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émanant des établissements d’enseignement et de
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Abstract—In this work, we propose two McEliece variants:
one from Moderate Density Parity-Check (MDPC) codes and
another from quasi-cyclic MDPC codes. MDPC codes are LDPC
codes of higher density (and worse error-correction capability)
than what is usually adopted for telecommunication applications.
However, in cryptography we are not necessarily interested in
correcting many errors, but only a number which ensures an
adequate security level. By this approach, we reduce under
certain hypotheses the security of the scheme to the well
studied decoding problem. Furthermore, the quasi-cyclic variant
provides extremely compact-keys (for 80-bits of security, public-
keys have only 4801 bits).

I. INTRODUCTION

Cryptosystems based on the hardness of factoring or dis-
crete logarithm can be quantum attacked in polynomial time
[1]. This threatens most if not all public-key cryptosystems
deployed in practice, such as RSA. Code-based cryptography
is believed to be quantum resistant and is therefore consid-
ered as a viable replacement. Furthermore, it provides better
algorithmic complexity than traditional schemes.

The first code-based cryptosystem is the McEliece cryp-
tosystem [2], originally proposed using Goppa codes. Its
security is based on two assumptions, the indistinguishability
of the code family and the hardness of decoding a generic
linear code. The decoding problem is a well studied NP-
complete problem [3], believed to be hard after decades of
research. On the other hand, the indistinguishability problem
is usually the weakest one, strongly depending on the choice
of the code family. For example, a distinguisher for high rate
Goppa codes has been presented in [4]. Although this does
not represent a practical attack, it might suggest that Goppa
codes are not the optimal choice for code-based cryptography.

The main drawback of this scheme is its large keys.
Recently, proposals using codes with a large automorphism
group (e.g. quasi-cyclic [5], [6] or quasi-dyadic codes [7])
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allowed to reduce the key size. However the redundancy
added to these algebraic codes allowed to break [8] many
of them (except the binary case of [7]). This kind of attack is
exponential in nature and can be prevented by choosing more
conservative parameters. However note that codes which have
no algebraic structure would prevent this threat.

Related work. Low-Density Parity Check (LDPC) codes
[9] are good candidates for this scenario. These are codes with
no algebraic structure which meet a very simple combinatorial
property: they admit a sparse parity-check matrix. They have
been repeatedly suggested for the McEliece scheme [10],
[11], [12]. The main problem of using LDPC codes in this
context is that their low weight parity-check rows can be
seen as low weight codewords in the dual of the public
code. Thus a straightforward attack is to search for dual
low-weight codewords to build a sparse parity-check able to
decode efficiently. As shown in [10], the extremely low row
weights suggested for LDPC codes allow the effectiveness of
this attack. In [11], to avoid this attack, the authors increased
the weight of the dual codewords replacing the permutation
matrix used in the scheme by a sparse invertible matrix of
some small constant row weight. Nevertheless, the unfortunate
choices for this new matrix (among other properties) allowed
to successfully cryptanalyze the scheme [13]. In [12], a more
general construction has been able to thwart this attack.
Furthermore, the authors suggested a quasi-cyclic structure
reducing the public-keys to 48384 bits1.

Our contribution. Our first observation is that any aux-
iliary matrix of constant row weight is needed to instantiate
the McEliece scheme with LDPC codes. Simply increasing
moderately the length and the row weight of the secret sparse
parity-check matrix is enough to avoid all known message
and key recovery attacks. We call these codes Moderate
Parity Check (MDPC) codes2 and use them to instantiate the

1The authors did not consider CCA-2 secure conversions, which would
allow public-keys in systematic form, reducing the key size to 12096 bits.

2In [14], the terminology MDPC is used for the same concept. It is shown
that certain QC-MDPC codes may perform well at moderate lengths by using
a variation of the standard belief propagation concept.



McEliece scheme. We give a quite satisfactory security re-
duction towards the well studied syndrome decoding problem.
To achieve this goal, we make a single, natural assumption:
distinguishing an MDPC code from a random linear code
amounts to being able to ascertain the existence of low weight
codewords in its dual code. This provides a strong security
argument. Besides, a quasi-cyclic structure provides extremely
compact keys. The extended-version of this work is [15].

II. PRELIMINARIES

Definition 1 (Linear codes): The (Hamming) weight of a
vector x ∈ Fn

2 is the number wt(x) of its nonzero components.
A binary (n, r)-linear code C of length n, dimension n − r
and codimension r, is a (n− r)-dimensional vector subspace
of Fn

2 . It is spanned by the rows of a matrix G ∈ F(n−r)×n
2 ,

called a generator matrix of C. Equivalently, it is the kernel
of a matrix H ∈ Fr×n

2 , called a parity-check matrix of C.
The codeword c ∈ C of a vector m ∈ F(n−r)

2 is c = mG.
The syndrome s ∈ Fr

2 of a vector e ∈ Fn
2 is s = HeT . The

dual C⊥ of C is the linear code spanned by the rows of any
parity-check matrix of C.

Definition 2 (Quasi-cyclic code): An (n, r)-linear code is
quasi-cyclic (QC) if there is some integer n0 such that every
cyclic shift of a codeword by n0 places is again a codeword.

When n = n0p, for some integer p, it is possible and
convenient to have both generator and parity check matrices
composed by p × p circulant blocks. A circulant block is
completely described by its first row (or column) and the
algebra of p × p binary circulant matrices is isomorphic to
the algebra of polynomials modulo xp − 1 over F2, enabling
efficient computation.

Definition 3 (LDPC/MDPC codes): An (n, r, w)-LDPC
or MDPC code is a linear code of length n, codimension r
admitting a parity-check matrix with constant row weight w.

LDPC and MDPC codes only differ in the row weight w.
While LDPC codes have small constant row weights (usually
less than 10), we assume for MDPC codes row weights which
scale in O(

√
n log n). When they are also quasi-cyclic, we call

them (n, r, w)-QC-LDPC or QC-MDPC codes.

III. MODERATE DENSITY PARITY-CHECK MCELIECE

We present the construction of our codes and our variants.

A. (n, r, w)-MDPC code construction
1) Generate r vectors (hi ∈ Fn

2 )0≤i<r, of weight w at
random.

2) The (n, r, w)-MDPC code is defined by a parity-
check matrix H ∈ Fn

2 of i-th row hi.

B. (n, r, w)-QC-MDPC code construction
1) Generate a vector h ∈ Fn

2 of weight w at random.
2) The (n, r, w)-QC-MDPC code is defined by a quasi-

cyclic parity-check matrix H ∈ Fn
2 of first row h.

3) The other r − 1 rows of H are obtained from the
r − 1 quasi-cyclic shifts of h.

For the MDPC construction, with overwhelming probabil-
ity H is of full rank and the rightmost r×r block is invertible
after possibly swapping a few columns. For the QC-MDPC
construction, let n = n0p, for n0, p ∈ Z∗. We construct a
matrix H = [H0|H1| . . . |Hn0−1] ∈ Fr×n

2 formed by one row
of n0 circulant blocks Hi of size p × p. Each block Hi has
row weight wi, such that w =

∑n0−1
i=0 wi. Assuming Hn0−1

is non-singular, a generator matrix G in row reduced echelon
form is easily derived from the Hi’s blocks: on the left side,
G has an identity block of size (n− r)× (n− r) and on the
right side, a column of n0 − 1 circulant blocks of size p× p
obtained from: (H−1

n0−1 ·Hi)
T , for i ∈ [0..(n0 − 2)].

C. (QC)-MDPC McEliece variant
1) Key-Generation.

a) Generate a parity-check matrix H ∈ Fr×n
2

of a t-error-correcting (n, r, w)-MDPC or
(n, r, w)-QC-MDPC code.

b) Generate its corresponding generator matrix
G ∈ F(n−r)×n

2 in row reduced echelon form.
c) The public key is G and the private key H .

2) Encryption. To encrypt m ∈ F(n−r)
2 into x ∈ Fn

2 :
a) Generate e ∈ Fn

2 of wt(e) ≤ t at random.
b) Compute x← mG+ e.

3) Decryption. Let ΨH be a t-error correcting LDPC
decoding algorithm equipped with the knowledge of
the private H . To decrypt x ∈ Fn

2 into m ∈ F(n−r)
2 :

a) Compute mG← ΨH(mG+ e).
b) Extract the plaintext m from the first (n−r)

positions of mG.

Note that this description gets rid3 of the usual scrambling
matrix S and permutation matrix P . Note also that the use
of a CCA-2 security-conversion, e.g. [16], allows for G in
systematic-form, without bringing any security-flaw. The pub-
lic key-size of the QC-MDPC variant is (n−r) and the MDPC
is r(n − r). Regarding the QC case, note that a quasi-cyclic
structure, by itself, does not imply a significant improvement
for attacks. All previous attacks on compact-keys McEliece
variants are based on the combination of a quasi-cyclic/dyadic
structure and some algebraic code structure.

IV. DECODING MDPC CODES

Our MDPC codes will be decoded with a variant of the
Gallager’s bit flipping algorithm [9]. This iterative decoding
algorithm provides an error-correction capability for LDPC
codes which increases linearly with the code-length and

3A folklore reasoning assigns security functions to those matrices. However
it is enough that the public-key does not reveal any useful information for
decoding, a condition satisfied by the dense public matrix.



decreases more or less linearly with the weight w of the parity-
checks. Thus, when moving from LDPC to MDPC codes,
a degradation in the error-correcting capability is expected.
However in cryptography we are not necessarily interested in
correcting a large number of errors, but only a number which
ensures an adequate security level.

Gallager’s bit flipping algorithm works as follows. At each
iteration, the number of unsatisfied parity-check equations
associated to each bit of the message is computed. Each bit
associated to more than b unsatisfied equations is flipped and
the syndrome is recomputed. This process is repeated until
either the syndrome becomes zero or after a maximum number
of iteration. It is easy to see that this algorithm has complexity
O(nwI), where I stands for the average number of iterations.
Due to the increased row weight (and the existence of short-
cycles in the corresponding Tanner graph), MDPC codes
may lead to an increased number of iterations. To minimize
this problem, we suggest a variant of Gallager’s algorithm
changing the choice for b. Below a few possibilities for b:

I. Precomputing b (see inequality 4.16, pg. 46, [9]);
II. In [17], b is chosen as Maxupc, the maximum number

of unsatisfied parity-check equations;
III. Our approach: b = Maxupc − δ, for a small integer δ.

Approach II is more general than I, leading to a better error-
correcting capability at the price of an increased number of
iterations. Approach III combines the benefits of I and II
since it reduces the overall number of iterations obtained by
Approach II (much more bits are flipped at each iteration) and
it provides an error-correcting capability as good as Approach
II. This last benefit is due to the following strategy. Every time
the algorithm fails to decode, the value of δ is decreased by
1 and the process is restarted. Obviously when δ = 0, we
are back to Approach II. Regarding the parameters suggested
in Section VI, a good choice for δ is around 5, reducing the
number of iterations from ∼ 65 to less than 10.

To estimate the error correction capability of Gallager’s
algorithm for MDPC codes we use Gallager’s analysis [9]
which gives a threshold for the number of errors that an
(n, r, w)-LDPC code may correct. Although this analysis is
not quite precise for MDPC codes (due to the short cycles
in the associated Tanner graph), it provides an upper bound
on its error correction capability. Then through exhaustive
simulation is possible to estimate the quality of an MDPC
code in terms of its decoding failure rate (DFR). Thus it
suffices to decrease the number of errors from this threshold
until achieving an adequate DFR. For example, the parameters
of Section VI reach a DFR of at most 10−7.

Notice that, in cryptography, this non-zero probability
of decoding failure must be treated. A straightforward ap-
proach is to conservatively choose the number of errors so
that the DFR is negligible (e.g. smaller than the machine
failure rate). A second and on-the-fly approach is to switch

to more sophisticated algorithms, like [18], which achieves
better error-correction capability at the price of a significantly
increased decoding complexity. Finally, when the application
allows, a third approach consists in using a CCA-2 secure
conversion [16], ensuring the indistinguishability of the en-
crypted messages. Then, in the case of a decoding failure,
new encryptions can be requested and the adversary would
not be able to extract any information from this redundancy
since the encrypted messages behave like random sequences.

V. SECURITY ASSESSMENT

A. Security reduction
By security reduction, we mean a proof that an adversary

able to attack the scheme is able solve some (presumably
hard) algorithmic problem with a similar computational effort.
We start giving the description of the generic reduction
adapted from [19] for the Niederreiter cryptosystem [20]. It
is easy to see that this security reduction also holds for the
McEliece scheme (which is equivalent in terms of security to
the Niederreiter scheme [21]) at the price of a more involved
probability space and statements. Next, the generic reduction
and then the discussion regarding our proposal.

Let Fn,r,w denote a t-error correcting code family which
can be either (n, r, w)-MDPC or QC-MDPC (the statements
are valid in both cases). The public key is a parity check ma-
trix of some code in Fn,r,w. The key space of Fn,r,w is Kn,r,w

and the apparent key space of Fn,r,w is Hn,r ⊃ Kn,r,w. In
the MDPC case, Hn,r is the set of full rank matrices in Fr×n

2 .
For QC-MDPC, Hn,r is restricted to block circulant matrices.

Generic Reduction. Let Sn(0, t) denote the sphere cen-
tered in zero of radius t in the Hamming space Fn

2 and let Ω
denote the probability space consisting of the sample space
Hn,r×Sn(0, t) equipped with uniform distribution. We define:

• Distinguisher: A program D : Hn,r −→ {0, 1} is a
(T, ε)-distinguisher for Kn,r,w (vs. Hn,r) if it runs in
time at most T and the advantage of D for Kn,r,w

given by Adv(D,Kn,r,w) = |PrΩ(D(H) = 1|H ∈
Kn,r,w)− PrΩ(D(H) = 1)| is greater than ε.

• Decoder: A program φ : Hn,r×Fr
2 −→ Sn(0, t) is a

(T, ε)-decoder for (Hn,r, t) if it runs in time at most
T and its success probability given by Succ(φ) =
PrΩ(φ(H, eHT) = e) is greater than ε.

• Adversary: A program A : Hn,r × Fn
2 −→ Sn(0, t)

is a (T, ε)-adversary against Kn,r,w-Niederreiter if it
runs in time at most T and its success probability
given by Succ(A,Kn,r,w) = PrΩ(A(H, eHT) =
e|H ∈ Kn,r,w) is greater than ε.

A distinguisher for Kn,r,w vs. Hn,r and a decoder for
(Hn,r, t) provide solutions respectively to the Code dis-
tinguishing and to the Computational syndrome decoding
problem. Below we present Proposition 1 showing that if none
of those problems can be solved efficiently then no efficient



adversary against the scheme exists.

• Problem 1. (Code distinguishing problem). Given
the parameters Kn,r,w, Hn,r and the instance H ∈
Hn,r, is H ∈ Kn,r,w?

• Problem 2. (Computational syndrome decoding
problem). Given the parameters Hn,r, an integer
t > 0 and the instance H ∈ Hn,r, s ∈ Fr

2, find a
vector e ∈ Sn(0, t) such that eHT = s.

Proposition 1: Given the parameters (n,r,w) and t, if
there exists a (T, ε)-adversary against Kn,r,w-Niederreiter,
then there exists either a (T, ε/2)-decoder for (Hn,r, t) or
a (T +O(n2), ε/2)-distinguisher for Kn,r,w vs. Hn,r.

Proof: in [15]. �

The MDPC and the QC-MDPC cases. We introduce an
additional problem which consists in deciding the existence
of words of given weight in a given linear code. Note that the
code we consider below has a generator matrix H ∈ Hn,r, it
is thus the dual of a code in Fn,r,w.

• Problem 3. (Codeword existence problem). Given
the parameters Hn,r, an integer w > 0 and the
instance H ∈ Hn,r, is there a codeword of weight
w in the code of generator matrix H?

Ideally, we would like to replace Problem 1 by Problem 3
in Proposition 1. Unfortunately, one would need to replace the
distinguisher advantage by the quantity: Adv(E ,Kn,r,w) =
|PrΩ(E(H) = 1|H ∈ Kn,r,w) − PrΩ(E(H) = 1)|, where E
denotes a program deciding the existence of a word of weight
w in a given code. However this quantity is not directly related
to the hardness of Problem 3. Thus we reach our purpose if
the following conjecture holds.

Conjecture 1: Solving Problem 1 for (Hn,r,Kn,r,w) is not
easier than solving Problem 3 for (Hn,r, w).
Within this conjecture we could modify the reduction to a
claim that the Kn,r,w-McEliece scheme is at least as hard
as either Problem 2 and Problem 3. Now if we remark
that Problem 3 is polynomially equivalent to its associate
computational problem (Problem 4), and that this Problem 4
is polynomially equivalent to Problem 2 (see [15]), we may
then produce a strong security statement.

• Problem 4. (Codeword finding problem). Given the
parameters Hn,r, an integer w > 0, and the instance
H ∈ Hn,r, find a codeword of weight w in the code
of generator matrix H .

Proposition 2: Assuming Conjecture 1, breaking the
(QC)-MDPC variant of McEliece or Niederreiter is not easier
than solving the syndrome decoding problem in a random
(QC) linear code.

Proof: directly from Proposition 1 and the polynomial
equivalence of problems 3–4 and 4–2 (see [15]). �

B. Practical security
Consider the McEliece (or Niederreiter) scheme with an

(n, r, w)-(QC)-MDPC code correcting t errors. We denote C
the hidden (QC)-MDPC code defined by the public generator
matrix of C. We assume that the key distinguishing attack
is equivalent to exhibit one codeword of C⊥ of weight w.
The key recovery attack is equivalent to exhibit r codewords
of C⊥ of weight w. The decoding attack is equivalent to
decode t errors in an (n, r)-linear code. For all those attacks
we have to solve either Problem 2 or Problem 4. For both,
the best technique is information set decoding (ISD) [22]. In
today’s state-of-the-art the best variants derive from Stern’s
collision decoding algorithm [23]. There have been numerous
improvements until the recent asymptotic result [24]. We have
analyzed all of them and an unpublished non-assymptotic
analyses of [24] gives slightly lower workfactors (see [15]).

We denote by WFisd(n, r, t) the cost for decoding t errors
(or finding a codeword of weight t) in a (n, r)-binary linear
code when there is a single solution of the problem. In short,
ISD algorithms assume a pattern for the sought error vector
and it analyzes a certain set of candidates until a solution is
found. This set of candidates is stored in lists of a size L and
each candidate has a probability P to produce the solution.
When the parameters algorithm are optimal, the workfactor
WFisd(n, r, t) is equal, up to a small factor, to the ratio
L/P . The Decoding One Out of Many setting (DOOM) [25]
analyzes the gains when the decoding problem have multiple
solutions and the attacker is satisfied with a single solution.
This work shows that when the problem has Ns solutions, the
probability of success P increases by a factor Ns (as long as
NsP � 1) and when Ni instances are treated simultaneously
the list size L increases at most by a factor

√
Ni. Thus the

DOOM technique [25] provides a gain4 of Ns/
√
Ni.

For our variants, the key distinguishing leads to Ni = 1,
the zero syndrome, and Ns = r, the r parity-check rows. For
key recovery, Ns = r again and, in the QC-MDPC case, one
word is enough. For QC-MDPC decoding, any cyclic shift of
the syndrome is a valid instance (up to a block-wise cyclic
shift), thus Ni = Ns = r. Table I summarizes these gains.
Example. Let n0 = 2, n = 9602, r = 4801, w = 90, t = 84,
quasi-cyclic. The analysis of [24] gives costs of 292.70 for key-
recovery and 287.16 for decoding. Decreasing them by factors
of r and

√
r, the final costs are: 280.47, 281.04. A final remark

on practical security: we choose r as a prime number to avoid
attacks exploiting non-prime quasi-cyclicity [26], [27].

VI. CONCLUSION

MDPC codes seem to be very convenient for cryptographic
purposes. They reduce the distinguishing problem to a well
studied coding-theory problem: decoding linear codes. Be-
sides, adding a quasi-cyclic structure, it provides extremely

4In general, the real gain is in fact slightly smaller because these algorithms
depend on optimal parameters which are not the same for multiple instances.



MDPC QC-MDPC

Key distinguishing
1

r
WFisd(n, n− r, w)

1

r
WFisd(n, n− r, w)

Key recovery WFisd(n, n− r, w)
1

r
WFisd(n, n− r, w)

Decoding WFisd(n, r, t)
1
√
r

WFisd(n, r, t)

TABLE I. BEST ATTACKS FOR CODE-BASED ENCRYPTION SCHEMES
USING t-ERROR CORRECTING (n, r, w)-MDPC (OR QC-MDPC) CODES

TABLE II. QC-MDPC MCELICE SUGGESTED PARAMETERS.
SYNDROME (r) AND KEY SIZE GIVEN IN BITS.

Level security n0 n r w t key-size
80 2 9602 4801 90 84 4801
80 3 10779 3593 153 53 7186
80 4 12316 3079 220 42 9237
128 2 19714 9857 142 134 9857
128 3 22299 7433 243 85 14866
128 4 27212 6803 340 68 20409
256 2 65542 32771 274 264 32771
256 3 67593 22531 465 167 45062
256 4 81932 20483 644 137 61449

compact keys. Table II presents parameters for the QC-MDPC
variant and Table III a key-size comparison to [12] (keys
in systematic form), [7] and [28]. Regarding its complexity,
the encryption and key-generation are reduced to simple QC-
block products, and the decryption takes less than 3ms in a
non-optimized C++ implementation running at an Intel Xeon
CPU @3.20GHz (80-bits sec. parameters). Note the system
can be scaled to meet arbitrarily large security [15].
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