
Off-the-Record Messaging Protocol
version 2

This document describes version 2 of the Off-the-Record Messaging protocol. The
main changes over version 1 include:

Resolving the identity-binding flaw identified by Di Raimondo, Gennaro, and
Krawczyk
Not revealing the users' public keys to passive eavesdroppers; this could be
useful if the application sending the OTR messages is also privacy-preserving
Supporting fragmentation of OTR messages, to support IM networks whose
maximum message size is very small.
Adding a way to authenticate without the use of fingerprints.
Better protocol version control, for future extensibility.

Very high level overview

OTR assumes a network model which provides in-order delivery of messages, but that
some messages may not get delivered at all (for example, if the user disconnects).
There may be an active attacker, who is allowed to perform a Denial of Service attack,
but not to learn the contents of messages.

Alice signals to Bob that she would like (using an OTR Query Message) or is
willing (using a whitespace-tagged plaintext message) to use OTR to
communicate. Either mechanism should convey the version(s) of OTR that Alice
is willing to use.

1.

Bob initiates the authenticated key exchange (AKE) with Alice. Version 2 of OTR
uses a variant of the SIGMA protocol as its AKE.

2.

Alice and Bob exchange Data Messages to send information to each other.3.

High level overview

Requesting an OTR conversation

There are two ways Alice can inform Bob that she is willing to use the OTR protocol to
speak with him: by sending him the OTR Query Message, or by including a special
"tag" consisting of whitespace characters in one of her messages to him. Each method
also includes a way for Alice to communicate to Bob which versions of the OTR
protocol she is willing to speak with him.

The semantics of the OTR Query Message are that Alice is requesting that Bob start
an OTR conversation with her (if, of course, he is willing and able to do so). On the
other hand, the semantics of the whitespace tag are that Alice is merely indicating to
Bob that she is willing and able to have an OTR conversation with him. If Bob has a
policy of "only use OTR when it's explicitly requested", for example, then he would
start an OTR conversation upon receiving an OTR Query Message, but would not

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

1 of 29 04/10/13 23:37

upon receiving the whitespace tag.

Authenticated Key Exchange (AKE)

This section outlines the version of the SIGMA protocol used as the AKE. All
exponentiations are done modulo a particular 1536-bit prime, and g is a generator of
that group, as indicated in the detailed description below. Alice and Bob's long-term
authentication public keys are pubA and pubB, respectively.

The general idea is that Alice and Bob do an unauthenticated Diffie-Hellman (D-H)
key exchange to set up an encrypted channel, and then do mutual authentication
inside that channel.

Bob will be initiating the AKE with Alice.

Bob:
Picks a random value r (128 bits)1.
Picks a random value x (at least 320 bits)2.

Sends Alice AESr(g
x), HASH(gx)3.

Alice:
Picks a random value y (at least 320 bits)1.

Sends Bob gy2.
Bob:

Verifies that Alice's gy is a legal value (2 <= gy <= modulus-2)1.

Computes s = (gy)x2.
Computes two AES keys c, c' and four MAC keys m1, m1', m2, m2' by
hashing s in various ways

3.

Picks keyidB, a serial number for his D-H key gx4.

Computes MB = MACm1(gx, gy, pubB, keyidB)5.
Computes XB = pubB, keyidB, sigB(MB)6.
Sends Alice r, AESc(XB), MACm2(AESc(XB))7.

Alice:

Uses r to decrypt the value of gx sent earlier1.

Verifies that HASH(gx) matches the value sent earlier2.

Verifies that Bob's gx is a legal value (2 <= gx <= modulus-2)3.

Computes s = (gx)y (note that this will be the same as the value of s Bob
calculated)

4.

Computes two AES keys c, c' and four MAC keys m1, m1', m2, m2' by
hashing s in various ways (the same as Bob)

5.

Uses m2 to verify MACm2(AESc(XB))6.
Uses c to decrypt AESc(XB) to obtain XB = pubB, keyidB, sigB(MB)7.

Computes MB = MACm1(gx, gy, pubB, keyidB)8.
Uses pubB to verify sigB(MB)9.

Picks keyidA, a serial number for her D-H key gy10.

Computes MA = MACm1'(g
y, gx, pubA, keyidA)11.

Computes XA = pubA, keyidA, sigA(MA)12.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

2 of 29 04/10/13 23:37

Sends Bob AESc'(XA), MACm2'(AESc'(XA))13.
Bob:

Uses m2' to verify MACm2'(AESc'(XA))1.
Uses c' to decrypt AESc'(XA) to obtain XA = pubA, keyidA, sigA(MA)2.

Computes MA = MACm1'(g
y, gx, pubA, keyidA)3.

Uses pubA to verify sigA(MA)4.
If all of the verifications succeeded, Alice and Bob now know each other's Diffie-
Hellman public keys, and share the value s. Alice is assured that s is known by
someone with access to the private key corresponding to pubB, and similarly for
Bob.

Exchanging data

This section outlines the method used to protect data being exchanged between Alice
and Bob. As above, all exponentiations are done modulo a particular 1536-bit prime,
and g is a generator of that group, as indicated in the detailed description below.

Suppose Alice has a message (msg) to send to Bob.

Alice:
Picks the most recent of her own D-H encryption keys that Bob has
acknowledged receiving (by using it in a Data Message, or failing that, in
the AKE). Let keyA by that key, and let keyidA be its serial number.

1.

If the above key is Alice's most recent key, she generates a new D-H key
(next_dh), to get the serial number keyidA+1.

2.

Picks the most recent of Bob's D-H encryption keys that she has received
from him (either in a Data Message or in the AKE). Let keyB by that key, and
let keyidB be its serial number.

3.

Uses Diffie-Hellman to compute a shared secret from the two keys keyA and
keyB, and generates the sending AES key, ek, and the sending MAC key, mk,
as detailed below.

4.

Collects any old MAC keys that were used in previous messages, but will
never again be used (because their associated D-H keys are no longer the
most recent ones) into a list, oldmackeys.

5.

Picks a value of the counter, ctr, so that the triple (keyA, keyB, ctr) is never
the same for more than one Data Message Alice sends to Bob.

6.

Computes TA = (keyidA, keyidB, next_dh, ctr, AES-CTRek,ctr(msg))7.
Sends Bob TA, MACmk(TA), oldmackeys8.

Bob:
Uses Diffie-Hellman to compute a shared secret from the two keys labelled
by keyidA and keyidB, and generates the receiving AES key, ek, and the
receiving MAC key, mk, as detailed below. (These will be the same as the
keys Alice generated, above.)

1.

Uses mk to verify MACmk(TA).2.
Uses ek and ctr to decrypt AES-CTRek,ctr(msg).3.

Socialist Millionaires' Protocol (SMP)

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

3 of 29 04/10/13 23:37

While data messages are being exchanged, either Alice or Bob may run SMP to detect
impersonation or man-in-the-middle attacks. As above, all exponentiations are done
modulo a particular 1536-bit prime, and g1 is a generator of that group. All sent
values include zero-knowledge proofs that they were generated according to this
protocol, as indicated in the detailed description below. In the zero-knowledge proofs
the D values are calculated modulo q = (p - 1) / 2, where p is the same 1536-bit prime
as elsewhere. The random exponents are 1536-bit numbers.

Suppose Alice and Bob have secret information x and y respectively, and they wish to
know whether x = y. The Socialist Millionaires' Protocol allows them to compare x and
y without revealing any other information than the value of (x == y). For OTR, the
secrets contain information about both parties' long-term authentication public keys,
as well as information entered by the users themselves. If x = y, this means that Alice
and Bob entered the same secret information, and so must be the same entities who
established that secret to begin with.

Assuming that Alice begins the exchange:

Alice:
Picks random exponents a2 and a31.

Sends Bob g2a = g1
a2 and g3a = g1

a32.
Bob:

Picks random exponents b2 and b31.

Computes g2b = g1
b2 and g3b = g1

b32.

Computes g2 = g2a
b2 and g3 = g3a

b33.
Picks random exponent r4.

Computes Pb = g3
r and Qb = g1

r g2
y5.

Sends Alice g2b, g3b, Pb and Qb6.
Alice:

Computes g2 = g2b
a2 and g3 = g3b

a31.
Picks random exponent s2.

Computes Pa = g3
s and Qa = g1

s g2
x3.

Computes Ra = (Qa / Qb) a34.
Sends Bob Pa, Qa and Ra5.

Bob:

Computes Rb = (Qa / Qb) b31.

Computes Rab = Ra
b32.

Checks whether Rab == (Pa / Pb)3.
Sends Alice Rb4.

Alice:

Computes Rab = Rb
a31.

Checks whether Rab == (Pa / Pb)2.
If everything is done correctly, then Rab should hold the value of (Pa / Pb) times

(g2
a3b3)(x - y), which means that the test at the end of the protocol will only

succeed if x == y. Further, since g2
a3b3 is a random number not known to any

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

4 of 29 04/10/13 23:37

party, if x is not equal to y, no other information is revealed.

Details of the protocol

Unencoded messages

This section describes the messages in the OTR protocol that are not base-64 encoded
binary.

OTR Query Messages

If Alice wishes to communicate to Bob that she would like to use OTR, she sends a
message containing the string "?OTR" followed by an indication of what versions of
OTR she is willing to use with Bob. The version string is constructed as follows:

If she is willing to use OTR version 1, the version string must start with "?".
If she is willing to use OTR versions other than 1, a "v" followed by the byte
identifiers for the versions in question, followed by "?". The byte identifier for
OTR version 2 is "2". The order of the identifiers between the "v" and the "?"
does not matter, but none should be listed more than once.

For example:

"?OTR?"
Version 1 only

"?OTRv2?"
Version 2 only

"?OTR?v2?"
Versions 1 and 2

"?OTRv24x?"
Version 2, and hypothetical future versions identified by "4" and "x"

"?OTR?v24x?"
Versions 1, 2, and hypothetical future versions identified by "4" and "x"

"?OTR?v?"
Also version 1 only

"?OTRv?"
A bizarre claim that Alice would like to start an OTR conversation, but is
unwilling to speak any version of the protocol

These strings may be hidden from the user (for example, in an attribute of an HTML
tag), and/or may be accompanied by an explanitory message ("Alice has requested an
Off-the-Record private conversation."). If Bob is willing to use OTR with Alice (with a
protocol version that Alice has offered), he should start the AKE.

Tagged plaintext messages

If Alice wishes to communicate to Bob that she is willing to use OTR, she can attach a
special whitespace tag to any plaintext message she sends him. This tag may occur
anywhere in the message, and may be hidden from the user (as in the Query
Messages, above).

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

5 of 29 04/10/13 23:37

The tag consists of the following 16 bytes, followed by one or more sets of 8 bytes
indicating the version of OTR Alice is willing to use:

Always send "\x20\x09\x20\x20\x09\x09\x09\x09" "\x20\x09\x20\x09\x20\x09
\x20\x20", followed by one or more of:
"\x20\x09\x20\x09\x20\x20\x09\x20" to indicate a willingness to use OTR version
1 with Bob (note: this string must come before all other whitespace version tags,
if it is present, for backwards compatibility)
"\x20\x20\x09\x09\x20\x20\x09\x20" to indicate a willingness to use OTR version
2 with Bob

If Bob is willing to use OTR with Alice (with a protocol version that Alice has offered),
he should start the AKE. On the other hand, if Alice receives a plaintext message from
Bob (rather than an initiation of the AKE), she should stop sending him the
whitespace tag.

OTR Error Messages

Any message containing the string "?OTR Error:" is an OTR Error Message. The
following part of the message should contain human-readable details of the error.

Encoded messages

This section describes the byte-level format of the base-64 encoded binary OTR
messages. The binary form of each of the messages is described below. To transmit
one of these messages, construct the ASCII string consisting of the five bytes "?OTR:",
followed by the base-64 encoding of the binary form of the message, followed by the
byte ".".

For the Diffie-Hellman group computations, the group is the one defined in RFC 3526
with 1536-bit modulus (hex, big-endian):

FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

and a generator (g) of 2. Note that this means that whenever you see a Diffie-Hellman
exponentiation in this document, it always means that the exponentiation is done
modulo the above 1536-bit number.

Data types

Bytes (BYTE):
1 byte unsigned value

Shorts (SHORT):
2 byte unsigned value, big-endian

Ints (INT):
4 byte unsigned value, big-endian

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

6 of 29 04/10/13 23:37

Multi-precision integers (MPI):
4 byte unsigned len, big-endian
len byte unsigned value, big-endian
(MPIs must use the minimum-length encoding; i.e. no leading 0x00 bytes. This is
important when calculating public key fingerprints.)

Opaque variable-length data (DATA):
4 byte unsigned len, big-endian
len byte data

Initial CTR-mode counter value (CTR):
8 bytes data

Message Authentication Code (MAC):
20 bytes MAC data

Public keys, signatures, and fingerprints

OTR users have long-lived public keys that they use for authentication (but not
encryption). The current version of the OTR protocol only supports DSA public keys,
but there is a key type marker for future extensibility.

OTR public authentication DSA key (PUBKEY):
Pubkey type (SHORT)

DSA public keys have type 0x0000
p (MPI)
q (MPI)
g (MPI)
y (MPI)

(p,q,g,y) are the DSA public key parameters

OTR public keys are used to generate signatures; different types of keys produce
signatures in different formats. The format for a signature made by a DSA public key
is as follows:

DSA signature (SIG):
(len is the length of the DSA public parameter q, which in current
implementations must be 20 bytes, or 160 bits)
len byte unsigned r, big-endian
len byte unsigned s, big-endian

OTR public keys have fingerprints, which are hex strings that serve as identifiers for
the public key. The fingerprint is calculated by taking the SHA-1 hash of the byte-level
representation of the public key. However, there is an exception for backwards
compatibility: if the pubkey type is 0x0000, those two leading 0x00 bytes are omitted
from the data to be hashed. The encoding assures that, assuming the hash function
itself has no useful collisions, and DSA keys have length less than 524281 bits (500
times larger than most DSA keys), no two public keys will have the same fingerprint.

D-H Commit Message

This is the first message of the AKE. Bob sends it to Alice to commit to a choice of
D-H encryption key (but the key itself is not yet revealed). This allows the secure
session id to be much shorter than in OTR version 1, while still preventing a man-in-

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

7 of 29 04/10/13 23:37

the-middle attack on it.

Protocol version (SHORT)
The version number of this protocol is 0x0002.

Message type (BYTE)
The D-H Commit Message has type 0x02.

Encrypted gx (DATA)
Produce this field as follows:

Choose a random value r (128 bits)
Choose a random value x (at least 320 bits)

Serialize gx as an MPI, gxmpi. [gxmpi will probably be 196 bytes long,
starting with "\x00\x00\x00\xc0".]
Encrypt gxmpi using AES128-CTR, with key r and initial counter value 0.
The result will be the same length as gxmpi.
Encode this encrypted value as the DATA field.

Hashed gx (DATA)
This is the SHA256 hash of gxmpi.

D-H Key Message

This is the second message of the AKE. Alice sends it to Bob, and it simply consists of
Alice's D-H encryption key.

Protocol version (SHORT)
The version number of this protocol is 0x0002.

Message type (BYTE)
The D-H Key Message has type 0x0a.

gy (MPI)

Choose a random value y (at least 320 bits), and calculate gy.

Reveal Signature Message

This is the third message of the AKE. Bob sends it to Alice, revealing his D-H
encryption key (and thus opening an encrypted channel), and also authenticating
himself (and the parameters of the channel, preventing a man-in-the-middle attack on
the channel itself) to Alice.

Protocol version (SHORT)
The version number of this protocol is 0x0002.

Message type (BYTE)
The Reveal Signature Message has type 0x11.

Revealed key (DATA)
This is the value r picked earlier.

Encrypted signature (DATA)
This field is calculated as follows:

Compute the Diffie-Hellman shared secret s.
Use s to compute an AES key c and two MAC keys m1 and m2, as specified
below.
Select keyidB, a serial number for the D-H key computed earlier. It is an

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

8 of 29 04/10/13 23:37

INT, and must be greater than 0.
Compute the 32-byte value MB to be the SHA256-HMAC of the following
data, using the key m1:

gx (MPI)

gy (MPI)
pubB (PUBKEY)
keyidB (INT)
Let XB be the following structure:
pubB (PUBKEY)
keyidB (INT)
sigB(MB) (SIG)

This is the signature, using the private part of the key pubB, of the
32-byte MB (which does not need to be hashed again to produce the
signature).

Encrypt XB using AES128-CTR with key c and initial counter value 0.
Encode this encrypted value as the DATA field.

MAC'd signature (MAC)
This is the SHA256-HMAC-160 (that is, the first 160 bits of the SHA256-HMAC)
of the encrypted signature field (including the four-byte length), using the key
m2.

Signature Message

This is the final message of the AKE. Alice sends it to Bob, authenticating herself and
the channel parameters to him.

Protocol version (SHORT)
The version number of this protocol is 0x0002.

Message type (BYTE)
The Signature Message has type 0x12.

Encrypted signature (DATA)
This field is calculated as follows:

Compute the Diffie-Hellman shared secret s.
Use s to compute an AES key c' and two MAC keys m1' and m2', as specified
below.
Select keyidA, a serial number for the D-H key computed earlier. It is an
INT, and must be greater than 0.
Compute the 32-byte value MA to be the SHA256-HMAC of the following
data, using the key m1':

gy (MPI)

gx (MPI)
pubA (PUBKEY)
keyidA (INT)
Let XA be the following structure:
pubA (PUBKEY)
keyidA (INT)
sigA(MA) (SIG)

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

9 of 29 04/10/13 23:37

This is the signature, using the private part of the key pubA, of the
32-byte MA (which does not need to be hashed again to produce the
signature).

Encrypt XA using AES128-CTR with key c' and initial counter value 0.
Encode this encrypted value as the DATA field.

MAC'd signature (MAC)
This is the SHA256-HMAC-160 (that is, the first 160 bits of the SHA256-HMAC)
of the encrypted signature field (including the four-byte length), using the key
m2'.

Data Message

This message is used to transmit a private message to the correspondent. It is also
used to reveal old MAC keys.

The plaintext message (either before encryption, or after decryption) consists of a
human-readable message (encoded in UTF-8, optionally with HTML markup),
optionally followed by:

a single NUL (a BYTE with value 0x00), and
zero or more TLV (type/length/value) records (with no padding between them)

Each TLV record is of the form:

Type (SHORT)
The type of this record. Records with unrecognized types should be ignored.

Length (SHORT)
The length of the following field

Value (len BYTEs) [where len is the value of the Length field]
Any pertinent data for the record type.

Some TLV examples:

\x00\x01\x00\x00
A TLV of type 1, containing no data

\x00\x00\x00\x05\x68\x65\x6c\x6c\x6f
A TLV of type 0, containing the value "hello"

The currently defined TLV record types are:

Type 0: Padding
The value may be an arbitrary amount of data, which should be ignored. This
type can be used to disguise the length of the plaintext message.

Type 1: Disconnected
If the user requests to close the private connection, you may send a message
(possibly with empty human-readable part) containing a record with this TLV
type just before you discard the session keys, and transition to
MSGSTATE_PLAINTEXT (see below). If you receive a TLV record of this type, you
should transition to MSGSTATE_FINISHED (see below), and inform the user that
his correspondent has closed his end of the private connection, and the user
should do the same.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

10 of 29 04/10/13 23:37

Type 2: SMP Message 1
The value represents an initiating message of the Socialist Millionaires' Protocol,
described below.

Type 3: SMP Message 2
The value represents the second message in an instance of SMP.

Type 4: SMP Message 3
The value represents the third message in an instance of SMP.

Type 5: SMP Message 4
The value represents the final message in an instance of SMP.

Type 6: SMP Abort Message
If the user cancels SMP prematurely or encounters an error in the protocol and
cannot continue, you may send a message (possibly with empty human-readable
part) with this TLV type to instruct the other party's client to abort the protocol.
The associated length should be zero and the associated value should be empty.
If you receive a TLV of this type, you should change the SMP state to
SMP_EXPECT1 (see below).

SMP Message TLVs (types 2-5) all carry data sharing the same general format:

MPI count (INT)
The number of MPIs contained in the remainder of the TLV.

MPI 1 (MPI)
The first MPI of the TLV, serialized into a byte array.

MPI 2 (MPI)
The second MPI of the TLV, serialized into a byte array.

etc.

There should be as many MPIs as declared in the MPI count field. For the exact MPIs
passed for each SMP TLV, see the SMP state machine below.

A message with an empty human-readable part (the plaintext is of zero length, or
starts with a NUL) is a "heartbeat" packet, and should not be displayed to the user.
(But it's still useful to effect key rotations.)

Data Message format:

Protocol version (SHORT)
The version number of this protocol is 0x0002.

Message type (BYTE)
The Data Message has type 0x03.

Flags (BYTE)
The bitwise-OR of the flags for this message. Usually you should set this to 0x00.
The only currently defined flag is:
IGNORE_UNREADABLE (0x01)

If you receive a Data Message with this flag set, and you are unable to
decrypt the message or verify the MAC (because, for example, you don't
have the right keys), just ignore the message instead of producing some
kind of error or notification to the user.

Sender keyid (INT)
Must be strictly greater than 0, and increment by 1 with each key change

Recipient keyid (INT)
Must therefore be strictly greater than 0, as the receiver has no key with id 0.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

11 of 29 04/10/13 23:37

The sender and recipient keyids are those used to encrypt and MAC this
message.

DH y (MPI)
The *next* [i.e. sender_keyid+1] public key for the sender

Top half of counter init (CTR)
This should monotonically increase (as a big-endian value) for each message sent
with the same (sender keyid, recipient keyid) pair, and must not be all 0x00.

Encrypted message (DATA)
Using the appropriate encryption key (see below) derived from the sender's and
recipient's DH public keys (with the keyids given in this message), perform
AES128 counter-mode (CTR) encryption of the message. The initial counter is a
16-byte value whose first 8 bytes are the above "top half of counter init" value,
and whose last 8 bytes are all 0x00. Note that counter mode does not change the
length of the message, so no message padding needs to be done. If you *want* to
do message padding (to disguise the length of your message), use the above TLV
of type 0.

Authenticator (MAC)
The SHA1-HMAC, using the appropriate MAC key (see below) of everything from
the Protocol version to the end of the encrypted message

Old MAC keys to be revealed (DATA)
See "Revealing MAC Keys", below.

Socialist Millionaires' Protocol (SMP)

The Socialist Millionaires' Protocol allows two parties with secret information x and y
respectively to check whether (x==y) without revealing any additional information
about the secrets. The protocol used by OTR is based on the work of Boudot,
Schoenmakers and Traore (2001). A full justification for its use in OTR is made by
Alexander and Goldberg, in a paper published in 2007. The following is a technical
account of what is transmitted during the course of the protocol.

Secret information

The secret information x and y compared during this protocol contains not only
information entered by the users, but also information unique to the conversation in
which SMP takes place. Specifically, the format is:

Version (BYTE)
The version of SMP used. The version described here is 1.

Initiator fingerprint (20 BYTEs)
The fingerprint that the party initiating SMP is using in the current conversation.

Responder fingerprint (20 BYTEs)
The fingerprint that the party that did not initiate SMP is using in the current
conversation.

Secure Session ID
The ssid described below.

User input
The input string given by the user at runtime.

Then the SHA256 hash of the above is taken, and the digest becomes the actual
secret (x or y) to be used in SMP. The additional fields insure that not only do both

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

12 of 29 04/10/13 23:37

parties know the same secret input string, but no man-in-the-middle is capable of
reading their communication either.

The SMP state machine

Whenever the OTR message state machine has MSGSTATE_ENCRYPTED set (see
below), the SMP state machine may progress. If at any point
MSGSTATE_ENCRYPTED becomes unset, SMP must abandon its state and return to
its initial setup. The SMP state consists of one main variable, as well as information
from the partial computations at each protocol step.

Expected Message

This main state variable for SMP controls what SMP-specific TLVs will be accepted.
This variable has no effect on type 0 or type 1 TLVs, which are always allowed.
smpstate can take one of four values:

SMPSTATE_EXPECT1
This state indicates that only type 2 TLVs (SMP message 1) should be accepted.
This is the default state when SMP has not yet begun. This state is also reached
whenever an error occurs or SMP is aborted, and the protocol must be restarted
from the beginning.

SMPSTATE_EXPECT2
This state indicates that only type 3 TLVs (SMP message 2) should be accepted.

SMPSTATE_EXPECT3
This state indicates that only type 4 TLVs (SMP message 3) should be accepted.

SMPSTATE_EXPECT4
This state indicates that only type 5 TLVs (SMP message 4) should be accepted.

State Transitions

There are 7 actions that an OTR client must handle:

Received TLVs:
SMP Message 1
SMP Message 2
SMP Message 3
SMP Message 4
SMP Abort Message

User actions:
User requests to begin SMP
User requests to abort SMP

The following sections outline what is to be done in each case. They all assume that
MSGSTATE_ENCRYPTED is set. For simplicity, they also assume that Alice has begun
SMP, and Bob is responding to her.

SMP Hash function

In the following actions, there are many places where a SHA256 hash of an integer

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

13 of 29 04/10/13 23:37

followed by one or two MPIs is taken. The input to this hash function is:

Version (BYTE)
This distinguishes calls to the hash function at different points in the protocol, to
prevent Alice from replaying Bob's zero knowledge proofs or vice versa.

First MPI (MPI)
The first MPI given as input, serialized in the usual way.

Second MPI (MPI)
The second MPI given as input, if present, serialized in the usual way. If only one
MPI is given as input, this field is simply omitted.

Receiving a type 2 TLV (SMP message 1)

SMP message 1 is sent by Alice to begin a DH exchange to determine two new
generators, g2 and g3. It contains the following mpi values:

g2a
Alice's half of the DH exchange to determine g2.

c2, D2
A zero-knowledge proof that Alice knows the exponent associated with her
transmitted value g2a.

g3a
Alice's half of the DH exchange to determine g3.

c3, D3
A zero-knowledge proof that Alice knows the exponent associated with her
transmitted value g3a.

When Bob receives this TLV he should do:

If smpstate is not SMPSTATE_EXPECT1:
Set smpstate to SMPSTATE_EXPECT1 and send a type 6 TLV (SMP abort) to
Alice.

If smpstate is SMPSTATE_EXPECT1:
Verify Alice's zero-knowledge proofs for g2a and g3a:

Check that c2 = SHA256(1, g1
D2 g2a

c2).1.

Check that c3 = SHA256(2, g1
D3 g3a

c3).2.
Create a type 3 TLV (SMP message 2) and send it to Alice:

Determine Bob's secret input y, which is to be compared to Alice's secret x.1.
Pick random exponents b2 and b3. These will used during the DH exchange
to pick generators.

2.

Pick random exponents r2, r3, r4, r5 and r6. These will be used to add a
blinding factor to the final results, and to generate zero-knowledge proofs
that this message was created honestly.

3.

Compute g2b = g1
b2 and g3b = g1

b34.
Generate a zero-knowledge proof that the exponent b2 is known by setting

c2 = SHA256(3, g1
r2) and D2 = r2 - b2 c2 mod q.

5.

Generate a zero-knowledge proof that the exponent b3 is known by setting

c3 = SHA256(4, g1
r3) and D3 = r3 - b3 c3 mod q.

6.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

14 of 29 04/10/13 23:37

Compute g2 = g2a
b2 and g3 = g3a

b37.

Compute Pb = g3
r4 and Qb = g1

r4 g2
y8.

Generate a zero-knowledge proof that Pb and Qb were created according to

the protocol by setting cP = SHA256(5, g3
r5, g1

r5 g2
r6), D5 = r5 - r4 cP mod

q and D6 = r6 - y cP mod q.

9.

Store the values of g3a, g2, g3, b3, Pb and Qb for use later in the protocol.10.
Send Alice a type 3 TLV (SMP message 2) containing g2b, c2, D2, g3b, c3,
D3, Pb, Qb, cP, D5 and D6, in that order.

11.

Set smpstate to SMPSTATE_EXPECT3.

Receiving a type 3 TLV (SMP message 2)

SMP message 2 is sent by Bob to complete the DH exchange to determine the new
generators, g2 and g3. It also begins the construction of the values used in the final
comparison of the protocol. It contains the following mpi values:

g2b
Bob's half of the DH exchange to determine g2.

c2, D2
A zero-knowledge proof that Bob knows the exponent associated with his
transmitted value g2b.

g3b
Bob's half of the DH exchange to determine g3.

c3, D3
A zero-knowledge proof that Bob knows the exponent associated with his
transmitted value g3b.

Pb, Qb
These values are used in the final comparison to determine if Alice and Bob
share the same secret.

cP, D5, D6
A zero-knowledge proof that Pb and Qb were created according to the protcol
given above.

When Alice receives this TLV she should do:

If smpstate is not SMPSTATE_EXPECT2:
Set smpstate to SMPSTATE_EXPECT1 and send a type 6 TLV (SMP abort) to Bob.

If smpstate is SMPSTATE_EXPECT2:
Verify Bob's zero-knowledge proofs for g2b, g3b, Pb and Qb:

Check that c2 = SHA256(3, g1
D2 g2b

c2).1.

Check that c3 = SHA256(4, g1
D3 g3b

c3).2.

Check that cP = SHA256(5, g3
D5 Pb

cP, g1
D5 g2

D6 Qb
cP).3.

Create a type 4 TLV (SMP message 3) and send it to Bob:
Pick random exponents r4, r5, r6 and r7. These will be used to add a
blinding factor to the final results, and to generate zero-knowledge proofs
that this message was created honestly.

1.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

15 of 29 04/10/13 23:37

Compute g2 = g2b
a2 and g3 = g3b

a32.

Compute Pa = g3
r4 and Qa = g1

r4 g2
x3.

Generate a zero-knowledge proof that Pa and Qa were created according to

the protocol by setting cP = SHA256(6, g3
r5, g1

r5 g2
r6), D5 = r5 - r4 cP mod

q and D6 = r6 - x cP mod q.

4.

Compute Ra = (Qa / Qb) a35.
Generate a zero-knowledge proof that Ra was created according to the

protocol by setting cR = SHA256(7, g1
r7, (Qa / Qb)r7) and D7 = r7 - a3 cR

mod q.

6.

Store the values of g3b, (Pa / Pb), (Qa / Qb) and Ra for use later in the
protocol.

7.

Send Bob a type 4 TLV (SMP message 3) containing Pa, Qa, cP, D5, D6, Ra,
cR and D7 in that order.

8.

Set smpstate to SMPSTATE_EXPECT4.

Receiving a type 4 TLV (SMP message 3)

SMP message 3 is Alice's final message in the SMP exchange. It has the last of the
information required by Bob to determine if x = y. It contains the following mpi
values:

Pa, Qa
These values are used in the final comparison to determine if Alice and Bob
share the same secret.

cP, D5, D6
A zero-knowledge proof that Pa and Qa were created according to the protcol
given above.

Ra
This value is used in the final comparison to determine if Alice and Bob share the
same secret.

cR, D7
A zero-knowledge proof that Ra was created according to the protcol given
above.

When Bob receives this TLV he should do:

If smpstate is not SMPSTATE_EXPECT3:
Set smpstate to SMPSTATE_EXPECT1 and send a type 6 TLV (SMP abort) to Bob.

If smpstate is SMPSTATE_EXPECT3:
Verify Alice's zero-knowledge proofs for Pa, Qa and Ra:

Check that cP = SHA256(6, g3
D5 Pa

cP, g1
D5 g2

D6 Qa
cP).1.

Check that cR = SHA256(7, g1
D7 g3a

cR, (Qa / Qb)D7 Ra
cR).2.

Create a type 5 TLV (SMP message 4) and send it to Alice:
Pick a random exponent r7. This will be used to generate Bob's final
zero-knowledge proof that this message was created honestly.

1.

Compute Rb = (Qa / Qb) b32.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

16 of 29 04/10/13 23:37

Generate a zero-knowledge proof that Rb was created according to the

protocol by setting cR = SHA256(8, g1
r7, (Qa / Qb)r7) and D7 = r7 - b3 cR

mod q.

3.

Send Alice a type 5 TLV (SMP message 4) containing Rb, cR and D7 in that
order.

4.

Check whether the protocol was successful:

Compute Rab = Ra
b3.1.

Determine if x = y by checking the equivalent condition that (Pa / Pb) = Rab.2.
Set smpstate to SMPSTATE_EXPECT1, as no more messages are expected from
Alice.

Receiving a type 5 TLV (SMP message 4)

SMP message 4 is Bob's final message in the SMP exchange. It has the last of the
information required by Alice to determine if x = y. It contains the following mpi
values:

Rb
This value is used in the final comparison to determine if Alice and Bob share the
same secret.

cR, D7
A zero-knowledge proof that Rb was created according to the protcol given
above.

When Alice receives this TLV she should do:

If smpstate is not SMPSTATE_EXPECT4:
Set smpstate to SMPSTATE_EXPECT1 and send a type 6 TLV (SMP abort) to Bob.

If smpstate is SMPSTATE_EXPECT4:
Verify Bob's zero-knowledge proof for Rb:

Check that cR = SHA256(8, g1
D7 g3b

cR, (Qa / Qb)D7 Rb
cR).1.

Check whether the protocol was successful:

Compute Rab = Rb
a3.1.

Determine if x = y by checking the equivalent condition that (Pa / Pb) = Rab.2.
Set smpstate to SMPSTATE_EXPECT1, as no more messages are expected from
Bob.

User requests to begin SMP

If smpstate is not set to SMPSTATE_EXPECT1:
SMP is already underway. If you wish to restart SMP, send a type 6 TLV (SMP
abort) to the other party and then proceed as if smpstate was
SMPSTATE_EXPECT1. Otherwise, you may simply continue the current SMP
instance.

If smpstate is set to SMPSTATE_EXPECT1:
No current exchange is underway. In this case, Alice should create a valid type 2
TLV (SMP message 1) as follows:

Determine her secret input x, which is to be compared to Bob's secret y.1.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

17 of 29 04/10/13 23:37

Pick random values a2 and a3 (128 bits). These will be Alice's exponents for
the DH exchange to pick generators.

2.

Pick random values r2 and r3 (128 bits). These will be used to generate
zero-knowledge proofs that this message was created according to the
protocol.

3.

Compute g2a = g1
a2 and g3a = g1

a34.
Generate a zero-knowledge proof that the exponent a2 is known by setting

c2 = SHA256(1, g1
r2) and D2 = r2 - a2 c2 mod q.

5.

Generate a zero-knowledge proof that the exponent a3 is known by setting

c3 = SHA256(2, g1
r3) and D3 = r3 - a3 c3 mod q.

6.

Store the values of x, a2 and a3 for use later in the protocol.7.
Send Bob a type 2 TLV (SMP message 1) containing g2a, c2, D2, g3a, c3 and
D3 in that order.

8.

Set smpstate to SMPSTATE_EXPECT2.

User requests to abort SMP

In all cases, send a type 6 TLV (SMP abort) to the correspondent and set smpstate to
SMPSTATE_EXPECT1.

Key Management

For each correspondent, keep track of:

Your two most recent DH public/private key pairs
our_dh[our_keyid] (most recent) and our_dh[our_keyid-1] (previous)

His two most recent DH public keys
their_y[their_keyid] (most recent) and their_y[their_keyid-1] (previous)

When starting a private conversation with a correspondent, generate two DH key
pairs for yourself, and set our_keyid = 2. Note that all DH key pairs should have a
private part that is at least 320 bits long.

When you send AKE messages:
Send the public part of our_dh[our_keyid-1], with the keyid field, of course, set to
(our_keyid-1).

Upon completing the AKE:
If the specified keyid equals either their_keyid or their_keyid-1, and the DH
pubkey contained in the AKE messages matches the one you've stored for that
keyid, that's great. Otherwise, forget all values of their_y[], and of their_keyid,
and set their_keyid to the keyid value given in the AKE messages, and
their_y[their_keyid] to the DH pubkey value given in the AKE messages.
their_y[their_keyid-1] should be set to NULL.

When you send a Data Message:
Set the sender keyid to (our_keyid-1), and the recipient keyid to (their_keyid).
Set the DH pubkey in the Data message to the public part of our_dh[our_keyid].
Use our_dh[our_keyid-1] and their_y[their_keyid] to calculate session keys, as

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

18 of 29 04/10/13 23:37

outlined below. Use the "sending AES key" to encrypt the message, and the
"sending MAC key" to calculate its MAC.

When you receive a Data Message:
Use the keyids in the message to select which of your DH key pairs and which of
his DH pubkeys to use to verify the MAC. If the keyids do not represent either
the most recent key or the previous key (for either the sender or receiver), reject
the message. Also reject the message if the sender keyid is their_keyid-1, but
their_y[their_keyid-1] is NULL.

Otherwise, calculate the session keys as outlined below. Use the "receiving MAC
key" to verify the MAC on the message. If it does not verify, reject the message.

Check that the counter in the Data message is strictly larger than the last
counter you saw using this pair of keys. If not, reject the message.

If the MAC verifies, decrypt the message using the "receiving AES key".

Finally, check if keys need rotation:

If the "recipient keyid" in the Data message equals our_keyid, then he's
seen the public part of our most recent DH key pair, so you must securely
forget our_dh[our_keyid-1], increment our_keyid, and set our_dh[our_keyid]
to a new DH key pair which you generate.
If the "sender keyid" in the Data message equals their_keyid, increment
their_keyid, and set their_y[their_keyid] to the new DH pubkey specified in
the Data message.

Computing AES keys, MAC keys, and the secure session id

OTR uses Diffie-Hellman to calculate shared secrets in the usual way: if Bob knows x,

and tells Alice gx, and Alice knows y, and tells Bob gy, then they each can calculate s

= gxy: Alice calculates (gx)y, and Bob calculates (gy)x.

During the AKE, Alice and Bob each calculate s in this way, and then they each
compute seven values based on s:

A 64-bit secure session id, ssid
Two 128-bit AES encryption keys, c and c'
Four 256-bit SHA256-HMAC keys, m1, m2, m1', and m2'

This is done in the following way:

Write the value of s as a minimum-length MPI, as specified above (4-byte
big-endian len, len-byte big-endian value). Let this (4+len)-byte value be
"secbytes".
For a given byte b, define h2(b) to be the 256-bit output of the SHA256 hash of
the (5+len) bytes consisting of the byte b followed by secbytes.
Let ssid be the first 64 bits of h2(0x00).
Let c be the first 128 bits of h2(0x01), and let c' be the second 128 bits of
h2(0x01).

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

19 of 29 04/10/13 23:37

Let m1 be h2(0x02).
Let m2 be h2(0x03).
Let m1' be h2(0x04).
Let m2' be h2(0x05).

c, m1, and m2 are used to create and verify the Reveal Signature Message; c', m1',
and m2' are used to create and verify the Signature message.

If the user requests to see the secure session id, it should be displayed as two 32-bit
bigendian unsigned values, in C "%08x" format. If the user transmitted the Reveal
Signature message during the AKE that produced this ssid, then display the first 32
bits in bold, and the second 32 bits in non-bold. If the user transmitted the Signature
message instead, display the first 32 bits in non-bold, and the second 32 bits in bold.
This session id can be used by the parties to verify (say, over the telephone, assuming
the parties recognize each others' voices) that there is no man-in-the-middle by
having each side read his bold part to the other. [Note that this only needs to be done
in the event that the users do not trust that their long-term signature keys have not
been compromised.]

During the exchange of Data Messages, Alice and Bob use the keyids listed in the
Data Message to select Diffie-Hellman keys to use to compute s, and the (4+len)-byte
value of secbytes, as above.

From this, they calculate four values:

Two 128-bit AES encryption keys, the "sending AES key", and the "receiving AES
key"
Two 160-bit SHA1-HMAC keys, the "sending MAC key", and the "receiving MAC
key"

These keys are calculated as follows:

Alice (and similarly for Bob) determines if she is the "low" end or the "high" end
of this Data Message. If Alice's public key is numerically greater than Bob's
public key, then she is the "high" end. Otherwise, she is the "low" end. Note that
who is the "low" end and who is the "high" end can change every time a new D-H
public key is exchanged in a Data Message.
She sets the values of "sendbyte" and "recvbyte" according to whether she is the
the "low" or the "high" end of the Data Message:

If she is the "high" end, she sets "sendbyte" to 0x01 and "recvbyte" to 0x02.
If she is the "low" end, she sets "sendbyte" to 0x02 and "recvbyte" to 0x01.

For a given byte b, define h1(b) to be the 160-bit output of the SHA-1 hash of the
(5+len) bytes consisting of the byte b, followed by secbytes.
The "sending AES key" is the first 16 bytes of h1(sendbyte).
The "sending MAC key" is the 20-byte SHA-1 hash of the 16-byte sending AES
key.
The "receiving AES key" is the first 16 bytes of h1(recvbyte).
The "receiving MAC key" is the 20-byte SHA-1 hash of the 16-byte receiving AES
key.

Revealing MAC keys

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

20 of 29 04/10/13 23:37

Whenever you are about to forget either one of your old D-H key pairs, or one of your
correspondent's old D-H public keys, take all of the receiving MAC keys that were
generated by that key (note that there are up to two: the receiving MAC keys
produced by the pairings of that key with each of two of the other side's keys; but
note that you only need to take MAC keys that were actually used to verify a MAC on
a message), and put them (as a set of concatenated 20-byte values) into the "Old MAC
keys to be revealed" section of the next Data Message you send. This in done to allow
the forgeability of OTR transcripts: once the MAC keys are revealed, anyone can
modify an OTR message and still have it appear valid. But since we don't reveal the
MAC keys until their corresponding pubkeys are being discarded, there is no danger
of accepting a message as valid which uses a MAC key which has already been
revealed.

Fragmentation

Some networks may have a maximum message size that is too small to contain an
encoded OTR message. In that event, the sender may choose to split the message into
a number of fragments. This section describes the format of the fragments. All OTR
version 2 clients must be able to assemble received fragments, but performing
fragmentation on outgoing messages is optional.

Transmitting Fragments
If you have information about the maximum size of message you are able to send
(the different IM networks have different limits), you can fragment an encoded
OTR message as follows:

Start with the OTR message as you would normally transmit it. For example,
a Data Message would start with "?OTR:AAED" and end with ".".
Break it up into sufficiently small pieces. Let the number of pieces be (n),
and the pieces be piece[1],piece[2],...,piece[n].
Transmit (n) messages with the following (printf-like) structure (as k runs
from 1 to n inclusive):

"?OTR,%hu,%hu,%s," , k , n , piece[k]

Note that k and n are unsigned short ints (2 bytes), and each has a
maximum value of 65535. Also, each piece[k] must be non-empty.

Receiving Fragments:
If you receive a message containing "?OTR," (note that you'll need to check for
this _before_ checking for any of the other "?OTR:" markers):

Parse it as the printf statement above into k, n, and piece.
Let (K,N) be your currently stored fragment number, and F be your
currently stored fragment. [If you have no currently stored fragment, then K
= N = 0 and F = "".]
If k == 0 or n == 0 or k > n, discard this (illegal) fragment.
If k == 1:

Forget any stored fragment you may have
Store (piece) as F.
Store (k,n) as (K,N).

If n == N and k == K+1:
Append (piece) to F.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

21 of 29 04/10/13 23:37

Store (k,n) as (K,N).
Otherwise:

Forget any stored fragment you may have
Store "" as F.
Store (0,0) as (K,N).

After this, if N > 0 and K == N, treat F as the received message.

If you receive a non-OTR message, or an unfragmented message, forget any
stored fragment you may have, store "" as F and store (0,0) as (K,N).

For example, here is a Data Message we would like to transmit over a network with
an unreasonably small maximum message size:

?OTR:AAEDAAAAAQAAAAEAAADAVf3Ei72ZgFeKqWvLMnuVPVCwxktsOZ1Qdje
Lp6jn62mCVtlY9nS6sRkecpjuLYHRxyTdRu2iEVtSsjZqK55ovZ35SfkOPHe
FYa9BIuxWi9djHMVKQ8KOVGAVLibjZ6P8LreDSKtWDv9YQjIEnkwFVGCPfpB
q2SX4VTQfJAQXHggR8izKxPvluXUdG9rIPh4cac98++VLdIuFMiEXjUIoTX2
rEzunaCLMy0VIfowlRsgsKGrwhCCv7hBWyglbzwz+AAAAAAAAAAQAAAF2SOr
JvPUerB9mtf4bqQDFthfoz/XepysnYuReHHEXKe+BFkaEoMNGiBl4TCLZx72
DvmZwKCewWRH1+W66ggrXKw2VdVl+vLsmzxNyWChGLfBTL5/3SUF09BfmCEl
03Ckk7htAgyAQcBf90RJznZndv7HwVAi3syupi0sQDdOKNPyObR5FRtqyqud
ttWmSdmGCGFcZ/fZqxQNsHB8QuYaBiGL7CDusES+wwfn8Q7BGtoJzOPDDx6K
yIyox/flPx2DZDJIZrMz9b0V70a9kqKLo/wcGhvHO6coCyMxenBAacLJ1DiI
NLKoYOoJTM7zcxsGnvCxaDZCvsmjx3j8Yc5r3i3ylllCQH2/lpr/xCvXFarG
tG7+wts+UqstS9SThLBQ9Ojq4oPsX7HBHKvq19XU3/ChIgWMy+bczc5gpkC/
eLAIGfJ0D5DJsl68vMXSmCoFK0HTwzzNa7lnZK4IutYPBNBCv0pWORQqDpsk
Ez96YOGyB8+gtpFgCrkuV1bSB9SRVmEBfDtKPQFhKowAAAAA=.

We could fragment this message into (for example) three pieces:

?OTR,1,3,?OTR:AAEDAAAAAQAAAAEAAADAVf3Ei72ZgFeKqWvLMnuVPVCwxk
tsOZ1QdjeLp6jn62mCVtlY9nS6sRkecpjuLYHRxyTdRu2iEVtSsjZqK55ovZ
35SfkOPHeFYa9BIuxWi9djHMVKQ8KOVGAVLibjZ6P8LreDSKtWDv9YQjIEnk
wFVGCPfpBq2SX4VTQfJAQXHggR8izKxPvluXUdG9rIPh4cac98++VLdIuFMi
EXjUIoTX2rEzunaCLMy0VIfowlRsgsKGrwhCCv7hBWyglbzwz+AAAAAAAAAA
QAAAF2SOr,

?OTR,2,3,JvPUerB9mtf4bqQDFthfoz/XepysnYuReHHEXKe+BFkaEoMNGiB
l4TCLZx72DvmZwKCewWRH1+W66ggrXKw2VdVl+vLsmzxNyWChGLfBTL5/3SU
F09BfmCEl03Ckk7htAgyAQcBf90RJznZndv7HwVAi3syupi0sQDdOKNPyObR
5FRtqyqudttWmSdmGCGFcZ/fZqxQNsHB8QuYaBiGL7CDusES+wwfn8Q7BGto
JzOPDDx6KyIyox/flPx2DZDJIZrMz9b0V70a9kqKLo/wcGhvHO6coCyMxenB
AacLJ1DiI,

?OTR,3,3,NLKoYOoJTM7zcxsGnvCxaDZCvsmjx3j8Yc5r3i3ylllCQH2/lpr
/xCvXFarGtG7+wts+UqstS9SThLBQ9Ojq4oPsX7HBHKvq19XU3/ChIgWMy+b
czc5gpkC/eLAIGfJ0D5DJsl68vMXSmCoFK0HTwzzNa7lnZK4IutYPBNBCv0p
WORQqDpskEz96YOGyB8+gtpFgCrkuV1bSB9SRVmEBfDtKPQFhKowAAAAA=.,

The protocol state machine

An OTR client maintains separate state for every correspondent. For example, Alice
may have an active OTR conversation with Bob, while having an unprotected
conversation with Charlie. This state consists of two main state variables, as well as
some other information (such as encryption keys). The two main state variables are:

Message state

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

22 of 29 04/10/13 23:37

The message state variable, msgstate, controls what happens to outgoing messages
typed by the user. It can take one of three values:

MSGSTATE_PLAINTEXT
This state indicates that outgoing messages are sent without encryption. This is
the state that is used before an OTR conversation is initiated. This is the initial
state, and the only way to subsequently enter this state is for the user to
explicitly request to do so via some UI operation.

MSGSTATE_ENCRYPTED
This state indicates that outgoing messages are sent encrypted. This is the state
that is used during an OTR conversation. The only way to enter this state is for
the authentication state machine (below) to successfully complete.

MSGSTATE_FINISHED
This state indicates that outgoing messages are not delivered at all. This state is
entered only when the other party indicates he has terminated his side of the
OTR conversation. For example, if Alice and Bob are having an OTR
conversation, and Bob instructs his OTR client to end its private session with
Alice (for example, by logging out), Alice will be notified of this, and her client
will switch to MSGSTATE_FINISHED mode. This prevents Alice from accidentally
sending a message to Bob in plaintext. (Consider what happens if Alice was in
the middle of typing a private message to Bob when he suddenly logs out, just as
Alice hits Enter.)

Authentication state

The authentication state variable, authstate, can take one of four values (plus one
extra for OTR version 1 compatibility):

AUTHSTATE_NONE
This state indicates that the authentication protocol is not currently in progress.
This is the initial state.

AUTHSTATE_AWAITING_DHKEY
After Bob initiates the authentication protocol by sending Alice the D-H Commit
Message, he enters this state to await Alice's reply.

AUTHSTATE_AWAITING_REVEALSIG
After Alice receives Bob's D-H Commit Message, and replies with her own D-H
Key Message, she enters this state to await Bob's reply.

AUTHSTATE_AWAITING_SIG
After Bob receives Alice's D-H Key Message, and replies with his own Reveal
Signature Message, he enters this state to await Alice's reply.

AUTHSTATE_V1_SETUP
For OTR version 1 compatibility, if Bob sends a version 1 Key Exchange Message
to Alice, he enters this state to await Alice's reply.

After:

Alice (in AUTHSTATE_AWAITING_REVEALSIG) receives Bob's Reveal Signature
Message (and replies with her own Signature Message),
Alice (in AUTHSTATE_NONE) receives Bob's Version 1 Key Exchange Message
(and replies with her own Key Exchange Message),
Bob (in AUTHSTATE_AWAITING_SIG) receives Alice's Signature Message, or

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

23 of 29 04/10/13 23:37

Bob (in AUTHSTATE_V1_SETUP) receives Alice's Version 1 Key Exchange
Message,

then, assuming the signature verifications succeed, the msgstate variable is
transitioned to MSGSTATE_ENCRYPTED. Regardless of whether the signature
verifications succeed, the authstate variable is transitioned to AUTHSTATE_NONE.

Policies

OTR clients can set different policies for different correspondents. For example, Alice
could set up her client so that it speaks only OTR version 2, except with Charlie, who
she knows has only an old client; so that it will opportunistically start an OTR
conversation whenever it detects the correspondent supports it; or so that it refuses
to send non-encrypted messages to Bob, ever.

The policies that can be set (on a global or per-correspondent basis) are any
combination of the following boolean flags:

ALLOW_V1
Allow version 1 of the OTR protocol to be used.

ALLOW_V2
Allow version 2 of the OTR protocol to be used.

REQUIRE_ENCRYPTION
Refuse to send unencrypted messages.

SEND_WHITESPACE_TAG
Advertise your support of OTR using the whitespace tag.

WHITESPACE_START_AKE
Start the OTR AKE when you receive a whitespace tag.

ERROR_START_AKE
Start the OTR AKE when you receive an OTR Error Message.

The four old version 1 policies correspond to the following combinations of flags
(adding an allowance for version 2 of the protocol):

NEVER
No flags set

MANUAL
ALLOW_V1 | ALLOW_V2

OPPORTUNISTIC
ALLOW_V1 | ALLOW_V2 | SEND_WHITESPACE_TAG |
WHITESPACE_START_AKE | ERROR_START_AKE

ALWAYS
ALLOW_V1 | ALLOW_V2 | REQUIRE_ENCRYPTION | WHITESPACE_START_AKE
| ERROR_START_AKE

Note that it is possible for UIs simply to offer the old "combinations" of options, and
not ask about each one separately.

State transitions

There are thirteen actions an OTR client must handle:

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

24 of 29 04/10/13 23:37

Received messages:
Plaintext without the whitespace tag
Plaintext with the whitespace tag
Query Message
Error Message
D-H Commit Message
D-H Key Message
Reveal Signature Message
Signature Message
Version 1 Key Exchange Message
Data Message

User actions:
User requests to start an OTR conversation
User requests to end an OTR conversation
User types a message to be sent

The following sections will outline what actions to take in each case. They all assume
that at least one of ALLOW_V1 or ALLOW_V2 is set; if not, then OTR is completely
disabled, and no special handling of messages should be done at all.

Receiving plaintext without the whitespace tag

If msgstate is MSGSTATE_PLAINTEXT:
Simply display the message to the user. If REQUIRE_ENCRYPTION is set, warn
him that the message was received unencrypted.

If msgstate is MSGSTATE_ENCRYPTED or MSGSTATE_FINISHED:
Display the message to the user, but warn him that the message was received
unencrypted.

Receiving plaintext with the whitespace tag

If msgstate is MSGSTATE_PLAINTEXT:
Remove the whitespace tag and display the message to the user. If
REQUIRE_ENCRYPTION is set, warn him that the message was received
unencrypted.

If msgstate is MSGSTATE_ENCRYPTED or MSGSTATE_FINISHED:
Remove the whitespace tag and display the message to the user, but warn him
that the message was received unencrypted.

In any event, if WHITESPACE_START_AKE is set:

If the tag offers OTR version 2 and ALLOW_V2 is set:
Send a D-H Commit Message, and transition authstate to
AUTHSTATE_AWAITING_DHKEY.

Otherwise, if the tag offers OTR version 1 and ALLOW_V1 is set:
Send a Version 1 Key Exchange Message, and transition authstate to
AUTHSTATE_V1_SETUP.

Receiving a Query Message

If the Query Message offers OTR version 2 and ALLOW_V2 is set:

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

25 of 29 04/10/13 23:37

Send a D-H Commit Message, and transition authstate to
AUTHSTATE_AWAITING_DHKEY.

Otherwise, if the message offers OTR version 1 and ALLOW_V1 is set:
Send a Version 1 Key Exchange Message, and transition authstate to
AUTHSTATE_V1_SETUP.

Receiving an Error Message

Display the message to the user. If ERROR_START_AKE is set, reply with a Query
Message.

User requests to start an OTR conversation

Send an OTR Query Message to the correspondent.

Receiving a D-H Commit Message

If ALLOW_V2 is not set, ignore this message. Otherwise:

If authstate is AUTHSTATE_NONE:
Reply with a D-H Key Message, and transition authstate to
AUTHSTATE_AWAITING_REVEALSIG.

If authstate is AUTHSTATE_AWAITING_DHKEY:
This is the trickiest transition in the whole protocol. It indicates that you have
already sent a D-H Commit message to your correspondent, but that he either
didn't receive it, or just didn't receive it yet, and has sent you one as well. The

symmetry will be broken by comparing the hashed gx you sent in your D-H
Commit Message with the one you received, considered as 32-byte unsigned
big-endian values.
If yours is the higher hash value:

Ignore the incoming D-H Commit message, but resend your D-H Commit
message.

Otherwise:

Forget your old gx value that you sent (encrypted) earlier, and pretend
you're in AUTHSTATE_NONE; i.e. reply with a D-H Key Message, and
transition authstate to AUTHSTATE_AWAITING_REVEALSIG.

If authstate is AUTHSTATE_AWAITING_REVEALSIG:
Retransmit your D-H Key Message (the same one as you sent when you entered
AUTHSTATE_AWAITING_REVEALSIG). Forget the old D-H Commit message, and
use this new one instead. There are a number of reasons this might happen,
including:

Your correspondent simply started a new AKE.
Your correspondent resent his D-H Commit message, as specified above.
On some networks, like AIM, if your correspondent is logged in multiple
times, each of his clients will send a D-H Commit Message in response to a
Query Message; resending the same D-H Key Message in response to each
of those messages will prevent compounded confusion, since each of his
clients will see each of the D-H Key Messages you send. [And the problem
gets even worse if you are each logged in multiple times.]

If authstate is AUTHSTATE_AWAITING_SIG or AUTHSTATE_V1_SETUP:

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

26 of 29 04/10/13 23:37

Reply with a new D-H Key message, and transition authstate to
AUTHSTATE_AWAITING_REVEALSIG.

Receiving a D-H Key Message

If ALLOW_V2 is not set, ignore this message. Otherwise:

If authstate is AUTHSTATE_AWAITING_DHKEY:
Reply with a Reveal Signature Message and transition authstate to
AUTHSTATE_AWAITING_SIG.

If authstate is AUTHSTATE_AWAITING_SIG:
If this D-H Key message is the same the one you received earlier (when you
entered AUTHSTATE_AWAITING_SIG):

Retransmit your Reveal Signature Message.
Otherwise:

Ignore the message.
If authstate is AUTHSTATE_NONE, AUTHSTATE_AWAITING_REVEALSIG, or
AUTHSTATE_V1_SETUP:

Ignore the message.

Receiving a Reveal Signature Message

If ALLOW_V2 is not set, ignore this message. Otherwise:

If authstate is AUTHSTATE_AWAITING_REVEALSIG:

Use the received value of r to decrypt the value of gx received in the D-H Commit
Message, and verify the hash therein. Decrypt the encrypted signature, and
verify the signature and the MACs. If everything checks out:

Reply with a Signature Message.
Transition authstate to AUTHSTATE_NONE.
Transition msgstate to MSGSTATE_ENCRYPTED.
If there is a recent stored message, encrypt it and send it as a Data
Message.

Otherwise, ignore the message.
If authstate is AUTHSTATE_NONE, AUTHSTATE_AWAITING_DHKEY,
AUTHSTATE_AWAITING_SIG, or AUTHSTATE_V1_SETUP:

Ignore the message.

Receiving a Signature Message

If ALLOW_V2 is not set, ignore this message. Otherwise:

If authstate is AUTHSTATE_AWAITING_SIG:
Decrypt the encrypted signature, and verify the signature and the MACs. If
everything checks out:

Transition authstate to AUTHSTATE_NONE.
Transition msgstate to MSGSTATE_ENCRYPTED.
If there is a recent stored message, encrypt it and send it as a Data
Message.

Otherwise, ignore the message.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

27 of 29 04/10/13 23:37

If authstate is AUTHSTATE_NONE, AUTHSTATE_AWAITING_DHKEY,
AUTHSTATE_AWAITING_REVEALSIG, or AUTHSTATE_V1_SETUP:

Ignore the message.

Receiving a Version 1 Key Exchange Message

If ALLOW_V1 is not set, ignore this message. Otherwise:

If authstate is AUTHSTATE_NONE, AUTHSTATE_AWAITING_DHKEY,
AUTHSTATE_AWAITING_REVEALSIG, or AUTHSTATE_AWAITING_SIG:

If the reply field is not set to 0x01:
Verify the information in the Key Exchange Message. If the verification
succeeds:

Reply with a Key Exchange Message with the reply field set to 0x01.
Transition authstate to AUTHSTATE_NONE.
Transition msgstate to MSGSTATE_ENCRYPTED.
If there is a recent stored message, encrypt it and send it as a Data
Message.

Otherwise, ignore the message.
Otherwise, ignore the message.

If authstate is AUTHSTATE_V1_SETUP:
Verify the information in the Key Exchange Message. If the verification succeeds:

If the received Key Exchange Message did not have the reply field set to
0x01, reply with a Key Exchange Message with the reply field set to 0x01.
Transition authstate to AUTHSTATE_NONE.
Transition msgstate to MSGSTATE_ENCRYPTED.
If there is a recent stored message, encrypt it and send it as a Data
Message.

Otherwise, ignore the message.

User types a message to be sent

If msgstate is MSGSTATE_PLAINTEXT:
If REQUIRE_ENCRYPTION is set:

Store the plaintext message for possible retransmission, and send a Query
Message.

Otherwise:
If SEND_WHITESPACE_TAG is set, and you have not received a plaintext
message from this correspondent since last entering
MSGSTATE_PLAINTEXT, attach the whitespace tag to the message. Send
the (possibly modified) message as plaintext.

If msgstate is MSGSTATE_ENCRYPTED:
Encrypt the message, and send it as a Data Message. Store the plaintext
message for possible retransmission.

If msgstate is MSGSTATE_FINISHED:
Inform the user that the message cannot be sent at this time. Store the plaintext
message for possible retransmission.

Receiving a Data Message

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

28 of 29 04/10/13 23:37

If msgstate is MSGSTATE_ENCRYPTED:
Verify the information (MAC, keyids, ctr value, etc.) in the message.
If the verification succeeds:

Decrypt the message and display the human-readable part (if
non-empty) to the user.
Update the D-H encryption keys, if necessary.
If you have not sent a message to this correspondent in some
(configurable) time, send a "heartbeat" message, consisting of a Data
Message encoding an empty plaintext. The heartbeat message should
have the IGNORE_UNREADABLE flag set.
If the received message contains a TLV type 1, forget all encryption
keys for this correspondent, and transition msgstate to
MSGSTATE_FINISHED.

Otherwise, inform the user that an unreadable encrypted message was received,
and reply with an Error Message.

If msgstate is MSGSTATE_PLAINTEXT or MSGSTATE_FINISHED:
Inform the user that an unreadable encrypted message was received, and reply
with an Error Message.

User requests to end an OTR conversation

If msgstate is MSGSTATE_PLAINTEXT:
Do nothing.

If msgstate is MSGSTATE_ENCRYPTED:
Send a Data Message, encoding a message with an empty human-readable part,
and TLV type 1. Transition msgstate to MSGSTATE_PLAINTEXT.

If msgstate is MSGSTATE_FINISHED:
Transition msgstate to MSGSTATE_PLAINTEXT.

Off-the-Record Messaging Protocol version 2 - DRAFT http://otr.cypherpunks.ca/Protocol-v2-3.1.0.html

29 of 29 04/10/13 23:37

