
1 Charm-crypto Benchmark
Time unit is ms. Run 1000 trials and the average be recorded. I’m running the code on Ubuntu 12.04, which is a virtual machine running
in VMWare fusion on my MACbook Air with 1.8 GHz Intel i5 and 4 GB memory. The virtual machine has access to one core of CPU
and maximum 1 GB of memory. This is a Charm benchmark, no pre-processing, no Mul optimaztion. see table 1.

Table 1: Charm benchmark
Curves element length Average running-time in ms

G1 G2 GT Dlog NIST G1 Mul G1 Exp G2 Mul G2 Exp GT Mul GT Exp Pairing ZR Exp R(G1) R(G2) G1 32bitE G2 32bitE

SS512 512 512 1024 1024 80 0.0204 3.7503 0.0201 3.7833 0.0055 0.4844 3.9723 0.0269 4.2506 4.2333 0.7927 0.7854

MNT159 159 477 954 954 80 0.0077 1.1371 0.0523 10.5604 0.0182 2.6907 8.6728 0.0278 1.6193 10.6043 0.2443 2.1347

MNT224 224 672 1344 1344 112 0.0095 2.1293 0.0650 17.9085 0.0216 4.8034 15.7244 0.0523 2.5956 18.2118 0.3228 2.6971

BN 160 320 1920 1920 80 0.0078 1.1357 0.0136 2.3709 0.0623 11.0031 46.8283 0.0266 1.6140 2.8547 0.2482 0.5071

Fig 1 is a table of NIST recommendation, I found if from: http://www.keylength.com/en/4/

Figure 1: NIST recommendation

Here are some explanation:

1. Dlog means Dlog Security bits, NIST means NIST symmetric security bits. R(G1) means generate a random element in G1. G1
32bitE means that Exp in G1 but the power is a 32 bit int.

2. Charm and PBC group name match: ’SS512’:a, ’SS1024’:a1, ’MNT159’:d159, ’MNT201’:d201, ’MNT224’:d224.

3. SS512 group, the order is 160 bits and the base field is 512 bits long.

4. MNT curve, the base field size is n, n=159, 224. Dlog security is 6n.

5. The order of BN curve is 12, the element size in GT is larger and pairing is slower. Here is a quote from PBC lib:”Type F should
be used when the top priority is to minimize bandwidth (e.g. short signatures). The current implementation makes them slow. If
finite field discrete log algorithms improve further, type D pairings will have to use larger fields, but type F can still remain short,
up to a point.”

6. In PBC library, the MNT curve, because of a certain trick, elements of group G2 need only be 3 times longer, rather than 6 times
long. Since Charm-crypto is based on PBC library, the elements in group G2 is also 3 times longer than G1 element.

2 Encryption scheme comparison: BB04ibe, Waters 05, DSE09 (Waters 09) and
CLLWW12

2.1 Here are some basic facts about the the methodology:
1. All code are written in Python and based on Charm crypto lib.

2. Time unit is ms. Run 200 trials and the average be recorded.

3. The implementation was based on Charm-crypto. Notice that there is no pre-processing. Also, there is no optimization of Mul
operation. Table 1 lists the running-time of each operation.

4. We count # of Exp and Pairing. For Mul, Div, Add and Sub, they are too small and we omit them.

2.2 Table 2 is about Identity-based Encryption schemes
Here are some explanations.

1. the first number in column setup() (and Keygen(), Enc(), Dec()) is the real-time running result. The number in the bracket is the
estimation based on data in table 1

2. In the setup(), to generate a random generator, for example g1 = group.random(G1), it actually takes a long time to generate
such a random element. See table 1 for more info. R(G1) in setup() means you need to random an element in G1.

3. In “# of Exp, Pairing”, G1(G2, GT and ZR) means G1(G2, GT and ZR) Exponential operation. PP means Pairing operation.

4. For the size of public parameters, msk, sk and ct, G1 means the size of an element in G1. So does the G2, GT and ZR.

2.3 Information about the IBE schemes
1. BBibe04:D. Boneh, X. Boyen. “Efficient Selective Identity-Based Encryption Without Random Oracles”, Section 5.1.

Implemented by Charm team. Type: Encryption.
Notice: the size of sk should be 1ZR + 1G2. The implementation store user’s ID as one of the element of the sk. In real life
application, we can always use database to record the mapping between ID and the secret key.

2. N04(Waters 05): Brent Waters. Efficient identity-based encryption without random oracles. EUROCRYPT 05.
However, the scheme that implemented is “David Naccache Secure and Practical Identity-Based Encryption Section 4”, which is
an improved version of Water 05. Original implementation: Charm team.

3. N05(Waters 05) improved: Improved by: Fan Zhang. Here are the improvements:

(a) e(g1, g2) is pre-calculated as part of public parameters.

(b) Previous implementation was trying to multiply an element inG1 with an element inZR (which is the line: d1 = mk[‘U ′][i]∗
∗v[i]), which sometimes cause the compiler to throw an error. It is a type error. And elements in U should be a group element
instead of in ZR. I fixed the problem by having U z as a vector in ZR and U = gU z as U .

(c) I stored U z and u as part of msk. This will speed up the extract() a lot. The trick is that, instead of doing exponential
operation and then multiply all together, I compute the exponent first and then do one exponential operation

(d) I have two copies of U and u′ now. The reason is that we want the scheme to work perfectly under asymmetric groups and
make sk in G2 and ct in G1

(e) sk are in G2 and ct are in G1 now. Before that, we have 1 element in G1 and the other in G2 in both sk and ct.

4. Waters 09 improved: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. CRYPTO
2009. Original implementation: Charm team. Improved by: Fan Zhang. Here are the improvements:

(a) It works under MNT curve now. However, the size of pk and msk are larger since I need have some duplicate elements in
G2.

(b) u,w, and h has two copies now. One in G1, the other one in G2. They all stored as public params

(c) pre-calculated g−α2 , gb2 and stored in msk. This makes the keygen() faster.

(d) The size of public param and msk should be minimal now.

Since there is no huge improvement in terms of performance, We didn’t compare the improved version with the original version

5. CLLWW12: J. Chen, H. Lim, S. Ling, H. Wang, H. Wee Shorter IBE and Signatures via Asymmetric Pairings”, Section 4.
Published in: Pairing 2012. Implementation: Fan Zhang.

6. CLLWW12 improved: Instead of store MK = {α, gd
∗
1

2 , g
d∗2
2 } as the master secret key, I store MK = {α, d∗1, d∗2}. And the

computation of SKID, I first compute (α + rID)d∗1 − rd∗2 first and then apply the exponential operation. This reduce the G2

pairing from 8 to 4. This is the similar trick I played in N04(Waters05) improved version.

Table 2: Identity-based Encryption

Scheme # of Exp, Pairing Group Average running-time in ms

BBibe04
ibenc bb03.py

Setup() Keygen() Enc() Dec() setup() Keygen() Enc() Dec()
1R(G1)+1R(G2)+
2G1 + 1PP

1G2 3G1 + 1GT 1G1 + 1PP SS512 20.87
(19.96)

4.20
(3.78)

12.18
(11.74)

7.67
(7.72)

public param master secret
key

secret key ciphertext MNT159 23.56
(23.17)

10.35
(10.56)

6.43
(6.1)

9.61
(9.81)

3G1 + 1GT 2ZR+ 1G2 2ZR+ 1G2 2G1 + 1GT MNT224 41.38
(40.79)

17.98
(17.91)

11.63
(11.19)

17.88
(17.85)

BN 58.00
(53.57)

3.03
(2.27)

15.59
(14.41)

51.31
(47.96)

N04(Waters05)
ibenc waters05.py

Setup() Keygen() Enc() Dec() setup() Keygen() Enc() Dec()
1R(G1)+2R(G2)+
1G1 + 1G2

5ZR+1G1+
2G2

5ZR+1G1+
1G2 + 1GT

2PP SS512 23.44
(20.25)

18.43
(11.45)
1

22.91
(8.15)

7.86
(7.94)
)

public param master secret
key

secret key ciphertext MNT159 36.24
(34.53)

39.70
(22.4)

50.84
(14.53)

17.09
(17.35)

5ZR+2G1+2G2+
1GT

1G2 1G1 + 1G2 1G1+1G2+
1GT

MNT224 60.45
(59.06)

66.43
(38.21)

86.76
(25.1)

31.00
(31.45)

BN 14.13
(10.73)

10.74
(5.81)

69.84
(14.54)

95.74
(93.66)

N04(Waters05)
improved
ibenc waters05
improved.py

Setup() Keygen() Enc() Dec() setup() Keygen() Enc() Dec()

1R(G1)+1R(G2)+
7G1 + 1G2 + 1PP

2G2 5G32bitnumber
1 +

2G1 + 1GT
2PP SS512 45.77

(42.49)
8.03
(7.57)

10.63
(11.95)

7.98
(7.94)

public param master secret
key

secret key ciphertext MNT159 41.31
(39.42)

20.14
(21.12)

6.00
(6.19)

17.01
(17.35)

8G1 + 1G2 + 1GT 6ZR+ 1G2 2G2 2G1 + 1GT MNT224 71.15
(69.35)

34.98
(35.82)

10.26
(10.68)

31.11
(31.45)

BN 63.67
(61.52)

5.18
(4.54)

13.99
(14.52)

91.91
(93.66)

Waters 09
improved
ibenc waters09
improved.py

Setup() Keygen() Enc() Dec() setup() Keygen() Enc() Dec()

1R(G1)+1R(G2)+
15G1+9G2+1GT+
1PP

12G2 14G1 + 1GT 1GT + 9PP SS512 106.68
(103.24)

47.50
(45.4)

54.33
(52.99)

38.56
(36.24)

public param master secret
key

secret key ciphertext MNT159 134.05
(135.69)

121.77
(126.72)

20.28
(18.61)

80.25
(80.75)

13G1 + 4G2 + 1GT 6G2 1ZR+ 8G2 1ZR+9G1+
1GT

MNT224 232.41
(234.45)

210.28
(214.9)

35.79
(34.61)

145.14
(146.32)

BN 103.32
(99.77)

30.41
(27.25)

27.96
(26.9)

426.99
(432.46)

CLLWW12
ibenc cllww12.py

Setup() Keygen() Enc() Dec() setup() Keygen() Enc() Dec()
1R(G1)+1R(G2)+
8G1+8G2+1GT +
1PP

8G2 8G1 + 1GT 4PP SS512
2

81.81
(73.21)

30.32
(30.27)

31.00
(30.49)

15.73
(15.89)

1There are inconsistency in keygen() and Enc() in all the curves. Look at the following line of code: d1∗ = (pk[′U ′][i])v[i], d1 is an element in G1 and pk is in ZR,
the Exp is in ZR. After the Exp operation, an element in ZR should be somehow cast to an element in G2 (I guess what they did is gZR

2). This is actually an type error
and should not be a right implementation. I fixed it in the improved version. This ‘cast’ takes time. This is the reason for the inconsistency. Here are some test result of
cast: ZR to G1 in SS512/MNT159/MNT224: 2.3340/0.6903/1.2846; ZR to G2: 2.2580/6.1770/10.7333. If we take the time of cast into consideration. It is consistent.

2The CLLWW12 scheme only secure under asymmetric groups. It indeed works under SS512, but not secure.

public param master secret
key

secret key ciphertext MNT159 120.91
(117.17)

79.99
(84.48)

12.09
(11.79)

34.33
(34.69)

8G1 + 1GT 1ZR+ 8G2 1ZR+ 4G2 4G1 + 1GT MNT224 205.17
(201.64)

139.45
(143.27)

21.92
(21.84)

62.30
(62.9)

BN 97.96
(89.55)

19.34
(18.17)

20.07
(20.09)

186.05
(187.31)

CLLWW12
improved

ibenc cllww12
improved.py

Setup() Keygen() Enc() Dec() setup() Keygen() Enc() Dec()

1R(G1)+1R(G2)+
8G1 + 1GT + 1PP

4G2 8G1 + 1GT 4PP SS512 51.75
(42.94)3

15.39
(15.13)

30.76
(30.49)

15.74
(15.89)

public param master secret
key

secret key ciphertext MNT159 41.05
(32.68)

39.89
(42.24)

12.09
(11.79)

34.31
(34.69)

8G1 + 1GT 9ZR+ 1G2 1ZR+ 4G2 4G1 + 1GT MNT224 66.75
(58.37)

70.01
(71.63)

21.90
(21.84)

62.31
(62.9)

BN 80.01
(71.39)

10.04
(9.08)

20.25
(20.09)

186.43
(187.31)

3 Signature scheme comparison: BLS, Waters 05, DSE09 (Waters 09) and CLLWW12

3.1 Table 3 is about Identity-based Signature schemes.
Time unit is ms. Run 200 trials and the average be recorded.
The implementation was based on Charm-crypto.

3.2 Information about the signature schemes
1. BLS: Implemented by Charm team. The public parameter actually has 4 parts. However, the ‘identity’ should has the same length

as gx and the ‘secparam’ can be stored some where else. Actually ’secparam’ is very short and we can ignore it.

2. N04(Waters 05): The same paper as the one in encryption scheme. Original implementation: Charm team.

3. N04(Waters 05) improved: Implemented by Fan Zhang. Here are the improvements:

(a) The same trick in ibenc waters05 improved has been used here too.

(b) Also, I swapped g1 and g2 to make the signature happens in G1. It’s much more faster now.

4. Waters 09 improved: The same paper as the one in encryption scheme. Original implementation: Charm team. Improved by: Fan
Zhang. Here are the improvements: delete the alpha from msk and add g−α2 into it. Since there is no huge improvement in terms
of performance
Note: The original implementation by Charm team support the asymmetric groups. What I did is just some trivial modification.
And We can swap G1 and G2 to achieve better performance too. However, I didn’t swap them here in Waters09 scheme.

5. CLLWW12: The same paper as the one in encryption scheme. J. Chen, H. Lim, S. Ling, H. Wang, H. Wee Shorter IBE and
Signatures via Asymmetric Pairings”, Section 5. Published in: Pairing 2012. Implementation: Fan Zhang.

6. CLLWW12 swap: Implementation: Fan Zhang. Simply by swap g1 with g2, and in the pair(), swap the first and the second param.
Its done! Notice: now, even if we call it g1, its now an element in G2, so does the g2. And the signature is much more faster after
the swap.

7. CLLWW12 swap improved: Implementation: Fan Zhang. This is a improved version of pksig cllww12 swap. The trick in
ibenc cllww12 improved has been used here. One has to notice that we already swapped g1 with g2 This improved version is 2
times faster than it’s predecessor.

Table 3: Identity-based Signature

3The generation of DPVS in CLLWW12 scheme takes certain amount of time.

Scheme # of Exp, Pairing Group Average running-time in ms

BLS
pksig bls04.py

Keygen() Sign() Verify() Keygen() Sign() Verify()
1R(G2) + 1G2 1G1 2PP SS512 8.55

(8.02)
12.29
(3.75) 4

16.44
(7.94)

public param secret key Signature MNT159 21.02
(21.16)

1.28
(1.14)

17.26
(17.35)

3G2 1ZR 1G1 MNT224 36.15
(36.12)

2.44
(2.13)

31.75
(31.45)

BN 6.24
(5.13)

1.33
(1.14)

98.88
(93.66)

N04(Waters05)
pksig water05.py

Keygen() Sign() Verify() Keygen() Sign() Verify()
1R(G1) + 2R(G2) +
1G1+1G2+2GT+2PP

5ZR+ 1G1 + 1G2 5ZR+ 2PP SS512 31.96
(29.16)

18.73
(7.67)

18.68
(8.08))

public param secret key Signature MNT159 58.35
(57.25)

38.45
(11.84)
5

43.90
(17.48)

5ZR+2G1+2G2+1GT 1G1 1G1 + 1G2 MNT224 101.88
(100.11)

69.36
(20.3)

80.46
(31.71)

BN 133.52
(126.39)

11.09
(3.54)

103.22
(93.79)

N04(Waters05)
improved(swap)
pksig water05
improved.py

Keygen() Sign() Verify() Keygen() Sign() Verify()

1R(G1) + 1R(G2) +
1G1 + 7G2 + 1PP

2G1 5G32bitnumber
2 +

2PP
SS512 45.46

(42.69)
7.94
(7.5)

10.06
(11.87)

public param secret key Signature MNT159 94.22
(95.96)

2.80
(2.27)

22.90
(28.02)

1G1 + 8G2 + 1GT 1G1 2G1 MNT224 164.33
(164.02)

4.71
(4.26)

38.97
(44.93)

BN 73.02
(68.33)

2.77
(2.27)

94.76
(96.19)

Waters 09
improved
pksig waters09
improved.py

Keygen() Sign() Verify() Keygen() Sign() Verify()

1R(G1) + 1R(G2) +
15G1 + 9G2 + 1GT +
1PP

12G2 14G1 +2GT +9PP SS512 105.66
(103.24)

46.59
(45.4)

89.86
(89.22)

public param secret key Signature MNT159 134.24
(135.69)

121.54
(126.72)

100.35
(99.36)

13G1 + 4G2 + 1GT 6ZR+ 1G1 1ZR+ 8G2 MNT224 233.10
(234.45)

211.28
(214.9)

181.30
(180.94)

BN 105.16
(99.77)

30.96
(27.25)

469.56
(459.36)

CLLWW12
pksig cllww12.py

Keygen() Sign() Verify() Keygen() Sign() Verify()
1R(G1) + 1R(G2) +
8G1+8G2+1GT+1PP

8G2 4G1 + 4PP SS512 81.12
(73.21)
6

30.41
(30.27)

30.76
(30.89)

public param secret key Signature MNT159 120.64
(117.17)

82.99
(84.48)

38.76
(39.24)

8G1 + 1GT 1ZR+ 8G2 4G2 MNT224 206.60
(201.64)

140.68
(143.27)

71.24
(71.41)

BN 104.68
(89.55)

19.42
(18.17)

195.03
(191.86)

4The inconsistency in Sign() and Verify() are both caused by the following line of code: group.hash(M,G1). One should map the message into G1 and then raise
to the power of x. group.hash(M,G1) takes roughly 9 ms. Also, one has to notice that in MNT159/224, this group.hash also happens. However, the mapping process
only takes roughly 0.08/0.25 ms in it respectively.

5Inconsistency in Sign() and Verify() in all curves caused by the same reason explained in Table ??
6The generation of DPVS in CLLWW12 scheme takes certain amount of time.

CLLWW12 swap
pksig cllww12
swap.py

Keygen() Sign() Verify() Keygen() Sign() Verify()

1R(G1) + 1R(G2) +
8G1+8G2+1GT+1PP

8G1 4G2 + 4PP SS512 85.13
(73.21)

30.25
(30)

30.90
(31.02)

public param secret key Signature MNT159 120.31
(117.17)

9.47
(9.1)

74.16
(76.93)

8G2 + 1GT 1ZR+ 8G1 4G1 MNT224 206.07
(201.64)

17.20
(17.03)

134.74
(134.53)

BN 101.79
(89.55)

9.68
(9.09)

201.93
(196.4)

CLLWW12 swap
improved
pksig cllww12
swap improved.py

Keygen() Sign() Verify() Keygen() Sign() Verify()

1R(G1) + 1R(G2) +
8G2 + 1GT + 1PP

4G1 4G2 + 4PP SS512 51.34
(43.21)

15.22
(15)

30.60
(31.02)

public param secret key Signature MNT159 111.66
(108.07)

5.05
(4.55)

74.55
(76.93)

8G2 + 1GT 9ZR+ 1G1 4G1 MNT224 190.05
(184.6)

8.90
(8.52)

132.45
(134.53)

BN 91.55
(80.47)

5.12
(4.54)

199.92
(196.4)

4 Exponential, Multiplication and Pairing in pre-processing, PBC library
The observation was: in Charm, Exp in G2 takes longer than pairing, which is unusual. In usual case, Pairing should be 30 times slower
than Exp. Due to implementation issues, in practice, it should be 10 times slower.
The reason: There is no optimization in Charm, both in Exp and pairing.
How about the pre-processing optimization? Charm is based on PBC library and PBC library does provide a pre-processing mode.
Table 4 is the result of pre-processing: Now, the Exp is much more faster! However, one may notice that the pre-processing itself takes

Table 4: Pre-processing
average, ms MNT224 MNT159 SS512
G1 Exp 2.2324 1.1787 4.2456
After pre-processing 0.2946 0.15996 0.58522
Pre-processing itself 10.3266 5.4665 20.3675
G2 Exp 17.7188 10.06818 4.0805
After pre-processing 2.6019 1.44612 0.5485
Pre-processing itself 84.0911 46.7426 19.0134
Pairing 16.0519 8.4755 4.32726.
After pre-processing 12.8999 6.92033 1.8323
Pre-processing itself 3.2822 1.68439 3.86498

a long time, especially in Exp. To understand what Pre-processing truly means, I looked into the pre-processing code of Exp operation.
It turns out that the pre-processing is a process of build k-bit base table for n-bit exponentiation. And later, the Exp operation will do a
look up first, and then do a normal Mul operation. My understanding is that, the pre-processing of Exp is taken a n-bit number x and
build x2, x4, x8... ... and all of them will be stored for further lookup.

It seems that the so called “pre-processing” is not very effective when we take the “pre-processing” itself into consideration. And
now, we know that even the Exp is much more faster, its a result of pre-processing and the pro-precessing give no answer to the question:
“Why TinyPBC is faster in Mul than PBC library”.

My guess now is that, the reason that Exp takes a long time in PBC library when comparing with RELIC-tinyPBC is not caused by
exp itself. It should caused by the implementation of MUL operation.

In RELIC-tinyPBC, 80-bit security, the MUL takes 11727us, and the pairing takes 14,000,000us, which is a ratio of 1200:1 In PBC,
When I was using MNT 159, which is rough 70 bits of security. Pairing : G1 MUL = 1790:1. Pairing : G2 MUL = 216:1. The ratio
between Pairing and G2 MUL indicates that the MUL in PBC library is roughly 6 times slower than TinyPBC. Table 5 is a table about
ratio.

Table 5: Pairing Mul ratio
ratio Tiny PBC MNT224 MNT159 SS512
Pairing:MUL 1200:1 - - -
Pairing:MUL(G1) - 1650:1 1790:1 160:1
Pairing:MUL(G2) - 220:1 216:1 250:1

I went through TinyPBC paper and they use LpezDahab algorithm. I found the paper of the algorithm: High-speed software
multiplication inGF (2m)

According to the paper: the proposed method is about 2-5 times faster than standard multiplication. I think this explains why PBCs
MUL is 6 times slower than TinyPBC because TinyPBC use optimization.

5 Improved schemes

5.1 Waters 09 improved, ibe scheme
Setup(): The authority first chooses group G1 and G2 of prime order p. Next, it chooses generators g1 ∈ G1 and g2 ∈ G2 respectively.
Then it chooses vz , v1z , v2z , wz , uz , hz ∈ Zp and exponents a1, a2, b, α ∈ Zp. Calculate vG1 = gvz1 , v1G1 = gv1z

1 , v2G1 = gv2z
1 ,

wG1 = gwz
1 , uG1 = guz

1 , hG1 = ghz
1 . Also, calculate vG2 = gvz2 , v1G2 = gv1z

2 , v2G2 = gv2z
2 , wG2 = gwz

2 , uG2 = guz
2 , hG2 = ghz

2 .
In the same time, let τ1 = vG1(v1G1

)a1 , τ2 = vG1(v2G1
)a2 . It publishes the public parameters PK as the group description G1,G2

along with:
g1, g2, g

b
1, g

a1
1 , ga21 , gb·a11 , gb·a21 , τ1, τ2, τ

b
1 , τ

b
2 , wG1

, uG1
, hG1

, wG2
, uG2

, hG2
, e(g1, g2)

α·a1·b

And the master secret key MSK consists of : g−α2 , gα·a12 , vG2 , v1G2
, v2G2

, gb2.
Enc(PK, I,M): The encryption algorithm chooses random s1, s2, t, and tagc ∈ Zp, Let s = s1 + s2. It then blinds M ∈ GT as
C0 =M · (e(g1, g2)α·a1·b)s2 and creates:
C1 = (gb1)

s1+s2 , C2 = (gb·a11)s1 , C3 = (ga11)s1 , C4 = (gb·a21)s2 , C5 = (ga11)s2 , C6 = τs11 τs22 , C7 = (τ b1)
s1(τ b2)

s2w−tG1
, E1 =

(uIG1
wtagcG1

hG1)
t, E2 = gt1.

The Ciphertext is CT = C0, C1,, C7, E1, E2, tagc.
KeyGen(MSK,PP, I): The authority chooses random r1, r2, z1, z2, tagk ∈ Zp. Let r = r1 + r2. Then it creates:
D1 = gα·a12 , D2 = g−α2 v1

r
G2
gz12 , D3 = (gb2)

−z1 , D4 = v2
r
G2
gz22 , D5 = (gb2)

−z2 , D6 = gr2·b2 , D7 = gr12 ,K = (uIG2
wtagkG2

hG2)
r1 .

The secret key is SK = D1,, D7,K, tagk.
Dec(CT,KI): Nothing has been changed in Dec().

5.2 Waters 09 swap improved, signature scheme
Swap means to swap g1 and g2. It makes the signature much more faster when we are using asymmetric groups. There is no need
to change the code except in every pairing function: Pair(param1, param2), you need to swap param1 with param2. The following
paragraphs describe the improved scheme before swap.

5.3 N04(Waters 05) improved, ibe scheme

5.4 N04(Waters 05) swap improved, signature scheme

	Charm-crypto Benchmark
	Encryption scheme comparison: BB04ibe, Waters 05, DSE09 (Waters 09) and CLLWW12
	Here are some basic facts about the the methodology:
	Table 2 is about Identity-based Encryption schemes
	Information about the IBE schemes

	Signature scheme comparison: BLS, Waters 05, DSE09 (Waters 09) and CLLWW12
	Table 3 is about Identity-based Signature schemes.
	Information about the signature schemes

	Exponential, Multiplication and Pairing in pre-processing, PBC library
	Improved schemes
	Waters 09, ibe scheme
	Waters 09, signature scheme

