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A Magic Box

E(Fq) F
∗
qk

P1 = (x1, y1) −→

−→ α = e(P1, P2)

P2 = (x2, y2) −→



Main properties of pairings

Bilinear:

e([n]P1, P2) = e(P1, [n]P2) = e(P1, P2)n

Non-degenerate:

e(P, P ) 6= 1

Such maps can be obtained from the Weil and
Tate pairings.



History of pairings in cryptography

• Miller (1986)

• Menezes-Okamoto-Vanstone (MOV) (1993)

• Frey-Rück (1994)

• Mitsunari-Sakai-Kasahara (1999)

• Sakai-Oghishi-Kasahara (2000)

• Joux (2000)

• Verheul (2001)

• Boneh-Franklin (2001)

• Joux-Nguyen (2001)

• Many people (2001,2002)



The MOV/Frey-Rück attack on ECDLP

Let P ∈ E(Fq) be of order l.

Suppose Q = [λ]P for some (unknown) λ.

The MOV/Frey-Rück attack:

• Construct the field K = Fqk.

• Find a point S such that e(P, S) 6= 1.

• Compute ζ1 = e(P, S) and ζ2 = e(Q,S).

Note that

ζ2 = e([λ]P, S) = e(P, S)λ = ζλ1 .

• Solve the discrete logarithm problem in K∗

using an index calculus method.

This strategy is effective when K = Fqk is not

too large an extension of Fq.



Supersingular curves are weak for cryptog-
raphy

Elliptic curves for which k is ‘small’ are weak
for discrete-logarithm-based cryptography.

Theorem: (Menezes, Okamoto and Vanstone)

Supersingular elliptic curves have k ≤ 6.

Hence supersingular curves are considered weak
for cryptography.

Even weaker case: Curves E over Fq with

q − 1 points.



Three party Diffie-Hellman key exchange

Suppose g ∈ F∗q and three users A, B and C

want to agree a random key.

Natural generalisation of Diffie-Hellman key
exchange:

1. User A chooses a random secret a and
broadcasts ga.

Similarly, users B and C broadcast gb and

gc.

2. User A receives gb and gc so computes and

broadcasts gab, gac. Similarly for users B
and C.

3. User A receives gbc and so can compute the

shared key gabc. Similarly, users B and C

can compute gabc.

This protocol requires two rounds of broadcast
messages.



Joux: Three party Diffie-Hellman key
exchange

(Verheul version)

• User A chooses a random secret a and
broadcasts [a]P .

Similarly, users B and C broadcast [b]P and

[c]P .

• User A can compute

e([b]P, [c]P )a = e(P, P )abc.

Users B and C can also compute e(P, P )abc.

This only requires one round of broadcasts.

Note: Al-Riyami and Paterson show that to
achieve authenticated key exchange with key
confirmation then the methods of Joux give
no improvement over traditional methods.



Security of tripartite key exchange

Eve sees [a]P, [b]P and [c]P and the key is

α = e(P, P )abc.

If Eve can solve the Diffie-Hellman problem in

E(Fq) then she can compute [ab]P and com-

pute

α = e([ab]P, [c]P ).

If Eve can solve the Diffie-Hellman problem in
F
∗
qk

then she can also compute α.

For security need: q > 2160 and qk > 21024.

For efficiency want qk not too large, so use
supersingular curves.



Further applications of pairings in cryptog-
raphy

• Separation of DDH and CDH (Joux-Nguyen)

• Identity-based encryption (Boneh-Franklin)

• Identity-based signatures (Hess, Cha-Cheon,

Paterson)

• Identity-based key exchange (Sakai-Ohgishi-

Kasahara, Smart)

• Credentials (Verheul)

• Short signatures (Boneh-Lynn-Shacham)

• Traitor tracing (Mitsunari-Sakai-Kasahara)

• Many more (see Paulo Barreto’s pairing-

based crypto lounge on the web)



How to make it practical?

For cryptographic applications we need:

1. To find suitable elliptic curves with reason-
able parameter sizes.

2. To compute e(P,Q) quickly.

3. To trust the security of the system.



The Tate pairing

Let l be a prime (coprime to q).

Define k such that l|(qk−1) and write K = Fqk.

Write E(K)[l] for the points defined over K of

order l.

The Tate pairing is a map

E(K)[l]× (E(K)/lE(K)) −→ K∗/(K∗)l.

For S ∈ E(K)[l] and T ∈ E(K) we write this

value as

〈S, T 〉 ∈ K∗/(K∗)l.

To get a unique value we must raise to the

power (qk − 1)/l.



Non-rational endomorphisms

If k > 1 and P ∈ E(Fq)[l]. Then

〈P, P 〉(q
k−1)/l = 1.

Suppose there exists an endomorphism ϕ on E

such that ϕ(P ) 6∈ E(Fq). Then

〈P, ϕ(P )〉(q
k−1)/l 6= 1.

Such maps ϕ are called distortion maps or
non-rational endomorphisms.

We define

e(P,Q) = 〈P, ϕ(Q)〉(q
k−1)/l.



Suitable curves

Characteristic greater than three:

Original Boneh-Franklin description used an el-
liptic curve

E : y2 = x3 + 1

with #E(Fp) = p+ 1 (i.e., k = 2).

There are also curves over Fp2 with k = 3.

Characteristic two

The elliptic curves

E1 : y2 + y = x3 + x

and

E2 : y2 + y = x3 + x+ 1

over F2 have k = 4.

So can work over F2m with m ≈ 250 (if there

exists a suitable group order).



Characteristic three

The elliptic curves

E1 : y2 = x3 − x+ 1

and

E2 : y2 = x3 − x− 1

over F3, have k = 6.

A convenient non-F3-rational endomorphism for
E1 is

ψ : (x, y) 7−→ (α− x, iy)

So can take 3m ≈ 2170 if a suitable group order
exists.



Computing the Tate pairing

The Tate pairing is

〈P,Q〉 = f(D)

where f is a function such that

(f) = l((P )− (OE))

and where D ∼ (Q)− (OE).

This is computed using Miller’s algorithm.



Miller’s algorithm

To compute 〈P,Q〉:

Choose a random point S ∈ E(Fqk) and

compute Q′ = Q+ S ∈ E(Fqk).

Set n = blog2(l)c − 1, T1 = P , f1 = 1.

While n ≥ 1 do

• Calculate the equations of the straight lines
l1 and l2 arising in a doubling of T1. Set

T1 = [2]T1 and

f1 = f2
1
l1(Q′)l2(S)

l2(Q′)l1(S)
.

• If the nth bit of l is one then
– Calculate the equations of the straight

lines l1 and l2 arising in an addition of
T1 and P . Set T1 = T1 + P and set

f1 = f1
l1(Q′)l2(S)

l2(Q′)l1(S)
.

• Decrement n.

Return f1.



Efficient Implementation

See:

• Galbraith, Harrison, Soldera (ANTS-V)

• Barreto, Kim, Lynn, Scott (CRYPTO ’02)

• Eisentraeger, Lauter, Montgomery

We compute 〈P,Q〉 where

P ∈ E(Fq) and Q ∈ E(Fqk)

so optimise accordingly.

Further tricks:

• Work in a subgroup (if available).

• If the non-rational endomorphism is of the
right form then all denominators in Miller’s
algorithm can be removed.

• Final exponentiation can be improved using
Frobenius action.

Comment: Relationship between Tate pairing
and Weil pairing.



Tripling in characteristic three

Suppose P = (x1, y1) is a point on

E : y2 = x3 + a4x+ a6

with a4, a6 ∈ F3.

Then

[3](x1, y1) = (x9
1 + a6(1− a4),−y9

1)

and so tripling requires no divisions!

Further details:

The tangent to E at P has slope λ2 = 1/y1

and the line between (x1, y1) and [2](x1, y1)

has slope λ3 = y3
1 − λ2.

Hence, use a base three Miller algorithm in

characteristic three (need one division to com-

pute the straight line equations).



Low Hamming weight

#E1(F3163) = N = 3163 − 382 + 1 = 7l.

The prime l does not have low Hamming weight.

So compute Tate pairing with respect to N .

Ditto for final exponentiation to the power

((3163)6 − 1)/N.

If P has order l then the result is an element
of order l.

Lemma: Let P ∈ E(Fq) have order l, let D

be a degree zero divisor on E(K) and let N be

a multiple of l which divides (qk − 1)/(q − 1).

Suppose g and g′ are functions over Fq such

that (g) = l(P ) − l(OE) and (g′) = N(P ) −
N(OE). Then

g′(D)(qk−1)/N = g(D)(qk−1)/l.

Proof: Write N = hl. Then g′ = cgh for some

c ∈ Fq. QED.



Timings

Milliseconds on a 1GHz Pentium III (code by

HP Labs, Bristol)

F2241 F2271 F397 F3163

Tate 8.7 13 24 81

BF-Enc 14.3 21 36 127

BF-Dec 11.3 18 29 100



Security issues

Bilinear/Weil/Tate-Diffie-Hellman problem:

Given P , Q, P1 = [a]P and P2 = [b]P such that

e(P,Q) 6= 1, compute

e([ab]P,Q).

This is no harder than either the Diffie-Hellman
problem in E(Fq) or the Diffie-Hellman problem

in Fqk.

Theorem: (Verheul) Let e : G × G → H be a

pairing where

H ⊂ F∗
qk

is the image subgroup. If there is a com-
putable group homomorphism from H to G

then the Diffie-Hellman problem in G and H

can be solved.



Bit security

For key exchange agree

α = e(P, P )abc ∈ F∗
qk

(1000 bits or more) and want to derive a short

key.

Theorem: (Galbraith-Hopkins-Shparlinski) Sup-

pose α ∈ F∗
p2 and assume BDH is hard. Then

the 128 most significant bits of the trace of α
can be used to derive a secure key.



Future limitations

Parameters are convenient for current use:
k = 6 allows 170-bit EC with 1020-bit finite
fields.

In future we will require k > 6.

This cannot be achieved using supersingular
elliptic curves directly.



Silverberg-Rubin

Theorem: Let E be a supersingular elliptic

curve over Fq (q = pa) with embedding degree

k. Let r be coprime to 2pk. Then there exists

an abelian variety A over Fq of dimension ϕ(r)

and embedding degree rk. We have

A(Fq) ∼=
{
P ∈ E(Fqr) : Tr

Fqr/Fqm
(P ) = 0E

}
for all m|r and m 6= r.

Application: Transmit ϕ(r) coordinates of the

x-coordinate of such a point P ∈ E(Fqr) (plus

a few extra bits) and this determines the point

in A(Fq).



Using ordinary (non-supersingular) curves

Problems:

• (Verheul) There are no non-rational endo-

morphisms in this case.

Cryptosystems can be modified to handle
this issue.

• (Balasubramanian-Koblitz) Such curves are
very rare.



MNT conditions

Miyaji, Nakabayashi and Takano showed that
ordinary elliptic curves E over Fq with k = 6

must have q + 1− t points where

q = 4l2 + 1 and t = 1± 2l.

This leads to a CM method construction of
such curves.

These methods have been generalised:

• Barreto-Lynn-Scott: Construct nice curves
with k = 12.

• Dupont-Enge-Morain: Construct not so nice
curves with arbitrary k.



Distortion maps

Joux: Suppose P ∈ E(Fq) is such that

〈P, P 〉(q
k−1)/l = 1.

Take a non-rational isogeny ϕ : E → E′ and
consider

〈ϕ(P ), ϕ(P )〉.

Lemma (Galbraith):

〈ϕ(P ), ϕ(Q)〉 = 〈P,Q〉deg(ϕ).

Hence, Joux’s idea does not work.


