Next () {

p_tmp := p_tmp_element . Value . (* Partic ipant )

i f p_tmp. i == p . i {

debug . Pr int f (” Tr iv ia l f i n a l v e r i f i c a t i on of %d” , p . i )

continue

}

// build g^d_j

left_hand_side := new( big . Int ) .Exp(group_g , p_tmp.d , group_p)

// build PK_j ^ c_i

left_hand_side_tmp := new( big . Int ) .Exp(p_tmp. pk , p . c , group_p)

// build g^d_j * PK_j^c_i

left_hand_side .Mul( left_hand_side , left_hand_side_tmp)

left_hand_side .Mod( left_hand_side , group_p)

right_hand_side := p_tmp. z

i f left_hand_side .Cmp( right_hand_side ) != 0 {

fmt . Pr int f (” Final v e r i f i c a t i on f a i l u r e !\ nleft_hand_side : 0x%x\

nright_hand_side : 0x%x\n” ,

left_hand_side , right_hand_side )

return f a l s e

}

debug . Pr int f (” Final v e r i f i c a t i on (%d v e r i f i e s %d) (g^d_%d*PK_%d^c_%d == z_

%d) : 0x%x\n” ,

p . i , p_tmp. i , p_tmp. i , p_tmp. i , p . i , p_tmp. i , right_hand_side )

}

return true

}

func main () {

fmt . Println (” Bohli Deniable (M-<phase>-<partic ipant >)”)

fmt . Println ( ” [ * ] I n i t i a l i z a t i o n ”)

// i n i t i a l i z e simulation part ic ipants and put them in the l inked

// l i s t

fo r i := 0; i < n_participants ; i++ {

part ic ipants . PushBack(NewParticipant ( i ) )

}
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fmt . Println ( ” [ * ] Round 1”)

// do round 1

for p := part i c ipants . Front () ; p != n i l ; p = p .Next () {

p . Value . (* Part ic ipant ) . round_1()

}

fmt . Println ( ” [ * ] Round 2”)

// do round 2

for p := part i c ipants . Front () ; p != n i l ; p = p .Next () {

p . Value . (* Part ic ipant ) . round_2()

}

fmt . Println ( ” [ * ] Round 3”)

// do round 3

for p := part i c ipants . Front () ; p != n i l ; p = p .Next () {

p . Value . (* Part ic ipant ) . round_3()

}

fmt . Println ( ” [ * ] Round 4”)

// do round 4

for p := part i c ipants . Front () ; p != n i l ; p = p .Next () {

p . Value . (* Part ic ipant ) . round_4()

}

fmt . Println ( ” [ * ] Final v e r i f i c a t i on ”)

// do f i n a l v e r i f i c a t i on

for p := part i c ipants . Front () ; p != n i l ; p = p .Next () {

i f ( ! p . Value . ( * Partic ipant ) . f i na l_ve r i f i c a t i on () ) {

panic (” f i n a l v e r i f i c a t i on f a i l e d ! ” )

}

}

// Print r e su l t s

p := part ic ipants . Front () . Value . (* Partic ipant )

fmt . Pr int f ( ” [ * ] Final v e r i f i c a t i on was correct ! Finished !\n”)

fmt . Pr int f ( ” [ * ] session_key = 0x%x\n” , p . ss )

fmt . Pr int f ( ” [ * ] session_confirmation = 0x%x\n” , p . sconf )

}
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// i n i t i a t e crypto parameters ( ca l l ed on startup )

func i n i t ( ) {

// 2 . 1 . 1024 - b i t MODP Group with 160 - b i t Prime Order Subgroup

// from RFC5114

// group prime

group_p , _ = new( big . Int ) . SetString (”

B10B8F96A080E01DDE92DE5EAE5D54EC52C99FBCFB06A3C69A6A9DCA52D23B616073E28675A23D189838EF1E2EE652C013ECB4AEA906112324975C3CD49B83BFACCBDD7D90C4BD7098488E9C219A73724EFFD6FAE5644738FAA31A4FF55BCCC0A151AF5F0DC8B4BD45BF37DF365C1A65E68CFDA76D4DA708DF1FB2BC2E4A4371

” , 16)

// subgroup s i z e

group_q , _ = new( big . Int ) . SetString (”F518AA8781A8DF278ABA4E7D64B7CB9D49462353” ,

16)

// generator

group_g , _ = new( big . Int ) . SetString (”

A4D1CBD5C3FD34126765A442EFB99905F8104DD258AC507FD6406CFF14266D31266FEA1E5C41564B777E690F5504F213160217B4B01B886A5E91547F9E2749F4D7FBD7D3B9A92EE1909D0D2263F80A76A6A24C087A091F531DBF0A0169B6A28AD662A4D18E73AFA32D779D5918D08BC8858F4DCEF97C2A24855E6EEB22B3B2E5

” , 16)

}
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